
Christian Wildner, Heinz Koeppl

A1 Proofs and Derivations

A1.1 Proof of Lemma 1

Step 1 First, we derive representation (10). We start from the proposed variational drift (9) with identity
rescaling, i.e.

aZ(x, t) = aX(x) + v(t)T (x) . (A1)

with v : [0, tf]→ Rn×m and T : Rn → Rm. If we denote the columns of v by v1, . . . , vm, the control part of Eq.
(A1) may be written as

v(t)T (x) =
m∑
i=1

vi(t)Ti(x) (A2)

where Ti represents the components of the vector T . The drift (A1) induces a family of Ito processes parametrized
by the deterministic, time-dependent function v given by the SDE

dZt =
(
aX(Zt) + v(t)T (Zt)

)
dt+ b(Zt)dWt . (A3)

Inserting the control (A1) into the objective function (8), the prior drift aX cancels and the divergence between
variational process and prior becomes

DKL[PZ ||PX] =
1

2

∫ tf

0

E
[
T (Zt, t)

>v(t)>D(Zt, t)
−1v(t)T (Zt, t)

]
dt (A4)

To proceed, let us rewrite the tensor contraction within the expectation above using the expanded form of the
control (A2). For clarity, we also suppress the arguments and get

T>v>D−1vT =
∑
i,j

viTiD
−1Tjvj (A5)

Now let us define a block matrix function ψ : Rn → Rnm×nm and a vector u ∈ Rnm as

ψ(x) =

T1T1D
−1 . . . T1TmD

−1

... · · ·
...

TmT1D
−1 . . . , TmTmD

−1

 , u =

 v1

...
vm

 .

With this, the tensor contraction (A5) can be written as

T>v>D−1vT = u>ψu . (A6)

Now observe that only the elements of ψ depend on the stochastic process Zt. Consequently, we arrive at the
following form of the divergence

DKL[PZ ||PX] =
1

2

∫ tf

0

u(t)>E[ψ(Zt)]u(t)dt . (A7)

This function contains expectations of the form E[Ti(Zt)Tj(Zt)D
−1
kl (Zt))]. By augmenting the summary statics

S with these quantities, we can find a function g such that ψ(t) = g(ϕ(t)). While this choice is always possible,
there may often be more convenient ways to construct g. Using g, we can write

DKL[PZ ||PX] =
1

2

∫ tf

0

u(t)>g(ϕ(t))u(t)dt . (A8)

as given in (10).

 Licence: CC BY 4.0 / Creative Commons Attribution 4.0 International

https://creativecommons.org/licenses/by/4.0/

MBVI for SDEs

Step 2 What is left to show is that (A7) is a quadratic form in u. For this, we have to show that the matrix
ψ(t) is symmetric positive semi-definite for almost every t ∈ [0, tf]. The function ψ is symmetric by construction.
Consequently, E[ψ(Zt)] is symmetric. Now fix u ∈ Rnm and let v be the corresponding matrix representation.
Set

H(v, t) = T (x, t)>v(t)>D−1(x, t)v(t)T (x, t) .

Then H(v, t) ≥ 0 for almost all x ∈ Rn and t ∈ [0, tf]. To see this, we understand v(t)T (x, t) as a vector in Rn.
The result follows because D(x, t) is p.s.d. almost everywhere by assumption. Here, the strict definiteness is lost
in general. For example, if m > n we may find v such that v(t)T (x, t) = 0. Now since H and A represent the
same quadratic form, A has to be positive semi-definite as well.

Step 3 So far, we have not considered rescaling. Now let R : Rn → Rn×n be an invertible matrix valued
function and consider the rescaled controlled drift

aZ(x, t) = aX(x) +R(x)v(t)T (x, t) .

Evaluating the prior contribution to the divergence yields

DKL[PZ ||PX] =
1

2

∫ tf

0

E

T (Zt)
>v(t)>R(Zt)

>D(Zt, t)
−1R(Zt)︸ ︷︷ ︸

≡D̃−1(Zt)

v(t)T (Zt)

 dt . (A9)

We can now directly repeat steps 1 and 2 by replacing D(x)→ D̃(x) in the construction of g.

A1.2 Proof of Proposition 1

The full variational inference problem for the proposal class parametrized by u is given by

min
u

1

2

∫ tf

0

u(t)>g(ϕ(t))u(t) dt−
n∑
k=1

E[log p(yk | Ztk)] + logC . (A10)

Eq. (A10) is a direct consequence of (8) and Lemma 1 and may be understood as a stochastic control problem.
We now assume that the expected log-likelihood may be expressed in terms of the expected summary statistics
ϕ, i.e. E[log p(yk | Ztk)] = F (ϕ(tk)) . We also ignore the evidence logC which is independent of u. This leads to
the streamlined representation

min
u

1

2

∫ tf

0

u(t)>g(ϕ(t))u(t) dt−
n∑
k=1

F (ϕ(tk)) . (A11)

The objective function in (A11) corresponds to the negative ELBO for the proposal family parametrized by u.
Unfortunately, the simple appearance of (A11) is deceiving since ϕ(t) = E[S(Zt)] implicitly depends on u. Now
recall that ϕ(t) obeys an evolution equation of the form

d

dt
ϕ(t) = E[A†S(Zt)] .

We can now convert (A11) into a constrained problem

min
u,ϕ

1

2
tfu(t)>g(ϕ(t))u(t) dt−

n∑
k=1

Fi(ϕ(tk))

s.t. ϕ̇(t) = E[A†S(Zt)]

. (A12)

We emphasize that (A12) is an equivalent representation of the variational problem and does not contain any
approximations beyond the choice of the variational family. This also means that it has the full complexity of
the original stochastic control problem (A10). In order to obtain a more tractable problem, we use a moment
closure on the constraint to get an ODE of the form

d

dt
ϕ(t) = f(u, ϕ(t)) . (A13)

With this moment closure relaxation, the variational problem (A12) reduces to the deterministic control problem
given in the main text.

Christian Wildner, Heinz Koeppl

Comment In general, when a moment closure is employed, there is no global Markov process corresponding
exactly to the closed moment equations. Then, the objective function is not a true lower bound of the evidence
but an approximate lower bound. Such behavior is well-known for other structured variational approximation,
e.g. for cluster variational methods Yedidia et al. (2000); Wainwright and Jordan (2008). Since moment closure
introduces an additional approximation, results of the moment-based variational inference have to be checked
empirically. However, we do not see this as a major problem since such empirical verification is required for all
forms of variational inference anyway.

A1.3 Proof of Lemma 2

Consider to stochastic processes Z and Z ′ over an interval [0, tf] that are members of the variational family as
defined by the drift and Eq. (9). Let Z and Z ′ be parametrized by u and u′, respectively. Inserting Z and Z ′

into the general path divergence of diffusion processes (7) , we get

DKL[Z ||Z ′] =
1

2

∫ tf

0

E
[
T (Zt)

> (v′(t)− v(t))
>
D−1(Zt, t) (v′(t)− v(t))T (Zt)

]
dt

This expression is the same as (A4) with v replaced by v− v′. Therefore, we may follow along the same lines as
in Sec. A1.1 and obtain

DKL[Z ||Z ′] =
1

2

∫ tf

0

(u′(t)− u(t))
>
g(ϕ(t)) (u′(t)− u) dt .

To get the suggested representation, set G : U × U → R as

G(u)[u′ − u, u′ − u] =

∫ tf

0

(u′(t)− u(t))
>
g(ϕ(t)) (u′(t)− u) dt .

What is left is to verify the properties of G. Bilinearity follows immediately from the above definition. The
symmetry and positive definiteness follow from Lemma 1.

A1.4 Proof of Proposition 2

Consider the variational problem of the main text given by

u∗ = arg min
u
J [u] . (A14)

Here, we understand J as a functional of the controls u only. This is possible because u together with an initial
condition fully defines the moments ϕ. We would like to perform a steepest descent that respects the metric of
the manifold on which u lives. We therefore replace (A14) by the sequential optimization problem

u(i+1) = arg min
u
J [u] , s.t.

1

2
G(u(i))(u− u(i), u− u(i)) = ε .

The following calculation is inspired by the discussion of neighboring optimal solutions in Stengel (1994). For
sufficiently small ε, we may linearize J around the current estimate u(i). Enforcing the constraint via a Lagrange
multiplier, we obtain the unconstrained functional

J ′[u, λ] = J [u(i)] + δJ [u(i), u− u(i)] + λ

(
1

2
G(u(i))(u− u(i), u− u(i))− ε

)
.

Here δJ denotes the Gateaux derivative of J . For simplicity, set δu = u − u(i). We consider δu as a small
perturbation of u(i) and denote as δϕ the deviation from ϕ(i) induced by δu. It turns out that δϕ satisfies the
linearized forward equation

˙δϕ(t) = fϕ(u(i)(t), ϕ(i)(t))δϕ(t) + fu(u(i)(t), ϕ(i)(t))δu . (A15)

The linearized contribution δJ is given by

δJ [u(i), u− u(i)] =

∫ tf

0

Lϕ(u(i)(t), ϕ(i)(t))δϕ(t)dt+

∫ tf

0

Lu(u(i)(t), ϕ(i)(t))δu(t)dt

MBVI for SDEs

where ϕ is understood as a function of δu determined by (A15). We therefore obtain the objective function

J ′[u, λ] =

∫ tf

0

Lϕ(u(i)(t), ϕ(i)(t))δϕ(t)dt+

∫ tf

0

Lu(u(i)(t), ϕ(i)(t))δu(t)dt

+
λ

2

∫ tf

0

δu(t)>ψ(ϕ(i)(t))δu(t)dt+ const .

(A16)

that we have to minimize subject to the constraint (A15). We can now follow the standard variational procedure
to obtain an adjoint equation

η̇(t) = Lϕ(u(i)(t), ϕ(i)(t))− f>ϕ (u(i)(t), ϕ(i)(t))η(t) (A17)

that satisfies the reset conditions

η(t−k) = η(t+k) +
d

dϕ
F (ϕ(tk)), k = 1, . . . , n (A18)

at the observation times. In addition, we obtain the algebraic constraint

0 = Lu(u(i)(t), ϕ(i)(t))− fu(u(i)(t), ϕ(i)(t))η(t) + λψ(ϕ(i)(t))δu(t) . (A19)

In contrast to the non-linearized problem, the stationarity conditions decouple in this case. This means we can
solve for the controls explicitly. Denoting the solution of (A17) as η(i) the solution can be expressed as

δu(i)(t) = − 1

λ
g−1(ϕ(i)(t))

(
Lu(u(i)(t), ϕ(i)(t))− fu(u(i)(t), ϕ(i)(t))η(i)(t)

)
(A20)

Now we also know that Lu(u(i)(t), ϕ(i)(t)) = g(ϕ(i)(t))u(i(t). Thus, we get the natural gradient update steps as

u(i+1)(t) = u(i)(t) + δu(i)(t) = u(i)(t)− h
(
u(i)(t)− ψ−1(ϕ(i)(t))fu(u(i)(t), ϕ(i)(t))η(i)(t)

)
. (A21)

Here, we also introduced the step size h = 1
λ that is determined by ε. To recover the regular gradient, we use

that gradient descent is a steepest descent with respect to the Euclidean metric. In our function space setting,
the natural analogue is the L2 norm. Therefore, gradient descent is obtained by repeating the above calculations
for

G(u)(u′ − u, u′ − u) =

∫ tf

0

(u′(t)− u(t))>(u′(t)− u(t)) dt .

Thus, the only thing we have to change is replacing g−1 in (A20) with the identity matrix.

Comments In a typical application, we will initialize the descent with all controls set to zero. This setting
recovers the prior process. Intuitively, we can see the natural gradient descent as a smooth transition from the
prior process to the (locally) best posterior approximation within the variational family. We note that due to
moment closure, we only have access to approximate moments ϕ. Therefore, the natural gradient is also an
approximation to the true natural gradient.

A1.5 Recovering the Gaussian Process Approximation

For this section, we assume that the diffusion term b does not depend on the state. The Gaussian process
approximation only requires first and second order moments. We therefore choose

S(x) = (x1, . . . , xn, x
2
1, x1x2, x

2
2, . . . , x

2
n)> .

The GP approximation is defined by a linear time-dependent drift. In order to recover this within our framework,
we need to find T such that

aZ(x, t) = a(x) + v(t)T (x)
!
= u0(t) + u1(t)x

Christian Wildner, Heinz Koeppl

where u0 : [0, tf]→ Rn and u1 : [0, tf]→ Rn×n. Now consider the choice

T (x, t) =

 1
x

a(x, t)

 , v(t) =
(
u0(t) u1(t) u2(t)

)
understood as block matrix notation with u2 : [0, tf]→ Rn×n. This will lead to a variational drift of the form

aZ(x, t) = a(x) + u0(t) + u1(t)x+ u2(t)a(x) .

If we fix u2 to the constant function with output minus one, the prior drift will cancel and we have constructed
a linear GP. Using the general moment equation (2) with the drift aZ , we can now derive the moment equations
for ϕ(t) = E[S(Zt)]. Represented in terms represented in terms of m, M̄ we get

ṁ(t) = u0(t) + u1(t)m(t) ,

˙̄M(t) = u1(t)M̄(t) + M̄(t)u1(t)> +D .
(A22)

These equations are the standard equations for mean and variance of a linear GP. Eq. (A22) defines the forward
function f required for implementation in our framework. The second function required is L or g. Here, L is a
bit more convenient and is given by

L(u(t), ϕ(t)) = E[(u0(t) + u1(t)x− a(Zt))
>D−1(u0(t) + u1(t)Zt − a(Zt))] .

After a few algebraic multiplications, we observe that the only model dependent quantities required for L are
E[a(Zt], E[a(Zt)Z

>
t] and E[a(Zt)a(Zt)

>] expressed as functions of m and M̄ .

A2 Additional Information

A2.1 Moment Closure Approximations

In the main part, we discussed how two obtain moment equations for Markov processes and gave a general idea
on moment closure. Here, we will discuss strategies to obtain such a closure scheme, i.e. how to find the function
h such that we can proceed from (4) to (5). We focus on distributional closures that correspond to a projection
onto a given parametric family (Bronstein and Koeppl, 2018). A distributional closure is constructed by picking
a parametric proposal distribution qφ on the state space X . To obtain a closure scheme, the first step is to find
φ(t) such that

Eφ(t)[R(X)] = ϕ(t) , (A23)

where ϕ(t) = E[S(Zt)] are the expected summary statistics used to approximate the process. Eq. (A23) defines
a valid moment closure when the conditions of the implicit function theorem are satisfied. Assuming we have
obtained ϕ(t), we can evaluate

h(ϕ(t)) ≡ Eφ(t)[R(X)] , (A24)

where the expectation is taken with respect to qφ(t).

It has also been shown that moment closure tends to work better if the support of the proposal distribution
matches the support of the target process. Here, we focus on two simple probabilistic closures: the multivariate
normal closure for processes defined on Rn and the multivariate log-normal closure for processes defined on Rn+.
Another advantage of these two schemes is that they correspond directly to first and second order moments and
may thus be used as a starting point before investigating more advanced schemes. To simplify the presentation,
we denote the first order moments as m ≡ E[X], the second order moments as M ≡ E[XX>] and the second
order central moments as M̄ ≡ E[(X −m)(X −m)>]. We write general powers in multi-index form, i.e.

Xα ≡
n∏
i=1

Xαi
i .

This will be useful to represent general power moments. We also define k ≡
∑n
i=1 αi as the order of the α-th

multi-moment.

MBVI for SDEs

Multivariate Normal Clouse Let X ∼ N (µ,Σ) be a multivariate normal random variable on Rn. Since the
distribution is fully specified by the man µ and the covariance Σ, all moments of the form E[Xα] with α ∈ Nn can
be expressed as functions of µ and Σ. One way to obtain such a representation is via Isserlis’ theorem (Isserlis,
1918). We will follow an alternative approach via the moment generating function.

Lemma A1. Let X be as above and α ∈ Rn a multi-index. Then

E[Xα] =

n∏
i=1

∂αi

∂sαii
M(s)

∣∣∣∣∣
s=0

where

M(s) = E[exp(s>X)] = exp

(
µ>s+

1

2
s>Σs

)
is the moment generating function of N (µ,Σ).

While Lemma (A1) does not provide an explicit formula for direct numerical implementation, it is straightforward
to automatically generate the closure relations using a computer algebra system. In particular, we automatically
construct moment equations using Sympy (Meurer et al., 2017) and convert them to PyTorch functions.

Multivariate Lognormal Closure A log-normal random variable can be obtained by exponential transform
of a normal random variable. This generalizes to the multivariate case. More specifically, let Z ∼ N (µ,Σ). Then
we say

X = exp(Z)

has a log-normal distribution. Here, the exponential is understood as acting component-wise.

Lemma A2. Let X be as above and α ∈ Rn a multi-index. Then

E[Xα] =

(∏
i

E[Xi]
2αi

E[X2
i]
αi
2

)∏
i,j

E[XiXj]
αiαj

2

E[Xi]
αiαj

2 E[Xj]
αiαj

2


This result can be shown by exploiting that E[Xα] = E

[
exp

(
α>Z

)]
corresponds to the moment generating

function of a normal distribution. As a consequence of Lemma A2, we obtain the explicit closure function

Cl(m,M,α) =

(∏
i

m2αi
i

M
αi
2
i

)∏
i,j

M
αiαj

2
ij

m
αiαj

2
i m

αiαj
2

j

 . (A25)

The log-normal closure (A25) can be implemented efficiently using tensor operations. It is also differentiable and
thus suitable for backpropagation.

A2.2 Rescaling

Consider a drift without rescaling of the form (A1). While leading to a convenient quadratic objective function,
this form of the control has two major drawbacks. The first drawback is that the matrix-valued function g in
(10) is of dimension (n ·m,n ·m) with n, m corresponding to the dimension of the state space and the number
of control features, respectively. Assuming the number control features is proportional to the dimension, the
function g requires O(n4) elements. The second problem is specific to models with state-dependent diffusion
term. In this case, the elements of g are of the form E[Ti(Zt)Tj(Zt)D

−1
kl (Zt)]. This expression requires an analytic

inverse of the diffusion tensor which is rarely available. We now discuss two special choices of rescaling. First,
consider a case where the diffusion term b is known analytically and set R = b. We then have

D̃−1(x) ≡ b(x)>D−1(x)b(x) = b(x)>
(
b(x)b(x)>

)−1
b(x) = I .

The matrix g now only depends on moments of the form E[Ti(Zt, t)Tj(Zt, t)]. As a consequence, the objective
function becomes independent of the diffusion tensor. In addition, the number of non-zero elements of g now

Christian Wildner, Heinz Koeppl

scales as O(n2). The second choice of rescaling aims at the case where we are provided with D rather than b
and thus consider R = D leading to

D̃−1(x) = D(x)>D−1(x)D(x) = D(x, t) . (A26)

While this choice does not improve the scaling, g now depends on expressions of the form E[Ti(Zt)Tj(Zt)Dkl(Zt)]
such that we get rid of the inverse diffusion tensor. It also has an interesting intuitive interpretation. Recall
that the true posterior drift is given by ā(x, t) = a(x, t) +D(x, t)∇ log(β(x, t)). Thus, the ansatz corresponds to
approximating the log-transformed backward function by a linear feature model.

A2.3 A Standard Approximation

Inspired by the variational Gaussian process approximation, we would like to construct a method that approxi-
mates the data-driven term by a feedback control linear in the state and requires first and second order moments.
This corresponds to the choices

S(x) = (x1, . . . , xn, x
2
1, x1x2, x

2
2, . . . , x

2
n)> ,

T (x) = (1, x1, . . . , xn)> .

For this special class, it is convenient to represent the control in terms of functions u0, u1 such that we can write

v(t)T (x) = u0(t) + u1(t)x (A27)

A short calculation shows that the moment equations are given by

ṁ(t) = E[a(Zt)] + E[R(Zt)]u0(t) + E(R(Zt)u1(t)Zt]

Ṁ(t) = E[a(Zt)Z
>
t] + E[Zta(Zt)

>] + E[D(Zt)]

+ E[R(Zt)u0Z
>
t] + E[Ztu0Z

>
t R(Zt)

>]

+ E[R(Zt)u1(t)ZtZ
>
t] + E[ZtZ

>
t u1(t)>R(Zt)

>]

A2.4 Specific Subclasses

In this section, we present moment equations for special classes and more specific models considered in the
experiment section.

Constant Diffusion For models with constant diffusion terms b, we can always choose the corresponding
rescaling. In combination with the approach outlined in A2.3, we obtain the moment equations

ṁ(t) = E[a(Zt)] + bu0(t) + bu1(t)m(t)] ,

Ṁ(t) = E[a(Zt)Z
>
t] + E[Zta(Zt)

>] + bb>

+ bu0(t)m(t)> +m(t)u0(t)>b> + bu1(t)M(t) +M(t)u1(t)>b> .

The second function required is the contribution to the KL-divergence that can be provided in terms of L or g
(c.f. Thm. 1). Here, using L is more convenient and we get

L(u(t),m(t),M(t)) =
1

2

(
u0(t)>u0(t) + 2u0(t)>u1(t)m(t) + Tr(u1(t)>u1(t)M(t))

)
.

Since the last equation is model-independent, we have implemented a base class from which custom models
can be derived. In particular, implementation of a given model only requires custom functions for E[a(Zt)] and
E[a(Zt)Z

>
t]. For polynomial drift functions, the required expectations can be evaluated straightforwardly using

our Gaussian moment closure implementation in Sympy (c.f. Lemma A1).

Population Models We consider a general population model defined by the chemical Langevin equation (25).
Here, the diffusion term b(x) is not given and we have only access to the diffusion tensor D(x) = V >diag(h(Xt))V .
We will therefore choose a linear control with rescaling R = D. In the regime where the CLE is valid, we typically

MBVI for SDEs

have Xi � 1. We will also restrict the discussion to physically plausible systems with sik ≤ 2. Under these
conditions, the propensity functions can be approximated as

hi(x) = ci

d∏
k=1

xsikk . (A28)

For the proposed variational process class, we obtain the moment equations

mi(t) = VjiE[hj(Zt)] + VkiVkju0,j(t)E[hk(Zt)] + VliVlju1,jk(t)E[hl(Zt)Zt,k]

Mij(t) = VkiE[hk(Zt)Zt,j] + VkjE[hk(Zt)Zt,i] + VkiVklu0,l(t)E[hk(Zt)Zt,j] + VkjVklu0,l(t)E[hk(Zt)Zt,i]

+ VkiVklu1,lm(t)E[hk(Zt)Zt,mZt,j] + VkjVklu1,lm(t)E[hk(Zt)Zt,mZt,i] + VkiVkjE[hk(Zt)]

(A29)

While these expressions may look unwieldy, we observe that when the propensities are modeled by (A28), all
expectations in (A28) are of the form E[Zαt] and can be easily evaluated with the generic log-normal closure
function A25. In addition, expectations required for the function g are of the same form.

Multivariate Geometric Brownian Motion For the multivariate Brownian motion model described in the
main text, we consider a linear control with rescaling b. We obtain the moment equations

ṁi(t) = rimi(t) +mi(t)Riju0,j(t) +Riju1,jkMik(t) ,

Ṁij = riMij(t) + rjMji(t) +Riku0,kMij(t) +Rjku0,kMji(t)

+Riku1,klE[Zt,iZt,jZt,l] +Rjku1,klE[Zt,iZt,jZt,l] +DijMij(t)

(A30)

where we have used Einstein sum convention. In order to obtain closed equations, we compute the third order
moments E[Zt,iZt,jZt,l] via the general log-normal closure formula given in Lemma A2. Since for the rescaling
with b, the second function g becomes independent of the model, (A30) is the only model specific quantity
required for implementation.

A2.5 Parameter Inference

A2.5.1 Extended Control Problem

Variational parameter inference corresponds to maximizing the evidence lower bound jointly with respect to the
model parameters θ and variational parameters u. If we instead minimize the negative ELBO, we obtain the
optimization problem

min
θ,u

DKL[PZ ||PX]−
n∑
k=1

E[log p(yk | Ztk)]︸ ︷︷ ︸
≡J[θ,u]

. (A31)

We can now do the same reductions as for the derivation of the smoothing control problem

min
θ,u,ϕ

1

2

∫ tf

0

u(t)>g(θ, ϕ(t))u(t) dt−
n∑
k=1

Fi(ϕ(tk))

s.t. ϕ̇(t) = E[A†S(Zt)]

. (A32)

Of course, the dynamic constraint depends on θ as well. Three methods are commonly used to solve the
variational inference problem (A31).

Coordinate Descent Starting from an initial guess θ(0), u(0) the updates are computed as

u(i+1) = min
u
J [θ(i), u] ,

θ(i+1) = min
θ
J [θ, u(i+1)] .

This is the classical variational expectation maximization(VEM) algorithm used in mean field variational infer-
ence. It is most effective when the updates can be computed in closed form. In the scenario considered here,
this will typically not be the case. Even if possible, obtaining the closed form updates requires model specific
calculations that we try to avoid. We therefore do not consider the VEM any further.

Christian Wildner, Heinz Koeppl

Gradient Descent In Prop. 2, we have presented regular and natural gradient descent in the controls to solve
the smoothing problem. The proof can be extended straightforwardly to include a gradient update with respect
to θ as well. More explicitly, the parameter updates take the form

θ(i+1) = θ(i) − h
∫ tf

0

(
Lθ(θ

(i), u(i)(t), ϕ(i)(t))− fθ(θ(i), u(i)(t), ϕ(i)(t))η(i)(t)
)

dt (A33)

with notational conventions as in Prop. 2. Eq. (A33) corresponds to a regular gradient and can be evaluated
without model specific derivations based on automatic differentiation.

Alternating Gradient Descent A third alternative is to iteratively take a number of gradient steps for the
u and θ while keeping the other fixed (see Algorithm 2). This method has two main advantages over the full
gradient descent. First, we can use separate step sizes for the model and variational parameter updates. Second,
since θ is fixed for the descent in u, we can still exploit the natural gradient for the latter. The alternating
gradient descent can be seen as a hybrid between VEM and gradient descent. This is because if we performed
every inner gradient descent up to convergence, the result would be equivalent to the VEM updates.

Algorithm 2 Robust Alternating Gradient Descent for Moment-Based Variational Inference

1: Input: Initial guesses θ(0), u(0), initial condition ϕ(0), learning rates h0, h1.
2: for i = 0, . . . , imax do
3: u(i,0) → u(i)

4: for k = 0, . . . , kmax do
5: Set u′ according to (A21).
6: if J [θ(i), u′] < J [θ(i), u(i,k)] then
7: h0 → α · h0, u(i,k+1) → u′

8: else
9: h0 → β · h0, u(i,k+1) → u(i,k)

10: end if
11: end for
12: u(i+1) → u(i,kmax)

13: θ(i,0) → θ(i)

14: for k = 0, . . . , kmax do
15: Set θ′ according to (A33).
16: if J [θ′, u(i+1)] < J [θ(i,k), u(i+1)] then
17: h1 → α · h1, θ(i,k+1) → θ′

18: else
19: h1 → β · h1, θ(i,k+1) → θ(i,k)

20: end if
21: end for
22: θ(i+1) → θ(i,kmax)

23: end for
24: Output: θ(imax), u(imax)

A2.5.2 Amortized Inference

In many scenarios ones observes not a single trajectory but a number of trajectories x1, . . . ,xn produced indepen-
dently from the same model underlying model with parameter θ. Denote the corresponding noisy observations as
y1, . . . ,yN . We use boldface to indicate that xi, yi corresponds to trajectories of stochastic processes. However,
to keep the following discussion simple, we will treat them informally as ordinary random variables. Thus, the
joint data likelihood is given by

p(y1, . . . ,yn | θ) =

N∏
i=1

pi(yi | θ) =

N∏
i=1

∫
pi(yi | xi)pi(xi | θ)dxi

MBVI for SDEs

where xi corresponds to the trajectory of the latent diffusion process in this case. The standard VI approach is
to construct an evidence lower bound based on the proposal

q(x1, . . .xn) =

n∏
i=1

qi(xi | ui) .

In our case, every qi corresponds to a full stochastic process Zi parametrized by ui with ui being a function of
time. Consequently, the joint variational inference problem becomes infeasible very quickly due to large memory
and runtime requirements. We therefore use an amortized proposal of the form

q(x1, . . .xn) =

n∏
i=1

qi(xi | h(yi, φ))

where h is a feed-forward neural network parametrized by φ. The corresponding ELBO is given by

ELBO(θ, φ) =

N∑
i=1

∫
qi(xi | h(yi, φ)) log p(yi | xi)−DKL[qi || pi] . (A34)

Now observe that every term in the sum above corresponds the objective function of the variational inference
problem for a single trajectory. We may thus write

−ELBO(θ, φ) =

N∑
i=1

J [θ, h(yi, φ)] (A35)

with J [θ, u] as defined in Eq. A31. The key observation is now that J is a scalar function and we are able to
compute gradients with respect to both θ and u. We can therefore encapsulate the computation of J and its
gradients in a PyTorch module. This allows to use standard stochastic optimizers based on backpropagation to
learn the model parameters θ and the inference network parameters φ.

A3 Experiment Details

In this section, we provide the explicit equations for the examples discussed in the main text and give more detail
regarding the experiments.

Computational Resources Most experiments were run on a MacBook Pro, 2015 edition, using 2.7 GHz Intel
Core i5 processor with 2 cores. We will refer to this setup as machine A. Some of the longer experiments were
run on machine B; an Intel Xeon E5-2680 v3 with 2,5GHz and 22 cores. Experiments for single trajectories were
generally run on machine A.

A3.1 Joint Inference and Smoothing

We test our method with a multivariate geometric Brownian motion of dimension n = 4. The system parameters
used to generate the trajectory are given by

r = 10−4 ·


1.0
2.64
1.5
3.2

 , σ =


0.0112
0.0102
0.0174
0.0130

 , D̄ =


1 −0.08 −0.36 0.28

−0.08 1. 0.15 −0.12
−0.36 0.15 1. −0.52
0.28 −0.12 −0.52 1.

 .

Here, σ =
√

diag(RR>) and D̄ represents the correlation matrix obtained from normalizing RR> by σσ>. The
simulation was started with an initial X0 = (1, 1, 1, 1)>. The corresponding R was obtained from D using a
Cholesky decomposition. In this parameter regime, the system is noise-dominated. The parameters r are thus
not identifiable and we focus on recovering the correlation structure. The systems was observed over an interval
[0, 720] with observations every 7 units. The observations were corrupted with Gaussian observation noise that
acted independent on all components with a standard deviation σobs = 0.01. As a variational process class, we
used second order moments with diffusion-rescaled linear control. The required equations are given in Sec. A2.4.

Christian Wildner, Heinz Koeppl

Optimization was performed using Alg. 2 with imax = 50 and kmax = 5. The noise matrix was initialized as
R(0) = 10−2 · I corresponding to a correlation free process. In the main paper, we have shown the result of a
single experiment. Here, we generate n = 100 trajectories from the described model but use shorter trajectories
over an interval [0, 360]. On each of these samples, we performed joint smoothing and inference. This experiment
was run on machine B. We used multiprocessing with a pool of 15 workers to speed up the processing. Below,
we give the average results for σ∗ and D̄∗ along with corresponding standard deviation

σ∗ =


0.0105± 0.002
0.0098± .001
0.0156± .002
0.0118± 0.001

 , D̄∗ =


1 −0.03± 0.15 −0.31± 0.14 0.23± 0.14

−0.03± 0.15 1 0.13± 0.13 −0.08± 0.14
−0.31± 0.14 0.13± 0.13 1 −0.46± 0.11
0.23± 0.14 −0.08± 0.14 −0.46± 0.11 1

 .

Although the estimates of the correlation matrix show a bit of variation, the experiments demonstrates that the
inferred parameters are reasonable and fairly consistent across samples.

A3.2 Amortized Inference

We follow the approach described in Sec. A2.5.2. In order to construct the inference network, u was restricted
to a piece-wise constant function on an equidistant grid. This allows to represent u as a matrix with rows and
columns corresponding to the number of controls and the size of the time grid. In the specific experiment, the
input layer consists of 16 unites corresponding to the 8 observations of two species. The input layer is followed
by 6 ReLu-Linear layers of increasing size with the final layer matching the dimensions of the control matrix. In
order to train the model, we generated 1000 trajectories using the following parametrization

γ =

(
0.3 0
0 0.4

)
, σ =

(
0.2 0.1
0.1 0.15

)
, µ =

(
−1.0
1.0

)
.

Observations were generated with independent Gaussian noise (σ = 0.2) on a time grid tobs =
(2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 16.0, 18.0). In order to speed up training, we used a mini-batch size of 15. Since
gradient computation for each sample requires a forward and a backward ODE integration, we implemented the
mini-batch approach using multi-processing, such that each sub-process processed one sample in the usual way.

A3.3 Code

For more details regarding hyperparameters and implementation specifics, we refer to accompanying code avail-
able at https://git.rwth-aachen.de/bcs/projects/cw/public/mbvi_sde.

https://git.rwth-aachen.de/bcs/projects/cw/public/mbvi_sde

