Graph-based Approaches to Text Generation

Vom Fachbereich Informatik
der Technischen Universitat Darmstadt
genehmigte

Dissertation

zur Erlangung des akademischen Grades Dr.-Ing.

vorgelegt von
Leonardo Filipe Rodrigues Ribeiro
geboren in Ipatinga, Brazil

Tag der Einreichung: 11. April 2022
Tag der Disputation: 02. Juni 2022

Referenten: Prof. Dr. Iryna Gurevych, Darmstadt, Germany
Dr. Claire Gardent, Nancy, France
Prof. Dr. Yue Zhang, Hangzhou, China

Darmstadt 2022
D17






Ribeiro, Leonardo F. R.: Graph-based Approaches to Text Generation
Darmstadt, Technische Universitat Darmstadt

Year thesis published in TUprints: 2022

Day of the viva voce: 02. June 2022

Please cite this document as

URN: urn:nbn:de:tuda-tuprints-214985

URL: https://tuprints.ulb.tu-darmstadt.de/id /eprint /21498

This document is provided by TUprints,
E-Publishing-Service of the TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
mailto:tuprintsQulb.tu-darmstadt.de

This work is published under the following Creative Commons license:
Attribution - Share Alike 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/


https://tuprints.ulb.tu-darmstadt.de/id/eprint/21498
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/

Ehrenwortliche Erklirung'

Hiermit erklére ich, die vorgelegte Arbeit zur Erlangung des akademischen Grades
“Dr.-Ing.” mit dem Titel “Graph-based Approaches to Text Generation” selbsténdig
und ausschlieflich unter Verwendung der angegebenen Hilfsmittel erstellt zu haben.
Ich habe bisher noch keinen Promotionsversuch unternommen.

Darmstadt, den 11. April 2022

Leonardo Filipe Rodrigues Ribeiro

1 GeméR §9 Abs. 1 der Promotionsordnung der TU Darmstadt

i



Wissenschaftlicher Werdegang des Verfassers®

01/09 — 08/14 Bachelor of Science (B.Sc.) in Computer Engineering, Centro Fe-
deral de Educagao Tecnologica de Minas Gerais.

11/15 - 08/18 Master of Science (M.Sc.) in Computer and Systems Engineering,
Universidade Federal do Rio de Janeiro.

11/18 — heute Doktorand, Ubiquitous Knowledge Processing (UKP-Lab), Techni-
sche Universitat Darmstadt.

2 Gemik §8 Abs. 1 lit. a der Promotionsordnung der TU Darmstadt

111






Abstract

Deep Learning advances have enabled more fluent and flexible text generation. Ho-
wever, while these neural generative approaches were initially successful in tasks such
as machine translation, they face problems — such as unfaithfulness to the source,
repetition and incoherence — when applied to generation tasks where the input is
structured data, such as graphs. Generating text from graph-based data, including
Abstract Meaning Representation (AMR) or Knowledge Graphs (KG), is a challen-
ging task due to the inherent difficulty of properly encoding the input graph while
maintaining its original semantic structure. Previous work requires linearizing the
input graph, which makes it complicated to properly capture the graph structure
since the linearized representation weakens structural information by diluting the
explicit connectivity, particularly when the graph structure is complex.

This thesis makes an attempt to tackle these issues focusing on two major chal-
lenges: first, the creation and improvement of neural text generation systems that
can better operate when consuming graph-based input data. Second, we examine
text-to-text pretrained language models for graph-to-text generation, including mul-
tilingual generation, and present possible methods to adapt these models pretrained
on natural language to graph-structured data.

In the first part of this thesis, we investigate how to directly exploit graph structu-
res for text generation. We develop novel graph-to-text methods with the capability
of incorporating the input graph structure into the learned representations, enhan-
cing the quality of the generated text. For AMR-to-text generation, we present a
dual encoder, which incorporates different graph neural network methods, to capture
complementary perspectives of the AMR graph. Next, we propose a new KG-to-text
framework that learns richer contextualized node embeddings, combining global and
local node contexts. We thus introduce a parameter-efficient mechanism for inser-
ting the node connections into the Transformer architecture operating with shortest
path lengths between nodes, showing strong performance while using considerably
fewer parameters.

The second part of this thesis focuses on pretrained language models for text ge-
neration from graph-based input data. We first examine how encoder-decoder text-
to-text pretrained language models perform in various graph-to-text tasks and pro-
pose different task-adaptive pretraining strategies for improving their downstream
performance. We then propose a novel structure-aware adapter method that allows
to directly inject the input graph structure into pretrained models, without updating
their parameters and reducing their reliance on specific representations of the graph
structure. Finally, we investigate multilingual text generation from AMR structures,
developing approaches that can operate in languages beyond English.



Acknowledgments

Ph.D. has been a life-changing experience for me, and I would like to take this
opportunity to thank everyone who contributed to making it so memorable.

Firstly, I would like to thank Iryna Gurevych for giving me the opportunity to
pursue a Ph.D. under her supervision, for her outstanding feedback, and for always
supporting me throughout this journey. When we first met, I didn’t know much
about NLP — so the fact that Iryna was willing to give me a chance is incredible. I
would like to thank Claire Gardent and Yue Zhang for their precious guidance and
inputs, generous time, and for agreeing to be reviewers of this thesis. I would further
like to thank Ido Dagan for receiving me to his lab in Israel at the beginning of my
Ph.D. and for offering valuable feedback on my work on various occasions.

I'm very thankful to all my colleagues from the AIPHES research group and
from the UKP Lab for the constructive and helpful feedback that I received during
various talks and discussions. In particular, I would like to thank my fellow Ph.D.
students (random order), Avinesh P.V.S, Prasetya Ajie Utama, Wei Zhao, Fabrizio
Ventola, Tilman Beck, Ji-Ung Lee, Yevgeniy Puzikov, Tim Baumgértner, Shweta
Mahajan, Markus Zopf, Tobias Falke, Jonas Pffeifer, Andreas Hanselowski, Michael
Bugert, Aissatou Diallo and Federico Lopez for the deep and insightful conversations
during our formal and informal meetings. Thanks for all the support and friendships
throughout the last years. I also thank Sue Messenger for all the support given when
I arrived in Germany, for the great conversations, and for helping with the bureau-
cracies of daily life. My sincere appreciation goes to DFG for kindly financing this
Ph.D. study through the “Adaptive Preparation of Information from Heterogeneous
Sources” (AIPHES, GRK 1994/1) research training group.

I owe a great debt of gratitude to Daniel Figueiredo at the Universidade Federal
do Rio de Janeiro, who provided me with a comprehensive and solid education at
the very beginning of my academic path, throughout my studies in 2015-2018. In
this way, he has inspired me and supported me to become a better scientist, teacher,
and leader.

I would like to express my appreciation to Markus Dreyer for hosting me for an
internship with his team at Amazon Alexa Al in the summer of 2021. Thanks to
Markus Dreyer, Mengwen Liu, Sandeep Atluri and Mohit Bansal for their inspira-
tional and supportive mentorship and for making this a wonderful internship.

Many thanks also go to my family and friends for their support, understanding
and simply for sharing their lives with me. Thanks to my friends in Germany: Tiago
and Giulia, for the fun, travels and enthusiastic discussions. Agnes and Felix, for all
the support, affection and many more. Brazillian friends in Darmstadt for the fun
times, weekend barbecues, and dinners. Lola, for each of the peaceful and thoughtful
walks in the park and for always being able to make me smile. Thank you all for
being family away from home and making my stay in Germany a memorable one.

I would like to thank my parents, José Ribeiro and Andreisa Rodrigues, for their

vi



love and support, hard work for the family, and for raising me to be curious at all
times. Even when I decided to go to the other side of the world for many years,
they have been nothing but supportive. My achievement is undeniably due to their
parenting.

Lastly, and more importantly, I would like to express my deepest gratitude to
Nathalia Aratjo, my partner in life and most trusted friend. Thank you for coming
with me to Germany and coping with all the busy weekends, long travels and white
nights before deadlines. I'm so grateful for all your endless love, support, and patience
along this journey. Thank you for enduring my absence, and for always being or
having been there for me. This work is dedicated to you.

Sincerely,
Leonardo Ribeiro

vii






Contents

I Synopsis 1

Publications and My Contributions 2

1 Introduction 6

1.1 Thesis Outline . . . . . . . . . . . ... . .. 8

2 Text Generation from Structured Data 11

2.1 Text Generation . . . . . . . . . . ... 11

2.2 Generating Text from Structures . . . . . . ... ... ... ... .. 13

2.2.1 Abstract Meaning Representation to Text . . . . ... .. .. 15

2.2.2 Knowledge Graphs to Text . . . . . . .. ... ... ... ... 16

3 Graph-to-Text Generation 19

3.1 Task Definition . . . . . . . . .. ... 19

3.2  Encoder-Decoder Model . . . . . . ... ... ... ... ... 20

3.2.1 Transformers . . . .. .. ... .. ... ... ... 20

3.2.2 Linearized Graph Representation . . . . . ... ... .. ... 21

3.3 Encoding the Graph Structure . . . . . . . . . ... ... 22

3.3.1 Graph Neural Networks . . . . ... ... ... ... .. ... 22

3.3.2 Graph-to-text Architecture . . . . . . . . ... ... ... ... 24

3.3.3  Our Contributions . . . . . . . ... ... ... ... ... 24

3.4  Graph-to-Text Generation with Pretrained Language Models . . . . . 26

3.4.1 Pretrained Language Models . . . . . . .. ... .. ... ... 26

3.4.2 Our Contributions . . . . . .. .. .. ... ... ... .... 28

II Publications 31
4 Enhancing AMR-to-Text Generation with Dual Graph Represen-

tations 32

4.1 Introduction . . . . . . . . . ... 33

4.2 Related Work . . . . . . .. 34

4.3 Graph-to-Sequence Model . . . . . . ... ... ... ... .. ... 34

4.3.1 Graph Preparation . . . . . ... .. ... ... ... ... 34

4.3.2 Dual Graph Encoder . . . . . . . ... ... ... ... ... 35

4.3.3 Graph Neural Networks . . . . . . ... ... .. ... .... 36

4.34 Decoder . . . . ... 37

4.4 Data . . . . .. 37

4.5 Experiments and Discussion . . . . . . . ... ... ... ... 37

4.5.1 Implementation Details . . . . . . . ... ... ... .. .... 37

452 Results. . . . . .. 38

4.5.3 Additional Training Data . . . . . . . .. ... ... ... ... 39

X



4.5.4 Ablation Study . . . . ... ..o 39

4.5.5 Impact of Graph Size, Arity and Sentence Length . . . . . . . 39
4.5.6 Semantic Equivalence . . . . . . ... ... ... 40
4.5.7 Human Evaluation . . . . ... ... ... ... ....... 40
4.5.8 Semantic Adequacy . . . . . . ... 41
4.6 Conclusion . . . . . . . ... 42
4.7 Appendix . . ... 45
Modeling Global and Local Node Contexts for Text Generation
from Knowledge Graphs 46
5.1 Introduction . . . . . . . .. ... 47
5.2 Related Work . . . . . .. .o 48
5.2.1 AMR-to-Text Generation. . . . . . . . ... ... ... .... 48
5.2.2 KG-to-Text Generation . . . . . . . . ... ... ... ..... 49
5.3 Graph-to-Text Model . . . . . . . . .. . ... ... . ... ...... 49
5.3.1 Graph Preparation . . . ... ... . ... ... ... ..... 49
5.3.2 Graph Neural Networks . . . ... . ... ... ... ..... 50
5.3.3 Global Graph Encoder . . . . . ... ... ... ........ 50
5.3.4 Local Graph Encoder . . . . . . ... ... ... ... .. ... 51
5.3.5  Combining Global and Local Encodings . . . . ... ... .. 51
5.3.6 Decoder and Training . . . . . . . . . .. .. ... ... ... 52
5.4 Data and Preprocessing . . . . . . .. ... o 52
5.5 Experiments . . . . . . ... 53
5.5.1 Resultson AGENDA . . . . ... .. ... ... ........ 53
5.5.2 Results on WebNLG . . . . .. ... ... ... ... ..... 54
5.5.3 Development Experiments . . . . . . .. ... ... ... ... 55
5.5.4 Ablation Study . . .. ... ..o 55
5.5.5  Impact of the Graph Structure and Output Length . . . . . . 56
5.5.6 Human Evaluation . . . . .. ... ... ... ... ..... 57
5.5.7 Additional Experiments . . . . . .. ... ... ... 58
5.6 Conclusion . . . . . . . . ... 59

Modeling Graph Structure via Relative Position for Text Genera-

tion from Knowledge Graphs 63
6.1 Introduction . . . . . . . . . . ... 64
6.2 Related Work . . . . . . . ... 65
6.3 The Graformer Model . . . . .. . .. .. ... ... ... ...... 65
6.3.1 Graph Data Structure . . . . . ... ... ... ... .. ... 65
6.3.2 Graformer encoder . . . . ... .. ... ... 66
6.3.3 Self-attention for Text and Graphs with Relative Position Em-
beddings . . . . . . ... 67
6.3.4 Graformer Decoder . . . . . .. ... ... ... .. ...... 68
6.3.5 Training . . . . . . . .. 68
6.4 Experiment . . . . . . .. ... 68
6.4.1 Datasets . . . . . . . . ... 68
6.4.2 Data Preprocessing . . . . . . . ... ... L. 69
6.4.3 Hyperparameters and Training Details . . . . . . . ... ... 69



6.4.4 Epoch Curriculum . . .. ... ... ... ... ... .. ... 69

6.5 Results and Discussion . . . . . . . ... ... L. 69
6.5.1 Overall Performance . . ... ... ... ... ... ..... 69
6.5.2 Performance on Different Types of Graphs . . . . . .. .. .. 70
6.5.3 Ablation Study . . .. ... ..o 71

6.6 Learned Graph Structure . . . . . . . . . ... . ... ... .. ..., 71

6.7 Conclusion . . . . . . . ... 71

6.8 Appendix . . . .. 74

Investigating Pretrained Language Models for Graph-to-Text Gen-

eration 76

7.1 Introduction . . . . . . .. .. ... 7

7.2 Related Work . . . . . . . ... 78
7.2.1 Graph-to-Text Learning . . . . . .. ... ... ... .. ... 78
7.2.2 Pretrained Language Models . . . . . . .. ... .. ... ... 78

7.3 PLMs for Graph-to-Text Generation . . ... ... ... ... .... 79
7.3.1 Models in This Study . . . . . . ... .. ... 79
7.3.2 Task-specific Adaptation . . . . . .. ... ... .. 79

7.4 Datasets . . . . . . . 79
7.4.1 Additional Task-specific Data . . . . . . ... ... ... ... 80

7.5 Experiment . . . . . ... 80
7.5.1 Results on AMR-to-Text . . . . . ... ... ... ... .... 81
7.5.2 Results on WebNLG . . . ... ... ... ... ... ... 81
7.5.3 Resultson AGENDA . . .. ... .. ... ... ........ 82
7.5.4 Human Evaluation . . . ... ... ... ............ 82
7.5.5 Limiting the Training Data . . . . . .. ... ... ... ... 83

7.6 Influence of the Graph Structure . . . . ... .. ... ... ... .. 83
7.6.1 Quantitative Analysis. . . . . . . ... ... L. 83
7.6.2 Qualitative Analysis . . . . ... .. 84

7.7 Conclusion . . . . . . . ... 85

7.8 Appendix . . . ... 90

Structural Adapters in Pretrained Language Models for AMR-to-

Text Generation 94

8.1 Introduction . . . . . . . .. ... 95

8.2 Related Work . . . . . . . . ... 96
8.2.1 Fine-tuning for Graph-to-Text Generation . . . .. . .. ... 96
8.2.2 Lightweight Fine-tuning . . . . . .. ... ... .. ... ... 96

8.3 Graph-to-Text Model . . . . . . . . .. .. ... ... ... .. ..., 97
8.3.1 Encoder-Decoder Architecture . . . . . . . .. ... ... ... 97
8.3.2 Fine-tuning . . . . . .. ..o 97
8.3.3 Baseline Adapter . . . . .. ... ... L. 97
8.3.4 Limitation . . . . . . . . ... 98

8.4 Structural Adapter . . . . . . ... ... 98
8.4.1 Intuition . . . . . . . ... ... 98
8.4.2 Graph Representation . . . . . ... ... ... ... .. ... 98
8.4.3 Method . . ... .. .. ... ... 98

el



8.5 Experiments . . . . . . . ... 99
8.5.1 Main Results . . . . . .. .. ... ... 99
8.5.2 Human Evaluation . ... ... ... ... . ... ....... 100
8.5.3 Detailed Discussion . . . . . . . .. ... ... ... ... ... 100
8.6 Graph Representation Evaluation . . . . . ... ... ... ... ... 102
8.6.1 Impact of the Graph Representation . . . ... .. ... ... 102
8.6.2 Robustness to Graph Linearization . . . . ... ... .. ... 102
8.6.3 Graph Properties . . . . . . ... ..o 103
8.7 Conclusion . . . . . . . . . .. 103
8.8 Appendix . . . .. 108

9 Smelting Gold and Silver for Improved Multilingual AMR-to-Text
Generation 109
9.1 Introduction . . . . . . . . . . .. 110
9.2 Related Work . . . . . . . . ... 111
9.3 Multilingual AMR-to-Text Generation . . .. ... ... ... .... 111
9.3.1 Approach . . .. .. .. 111
932 Data . . ... ... 111
9.3.3 Creating Silver Training Data . . . . . . . .. ... ... ... 112
9.4 Experiments . . . . . . . ... 112
9.5 Conclusion . . . . . . . . ... 114
9.6 Appendix . . . ... 117
IIT Epilogue 119
10 Conclusion and Future Work 120
10.1 Conclusion . . . . . . . . . . 120
10.2 Future Work . . . . . . . . ... 121
Bibliography 122
Appendix A Data Handling 138

xii



Part 1

Synopsis



Publications and My Contributions

This thesis is based on six scientific publications that I co-authored together with my
advisor Iryna Gurevych and many excellent researchers as well as outstanding stu-
dents: Claire Gardent (French National Center for Scientific Research), Yue Zhang
(Westlake University), Martin Schmitt, Philipp Dufter, Hinrich Schiitze (LMU Mu-
nich) and Jonas Pfeiffer (TU Darmstadt). I thank all co-authors for their significant
contributions to these pleasant and successful collaborations. In the following, I
detail my own contributions to each publication.

Chapter 4 corresponds to the following publication:

Leonardo F. R. Ribeiro, Claire Gardent and Iryna Gurevych. 2019. En-
hancing AMR-to-Text Generation with Dual Graph Representations. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). pages 3183-3194, Hong Kong, China. Associ-
ation for Computational Linguistics.

I conceived the original research contributions and performed all implementations.
I developed the proposed graph architecture, wrote the initial draft of the article
and did most of the subsequent corrections. I regularly discussed the experiments
and the paper content with my advisor and Claire Gardent, who assisted me in
improving the draft.

Chapter 5 corresponds to the following publication:

Leonardo F. R. Ribeiro, Yue Zhang, Claire Gardent and Iryna Gurevych.
2020. Modeling Global and Local Node Contexts for Text Generation from
Knowledge Graphs. In Transactions of the Association for Computational
Linguistics (TACL), 8:589-604.

I devised the original research contributions and performed all experiments and
evaluations. I proposed the combination of local and global graph encodings and
conducted analyses on different datasets. I wrote the first draft of the paper and
performed the majority of the revisions. I discussed this work regularly with my
advisor, Yue Zhang and Claire Gardent, who helped me improve it.



Chapter 6 corresponds to the following publication:

Martin Schmitt, Leonardo F. R. Ribeiro, Philipp Dufter, Iryna Gurevych,
Hinrich Schiitze. 2021. Modeling Graph Structure via Relative Position for
Text Generation from Knowledge Graphs. In Proceedings of the TextGraphs-
15 Workshop: Graph-based Methods for Natural Language Processing, pages
10-21, 2021 Annual Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics. Mexico City, Mexico. Association for
Computational Linguistics.

I contributed significantly regarding the preprocessing of the input graphs from
different datasets (section 4.2), hyperparameter tuning (section 4.3 and appendix A),
and evaluation of the generated outputs. I advised Martin Schmitt with suggestions
about model design and architecture. In particular, I assisted Martin Schmittin
in designing the experiments to assess model performance on input graphs with
different specific properties (section 5.2). I regularly discussed this work with the
lead author and assisted in improving the draft.

Chapter 7 corresponds to the following publication:

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich Schiitze and Iryna Gurevych.
2021b. Investigating Pretrained Language Models for Graph-to-Text Gen-
eration. In Proceedings of the 3rd Workshop on NLP for ConvAl pages
211-227, 2021 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP), Online. Association for Computational Linguistics.

I proposed the initial research idea and preliminary investigations. With Martin
Schmitt’s assistance, I performed all model implementations, executions, and evalu-
ations. I wrote the initial paper draft and did most of the subsequent corrections and
experiments. I regularly discussed this work with the coauthors and we improved
the draft together.

Chapter 8 corresponds to the following publication:

Leonardo F. R. Ribeiro, Yue Zhang and Iryna Gurevych. 2021c. Structural
Adapters in Pretrained Language Models for AMR-to-text Generation. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4269-4282, Online and Punta Cana, Dominican
Republic. Association for Computational Linguistics.

I devised the original research contributions and performed all experiments and
evaluations. I wrote the initial paper draft and executed the majority of the revi-
sions. I discussed this work regularly with my advisor and Yue Zhang, who helped
me improve it.



Chapter 9 corresponds to the following publication:

Leonardo F. R. Ribeiro, Jonas Pfeiffer, Yue Zhang and Iryna Gurevych.
2021a. Smelting Gold and Silver for Improved Multilingual AMR-to-Text
Generation. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP), pages 742-750, Online and Punta
Cana, Dominican Republic. Association for Computational Linguistics.

After an initial brainstorming with Yue Zhang and Jonas Pfeiffer, I conceived
the initial research idea and performed all implementations and experiments. I
preprocessed all the datasets and trained the models. I wrote the initial draft of the
article and did most of the subsequent corrections. I regularly discussed this work
with the coauthors and we collaboratively improved the final text and experiments.

During my PhD, I was fortunate to work with great researchers on many topics,
some of which did not fit into this thesis. In the interest of completeness, I provide
references to these papers:

Tobias Falke, Leonardo F. R. Ribeiro, Prasetya Utama, Ido Dagan and
Iryna Gurevych. 2019. Ranking Generated Summaries by Correctness: An
Interesting but Challenging Application for Natural Language Inference. In
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 2214-2220, Florence, Italy. Association for Compu-
tational Linguistics.

Anne Lauscher, Olga Majewska, Leonardo F. R. Ribeiro, Iryna Gurevych,
Nikolai Rozanov, Goran Glavas. 2020. Common Sense or World Knowledge?
Investigating Adapter-Based Knowledge Injection into Pretrained Transform-
ers. In Proceedings of Deep Learning Inside Out (DeeLIO): The First Work-
shop on Knowledge Extraction and Integration for Deep Learning Architec-
tures, pages 43—49, Online. Association for Computational Linguistics.

Mohsen Mesgar, Leonardo F. R. Ribeiro, Iryna Gurevych. 2021. A Neural
Graph-based Local Coherence Model. In Proceedings of the Findings of the
Association for Computational Linguistics: EMNLP 2021. Association for
Computational Linguistics, pages 2316-2321, Punta Cana, Dominican Repub-
lic. Association for Computational Linguistics.

Tim Baumgértner, Kexin Wang, Rachneet Sachdeva, Max Eichler, Gregor Gei-
gle, Clifton Poth, Hannah Sterz, Haritz Puerto, Leonardo F. R. Ribeiro,
Jonas Pfeiffer, Nils Reimers, Gozde Giil Sahin, Iryna Gurevych. 2022. UKP-
SQUARE: An Online Platform for Question Answering Research. In Proceed-
ings of the 60th Annual Meeting of the Association for Computational Linguis-
tics: System Demonstrations. Dublin, Ireland. Association for Computational
Linguistics.



Leonardo F. R. Ribeiro, Mengwen Liu, Iryna Gurevych, Markus Dreyer and
Mohit Bansal. 2022. FactGraph: Evaluating Factuality in Summarization
with Semantic Graph Representations. In 2022 Annual Conference of the
North American Chapter of the Association for Computational Linguistics.
Seattle, United States. Association for Computational Linguistics.

The experimental source code of our work related to the contributions listed
above is publicly available at https://github.com /ukplab. Details on our strategy
to data handling are given in Appendix A.


https://github.com/ukplab

Chapter 1

Introduction

“Language is the blood of the soul into which thoughts
run and out of which they grow.”

— Oliver W. Holmes

The ongoing production and consumption of data are among the most evident
characteristics of the information age. Much of this information is communicated
in the form of natural language. For example, people communicate through instant
messaging, seek information using personalized voice assistants, write emails with
the help of an autocomposer and use online translation systems to read a foreign
website. These applications and a variety of other systems that people interact with
on a daily basis, including chatbots and question answering, largely rely on text
generation.

Text generation focuses on producing realistic and human readable text from in-
put data. Examples of such inputs include documents, multilingual sources, modal-
ities such as images and videos and structured knowledge presented in databases.
The generated text should communicate the information encoded in the data to the
reader in a fluent and accurate way. This is a difficult task since the fluency of
a text accounts for criteria such as grammar, spelling, choice of words, and style,
whereas an accurate text must faithfully represent the information conveyed in the
input data.

The resurgence of deep learning has considerably advanced this field, mostly
through the use of massive datasets to train neural network architectures, greatly
improving the fluency of the machine-generated text. In particular, the paradigm of
pretrained language models is generally beneficial for downstream text generation
tasks. In this paradigm, the basic idea is to first pretrain the model on large-
scale unsupervised corpora and then fine-tune this model in downstream supervised
tasks. However, existing neural text generation systems face challenges, suffering
from multiple limitations from producing text that is not faithful to the input to
supporting only English and neglecting other languages.



Many generation systems receive as input structured data. In this scenario, struc-
tures (e.g., tables or knowledge bases) can be read or listened to, as when a gadget
shows sports reports or weather forecasts, or when a voice assistant responds to a
user query. An important type of structured input are graphs, which can precisely
represent relationships in the input. Graphs are a ubiquitous data structure and
a universal language for describing a collection of items (nodes) and their pairwise
relationships (edges).

In Natural Language Processing (NLP), graph-based structures such as knowl-
edge graphs and semantic representations are suitable for representing and storing
knowledge in a convenient and canonical way. In many situations, we want to make
use of these forms of structured knowledge and verbalize such information into nat-
ural language, a process known as graph-to-text generation. Consider, for instance,
question answering applications, where answering questions often requires verbaliz-
ing in natural language facts present in a knowledge subgraph.

While the field of text generation has seen rapid progress, much research on
graph-to-text generation has been directed towards sequence-to-sequence models
that are broadly successful in many other applications such as neural machine trans-
lation. However, a severe limitation of sequence-to-sequence models is that they
require linearization of input graphs, which adds to the challenge of representing
the graph structure. It can be difficult for a sequential encoder to automatically
induce the original graph connections from a linearized form since the connections
between nodes are not explicitly considered. The linearized representation weakens
structural information in the original graph by diluting the explicit connectivity,
especially when the graph input is large, containing several entities and relations.
Moreover, while texts are inherently sequential, graphs do not contain a fixed node
ordering or reference point, and linearization techniques should not impact the node
representations generated by the graph encoder.

Motivated by these two facts — the usefulness of structured graph inputs for text
generation and the insufficient manner of representing input graphs for this task —
the goal of this thesis is to develop adequately neural encoding mechanisms for input
graphs in order to generate fluent and accurate text, advancing text generation based
on graph-based data. More specifically, the research presented in this thesis is guided
by the following three high-level research questions:

e How to preserve the semantics of the input graph structure (e.g., relative
positions of the nodes in the graph and their relations) and suitably encode it
into neural encoder-decoder models for improved graph-to-text generation?

e How pretrained language models that have initially been pretrained on natural
language perform with graph-based data as input?

e How to adapt such pretrained language models to better process and represent
graph inputs in different scenarios such as in multilingual generation?

In order to address these research questions, in this thesis, we study and propose



CHAPTER 1. INTRODUCTION

text generation approaches for various graph-to-text tasks with the capability of
incorporating the graph structure into learned representations that better reflect
the semantic relations of the nodes in the original input graph. This specialized
input encoding allows generating text that is not only more fluent but also conveys
the content from the input graph more faithfully.

Transfer learning has become ubiquitous in NLP, and Transformer-based pre-
trained architectures have considerably outperformed prior state of the art in a
wide range of downstream tasks. We investigate large-scale transfer learning using
encoder-decoder language models pretrained on text-to-text tasks for graph-to-text
generation. We present a study across different graph representations and domains
(i.e., meaning representations, Wikipedia KGs, and scientific KGs) and introduce
task-adaptive graph-to-text pretraining approaches for pretrained language mod-
els. We further adapt those pretrained models for structured data, proposing an
adapter-based mechanism that employs layer-wise graph convolution modules to
learn representations built upon the graph connectivity over the pretrained encoder
without altering its pretrained knowledge. Finally, we explore multilingual text gen-
eration from semantic graph representations and propose training strategies that ex-
plore combinations of multilingual training data, leading to a stronger multilingual
graph-to-text model.

1.1 Thesis Outline

The structure of this thesis follows the same order as the publication record given in
Publications and My Contributions. Figure 1.1 illustrates the overall thesis structure.

In Chapter 2, we define the basic notions used throughout this thesis and in-
troduce the field of Text Generation. We discuss text generation tasks that employ
different data formats and modalities as input and review work on text generation
from structured data. We then introduce the subtask of graph-to-text generation
that seeks to generate natural language from graph-based inputs, mainly focus-
ing on Abstract Meaning Representations (AMRs) and Knowledge Graphs (KGs).
In Chapter 3, we formally define graph-to-text generation, clarify terminology, and
present basic neural methods that are used as building blocks in the thesis. We detail
the encoder-decoder architecture and explore neural mechanisms used for learning
representations of graph structures, including Transformer and graph neural network
models.

In Chapter 4, we propose a dual graph encoder for AMR-to-text generation that
encodes complementary perspectives of the AMR graph structure and investigate
different graph neural networks techniques for this task. We provide a detailed
examination demonstrating that explicitly modeling the input graph connectivity
using our dual mechanism allows improving the quality of the generated sentences
measured by automatic and human evaluations. In Chapter 5, we present a novel
framework for KG-to-text generation that encodes an input graph combining both
global and local node contexts, in order to learn richer contextualized node em-
beddings for improved multi-sentence generation. An extensive evaluation of our



1.1. THESIS OUTLINE

Chapter 5
Global and Locgy
Graph Encoding

czﬁv & b‘(\% 460«%
«§Q° £ %G\’aph Sy 7% Q,o(‘j’(‘v
SgSs N %, %79 %
) & 3%

) IS ©“ %%
S W ® 35
Graph-to-Text
s g < Generation é” o _
2%% % S ¢ 3
) '9( >, @) N §
& O, ‘© //7 @ > £ S
2 % Y Langue® &
% O
2 ©
) Chapter8
Mecting structure Wit
Adapters

Figure 1.1: The organization of this thesis. We complement this with Chapter 2
containing background information on text generation from structured data, Chap-
ter 3 on text generation from graph-based inputs, and Chapter 10 with conclusions
of the thesis and an outlook on possible future work.

framework demonstrates that while the local encoder considers the node neighbor-
hood, the global encoder learns to focus on distant nodes, revealing that both en-
codings are complementary. In Chapter 6, we introduce a new manner of injecting
graph structure in the Transformer architecture for parameter-efficient graph-to-
text generation, demonstrating strong performance while using considerably fewer
parameters. This approach represents the relation between two nodes as the length
of the shortest path between them, capturing diverse node-to-node associations.

In Chapter 7, we then concentrate on the applicability of encoder-decoder pre-
trained language models for text generation from graph-based data. However, graph-
based inputs are different in essence from natural language. As a result, knowledge
learned from large-scale pretraining using natural language text intuitively cannot
be fully transferred to graph-based data in a fine-tuning phase. We thus present
different task-adaptive pretraining strategies for adapting the pretrained model for
various graph-to-text tasks. In Chapter 8, we propose to augment pretrained lan-
guage models with novel structure-aware adapters that allow to directly infuse the
input graph structure into the node representations. Adapters only train a newly
introduced set of weights at every layer, instead of fully fine-tuning the entire pre-
trained model, thereby sharing the majority of parameters between tasks. We show
that our system is more robust to different graph linearizations and graph attributes,
reducing its reliance on specific representations of the graph structure. Finally,
in Chapter 9, we develop a multi-task training approach using data augmentation
strategies to generate sentences in different languages from the same AMR structure.



CHAPTER 1. INTRODUCTION

Since AMR can be employed as an intermediate meaning representation in diverse
NLP tasks, generating text in different languages from this semantic structure can
enable multilingual capabilities in such applications.

We conclude in Chapter 10 by summarizing the main research contributions of
this thesis and considering future research directions.

10



Chapter 2

Text Generation from Structured
Data

2.1 Text Generation

Text generation, also known as natural language generation (Gatt and Krahmer,
2018, Gehrmann et al., 2021), is a branch of Natural Language Processing (NLP)
that aims to generate fluent natural language output from a variety of inputs, in-
cluding texts, tables, meaning representations, knowledge graphs and images, among
others. Text generation systems seek to realistically produce text in English and
other human languages that communicates ideas to readers in a clear and practical
manner, just as individuals express ideas through writing or voice.

Text generation techniques have recently become widely used in a significant
number of downstream applications, contributing to the growth of many subfields
of natural language generation. In what follows, we present a few examples of text
generation tasks where the input is in text form:

e Machine translation (e.g., Johnson et al., 2017; Aharoni et al., 2019). Ma-
chine translation is the process of automatically converting text from one
language to another. These approaches encode a sequence of words in one
language (such as English) and decode a sequence in another language (such
as Portuguese). Machine translation models are a courier for transmitting
knowledge as they allow people to consume content in different languages.

e Summarization (e.g., Liu and Lapata, 2019; Zhang et al., 2020). The goal
of summarization systems is to provide the key points of a larger text in a
concise manner. These systems take a big string of text and condense it into
a short and clear version that still maintains the important information. As
a result, summarization can help people absorb information more efficiently,
whether reading newspaper articles, emails, or extensive reports.

e Simplification of complex texts (e.g., Macdonald and Siddharthan, 2016;

11



CHAPTER 2. TEXT GENERATION FROM STRUCTURED DATA

Zhang and Lapata, 2017). The purpose of text simplification is to reduce
the linguistic complexity of text while maintaining its original meaning and
information. Those approaches can improve the readability, understandability
and accessibility of textual information, which has important implications for
people with low-literacy or limited language skills, such as children and non-
native speakers, as well as those with cognitive disabilities.

e Generation of paraphrases (e.g., Kauchak and Barzilay, 2006; Xu et al.,
2012). Paraphrasing models can generate phrases, sentences, or longer natural
language expressions that convey nearly the same information. The produc-
tion of paraphrases allows for creating more varied and fluent text and enhance
applications such as question answering and summarization. In question an-
swering, for example, paraphrases may provide more fluent and concise answers
which can also convey more information, whereas in multi-document summa-
rization, generating paraphrases allows information repeated across documents
to be compressed and better expressed.

Earlier text generation techniques typically use statistical language models to
model conditional probabilities of words given the n-gram context (Brown et al.,
1990, 1993; Brown and Frederking, 1995). However, such statistical methods are
likely to suffer from the problem of data sparsity, and different smoothing strategies
have been proposed to better estimate the occurrence of unobserved terms (Zhai
and Lafferty, 2001; Tao et al.; 2006). Neural network models have produced re-
markable improvements and dominated the mainstream methods in text generation
since the emergence and development of deep learning techniques (LeCun et al.,
2015). These approaches are mainly based on the encoder-decoder neural network
architecture (Sutskever et al., 2014) and are often referred to as sequence-to-sequence
models as they take as input a sequence, and then output a sequence, one element
at a time. The encoder maps the input sequence into vector representations that are
used by the decoder to generate the target text. The decoder essentially behaves as
a language model conditioned on the input sequence and the previously generated
tokens. Specifically, the decoder is connected to the encoder through an attention
mechanism (Bahdanau et al., 2015) that allows the decoder to automatically focus
on parts of the source input that are relevant to predicting the target text. Several
architectures based on neural networks have been used for both encoders and de-
coders, such as Recurrent Neural Networks (Rumelhart et al., 1986; Hopfield, 1982),
Long Short-Term Memory models (Hochreiter and Schmidhuber, 1997), Convolu-
tional Neural Networks (Gehring et al., 2017) and recently Transformers (Vaswani
et al., 2017). Despite this recent success, multiple issues with neural generation
persist, such as factual inconsistencies with respect to the input data and poor per-
formance in out-of-domain, few-shot, and multilingual settings (Celikyilmaz et al.,
2021). This thesis explores several aspects of text generation, from developing better
encoding models for input data to evaluating proposed methods and multilingual
settings.

12



2.2. GENERATING TEXT FROM STRUCTURES

2.2 Generating Text from Structures

Various text generation systems produce natural language output based on informa-
tion contained in textual input, such as those used in machine translation, sentence
simplification or summarization. However, it is frequently required to produce texts
that are not based on existing ones. For instance, automatically generating captions
for images or videos is a important part of scene understanding and an emerging
interdisciplinary problem (Venugopalan et al., 2015; He and Deng, 2017).

A common input to text generation systems are structured representations (Gar-
dent et al., 2017; Parikh et al., 2020). In this scenario, also known as data-to-text
generation (Gatt and Krahmer, 2018) or sometimes referred to as structured input-
to-text generation (Gehrmann et al., 2021; Xie et al.; 2022), different types of struc-
tured data (e.g., tables, source codes and knowledge graphs) can be verbalized in nat-
ural language. For example, structured records such as gaming databases (Wiseman
et al., 2017) and dialogue acts expressed using meaning representations (Wen et al.,
2015; Juraska et al., 2019) are typical sources for data-to-text models. Another ex-
ample is automatic question generation (Rus et al., 2011; Rao and Daumeé I11, 2018)
that aims to produce questions from non-textual inputs such as databases and tables,
and is an important task for different applications, such as dialogue systems, intelli-
gent tutoring systems, and search interfaces. Practical data-to-text approaches can
be found in domains such as finance (Plachouras et al., 2016), weather forecasts (Mei
et al., 2016), health care (Portet et al., 2009), election results (Leppénen et al., 2017)
and sportscasting news (Chen and Mooney, 2008; van der Lee et al., 2017).

Early works in data-to-text generation were mostly based on rules and tem-
plates (McKeown, 1982; Kukich, 1983) and statistical methods (Och et al., 1999;
Koehn et al., 2007; Belz, 2008; Konstas and Lapata, 2013), frequently using a pipeline
architecture (Reiter and Dale, 2000). Examples of standard components present in
this pipeline include (i) document planning, which determines what information
should be incorporated; (ii) microplanning, which defines how to organize and ex-
press information; and (iii) realization, which transforms abstract representations
into a fluent, natural language text.

Currently, most deep learning approaches, using the encoder-decoder paradigm,
consolidate all the data-to-text generation classical components into a single end-to-
end system, achieving substantial improvements in numerous text generation tasks.
The neural encoder-decoder architecture provides a natural and unifying framework
for text generation, regardless of the type of input (e.g., text, records, knowledge
graphs or meaning representations) producing highly fluent, natural sounding text.
Due to its flexibility, these models have been applied to a range of different generation
applications that take structured data as input, including;:

e Source code summarization (e.g., Wan et al., 2018, Ahmad et al., 2020).
Source code summarization refers to the task of creating understandable text
summaries that describe the functionality of a program and can facilitate soft-
ware development, documentation and maintenance. A natural language de-
scription of source code promotes program comprehension by greatly reducing

13



CHAPTER 2. TEXT GENERATION FROM STRUCTURED DATA

the efforts of the developer.

e Table-to-text generation (e.g., Liu et al., 2018; Parikh et al., 2020). The
goal of table-to-text generation is to automatically generate natural-language
descriptions from data recorded in tables. This task assists humans in easily
comprehending knowledge elements in tables and their relationships. There
have been several practical applications in this field, e.g., generating biogra-
phies based on Wikipedia infoboxes or tables, sport news writing, and medical-
record description generation.

e SQL-to-text generation (e.g., Xu et al., 2018b; Shu et al., 2021). SQL
(structured query language) is an essential mechanism to access databases.
However, SQL is not easy to understand for non-expert users. SQL-to-text
generation aims to convert a structured SQL program into a text, enabling
people to understand complex SQLs quickly by reading the corresponding
natural language description. It can support automatic SQL comment gener-
ation and help to comprehend elaborate SQL queries that are automatically
generated.

e Generative question answering (e.g., Fan et al.,; 2019; Xie et al., 2022).
Question answering aims to build systems that automatically answer questions
posed by users in natural language and is typically used as part of chatbots,
social media and speech-enabled apps, and search engines. In generative ques-
tion answering, many systems rely on structured data to produce natural lan-
guage passages that answer complex questions. This structured information
can reside in heterogeneous databases or knowledge bases and is important
for answering multi-hop questions that require reasoning and information in-
tegration.

In this thesis, we concentrate on graph-to-text generation (Song et al., 2018;
Koncel-Kedziorski et al., 2019), a subtask of data-to-text generation that seeks
to produce fluent and consistent text from graph-based inputs. Generally, these
inputs are composed of collections of concepts or entities and relations among
them. Structured representations in the form of graphs can store knowledge in
a machine-readable format and provide means for information to be collected, or-
ganized, searched and easily utilized. For example, information on Wikipedia can
be expressed as knowledge graphs using structured knowledge bases such as Wiki-
data (Vrandeci¢ and Krotzsch, 2014)" and DBPedia (Lehmann et al., 2015),% in
addition to free-text form.

Syntactic or semantic formalisms are another type of graph-based input to text
generation systems. Those formalisms can be used as intermediate meaning repre-
sentations that determine the information to be generated into a natural language
text. For instance, dependency graphs are semantic inputs that represent a tar-
get sentence using predicate-argument structures and are used in surface realization

! https://www.wikidata.org
2 https://www.dbpedia.org

14


https://www.wikidata.org
https://www.dbpedia.org

2.2. GENERATING TEXT FROM STRUCTURES

Figure 2.1: Abstract Meaning Representation (AMR) for the sentence The boy de-
sires the girl to believe him.

tasks (Belz et al., 2011; Mille et al., 2018). Another form of structured semantic
representation is Abstract Meaning Representation (AMR, Banarescu et al., 2013),
which is a graph-based representation that captures semantics at a higher level of ab-
straction than plain text. AMR aims towards a logical, consistent, and less syntactic
representation. Other structured representations that have been utilized as inputs
for text generation includes first-order logic (Gerdemann and Hinrichs, 1990) and
minimal recursion semantic (Hajdik et al.; 2019) representations, discourse struc-
tures (Basile and Bos, 2011), lambda calculus expressions (Lu and Ng, 2011), and
other grammar formalisms (Cahill and van Genabith, 2006; White et al., 2007).

In this thesis, we focus on generating text from two types of graph-based struc-
tured inputs, namely, Abstract Meaning Representation (AMR) and Knowledge
Graphs (KG), which we detail in the following sections.

2.2.1 Abstract Meaning Representation to Text

Abstract Meaning Representation (AMR, Banarescu et al., 2013) is a linguistically-
grounded semantic formalism that represents the meaning of a sentence as a rooted
directed graph, where nodes are concepts and edges are semantic relations. AMR
aims to abstract away from syntactic idiosyncrasies, and is not intended to convey all
of the information in a natural language sentence, eliminating, for example, factors
such as tense, articles and plurality.

For instance, consider the following five sentence constructions:®
e The boy desires the girl to believe him.

e The boy desires to be believed by the girl.

e The boy has a desire to be believed by the girl.

e The boy’s desire is for the girl to believe him.

3 This example is adapted from the excellent AMR guidelines: https://github.com/amrisi/
amr-guidelines.

15


https://github.com/amrisi/amr-guidelines
https://github.com/amrisi/amr-guidelines

CHAPTER 2. TEXT GENERATION FROM STRUCTURED DATA

e The boy is desirous of the girl believing him.

These sentences can be represented by the same AMR, shown in a graphical form
in Figure 2.1 and using the PENMAN* notation:

(d / desire-01
:ARGO (b / boy)
:ARG1 (b2 / believe-01
:ARGO (g / girl)
:ARG1 b))

This graph-based structure condenses the key conceptual information from a
number of different sentences into a single compact representation of semantic mean-
ing. As a result, AMR is able to distinguish semantic meaning from the sentence’s
surface appearance.

Since AMR represents a sentence in a form that abstracts from morphological
and syntactic variability, its use is advantageous in many semantic NLP tasks, in-
cluding text summarization (Hardy and Vlachos, 2018; Dohare et al., 2018; Lee
et al., 2021), machine translation (Song et al., 2019), spoken language understand-
ing (Damonte et al., 2019), commonsense reasoning (Lim et al., 2020), and question
answering (Kapanipathi et al., 2021; Bornea et al., 2021). While initial AMR re-
search has focused primarily on English, recent work shows that it is also possible
to use AMR as a semantic representation for sentences written in other languages,
such as Brazilian Portuguese, Chinese, German, Italian and Spanish (Damonte and
Cohen, 2018; Migueles-Abraira et al., 2018; Sobrevilla Cabezudo and Pardo, 2019).

The purpose of AMR-to-text generation is to produce a text which verbalizes
the meaning encoded by an input AMR graph. This is a challenging task as cap-
turing the complex structural information stored in graph-based data is not trivial,
demanding the usage of neural models adapted to encode graph structures rather
than standard sequence-to-sequence approaches. Additionally, AMR is not meant
to thoroughly represent all information within a sentence (e.g., it does not capture
information about verb tenses). This contrasts with text generation tasks such as
paraphrase generation, where the input contains the complete information required
to generate the new sentence. As a result, AMR-to-text generation is essentially
distinct from other text generation tasks since the models are required to addition-
ally complete the missing details when generating the text based on the graph-based
input.

2.2.2 Knowledge Graphs to Text

There is an abundance of highly accurate knowledge in different forms of structured
data arranged in knowledge bases and knowledge graphs (KGs). KGs are often
used to describe factual knowledge in the form of relations between entities, as pre-
sented in Figure 2.2. Commonly, KG data can be represented in the triple format

4 PENMAN notation is a serialization format for directed, rooted graphs used to represent seman-
tic dependencies, most notably in the AMR framework.

16



2.2. GENERATING TEXT FROM STRUCTURES

Buzz Aldrin

William Anders

NASA

O AFIT, M.S. 1962

1969-09-01 Frank Borman

Figure 2.2: Example of a knowledge graph describing relations between entities.
The following text verbalizes the KG information: William Anders received a M.S.
from his Alma Mater, AFIT in 1962, was a fighter pilot on Apollo 8 and retired on
Sept 1st 1969. Buzz Aldrin was a backup pilot on the mission with William Anders
and Frank Borman as crewmen. Adapted from the WebNLG dataset.”

(e.g., using the resource description framework, RDF), where each triple contains
a subject, a relation, and an object. Different KG domains and forms are present
in the literature, such as Wikipedia-based KGs (Vougiouklis et al., 2018), scien-
tific KGs (Koncel-Kedziorski et al., 2019) and biomedical and clinical KGs (Wishart
et al., 2017). As an example, KG plays an important role in efficiently representing
document content, especially when the text length is large, benefiting summariza-
tion (Huang et al., 2020). In the medical domain, KGs extracted from clinical data
are represented in the RDF format and used as input to text generation models that
produce patient records in natural language (Bontcheva and Wilks, 2004). More-
over, KGs can be developed in a multilingual setting, allowing the implementation of
knowledge-intensive applications supporting multiple languages (Speer et al., 2017,
Shimorina et al., 2019; Castro Ferreira et al., 2020). In recent years, crowdsourcing
platforms and information extraction systems (IE) have been used extensively to
create labeled pairs of KG and their descriptive text (Lebret et al., 2016; Gardent
et al., 2017).

Generating text from KGs is an important task for effectively disseminating
knowledge and is part of different NLP applications, including question answering
approaches present in voice assistants, chatbots or search engines. When a user
requests information about an actor, for example, the system must not only ex-
tract a sub-graph relating to that individual, but also express these triples fluently
in natural language text. In contrast to AMR-to-text generation, in the KG-to-
text scenario, the natural language output can consist of multi-sentence descrip-
tions of KG entities, as shown in Figure 2.2. Consequently, appropriate words and
multi-sentence structures must be correctly chosen to produce a coherent text that
describes KB entities and their relations. Increases in model capacity and data
availability have enabled the generation of mostly grammatical and fluent sentence-
level natural language text. However, it remains an open task how to accurately
generate multiple sentences linked to a topic that exhibit general coherence and

5 https://webnlg-challenge.loria.fr/

17


https://webnlg-challenge.loria.fr/

CHAPTER 2. TEXT GENERATION FROM STRUCTURED DATA

discourse-relatedness. Traditional techniques divide the KG-to-text generation task
into several micro-tasks, including discourse ordering, sentence structuring, lexical-
ization, and generating reference expressions (Castro Ferreira et al., 2019).

18



Chapter 3

Graph-to-Text Generation

Graph-to-text generation aims to convert a graph-based input into text that conveys
the content shown in the graph. To accomplish this task, common approaches
linearize the input graph into a string and train a sequence-to-sequence model from
scratch. Alternatively, neural architectures that seek to explicitly model the graph
structure, i.e., which nodes are connected to each other, can be used to capture the
input graph’s structural and semantic properties. In this chapter, we formally define
the graph-to-text generation task and present some of the basic components used as
part of our proposed approaches. We then summarize our main contributions and
findings which are detailed in the following chapters.

3.1 Task Definition

Let G = (V,&€,R) denote a directed graph with a node set ¥V and labeled edges
(u,r,v) € €, where u,v € V and r € R is a relation type. Examples of such graph
are AMRs (Figure 2.1) and KGs (Figure 2.2).

In a graph-to-text setting, we transduce the input graph G to its correspond-
ing surface realization y = (y1,...,yn) via a parameterized probabilistic model
po(-). The specific semantics of G varies depending on the task at hand. In lin-
earized approaches specifically, the graph G is first mapped to a sequence by way
of a linearization function z = LIN(G), and py(-) is an autoregressive decoder or
sequence-to-sequence model. The model is then training using the following likeli-
hood objective:

poly | G) = I powi | 2, 9160). (3.1)

Usually, beam search (Shao et al., 2017) is employed to generate the target text
during the decoding stage.

19



CHAPTER 3. GRAPH-TO-TEXT (GENERATION

Output
Probabilities

Add & Norm

Feed
Forward
K_P\ (Add & Norm |<«
Add & Norm Multi-Head
Feed Attention
Forward Nx

Add & Norm _Je=

Nx
Add & Norm Nasked
Multi-Head Multi-Head
Attention Attention
A ) A )

\. J - ———
Positional ®_€_ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 3.1: The Transformer architecture. Nx denotes a stack of N layers. Figure
taken from Vaswani et al. (2017).

3.2 Encoder-Decoder Model

Sequence-to-sequence models based on the encoder-decoder architecture are suitable
for text-to-text generation and can also be adapted to graph-to-text generation. In
sequence-to-sequence models, the encoder reads the input and generates a represen-
tation of it, which the decoder then utilizes to generate the output text. Here, we
illustrate a sequence-to-sequence model using the Transformer architecture (Vaswani
et al., 2017), where both encoder and decoder take a sequential form.

3.2.1 Transformers

Transformer maps a sequence of input tokens x = (x1, ..., zy) to a sequence of output
tokens y = (y1,...,yn). The Transformer consists of encoder and decoder modules,
each of which are made up of stacks of transformer layers, as shown in Figure 3.1. In
the Transformer architecture, the initial embeddings of the tokens contain positional
encodings, which inject information about the relative or absolute position of the
tokens in the sequence.

Each encoder layer [ has two sublayers: a self-attention layer followed by a
position-wise feed forward layer. The self-attention mechanism employs K attention
heads. These multiple heads allow the model to jointly attend to information from
distinct representation subspaces at different positions. Each head takes the layer
input representation h; € R? of each z; € z, to calculate the scaled dot-product
attention:

N
Z;, = Z oziijhi . (32)
j=1

Specifically, the attention weight o;; of each element x; is computed using a

20



3.2. ENCODER-DECODER MODEL

softmax function:

s — exp(ei;) 3.3
YO explen) 3

where: .
P (thi) (thj) (3.4)

? Vd.

is an alignment function which measures how well the input elements x; and x;
match. W,, W,, W;, € R%*% are parameters to be learned. The results from all the
attention heads are concatenated together and a parameterized linear transformation
is applied to get the output of the self-attention sublayer:

K (k)

z, . (3.5)

Finally, layer normalization (LayerNorm, Ba et al., 2016) and a fully connected
feed-forward network (FFN) are employed:

z; = LayerNorm(z; + h;) , (3.6)
y: = LayerNorm(FFN(z;) + ;). (3.7)

As shown in Figure 3.1, each decoder layer has an additional multi-head attention
component that links it to the encoder. In particular, each time step ¢ is updated by
performing multi-head attentions over the output of the encoder and over previously-
generated tokens (token embeddings).

3.2.2 Linearized Graph Representation

One of the main challenges of graph-to-text generation is how to represent and
encode the input graph structure. Previous efforts (Konstas et al., 2017; Castro Fer-
reira et al., 2019; Hoyle et al., 2021) first linearize the input graph with depth-first
traversal, before feeding it into the sequence encoder. However, linearizing the graph
may lose crucial structural information. For example, originally closely-related nodes
(such as parents and children) can be far away after the linearization, especially when
the graph is very large. Moreover, deep learning models for graphs should be permu-
tation invariant to node order in the linearization. However, different graph traversal
algorithms lead to different linearizations, increasing data variation and additionally
introducing ambiguity. It is also worth noting that during the input encoding of the
Transformer, the self-attention mechanism computes a token representation based
on all tokens in the linearization. In this way, when the input tokens correspond to a
linearized graph = LIN(G), the graph connectivity is diluted and the model needs
to infer about the graph connections. In addition, the positional encoding of the
token embeddings makes the model more dependent on the linearization strategy
used.

21



CHAPTER 3. GRAPH-TO-TEXT (GENERATION

Despite the drawbacks presented, sequential encoders are able to achieve com-
petitive results when large-scale training data is available. For instance, Kon-
stas et al. (2017) employ a sequential approach to encode millions of automatically
parsed AMR graphs paired with sentences for text generation, achieving strong per-
formance. These results show the capacity of neural encoders for learning good
representations of graph-based data when plenty of data is provided. Nonetheless,
there is much room for improvement due to the explicit loss of structural informa-
tion. We discuss in the next section neural approaches that make explicitly use of
the node associations and graph properties in order to learn better representations.

3.3 Encoding the Graph Structure

The purpose of graph neural encoding is to generate representations of nodes that
explicitly depend on the structure of the graph. This encoding approach effectively
exploits the connectivity between nodes, and the composition of the graph has a sub-
stantial impact on the node representation. In this thesis, we focus on an important
neural architecture used to encode graph structures: graph neural networks.

3.3.1 Graph Neural Networks

Graph neural networks (GNNs) are a class of neural models suitable for processing
graph-structured data. The key idea is computing representations of nodes based
on their local neighborhood (context) and in feature information (from the nodes
and edges).! Gori et al. (2005), who coined the term graph neural network, propose
many of the core ideas found in the GNN methods and are generally credited with
developing the first GNN model.

GNNS5s use an information propagation strategy in which each node’s representa-
tion is updated iteratively. During an iteration, information is gathered from each
node’s neighbors and then used to compute the node representation. In the course
of these iterations, each node embedding incorporates more and more information
from further parts of the graph. Whereas the node order impacts a sequence en-
coder, GNNs are invariant to the permutations of the nodes and edges, which better
captures the graph connectivity.

Specifically, in each message-passing iteration in a GNN, the representation h, €
R? corresponding to a node u € V is updated according to information aggregated
from both its context node neighbors and edge features. Formally, the [-th layer
aggregates the representations of v’s context nodes:

hﬁ’v)(v) = AGGRD ({(W¥Y 7)) s u € N(v)}),

where AGGR(Z)(-) is an aggregation function, shared by all nodes on the [-th it-
eration/layer. r,, € R represents the relation between u and v, and N (v) is the

1 Note, however, that there are GNN models that compute node representations using information
from nodes other than those present in the original local neighborhood.

22



3.3. ENCODING THE GRAPH STRUCTURE

immediate neighborhood of v. hj(\lf)(v) is the aggregated context representation of

N (v) at layer . hﬁ\l/)(v) is used to update the representation of v:

h) = COMBINE" (h(J_” ,hj\l/)(v)> '

After L iterations, a node’s representation encodes the structural information
within its L-hop neighborhood. The choices of AGGR®(.) and COMBINE®(.)
differ by the specific GNN model. An example of AGGRY(-) is the sum of the
representations of N'(v). An example of COMBINE"(.) is a concatenation after the
feature transformation. In what follows, we describe three important graph neural
network models used throughout this thesis.

Graph Convolutional Networks

Kipf and Welling (2017) introduce the Graph Convolutional Network (GCN), a
specialized neural architecture with message passing operations that is motivated as
a first-order (i.e., linear) approximation to spectral graph convolutions (Hammond
et al., 2011). At each layer [, GCN computes the representation of a node v € V as
follows:

1
V=o( ¥ WOR(—) 3.8
g'l) g dvdu U Y ( )
ueN (v)

where N (v) is a set of nodes with incoming edges to v and v itself, d, is the degree

c Rd<l) Xd(lfl)

of v, o(-) is a non-linear activation function, and W© is a model

parameter.

Relational Graph Convolutional Networks

Relational Graph Convolution (RGCN) (Schlichtkrull et al., 2018) is a variant of
GCN that extends the architecture to consider different edge types between nodes.
In particular, at each layer [, the representation of a node v € V is computed as:

=03 )mwwhm, (39)

re€R ueNy (v

where R denotes the set of relations, N, (v) denotes the set of neighbors under the

relation r € R, and W e RIV=d" encodes the edge type between the nodes u
and v. In order to avoid the rapid growth in the number of parameters with regard
to the number of relations in the graph, regularization based on basis functions and
block decompositions can be employed (Schlichtkrull et al., 2018).

Graph Attention Networks

Graph Attention Networks (GAT) (Velickovic¢ et al., 2018) employ attentive mecha-
nisms to improve the exploitation of non-trivial graph structure. They encode node

23



CHAPTER 3. GRAPH-TO-TEXT (GENERATION

representations by attending over their neighbors, following a self-attention strategy:

=W S W)
JEN(9)

where attention coefficients «;; are computed as:

a;; = softmax (o <a(l)T[W(l)h£l_1) I W(l)hg.l_l)]» , (3.11)

where || denotes concatenation. W@ e R¥“*“™ and a® e R are model
parameters. The virtue of the attention mechanism is its ability to focus on the most
important parts of the node neighborhood. In order to learn attention weights from
different perspectives, GAT can employ multi-head attention. Note that GAT shares
similarities to the Transformer self-attention mechanism, employing multiple heads
and attention coefficients. However, GAT aggregates representations based on the
node neighborhood, whereas Transformer self-attention aggregates representations
from the whole set of elements.

3.3.2 Graph-to-text Architecture

Specialized encoders based on GNNs are shown to have better performance com-
pared to vanilla encoders in different graph-based NLP tasks (Marcheggiani and
Titov, 2017; Bastings et al., 2017; Yao et al., 2019), especially when handling com-
plex graph structures. This indicates that explicitly accounting for the input graph
structure can assist graph-to-text generation. However, it is challenging to modify
the encoder-decoder architecture to better handle graph-based input data, partly be-
cause of the structural differences between the input graph and the output text (Zhao
et al., 2020). One straightforward way to explicitly model the input graph structure
into graph-to-text models is to replace the sequential encoder used in the original
encoder-decoder architecture with a multi-layer GNN. Furthermore, multiple GNN
architectures can be considered, and combinations of distinct encoders (e.g., sequen-
tial encoder and GNN-based encoder) can be developed. In this thesis, we proposed
novel approaches, based on GNN and Transformer architectures, for suitable mod-
eling of graph structures for improved graph-to-text generation.

3.3.3 Our Contributions

As presented at the top of Figure 1.1, our contributions towards proposing improved
graph encoding models for graph-to-text generation are three-fold: First, we pro-
pose a bipartite graph-to-text model based on different GNNs, that explores comple-
mentary top-down and bottom-up traversals of the input AMR graph and demon-
strate concrete improvements over sequential and previous graph encoder methods.
However, GNNs can also face limitations when encoding relations between distant
nodes (Xu et al., 2018a; Alon and Yahav, 2021). Then, to overcome the limitations
of GNN encoders based on local neighborhood node aggregation, we propose a uni-
fied framework that allows combining different strategies for encoding global and
local node contexts and demonstrate the framework’s applicability on KG-to-text
generation. Finally, we develop a novel mechanism to inject the graph structure

24



3.3. ENCODING THE GRAPH STRUCTURE

of an input graph into a Transformer encoder, modifying the self-attention mech-
anism. In what follows, we describe the main contributions and results in each of
those parts.

In Chapter 4, we propose a dual graph encoder for AMR-to-text generation that
encodes distinct perspectives of the AMR graph structure. The model learns parallel
representations of nodes, capturing contrasting views of the graph. We further
investigate the use of different node message passing strategies, employing different
GNN variants to compute node representations based on incoming and outgoing
perspectives. In summary, our contributions in Chapter 4 are the following:

e We present a novel architecture for AMR-to-text generation which explicitly
encodes two separate top-down and bottom-up views of the input graph. This
dual approach creates different massage passing channels in the graph, allowing
the model to better encode distinct interactions between nodes.

e We incorporate in our architecture three graph encoders (Gated Graph Neural
Networks, Graph Attention Networks and Graph Isomorphic Networks) that
have not been studied so far for AMR-to-text generation.

e We propose an evaluation of the generated outputs employing an entailment
model, estimating whether a generated sentence (hypothesis) is semantically
entailed by the reference sentence (premise) and vice-versa.

e We investigate the performance of the proposed graph-to-text approach con-
cerning different model configurations and data properties, including model
capacity, graph size, graph diameter, node out-degree and sentence length.

In Chapter 5, we present a novel framework for KG-to-text generation that en-
codes the input graph integrating global and local node contexts, in order to learn
richer contextualized node embeddings. Global node encoding allows direct com-
munication between two distant nodes, neglecting graph topology as all nodes are
directly connected. In contrast, local node encoding considers the connections be-
tween neighbor nodes considering the graph structure, but it can fail to capture
long-range associations. A combination of both strategies allows direct communi-
cation between distant nodes while preserving the graph connectivity. In summary,
our contributions presented in Chapter 5 are the following:

e We present a unified graph-to-text framework based on Graph Attention Net-
works that incorporates both global and local node aggregations, gathering the
benefits from both techniques. As part of this framework, we empirically inves-
tigate two main architectures: a cascaded approach that performs global node
aggregation before performing local node aggregation and a parallel architec-
ture that performs simultaneously global and local aggregations. To further
consider fine-grained integration, we also explore layer-wise integration of the
global and local graph encoders.

e We demonstrate that the global module mainly focuses on distant nodes in-

25



CHAPTER 3. GRAPH-TO-TEXT (GENERATION

stead of the neighbors and closest nodes, whereas the local encoder focuses on
the local neighborhood. This suggests that a combination of global and local
interactions between entities in a KG is beneficial for KG-to-text generation,
improving the overall performance.

e We establish stronger baselines for KG-to-text generation by exploring com-
plementary model configurations using attention mechanisms. Our framework
provides a flexible approach that can be adapted to different graph-to-text
generation tasks.

In Chapter 6, we mitigate the effects of the graph linearization in Transformer
models, developing a new position mechanism for incorporating the graph structure
of an input graph into the architecture. Our approach learns to weigh node-node
interactions differently for distinct attention heads, thus virtually discovering dif-
ferently connected views of the input graph. To summarize, our contributions in
Chapter 6 are as follows:

e We propose a novel Transformer-based graph-to-text architecture in which
shortest path lengths are interpreted as relative position information within a
graph self-attention mechanism.

e We find that our approach learned different attention heads for local and global
graph information. Interestingly, direct neighbors are considered particularly
important even without injecting any structural bias, such as those introduced
by a GNN.

e Experiments indicate that our proposed model is able to differentiate between
distant but connected nodes and truly unreachable nodes, demonstrating that
the proposed mechanism can automatically learn about the graph connectivity.

3.4 Graph-to-Text Generation with Pretrained Lan-
guage Models

3.4.1 Pretrained Language Models

Pretrained language models (PLMs) (Devlin et al., 2019; Peters et al., 2018) have
been increasingly popular in recent years in NLP. Those models have been proven to
be capable of encoding vast amounts of linguistic knowledge from corpora into large-
scale parameters and learning universal and contextual language representations
using carefully defined pretraining objectives for language modeling. PLMs employ
a transfer learning paradigm: they are first pretrained in large-scale corpus and
then fine-tuned in different downstream tasks. These approaches have considerably
outperformed prior state of the art in various NLP tasks without substantial task-
specific architecture modifications (Devlin et al., 2019; Yang et al., 2019; Liu et al.,
2020b; Radford et al., 2019).

Following this trend, researchers have developed a variety of methods for address-

26



3.4. GRAPH-TO-TEXT GENERATION WITH PRETRAINED LANGUAGE MODELS

ing text generation tasks using PLMs. Recent works (Harkous et al., 2020; Mager
et al., 2020) apply transfer learning to data-to-text generation, where a pretrained
decoder-only generation model, also known as autoregressive model (Radford et al.,
2019), is fine-tuned on the target task using structured data. Encoder-decoder
approaches also benefit from pretraining in large-scale data. Recently, much re-
search has been done employing different pretraining objectives for Transformer-
based encoder-decoder models (Zhang et al.; 2020; Qi et al., 2020; Xue et al., 2021).
In what follows, we present two pretrained encoder-decoder models used in this
thesis:

e BART (Lewis et al., 2020) is pretrained as a text-to-text denoising autoen-
coder. The input text is corrupted with a random noise function, and then
BART is trained to reconstruct the original text. Specifically, this is accom-
plished by minimizing a reconstruction loss — the cross-entropy between the
decoder output and the original text. Transformations in the input text em-
ployed in the pretraining phase include masking random tokens, deleting ran-
dom tokens or a span of k£ tokens with a single mask token, changing the or-
dering of the original sentences, and rotating the document to make it start at
a specific token. The training corpus is a combination of books and Wikipedia
data. BART is particularly effective when fine-tuned for text generation tasks
but also has a strong performance in comprehension tasks, such as question
answering.

e T5 (Raffel et al., 2020) follows the original Transformer architecture with a
modification regarding the positional embeddings, which are learned at each
layer. T5 extends the text-to-text architecture to a wide range of NLP prob-
lems. In particular, it converts NLP tasks into a text-to-text format using
specified prefixes such as “summarize:” for summarization and “question:” for
question answering. The pretraining includes supervised and self-supervised
strategies. Supervised training is performed on downstream tasks from the
GLUE (Wang et al., 2018) and SuperGLUE (Wang et al., 2019) benchmarks,
transforming the datasets into the text-to-text format. Self-supervised train-
ing randomly removes 15% of the tokens and replaces them with individual
sentinel tokens. If a group of tokens is marked for removal, the entire group
is substituted with a single sentinel token. While the encoder’s input is the
corrupted text, the input of the decoder is the original text, and then the
target text is composed of the removed tokens delimited by the corresponding
sentinel tokens.

Those pretrained models also have multilingual versions that use basically the
same architecture but are pretrained in diverse languages. While mBART (Liu
et al., 2020a) is pretrained by denoising texts in 25 languages and was initially
developed for supervised and unsupervised machine translation, mT5 (Xue et al.,
2021) is trained using general-purpose text-to-text format on 101 languages. Those
approaches can be fine-tuned using a specific language or using a combination of
languages in both supervised and unsupervised scenarios, without any task-specific
or language-specific modifications or initialization schemes. For example, distinct

27



CHAPTER 3. GRAPH-TO-TEXT (GENERATION

multilingual setups enable transfer learning to other language pairs that were not
present in the pretraining corpus.

Graph-based inputs are different in nature from natural language. As a result,
knowledge learned from large-scale pretraining using natural language text intu-
itively cannot be fully transferred to graph-based data in a fine-tuning phase. Ac-
cordingly, we are interested in properly adapting those pretrained models to the task
of graph-to-text generation, exploiting their text generation fluency capacities while
maintaining graph encoding abilities, which are shown to be beneficial. In the next
section, we introduce our contributions for adapting models originally pretrained on
text for graph-based data.

3.4.2 Our Contributions

As summarized at the bottom of Figure 1.1, our contributions towards adapting
PLMs to graph-based inputs comprehend task-adaptive pretraining strategies, struc-
tural adapter architectures, and multi-task approaches for multilingual generation
from graph structures. The main contributions and findings in each of those parts
are described in the following paragraphs.

In Chapter 7, we investigate the applicability of two encoder-decoder PLMs,
namely BART and T5, for graph-to-text generation and analyze the impact of dif-
ferent task-adaptive pretraining strategies for downstream graph-to-text tasks. We
present a study across three graph domains: meaning representations, Wikipedia
KGs and scientific KGs and show that task-adaptive pretraining strategies are ben-
eficial for adapting those models to structured inputs. To summarize, our contribu-
tions in Chapter 7 are as follows:

e We propose two task-adaptive pretraining strategies to adapt PLMs to graph-
to-text tasks, exploring language model adaptation and supervised task adap-
tation pretraining with additional task-specific data.

e Our approaches consistently outperform the state of the art by significant mar-
gins on three established graph-to-text benchmarks from different domains,
exceeding specialized graph architectures without pretraining (e.g., GNNs).

e We show that pretrained approaches for graph-to-text generation produces
texts with significantly better fluency than existing systems and human refer-
ences in a crowdsourcing study.

e We find that PLMs perform well when trained on a shuffled linearized graph
representation (bag of node and edge labels), without any information about
connectivity, in different KG-to-text datasets. This is unexpected since prior
studies demonstrated that explicitly encoding the graph structure enhances
models trained from scratch. This suggests that the PLMs benefit from similar
facts seen during pretraining or fine-tuning, such that they perform well even
when the input graph is reduced to a simple bag of node and edge labels.

28



3.4. GRAPH-TO-TEXT GENERATION WITH PRETRAINED LANGUAGE MODELS

A consequent work (Xie et al., 2022) propose an unifying framework for struc-
tural knowledge grounding, where the inputs or outputs are heterogeneous. The
framework unifies 21 generation tasks, which includes data-to-text, data-to-data
and text-to-data formats. It fine-tunes a TH model employing multi-task learning
using prefix-tuning (Li and Liang, 2021). The model, which is trained jointly in
a diverse set of structural generation tasks, consistently improves performance on
various datasets containing structured data.

In Chapter 8, we propose a novel structure-aware adapter method that allows to
inject the input graph structure into PLMs. Adapters (Houlsby et al., 2019; Riicklé
et al., 2021) only train a newly introduced set of weights at every layer, instead
of fully fine-tuning the entire PLM, thereby sharing the majority of parameters
between tasks. Our method employs a graph convolution based on GNNs in order
to learn representations built upon the graph connectivity over the PLM encoder.
Because the adapter mechanism is added to each encoder layer, deep integration
of linguistic knowledge and graph knowledge can be achieved. During fine-tuning,
only the structural adapters’ parameters are updated, whereas the PLM parameters
remain unchanged, in contrast to previous graph-to-text methods based on the graph
linearizations that fine-tune all model parameters. To summarize, our contributions
in Chapter 8 are the following:

e We propose a novel structure-aware adapter approach that directly injects the
input graph structure into pretrained models. The main idea is to add layer-
wise modules, which extract information from the pretrained layers and make
use of it in a graph-structure encoding.

e We evaluate the model on AMR-to-text generation, establishing new state-of-
the-art results on two datasets for this task.

e We analyze and compare our model and previous approaches, shedding light on
the capabilities that our architecture acquires for the downstream generation
task. We show that our approach is more effective when encoding complex
graphs and when trained on a limited amount of data.

e An essential benefit of modeling the graph structure is to be less dependent
on linearization techniques because the graph connectivity is invariant to the
graph linearization. Our experiments demonstrate that our adapter approach
is more robust to different graph linearizations and node reentrancies (nodes
with more than one entering edge).

Scientific advancement in text generation has frequently concentrated on en-
hancing the performance of systems that solely operate in English for a variety of
complex reasons. However, billions of people worldwide speak languages other than
English, and most text generation models can be adapted to different languages. In
Chapter 9, we explore AMR-to-text generation in a multilingual scenario where the
goal is generating sentences in different languages given the same AMR as input.
Since AMR can be employed as an intermediate meaning representation in diverse
NLP tasks (Lim et al., 2020; Bornea et al., 2021), generating text in different lan-

29



CHAPTER 3. GRAPH-TO-TEXT (GENERATION

guages from those structures can enable the use of such models in much broader
applications. Our contributions in Chapter 9 are three-fold:

30

e We explore multilingual encoder-decoder pretrained language models for mul-

tilingual generation from graph-based data. In particular, we propose multi-
task training strategies that efficiently combine structured training data from
different languages improving multilingual AMR-to-text generation.

We investigate various techniques for automatically generating AMR anno-
tations to determine which data source produces the best multilingual per-
formance. First, we parse English sentences into silver AMRs from parallel
multilingual corpora, resulting in a dataset consisting of grammatically correct
sentences with noisy AMR structures. Second, we leverage machine translation
and translate English sentences from the gold AMR-to-text corpus to the re-
spective target languages, resulting in a dataset with correct AMR structures
but potentially unfaithful or non-grammatical sentences. Third, we experi-
ment with utilizing the AMR-to-text corpus with both gold English AMR and
sentences in multi-source scenarios to enhance multilingual training.

Our experiments empirically validated that both sources of silver data — silver
AMR with gold sentences and gold AMR with silver sentences — are comple-
mentary, and a combination of them leads to strong multilingual AMR-to-text
generation models. Those results highlight the potential of using AMR as a
meaning representation to represent information that can be verbalized in
multiple languages.



Part 11

Publications



Chapter 4

Enhancing AMR-to-Text Generation
with Dual Graph Representations

32



Enhancing AMR-to-Text Generation with Dual Graph Representations

Leonardo F. R. Ribeiro’, Claire Gardent' and Iryna Gurevych'

TResearch Training Group AIPHES and UKP Lab, Technische Universitit Darmstadt
www.ukp.tu-darmstadt.de

'CNRS/LORIA, Nancy, France
claire.gardent@loria.fr

Abstract

Generating text from graph-based data, such as
Abstract Meaning Representation (AMR), is a
challenging task due to the inherent difficulty
in how to properly encode the structure of a
graph with labeled edges. To address this dif-
ficulty, we propose a novel graph-to-sequence
model that encodes different but complemen-
tary perspectives of the structural information
contained in the AMR graph. The model
learns parallel top-down and bottom-up rep-
resentations of nodes capturing contrasting
views of the graph. We also investigate the use
of different node message passing strategies,
employing different state-of-the-art graph en-
coders to compute node representations based
on incoming and outgoing perspectives. In
our experiments, we demonstrate that the dual
graph representation leads to improvements
in AMR-to-text generation, achieving state-of-
the-art results on two AMR datasets’.

1 Introduction

Abstract Meaning Representation (AMR; Ba-
narescu et al. (2013)) is a linguistically-grounded
semantic formalism that represents the meaning of
a sentence as a rooted directed graph, where nodes
are concepts and edges are semantic relations. As
AMR abstracts away from surface word strings
and syntactic structure producing a language neu-
tral representation of meaning, its usage is benefi-
cial in many semantic related NLP tasks, includ-
ing text summarization (Liao et al., 2018) and ma-
chine translation (Song et al., 2019).

The purpose of AMR-to-text generation is to
produce a text which verbalises the meaning en-
coded by an input AMR graph. This is a chal-
lenging task as capturing the complex structural
information stored in graph-based data is not triv-
ial, as these are non-Euclidean structures, which

'Code is available at
https://github.com/UKPLab/emnlp2019-dualgraph

implies that properties such as global parametriza-
tion, vector space structure, or shift-invariance
do not hold (Bronstein et al., 2017). Recently,
Graph Neural Networks (GNNs) have emerged as
a powerful class of methods for learning effec-
tive graph latent representations (Xu et al., 2019)
and graph-to-sequence models have been applied
to the task of AMR-to-text generation (Song et al.,
2018; Beck et al., 2018; Damonte and Cohen,
2019; Guo et al., 2019).

In this paper, we propose a novel graph-to-
sequence approach to AMR-to-text generation,
which is inspired by pre-neural generation algo-
rithms. These approaches explored alternative
(top-down, bottom-up and mixed) traversals of
the input graph and showed that a hybrid traver-
sal combining both top-down (TD) and bottom-up
(BU) information was best as this permits integrat-
ing both global constraints top-down from the in-
put and local constraints bottom-up from the se-
mantic heads (Shieber et al., 1990; Narayan and
Gardent, 2012).

Similarly, we present an approach where the
input graph is represented by two separate struc-
tures, each representing a different view of the
graph. The nodes of these two structures are en-
coded using separate graph encoders so that each
concept and relation in the input graph is assigned
both a TD and a BU representation.

Our approach markedly differs from existing
graph-to-sequence models for MR-to-Text gener-
ation (Marcheggiani and Perez Beltrachini, 2018;
Beck et al., 2018; Damonte and Cohen, 2019) in
that these approaches aggregate all the immedi-
ate neighborhood information of a node in a single
representation. By exploiting parallel and comple-
mentary vector representations of the AMR graph,
our approach eases the burden on the neural model
in encoding nodes (concepts) and edges (relations)
in a single vector representation. It also elimi-

3183

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 3183-3194,
Hong Kong, China, November 3-7, 2019. (©2019 Association for Computational Linguistics

33



nates the need for additional positional informa-

tion (Beck et al., 2018) which is required when

the same graph is used to encode both TD and BU

information, thereby making the edges undirected.
Our main contributions are the following:

e We present a novel architecture for
AMR-to-text generation which explic-
itly encodes two separate TD and BU views
of the input graph.

e We show that our approach outperforms re-
cent AMR-to-text generation models on two
datasets, including a model that leverages
additional syntactic information (Cao and
Clark, 2019).

e We compare the performance of three graph
encoders, which have not been studied so far
for AMR-to-text generation.

2 Related Work

Early works on AMR-to-text generation employ
statistical methods (Flanigan et al., 2016b; Pour-
damghani et al., 2016; Castro Ferreira et al., 2017)
and apply linearization of the graph by means of a
depth-first traversal.

Recent neural approaches have exhibited suc-
cess by linearising the input graph and using a
sequence-to-sequence architecture. Konstas et al.
(2017) achieve promising results on this task.
However, they strongly rely on named entities
anonymisation. Anonymisation requires an ad hoc
procedure for each new corpus. The matching pro-
cedure needs to match a rare input item correctly
(e.g., “United States of America”) with the cor-
responding part in the output text (e.g., “USA”)
which may be challenging and may result in in-
correct or incomplete delexicalisations. In con-
trast, our approach omits anonymisation. Instead,
we use a copy mechanism (See et al., 2017), a
generic technique which is easy to integrate in the
encoder-decoder framework and can be used in-
dependently of the particular domain and applica-
tion. Our approach further differs from Konstas
et al. (2017) in that we build a dual TD/BU graph
representation and use graph encoders to represent
nodes.

Cao and Clark (2019) factor the generation pro-
cess leveraging syntactic information to improve
the performance. However, they linearize both
AMR and constituency graphs, which implies that

important parts of the graphs cannot well be rep-
resented (e.g., coreference).

Several graph-to-sequence models have been
proposed. Marcheggiani and Perez Beltrachini
(2018) show that explicitly encoding the structure
of the graph is beneficial with respect to sequential
encoding. They evaluate their model on two tasks,
WebNLG (Gardent et al., 2017) and SR11Deep
(Belz et al., 2011), but do not apply it to AMR
benchmarks. Song et al. (2018) and Beck et al.
(2018) apply recurrent neural networks to directly
encode AMR graphs. Song et al. (2018) use a
graph LSTM as the graph encoder, whereas Beck
et al. (2018) develop a model based on GRUs.
We go a step further in that direction by develop-
ing parallel encodings of graphs which are able to
highlight different graph properties.

In a related task, Koncel-Kedziorski et al.
(2019) propose an attention-based graph model
that generates sentences from knowledge graphs.
Schlichtkrull et al. (2018) use Graph Convolu-
tional Networks (GCNs) to tackle the tasks of link
prediction and entity classification on knowledge
graphs.

Damonte and Cohen (2019) show that off-the-
shelf GCNs cannot achieve good performance for
AMR-to-text generation. To tackle this issue, Guo
etal. (2019) introduce dense connectivity to GNNs
in order to integrate both local and global features,
achieving good results on the task. Our work is
related to Damonte and Cohen (2019), that use
stacking of GCN and LSTM layers to improve the
model capacity and employ anonymization. How-
ever, our model is substantially different: (i) we
learn dual representations capturing top-down and
bottom-up adjuvant views of the graph, (ii) we em-
ploy more effective graph encoders (with different
neighborhood aggregations) than GCNs and (iii)
we employ copy and coverage mechanisms and do
not resort to entity anonymization.

3 Graph-to-Sequence Model

In this section, we describe (i) the representations
of the graph adopted as inputs, (ii) the model ar-
chitecture, including the Dual Graph Encoder and
(ii1) the GNNs employed as graph encoders.

3.1 Graph Preparation

Let G = (V, E, R) denote a rooted and directed
AMR graph with nodes v; € V' and labeled edges
(vi,r,v;) € E, where r € R is a relation type.

3184

34



a) There were ten or so of us who had ¢)
chosen it that semester

choose-01

Figure 1: (a) an example sentence, (b) its original AMR graph (G) and different graph perspectives: (c) top-down

(Gy) and (d) bottom-up (Gp).

Let n = |V| and m = | E| denote the numbers of
nodes and edges, respectively.

We convert each AMR graph into an unlabeled
and connected bipartite graph G; = (Vi, Ey),
transforming each labeled edge (v;,r,v;) € E
into two unlabeled edges (v;, ), (r,v;) € E, with
|[Vi] = n+ m and |E;] = 2m. This process,
called Levi Transformation (Beck et al., 2018),
turns original edges into nodes creating an un-
labeled graph. For instance, the edge between
semester and that with label :mod in Fig-
ure 1(b) is replaced by two edges and one node in
I(c): an edge between semester, and the new
node :mod and another one between :mod and
that. The new graph allows us to directly rep-
resent the relationships between nodes using em-
beddings. This enables us to encode label edge in-
formation using distinct message passing schemes
employing different GNNS.

G captures a TD view of the graph. We also
create a BU view of the graph G, = (V;, Ep),
where each directed edge e, = (v;,v;) € E; be-
comes ey = (vj, v;) € Ey, that is, we reverse the
direction of original edges. An example of a sen-
tence, its AMR graph and the two new graphs G
and (5} is shown in Figure 1.

3.2 Dual Graph Encoder

We represent each node v; € V; with a node em-
bedding e; € R, generated from the node label.
In order to explicitly encode structural informa-
tion, our encoder starts with two graph encoders,
denoted by GE; and G Ej, that compute represen-
tations for nodes in G; and Gy, respectively.

Each GFE learns node representations based on
the specific view of its particular graph, G or Gj,.
Since G and Gy, capture distinct perspectives of
the graph structure, the information flow is prop-

agated throughout TD and BU directions, respec-
tively. In particular, for each node v;, the GE re-
ceives the node embeddings of v; and its neigh-
bors, and computes its node representation:

hi = GEi({ei,e; : j € Ni()}),
hi = GEy({ei,e; 1 j € Ny(i)}),

where N (i) and Ny (i) are the immediate incom-
ing neighborhoods of v; in Gy and Gy, respec-
tively.

Each node v; is represented by two different
hidden states, hﬁ and hi-’. Note that we learn two
representations per relation and node of the orig-
inal AMR graph. The hidden states h! and hf,
and embedding e; contain different information
regarding v;. We concatenate them building a final
node representation:

r; = [hl|h?|e;].

This approach is similar to bidirectional RNNs
(Schuster and Paliwal, 1997). Bidirectional RNNs
benefit from left-to-right and right-to-left propa-
gation. They learn the hidden representations sep-
arately and concatenate them at the end. We per-
form a similar encoding: first we learn TD and BU
representations independently, and lastly, we con-
catenate them.

The final representation r; is employed in a se-
quence input of a bidirectional LSTM. For each
AMR graph, we generate a node sequence by
depth-first traversal order. In particular, given a
representation sequence from r; to r,,, the hidden
forward and backward states of r; are defined as:

- -
hi = LSTMf(I‘Z, hi—1)7
ti = LSTMb(I‘Z',iifl),

3185

35



EIIIIIIIIII---IIIIIIIIIIE

$
bILSTM
?

b t
GE; GEp
1 1

Figure 2: Dual Graph Encoder. The encoder receives
the two graph views and generates structural node rep-
resentations that are used by the decoder. Represen-
tations in blue, yellow and orange are e;, h§ and hli’,
respectively.

where LSTM ; is a forward LSTM and LSTM,,
is a backward LSTM. Note that, for the backward
LSTM, we feed the reversed input as the order
from r, to r;. Lastly, we obtain the final hidden
state by concatenating them as:

by = [ Tl

The resulting hidden state h; encodes the informa-
tion of both preceding and following nodes.

Stacking layers was demonstrated to be effec-
tive in graph-to-sequence approaches (Marcheg-
giani and Perez Beltrachini, 2018; Koncel-
Kedziorski et al., 2019; Damonte and Cohen,
2019) and allows us to test for their contributions
to the system performance more easily. We em-
ploy different GNNs for both graph encoders (Sec-
tion 3.3). Figure 2 shows the proposed encoder
architecture.

3.3 Graph Neural Networks

The G E's incorporate, in each node representation,
structural information based on both views of the
graph. We explore distinct strategies for neighbor-
hood aggregation, adopting three GNNs: Gated
Graph Neural Networks (GGNN, Li et al. (2016)),
Graph Attention Networks (GAT, Velickovi¢ et al.
(2018)) and Graph Isomorphic Networks (GIN,
Xu et al. (2019)). Each GNN employs a specific
message passing scheme which allows capturing
different nuances of structural information.

Gated Graph Neural Networks GGNNs em-
ploy gated recurrent units to encode node repre-
sentations, reducing the recurrence to a fixed num-
ber of steps. In particular, the [-th layer of a
GGNN is calculated as:

Z W, hl 1))

h = GRU(
jGN

where N (i) is the immediate neighborhood of v;,
‘W is a parameter and GRU is a gated recur-
rent unit (Cho et al., 2014). Different from other
GNNs, GGNNs use back-propagation through
time (BPTT) to learn the parameters. GGNNs also
do not require to constrain parameters to ensure
convergence.

Graph Attention Networks GATs apply atten-
tive mechanisms to improve the exploitation of
non-trivial graph structure. They encode node rep-
resentations by attending over their neighbors, fol-
lowing a self-attention strategy:

l -1 -1
hg) = Oém‘thE ) + Z Ozz‘VjW2h§- ),
JEN ()
where attention coefficients «; ; are computed as:

«;,; = softmax (a’ (aT [W2hl(_l*1> I th;l—l)])) 7

where o is the activation function and || denotes

concatenation. Wy and a are model parameters.
The virtue of the attention mechanism is its ability
to focus on the most important parts of the node
neighborhood. In order to learn attention weights
in different perspectives, GATs can employ multi-
head attentions.

Graph Isomorphic Networks GIN is a GNN
as powerful as the Weisfeiler-Lehman (WL) graph
isomorphism test (Weisfeiler and Lehman, 1968)
in representing isomorphic and non-isomorphic
graphs with discrete attributes. Its [-th layer is de-
fined as:

hl(-l)zhw< (I— 1)+ Z hl 1)
JEN(3)

where hyw is a multi-layer perceptron (MLP).
In contrast to other GNNs, which combine node
feature with its aggregated neighborhood feature,
GINs do not apply the combination step and sim-
ply aggregate the node along with its neighbors.

Each of these GNNs applies different ap-
proaches to learn structural features from graph
data and has achieved impressive results on many
graph-based tasks (Li et al., 2016; Velickovic¢
etal., 2018; Xu et al., 2019).

3186

36



LDC2015E86 LDC2017T10

training, dev and test instances 16,833 1,368 1,371 36,521 1,368 1,371
min, average and max graph diameter 0 6.9 20 0 6.7 20
min, average and max node degree 0 2.1 18 0 2.1 20
min, average and max number of nodes 1 17.7 151 1 16.8 151
min, average and max number of edges 0 18.6 172 0 17.7 172
number of DAG and non-DAG graphs 18,679 893 37,284 1,976

min, average and max length sentences 1 213 225 1 204 225

Table 1: Data statistics of LDC2015E86 and LDC2017T10 datasets. The values are calculated for all splits (train,

development and test sets). DAG stands for directed acyclic graph.

3.4 Decoder

An attention-based unidirectional LSTM decoder
is used to generate sentences, attending to the hid-
den representations of edges and nodes. In each
step ¢, the decoder receives the word embedding of
the previous word (during training, this is the pre-
vious word of the reference sentence; at test time
it is the previously generated word), and has the
decoder state s;. The attention distribution a’ is
calculated as in See et al. (2017):

eﬁ = v - tanh(Wh; + Wgs; + wes. + b),
a' = softmax(e’),

where s, is the coverage vector and v, Wy, Wy,
w, and b are learnable parameters. The coverage
vector is the accumulation of all attention distribu-

tions so far.

Copy and Coverage Mechanisms Previous
works (Damonte and Cohen, 2019; Cao and Clark,
2019) use anonymization to handle names and rare
words, alleviating the data sparsity. In contrast, we
employ copy and coverage mechanisms to address
out-of-vocabulary issues for rare target words and
to avoid repetition (See et al., 2017).

The model is trained to optimize the negative
log-likelihood:

1Yl

L=- Zlog P(yelyre—1, X5 0),
t=1

where Y = y1,...,y)y) is the sentence, X is the
AMR graph and 6 represents the model parame-
ters.

4 Data

We use two AMR corpora, LDC2015E86 and
LDC2017T10%. In these datasets, each instance

*The datasets can be found at
https://amr.isi.edu/download.html

100y 10° .
Xx 101 x
1071 x .
~ % 1072 X
N 1072 X x
% 103 X
a X %
T 10-3 3
10 % 10~ ;sx
’ i
10-4 10-5 X %%

1 4 7 10 13 16 19

diameter (d)

1 4 7 10 13 16 19
degree (d)

Figure 3: Distribution of the AMR graph diameter
(left) and node degree (right) in the training set for
LDC2015E86 (red) and LDC2017T10 (blue) datasets.

contains an AMR graph and a sentence. Table 1
shows the statistics for both datasets. Figure 3
shows the distribution of the AMR graph diame-
ters and node degrees for both datasets. The AMR
graph structures are similar for most examples.
Note that 90% of AMR graphs in both datasets
have the diameter less than or equal to 11 and 90%
of nodes have the degree of 4 or less. Very struc-
turally similar graphs pose difficulty for the graph
encoder by making it harder to learn the differ-
ences between their similar structures. Therefore,
the word embeddings used as additional input play
an important role in helping the model to deal with
language information. That is one of the reasons
why we concatenate this information in the node
representation r;.

5 Experiments and Discussion

Implementation Details We extract vocabular-
ies (size of 20,000) from the training sets and ini-
tialize the node embeddings from GloVe word em-
beddings (Pennington et al., 2014) on Common
Crawl. Hyperparameters are tuned on the devel-
opment set of the LDC2015E86 dataset. For GIN,
GAT, and GGNN graph encoders, we set the num-
ber of layers to 2, 5 and 5, respectively. To regu-

3187

37



Model BLEU METEOR Model External BLEU
LDC2015E86 Konstas et al. (2017) 200K 27.40

Konstas et al. (2017) 22.00 - Song et al. (2018) 200K 28.20

Song et al. (2018)  23.28 30.10 Guo et al. (2019) 200K 31.60

Cao et al. (2019) 23.50 - G2S—-GGNN 200K 32.23

Damonte et al.(2019) 24.40 23.60

Guo et al. (2019) 25.70 _ Table 3 Resqlts on LDC201§E86 test set when models

355 3755 1017 29.90 £ 031 are trained with additional Gigaword data.

G25-GIN 22.93 £020 29.72 £0.09

G25-GAT 2342 +0.16 29.87 £0.14 We use both BLEU (Papineni et al., 2002) and

G2S—-GGNN 24.32 £0.16  30.53 + 0.30 METEOR (Denkowski and Lavie, 2014) as evalu-
LDC2017T10 ation metrics®. In order to mitigate the effects of

Back et al. (2018)  23.30 - random seeds, we report the averages for 4 train-

Song et al. (2018)  24.86 31.56 ing runs of each model along with their standard

Damonte et al.(2019) 24.54 24.07 deviation. Table 2 shows the comparison between

Cao et al. (2019) 26.80 - the proposed models, the baseline and other neural

Guo et al. (2019) 27.60 - models on the test set of the two datasets.

S2S 2273 £0.18 30.15+0.14 For both datasets, our approach substantially

G25-GIN 26.90 £0.19 32.62 £0.04 outperforms the baselines. In LDC2015ES86,

G2S—-GAT 26.72 £020 32.52 +£0.02 G2S—-GGNN achieves a BLEU score of 24.32,

G25-GGNN 27.87 £0.15 33.21 £0.15 4.46% higher than Song et al. (2018), who also use

Table 2: BLEU and METEOR scores on the test set of
LDC2015E86 and LDC2017T10 datasets.

larize the model, during training we apply dropout
(Srivastava et al., 2014) to the graph layers with a
rate of 0.3. The graph encoder hidden vector sizes
are set to 300 and hidden vector sizes for LSTMs
are set to 900.

The models are trained for 30 epochs with early
stopping based on the development BLEU score.
For our models and the baseline, we used a two-
layer LSTM decoder. We use Adam optimization
(Kingma and Ba, 2015) as the optimizer with an
initial learning rate of 0.001 and 20 as the batch
size. Beam search with the beam size of 5 is used
for decoding.

Results We call the models G2S-GIN (iso-
morphic encoder), G2S—-GAT (graph-attention en-
coder), and G2S—-GGNN (gated-graph encoder),
according to the graph encoder utilized. As a base-
line (S2S), we train an attention-based encoder-
decoder model with copy and coverage mecha-
nisms, and use a linearized version of the graph
generated by depth-first traversal order as input.
We compare our models against several state-of-
the-art results reported on the two datasets (Kon-
stas et al., 2017; Song et al., 2018; Beck et al.,
2018; Damonte and Cohen, 2019; Cao and Clark,
2019; Guo et al., 2019).

the copy mechanism. This indicates that our archi-
tecture can learn to generate better signals for text
generation. On the same dataset, we have compet-
itive results to Damonte and Cohen (2019). How-
ever, we do not rely on preprocessing anonymisa-
tion not to lose semantic signals. In LDC2017T10,
G2S—GGNN achieves a BLEU score of 27.87,
which is 3.33 points higher than Damonte and Co-
hen (2019), a state-of-the-art model that does not
employ external information. We also have com-
petitive results to Guo et al. (2019), a very recent
state-of-the-art model.

We also outperform Cao and Clark (2019) im-
proving BLEU scores by 3.48% and 4.00%, in
LDC2015E86 and LDC2017T10, respectively. In
contrast to their work, we do not rely on (i)
leveraging supplementary syntactic information
and (ii) we do not require an anonymization pre-
processing step. G2S—GIN and G2S-GAT have
comparable performance on both datasets. In-
terestingly, G2S—GGNN has better performance
among our models. This suggests that graph en-
coders based on gating mechanisms are very ef-
fective in text generation models. We hypothesize
that the gating mechanism can better capture long-
distance dependencies between nodes far apart in
the graph.

3For BLEU, we use the multi-BLEU script from the
MOSES decoder suite (Koehn et al., 2007). For ME-
TEOR, we use the original meteor-1.5.jar script
(https://github.com/cmu-mtlab/meteor).

3188

38



Model BLEU METEOR Size

biLSTM 22.50 3042 57.6M
GE; + biLSTM 26.33 32.62 59.6M
GEp +bilLSTM 26.12 3249 59.6M
GE; + GEy +piLstm 27.37 3330 61.7M

Table 4: Results of the ablation study on the
LDC2017T10 development set.

Additional Training Data Following previous
works (Konstas et al., 2017; Song et al., 2018; Guo
etal., 2019), we also evaluate our models employ-
ing additional data from English Gigaword corpus
(Napoles et al., 2012). We sample 200K Gigaword
sentences and use JAMR* (Flanigan et al., 2016a)
to parse them. We follow the method of Konstas
et al. (2017), which is fine-tuning the model on
the LDC2015E86 training set after every epoch
of pretraining on the Gigaword data. G2S-GGNN
outperforms others with the same amount of Giga-
word sentences (200K), achieving a 32.23 BLEU
score, as shown in Table 3. The results demon-
strate that pretraining on automatically generated
AMR graphs enhances the performance of our
model.

Ablation Study In Table 4, we report the results
of an ablation study on the impact of each com-
ponent of our model on the development set of
LDC2017T10 dataset by removing the graph en-
coders. We also report the number of parame-
ters (including embeddings) used in each model.
The first thing we notice is the huge increase in
metric scores (17% in BLEU) when applying the
graph encoder layer, as the neural model receives
signals regarding the graph structure of the input.
The dual representation helps the model with a
different view of the graph, increasing BLEU and
METEOR scores by 1.04 and 0.68 points, respec-
tively. The complete model has slightly more pa-
rameters than the model without graph encoders
(57.6M vs 61.7M).

Impact of Graph Size, Arity and Sentence
Length The good overall performance on the
datasets shows the superiority of using graph en-
coders and dual representations over the sequential
encoder. However, we are also interested in esti-
mating the performance of the models concerning
different data properties. In order to evaluate how
the models handle graph and sentence features, we

*https://github.com/jflanigan/jamr

Model Graph Diameter

0-7 A 7-13 A 1420 A
S2S 33.2 29.7 28.8
G2S-GIN 352+60% 31.8+74% 31.5+92%
G2S-GAT 35.1+459% 32.0+7.8% 31.5+9.51%
G2S—-GGNN 36.2 +9.0% 33.0 +11.4% 30.7 +6.7%

Sentence Length

0-20 A 20-50 A 50-240 A
S2S 349 29.9 25.1
G2S-GIN 36.7+52% 32.2+7.8% 26.5+5.8%
G2S-GAT 36.9+57% 32.3+79% 26.6+6.1%

G2S—-GGNN 37.9 +85% 33.3 +112% 26.9 +6.8%
Max Node Out-degree

03 A 4-8 A 9-18 A
S2S 31.7 30.0 23.9
G2S-GIN 339 +69% 32.1 +6.9% 25.4+6.2%
G2S-GAT 343 +8.0% 32.0+6.7% 22.5-6.0%
G2S—-GGNN 35.0 +10.3% 33.1 +104% 22.2 -7.3%

Table 5: METEOR scores and differences to the S2S,
in the LDC2017T10 test set, with respect to the graph
diameter, sentence length and max node out-degree.

perform an inspection based on different sizes of
graph diameter, sentence length, and max node
out-degree. Table 5 shows METEOR? scores for
the LDC2017T10 dataset.

The performances of all models decrease as the
diameters of the graphs increase. G2S—-GGNN has
a 17.9% higher METEOR score in graphs with a
diameter of at most 7 compared to graphs with di-
ameters higher than 13. This is expected as encod-
ing a bigger graph (containing more information)
is harder than encoding smaller graphs. Moreover,
71% of the graphs in the training set have a diam-
eter less than or equal to 7 and only 2% have a
diameter bigger than 13 (see Figure 3). Since the
models have fewer examples of bigger graphs to
learn from, this also leads to worse performance
when handling graphs with higher diameters. We
also investigate the performance with respect to
the sentence length. The models have better re-
sults when handling sentences with 20 or fewer to-
kens. Longer sentences pose additional challenges
to the models.

G2S—GIN has a better performance in han-
dling graphs with node out-degrees higher than 9.
This indicates that GINs can be employed in tasks
where the distribution of node degrees has a long

SMETEOR score is used as it is a sentence-level metric.

3189

39



REF = GEN
Model ENT CON NEU
S28 38.45 11.17 50.38
G25-GIN 49.78 9.80 40.42
G2S-GAT 49.48 8.09 42.43
G2S—-GGNN 51.32 8.82 39.86

GEN = REF
Model ENT CON NEU
S23 73.79 12.75 13.46
G25-GIN 76.27 10.65 13.08
G2S-GAT 717.54 8.54 13.92
G25-GGNN 77.64 9.64 12.72

Table 6: Entailment (ENT), contradiction (CON)

and neutral (NEU) average percentages for the
LDC2017T10 test set. (Top) The premise and the hy-
pothesis are the generated (GEN) and reference (REF)
sentences, respectively. (Bottom) The hypothesis and
the premise are the generated (GEN) and reference
(REF) sentences, respectively.

tail. Surprisingly, S2S has a better performance
than G2S—GGNN and G2S-GAT when handling
graphs that contain high degree nodes.

Semantic Equivalence We perform an entail-
ment experiment using BERT (Devlin et al., 2019)
fine-tuned on the MultiNLI dataset (Williams
et al., 2018) as a NLI model. We are interested in
exploring whether a generated sentence (hypothe-
sis) is semantically entailed by the reference sen-
tence (premise). In a related text generation task,
Falke et al. (2019) employ NLI models to rerank
alternative predicted abstractive summaries.

Nevertheless, uniquely verifying whether the
reference (REF) entails the generated sentence
(GEN) or vice-versa (GEN entails REF) is not suf-
ficient. For example, suppose that “Today Jon
walks” is the REF and “Jon walks” is the GEN.
Even though REF entails GEN, GEN does not
entail REF, that is, GEN is too general (miss-
ing information). Furthermore, suppose that “Jon
walks” is the REF and “Today Jon walks” is the
GEN, GEN entails REF but REF does not entail
GEN, that is, GEN is too specific (added informa-
tion). Therefore, in addition to verify whether the
reference entails the generated sentence, we also
verify whether the generated sentence entails the
reference.

Table 6 shows the average probabilities for en-
tailment, contradiction and neutral classes on the
LDC2017T10 test set. All G2S models have

100
m S2S
7% G2S-GGNN
80 74.54
69.65
// 64.4
60 / 58.33 '/
o
o
19}
)
40 / /
d | %
A /
Meaning similarity Readability

Figure 4: Human evaluation of the sentences generated
by S2S and G2S-GGNN models. Results are statisti-
cally significant with p < 0.05, using Wilcoxon rank-
sum test.

higher entailment compared to S2S. G2S-GGNN
has 33.5% and 5.2% better entailment perfor-
mances than S2S, when REF entails GEN and
GEN entails REF, respectively. G2S models also
generate sentences that contradict the reference
sentences less. This suggests that our models are
capable of capturing better semantic information
from the graph generating outputs semantically re-
lated to the reference sentences.

Human Evaluation To further assess the qual-
ity of the generated sentences, we conduct a hu-
man evaluation. We employ the Direct Assessment
(DA) method (Graham et al., 2017) via Amazon
Mechanical Turk. Using the DA method inspired
by Mille et al. (2018), we assess two quality crite-
ria: (i) meaning similarity: how close in meaning
the generated text is to the gold sentence; and (ii)
readability: how well the generated sentence reads
(Is it good fluent English?).

We randomly select 100 sentences generated by
S2S and G2S—GGNN and randomly assign them to
HITs (following Mechanical Turk terminology).
Human workers rate the sentences according to
meaning similarity and readability on a 0-100 rat-
ing scale. The tasks are executed separately and
workers were first given brief instructions. For
each sentence, we collect scores from 5 workers
and average them. Models are ranked according
to the mean of sentence-level scores. We apply a
quality control step filtering workers who do not
score some faked and known sentences properly.

Figure 4 shows the results. In both metrics,
G2S—-GGNN has better human scores for mean-
ing similarity and readability, suggesting a higher

3190

40



(a / agree :ARGO (a2 / and :opl (c / country :wiki China :name (n / name :opl

China)) :o0p2 (c2 / country :wiki Kyrgyzstan :name (n2 / name :o0pl Kyrgyzs-—

tan))) :ARGl (t / threaten-01 :ARGO (a3 / and :opl (t2 / terrorism) :0op2 (s

/ separatism) :0p3 (e / extremism)) :ARG2 (a4 / and :o0pl (s3 / security :mod

(r / region)) :o0op2 (s4 / stability :mod r)) :time (s2 / still) :ARGl-of (m /

major—02)) :medium (c3 / communique :mod (J / joint)))

GOLD China and Kyrgyzstan agreed in a joint communique that terrorism, separatism and extremism
still pose major threats to regional security and stability.

528 In the joint communique, China and Kyrgyzstan still agreed to threaten terrorism, separatism,

extremism and regional stability.

Song et. al (2018)

security, and regional stability.
G2S—-GGNN

In a joint communique, China and Kyrgyzstan have agreed to still be a major threat to regional

At a joint communique, China and Kyrgyzstan agreed that terrorism, separatism and extremism

are still a major threat to region security and stability.

Table 7: An example of an AMR graph and generated sentences. GOLD refers to the reference sentence.

Model ADDED MISS
S2S 47.34 37.14
G2S-GIN 48.67 33.64
G2S-GAT 48.24 33.73
G2S-GGNN 48.66 34.06
GOLD 50.77 28.35

Table 8: Fraction of elements in the output that are not
present in the input (ADDED) and the fraction of ele-
ments in the input graph that are missing in the gener-
ated sentence (MISS), for the test set of LDC2017T10.
The token lemmas are used in the comparison. GOLD
refers to the reference sentences.

quality of the generated sentences regarding S2S.
The Pearson correlations between meaning sim-
ilarity and readability scores, and METEOR®
scores are 0.50 and 0.22, respectively.

Semantic Adequacy We also evaluate the se-
mantic adequacy of our model (how well does the
generated output match the input?) by compar-
ing the number of added and missing tokens that
occur in the generated versus reference sentences
(GOLD). An added token is one that appears in
the generated sentence but not in the input graph.
Conversely, a missing token is one that occurs in
the input but not in the output. In GOLD, added to-
kens are mostly function words while missing to-
kens are typically input concepts that differ from
the output lemma. For instance, in Figure 1, there
and of are added tokens while person is a missing
token. As shown in Table 8, G2S approaches out-
perform the S25 baseline. G2S-GIN is closest to
GOLD with respect to both metrics suggesting that
this model is better able to generate novel words to
construct the sentence and captures a larger range
of concepts from the input AMR graph, covering

SMETEOR score is used as it is a sentence-level metric.

more information.

Manual Inspection Table 7 shows sentences
generated by S2S, Song et al. (2018), G2S—-GAT,
and the reference sentence. The example shows
that our approach correctly verbalises the subject
of the embedded clause “China and ... agreed
that terrorism, separatism and extremismsypy ...
pose major threats to ...”, while S2S and Song
et al. (2018) are fooled by the fact that agree fre-
quently takes an infinitival argument which shares
its subject (“China ...sypgj agreed to threaten /
have agreed to be a major threat”). While this is a
single example, it suggests that dual encoding en-
hances the model ability to take into account the
dependencies and the graph structure information,
rather than the frequency of n-grams.

6 Conclusion

We have studied the problem of generating text
from AMR graphs. We introduced a novel archi-
tecture that explicitly encodes two parallel and ad-
juvant representations of the graph (top-down and
bottom-up). We showed that our approach out-
performs state-of-the-art results in AMR-to-text
generation. We provided an extensive evalua-
tion of our models and demonstrated that they are
able to achieve the best performance. In the fu-
ture, we will consider integrating deep generative
graph models to express probabilistic dependen-
cies among AMR nodes and edges.

Acknowledgments

This work has been supported by the German Re-
search Foundation as part of the Research Training
Group Adaptive Preparation of Information from
Heterogeneous Sources (AIPHES) under grant
No. GRK 1994/1.

3191

41



References

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178—186, Sofia, Bulgaria. Associ-
ation for Computational Linguistics.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018.  Graph-to-sequence learning using gated
graph neural networks. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 273-283, Melbourne, Australia. Association
for Computational Linguistics.

Anja Belz, Mike White, Dominic Espinosa, Eric Kow,
Deirdre Hogan, and Amanda Stent. 2011. The first
surface realisation shared task: Overview and eval-
uation results. In Proceedings of the Generation
Challenges Session at the 13th European Workshop
on Natural Language Generation, pages 217-226,
Nancy, France. Association for Computational Lin-
guistics.

Michael M. Bronstein, Joan Bruna, Yann LeCun,
Arthur Szlam, and Pierre Vandergheynst. 2017. Ge-
ometric deep learning: Going beyond euclidean
data. IEEFE Signal Processing Magazine, 34(4):18—
42.

Kris Cao and Stephen Clark. 2019. Factorising AMR
generation through syntax. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 2157-2163, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Thiago Castro Ferreira, lacer Calixto, Sander Wubben,
and Emiel Krahmer. 2017. Linguistic realisation as
machine translation: Comparing different MT mod-
els for AMR-to-text generation. In Proceedings of
the 10th International Conference on Natural Lan-
guage Generation, pages 1-10, Santiago de Com-
postela, Spain. Association for Computational Lin-
guistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder—decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724—
1734, Doha, Qatar. Association for Computational
Linguistics.

Marco Damonte and Shay B. Cohen. 2019. Struc-
tural neural encoders for AMR-to-text generation.
In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
3649-3658, Minneapolis, Minnesota. Association
for Computational Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376-380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Tobias Falke, Leonardo F. R. Ribeiro, Prasetya Ajie
Utama, Ido Dagan, and Iryna Gurevych. 2019.
Ranking generated summaries by correctness: An
interesting but challenging application for natural
language inference. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2214-2220, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and
Jaime Carbonell. 2016a. CMU at SemEval-2016
task 8: Graph-based AMR parsing with infinite
ramp loss. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 1202-1206, San Diego, California. Associa-
tion for Computational Linguistics.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and
Jaime Carbonell. 2016b. Generation from abstract
meaning representation using tree transducers. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 731-739, San Diego, California. Association
for Computational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124—133, San-
tiago de Compostela, Spain. Association for Com-
putational Linguistics.

Yvette Graham, Timohy Baldwin, Alistair Moffat, and
Justin Zobel. 2017. Can machine translation sys-
tems be evaluated by the crowd alone. Natural Lan-
guage Engineering, 23(1):3-30.

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and Wei Lu.
2019. Densely connected graph convolutional net-
works for graph-to-sequence learning. Transactions

3192

42



of the Association for Computational Linguistics,
7:297-312.

Diederick P Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In Inter-
national Conference on Learning Representations
(ICLR), San Diego, CA, USA.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondfej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
ACL °07, pages 177-180, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019.
Text Generation from Knowledge Graphs with
Graph Transformers. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 2284-2293, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural amr:
Sequence-to-sequence models for parsing and gen-
eration. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 146—157, Van-
couver, Canada. Association for Computational Lin-
guistics.

Yujia Li, Richard Zemel, Marc Brockschmidt, and
Daniel Tarlow. 2016. Gated graph sequence neural
networks. In Proceedings of the International Con-
ference on Learning Representations (ICLR), San
Juan, Puerto Rico.

Kexin Liao, Logan Lebanoff, and Fei Liu. 2018. Ab-
stract meaning representation for multi-document
summarization. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1178-1190, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Diego Marcheggiani and Laura Perez Beltrachini.
2018. Deep graph convolutional encoders for struc-
tured data to text generation. In Proceedings of
the 11th International Conference on Natural Lan-
guage Generation, pages 1-9, Tilburg University,
The Netherlands. Association for Computational
Linguistics.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The first
multilingual surface realisation shared task (SR’ 18):
Overview and evaluation results. In Proceedings of
the First Workshop on Multilingual Surface Realisa-
tion, pages 1-12, Melbourne, Australia. Association
for Computational Linguistics.

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated gigaword. In Pro-
ceedings of the Joint Workshop on Automatic Knowl-
edge Base Construction and Web-scale Knowledge
Extraction, AKBC-WEKEX °12, pages 95-100,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Shashi Narayan and Claire Gardent. 2012. Structure-
driven lexicalist generation. In Proceedings of COL-
ING 2012, pages 2027-2042, Mumbai, India. The
COLING 2012 Organizing Committee.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL °02, pages 311-318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532-1543, Doha,
Qatar. Association for Computational Linguistics.

Nima Pourdamghani, Kevin Knight, and Ulf Herm-
jakob. 2016.  Generating English from abstract
meaning representations. In Proceedings of the 9th
International Natural Language Generation confer-
ence, pages 21-25, Edinburgh, UK. Association for
Computational Linguistics.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. 2018. Modeling relational data with graph
convolutional networks. In The Semantic Web - 15th
International Conference, ESWC 2018, Heraklion,
Crete, Greece, June 3-7, 2018, Proceedings, pages
593-607.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673-2681.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073—
1083, Vancouver, Canada. Association for Compu-
tational Linguistics.

Stuart M. Shieber, Gertjan van Noord, Fernando C. N.
Pereira, and Robert C. Moore. 1990. Semantic-
head-driven generation. Computational Linguistics,
16(1):30-42.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo
Wang, and Jinsong Su. 2019. Semantic neural ma-
chine translation using AMR. Transactions of the
Association for Computational Linguistics, 7:19-31.

3193

43



Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for
AMR-to-text generation. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1616-1626, Melbourne, Australia. Association for
Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929-1958.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018. Graph Attention Networks. In International
Conference on Learning Representations, Vancou-
ver, Canada.

Boris Weisfeiler and A.A. Lehman. 1968. A reduction
of a graph to a canonical form and an algebra aris-
ing during this reduction. Nauchno-Technicheskaya
Informatsia, pages 12—-16.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112-1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2019. How powerful are graph neural net-
works? In International Conference on Learning
Representations, New Orleans, LA, USA.

3194

44



A Generated Sentences

Table 9 shows three examples with sentences gen-
erated by S2S, Song et al. (2018), G2S—GGNN,
and the reference sentence (GOLD).

B Human Evaluation Setup

For each quality evaluation task (meaning
similarity and readability), we independently
sampled 100 generated sentences for each
model.

We created separate HITs for meaning simi-
larity and readability evaluations. Each HIT
contains 10 sentences.

We paid $0.15 per HIT, employing five work-
ers on each. For qualification, workers were
required to have over 1000 approved HITs.

We applied a quality control step. We re-
moved workers who do not achieve a min-
imum threshold in sentences with known

SCOreEs.

GOLD

528

Song et. al (2018)
G2S—-GGNN

I don’t want to be miserable anymore and the longer he is around the more miserable I will be.
If he was in longer longer, I don’t want to miserable and more miserable.
I don’t want to be miserable anymore, and when he is around longer, I’'m a miserable miserable.

I don’t want to be miserable anymore, and would be more miserable if he was around longer.

GOLD

528

Song et. al (2018)
G2S—-GGNN

Colombia is the source of much of the cocaine and heroin sold in the United States.
Colombia is a source of cocaine, much of cocaine and heroin sales in the United States.
Colombia is a source of much of much of cocaine and heroin in the United States.

Colombia is a source of much cocaine and heroin and heroin sold in the United States.

GOLD

S28

Song et. al (2018)

G2S—-GGNN

Discussions between Lula da Silva and Thabo Mbeki would also address new threats to international
security such as terrorism, drugs, illegal weapons trafficking and aids.

Thabo da Silva has also addressed Thabo Mbeki to discuss new threats such as terrorism, drugs,
illegal weapons trafficking and aids in international security.

Lula da Silva’s discussion with Thabo also addressed a new threat against Thabo Mbeki and aids,
drugs, illegal weapons and illegal weapons of weapon.

Lula da Silva’s discussion with Thabo da Silva also addressed new threat such as terrorism, drugs,

illegal weapons trafficking and aids.

Table 9: Examples of generated sentences. GOLD refers to the reference sentence.

45



Chapter 5

Modeling Global and Local Node
Contexts for Text Generation from
Knowledge Graphs

46



Modeling Global and Local Node Contexts
for Text Generation from Knowledge Graphs

Leonardo F. R. Ribeiro', Yue Zhang’, Claire Gardent® and Iryna Gurevych'

TResearch Training Group AIPHES and UKP Lab, Technische Universitit Darmstadt
tSchool of Engineering, Westlake University, \CNRS/LORIA, Nancy, France
ribeiro@aiphes.tu-darmstadt.de, yue.zhang@wias.org.cn

claire.gardent@loria. fr, gurevych@ukp.informatik.tu-darmstadt.de

Abstract

Recent graph-to-text models generate text
from graph-based data using either global or
local aggregation to learn node representa-
tions. Global node encoding allows explicit
communication between two distant nodes,
thereby neglecting graph topology as all nodes
are directly connected. In contrast, local node
encoding considers the relations between neigh-
bor nodes capturing the graph structure, but it
can fail to capture long-range relations. In this
work, we gather both encoding strategies, pro-
posing novel neural models that encode an
input graph combining both global and local
node contexts, in order to learn better contextu-
alized node embeddings. In our experiments,
we demonstrate that our approaches lead to
significant improvements on two graph-to-
text datasets achieving BLEU scores of 18.01
on the AGENDA dataset, and 63.69 on the
WebNLG dataset for seen categories, outper-
forming state-of-the-art models by 3.7 and 3.1
points, respectively.!

1 Introduction

Graph-to-text generation refers to the task of gen-
erating natural language text from input graph
structures, which can be semantic representations
(Konstas et al., 2017) or knowledge graphs (KGs)
(Gardent et al., 2017; Koncel-Kedziorski et al.,
2019). Whereas most recent work (Song et al.,
2018; Ribeiro et al., 2019; Guo et al., 2019) fo-
cuses on generating sentences, a more challenging
and interesting scenario emerges when the goal is
to generate multisentence texts. In this context, in
addition to sentence generation, document plan-
ning needs to be handled: The input needs to be
mapped into several sentences; sentences need to

ICodeis available at https: //github.com/UKPLab/
kg2text.

589

be ordered and connected using appropriate dis-
course markers; and inter-sentential anaphora and
ellipsis may need to be generated to avoid repeti-
tion. In this paper, we focus on generating texts
rather than sentences where the output are short
texts (Gardent et al., 2017) or paragraphs (Koncel-
Kedziorski et al., 2019).

A key issue in neural graph-to-text generation is
how to encode the input graphs. The basic idea is
to incrementally compute node representations by
aggregating structural context information. To this
end, two main approaches have been proposed: (i)
models based on local node aggregation, usually
built upon Graph Neural Networks (GNNs) (Kipf
and Welling, 2017; Hamilton et al., 2017) and
(i1) models that leverage global node aggregation.
Systems that adopt global encoding strategies are
typically based on Transformers (Vaswani et al.
2017), using self-attention to compute a node
representation based on all nodes in the graph. This
approach enjoys the advantage of a large node con-
text range, but neglects the graph topology by
effectively treating every node as being connected
to all the others in the graph. In contrast, models
based on local aggregation learn the representation
of each node based on its adjacent nodes as
defined in the input graph. This approach effect-
ively exploits the graph topology, and the graph
structure has a strong impact on the node repre-
sentation (Xu et al., 2018). However, encoding
relations between distant nodes can be challenging
by requiring more graph encoding layers, which
can also propagate noise (Li et al., 2018).

For example, Figure la presents a KG, for
which a corresponding text is shown in Figure 1b.
Note that there is a mismatch between how enti-
ties are connected in the graph and how their nat-
ural language descriptions are related in the text.
Some entities syntactically related in the text are
not connected in the graph. For instance, in the

Transactions of the Association for Computational Linguistics, vol. 8, pp. 589-604, 2020. https://doi.org/10.1162/tacl_a_00332
Action Editor: Alessandro Moschitti. Submission batch: 2/2019; Revision batch: 5/2020; Published 9/2020.
(© 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

47

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



a) transformer

WebNLG

O —teeetor

node
embeddings graph
classification

link prediction embeddings
b)
... For the link prediction task, first we learn node
embeddings using DistMult method. ... Further, we also
experiment with GAT, a GNN model, in order to generate
node embeddings to predict edges between nodes.

c) Globally d)
Contextualized
Embeddings

Locally
Contextualized
Embeddings

@
oF 29

o o

Global Node Local Node

Encoder Encoder

Node Embeddings Node Embeddings

Figure 1: A graphical representation (a) of a scientific
text (b). (c) A global encoder directly captures longer
dependencies between any pair of nodes (blue and red
arrows), but fails in capturing the graph structure. (d) A
local encoder explicitly accesses information from the
adjacent nodes (blue arrows) and implicitly captures
distant information (dashed red arrows).

sentence ‘‘For the link prediction task, first we
learn node embeddings using DistMult method.”’,
although the entity mentions are dependent of the
same verb, in the graph, the node embeddings node
has no explicit connection with link prediction
and DistMult nodes, which are in a different
connected component. This example illustrates
the importance of encoding distant information in
the input graph. As shown in Figure Ic, a global
encoder is able to learn a node representation
for node embeddings which captures information
from non-connected entities such as DistMult. By
modeling distant connections between all nodes,
we allow for these missing links to be captured,
as KGs are known to be highly incomplete (Dong
et al., 2014; Schlichtkrull et al., 2018).

In contrast, the local strategy refines the node
representation with richer neighborhood informa-
tion, as nodes that share the same neighborhood
exhibit a strong homophily: Two similar entities
are much more likely to be connected than at
random. Consequently, the local context enriches
the node representation with local information

from KG triples. For example, in Figure 1a, GAT
reaches node embeddings through the GNN. This
transitive relation can be captured by a local
encoder, as shown in Figure 1d. Capturing this
form of relationship also can support text gene-
ration at the sentence level.

In this paper, we investigate novel graph-to-
text architectures that combine both global and
local node aggregations, gathering the benefits
from both strategies. In particular, we propose a
unified graph-to-text framework based on Graph
Attention Networks (GATs) (Velickovié et al.,
2018). As part of this framework, we empirically
compare two main architectures: a cascaded archi-
tecture that performs global node aggregation
before performing local node aggregation, and a
parallel architecture that performs global and
local aggregations simultaneously. The cascaded
architecture allows the local encoder to leverage
global encoding features, and the parallel architec-
ture allows more independent features to comple-
ment each other. To further consider fine-grained
integration, we additionally consider layer-wise
integration of the global and local encoders.

Extensive experiments show that our ap-
proaches consistently outperform recent models
on two benchmarks for text generation from KGs.
To the best of our knowledge, we are the first to
consider integrating global and local context ag-
gregation in graph-to-text generation, and the first
to propose a unified GAT structure for combining
global and local node contexts.

2 Related Work

Early efforts for graph-to-text generation used
statistical methods (Flanigan et al., 2016;
Pourdamghani et al., 2016; Song et al., 2017).
Recently, several neural graph-to-text models
have exhibited success by leveraging encoder
mechanisms based on LSTMs, GNNs, and
Transformers.

AMR-to-Text Generation. Various neural mo-
dels have been proposed to generate sentences
from Abstract Meaning Representation (AMR)
graphs. Konstas et al. (2017) provide the first neu-
ral approach for this task, by linearizing the input
graph as a sequence of nodes and edges. Song et al.
(2018) propose the graph recurrent network to di-
rectly encode the AMR nodes, whereas Beck et al.
(2018) develop a model based on gated GNNs.

590

48

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



However, both approaches only use local node
aggregation strategies. Damonte and Cohen
(2019) combine graph convolutional networks
and LSTMs in order to learn complementary node
contexts. However, differently from Transformers
and GNNs, LSTMs generate node representations
that are influenced by the node order. Ribeiro et al.
(2019) develop a model based on different GNNs
that learns node representations which simulta-
neously encode a top—down and a bottom—up
views of the AMR graphs, whereas Guo et al.
(2019) leverage dense connectivity in GNNs. Re-
cently, Wang et al. (2020) propose a local graph
encoder based on Transformers using separated
attentions for incoming and outgoing neighbors.
Recent methods (Zhu et al., 2019; Cai and Lam,
2020) also use Transformers, but learn globalized
node representations, modeling graph paths in
order to capture structural relations.

KG-to-Text Generation. In this work, we focus
on generating text from KGs. In comparison to
AMRs, which are rooted and connected graphs,
KGs do not have a defined topology, which may
vary widely among different datasets, making
the generation process more demanding. KGs are
sparse structures that potentially contain a large
number of relations. Moreover, we are typically
interested in generating multisentence texts from
KGs, and this involves solving document planning
issues (Konstas and Lapata, 2013).

Recent neural approaches for KG-to-text gener-
ation simply linearize the KG triples, thereby
loosing graph structure information. For instance,
Colin and Gardent (2018), Moryossef et al. (2019),
and Adapt (Gardent et al., 2017) utilize LSTM/
GRU to encode WebNLG graphs. Castro Ferreira
et al. (2019) systematically compare pipeline and
end-to-end models for text generation from
WebNLG graphs. Trisedya et al. (2018) develop
a graph encoder based on LSTMs that captures
relationships within and between triples. Previous
work has also studied how to explicitly encode
the graph structure using GNNs or Transformers.
Marcheggiani and Perez Beltrachini (2018) pro-
pose an encoder based on graph convolutional net-
works, that consider explicitly local node contexts,
and show superior performance compared with
LSTMs. Recently, Koncel-Kedziorskietal. (2019)
proposed a Transformer-based approach that com-
putes the node representations by attending over
node neighborhoods following a self-attention

591

strategy. In contrast, our models focus on distinct
global and local message passing mechanisms,
capturing complementary graph contexts.

Integrating Global Information. There has
been recent work that attempts to integrate global
context in order to learn better node representa-
tions in graph-to-text generation. To this end,
existing methods use an artificial global node for
message exchange with the other nodes. This
strategy can be regarded as extending the graph
structure but using similar message passing mech-
anisms. In particular, Koncel-Kedziorski et al.
(2019) add a global node to the graph and use
its representation to initialize the decoder. Re-
cently, Guo et al. (2019) and Cai and Lam (2020)
also utilized an artificial global node with direct
edges to all other nodes to allow global message
exchange for AMR-to-text generation. Similarly,
Zhang et al. (2018) use a global node to a graph
recurrent network model for sentence represen-
tation. Different from the above methods, we
consider integrating global and local contexts at
the node level, rather than the graph level, by
investigating model alternatives rather than graph
structure changes. In addition, we integrate GAT
and Transformer architectures into a unified
global-local model.

3 Graph-to-Text Model

This section first describes (i) the graph transfor-
mation adopted to create a relational graph from
the input (Section 3.1), and (ii) the graph encoders
of our framework based on GAT (Velickoviéetal.,
2018), for dealing with both global (Section 3.3)
and local (Section 3.4) node contexts. We adopt
GAT because it is closely related to the Trans-
former architecture (Vaswani et al., 2017), which
provides a convenient prototype for modeling
global node context. Then, (iii) we proposed stra-
tegies to combined the global and local graph en-
oders (Section 3.5). Finally, (iv) we describe the
decoding and training procedures (Section 3.6).

3.1 Graph Preparation

We represent a KG as a multi-relational graph?
Ge = Ve, &, R) with entity nodes e € V, and
labeled edges (epn,7,€e;) € &, where r € R

’In this paper, multi-relational graphs refer to directed
graphs with labeled edges.

49

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



denotes the relation existing from the entity ep
to €t.3

Unlike other current approaches (Koncel-
Kedziorskietal.,2019; Moryossefetal.,2019), we
represent an entity as a set of nodes. For instance,
the KG node "node embedding" in Figure 1 will
be represented by two nodes, one for the token
"node" and the other for the token "embedding".
Formally, we transform each G, into a new graph
G = (V,E,R), where each token of an entity
e € V. becomes a node v € V. We convert each
edge (ep,r, e;) € & into a set of edges (with the
same relation ) and connect every token of ej
to every token of e;. That is, an edge (u,r,v)
will belong to £ if and only if there exists an edge
(en,r,e1) € E suchthatu € ey and v € e;, where
er, and e; are seen as sets of tokens. We represent
each node v € V with an embedding h) € R%,
generated from its corresponding token.

The new graph G increases the representational
power of the models because it allows learning
node embeddings at a token level, instead of
entity level. This is particularly important for text
generation as it permits the model to be more
flexible, capturing richer relationships between
entity tokens. This also allows the model to learn
relations and attention functions between source
and target tokens. However, it has the side effect
of removing the natural sequential order of multi-
word entities. To preserve this information, we
use position embeddings (Vaswani et al., 2017),
that is, ) becomes the sum of the corresponding
token embedding and the positional embedding
for v.

3.2 Graph Neural Networks (GNN)

Multilayer GNNs work by iteratively learning a
representation vector h, of a node v based on
both its context node neighbors and edge features,
through an information propagation scheme. More
formally, the [-th layer aggregates the representa-
tions of v’s context nodes:

Pl = AGGRY ({ (Al ) s w e N(v)}),

where AGGR(Y)(.) is an aggregation function,
shared by all nodes on the [-th layer. r,,,, represents
the relation between w and v. A (v) is a set

3R contains relations both in canonical direction (e.g.,
used-for) and in inverse direction (e.g., used-for-inv), so that
the models consider the differences in the incoming and
outgoing relations.

592

of context nodes for v. In most GNNs, the
context nodes are those adjacent to v. hj(\l[)(v) is

the aggregated context representation of N (v) at
layer [. hﬁ\l/)( v) is used to update the representation

of v:
 _ 0 (-1 3@
h,’ = COMBINE (h,U , N(v)) )

After L iterations, a node’s representation
encodes the structural information within its L-
hop neighborhood. The choices of AGGR®(.)
and COMBINE"Y(.) differ by the specific GNN
model. An example of AGGRY(.) is the sum
of the representations of N(v). An example
of COMBINE"(.) is a concatenation after the
feature transformation.

3.3 Global Graph Encoder

A global graph encoder aggregates the global
context for updating each node based on all
nodes of the graph (see Figure 1c). We use
the attention mechanism as the message passing
scheme, extending the self-attention network
structure of Transformer to a GAT structure.
In particular, we compute a layer of the global
convolution for a node v € V, which takes the
input feature representations h,, as input, adopting
AGGRY(.) as:

i) =) 0wl ha, (1)

where W, € R4 >4 is a model parameter. The
attention weight ay,, is calculated as:

exp(eyy)

SR 2
>_kev €xp(evk) @

avu

where
eou = ((Weho) (Wi)) /d= 3)

is the attention function which measures the
global importance of node u’s features to node
v. Wy, Wy, € R%*% are model parameters
and d, is a scaling factor. To capture distinct
relations between nodes, K independent global
convolutions are calculated and concatenated:

~

) = lleei?ity- )

Finally, we define COMBINE?) (.) using layer
normalization (LayerNorm) and a fully connected

50

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



feed-forward network (FFN), in a similar way as
the transformer architecture:

hy = LayerNorm(ﬁN(v) + hy),
h9oP = FEN(hy) + har(w) + ho-

&)
(6)

Note that the global encoder creates an artificial
complete graph with O(n?) edges and does not
consider the edge relations. In particular, if the
labeled edges were considered, the self-attention
space complexity would increase to O(|R|n?).

3.4 Local Graph Encoder

The representation pglobal captures macro relation-
ships from v to all other nodes in the graph.
However, this representation lacks both structural
information regarding the local neighborhood of v
and the graph topology. Also, it does not capture
labeled edges (relations) between nodes (see
Equations 1 and 3). In order to capture these
crucial graph properties and impose a strong
relational inductive bias, we build a graph
encoder to aggregate the local context by utilizing
a modified version of GAT augmented with
relational weights. In particular, we compute a
layer of the local convolution for a node v € V,
adopting AGGR")(.) as:

h/\/(v) = Zue/\/(v) Wil (7N
where W, € R%*?- encodes the relation r € R
between u and v. N/ (v) is a set of nodes adjacent

to v and v itself. The attention coefficient v, is
computed as:

exp(eyy)
Qyy = 5 t))
>k eN(v) exp(euk)
where
eou = 0 (a' [Wyhy || Wrhy)) )

is the attention function which calculates the local
importance of adjacent nodes, considering the
edge labels. o is an activation function, || denotes
concatenation and W, € R%*4= and a € R?%: are
model parameters.

We use multihead attentions to learn local re-
lations in different perspectives, as in Equation 4,

593

generating h N (v)- Finally, we define COMBINE?
(.) as:

hlocal = RNN(hy, har(w)), (10)
where we use as RNN a Gated Recurrent Unit
(GRU) (Cho et al., 2014). GRU facilitates infor-
mation propagation between local layers. This
choice is motivated by recent work (Xu et al.,
2018; Dehmamy et al., 2019) that theoretically
demonstrates that sharing information between
layers helps the structural signals propagate. In a
similar direction, AMR-to-text generation models
use LSTMs (Song et al., 2017) and dense connec-
tions (Guo et al., 2019) between GNN layers.

3.5 Combining Global and Local Encodings

Our goal is to implement a graph encoder capable
of encoding global and local aspects of the input
graph. We hypothesize that these two sources of
information are complementary, and a combina-
tion of both enriches node representations for text
generation. In order to test this hypothesis, we
investigate different combined architectures.

Intuitively, there are two general methods for
integrating two types of representation. The first
is to concatenate vectors of global and local
contexts, which we call a parallel representation.
The second is to form a pipeline, where a global
representation is first obtained, which is then used
as a input for calculating refined representations
based on the local node context. We call this
approach a cascaded representation.

Parallel and cascaded integration can be per-
formed at the model level, considering the global
and local graph encoders as two representation
learning units disregarding internal structures.
However, because our model takes a multilayer
architecture, where each layer makes a level of
abstraction in representation, we can alternatively
consider integration on the layer level, so that
more interaction between global and local contexts
may be captured. As a result, we present four
architectures for integration, as shown in Figure 2.
All models serve the same purpose, and their
relative strengths should be evaluated empirically.

Parallel Graph Encoding (PGE). In this setup,
we compose global and local graph encoders in
a fully parallel structure (Figure 2a). Note that
each graph encoder can have different numbers
of layers and attention heads. The final node

51

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



a) ( Contextuallzed Embeddlngs ) b) ( Contextualized Embeddings ) °) ( Contextuahzed Embeddlngs ) d) ( Contextuallzed Embeddings )

C.Elobal Nod)[Local Node ) Mx( Local Node Encoder Layer ) (Global Node Local Node) {( Local Node Encoder )J
t
Encoder Layer /\E L Encoder Encoder
Y nooder Layer NX( Global Node Encoder Layer ) Global N°de Encoder )

[
Node Embeddlngs ) ( Node Embeddings ) ( Node Embeddlngs ) ( Node Embeddings )

Figure 2: Overview of the proposed encoder architectures. (a) Parallel Graph Encoder (PGE) with separated parallel
global and local node encoders. (b) Cascaded Graph Encoder (CGE) with separated cascaded encoders. (c) PGE—
LW: global and local node representations are concatenated layer-wise. (d) CGE-LW: Both node representations
are cascaded layer-wise.

representation is the concatenation of the local  Layer-wise Cascaded Graph Encoding. We

and global node representations of the last layers  also propose cascading the graph encoders layer-

of both graph encoders: wise (CGE-LW, Figure 2d). In particular, we
compute each encoder layer as follows:

pglebal — GE(RY, {h :u € V
v ( v { u - U }) hglobal — GE[(héﬁl, {hfjl = V})

local __ 0 0.
hv = LE(hv, {hu U € N('U)}) hl _ LEl(hglobal {hglobal = N(U)})
lobal local v v L ’ )
hy = [RF7| hy (11) (14)

where GE and LE denote the global and local 3.6 Decoder and Training
graph encoders, respectively. kY is the initial node  Qur decoder follows the core architecture of a
embedding used in the first layer of both encoders.  Transformer decoder (Vaswani et al., 2017). Each
time step ¢ is updated by performing multihead
Cascaded Graph Encoding (CGE). We  ,uentions over the output of the encoder (node
cascade local and global graph encoders as embeddings h,) and over previously generated
shown in Figure 2b. We first compute a globally  (okens (token embeddings). An additional chal-
contextualized node embedding, and then refine it lenge in our setup is to generate multisentence

with the local node context. h? lisbtgle initial input outputs. In order to encourage the model to gen-

for the global encoder and A ™™ is the initial  erate longer texts, we implement a length penalty

input for the local encoder. In particular, the final  (Wuyetal., 2016) to refine the pure max-probability
node representation is calculated as follows: beam search.

The model is trained to optimize the negative

hZZObal = GE(h), {h), : u € V}) log-likelihood of each gold-standard output text.

h, = LE( hglobal R hglobal uwe N(w)}).(12) We use label smoothing regularization to prevent

the model from predicting the tokens too confi-

Layer-wise Paralll Graph Encoding. To dently during training and generalizing poorly.

allow fine-grained interaction between the two .
types of graph contextual information, we also 4 Data and Preprocessing

combine the encoders in a layer-wise (LW)  we attest the effectiveness of our models on

fashion. As shown in Figure 2c, for each graph (. datasets: AGENDA (Koncel-Kedziorski et al.,

layer, we use both global and local encoders in a 2019) and WebNLG (Gardent et al., 2017). Table 1
parallel structure (PGE—LW). More precisely, each (0w the statistics for both datasets.

encoder layer is calculates as follows:
AGENDA. In this dataset, KGs are paired with

hglobal = GEy( hi)ﬂ’ { hlJl cueV)) iczientific abstra;ts extracted f;om proceedings of
top Al conferences. Each instance consists

hifoml - LEl(hi g {hi LueN@)}) of theppaper title, a KG, and the paper abstract.
hi, = [hﬁl”l’“l I hi)ocal ], (13)  Entities correspond to scientific terms that are

often multiword expressions (co-referential enti-

where GE; and LE; refer to the [-th layers of the ties are merged). We treat each token in the title as
global and local graph encoders, respectively. a node, creating a unique graph with title and KG

594

52

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



#train  #dev  #test #relations avg #entities avg#nodes avg#edges avg#CC avglength
AGENDA 38,720 1,000 1,000 7 124 44.3 68.6 19.1 140.3
WebNLG 18,102 872 971 373 4.0 34.9 101.0 1.5 24.2

Table 1: Data statistics. Nodes, edges, and CC values are calculated after the graph transformation.
The average values are calculated for all splits (training, dev, and test sets). CC refers to the number of

connected components.

a)1s.0 b) c)
17.5 —| 7S 74’
17.0 17.0 / :_/ 17.0 ///_,,, =2
...;__:_ﬂ_./’. so¥ing 57.74_/474_4—~ ----------
. - _’1~ - I
T 16.0 2165 = 21651 L=
- - -
m m16.0 m 16.0
15.0 T
15.5 e T 15.5 1 et
ceGlobal m-PGE —w-PGELW | | o e R e
14.0 —-Local —+—CGE —+—CGE-LW 15,0 T . S R S
2 4 6 256 384 448 " 44 54 61 69

Encoder Layers

Hidden Dimensions

Parameters (in million)

Figure 3: BLEU scores for the AGENDA dev set, with respect to (a) the encoder layers, (b) the encoder hidden

dimensions, and (c) the number of parameters.

tokens as nodes. As shown in Table 1, the average
output length is considerably large, as the target
outputs are multisentence abstracts.

WebNLG. In this dataset, each instance con-
tains a KG extracted from DBPedia. The target
text consists of sentences that verbalize the graph.
We evaluate the models on the test set with seen
categories. Note that this dataset has a conside-
rable number of edge relations (see Table 1).
In order to avoid parameter explosion, we use
regularization based on the basis function decom-
position to define the model relation weights
(Schlichtkrull et al., 2018). Also, as an alternative,
we use the Levi Transformation to create nodes
from relational edges between entities (Beck et al.,
2018). That is, we create a new relation node for
each edge relation between two nodes. The new
relation node is connected to the subject and object
token entities by two binary relations, respectively.

5 Experiments

We implemented all our models using PyTorch
Geometric (PyG) (Fey and Lenssen, 2019) and
OpenNMT-py (Klein et al., 2017). We use the
Adam optimizer with 8; = 0.9 and 5 = 0.98.
Our learning rate schedule follows Vaswani et al.
(2017), with 8,000 and 16,000 warming-up steps
for WebNLG and AGENDA, respectively. The
vocabulary is shared between the node and target
tokens. In order to mitigate the effects of random

595

seeds, for the test sets, we report the averages over
4 training runs along with their standard deviation.
We use byte pair encoding (Sennrich et al., 2016)
to split entity words into smaller more frequent
pieces. Therefore some nodes in the graph can
be sub-words. We also obtain sub-words on the
target side. Following previous works, we evaluate
the results with BLEU (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2014), and
CHRF++ (Popovié, 2015) automatic metrics and
also perform a human evaluation (Section 5.6).
For layer-wise models, the number of encoder
layers are chosen from {2,4,6}, and for PGE
and CGE, the global and local layers are chosen
from and {2,4,6} and {1,2,3}, respectively.
The hidden encoder dimensions are chosen from
{256,384, 448} (see Figure 3). Hyperparameters
are tuned on the development set of both datasets.
We report the test results when the BLEU score
on dev set is optimal.

5.1 Results on AGENDA

Table 2 shows the results, where we report the
number of layers and attention heads utilized. We
train models with only global or local encoders as
baselines. Each model has the respective parame-
ter size that gives the best results on the dev set.
First, the local encoder, which requires fewer
encoder layers and parameters, has a better per-
formance compared with the global encoder. This
shows that explicitly encoding the graph structure

53

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



Model #L  #H BLEU METEOR CHRF++ #P
Koncel-Kedziorski et al. (2019) 6 8 14.30 £ 1.01 18.80 4+ 0.28 - -

Global Encoder 6 8 15.44 +£0.25 20.76 +£0.194 43.954+0.40 544
Local Encoder 3 8 16.03 £ 0.19 21.12+0.32 44.70 £0.29 54.0
PGE 6,3 8,8 17.55£0.154 22.02 4+ 0.07 4641 +0.07 56.1
CGE 6,3 8,8 17.82 +0.134 22.23 +0.09 46.47 +£0.10 61.5
PGE-LW 6 8,8 17.42+0.25 21.78 £0.20 45.794+0.32 69.0
CGE-LW 6 8,8 18.01 +0.14 22.34 +0.07 46.69 +0.17 69.8

)

Table 2: Results on the AGENDA test set. #L and #H are the numbers of layers and the attention heads
in each layer, respectively. When more than one, the values are for the global and local encoders,
respectively. #P stands for the number of parameters in millions (node embeddings included).

Model BLEU METEOR CHRF++ #P
UPF-FORGe (Gardent et al., 2017) 40.88 40.00 - -
Melbourne (Gardent et al., 2017) 54.52 41.00 70.72 -
Adapt (Gardent et al., 2017) 60.59 44.00 76.01 -
Marcheggiani and Perez Beltrachini (2018) 55.90 39.00 - 4.9
Trisedya et al. (2018) 58.60 40.60 - -
Castro Ferreira et al. (2019) 57.20 41.00 - -
CGE 62.30 + 0.27 43.51+£0.18 75.494+0.34 139
CGE (Levi Graph) 63.10£0.13 44.11+0.09 76.33+0.10 12.8
CGE-LW 62.85+0.07 43.75+0.21 75.734+0.31 11.2
CGE-LW (Levi Graph) 63.69 +0.10 4447 +0.12 76.66 +0.10 104

Table 3: Results on the WebNLG test set with seen categories.

is important to improve the node representations.
Second, our approaches substantially outperform
both baselines. CGE-LW outperforms Koncel-
Kedziorski et al. (2019), a transformer model that
focuses on the relations between adjacent nodes,
by a large margin, achieving the new state-of-the-
art BLEU score of 18.01, 25.9% higher. We also
note that KGs are highly incomplete in this dataset,
with an average number of connected components
of 19.1 (see Table 1). For this reason, the global
encoder plays an important role in our models as it
enables learning node representations based on all
connected components. The results indicate that
combining the local node context, leveraging the
graph topology, and the global node context, cap-
turing macro-level node relations, leads to better
performance. We find that, even though CGE has
a small number of parameters compared to CGE—
LW, itachieves comparable performance. PGE-LW
has the worse performance among the proposed
models. Finally, note that cascaded architec-
tures are more effective according to different
metrics.

596

5.2 Results on WebNLG

We compare the performance of our more
effective models (CGE, CGE—LW) with six state-
of-the-art results reported on this dataset. Three
systems are the best competitors in the WebNLG
challenge for seen categories: UPF-FORGe,
Melbourne, and Adapt. UPF-FORGe follows a
rule-based approach, whereas the others use neural
encoder-decoder models with linearized triple sets
as input.

Table 3 presents the results. CGE achieves a
BLEU score of 62.30, 8.9% better than the best
model of Castro Ferreira et al. (2019), who use
an end-to-end architecture based on GRUs. CGE
using Levi graphs outperforms Trisedya et al.
(2018), an approach that encodes both intra-
triple and inter-triple relationships, by 4.5 BLEU
points. Interestingly, their intra-triple and inter-
triple mechanisms are closely related with the
local and global encodings. However, they rely on
encoding entities based on sequences generated by
traversal graph algorithms, whereas we explicitly

54

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



exploit the graph structure, throughout the local
neighborhood aggregation.

CGE-LW with Levi graphs as inputs has the
best performance, achieving 63.69 BLEU points,
even thought it uses fewer parameters. Note that
this approach allows the model to handle new
relations, as they are treated as nodes. Moreover,
the relations become part of the shared vocabulary,
making this information directly usable during the
decoding phase. We outperform an approach based
on GNNs (Marcheggiani and Perez Beltrachini,
2018) by alarge margin of 7.7 BLEU points, show-
ing that our combined graph encoding strategies
lead to better text generation. We also outperform
Adapt, a strong competitor that utilizes subword
encodings, by 3.1 BLEU points.

5.3 Development Experiments

We report several development experiments in
Figure 3. Figure 3a shows the effect of the number
of encoder layers in the four encoding methods.*
In general, the performance increases when we
gradually enlarge the number of layers, achieving
the best performance with 6 encoder layers.
Figure 3b shows the choices of hidden sizes for the
encoders. The best performances for global and
PGE are achieved with 384 dimensions, whereas
the other models have the better performance with
448 dimensions. In Figure 3c, we evaluate the per-
formance employing different number of parame-
ters.” When the models are smaller, parallel
encoders obtain better results than the cascaded
ones. When the models are larger, cascaded
models perform better. We speculate that for some
models, the performance can be further improved
with more parameters and layers. However, we do
not attempt this owing to hardware limitations.

5.4 Ablation Study

In Table 4, we report an ablation study on the
impact of each module used in CGE model on the
dev set of AGENDA. We also report the number
of parameters used in each configuration.

Global Graph Encoder. We start by an ablation
on the global encoder. After removing the global
attention coefficients, the performance of the
model drops by 1.79 BLEU and 1.97 CHRF++

“For CGE and PGE the values refer to the global layers
and the number of local layers is fixed to 3.

St was not possible to execute the local model with larger
number of parameters because of memory limitations.

597

Model BLEU CHRF++ #P
CGE 17.38 45.68 61.5
Global Encoder

-Global Attention 15.59 43.71 59.0
-FFN 16.33 44.86 50.4
-Global Encoder 15.17 43.30 45.6
Local Encoder

-Local Attention 16.92 45.97 61.5
-Weight Relations  16.88 45.61 53.6
-GRU 16.38 4471 60.2
-Local Encoder 14.68 42.98 51.8
-Shared Vocab. 16.92 46.16 81.8
Decoder

—Length Penalty 16.68 44.68 61.5

Table 4: Ablation study for modules used in the
encoder and decoder of the CGE model.

scores. Results also show that using FFN in the
global COMBINE(.) function is important to the
model but less effective than the global attention.
However, when we remove FNN, the number of
parameters drops considerably (around 18%) from
61.5 to 50.4 million. Finally, without the entire
global encoder, the result drops substantially by
2.21 BLEU points. This indicates that enriching
node embeddings with a global context allows
learning more expressive graph representations.

Local Graph Encoder. We first remove the
local graph attention and the BLEU score drops
to 16.92, showing that the neighborhood attention
improves the performance. After removing the
relation types, encoded as model weights, the
performance drops by 0.5 BLEU points. However,
the number of parameters is reduced by around
7.9 million. This indicates that we can have a
more efficient model, in terms of the number of
parameters, with a slight drop in performance.
Removing the GRU used on the COMBINE(.)
function decreases the performance considerably.
The worse performance occurs if we remove
the entire local encoder, with a BLEU score of
14.68, essentially making the encoder similar to
the global baseline.

Finally, we find that vocabulary sharing
improves the performance, and the length penalty
is beneficial as we generate multisentence outputs.

55

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



c

a) ‘ c)
5115 Coear Lo
53 T oct 0.9
——CGE — 0.8
+ + T 0.7
'5.‘; 49 g . n 0.6
5 |
5 G 2021 e Global
45 -e--Global o 0.3 Global-no-Ip
——Local 5] ——CGE
- %-PGE-LW 0.2 CGE-no-Ip T
411 —+—CGE-LW 43 0.1 Reference RIS
0’0 =
0-10 11-20 21-30 31-40 >40 1-2 3-4 =5 40 60 80 100 120 140 160

Number of Nodes

Graph Diameter

Output Length (d)

Figure 4: CHRF++ scores for the AGENDA test set, with respect to (a) the number of nodes, and (b) the graph
diameter. (c) Distribution of length of the gold references and models’ outputs for the AGENDA test set.

5.5 Impact of the Graph Structure and
Output Length

The overall performance on both datasets suggests
the strength of combining global and local node
representations. However, we are also interested
in estimating the models’ performance concerning
different data properties.

Graph Size. Figure 4a shows the effect of the
graph size, measured in number of nodes, on the
performance, measured using CHRF++ scores,®
for the AGENDA. We evaluate global and local
graph encoders, PGE-LW and CGE-LW. We find
that the score increases as the graph size increases.
Interestingly, the gap between the local and global
encoders increases when the graph size increases.
This suggests that, because larger graphs may
have very different topologies, modeling the rela-
tions between nodes based on the graph structure
is more beneficial than allowing direct communi-
cation between nodes, overlooking the graph
structure. Also note that the the cascaded model
(CGE—-LW) is consistently better than the parallel
model (PGE—-LW) over all graph sizes.

Table 5 shows the effect of the graph size,
measured in number of triples, on the performance
for the WebNLG. Our model obtains better scores
over all partitions. In contrast to AGENDA, the
performance decreases as the graph size increases.
This behavior highlights a crucial difference
between AGENDA and AMR and WebNLG
datasets, in which the models’ general perfor-
mance decreases as the graph size increases
(Gardent et al., 2017; Cai and Lam, 2020).
In WebNLG, the graph and sentence sizes are
correlated, and longer sentences are more chal-
lenging to generate than the smaller ones. Differ-

SCHRF++ score is used as it is a sentence-level metric.

598

ently, AGENDA contains similar text lengths’
and when the input is a larger graph, the model
has more information to be leveraged during the
generation.

Graph Diameter. Figure 4b shows the impact
of the graph diameter® on the performance for the
AGENDA. Similarly to the graph size, the score
increases as the diameter increases. As the global
encoder is not aware of the graph structure, this
module has the worst scores, even though it
enables direct node communication over long
distance. In contrast, the local encoder can
propagate precise node information throughout
the graph structure for k-hop distances, making
the relative performance better. Table 5 shows the
models’ performances with respect to the graph
diameter for WebNLG. Similarly to the graph size,
the score decreases as the diameter increases.

Output Length. One interesting phenomenon
to analyze is the length distribution (in number of
words) of the generated outputs. We expect that
our models generate texts with similar output
lengths as the reference texts. As shown in
Figure 4c, the references usually are bigger than
the texts generated by all models for AGENDA.
The texts generated by CGE—no-pl, a CGE model
without length penalty, are consistently shorter
than the texts from the global and CGE models.
We increase the length of the texts when we use the
length penalty (see Section 3.6). However, there is
still a gap between the reference and the generated
text lengths. We leave further investigation of this
aspect for future work.

7As shown on Figure 4c, 82% of the reference abstracts
have more than 100 words.

8The diameter of a graph is defined as the length of the
longest shortest path between two nodes. We convert the
graphs into undirected graphs to calculate the diameters.

56

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



#T  #DP Melbourne Adapt CGE-LW
1-2 396 78.74 83.10 84.35
3-4 386 66.84 72.02 72.27
5-7 189 61.85 69.28 70.25
#D  #DP Melbourne Adapt CGE-LW
1 222 82.27 87.54 88.04
2 469 69.94 74.54 75.90
>3 280 62.87 69.30 69.41
#S  #DP Melbourne Adapt CGE-LW
1 388 77.19 81.66 82.03
2 306 67.29 73.29 73.78
3 151 66.30 72.46 73.21
4 66 66.73 71.26 75.16
>5 60 61.93 67.57 69.20

Table 5: CHRF++ scores with respect to the
number of triples (#T), graph diameters (#D),
and number of sentences (#S) on the WebNLG
test set. #DP refers to the number of datapoints.

Table 5 shows the models’ performances with
respect to the number of sentences for WebNLG.
In general, increasing the number of sentences
reduces the performance of all models. Note
that when the number of sentences increases, the
gap between CGE-LW and the baselines becomes
larger. This suggests that our approach is able to
better handle complex graph inputs in order to
generate multisentence texts.

Effect of the Number of Nodes on the Output
Length. Figure 5 shows the effect of the size of
a graph, defined as the number of nodes, on the
quality (measured in CHRF++ scores) and length
of the generated text (in number of words) in the
AGENDA dev set. We bin both the graph size and
the output length in 4 classes. CGE consistently
outperforms the global model, in some cases by
a large margin. When handling smaller graphs
(with < 35 nodes), both models have difficulties
generating good summaries. However, for these
smaller graphs, our model achieves a score 12.2%
better when generating texts with length < 75.
Interestingly, when generating longer texts (>140)
from smaller graphs, our model outperforms the
global encoder by an impressive 21.7%, indicating
that our model is more effective in capturing
semantic signals from graphs with scarce infor-
mation. Our approach also performs better when

599

Number of Nodes

= 35 E35-40 £341-55 E5>55
50
45
+
+
F
T 40
(®]
35
30

Output Length

Figure 5: Relation between the number of nodes and
the length of the generated text, in number of words.

the graph size is large (> 55) but the generation
output is small (< 75), beating the global encoder
by 9 points.

5.6 Human Evaluation

To further assess the quality of the generated text,
we conduct a human evaluation on the WebNLG
dataset.’ Following previous work (Gardent et al.,
2017; Castro Ferreira et al., 2019), we assess two
quality criteria: (i) Fluency (i.e., does the text flow
in a natural, easy to read manner?) and (ii) Ade-
quacy (i.e., does the text clearly express the data?).
We divide the datapoints into seven different
sets by the number of triples. For each set, we
randomly select 20 texts generated by Adapt,
CGE with Levi graphs, and their corresponding
human reference (420 texts in total). Because the
number of datapoints for each set is not balanced
(see Table 5), this sampling strategy ensures that
we have the same number of samples for the
different triple sets. Moreover, having human
references may serve as an indicator of the sanity
of the human evaluation experiment. We recruited
human workers from Amazon Mechanical Turk
to rate the text outputs on a 1-5 Likert scale. For
each text, we collect scores from 4 workers and
average them. Table 6 shows the results. We first
note a similar trend as in the automatic evaluation,
with CGE outperforming Adapt on both fluency
and adequacy. In sets with the number of triples
smaller than 5, CGE was the highest rated system
in fluency. Similarly to the automatic evaluation,
both systems are better in generating text from

9Because AGENDA is scientific in nature, we choose to
crowd-source human evaluations only for WebNLG.

57

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



#T Adapt CGE
F A F A F A
All  3.96¢ 4.44° 4.12% 4.547 4.24* 4.63*

1-2  3.94° 4.59% 4.18% 4.72* 4.30* 4.694
3-4  3.79¢ 4.45% 3.96° 4.50%74.14* 4.66"*
5-7 4.08% 4.357 4.18% 4.45"7 4.28* 4.594

#D Adapt CGE
F A F A F A

1-2  3.989 4.50% 4.16% 4.61* 4.28* 4.66*
>3 3.91¢ 4.33% 4.037 4.437 4.17* 4.60*

Reference

Reference

Table 6: Fluency (F) and Adequacy (A) obtained
in the human evaluation. #T refers to the number
of input triples and #D to graph diameters. The
ranking was determined by pair-wise Mann-
Whitney tests with p < 0.05, and the difference
between systems that have a letter in common is
not statistically significant.

graphs with smaller diameters. Note that bigger
diameters pose difficulties to the models, which
achieve their worst performance for diameters
> 3.

5.7 Additional Experiments

Impact of the Vocabulary Sharing and Length
Penalty. During the ablation studies, we note
that the vocabulary sharing and length penalty are
beneficial for the performance. To better estimate
their impact, we evaluate CGE-LW model with
its variations without using vocabulary sharing,
length penalty and without both mechanisms,
on the test set of both datasets. Table 7 shows
the results. We observe that sharing vocabulary
is more important to WebNLG than AGENDA.
This suggests that sharing vocabulary is beneficial
when the training data is small, as in WebNLG. On
the other hand, length penalty is more effective for
AGENDA, as it has longer texts than WebNLG, !0
improving the BLEU score by 0.71 points.

How Far Does the Global Attention Look?
Following previous work (Voita et al., 2019;
Cai and Lam, 2020), we investigate the attention
distribution of each graph encoder global layer of
CGE-LW on the AGENDA dev set. In particular,
for each node, we verify its global neighbor that

10As shown in Table 1, AGENDA has texts 5.8 times
longer than WebNLG on average.

600

AGENDA
Model BLEU CHRF++
CGE-LW 18.17 46.80
-Shared Vocab 17.88 47.12
-Length Penalty 17.46 45.76
-Both 17.24 46.14
WebNLG
Model BLEU CHRF++
CGE-LW 63.86 76.80
-Shared Vocab 63.07 76.17
-Length Penalty  63.28 76.51
-Both 62.60 75.80

Table 7: Effects of the vocabulary
sharing and length penalty on the test
sets of AGENDA and WebNLG.

receives the maximum attention weight and record
the distance between them.!! Figure 7 shows the
averaged distances for each global layer. We
observe that the global encoder mainly focuses
on distant nodes, instead of the neighbors and
closest nodes. This is very interesting and agrees
with our intuition: Whereas the local encoder
is concerned about the local neighborhood, the
global encoder focuses on the information from
long-distance nodes.

Case Study. Figure 6 shows examples of gen-
erated texts when the WebNLG graph is complex
(7 triples). While CGE generates a factually correct
text (it correctly verbalises all triples), the Adapt’s
output is repetitive. The example also illustrates
how the text generated by CGE closely follows
the graph structure whereby the first sentence ver-
balises the right-most subgraph, the second the
left-most one and the linking node Turkey makes
the transition (using hyperonymy and a definite
description, i.e., The country). The text created
by CGE is also more coherent than the reference.
As noted above, the input graph includes two
subgraphs linked by Turkey. In natural language,
such a meaning representation corresponds to a
topic shift with the first part of the text describing
an entity from one subgraph, the second part an
entity from the other subgraph, and the linking
entity (Turkey) marking the topic shift. Typically,

'The distance between two nodes is defined as the number
of edges in a shortest path connecting them.

58

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



a)

Ataturk Monument (Izmir) President of Turkey

Bronze Davutoglu

Pietro Canonica

1932-07-27 Ankara

b) Adapt: Ahmet Davutoglu is the president of Turkey. The
capital city is Ankara, but it is in Izmir that the bronze Ataturk
monument designed by Pietro Canonica and inaugurated on
27 July 1932 is located. The monument was designed in
bronze by Pietro Canonica and inaugurated on 27 July 1932.

C) CGE: President Ahmet Davutoglu is the leader of Turkey
where the capital city is Ankara. The country is the location of
the bronze Ataturk monument designed by Pietro Canonica and
inaugurated on 27 July 1932 in |zmir.

d) Reference: President Ahmet Davutoglu is the Turkish leader
where the capital city is Ankara. The bronze Ataturk Monument
which was designed by Pietro Canonica is located in Izmir and
was inaugurated on 27 July 1932.

Figure 6: (a) A WebNLG input graph and the outputs for (b) Adapt and (c) CGE. The colored text indicates

repetition.

Global Layer
Attention Distance

1. 2 3 4 5 6 7 8
Heads

Figure 7: The average distance between nodes for the
maximum attention for each head. oo indicates no path
between two nodes, that is, they belong to distinct
connected components.

in English, a topic shift is marked by a definite
noun phrase in the subject position. Although this
is precisely the discourse structure generated by
CGE (Turkey is realized in the second sentence by
the definite description The country in the subject
position), the reference fails to mark the topic
shift, resulting in a text with weaker discourse
coherence.

6 Conclusion

In this work, we introduced a unified graph atten-
tion network structure for investigating graph-to-
text models that combines global and local graph
encoders in order to improve text generation. An
extensive evaluation of our models demonstrated
that the global and local contexts are empirically
complementary, and a combination can achieve
state-of-the-art results on two datasets. In
addition, cascaded architectures give better results
compared with parallel ones.

We point out some directions for future work.
First, it is interesting to study different fusion
strategies to assemble the global and local
encodings. Second, a promising direction is
incorporating pre-trained contextualized word
embeddings in graphs. Third, as discussed in
Section 5.5, it is worth studying ways to diminish
the gap between the reference and the generated
text lengths.

Acknowledgments

We would like to thank Pedro Savarese, Markus
Zopf, Mohsen Mesgar, Prasetya Ajie Utama,
Ji-Ung Lee, and Kevin Stowe for their feedback on
this work, as well as the anonymous reviewers for
detailed comments that improved this paper. This
work has been supported by the German Research
Foundation as part of the Research Training
Group Adaptive Preparation of Information from
Heterogeneous Sources (AIPHES) under grant
No. GRK 1994/1.

References

Daniel Beck, Gholamreza Haffari, and Trevor
Cohn. 2018. Graph-to-sequence learning using
gated graph neural networks. In Proceedings
of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 273283, Melbourne, Australia.
Association for Computational Linguistics.

Deng Cai and Wai Lam. 2020. Graph transformer
for graph-to-sequence learning. In Proceedings
of The Thirty-Fourth AAAI Conference on
Artificial Intelligence (AAAI).

601

59

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



Thiago Castro Ferreira, Chris van der Lee, Emiel
van Miltenburg, and Emiel Krahmer. 2019.
Neural data-to-text generation: A comparison
between pipeline and end-to-end architectures.
In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language
Processing and the 9th International Joint
Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 552-562. Hong
Kong, China. Association for Computational
Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014.
Learning phrase representations using RNN
encoder—decoder for statistical machine trans-
lation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724—-1734. Doha,
Qatar. Association for Computational Linguis-
tics.

Emilie Colin and Claire Gardent. 2018. Generat-

ing syntactic paraphrases. In Proceedings of the
2018 Conference on Empirical Methods in
Natural Language Processing, pages 937-943,
Brussels, Belgium. Association for Computa-
tional Linguistics.

Marco Damonte and Shay B. Cohen. 2019.

Structural neural encoders for AMR-to-text
generation. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the
Association for Computational Linguistics:
Human Language Technologies, Volume 1
(Long and Short Papers), pages 3649-3658.
Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Nima Dehmamy, Albert-Laszlo Barabasi, and
Rose Yu. 2019. Understanding the representa-
ion power of graph neural networks in learning
graph topology, In H. Wallach, H. Larochelle,
A. Beygelzimer, F. Alché-Buc, E. Fox, and R.
Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 15387-15397.
Curran Associates, Inc.

Michael Denkowski and Alon Lavie. 2014. Meteor

universal: Language specific translation evalu-
ation for any target language. In Proceedings
of the Ninth Workshop on Statistical Machine

Translation, pages 376-380, Baltimore, Mary-
land, USA. Association for Computational
Linguistics.

Xin Luna Dong, Evgeniy Gabrilovich, Geremy

Heitz, Wilko Horn, Ni Lao, Kevin Murphy,
Thomas Strohmann, Shaohua Sun, and Wei
Zhang. 2014. Knowledge vault: A web-scale
approach to probabilistic knowledge fusion. In
The 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Min-
ing,z KDD 14, New York, NY, USA - August
24 - 27, 2014, pages 601-610.

Matthias Fey and Jan E. Lenssen. 2019. Fast

graph representation learning with PyTorch
Geometric. In ICLR Workshop on Represen-
tation Learning on Graphs and Manifolds.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith,

and Jaime Carbonell. 2016. Generation from
abstract meaning representation using tree
transducers. In Proceedings of the 2016 Con-
ference of the North American Chapter of the
Association for Computational Linguistics:
Human Language Technologies, pages 731-739,
San Diego, California. Association for Compu-
tational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi

Narayan, and Laura Perez-Beltrachini. 2017.
The WebNLG challenge: Generating text from
RDF data. In Proceedings of the 10th Inter-
national Conference on Natural Language
Generation, pages 124—-133, Santiago de Com-
postela, Spain. Association for Computational
Linguistics.

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and

Wei Lu. 2019. Densely connected graph convo-
lutional networks for graph-to-sequence learn-
ing. Transactions of the Association for Compu-
tational Linguistics, 7:297-312.

Will Hamilton, Zhitao Ying, and Jure Leskovec.

2017. Inductive representation learning on large
graphs, In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, editors, Advances in Neural Informa-
tion Processing Systems 30, pages 1024-1034.
Curran Associates, Inc.

Thomas N. Kipf and Max Welling. 2017. Semi-

Supervised Classification with Graph Convo-
lutional Networks. In Proceedings of the 5th

60

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



International Conference on Learning Repre-
sentations, ICLR *17.

Guillaume Klein, Yoon Kim, Yuntian Deng,
Jean Senellart, and Alexander Rush. 2017.
OpenNMT: Open-source toolkit for neural
machine translation. In Proceedings of ACL
2017, System Demonstrations, pages 67-72.
Vancouver, Canada. Association for Computa-
tional Linguistics.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019.
Text Generation from Knowledge Graphs with
Graph Transformers. In Proceedings of the
2019 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2284-2293,
Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar,
Yejin Choi, and Luke Zettlemoyer. 2017.
Neural amr: Sequence-to-sequence models for
parsing and generation. In Proceedings of the
55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 146—-157, Vancouver, Canada.
Association for Computational Linguistics.

Ioannis Konstas and Mirella Lapata. 2013. Induc-
ing document plans for concept-to-text genera-
tion. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Pro-
cessing, pages 1503—1514, Seattle, Washington,
USA. Association for Computational Linguis-
tics.

Q. Li, Z. Han, and X.-M. Wu. 2018. Deeper
Insights into Graph Convolutional Networks
for Semi-Supervised Learning. In The Thirty-
Second AAAI Conference on Artificial Intelli-
gence. AAAL

Diego Marcheggiani and Laura Perez Beltrachini.
2018. Deep graph convolutional encoders for
structured data to text generation. In Procee-
dings of the 1lth International Conference
on Natural Language Generation, pages 1-9,
Tilburg University, The Netherlands. Associa-
tion for Computational Linguistics.

Amit Moryossef, Yoav Goldberg, and Ido Dagan.
2019. Step-by-step: Separating planning from

realization in neural data-to-text generation. In
Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short
Papers), pages 2267-2277, Minneapolis,
Minnesota. Association for Computational
Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward,
and Wei-Jing Zhu. 2002. Bleu: A method for
automatic evaluation of machine translation.
In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics,
ACL ’02, pages 311-318. Stroudsburg, PA,
USA. Association for Computational Linguistics.

Maja Popovi¢. 2015. chrF: character n-gram
f-score for automatic MT evaluation. In Pro-
ceedings of the Tenth Workshop on Statistical
Machine Translation, pages 392-395, Lisbon,
Portugal. Association for Computational
Linguistics.

Nima Pourdamghani, Kevin Knight, and UlIf
Hermjakob. 2016. Generating English from
abstract meaning representations. In Proceed-
ings of the 9th International Natural Lan-
guage Generation conference, pages 21-25,
Edinburgh, UK. Association for Computational
Linguistics.

Leonardo F. R. Ribeiro, Claire Gardent, and
Iryna Gurevych. 2019. Enhancing AMR-to-
text generation with dual graph representations.
In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language
Processing and the 9th International Joint
Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 3181-3192, Hong
Kong, China. Association for Computational
Linguistics.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. 2018. Modeling relational data
with graph convolutional networks. In The
Semantic Web - 15th International Conference,
ESWC 2018, Heraklion, Crete, Greece, June
3-7, 2018, Proceedings, pages 593-607.

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2016. Neural machine translation of rare
words with subword units. In Proceedings of

61

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 1715-1725, Berlin, Germany.
Association for Computational Linguistics.

Linfeng Song, Xiaochang Peng, Yue Zhang,
Zhiguo Wang, and Daniel Gildea. 2017.
AMR-to-text generation with synchronous node
replacement grammar. In Proceedings of the
55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short
Papers), pages 7-13, Vancouver, Canada.
Association for Computational Linguistics.

Linfeng Song, Yue Zhang, Zhiguo Wang, and
Daniel Gildea. 2018. A graph-to-sequence
model for AMR-to-text generation. In Proceed-
ings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1:
Long Papers), pages 16161626, Melbourne,
Australia. Association for Computational
Linguistics.

Bayu Distiawan Trisedya, Jianzhong Qi, Rui
Zhang, and Wei Wang. 2018. GTR-LSTM: A
triple encoder for sentence generation from
RDF data. In Proceedings of the 56th Annual
Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers),
pages 1627-1637, Melbourne, Australia. Assoc-
iation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Fukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. In 1. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing
Systems 30, pages 5998—6008. Curran Assoc-
iates, Inc.

Petar Velickovié, Guillem Cucurull, Arantxa
Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. 2018. Graph Attention Net-
works. In International Conference on Learning
Representations. Vancouver, Canada.

Elena Voita, David Talbot, Fedor Moiseev, Rico
Sennrich, and Ivan Titov. 2019. Analyzing

604

Keyulu Xu,

multi-head self-attention: Specialized heads do
the heavy lifting, the rest can be pruned. In
Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 5797-5808, Florence, Italy. Association
for Computational Linguistics.

Tianming Wang, Xiaojun Wan, and Hangqi Jin.

2020. AMR-to-text generation with graph
transformer. Transactions of the Association
for Computational Linguistics, 8:19-33.

Yonghui Wu, Mike Schuster, Zhifeng Chen,

Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin
Gao, Klaus Macherey, Jeff Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, Lukasz
Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku
Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young,
Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural
machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

Chengtao Li, Yonglong Tian,
Tomohiro Sonobe, Ken ichi Kawarabayashi,
and Stefanie Jegelka. 2018. Representation
learning on graphs with jumping knowledge
networks. In /ICML.

Yue Zhang, Qi Liu, and Linfeng Song. 2018.

Sentence-state LSTM for text representation.
In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 317-327,
Melbourne, Australia. Association for Compu-
tational Linguistics.

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian,

Min Zhang, and Guodong Zhou. 2019. Model-
ing graph structure in transformer for better
AMR-to-text generation. In Proceedings of
the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th
International Joint Conference on Natural
Language  Processing (EMNLP-IJCNLP),
pages 5458-5467, Hong Kong, China.
Association for Computational Linguistics.

62

d-oo1e/j0e)/NPa"IW08lIp//:dNY WOy papeojumod

0 € [0BY/0BLET6L/ZEE00 E [9BYZILL 0L/10P/4P!

1202 Jequiada( 9z uo 3senb Aq 4pd-ze€0l



Chapter 6

Modeling Graph Structure via
Relative Position for Text
Generation from Knowledge Graphs

63



Modeling Graph Structure via Relative Position for Text Generation from
Knowledge Graphs

!Center for Information and Language Processing (CIS), LMU Munich
2Research Training Group AIPHES and UKP Lab, Technische Universitit Darmstadt
martin@cis.lmu.de

Abstract

We present Graformer, a novel Transformer-
based encoder-decoder architecture for graph-
to-text generation. With our novel graph self-
attention, the encoding of a node relies on all
nodes in the input graph — not only direct neigh-
bors — facilitating the detection of global pat-
terns. We represent the relation between two
nodes as the length of the shortest path between
them. Graformer learns to weight these node-
node relations differently for different attention
heads, thus virtually learning differently con-
nected views of the input graph. We evaluate
Graformer on two popular graph-to-text gener-
ation benchmarks, AGENDA and WebNLG,
where it achieves strong performance while
using many fewer parameters than other ap-
proaches.!

1 Introduction

A knowledge graph (KG) is a flexible data struc-
ture commonly used to store both general world
knowledge (Auer et al., 2008) and specialized infor-
mation, e.g., in biomedicine (Wishart et al., 2018)
and computer vision (Krishna et al., 2017). Gen-
erating a natural language description of such a
graph (KG—text) makes the stored information
accessible to a broader audience of end users.
It is therefore important for KG-based question
answering (Bhowmik and de Melo, 2018), data-
to-document generation (Moryossef et al., 2019;
Koncel-Kedziorski et al., 2019) and interpretability
of KGs in general (Schmitt et al., 2020).

Recent approaches to KG—text employ encoder-
decoder architectures: the encoder first computes
vector representations of the graph’s nodes, the de-
coder then uses them to predict the text sequence.
Typical encoder choices are graph neural networks
based on message passing between direct neighbors
in the graph (Kipf and Welling, 2017; Velickovié

'Our code is publicly available: https://github.
com/mnschmit/graformer

Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15), pages 10-21

10

et al., 2018) or variants of Transformer (Vaswani
et al., 2017) that apply self-attention on all nodes
together, including those that are not directly con-
nected. To avoid losing information, the latter ap-
proaches use edge or node labels from the shortest
path when computing the attention between two
nodes (Zhu et al., 2019; Cai and Lam, 2020). As-
suming the existence of a path between any two
nodes is particularly problematic for KGs: a set of
KG facts often does not form a connected graph.

We propose a flexible alternative that neither
needs such an assumption nor uses label infor-
mation to model graph structure: a Transformer-
based encoder that interprets the lengths of shortest
paths in a graph as relative position information
and thus, by means of multi-head attention, dy-
namically learns different structural views of the
input graph with differently weighted connection
patterns. We call this new architecture Graformer.

Following previous work, we evaluate
Graformer on two benchmarks: (i) the AGENDA
dataset (Koncel-Kedziorski et al., 2019), i.e., the
generation of scientific abstracts from automati-
cally extracted entities and relations specific to
scientific text, and (ii) the WebNLG challenge
dataset (Gardent et al., 2017), i.e., the task of
generating text from DBPedia subgraphs. On both
datasets, Graformer achieves more than 96% of
the state-of-the-art performance while using only
about half as many parameters.

In summary, our contributions are as follows:
(1) We develop Graformer, a novel graph-to-text
architecture that interprets shortest path lengths as
relative position information in a graph self-atten-
tion network. (2) Graformer achieves competitive
performance on two popular KG-to-text genera-
tion benchmarks, showing that our architecture can
learn about graph structure without any guidance
other than its text generation objective. (3) To fur-
ther investigate what Graformer learns about graph
structure, we visualize the differently connected

June 11, 2021. ©2021 Association for Computational Linguistics

Martin Schmitt! Leonardo F. R. Ribeiro? Philipp Dufter! Iryna Gurevych? Hinrich Schiitze'

64



graph views it has learned and indeed find differ-
ent attention heads for more local and more global
graph information. Interestingly, direct neighbors
are considered particularly important even without
any structural bias, such as introduced by a graph
neural network. (4) Analyzing the performance
w.r.t. different input graph properties, we find evi-
dence that Graformer’s more elaborate global view
on the graph is an advantage when it is important
to distinguish between distant but connected nodes
and truly unreachable ones.

2 Related Work

Most recent approaches to graph-to-text generation
employ a graph neural network (GNN) based on
message passing through the input graph’s topology
as the encoder in their encoder-decoder architec-
tures (Marcheggiani and Perez-Beltrachini, 2018;
Koncel-Kedziorski et al., 2019; Ribeiro et al., 2019;
Guo et al., 2019). As one layer of these encoders
only considers immediate neighbors, a large num-
ber of stacked layers can be necessary to learn
about distant nodes, which in turn also increases
the risk of propagating noise (Li et al., 2018).
Other approaches (Zhu et al., 2019; Cai and Lam,
2020) base their encoder on the Transformer archi-
tecture (Vaswani et al., 2017) and thus, in each
layer, compute self-attention on all nodes, not only
direct neighbors, facilitating the information flow
between distant nodes. Like Graformer, these ap-
proaches incorporate information about the graph
topology with some variant of relative position em-
beddings (Shaw et al., 2018). They, however, as-
sume that there is always a path between any pair
of nodes, i.e., there are no unreachable nodes or
disconnected subgraphs. Thus they use an LSTM
(Hochreiter and Schmidhuber, 1997) to compute
a relation embedding from the labels along this
path. However, in contrast to the AMR? graphs
used for their evaluation, KGs are frequently dis-
connected. Graformer is more flexible and makes
no assumption about connectivity. Furthermore,
its relative position embeddings only depend on
the lengths of shortest paths i.e., purely structural
information, not labels. It thus effectively learns
differently connected views of its input graph.
Deficiencies in modeling long-range dependen-
cies in GNNs have been considered a serious limi-
tation before. Various solutions orthogonal to our
approach have been proposed in recent work: By

Zabstract meaning representation

11

incorporating a connectivity score into their graph
attention network, Zhang et al. (2020) manage to
increase the attention span to k-hop neighborhoods
but, finally, only experiment with k£ = 2. Our graph
encoder efficiently handles dependencies between
much more distant nodes. Pei et al. (2020) define
an additional neighborhood based on Euclidean
distance in a continuous node embedding space.
Similar to our work, a node can thus receive infor-
mation from distant nodes, given their embeddings
are close enough. However, Pei et al. (2020) com-
pute these embeddings only once before training
whereas in our approach node similarity is based
on the learned representation in each encoder layer.
This allows Graformer to dynamically change node
interaction patterns during training.

Recently, Ribeiro et al. (2020) use two GNN
encoders — one using the original topology and one
with a fully connected version of the graph — and
combine their output in various ways for graph-to-
text generation. This approach can only see two
extreme versions of the graph: direct neighbors and
full connection. Our approach is more flexible and
dynamically learns a different structural view per
attention head. It is also more parameter-efficient
as our multi-view encoder does not need a separate
set of parameters for each view.

3 The Graformer Model

Graformer follows the general multi-layer encoder-
decoder pattern known from the original Trans-
former (Vaswani et al., 2017). In the following, we
first describe our formalization of the KG input and
then how it is processed by Graformer.

3.1 Graph data structure

Knowledge graph. We formalize a knowledge
graph (KG) as a directed, labeled multigraph
Gke = (V,A,s,t,ly,l4,E,R) with V a set of
vertices (the KG entities), A a set of arcs (the KG
facts), s,t : A — V functions assigning to each
arc its source/target node (the subject/object of a
KG fact),and Iy, : V — £,14 : A — R providing
labels for vertices and arcs, where R is a set of
KG-specific relations and £ a set of entity names.
Token graph. Entity names usually consist of
more than one token or subword unit. Hence, a
tokenizer tok : £ — X7 is needed that splits an
entity’s label into its components from the vocab-
ulary Y7 of text tokens. Following recent work
(Ribeiro et al., 2020), we mimic this composition-

65



singular value decomposition

I0J-posn

word2vec

e}
B
T
@
(W
=
=}
09
I3
o
=
E.
=}
09

| singular l | value |

used-for

(b) Directed hypergraph (token graph)
Vr

singular

(c) Incidence graph with SAME,, edges (dashed green)

Figure 1: Different representations of the same KG
(types are omitted for clarity).

ality of node labels in the graph structure by split-
ting each node into as many nodes as there are
tokens in its label. We thus obtain a directed hyper-
graph GT = (VT, A, ST, tT, lT, lA, ET, R, same),
where sp,tr : A — P (Vr) now assign a set of
source (resp. target) nodes to each (hyper-) arc
and all nodes are labeled with only one token, i.e.,
l7 : Vp — 2. Unlike Ribeiro et al. (2020), we

12

additionally keep track of all token nodes’ origins:
same : Vp — P (Vp x 7Z) assigns to each node n
all other nodes n’ stemming from the same entity to-
gether with the relative position of I7-(n) and I (n')
in the original tokenized entity name. Fig. 1b shows
the token graph corresponding to the KG in Fig. 1a.
Incidence graph. For ease of implementation,
our final data structure for the KG is the hyper-
graph’s incidence graph, a bipartite graph where
hyper-arcs are represented as nodes and edges are
unlabeled: G = (N,E,l[,X,{SAME, |p€Z})
where N = Vp U A is the set of nodes, £ =
{(nl,ng) ‘ ny € ST(nQ) V ng € tT(nl)} the set
of directed edges, [ : N — X a label function,
and ¥ = X7 U R the vocabulary. We intro-
duce SAME, edges to fully connect same clus-
ters: SAME, = { (n1,n2) | (n2,p) € same(ny) }
where p differentiates between different relative po-
sitions in the original entity string, similar to (Shaw
et al., 2018). See Fig. 1¢ for an example.

3.2 Graformer encoder

The initial graph representation H 0) ¢ RINIxd jg
obtained by looking up embeddings for the node la-
bels in the learned embedding matrix E € RI¥Ixd,
1.€., Hi(o) = e!/(") E where e!(™) is the one-hot-
encoding of the :th node’s label.

To compute the node representation HX) in
the Lth layer, we follow Vaswani et al. (2017),
i.e., we first normalize the input from the previ-
ous layer H (L=1) yia layer normalization LN, fol-
lowed by multi-head graph self-attention SelfAtt,
(see § 3.3 for details), which — after dropout reg-
ularization Dr and a residual connection — yields
the intermediate representation Z (cf. Eq. (1)). A
feedforward layer F'F' with one hidden layer and
GeLU (Hendrycks and Gimpel, 2016) activation
computes the final layer output (cf. Eq. (2)). As
recommended by Chen et al. (2018), we apply an
additional layer normalization step to the output
H (L) of the last encoder layer L.

IV = Dr(SelfAtt, (LN (HF~V))) + HED

(D
HWY) = Dr(FF(LN(Z™M))) + ") 2)
SelfAtt, computes a weighted sum of H (-1
IN|
SelfAtt,(H); = Y _of,(H;W")  (3)
j=1

where W' € R4 is a learned parameter matrix.

66



In the next section, we derive the definition of

the graph-structure-informed attention weights afj.

3.3 Self-attention for text and graphs with
relative position embeddings

In this section, we describe the computation of at-
tention weights for multi-head self-attention. Note
that the formulas describe the computations for one
head. The output of multiple heads is combined as
in the original Transformer (Vaswani et al., 2017).
Text self-attention. Shaw et al. (2018) intro-
duced position-aware self-attention in the Trans-
former by (i) adding a relative position embedding
A ¢ RMxMxd 4o X g key representation, when
computing the softmax-normalized attention scores
a; between X; € R and the complete input em-
bedding matrix X € RM*? (cf. Eq. (4)), and
(i1) adding a second type of position embedding
AV ¢ RMxMxd 15 X5 value representation when
computing the weighted sum (cf. Eq. (5)):

) “)

&)

N XWOXWHE + AT
i=0
Vd

Vi= Z i (X, WV + Al‘j)
j=1

where o (-) denotes the softmax function, i.e.,

exp (b;)

clb), = ——"""—"—
) Yo7y exp (b))

;= , forbeR’.
Recent work (Raffel et al., 2019) has adopted
a simplified form where value-modifying embed-
dings AV are omitted and key-modifying embed-
dings AX are replaced with learned scalar embed-
dings S € RM*M that — based on relative position
— directly in- or decrease attention scores before
normalization, i.e., Eq. (4) becomes Eq. (6).

(XZ-WQ(XWK)T
o; =0
Vd

Shaw et al. (2018) share their position embed-
dings across attention heads but learn separate em-
beddings for each layer as word representations
from different layers can vary a lot. Raffel et al.
(2019) learn separate .S matrices for each attention
head but share them across layers. We use Raffel
et al. (2019)’s form of relative position encoding
for text self-attention in our decoder (§ 3.4).
Graph self-attention.  Analogously to self-
attention on text, we define our structural graph

+ S¢> (6)

13

Vr A

s v d w e 1 c |ul|u2

s 0 4 5 2 2 2 1 1 3
v |41]0 4 2 2 2 1 1 3
al|-5|-41]0 2 2 2 1 1 3
w|-2]-2]-21]0 2 2 1 -1]o0]| 1
e |2 |2]-2|21]0 4 | -3 |-1]-1
1202|224 ]0]-3]-1]-1
c|-1]-1]-1 1 3 3 0 || 2
ul | -1]-1]-1 0| 1 1 {oo| 0 | oo
u2 | -3 1-31|-3]-1 1 1 |-2]00| O

Figure 2: R matrix for the graph in Fig. 1¢ (6,40 = 3).

self-attention as follows:

g __
o

<H1WQ9(HWK9)T
Vd

WHEs W@ e R4 are learned matrices and - :
Z\J{oo} — Rlooks up learned scalar embeddings
for the relative graph positions in R € RV*/,

We define the relative graph position R;; be-
tween the nodes n; and n; with respect to two
factors: (i) the text relative position p in the orig-
inal entity name if n; and n; stem from the same
original entity, i.e., (n;,n;) € SAME,, for some p
and (ii) shortest path lengths otherwise:

£a(R)) 0

00, if 6(n;,nj) = oo
and §(n;,n;) = oo
Rij = { encode(p), if (n;,n;) € SAME,
d(ni,nj),  ifd(ng,n;) < d(nj,ng)
—0(nj,ni), if 6(ni,nj) > 6(nj,n;)

)
where §(n;, n;) is the length of the shortest path
from n; to n;, which we define to be oo if and
only if there is no such path. encode maps a text
relative position p € Z \ {0} to an integer outside
0’s range to avoid clashes. Concretely, we use
encode(p) := sgn(p) - dmaz + p Where 4, is the
maximum graph diameter, i.e., the maximum value
of 4 over all graphs under consideration.

Thus, we model graph relative position as the
length of the shortest path using either only for-
ward edges (R%;; > 0) or only backward edges
(R;; < 0). Additionally, two special cases are con-
sidered: (i) Nodes without any purely forward or
purely backward path between them (R;; = 00)
and (ii) token nodes from the same entity. Here
the relative position in the original entity string p is
encoded outside the range of path length encodings
(which are always in the interval [—6,0z, Omaz))-

67



In practice, we use two thresholds, ns and n,,.

All values of ¢ exceeding ng are set to ns and anal-
ogously for p. This limits the number of different
positions a model can distinguish.
Intuition. Our definition of relative position in
graphs combines several advantages: (i) Any node
can attend to any other node — even unreachable
ones — while learning a suitable attention bias for
different distances. (ii) SAME, edges are treated
differently in the attention mechanism. Thus, en-
tity representations can be learned like in a reg-
ular transformer encoder, given that tokens from
the same entity are fully connected with SAME,,
edges with p providing relative position informa-
tion. (iii) The lengths of shortest paths often have
an intuitively useful interpretation in our incidence
graphs and the sign of the entries in R also cap-
tures the important distinction between incoming
and outgoing paths. In this way, Graformer can,
e.g., capture the difference between the subject and
object of a fact, which is expressed as a relative
position of —1 vs. 1. The subject and object nodes,
in turn, see each other as 2 and —2, respectively.

Fig. 2 shows the R matrix corresponding to the
graph from Fig. 1c. Note how token nodes from
the same entity, e.g., s, v, and d, form clusters as
they have the same distances to other nodes, and
how the relations inside such a cluster are encoded
outside the interval [—3, 3], i.e., the range of short-
est path lengths. It is also insightful to compare
node pairs with the same value in R. E.g., both s
and w see e at a distance of 2 because the entities
SVD and word2vec are both the subject of a fact
with embedding learning as the object. Likewise,
s sees both ¢ and ul at a distance of 1 because its
entity SVD is subject to both corresponding facts.

3.4 Graformer decoder

Our decoder follows closely the standard Trans-
former decoder (Vaswani et al., 2017), except for
the modifications suggested by Chen et al. (2018).
Hidden decoder representation. The initial de-
coder representation Z(©) ¢ RM*4 embeds the
(partially generated) target text T' € RM*®I je.,
Z) = TE. A decoder layer L then obtains a
contextualized representation via self-attention as
in the encoder (§ 3.2):

C'P) = Dr(SelfAtt,(LN(ZL=Y))) + z(L~Y
(€))
SelfAtt, differs from SelfAtt, by using different
position embeddings in Eq. (7) and, obviously, R;;

14

is defined in the usual way for text. C(") is then
modified via multi-head attention MHA on the out-
put H (LE) of the last graph encoder layer Lg. As
in § 3.2, we make use of residual connections, layer
normalization LN, and dropout Dr:

UM = Dr(MHA(LN(C!P), HIE)Y)) + c®)

(10)
ZW) = Dr(FF(LN(U®M)Y)) + U™ (11)
where
IN]
MHA(C,H); =) oy (H;WY)  (12)
j=1

TV Q K\T
ai—U(CZW %W ) ) (13)

Generation probabilities. The final representa-
tion Z(LD) of the last decoder layer Lp is used to
compute the probability distribution P; € [0, 1] Bl
over all words in the vocabulary . at time step 4:

P =o(z""E") (14)
Note that E € RI**4 ig the same matrix that is
also used to embed node labels and text tokens.

3.5 Training

We train Graformer by minimizing the standard
negative log-likelihood loss based on the likelihood
estimations described in the previous section.

4 Experiments

4.1 Datasets

We evaluate our new architecture on two popular
benchmarks for KG-to-text generation, AGENDA
(Koncel-Kedziorski et al., 2019) and WebNLG
(Gardent et al., 2017). While the latter contains
crowd-sourced texts corresponding to subgraphs
from various DBPedia categories, the former was
automatically created by applying an information
extraction tool (Luan et al., 2018) on a corpus of
scientific abstracts (Ammar et al., 2018). As this
process is noisy, we corrected 7 train instances
where an entity name was erroneously split on a
special character and, for the same reason, deleted
1 train instance entirely. Otherwise, we use the data
as is, including the train/dev/test split.

We list the number of instances per data split,
as well as general statistics about the graphs in Ta-
ble 1. Note that the graphs in WebNLG are human-
authored subgraphs of DBpedia while the graphs

68



AGENDA  WebNLG
#instances in train 38,719 18,102
#instances in val 1,000 872
#instances in test 1,000 971
#relation types 7 373
avg #entities in KG 13.4 4.0
% connected graphs 0.3 99.9
avg #graph components 8.4 1.0
avg component size 1.6 39
avg #token nodes in graph 98.0 36.0
avg #tokens in text 157.9 31.5
avg % text tokens in graph 42.7 56.1
avg % graph tokens in text 48.6 49.0
Vocabulary size |X| 24,100 2,100
Character coverage in % 99.99 100.0

Table 1: Statistics of AGENDA and the dataset from the
WebNLG challenge as used in our experiments. Upper
part: data splits and original KGs. Lower part: token
graphs and BPE settings.

in AGENDA were automatically extracted. This
leads to a higher number of disconnected graph
components. Nearly all WebNLG graphs consist
of a single component, i.e., are connected graphs,
whereas for AGENDA this is practically never the
case. We also report statistics that depend on the
tokenization (cf. § 4.2) as factors like the length of
target texts and the percentage of tokens shared ver-
batim between input graph and target text largely
impact the task difficulty.

4.2 Data preprocessing

Following previous work on AGENDA (Ribeiro
et al., 2020), we put the paper title into the graph
as another entity. In contrast to Ribeiro et al.
(2020), we also link every node from a real en-
tity to every node from the title by TITLE2TXT and
TXT2TITLE edges. The type information provided
by AGENDA is, as usual for KGs, expressed with
one dedicated node per type and HAS-TYPE arcs
that link entities to their types. We keep the original
pretokenized texts but lowercase the title as both
node labels and target texts are also lowercased.

For WebNLG, we follow previous work (Gar-
dent et al., 2017) by replacing underscores in entity
names with whitespace and breaking apart camel-
cased relations. We furthermore follow the evalua-
tion protocol of the original challenge by convert-
ing all characters to lowercased ASCII and separat-
ing all punctuation from alphanumeric characters
during tokenization.

For both datasets, we train a BPE vocabulary us-
ing sentencepiece (Kudo and Richardson, 2018) on

15

the train set, i.e., a concatenation of node labels and
target texts. See Table 1 for vocabulary sizes. Note
that for AGENDA, only 99.99% of the characters
found in the train set are added to the vocabulary.
This excludes exotic Unicode characters that occur
in certain abstracts.

We prepend entity and relation labels with dedi-
cated (F) and (R) tags.

4.3 Hyperparameters and training details

We train Graformer with the Adafactor optimizer
(Shazeer and Stern, 2018) for 40 epochs on
AGENDA and 200 epochs on WebNLG. We re-
port test results for the model yielding the best
validation performance measured in corpus-level
BLEU (Papineni et al., 2002). For model selection,
we decode greedily. The final results are generated
by beam search. Following Ribeiro et al. (2020),
we couple beam search with a length penalty (Wu
et al., 2016) of 5.0. See Appendix A for more
details and a full list of hyperparameters.

4.4 Epoch curriculum

We apply a data loading scheme inspired by the
bucketing approach of Koncel-Kedziorski et al.
(2019) and length-based curriculum learning (Pla-
tanios et al., 2019): We sort the train set by target
text length and split it into four buckets of two times
40% and two times 10% of the data. After each
training epoch, the buckets are shuffled internally
but their global order stays the same from shorter
target texts to longer ones. This reduces padding
during batching as texts of similar lengths stay to-
gether and introduces a mini-curriculum from pre-
sumably easier examples (i.e., shorter targets) to
more difficult ones for each epoch. This enables
us to successfully train Graformer even without a
learning rate schedule.

5 Results and Discussion

5.1 Overall performance

Table 2 shows the results of our evaluation on
AGENDA in terms of BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005), and
CHRF++ (Popovié, 2017). Like the models we
compare with, we report the average and standard
deviation of 4 runs with different random seeds.
Our model outperforms previous Transformer-
based models that only consider first-order neigh-
borhoods per encoder layer (Koncel-Kedziorski
et al., 2019; An et al., 2019). Compared to the very

69



BLEU METEOR CHRF++ #P e BLEU METEOR CHRF++

Ours 17.80 +0.31 22.07 £0.23 45.43 +0.39 36.3 < 1.25 Ours 15.44 20.59 43.23
GT 1430 2100 18.80 028 — ~ (213) CGE-LW 15.34 20.64 43.56
GT+RBS 15.1 +0.97 19.5 +0.29 — - <15 Ours 1745 22.03 45.67
CGE-LW 18.01 +0.14 22.34 +0.07 46.69 +o0.17 69.8 (338) CGE-LW 17.29 22.32 45.88

) < 2.0 Ours 18.94 22.86 46.49

Table 2: Experimental results on AGENDA. GT (Graph (294) CGE-LW  19.46 23.76 47.78
Transformer) from (Koncel-Kedziorski et al., 2019); > 20 Ours 2172 2422 48.79

(Ribeiro et al., 2020). Number of parameters in mil-
lions.

(a) Average size y. of graph components.

d BLEU METEOR CHRF++
BLEU  METEOR CHRF++ #P 1 Ours 1648 216 4394
Ours 61.15 +0.22 43.38 +0.17 75.43 +0.19 5.3 (368) CGE-LW 1633 21.16 44.16
UPF-FORGe 40.88 40.00 - - 2 Ours 18.46 22.70 46.85
Melbourne  54.52 41.00 70.72 - 414) CGE-LW 18.20 23.14 47.28
Adapt 60.59 44.00 7601 - >3 Ours  19.44 2317 4729
Graph Conv. 55.90 39.00 - 49 (218) CGE-LW  20.32 24.42 49.25
GTR-LSTM 58.60 40.60 - -
E2E GRU 57.20 41.00 _ _ (b) Largest diameter d across all of a graph’s components.

CGE-LW-LG 63.69 +o0.10 44.47 +0.12 76.66 +0.10 10.4

Table 3: Experimental results on the WebNLG test set
with seen categories. CGE-LW-LG from (Ribeiro et al.,
2020); Adapt, Melbourne and UPF-FORGe from (Gar-
dent et al., 2017); Graph Conv. from (Marcheggiani and
Perez-Beltrachini, 2018); GTR-LSTM from (Trisedya
et al., 2018); E2E GRU from (Castro Ferreira et al.,
2019). Number of parameters in millions.

recent models by Ribeiro et al. (2020), Graformer
performs very similarly. Using both a local and a
global graph encoder, Ribeiro et al. (2020) combine
information from very distant nodes but at the same
time need extra parameters for the second encoder.
Graformer is more efficient and still matches their
best model’s BLEU and METEOR scores within a
standard deviation.

The results on the test set of seen categories
of WebNLG (Table 3) look similar. Graformer
outperforms most original challenge participants
and more recent work. While not performing on
par with CGE-LW on WebNLG, Graformer still
achieves more than 96% of its performance while
using only about half as many parameters.

5.2 Performance on different types of graphs

We investigate whether Graformer is more suitable
for disconnected graphs by comparing its perfor-
mance on different splits of the AGENDA test set
according to two graph properties: (i) the average
number of nodes per connected component (i)
and (ii) the largest diameter across all of a graph’s

16

Table 4: Performance of a single run on the test split of
AGENDA w.r.t. different input graph properties. The
number of data points in each split is indicated in paren-
theses.

components (d).

We can see in Table 4 that the performance of
both Graformer and CGE-LW (Ribeiro et al., 2020)
increases with more graph structure (larger u. and
d), i.e., more information leads to more accurate
texts. Besides, Graformer outperforms CGE-LW
on BLEU for graphs with smaller components (0 <
te < 1.5) and smaller diameters (d < 3). Although
METEOR and CHRF++ scores always favor CGE-
LW, the performance difference is also smaller for
cases where BLEU favors Graformer.

We conjecture that Graformer benefits from its
more elaborate global view, i.e., its ability to dis-
tinguish between distant but connected nodes and
unreachable ones. CGE-LW’s global encoder can-
not make this distinction because it only sees a
fully connected version of the graph.

Curiously, Graformer’s BLEU is also better for
larger components (p. > 2.0). With multiple larger
components, Graformer might also better distin-
guish nodes that are part of the same component
from those that belong to a different one.

Only for 1.5 < p. < 2.0, CGE-LW clearly
outperforms Graformer in all metrics. It seems that
Graformer is most helpful for extreme cases, i.e.,
when either most components are isolated nodes or
when isolated nodes are the exception.

70



2 3 4 5 6 7

attention head
(b) WebNLG

Figure 3: Attention bias vy learned by Graformer on the two datasets. SAME,, edges are omitted.

-6
-5 6
-4
4
-3
-2 2
-1
_0 0
< 1
-2
2
3 -4
4
5 -6
: m ’
attention head
(a) AGENDA
Model BLEU METEOR CHRF++
Graformer 18.09 22.29 45.77
-length penalty 17.99 22.19 45.63
-beam search 17.33 21.74 44.87
-epoch curriculum  13.55 18.91 39.22

Table 5: Ablation study for a single run on the test
portion of AGENDA.

5.3 Ablation study

In a small ablation study, we examine the impact
of beam search, length penalty, and our new epoch
curriculum training. We find that beam search and
length penalty do contribute to the overall perfor-
mance but to a relatively small extent. Training
with our new epoch curriculum, however, proves
crucial for good performance. Platanios et al.
(2019) argue that curriculum learning can replace
a learning rate schedule, which is usually essential
to train a Transformer model. Indeed we success-
fully optimize Graformer without any learning rate
schedule, when applying the epoch curriculum.

6 Learned graph structure

We visualize the learned attention bias «y for dif-
ferent relative graph positions 2;; (cf. § 3.3; esp.
Eq. (7)) after training on AGENDA and WebNLG
in Fig. 3. The eight attention heads (x-axis) have
learned different weights for each graph position
R;; (y-axis). Note that AGENDA has more pos-
sible R;; values because ns = 6 whereas we set

17

ng = 4 for WebNLG.

For both datasets, we notice that one attention
head primarily focuses on global information (5 for
AGENDA, 4 for WebNLG). AGENDA even dedi-
cates head 6 entirely to unreachable nodes, showing
the importance of such nodes for this dataset. In
contrast, most WebNLG heads suppress informa-
tion from unreachable nodes.

For both datasets, we also observe that nearer
nodes generally receive a high weight (focus on
local information): In Fig. 3b, e.g., head 2 concen-
trates solely on direct incoming edges and head 0
on direct outgoing ones. Graformer can learn em-
pirically based on its task where direct neighbors
are most important and where they are not, show-
ing that the strong bias from graph neural networks
is not necessary to learn about graph structure.

7 Conclusion

We presented Graformer, a novel encoder-decoder
architecture for graph-to-text generation based on
Transformer. The Graformer encoder uses a novel
type of self-attention for graphs based on shortest
path lengths between nodes, allowing it to detect
global patterns by automatically learning appro-
priate weights for higher-order neighborhoods. In
our experiments on two popular benchmarks for
text generation from knowledge graphs, Graformer
achieved competitive results while using many
fewer parameters than alternative models.

71



Acknowledgments

This work was supported by the BMBF (first au-
thor) as part of the project MLWin (011S18050), by
the German Research Foundation (second author)
as part of the Research Training Group “Adaptive
Preparation of Information from Heterogeneous
Sources” (AIPHES) under the grant No. GRK
1994/1, and by the Bavarian research institute for
digital transformation (bidt) through their fellow-
ship program (third author). We also gratefully
acknowledge a Ph.D. scholarship awarded to the
first author by the German Academic Scholarship
Foundation (Studienstiftung des deutschen Volkes).

References

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama. 2019. Optuna: A next-
generation hyperparameter optimization framework.
In Proceedings of the 25rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining.

Waleed Ammar, Dirk Groeneveld, Chandra Bhagavat-
ula, Iz Beltagy, Miles Crawford, Doug Downey, Ja-
son Dunkelberger, Ahmed Elgohary, Sergey Feld-
man, Vu Ha, Rodney Kinney, Sebastian Kohlmeier,
Kyle Lo, Tyler Murray, Hsu-Han Ooi, Matthew Pe-
ters, Joanna Power, Sam Skjonsberg, Lucy Wang,
Chris Wilhelm, Zheng Yuan, Madeleine van Zuylen,
and Oren Etzioni. 2018. Construction of the litera-
ture graph in semantic scholar. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 3 (Indus-
try Papers), pages 84-91, New Orleans - Louisiana.
Association for Computational Linguistics.

Bang An, Xuannan Dong, and Changyou Chen. 2019.
Repulsive bayesian sampling for diversified attention
modeling. 4th workshop on Bayesian Deep Learning
(NeurIPS 2019).

Soren Auer, Chris Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2008.
DBpedia: A nucleus for a web of open data. In Pro-
ceedings of the 6th International Semantic Web Con-
ference (ISWC), volume 4825 of Lecture Notes in
Computer Science, pages 722—735. Springer.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65-72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and
Baldzs Kégl. 2011. Algorithms for hyper-parameter

18

optimization. In J. Shawe-Taylor, R. S. Zemel, P. L.
Bartlett, F. Pereira, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems
24, pages 2546-2554. Curran Associates, Inc.

Rajarshi Bhowmik and Gerard de Melo. 2018. Generat-
ing fine-grained open vocabulary entity type descrip-
tions. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 877-888, Melbourne,
Australia. Association for Computational Linguistics.

Deng Cai and Wai Lam. 2020. Graph transformer for
graph-to-sequence learning. AAAI Conference on
Artificial Intelligence.

Thiago Castro Ferreira, Chris van der Lee, Emiel
van Miltenburg, and Emiel Krahmer. 2019. Neu-
ral data-to-text generation: A comparison between
pipeline and end-to-end architectures. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 552-562, Hong
Kong, China. Association for Computational Lin-
guistics.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin John-
son, Wolfgang Macherey, George Foster, Llion Jones,
Mike Schuster, Noam Shazeer, Niki Parmar, Ashish
Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Zhifeng
Chen, Yonghui Wu, and Macduff Hughes. 2018. The
best of both worlds: Combining recent advances in
neural machine translation. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
76-86, Melbourne, Australia. Association for Com-
putational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124—133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and Wei Lu.
2019. Densely connected graph convolutional net-
works for graph-to-sequence learning. Transactions
of the Association for Computational Linguistics,
7:297-312.

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian er-
ror linear units (gelus). Computing Research Reposi-
tory, arXiv:1606.08415.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9:1735—
80.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations (ICLR).

72



Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019. Text
Generation from Knowledge Graphs with Graph
Transformers. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2284-2293, Minneapolis, Minnesota.
Association for Computational Linguistics.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A. Shamma,
Michael S. Bernstein, and Fei-Fei Li. 2017. Vi-
sual genome: Connecting language and vision us-
ing crowdsourced dense image annotations. Interna-
tional Journal of Computer Vision, 123:32-73.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Qimai Li, Zhichao Han, and Xiao ming Wu. 2018.
Deeper insights into graph convolutional networks
for semi-supervised learning. AAAI Conference on
Artificial Intelligence.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreference for scientific knowledge
graph construction. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3219-3232, Brussels, Belgium.
Association for Computational Linguistics.

Diego Marcheggiani and Laura Perez-Beltrachini. 2018.
Deep graph convolutional encoders for structured
data to text generation. In Proceedings of the 11th
International Conference on Natural Language Gen-
eration, pages 1-9, Tilburg University, The Nether-
lands. Association for Computational Linguistics.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2267-2277, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang,
Yu Lei, and Bo Yang. 2020. Geom-gcn: Geomet-

19

ric graph convolutional networks. In International
Conference on Learning Representations (ICLR).

Emmanouil Antonios Platanios, Otilia Stretcu, Graham
Neubig, Barnabas Poczos, and Tom Mitchell. 2019.
Competence-based curriculum learning for neural
machine translation. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1162—-1172, Minneapolis, Minnesota.
Association for Computational Linguistics.

Maja Popovié. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612-618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2019. Exploring
the limits of transfer learning with a unified text-to-

text transformer. Computing Research Repository,
arXiv:1910.10683.

Leonardo F. R. Ribeiro, Claire Gardent, and Iryna
Gurevych. 2019. Enhancing AMR-to-text genera-
tion with dual graph representations. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 3183-3194, Hong Kong,
China. Association for Computational Linguistics.

Leonardo F. R. Ribeiro, Yue Zhang, Claire Gardent, and
Iryna Gurevych. 2020. Modeling global and local
node contexts for text generation from knowledge

graphs. Transactions of the Association for Compu-
tational Linguistics, 8(0):589-604.

Martin Schmitt, Sahand Sharifzadeh, Volker Tresp, and
Hinrich Schiitze. 2020. An unsupervised joint sys-
tem for text generation from knowledge graphs and
semantic parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7117-7130, Online. As-
sociation for Computational Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464—468, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4596-4604.
PMLR.

73



Bayu Distiawan Trisedya, Jianzhong Qi, Rui Zhang, and
Wei Wang. 2018. GTR-LSTM: A triple encoder for
sentence generation from RDF data. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1627-1637, Melbourne, Australia. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, page 5998—6008. Curran Asso-
ciates, Inc.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018. Graph Attention Networks. In International
Conference on Learning Representations (ICLR).

David S Wishart, Yannick D Feunang, An C Guo, Elvis J
Lo, Ana Marcu, Jason R Grant, Tanvir Sajed, Daniel
Johnson, Carin Li, Zinat Sayeeda, Nazanin Assem-
pour, Ithayavani Iynkkaran, Yifeng Liu, Adam Ma-
ciejewski, Nicola Gale, Alex Wilson, Lucy Chin,
Ryan Cummings, Diana Le, Allison Pon, Craig Knox,
and Michael Wilson. 2018. DrugBank 5.0: a major
update to the DrugBank database for 2018. Nucleic
Acids Research, 46(D1):D1074-D1082.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s neural machine translation sys-
tem: Bridging the gap between human and ma-
chine translation. Computing Research Repository,
arXiv:1609.08144.

Kai Zhang, Yaokang Zhu, Jun Wang, and Jie Zhang.
2020. Adaptive structural fingerprints for graph at-
tention networks. In International Conference on
Learning Representations (ICLR).

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min
Zhang, and Guodong Zhou. 2019. Modeling graph
structure in transformer for better AMR-to-text gen-
eration. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5459-5468, Hong Kong, China. Association for Com-
putational Linguistics.

A Hyperparameter details

For AGENDA and WebNLG, a minimum and max-
imum decoding length were set according to the

20

Hyperparameter WebNLG AGENDA
model dimension d 256 400
# heads 8 8
# encoder layers Lg 3 4
# decoder layers Lp 3 5
feedforward dimension 512 2000
attention dropout 0.3 0.1
dropout 0.1 0.1
input dropout 0.0 0.1
text self-attention range n; 25 50
graph self-attention range ns 4 6
SAME range n, 10 10
gradient accumulation 3 2
gradient clipping 1.0 1.0
label smoothing 0.25 0.3
L regularizer 3.1073 3.1074
batch size 4 8
# beams 2 2
length penalty 5.0 5.0

Table 6: Hyperparameters used to obtain final experi-
mental results on WebNLG and AGENDA.

shortest and longest target text in the train set. Ta-
ble 6 lists the hyperparameters used to obtain final
results on both datasets. Input dropout is applied
on the word embeddings directly after lookup for
node labels and target text tokens before they are
fed into encoder or decoder. Attention dropout is
applied to all attention weights computed during
multi-head (self-)attention.

For hyperparameter optimization, we only train
for the first 10 (AGENDA) or 50 (WebNLG)
epochs to save time. We use a combination of
manual tuning and a limited number of randomly
sampled runs. For the latter we apply Optuna with
default parameters (Akiba et al., 2019; Bergstra
et al., 2011) and median pruning, i.e., after each
epoch we check if the best performance so far is
worse than the median performance of previous
runs at the same epoch and if so, abort. For hyper-
parameter tuning, we decode greedily and measure
performance in corpus-level BLEU (Papineni et al.,
2002).

B Qualitative examples

Table 7 shows three example generations from
our Graformer model and the CGE-LW system by
Ribeiro et al. (2020). Often CGE-LW generations
have a high surface overlap with the reference text
while Graformer texts fluently express the same
content.

74



Ref.

CGE-LW

Ours

julia morgan has designed many sig-
nificant buildings , including the los
angeles herald examiner building .
julia morgan has designed many sig-
nificant buildings including the los
angeles herald examiner building .
one of the significant buildings de-
signed by julia morgan is the los
angeles herald examiner building .

Ref.

CGE-LW

Ours

asam pedas is a dish of fish cooked
in a sour and hot sauce that comes
from indonesia .

the main ingredients of asam pedas
are fish cooked in a sour and hot
sauce and comes from indonesia .
the main ingredients of asam pedas
are fish cooked in sour and hot
sauce . the dish comes from indone-
sia .

Ref.

CGE-LW

Ours

banana is an ingredient in binignit
which is a dessert . a cookie is also
a dessert .

banana is an ingredient in binignit ,
a cookie is also a dessert .

a cookie is a dessert , as is binignit ,
which contains banana as one of its
ingredients .

Table 7: Example references and texts generated by
CGE-LW (Ribeiro et al., 2020) and Graformer (marked
Ours) for samples from the WebNLG test set. In case of
multiple references, only one is shown for brevity.

21

75



Chapter 7

Investigating Pretrained Language
Models for Graph-to-Text
(Generation

76



Investigating Pretrained Language Models for Graph-to-Text Generation

Leonardo F. R. Ribeiro!, Martin Schmitt!, Hinrich Schiitze’ and Iryna Gurevych’

TResearch Training Group AIPHES and UKP Lab, Technical University of Darmstadt
tCenter for Information and Language Processing (CIS), LMU Munich

www.ukp.tu-darmstadt.de

Abstract

Graph-to-text generation aims to generate flu-
ent texts from graph-based data. In this paper,
we investigate two recent pretrained language
models (PLMs) and analyze the impact of dif-
ferent task-adaptive pretraining strategies for
PLMs in graph-to-text generation. We present
a study across three graph domains: meaning
representations, Wikipedia knowledge graphs
(KGs) and scientific KGs. We show that
approaches based on PLMs BART and T5
achieve new state-of-the-art results and that
task-adaptive pretraining strategies improve
their performance even further. We report
new state-of-the-art BLEU scores of 49.72 on
AMR-LDC2017T10, 59.70 on WebNLG, and
25.66 on AGENDA datasets - a relative im-
provement of 31.8%, 4.5%, and 42.4%, re-
spectively, with our models generating signifi-
cantly more fluent texts than human references.
In an extensive analysis, we identify possible
reasons for the PLMs’ success on graph-to-
text tasks. Our findings suggest that the PLMs
benefit from similar facts seen during pretrain-
ing or fine-tuning, such that they perform well
even when the input graph is reduced to a sim-
ple bag of node and edge labels.'

1 Introduction

Graphs are important data structures in NLP as
they represent complex relations within a set of
objects. For example, semantic and syntactic struc-
tures of sentences can be represented using differ-
ent graph representations (e.g., AMRs, Banarescu
et al., 2013; semantic-role labeling, Surdeanu et al.,
2008; syntactic and semantic graphs, Belz et al.,
2011) and knowledge graphs (KGs) are used to
describe factual knowledge in the form of relations
between entities (Gardent et al., 2017; Vougiouklis
et al., 2018; Koncel-Kedziorski et al., 2019).
Graph-to-text generation, a subtask of data-to-
text generation (Gatt and Krahmer, 2018), aims to

'Our code is available at https://github.com/UKPLab/plms-
graph2text.

create fluent natural language text to describe an
input graph (see Figure 1). This task is important
for NLP applications such as dialogue generation
(Moon et al., 2019) and question answering (Duan
et al., 2017). Recently, it has been shown that
structured meaning representation, such as AMR
or KG, can store the internal state of a dialog sys-
tem, providing core semantic knowledge (Bonial
et al., 2020; Bai et al., 2021) or can be the result
of a database query for conversational QA (Yu
et al., 2019). Moreover, dialog states can be repre-
sented as KGs to encode compositionality and can
be shared across different domains, slot types and
dialog participators (Cheng et al., 2020).

Transfer learning has become ubiquitous in NLP
and pretrained Transformer-based architectures
(Vaswani et al., 2017) have considerably outper-
formed prior state of the art in various downstream
tasks (Devlin et al., 2019; Yang et al., 2019a; Liu
et al., 2020; Radford et al., 2019).

In this paper, we analyze the applicability of
two recent text-to-text pretrained language mod-
els (PLMs), BART (Lewis et al., 2020) and T5
(Raffel et al., 2019), for graph-to-text generation.
We choose these models because of their encoder-
decoder architecture, which makes them particu-
larly suitable for conditional text generation. Our
study comprises three graph domains (meaning rep-
resentations, Wikipedia KGs, and scientific KGs).
We further introduce task-adaptive graph-to-text
pretraining approaches for PLMs and demonstrate
that such strategies improve the state of the art by
a substantial margin.

While recent works have shown the benefit of
explicitly encoding the graph structure in graph-to-
text generation (Song et al., 2018; Ribeiro et al.,
2019, 2020; Schmitt et al., 2020; Zhao et al., 2020a,
to name a few), our approaches based on PLMs
consistently outperform these models, even though
PLMs — as sequence models — do not exhibit any

211

Proceedings of the Third Workshop on Natural Language Processing for Conversational Al, pages 211-227
November 10, 2021. ©2021 Association for Computational Linguistics

77



a) b)

ARG1

ARGV

have-rel-role-91 feel-01
RGO time
’A?GZ ARG1 \ l

Alfred Worden

Alan

Mbe, Bean Test Pilot

almaMater
UT Austin, B.S.
1995

David Scott 1963

Linearized representation: <H> Apollo 12 <R> backup pilot <T>
Alfred Worden <H> Alan Bean <R> was a crew member of <T>
Apollo 12 <H> Apollo 12 <R> operator <T> NASA <H> Alan Bean
<R> occupation <T> Test pilot <H> Apollo 12 <R> commander <T>

Linearized representation: ( feel :ARGO ( we ) :ARG1 Dayid Scott <H> Alan Bean <R> was selected by NASA <T> 1963
( terrible :degree ( very ) ) :time ( now ) :ARG1-of <H> Alan Bean <R> alma Mater <T> UT Austin B.S. 1955
(cause :ARGO ( have-rel-role :ARGO we :ARG1 (he ) :ARG2 Text: Alan Bean graduated from UT Austin in 1955 with a Bachelor

(child))))
Text: As his children, we feel very terrible now.

of Science degree. He was hired by NASA in 1963 and served as a
test pilot. Apollo 12's backup pilot was Alfred Worden and was

commanded by David Scott.

Figure 1: Examples of (a) AMR and (b) WebNLG graphs, the input for the models and the reference texts.

graph-specific structural bias.> Simply represent-
ing the graph as a linear traversal (see Figure 1)
leads to remarkable generation performance in the
presence of a strong language model. In our analy-
sis we investigate to what extent fine-tuned PLMs
make use of the graph structure represented in the
graph linearization. We notably observe that PLMs
achieve high performance on two popular KG-to-
text benchmarks even when the KG is reduced to a
mere bag of node and edge labels.

Our contributions are the following:

* We investigate and compare two PLMs, BART
and T3, for graph-to-text generation, explor-
ing language model adaptation (LMA) and
supervised task adaptation (STA) pretraining,
employing additional task-specific data.

* Our approaches consistently outperform the
state of the art by significant margins, ranging
from 2.6 to 12.0 BLEU points, on three es-
tablished graph-to-text benchmarks from dif-
ferent domains, exceeding specialized graph
architectures (e.g., Graph Neural Networks,
GNN:gs, Kipf and Welling, 2017).

* In a crowdsourcing experiment, we demon-
strate that our methods generate texts with sig-
nificantly better fluency than existing works
and the human references.

* We discover that PLMs perform well even
when trained on a shuffled linearized graph
representation without any information about
connectivity (bag of node and edge labels),
which is surprising since prior studies showed
that explicitly encoding the graph structure
improves models trained from scratch (e.g.,

2The model architecture does not explicitly encode the
graph structure, i.e., which entities are connected to each
other, but has to retrieve it from a sequence that tries to encode
this information.

Zhao et al., 2020a); and investigate the possi-
ble reasons for such a good performance.

2 Related Work

Graph-to-text Learning. Various neural models
have been proposed to generate sentences from
graphs from different domains. Konstas et al.
(2017) propose the first neural approach for AMR-
to-text generation that uses a linearized input graph.
Prior approaches for KG-to-text generation train
text-to-text neural models using sequences of KG
triples as input (Trisedya et al., 2018; Moryossef
et al., 2019; Castro Ferreira et al., 2019; Ribeiro
et al., 2021a).

Recent approaches (Marcheggiani and Perez Bel-
trachini, 2018; Song et al., 2018; Beck et al., 2018;
Damonte and Cohen, 2019; Ribeiro et al., 2019;
Zhao et al., 2020a; Schmitt et al., 2021; Ribeiro
et al., 2021b) propose architectures based on GNNs
to directly encode the graph structure, whereas
other efforts (Ribeiro et al., 2020; Schmitt et al.,
2020; Yao et al., 2020; Wang et al., 2020) inject the
graph structure information into Transformer-based
architectures. The success of those approaches sug-
gests that imposing a strong relational inductive
bias into the graph-to-text model can assist the gen-
eration.

Pretrained Language Models. Pretrained
Transformer-based models, such as BERT (Devlin
et al.,, 2019), XLNet (Yang et al., 2019b), or
RoBERTa (Liu et al., 2020), have established a
qualitatively new level of baseline performance for
many widely used natural language understanding
(NLU) benchmarks. Generative pretrained
Transformer-based methods, such as GPT-2
(Radford et al., 2019), BART (Lewis et al., 2020),
and TS (Raffel et al., 2019), are employed in many

212

78



natural language generation (NLG) tasks.

Mager et al. (2020) were the first to employ
GPT-2, a decoder-only PLM, for AMR-to-text gen-
eration and use cycle consistency to improve the
adequacy. In contrast, we are the first to inves-
tigate BART and TS5 models, which have both a
Transformer-based encoder and decoder, in AMR-
to-text generation. Recently, Harkous et al. (2020)
and Kale (2020) demonstrate state-of-the-art re-
sults in different data-to-text datasets, employing
GPT-2 and T5 models respectively. Radev et al.
(2020) propose DART, a new data-to-text dataset,
and train a BART model gradually augmenting the
WebNLG training data with DART data.

Hoyle et al. (2021) explore scaffolding objec-
tives in PLMs and show gains in low-resource
graph-to-text settings. Different from the above
works, we focus on a general transfer learning
strategies for graph-to-text generation, investigat-
ing task-adaptive pretraining approaches, employ-
ing additional collected task-specific data for dif-
ferent PLMs (BART and T5) and benchmarks. In
addition, we provide a detailed analysis aimed at
explaining the good performance of PLMs on KG-
to-text tasks.

Recently, Gururangan et al. (2020) explored task-
adaptive pretraining strategies for text classification.
While our LMA (see §3) is related to their DAPT as
both use a self-supervised objective on a domain-
specific corpus, they notably differ in that DAPT
operates on the model input while LMA models
the output. We are the first to show the benefits
of additional task-specific pretraining in PLMs for
graph-to-text tasks.

3 PLMs for Graph-to-Text Generation

3.1 Models in this Study

We investigate BART (Lewis et al., 2020) and T5
(Raffel et al., 2019), two PLMs based on the Trans-
former encoder-decoder architecture (Vaswani
et al., 2017), for graph-to-text generation. They
mainly differ in how they are pretrained and the
input corpora used for pretraining. We experiment
with different TS (small - 60M parameters, base -
220M, and large - 770M) and BART (base - 140M
and large - 400M) capacity models.

We fine-tune both PLMs for a few epochs on
the supervised downstream graph-to-text datasets.
For T5, in the supervised setup, we add a prefix
“translate from Graph to Text:” before the graph
input. We add this prefix to imitate the TS setup,

when translating between different languages.

3.2 Task-specific Adaptation

Inspired by previous work (Konstas et al., 2017;
Gururangan et al., 2020), we investigate whether
leveraging additional task-specific data can im-
prove the PLMs’ performance on graph-to-text
generation. Task-specific data refers to a pre-
training corpus that is more task-relevant and usu-
ally smaller than the text corpora used for task-
independent pretraining. In order to leverage the
task-specific data, we add an intermediate adaptive
pretraining step between the original pretraining
and fine-tuning phases for graph-to-text generation.

More precisely, we first continue pretraining
BART and T5 using language model adaptation
(LMA) or supervised task adaptation (STA) training.
In the supervised approach, we use pairs of graphs
and corresponding texts collected from the same or
similar domain as the target task. In the LMA ap-
proach, we follow BART and TS5 pretraining strate-
gies for language modeling, using the reference
texts that describe the graphs. Note that we do not
use the graphs in the LMA pretraining, but only the
target text of our task-specific data collections. The
goal is to adapt the decoder to the domain of the
final task (Gururangan et al., 2020). In particular,
we randomly mask text spans, replacing 15% of
the tokens.? Before evaluation, we finally fine-tune
the models using the original training set as usual.

4 Datasets

We evaluate the text-to-text PLMs on three
graph-to-text benchmarks: AMR (LDC2017T10),
WebNLG (Gardent et al., 2017), and AGENDA
(Koncel-Kedziorski et al., 2019). We chose those
datasets because they comprise different domains
and are widely used in prior work. Table 10 in
Appendix shows statistics for each dataset.

AMR. Abstract meaning representation (AMR)
is a semantic formalism that represents the meaning
of a sentence as a rooted directed graph expressing
“who is doing what to whom” (Banarescu et al.,
2013). In an AMR graph, nodes represent concepts
and edges represent semantic relations. An instance
in LDC2017T10 consists of a sentence annotated
with its corresponding AMR graph. Following
Mager et al. (2020), we linearize the AMR graphs

3Please, refer to Lewis et al. (2020) and Raffel et al. (2019)
for details about the self-supervised pretraining strategies.

213

79



using the PENMAN notation (see Figure 1a).*

WebNLG. Each instance of WebNLG contains a
KG from DBPedia (Auer et al., 2007) and a target
text with one or multiple sentences that describe
the graph. The test set is divided into two par-
titions: seen, which contains only DBPedia cate-
gories present in the training set, and unseen, which
covers categories never seen during training. Their
union is called all. Following previous work (Hark-
ous et al., 2020), we prepend (H), (R), and (T')
tokens before the head entity, the relation and tail
entity of a triple (see Figure 1b).

AGENDA. In this dataset, KGs are paired with
scientific abstracts extracted from proceedings of
Al conferences. Each sample contains the paper
title, a KG, and the corresponding abstract. The
KG contains entities corresponding to scientific
terms and the edges represent relations between
these entities. This dataset has loose alignments
between the graph and the corresponding text as the
graphs were automatically generated. The input for
the models is a text containing the title, a sequence
of all KG entities, and the triples. The target text is
the paper abstract. We add special tokens into the
triples in the same way as for WebNLG.

4.1 Additional Task-specific Data

In order to evaluate the proposed task-adaptive pre-
training strategies for graph-to-text generation, we
collect task-specific data for two graph domains:
meaning representations (like AMR) and scientific
data (like AGENDA). We did not attempt collect-
ing additional data like WebNLG because the texts
in this benchmark do not stem from a corpus but
were specifically written by annotators.

AMR Silver Data. In order to generate addi-
tional data for AMR, we sample two sentence col-
lections of size 200K and 2M from the Gigaword’
corpus and use a state-of-the-art AMR parser (Cai
and Lam, 2020a) to parse them into AMR graphs.®
For supervised pretraining, we condition a model
on the AMR silver graphs to generate the corre-
sponding sentences before fine-tuning it on gold
AMR graphs. For self-supervised pretraining, we
only use the sentences.’

“Details of the preprocessing procedure of AMRs are pro-
vided in Appendix A.

Shitps://catalog.ldc.upenn.edu/LDC2003T05

SWe filter out sentences that do not yield well-formed
AMR graphs.

"Gigaword and AMR datasets share similar data sources.

Model BLEU M BT
Ribeiro et al. (2019) 27.87 33.21 -
Zhu et al. (2019) 31.82 36.38 -
Zhao et al. (2020b) 3246 36.78 -
Wang et al. (2020) 3390 37.10 -
Yao et al. (2020) 34.10 38.10 -
based on PLMs
Ma%(er et al. (2020) 33.02 37.68 -
Harkous et al. (2020)  37.70 38.90 -
BARTh,e 36.71 38.64 5247
BART rge 4347 42.88 60.42
TSsman 3845 40.86 57.95
base 42.54 42.62 60.59
large 45.80 43.85 61.93
with task-adaptive pretraining
BART arge + LMA 4394 4236 58.54
T51arge + LMA 46.06 44.05 62.59
BART 3¢ + STA (200K) 44.72  43.65 61.03
BART yge + STA 2M) 4751 44770  62.27
T51arge + STA (200K) 48.02 44.85 63.86
T51arge + STA (2M) 49.72 4543 64.24

Table 1: Results on AMR-to-text generation for the
LDC2017T10 test set. M and BT stand for METEOR
and BLEURT, respectively. Bold (Italic) indicates the
best score without (with) task-adaptive pretraining.

Semantic Scholar AI Data. We collect titles and
abstracts of around 190K scientific papers from the
Semantic Scholar (Ammar et al., 2018) taken from
the proceedings of 36 top Computer Science/Al
conferences. We construct KGs from the paper ab-
stracts employing DyGIE++ (Wadden et al., 2019),
an information extraction system for scientific texts.
Note that the AGENDA dataset was constructed
using the older ScilE system (Luan et al., 2018),
which also extracts KGs from Al scientific papers.
A second difference is that in our new dataset, the
domain is broader as we collected data from 36 con-
ferences compared to 12 from AGENDA. Further-
more, to prevent data leakage, all AGENDA sam-
ples used for performance evaluation are removed
from our dataset. We will call the new dataset
KGAIA (KGs from Al Abstracts).® Table 11 in
Appendix shows relevant dataset statistics.

S Experiments

We modify the BART and T5 implementations re-
leased by Hugging Face (Wolf et al., 2019) in order
to adapt them to graph-to-text generation. For the
KG datasets, we add the (H), (R), and (") tokens
to the models’ vocabulary. We add all edge labels
seen in the training set to the vocabulary of the

8We will release the collected additional task-specific data.

214

80



BLEU METEOR chrF++
Model A S U A S U A S U
Castro Ferreira et al. (2019) 51.68 56.35 3892 32.00 41.00 21.00 - - -
Moryossef et al. (2019) 4724 5330 3441 39.00 44.00 37.00 - - -
Schmitt et al. (2020) - 59.39 - - 42.83 - - 74.68 -
Ribeiro et al. (2020) - 63.69 - - 44.47 - - 76.66 -
Zhao et al. (2020a) 52.78 6442 3823 41.00 46.00 37.00 - - -
based on PLMs
Harkous et al. (2020) 52.90 - - 42.40 - - - - -
Kale (2020) 57.10 63.90 52.80 44.00 46.00 41.00 - - -
Radeyv et al. (2020) 4589 52.86 37.85 40.00 42.00 37.00 - - -
BARTbase 53.11 6274 4153 40.18 4445 3536 70.02 76.68 62.76
BART arge 5472 63.45 4397 4223 4549 38.61 7229 7757 66.53
T5smar 56.34 65.05 4537 4278 4594 39.29 7331 7846 67.69
TSbase 59.17 64.64 5255 43,19 46.02 4149 7482 7840 70.92
TSlarge 59.70 64.71 53.67 44.18 4585 4226 7540 78.29 72.25

Table 2: Results on WebNLG. A, S and U stand for all, seen, and unseen partitions of the test set, respectively.

models for AMR. Following Wolf et al. (2019), we
use the Adam optimizer (Kingma and Ba, 2015)
with an initial learning rate of 3 - 10~°. We employ
a linearly decreasing learning rate schedule without
warm-up. The batch and beam search sizes are cho-
sen from {2,4,8} and {1,3,5}, respectively, based
on the respective development set. Dev BLEU is
used for model selection.

Following previous works, we evaluate the re-
sults with BLEU (Papineni et al., 2002), ME-
TEOR (Denkowski and Lavie, 2014), and chrF++
(Popovi¢, 2015) metrics. We also use Mover-
Score (Zhao et al., 2019), BERTScore (Zhang et al.,
2020), and BLEURT (Sellam et al., 2020) metrics,
as they employ contextual and semantic knowledge
and thus depend less on the surface symbols. Addi-
tionally, we perform a human evaluation (cf. §5.4)
quantifying the fluency, semantic adequacy and
meaning similarity of the generated texts.

5.1 Results on AMR-to-Text

Table 1 shows our results for the setting without ad-
ditional pretraining, with additional self-supervised
task-adaptive pretraining solely using the collected
Gigaword sentences (LMA), and with additional su-
pervised task adaptation (STA), before fine-tuning.
We also report several recent results on the AMR
test set. Mager et al. (2020) and Harkous et al.
(2020) employ GPT-2 in their approaches. Note
that GPT-2 only consists of a Transformer-based
decoder.

Only considering approaches without task adap-
tation, BART e already achieves a considerable
improvement of 5.77 BLEU and 3.98 METEOR
scores over the previous state of the art. With a
BLEU score of 45.80, T5jyge performs best. The

other metrics follow similar trends. See Table 13
in Appendix for evaluation with more metrics. The
strong performance of both BART and T5 in the
AMR dataset suggests that PLMs can infer the
AMR structure by a simple linear sequence of the
graph, in contrast to GNN-based models that ex-
plicitly consider the graph structure using message-
passing between adjacent nodes (Beck et al., 2018).

Task-specific Adaptation. LMA already brings
some gains with T5 benefitting more than BART
in most metrics. It still helps less than STA even
though we only have automatically generated an-
notations. This suggests that the performance in-
creases with STA do not only come from additional
exposure to task-specific target texts and that the
models learn how to handle graphs and the graph-
text correspondence even with automatically gener-
ated AMRs. After STA, TS achieves 49.72 BLEU
points, the new state of the art for AMR-to-text
generation. Interestingly, gains from STA with 2M
over 200K are larger in BART than in T5, suggest-
ing that large amounts of silver data may not be
required for a good performance with T5.

In general, models pretrained on the STA setup
converge faster than without task-specific adapta-
tion. For example, T35y Without additional pre-
training converges after 5 epochs of fine-tuning
whereas T5jage With STA already converges after 2
epochs.

5.2 Results on WebNLG

Table 2 shows the results for the WebNLG test
set. Neural pipeline models (Moryossef et al.,
2019; Castro Ferreira et al., 2019) achieve strong
performance in the unseen dataset. On the other

215

81



Model BLEU M BT Model AMR
Koncel et al. 2019 1430 18.80 - F MS
An (2019) 15.1019.50 - Mager et al. (2020) 5694  5.08%
Schmitt et al. (2020) 17.33 21.43 - A AB
Ribeiro et al. (2020 1801 2223 Harkous et al. (2020) 5.78 5.47
ibeiro et al. (2020) : : - TSlarge 6.55%  6.44¢
BART a5 2201 2354 -13.02 BART rge 6.707 5.728¢
BART arec 23.65 25.19 -10.93 Reference 5914 -
TSsmall 20.22 21.62 -24.10
TSbase 2073 2188 -2103  _Model WebNLG
TS1arge 22.15 2373 -13.96 F SA
with task-adaptive pretraining Castro Ferreira et al. (2019) 5.524 4.774
BART)rge + LMA 2530 2554 -08.79 Harkous et al. (2020) 5.7423 6.215
B
T5arge + LMA 2292 2440 -10.39 TStarge 6.71%  6.63
BART rge 6.53¢ 6.508
BART yge + STA 25.66 25.74 -08.97 Reference 5.898 6.478
T51arge + STA 23.69 2492 -08.94

Table 3: Results on AGENDA test set. Bold (Italic)
indicates best scores without (with) task-adaptive pre-
training.

hand, fully end-to-end models (Ribeiro et al., 2020;
Schmitt et al., 2020) have strong performance on
the seen dataset and usually perform poorly in un-
seen data. Models that explicitly encode the graph
structure (Ribeiro et al., 2020; Zhao et al., 2020a)
achieve the best performance among approaches
that do not employ PLMs. Note that T5 is also
used in Kale (2020). Differences in our T5 setup
include a modified model vocabulary, the use of
beam search, the learning rate schedule and the
prefix before the input graph. Our T5 approach
achieves 59.70, 65.05 and 54.69 BLEU points on
all, seen and unseen sets, the new state of the art.

We conjecture that the performance gap between
seen and unseen sets stems from the advantage ob-
tained by a model seeing examples of relation-text
pairs during fine-tuning. For example, the relation
party (political party) was never seen during train-
ing and the model is required to generate a text that
verbalizes the tuple: (Abdul Taib Mahmud, party,
Parti Bumiputera Sarawak). Interestingly, BART
performs much worse than TS on this benchmark,
especially in the unseen partition with 9.7 BLEU
points lower compared to T5.

For lack of a suitable data source (cf. §4), we
did not explore our LMA or STA approaches for
WebNLG. However, we additionally discuss cross-
domain STA in Appendix B.

5.3 Results on AGENDA

Table 3 lists the results for the AGENDA test set.
The models also show strong performance on this

Table 4: Fluency (F), Meaning Similarity (MS) and Se-
mantic Adequacy (SA) obtained in the human evalua-
tion. Differences between models which have a letter in
common are not statistically significant and were deter-
mined by pairwise Mann-Whitney tests with p < 0.05.

dataset. We believe that their capacity to generate
fluent text helps when generating paper abstracts,
even though they were not pretrained in the sci-
entific domain. BART)ye shows an impressive
performance with a BLEU score of 23.65, which is
5.6 points higher than the previous state of the art.

Task-specific =~ Adaptation. On  AGENDA,
BART benefits more from our task-adaptive
pretraining, achieving the new state of the art of
25.66 BLEU points, a further gain of 2 BLEU
points compared to its performance without task
adaptation. The improvements from task-adaptive
pretraining are not as large as for AMR. We
hypothesize that this is due to the fact that
the graphs do not completely cover the target
text (Koncel-Kedziorski et al., 2019), making
this dataset more challenging. See Table 12 in
Appendix for more automatic metrics.

5.4 Human Evaluation

To further assess the quality of the generated text,
we conduct a human evaluation on AMR and
WebNLG via crowd sourcing on Amazon Mechan-
ical Turk.” Following previous works (Gardent
et al., 2017; Castro Ferreira et al., 2019), we assess
three quality criteria: (i) Fluency (i.e., does the text
flow in a natural, easy-to-read manner?), for AMR
and WebNLG; (i1)) Meaning Similarity (i.e., how

“We exclude AGENDA because its texts are scientific in
nature and annotators are not necessarily Al experts.

216

82



Original Input

¢ Arrabbiata sauce * country ¢ Italy e Italy * demonym e
Italians e Italy e capital * Rome ¢ Italy ¢ language * Italian S
language e Italy * leader Name * Sergio Mattarella

l Tsorder

Arrabbiata sauce can be found in Italy where Sergio Mattarella
is the leader and the capital city is Rome. Italians are the
people who live there and the language spoken is Italian.

Corrupted Input

* Rome e Italy e Italy  language  capital  Italy * Italians
huffle Italy  Italy * Sergio Mattarella  Arrabbiata sauce ¢ leader

Name * country ® demonym e Italian language

1 Tsshuf

Italians live in Italy where the capital is Rome and the
language is Italian. Sergio Mattarella is the leader of the
country and arrabbiata sauce can be found there.

Reference: Arrabbiata sauce is from Italy where the capital is Rome, Italian is the language spoken and Sergio Mattarella is a leader.

Figure 2: Example graph with 5 triples, from WebNLG dev linearized with the neutral separator tag, denoted e, (top
left), its shuffled version (top right), texts generated with two fine-tuned versions of TS5y, and a gold reference
(bottom). Note that TS5 can produce a reasonable text even when the input triples are shuffled randomly.

60.0
50.0
--e- WebNLG-Seen - T5
) —~WebNLG-Seen - BART|
w 40.0 —=—AMR - T5
o ——AMR - BART
—»-AGENDA - TS
30.0 —+—AGENDA - BART

20.0

10.0

1 10 40 70
% of Training Data

Figure 3: Performance of BART}, and TSy, in the
dev set when experimenting with different amounts of
training data.

close in meaning is the generated text to the refer-
ence sentence?) for AMR; (ii) Semantic Adequacy
(i.e., does the text clearly express the data?) for
WebNLG. We randomly select 100 generated texts
of each model, which the annotators then rate on
a 1-7 Likert scale. For each text, we collect scores
from 3 annotators and average them.'?

Table 4 shows the results. Our approaches im-
prove the fluency, meaning similarity, and semantic
adequacy on both datasets compared to other state-
of-the-art approaches with statistically significant
margins (p<0.05). Interestingly, the highest flu-
ency improvement (40.97) is on AMR, where our
approach also has the largest BLEU improvement
(+8.10) over Harkous et al. (2020). Finally, our
models score higher than the references in fluency
with statistically significant margins, highlighting
their strong language generation abilities.'!

5.5 Limiting the Training Data

In Figure 3, we investigate the PLMs’ performance,
measured with BLEU score, while varying (from
1% to 100%) the amount of training data used for

!%Inter-annotator agreement for the three criteria ranged
from 0.40 to 0.79, with an average Krippendorff’s o of 0.56.

"Examples of fluent generations can be found in the Ta-
bles 15 and 16 in Appendix.

Model AMR WebNLG AGENDA
T50Mder 3683 63.41 19.86
T5hf  15.56 61.54 19.08

Table 5: Impact (measured with BLEU) of using a bag
of entities and relations (shuf) as input for TSgman-

fine-tuning. We find that, when fine-tuned with
only 40% of the data, both BART and T5 already
greatly improve the performance compared to using
the entire training data in all three benchmarks. For
example, BART fine-tuned on 40% of AMR train-
ing data achieves 91% of the BLEU score when
fine-tuned on full data.

Note that in a low-resource scenario in AMR and
WebNLG, T5 considerably outperforms BART. In
particular, with only 1% of training examples, the
difference between TS and BART is 7.51 and 5.64
BLEU points for AMR and WebNLG, respectively.
This suggests that TS5 is more data efficient when
adapting to the new task, likewise our findings in
AMR-STA (cf. §5.1).

6 Influence of the Graph Structure

We conduct further experiments to examine how
much the PLMs consider the graph structure. To
this end, we remove parentheses in AMRs and re-
place (H), (R), and (T") tokens with neutral sep-
arator tokens, denoted e, for KGs, such that the
graph structure is only defined by the order of node
and edge labels. If we shuffle such a sequence, the
graph structure is thus completely obscured and
the input effectively becomes a bag of node and
edge labels. See Figure 2 for an example of both a
correctly ordered and a shuffled triple sequence.

6.1 Quantitative Analysis

Table 5 shows the effect on T5’s performance when
its input contains correctly ordered triples (T5°")
217

83



T/F

Input Fact

T sorder

Tsshuf

(1 S

 German language e« Antwerp e
Antwerp « Antwerp International Air-
port « Belgium « Belgium « Charles
Michel « city Served « leader Name e
Belgium « language « country

Antwerp International Airport serves
the city of Antwerp. German is the
language spoken in Belgium where
Charles Michel is the leader.

Antwerp International Airport serves
the city of Antwerp in Belgium where
the German language is spoken and
Charles Michel is the leader.

@ T

(3) F

« California « is Part Of « US « California
« capital « Sacramento
» US « is Part Of « California « California
« capital « Sacramento

California is part of the United States
and its capital is Sacramento.

California’s capital is Sacramento and
the United States is part of California.

California is part of the United States
and its capital is Sacramento.
California is part of the United States
and its capital is Sacramento.

@ T

5) F

o Amarillo, Texas e« is Part Of « United
States
« United States « is Part Of « Amarillo,
Texas

Amarillo, Texas is part of the United
States.
Amarillo, Texas is part of the United
States.

Amarillo, Texas is part of the United
States.
Amarillo, Texas is part of the United
States.

Table 6: Example generations from shuffled (S), true (T), and corrupted (F) triple facts by TS5man, fine-tuned on

correctly ordered triples (order) and randomly shuffled input (shuf).

vs. shuffled ones (T5*"f) for both training and
evaluation. We first observe that T5%" only has
marginally lower performance (around 2-4%) with
the neutral separators than with the (H)/(R)/(T)
tags or parentheses.'> We see that as evidence
that the graph structure is similarly well captured
by T5°%". Without the graph structure (T5%),
AMR-to-text performance drops significantly. Pos-
sible explanations of this drop are: (i) the relative
ordering of the AMR graph is known to correlate
with the target sentence order (Konstas et al., 2017);
(i1) in contrast to WebNLG that contains common
knowledge, the AMR dataset contains very specific
sentences with higher surprisal;'® (iii) AMRs are
much more complex graph structures than the KGs
from WebNLG and AGENDA.'*

On the other hand, KG-to-text performance is
not much lower, indicating that most of the PLMs’
success in this task stems from their language mod-
eling rather than their graph encoding capabilities.
We hypothesize that a PLM can match the entities
in a shuffled input with sentences mentioning these
entities from the pretraining or fine-tuning phase. It
has recently been argued that large PLMs can recall
certain common knowledge facts from pretraining
(Petroni et al., 2019; Bosselut et al., 2019).

6.2 Qualitative Analysis

The example in Figure 2 confirms our impression.
T5™ produces a text with the same content as

12See a more fine-grained comparison in Appendix C.

Bperplexities estimated on the dev sets of AMR and
WebNLG datasets, with GPT-2 fine-tuned on the correspond-
ing training set, are 20.9 and 7.8, respectively.

“In Appendix D, we present the graph properties of the
datasets and discuss the differences.

T5°7" but does not need the correct triple structure
to do so. Example (1) in Table 6 shows the output
of both models with shuffled input. Interestingly,
even T5%%" produces a reasonable and truthful text.
This suggests that previously seen facts serve as a
strong guide during text generation, even for mod-
els that were fine-tuned with a clearly marked graph
structure, suggesting that T5°"%" also relies more
on language modeling than the graph structure. It
does have more difficulties covering the whole in-
put graph though. The fact that Antwerp is located
in Belgium is missing from its output.

To further test our hypothesis that PLMs make
use of previously seen facts during KG-to-text gen-
eration, we generate example true facts, corrupt
them in a controlled setting, and feed them to both
T5°7r and T5*M to observe their output (examples
(2)—(5) in Table 6). The model trained on correctly
ordered input has learned a bit more to rely on the
input graph structure. The false fact in example (3)
with two triples is reliably transferred to the text by
T5°" but not by T5*™!, which silently corrects it.
Also note that, in example (5), both models refuse
to generate an incorrect fact. More examples can
be found in Table 14 in the Appendix.

Our qualitative analysis illustrates that state-of-
the-art PLMs, despite their fluency capacities (cf.
§5.4), bear the risk of parroting back training sen-
tences while ignoring the input structure. This issue
can limit the practical usage of those models as, in
many cases, it is important for a generation model
to stay true to its input (Wiseman et al., 2017; Falke
et al., 2019).

218

84



7 Conclusion

We investigated two pretrained language models
(PLMs) for graph-to-text generation and show that
the pretraining strategies, language model adapta-
tion (LMA) and supervised task adaptation (STA),
can lead to notable improvements. Our approaches
outperform the state of the art by a substantial mar-
gin on three graph-to-text benchmarks. Moreover,
in a human evaluation our generated texts are per-
ceived significantly more fluent than human refer-
ences. Examining the influence of the graph struc-
ture on the text generation process, we find that
PLMs may not always follow the graph structure
and instead use memorized facts to guide the gen-
eration. A promising direction for future work
is to explore ways of injecting a stronger graph-
structural bias into PLMs, thus possibly leveraging
their strong language modeling capabilities and
keeping the output faithful to the input graph.

Acknowledgments

We thank our anonymous reviewers for their
thoughtful feedback. Leonardo F. R. Ribeiro is
supported by the German Research Foundation
(DFG) as part of the Research Training Group
“Adaptive Preparation of Information form Hetero-
geneous Sources” (AIPHES, GRK 1994/1) and as
part of the DFG funded project UKP-SQuARE with
the number GU 798/29-1. Martin Schmitt is sup-
ported by the BMBF as part of the project MLWin
(011IS18050) and by the German Academic Schol-
arship Foundation (Studienstiftung des deutschen
Volkes).

References

Waleed Ammar, Dirk Groeneveld, Chandra Bhagavat-
ula, Iz Beltagy, Miles Crawford, Doug Downey, Ja-
son Dunkelberger, Ahmed Elgohary, Sergey Feld-
man, Vu Ha, Rodney Kinney, Sebastian Kohlmeier,
Kyle Lo, Tyler Murray, Hsu-Han Ooi, Matthew Pe-
ters, Joanna Power, Sam Skjonsberg, Lucy Wang,
Chris Wilhelm, Zheng Yuan, Madeleine van Zuylen,
and Oren Etzioni. 2018. Construction of the litera-
ture graph in semantic scholar. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 3 (Industry
Papers), pages 84-91, New Orleans - Louisiana. As-
sociation for Computational Linguistics.

Bang An. 2019. Repulsive bayesian sampling for di-
versified attention modeling. In 4th workshop on
Bayesian Deep Learning (NeurlPS 2019).

Soren Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
In Proceedings of the 6th International The Seman-
tic Web and 2nd Asian Conference on Asian Se-
mantic Web Conference, ISWC’07/ASWC’07, page
722735, Berlin, Heidelberg. Springer-Verlag.

Xuefeng Bai, Yulong Chen, Linfeng Song, and Yue
Zhang. 2021. Semantic representation for dialogue
modeling. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 4430-4445, Online. Association for Computa-
tional Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178—-186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018.  Graph-to-sequence learning using gated
graph neural networks. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 273-283, Melbourne, Australia. Association
for Computational Linguistics.

Anja Belz, Michael White, Dominic Espinosa, Eric
Kow, Deirdre Hogan, and Amanda Stent. 2011.
The first surface realisation shared task: Overview
and evaluation results. In Proceedings of the 13th
European Workshop on Natural Language Genera-
tion, pages 217-226, Nancy, France. Association for
Computational Linguistics.

Claire Bonial, Lucia Donatelli, Mitchell Abrams,
Stephanie M. Lukin, Stephen Tratz, Matthew Marge,
Ron Artstein, David Traum, and Clare Voss. 2020.
Dialogue-AMR: Abstract Meaning Representation
for dialogue. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
684—695, Marseille, France. European Language Re-
sources Association.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for au-
tomatic knowledge graph construction. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 47624779,
Florence, Italy. Association for Computational Lin-
guistics.

Deng Cai and Wai Lam. 2020a. AMR parsing via
graph-sequence iterative inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1290-1301, On-
line. Association for Computational Linguistics.

219

85



Deng Cai and Wai Lam. 2020b. Graph transformer for
graph-to-sequence learning. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 7464-7471. AAAI
Press.

Thiago Castro Ferreira, Chris van der Lee, Emiel
van Miltenburg, and Emiel Krahmer. 2019. Neu-
ral data-to-text generation: A comparison between
pipeline and end-to-end architectures. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 552-562, Hong
Kong, China. Association for Computational Lin-
guistics.

Jianpeng  Cheng, Devang Agrawal,  Héctor
Martinez Alonso, Shruti Bhargava, Joris Driesen,
Federico Flego, Dain Kaplan, Dimitri Kartsaklis,
Lin Li, Dhivya Piraviperumal, Jason D. Williams,
Hong Yu, Diarmuid O Séaghdha, and Anders
Johannsen. 2020. Conversational semantic parsing
for dialog state tracking. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8107-8117,
Online. Association for Computational Linguistics.

Marco Damonte and Shay B. Cohen. 2019. Structural
neural encoders for AMR-to-text generation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 3649-3658,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376-380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Nan Duan, Duyu Tang, Peng Chen, and Ming Zhou.
2017. Question generation for question answering.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
866—-874, Copenhagen, Denmark. Association for
Computational Linguistics.

Tobias Falke, Leonardo F. R. Ribeiro, Prasetya Ajie
Utama, Ido Dagan, and Iryna Gurevych. 2019.
Ranking generated summaries by correctness: An in-
teresting but challenging application for natural lan-
guage inference. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2214-2220, Florence, Italy. Associa-
tion for Computational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124—-133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. Journal of Artifi-
cial Intelligence Research, 61(1):65-170.

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and Wei
Lu. 2019. Densely connected graph convolutional
networks for graph-to-sequence learning. Transac-
tions of the Association for Computational Linguis-
tics, 7:297-312.

Suchin Gururangan, Ana Marasovié, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342-8360, Online. Association for Computational
Linguistics.

Hamza Harkous, Isabel Groves, and Amir Saffari. 2020.
Have your text and use it too! end-to-end neural
data-to-text generation with semantic fidelity. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 2410-2424,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Alexander Miserlis Hoyle, Ana Marasovi¢, and
Noah A. Smith. 2021. Promoting graph awareness
in linearized graph-to-text generation. In Findings
of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 944-956, Online. Asso-
ciation for Computational Linguistics.

Mihir Kale. 2020. Text-to-text pre-training for data-to-
text tasks. arXiv e-prints.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Thomas N. Kipf and Max Welling. 2017.  Semi-
Supervised Classification with Graph Convolutional
Networks. In Proceedings of the 5th International

Conference on Learning Representations, ICLR
2017.

220

86



Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019.
Text Generation from Knowledge Graphs with
Graph Transformers. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 2284-2293, Minneapolis, Minnesota.
Association for Computational Linguistics.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural amr:
Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146—157, Vancouver,
Canada. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871-7880, Online. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv e-prints.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of enti-
ties, relations, and coreference for scientific knowl-
edge graph construction. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3219-3232, Brussels, Bel-
gium. Association for Computational Linguistics.

Manuel Mager, Ramén Fernandez Astudillo, Tahira
Naseem, Md Arafat Sultan, Young-Suk Lee, Radu
Florian, and Salim Roukos. 2020. GPT-too: A
language-model-first approach for AMR-to-text gen-
eration. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1846—1852, Online. Association for Computa-
tional Linguistics.

Diego Marcheggiani and Laura Perez Beltrachini. 2018.
Deep graph convolutional encoders for structured
data to text generation. In Proceedings of the 11th
International Conference on Natural Language Gen-
eration, pages 1-9, Tilburg University, The Nether-
lands. Association for Computational Linguistics.

Seungwhan Moon, Pararth Shah, Anuj Kumar, and Ra-
jen Subba. 2019. OpenDialKG: Explainable conver-
sational reasoning with attention-based walks over
knowledge graphs. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 845-854, Florence, Italy. Associ-
ation for Computational Linguistics.

221

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.

Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 2267-2277, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-

Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311-318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Fabio Petroni, Tim Rocktéischel, Sebastian Riedel,

Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463-2473, Hong Kong, China. As-
sociation for Computational Linguistics.

Maja Popovi¢. 2015. chrF: character n-gram F-score

for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392-395, Lisbon, Portugal. Association for
Computational Linguistics.

Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand

Sivaprasad, Chiachun Hsieh, Nazneen Fatema Ra-
jani, Xiangru Tang, Aadit Vyas, Neha Verma,
Pranav Krishna, Yangxiaokang Liu, Nadia Irwanto,
Jessica Pan, Faiaz Rahman, Ahmad Zaidi, Murori
Mutuma, Yasin Tarabar, Ankit Gupta, Tao Yu,
Yi Chern Tan, Xi Victoria Lin, Caiming Xiong, and
Richard Socher. 2020. Dart: Open-domain struc-
tured data record to text generation. arXiv e-prints.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,

Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. arXiv
e-prints.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine

Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Leonardo F. R. Ribeiro, Claire Gardent, and Iryna

Gurevych. 2019. Enhancing AMR-to-text genera-
tion with dual graph representations. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3183-3194, Hong
Kong, China. Association for Computational Lin-
guistics.

87



Leonardo F. R. Ribeiro, Jonas Pfeiffer, Yue Zhang, and
Iryna Gurevych. 2021a. Smelting gold and silver
for improved multilingual amr-to-text generation. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2021, Punta Cana, November 7-11, 2021.

Leonardo F. R. Ribeiro, Yue Zhang, Claire Gardent,
and Iryna Gurevych. 2020. Modeling global and
local node contexts for text generation from knowl-
edge graphs. Transactions of the Association for
Computational Linguistics, 8:589—604.

Leonardo F. R. Ribeiro, Yue Zhang, and Iryna
Gurevych. 2021b. Structural adapters in pretrained
language models for amr-to-text generation. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021,
Punta Cana, November 7-11, 2021.

Martin Schmitt, Leonardo F. R. Ribeiro, Philipp Dufter,
Iryna Gurevych, and Hinrich Schiitze. 2021. Mod-
eling graph structure via relative position for text
generation from knowledge graphs. In Proceedings
of the Fifteenth Workshop on Graph-Based Methods
for Natural Language Processing (TextGraphs-15),
pages 10-21, Mexico City, Mexico. Association for
Computational Linguistics.

Martin Schmitt, Leonardo F. R. Ribeiro, Philipp Dufter,
Iryna Gurevych, and Hinrich Schiitze. 2020. Mod-
eling graph structure via relative position for better
text generation from knowledge graphs. arXiv e-
prints.

Thibault Sellam, Dipanjan Das, and Ankur Parikh.
2020. BLEURT: Learning robust metrics for text
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7881-7892, Online. Association for Computa-
tional Linguistics.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for AMR-
to-text generation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1616—
1626, Melbourne, Australia. Association for Compu-
tational Linguistics.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluis Marquez, and Joakim Nivre. 2008. The
CoNLL 2008 shared task on joint parsing of syn-
tactic and semantic dependencies. In CoNLL 2008:
Proceedings of the Twelfth Conference on Computa-
tional Natural Language Learning, pages 159-177,
Manchester, England. Coling 2008 Organizing Com-
mittee.

Bayu Distiawan Trisedya, Jianzhong Qi, Rui Zhang,
and Wei Wang. 2018. GTR-LSTM: A triple encoder
for sentence generation from RDF data. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1627-1637, Melbourne, Australia. As-
sociation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998-6008. Curran Asso-
ciates, Inc.

Pavlos Vougiouklis, Hady Elsahar, Lucie-Aimée
Kaffee, Christophe Gravier, Frédérique Laforest,
Jonathon Hare, and Elena Simperl. 2018. Neu-
ral wikipedian: Generating textual summaries from
knowledge base triples. Journal of Web Semantics,
52-53:1 - 15.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784—
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Tianming Wang, Xiaojun Wan, and Hanqi Jin. 2020.
Amr-to-text generation with graph transformer.
Transactions of the Association for Computational
Linguistics, 8:19-33.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253-2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le.
2019a. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. In Advances in
Neural Information Processing Systems, volume 32,
pages 5753-5763. Curran Associates, Inc.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le.
2019b.  Xlnet: Generalized autoregressive pre-
training for language understanding. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 32, pages 5753—
5763. Curran Associates, Inc.

Shaowei Yao, Tianming Wang, and Xiaojun Wan.
2020. Heterogeneous graph transformer for graph-
to-sequence learning. In Proceedings of the 58th An-
nual Meeting of the Association for Computational

222

88



Linguistics, pages 7145-7154, Online. Association
for Computational Linguistics.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Wal-
ter Lasecki, and Dragomir Radev. 2019. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962—
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Chao Zhao, Marilyn Walker, and Snigdha Chaturvedi.
2020a. Bridging the structural gap between encod-
ing and decoding for data-to-text generation. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2481—
2491, Online. Association for Computational Lin-
guistics.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. MoverScore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 563-578, Hong
Kong, China. Association for Computational Lin-
guistics.

Yanbin Zhao, Lu Chen, Zhi Chen, Ruisheng Cao,
Su Zhu, and Kai Yu. 2020b. Line graph enhanced
AMR-to-text generation with mix-order graph at-
tention networks. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 732-741, Online. Association for
Computational Linguistics.

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min
Zhang, and Guodong Zhou. 2019. Modeling graph
structure in transformer for better AMR-to-text gen-
eration. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5459-5468, Hong Kong, China. Association for
Computational Linguistics.

223



Appendices

In this supplementary material, we provide: (i)
additional information about the data used in the
experiments, and (ii) results that we could not fit
into the main body of the paper.

A AMR Input Representation

We test three variants for the representation of the
input AMR graph. Following previous work (Kon-
stas et al., 2017; Mager et al., 2020), we evaluate
(i) only node representation, where the edge in-
formation is removed from the linearization; (ii)
depth-first search (DFS) through the graph and the
(iii)) PENMAN representation. An example for each
representation is illustrated below:

only nodes value interrogative commodity

true
DFS value :mode interrogative

:ARG1l commodity :ARGl-of
true

PENMAN ( value :mode interrogative
:ARG1l ( commodity ) :ARGl-of
( true ) )

In this experiment we employ TS5gnan. Table 7
shows the results on the AMR development set.
The PENMAN representation leads to best results.
Therefore, this representation is used in the rest of
the experiments.

Input BLEU
only nodes  28.22
DES 34.94
PENMAN 38.27

Table 7: Results on the AMR dev set using TS5y for
different AMR linearizations.

B Cross-domain Adaptation

For a given task, it is not always possible to collect
closely related data — as we saw, e.g., for WebNLG.
We therefore report STA in a cross-domain set-
ting for the different KG-to-text benchmarks. Ta-
ble 8 shows the results using BARTp,se and TSpyge.-
While the texts in KGAIA and AGENDA share the
domain of scientific abstracts, texts in WebNLG
are more general. Also note that WebNLG graphs
do not share any relations with the other KGs. For
BART},s, STA increases the performance in the
cross-domain setting in most of the cases. For

T5pase, STA in KGAIA improves the performance
on WebNLG.

In general, we find that exploring additional
adaptive pretraining for graph-to-text generation
can improve the performance even if the data do
not come from the same domain.

STA on Fine-tuned & Evaluated on

WebNLG-Seen AGENDA
BART} e

None 58.71 22.01

KGAIA 63.20 23.48

WebNLG - 21.98

AGENDA 61.25 -

T5base

None 62.93 20.73

KGAIA 63.19 22.44

WebNLG - 20.27

AGENDA 62.75 -

Table 8: Effect (measured with BLEU score) of cross-
domain STA.

C Input Graph Size

Figure 4 visualizes TS5gmai’s performance with
respect to the number of input graph triples in
WebNLG dataset. We observe that T5°" and
T5"! perform similarly for inputs with only one
triple but that the gap between the models increases
with larger graphs. While it is obviously more dif-
ficult to reconstruct a larger graph than a smaller
one, this also suggests that the graph structure is
more taken into account for graphs with more than
2 triples. For the unseen setting, the performance
gap for these graphs is even larger, suggesting that
the PLM can make more use of the graph structure
when it has to.

85 : ><T507d€" seen
| | - T5°" seen

-A-T5%% ynseen
T55"! unseen

80{
+75] Mo
x |

L 701

T |
O 651

557+

Number of Triples

Figure 4: chrF++ scores with respect to the number of
triples for WebNLG seen and unseen test sets.

D Graph Statistics

In Table 9, we present the graph properties of the
three datasets. All statistics are calculated using

224

90



AMR WebNLG AGENDA
min, avg and max number of nodes 2 28.6 335 2 6.8 15 2 105 80
min, avg and max node degrees 1 22 21 1 1.7 7 1 1.67 15
min, avg and max number of edges 1 323 554 1 59 14 1 88 124
min, avg and max graph diameter 1 122 40 1 41 10 1 31 20
min, avg and max shortest path length 0 749 40 0 24 10 0 23 20

Table 9: Graph statistics of AMR, WebNLG and AGENDA datasets. The values are calculated using the training
data. Note that AMR graphs contain a more complex structure than WebNLG and AGENDA graphs.

the Levi transformation (Beck et al., 2018) of the
undirected version of the graphs, where edges are
also considered nodes in the graph. WebNLG and
AGENDA datasets contain disconnected graphs,
and we use the largest subgraph to calculate the
diameter. Note that AMR graphs have a much
more complex structure: (i) they have more nodes
and edges than WebNLG and AGENDA graphs;
(i1) the average graph diameter and the average
shortest path between nodes in AMRs are at least
three times larger than in WebNLG and AGENDA
graphs; (iii) nodes in AMRs have larger degrees
than nodes in WebNLG and AGENDA graphs.

AMR17 WebNLG AGENDA

#Train 36,521 18,102 38,720
#Dev 1,368 872 1,000
#Test 1,371 1,862 1,000
#Relations 155 373 7
Avg #Tokens 16.1 31.5 157.9

Table 10: Statistics for the graph-to-text benchmarks.

Title  Abstract KG
Vocab 48K 173K 113K
Tokens 2.1M 31.7M 9.6M
Entities - - 3.TM
Avg Length 11.1 167.1 -
Avg #Nodes - - 19.9
Avg #Edges - - 9.4

Table 11: Statistics for the KGAIA dataset.

Model chrF++ BS (F1) MS
Schmitt et al. (2020) 44.53 - -
Ribeiro et al. (2020) 46.37 - -
BART} e 48.02 89.36  34.33
BART rge 50.44 88.74  32.24
TSsmal 4491 88.56  30.25
base 48.14 88.81 31.33
large 48.14 89.60  35.23
with task-adaptive pretraining
BART yrge + LMA 51.33 89.12 3342
T51arge + LMA 49.37 89.75  36.13
BART 3rge + STA 51.63 89.27  34.28
T51arge + STA 50.27 89.93  36.86

Table 12: Results of the chrF++, BertScore (BS)
and MoverScore (MS) scores for AGENDA test set.
Bold (Italic) indicates best scores without (with) task-

adaptive pretraining.

Model chrF++ BS (F1) MS
Guo et al. (2019) 57.30 - -
Zhu et al. (2019) 64.05 - -
Cai and Lam (2020b) 59.40 - -
Wang et al. (2020) 65.80 - -
Yao et al. (2020) 65.60 - -
based on PLMs
Mager et al. (2020) 63.89 - -
BART} e 66.65 9522 60.78
BART rge 71.06  96.08 65.74
TSsmal 68.78 95.62 63.70
base 70.81 9599 65.63
large 72.57 96.27 67.37
with task-adaptive pretraining
BART yrge + LMA 71.14 9594 64.75
TSlarge + LMA 72.83 9632 67.44
BART 4ree + STA (200K) 7226  96.21 66.75
BART yec + STA 2M)  73.58  96.43 68.14
T51arge + STA (200K) 74.09 96.51 68.86
TS1arge + STA (2M) 74.79  96.59 69.53

Table 13: Results of the chrF++, BertScore (BS) and
MoverScore (MS) scores for the LDC2017T10 test set.
Bold (Italic) indicates the best score without (with)
task-adaptive pretraining.

225

91



T/F Input Facts T5erder 50l
(1) S« capital « leader Name « London « The capital city is London, the cur- The capital of the United Kingdom
Pound sterling « United Kingdom e rency is the Pound sterling and the is London, the currency is the Pound

leader Name o United Kingdom « Eliza-
beth II » United Kingdom e Boris John-

son » London « currency

leader is Elizabeth II. Boris Johnson

is also a leader in the UK. Elizabeth II and Boris Johnson.

sterling and the country is lead by

(2) T «Germany e capital « Berlin Berlin is the capital of Germany. Berlin is the capital of Germany.

(3) F e« Berlin « capital « Germany Berlin’s capital is Germany. Berlin is the capital of Germany.

(4) F o Leinster « is Part Of « Dublin Leinster is part of Dublin. Leinster is part of Dublin.

(5) F < Rome » capital « Italy Rome’s capital is Italy. Rome is the capital of Italy.

(6) T «lItaly » capital « Rome Italy’s capital is Rome. Rome is the capital of Italy.

(7) T  Texas o capital « Austin « Andrews Austin is the capital of Texas where Austin is the capital of Texas where
County Airport « location « Texas Andrews County Airport is located. Andrews County Airport is located.

(8) F « Austin « capital « Texas « Andrews The capital of Austin is Texas and Andrews County Airport is located

County Airport « location e

Texas Andrews County Airport is located

in Texas.

in Texas where Austin is the capital.

Table 14: Example generations from shuffled (S), true (T), and corrupted (F) triple facts by TSgman, fine-tuned on

correctly ordered triples (order) and randomly shuffled input (shuf).

Examples

D Model
Reference
T5

a1

=

<
BART

Mager et al. (2020)

I had to deal with verbal abuse from my dad for a long 8 years before I
came to uni and honestly, the only reason why I’m here is because it was
the only way out.

I had to deal with 8 years of verbal abuse from my dad before coming to
university and honestly the only reason I'm here is because it’s the only
way out.

I had to deal with my dad’s verbal abuse for 8 years long before coming
to uni and honestly the only reason I’m here is because it’s the only way
out.

i’ve had to deal with verbal abuse from my dad for 8 years (before i came
to uni 1 was honestly the only reason i was here) and it’s only because of
the way it is.

Reference
) T5
.|
Z
G
Z  BART

Harkous et al. (2020)

Aaron Turner is an electric guitar player who has played with the black
metal band Twilight and with Old Man Gloom. Death metal is a musical
fusion of black metal.

Aaron Turner plays the electric guitar and is associated with the band
Twilight. He is also a member of the Old Man Gloom band. Black metal
and death metal are both genres of music.

The black metal genre is a variation of the death metal genre. It is also
where the band, Twilight, and the alternative rock band, Old Man Gloom,
are from. One of the members of the band is Aaron Turner, who plays
the electric guitar.

Aaron Turner, a.k.a. Black Metal, is a member of the Twilight (band)
and Old Man Gloom bands. He also plays electric guitar and has a strong
connection with the Death Metal genre.

Table 15: Examples of text generated by the different models. D refers to the dataset.

226

92



Model

Examples

Reference

in this paper, a new array signal processing technique by using particle swarm
optimization is proposed to identify multipath channel parameters. the proposed
array signal processing technique provides estimates to the channel parameters
by finding a global minimum of an optimization problem. since the optimization
problem is formulated in the cross-ambiguity function (caf) domain of the
transmitted signal and the received array outputs, the proposed array signal
processing technique is called as particle swarm optimization. the performance
of the particle swarm optimization is compared with the space alternating
generalized expectation maximization technique and with another recently
proposed pso based technique for various snr values. simulation results indicate
the superior performance of the pso based technique over mentioned techniques
for all snr values.

TS

this paper, we propose an array signal processing technique based on particle
swarm optimization to estimate the multipath channel parameters from the
received and the transmitted signal in a cross-ambiguity domain. the proposed
array signal processing technique is formulated as an optimization problem
and particle swarm optimization is compared with the generalized expectation
maximization technique. simulation results show that the proposed particle
swarm optimization outperforms the pso based technique for a wide range of snr
values. in addition, the proposed particle swarm optimization is computationally
more efficient than the gem based technique for small snr values.

BART

in this paper, a new array signal processing technique based on particle swarm
optimization is proposed. the proposed array signal processing technique is

used to estimate the multipath channel parameters from the transmitted signal.

the proposed array signal processing technique is formulated as an optimization
problem in the cross-ambiguity domain. the particle swarm optimization is
compared with the generalized expectation maximization technique. simulation
results show that the proposed particle swarm optimization outperforms the pso
based technique for all snr values. furthermore, the proposed particle swarm
optimization is able to estimate the channel parameters more accurately than
the generalized expectation maximization technique.

Ribeiro et al. (2020)

in this paper, a novel array signal processing technique based on particle swarm
optimization is proposed to estimate the multipath channel parameters from the
transmitted signal. the proposed array signal processing technique uses particle
swarm optimization to estimate the multipath channel parameters. the proposed

array signal processing technique is formulated as an optimization problem.

simulation results show that the proposed array signal processing technique
outperforms the conventional generalized expectation maximization technique
and the pso based technique is robust to the snr values.

Table 16: Examples of text generated by the different models trained on the AGENDA dataset.

227

93



Chapter 8

Structural Adapters in Pretrained
Language Models for AMR-to-Text
(Generation

94



Structural Adapters in Pretrained Language Models
for AMR-to-Text Generation

Leonardo F. R. Ribeiro!, Yue Zhang' and Iryna Gurevych'

TUbiquitous Knowledge Processing Lab, Technical University of Darmstadt
tSchool of Engineering, Westlake University
ribeiro@aiphes.tu-darmstadt.de

Abstract

Pretrained language models (PLM) have
recently advanced graph-to-text generation,
where the input graph is linearized into a se-
quence and fed into the PLM to obtain its
representation. However, efficiently encoding
the graph structure in PLMs is challenging
because such models were pretrained on nat-
ural language, and modeling structured data
may lead to catastrophic forgetting of distri-
butional knowledge. In this paper, we pro-
pose STRUCTADAPT, an adapter method to en-
code graph structure into PLMs. Contrary
to prior work, STRUCTADAPT effectively mod-
els interactions among the nodes based on
the graph connectivity, only training graph
structure-aware adapter parameters. In this
way, we incorporate task-specific knowledge
while maintaining the topological structure of
the graph. We empirically show the benefits of
explicitly encoding graph structure into PLMs
using STRUCTADAPT, outperforming the state
of the art on two AMR-to-text datasets, train-
ing only 5.1% of the PLM parameters.'

1 Introduction

Data-to-text tasks aim to generate meaningful and
coherent natural language text that faithfully con-
veys structured data. Some examples of structured
information include tables (Parikh et al., 2020),
Knowledge Graphs (KGs) (Gardent et al., 2017;
Vougiouklis et al., 2018) and Abstract Meaning
Representation (AMR) (Banarescu et al., 2013). In
this work, we focus on AMR-to-text generation
where the goal is to generate a fluent and gram-
matical sentence that is faithful to a given AMR
graph (See Figure 1a). AMR is a semantic for-
malism that has received much research interest
(Song et al., 2018; Guo et al., 2019; Ribeiro et al.,
2019; Opitz et al., 2020, 2021; Fu et al., 2021)
and has been shown to benefit downstream tasks

'Our code and checkpoints are available at
https://github.com/UKPLab/StructAdapt.

(2) AMR graph

achieve-0

:ARGO

(b) Fine-tuning only with graph linearization
power :ARGl she :mod more :purpose achieve :ARGO she

( Pretrained Linearized Model )

More power to her to achieve.

(c) Lightweight fine-tuning with graph structure

K//\\./\\./\/\

power :ARGl she :mod more :purpose achieve :ARGO she

v
( Pretrained Model with StructAdapt )

'

More power to her for her achievements.

Figure 1: (a) AMR for the sentence More power to her
for her achievements. While in (b) the pretrained model
gets as input the graph linearization, in (c) it addition-
ally receives the graph connectivity information.

such as text summarization (Liao et al., 2018) and
machine translation (Song et al., 2019). Both sta-
tistical (Flanigan et al., 2016; Pourdamghani et al.,
2016) and neural methods (Bai et al., 2020; Cai
and Lam, 2020) have been investigated for AMR-
to-text generation, and dominant methods make
use of Graph Neural Networks (GNNs) (Kipf and
Welling, 2017) or Transformers (Vaswani et al.,
2017) for representing the input graph.

Pretrained language models (PLMs) (Devlin
et al., 2019; Liu et al., 2020; Radford et al., 2019;
Lewis et al., 2020) have been shown useful as a
general text representation method, giving much
improved results on a wide range of tasks (Wang
et al., 2018, 2019). However, they cannot be di-
rectly leveraged to benefit AMR-to-text generation,
and more generally graph-to-text generation, due
to the structural nature of the input. One solu-
tion is to transform the structured input into a se-

4269

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 4269—4282
November 7-11, 2021. (©2021 Association for Computational Linguistics

95



quence, which can be directly fed into PLMs (See
Figure 1b). Recent studies (Mager et al., 2020;
Harkous et al., 2020; Ribeiro et al., 2020a, 2021)
transform AMRSs into sequences by top-down lin-
earization (Konstas et al., 2017). It has been shown
that such linearized graph representation can be
used to fine-tune a PLM and improve graph-to-text
generation performances (Kale, 2020).

The above methods, however, suffer from two
salient limitations. First, linearized graph struc-
tures are different in nature from natural language.
As aresult, knowledge from large-scale pretraining
intuitively cannot be fully transferred, and fine-
tuning a sentence representation using linearized
graphs can lead to catastrophic forgetting of such
distributional knowledge (Goodfellow et al., 2014;
Kirkpatrick et al., 2017). Second, a linearized rep-
resentation weakens structural information in the
original graphs by diluting the explicit connectiv-
ity information (i.e., which nodes are connected to
each other), and PLMs must infer how edge con-
nections are specified in the sequence. This fact
was also observed by Song et al. (2018), Beck et al.
(2018) and Ribeiro et al. (2019), who show that
GNN encoders outperform sequential encoders for
AMR-to-text generation without pretraining.

To mitigate the issues, we aim to explicitly en-
code the graph data into a PLM without contami-
nating its original distributional knowledge. To this
end, we propose STRUCTADAPT, a novel structure-
aware adapter that effectively allows leveraging the
input graph structure into PLMs (See Figure 1c¢).
The main idea is to add layer-wise modules, which
extract information from the pretrained layers and
make use of it in a graph-structure encoding. As
shown in Figure 2, STRUCTADAPT employs a graph
convolution in order to learn representations built
upon the graph connectivity over the PLM encoder.
Because STructADAPT is added to each encoder
layer, deep integration of linguistic knowledge and
graph knowledge can be achieved. During fine-
tuning, only the adapter parameters are trained,
whereas the PLM parameters remain unchanged,
in contrast to previous methods based on the graph
linearizations that fine-tune all model parameters.

Empirically we show that STRucTADAPT signifi-
cantly outperforms linearized fine-tuning baselines
and naive sequential adapters (Houlsby et al., 2019).
Moreover, STRUCTADAPT 1S more robust to differ-
ent graph linearizations, better treats reentrancies
(nodes with more than one entering edge) and long-

range node dependencies. Our proposed models,
based on STRUCTADAPT, surpass the current state of
the art on LDC2017T10 and LDC2020T02 datasets
by up to 3.1 BLEU points, training only 5.1% of
the original PLM parameters.

2 Related Work

Fine-tuning for Graph-to-text Generation.
While previous approaches (Song et al., 2018;
Ribeiro et al., 2019; Cai and Lam, 2020; Schmitt
et al., 2021; Zhang et al., 2020b) have shown that
explicitly encoding the graph structure is beneficial,
fine-tuning PLMs on linearized structured data
has established a new level of performance in
data-to-text generation (Nan et al., 2021; Kale,
2020; Ribeiro et al., 2021). Our work can be seen
as integrating the advantage of both graph structure
encoding and PLMs, using a novel adapter module.

Mager et al. (2020) employ cycle consistency
to improve the adequacy of generated texts from
AMRs using GPT-2 (Radford et al., 2019), whereas
Harkous et al. (2020) train a classifier to rank can-
didate generations based on the semantic fidelity.
Ribeiro et al. (2020a) investigate encoder-decoder
PLMs for graph-to-text generation, and show that
task-specific pretraining can lead to notable im-
provements and that PLMs benefit much more from
the graph structure of AMRs than of KGs. Hoyle
et al. (2021) explore the extent to which PLMs are
invariant to graph linearization, finding that models
trained on canonical linearizations fail to general-
ize to meaning-preserving alternatives. Compared
to this line of work, which tunes all PLM param-
eters, our method obtains a further 19x reduction
in task-specific parameters, tuning only 5.1% of
the parameters while achieving state-of-the-art per-
formance, being more robust to permutations of
the graph representation and better encoding larger
graphs.

Lightweight Fine-tuning. Recently, different
approaches have emerged as an alternative training
strategy in order to avoid fine-tuning all parameters
of a PLM. Zhang et al. (2019) train a lightweight
“side” network that is fused with the pretrained
model via summation. Li and Liang (2021) pro-
pose to prepend a trainable continuous prefix as an
alternative to adapters, maintaining comparable per-
formance in data-to-text tasks using fewer trained
parameters. Liu et al. (2021) develop a method
to automatically search prompts in the continuous
space and evaluate it in few-shot NLU tasks. Ham-

4270

96



bardzumyan et al. (2021) propose adversarial re-
programming attempts to learn task-specific word
embeddings to customize the language model for
the downstream task.

Adapter-based approaches (Houlsby et al., 2019;
Rebuffi et al., 2017; Lauscher et al., 2020; Pfeif-
fer et al., 2020a, 2021) introduce a small number
of task specific parameters, keeping the underly-
ing pretrained model fixed. Pfeiffer et al. (2020b)
propose an adapter method to arbitrary tasks and
languages by learning modular language and task
representations. The above works are related to
STRUCTADAPT as it trains much fewer parameters,
but also different because they do not explicitly
encode the input structure, whereas STRUCTADAPT
directly aims to encode it.

3 Graph-to-Text Model

Let Go = (Vo, &0, Ro) denote a rooted and directed
AMR graph with a node set 1 and labeled edges
(u,r,v) € &, where u,v € Vpand r € Ry is a
relation type. An example of an AMR graph and
its corresponding sentence is shown in Figure 1a.

3.1 Encoder-Decoder Architecture

Consider a conditional generation task where the in-
put is a context x and the output y = (y1, ..., Y|y|)
is a sequence of tokens. In AMR-to-text genera-
tion, the context x is the AMR graph and y is the
sentence that describes the AMR graph in natural
language.

Let pg(y | =) denote a PLM parametrized by
¢, where x is encoded by a bidirectional encoder,
and the decoder predicts y autoregressively, condi-
tioned on the encoded x and its left context. We
focus on PLMs based on the Transformer encoder-
decoder architecture (Vaswani et al., 2017), as they
are suitable for conditional text generation. We
define x = LIN(Gp), where LIN is a function
that linearizes G into a sequence of tokens.” Fol-
lowing Damonte and Cohen (2019), as shown in
Figure 1b, we linearize the AMR into a sequence
of nodes and edges using the depth-first traversal of
the canonical human-created AMR.? In a nutshell,
the hidden representation hé e RY, forall z; € x,
is computed by the encoder layer [, where d is the
hidden dimension. The decoder hidden represen-
tation fli € R is computed by the layer [ of the

2The variable of a re-entrant node — node with more than
one incoming edge — is replaced with its co-referring concept.
30Other AMR linearizations are discussed in §6.1.

b) i b N
Adapter
Feed Forward

4
Enc-dec Attention
IS

Self-attention

_____ 7 S

FF Layer

Nonlinearity

Graph Conv

LayerNorm LayerNorm

Figure 2: Integration of the adapter modules with the
(a) encoder and (b) decoder layers of the Transformer;
layer normalization and residual connections are omit-
ted for clarification. (¢c) ADAPT with two feed-forwards
layers. (d) STRUCTADAPT encodes the graph structure
using a graph convolutional layer.

autoregressive decoder at time step 4.

3.2 Fine-tuning

The model is initialized with pretrained parameters
¢ (e.g. using T5, Raffel et al., 2019) and fine-tuned
to optimize the following log-likelihood objective
over each gold instance (z,y):

lyl
mfx logpe(y | ) = Zlogm(yi | Y1:i-1, ).

=1
€]

3.3 Baseline Adapter

We employ an adapter module after the feed-
forward sub-layer of each layer on both encoder
(Figure 2a) and decoder (Figure 2b) of the PLM.
We modify the adapter architecture from Houlsby
et al. (2019), computing the adapter representation
at each layer [, given the encoder layer representa-
tion hé (or fli in the decoder), as follows:

2; = Wi(o(W,n(h)) +hi, ()

where o is the activation function and LN(-) denotes
layer normalization. W! ¢ R™ and Wﬁ, €
R™*? are adapter parameters, and m is the hidden
dimension of the adapter. Figure 2c illustrates the
baseline adapter module, which we call ApapT.

4271

97



Training. Let the set of adapters’ parameters for
the encoder and decoder layers be parametrized by
f. The training objective is the same as Equation
(1), but the set of trainable parameters changes: the
PLM parameters ¢ are frozen and the adapter pa-
rameters ¢ are the only trainable parameters. In
contrast to fine-tuning, adapters substantially re-
duce the number of trainable parameters that are
used to adapt the PLM to the downstream task.

3.4 Limitation

Intuitively, the connection between nodes in the in-
put graph can influence the encoding of = by guid-
ing what to extract from x in order to generate .
Note that in both fine-tuning and Apapt approaches,
the self-attention mechanisms of the encoder layers
treat the sequence of nodes and edges x essentially
as a fully connected graph, greatly diluting the orig-
inal graph structure. In this way, the model has to
retrieve the original connectivity of the graph from
x. For example, the AMR linearization in Figure 1b
has two mentions of the node she, and the model
should capture that both mentions belong to the
same node in the original graph.

4 Structural Adapter

We propose STRUCTADAPT, a lightweight alternative
to injecting structural inductive bias* into PLMs.

We first describe the intuition in §4.1 and define
our method formally in §4.3.

4.1 Intuition

Injecting graph structural bias into graph-to-text
models trained from scratch improves the perfor-
mance compared to linearized approaches (Da-
monte and Cohen, 2019; Ribeiro et al., 2019). How-
ever, it is not straightforward how to effectively
model the input graph structure when fine-tuning
PLMs, which usually are pretrained using natural
language and not structured data.

Our key idea is modeling the graph connectiv-
ity in the encoder utilizing an adapter module, us-
ing information flows between adjacent nodes in a
message-passing update, employing a graph convo-
lution (see Figure 2d). In this way, the graph struc-
ture substantially impacts the node representations,
better encoding the input graph without impacting
the knowledge learned during pretraining. This can

“The model architecture explicitly encodes the graph struc-
ture, i.e., which nodes are connected to each other.

61 (ARGT O CARGT D

ARG1

eishorng @ffshoring>  of> (sho) Ging>

VN EH S S CORL R EH S STy
C:ARGT CARGT

ot >+(sho)~(iing> Cof>(sho)~ing>

Figure 3: An example of (a) an AMR graph structure,
(b) its unlabeled version and three different subword
representations: (c) repl, (d) rep2 and (e) rep3.

lead to more efficient and better AMR-to-text gen-
eration as we will show in §5 and §6. Moreover,
different adapters for distinct graph domains can
be used with the same PLM, yielding a high degree
of parameter sharing for graph-to-text tasks.

4.2 Graph Representation

We convert each Gy into a bipartite graph G; =
(V1, &1), replacing each labeled edge (u, 7, v) € &
with two unlabeled edges e; = (u,r) and es =
(r,v). Similar to Beck et al. (2018), this process
converts the graph into its unlabeled version. Fig-
ure 3 shows an (a) AMR subgraph and (b) its unla-
beled representation.

Note that PLMs typically use a vocabulary with
subword units (Sennrich et al., 2016). This presents
a challenge in how to represent such a graph using
subword tokens. Inspired by Ribeiro et al. (2020b),
we transform each G into a new token graph G =
(V, €), where each token of a node in V; becomes
anode v € V. We convert each edge (u1,v1) €
&1 into a set of edges and connect every token of
uy to every token of v;. That is, an edge (u,v)
will belong to £ if and only if there exists an edge
(ug,v1) € & such that u € u; and v € vy, where
u1 and v; are seen as sets of tokens. Figure 3c
shows an example of the token graph.

4.3 Method

STRUCTADAPT employs a two-layer architecture in
order to re-purpose the PLM for the graph-to-text
task using a small number of new parameters. For-
mally, for each node v € V, given the hidden repre-
sentation h!, from the encoder layer /, STRUCTADAPT
computes:

g! = GraphConv,(LN(h!) {in(h)): v € N()})
= Weo(g,) + by, 3)

4272

98



where N (v) is the immediate neighborhood of v
in G. GraphConv;(+) is the graph convolution that
computes the node representation based on the /o-
cal neighborhood of v, and W' € R¥*™ is a pa-
rameter. Figure 2d illustrates STRUCTADAPT.

Graph Convolution. The graph convolutional
layer allows exploration of distinct strategies for
neighborhood aggregation in order to model struc-
tural information of the input graph. Different
GNN architectures (Velickovic et al., 2018; Xu
et al., 2019) can be employed as the graph convolu-
tion. Moreover, in this way, we avoid changing the
self-attention mechanism of the current pretrained
encoder, allowing to also capture global informa-
tion based on the pretrained knowledge.

Our graph convolution is based on the Graph
Convolutional Network (GCN) proposed by Kipf
and Welling (2017). At each layer [, we compute
the representation of a node v € V as follows:

!
8y = E R
ueN (v) dudy

where N (v) is a set of nodes with incoming edges
to v and v itself, d,, is the degree of v, and W; €

l
W, @

R™*4 is a parameter.

We also consider the variant relational GCN
(RGCN) (Schlichtkrull et al., 2018) as graph con-
volution. RGCN allows capturing the reverse edge
direction so that we can consider the differences
in the incoming and outgoing relations, which has
shown to be beneficial (Beck et al., 2018). In par-
ticular, the node representation is computed as:

ZZ

reER ueN, (v

W Vi
where R denotes the set of relations, i.e., the edge
types default and reverse, N,.(v) denotes the set of
neighbors under relation r € R, and W' € R™*4
encodes the edge type between the nodes u and v.

Note that STRucTADAPT computes the refined
structural node representation z!, based on the local
node context, using as input the global represen-
tation h!, generated by the current PLM encoder
layer. In this way, the model is able to capture
both the global context based on the PLM linguis-
tic knowledge and the local context based on the
graph knowledge. Finally, we employ Apapt into
the decoder in order to adapt the language model
to the graph-to-text task.

>Preliminary experiments with other architecture configu-
rations led to worse or similar performance.

BLEU chrF++ M BERT
Mager et al. (2020) 33.0 63.9
Zhang et al. (2020b) 33.6 63.2
Harkous et al. (2020) 37.7 - -
Hoyle et al. (2021) 449 - 76.54
Ribeiro et al. (2020a) 45.8 72.5 -

stase
FINE-TUNE 38.3+0.3 68.6+0.1 77.840.3 95.5+0.1
FT-TOP2(14.8%) 29.9+0.1 63.040.1 74.1+£02 94.4+02
FT-BoTTOM2(14.8%) 359403 67.04£02 76.940.1 95.340.1
ADAPT(8.5%) 38.7+0.4 69.2402 78.340.1 95.6+0.1
STRUCTADAPT-GCN(2.1%) 39.04£03 69.1+02 78.4402 95.74+0.2
STRUCTADAPT-GCN(8.5%)  41.0+0.5 70.0+0.2 78.4+0.1 95.7+0.1
STRUCTADAPT-RGCN(6.3%) 44.0+0.3 71.2+02 79.4+0.1 95.9+0.2
Tslarge

FINE-TUNE 41.2+0.5 70.2+0.2 78.0+£0.1 95.8+0.2
FT-TOP2(7.9%) 28.8+04 61.840.5 73.9+02 94.1+0.2
FT-BOTTOM2(7.9%) 37.6+03 68.0+£02 77.2402 95.540.1
ADAPT(6.8%) 42,9403 71.6+£0.2 78.9+0.1 96.1+0.1
STRUCTADAPT-GCN(1.7%)  44.1+04 71.8+03 79.1+0.1 96.1+0.2
STRUCTADAPT-GCN(6.8%) 45.840.2 72.5+£0.1 79.3+£0.2 96.2+0.1
STRUCTADAPT-RGCN(5.1%) 46.6+0.3 72.9+02 79.6+0.1 96.3+0.1

Table 1: Results on the LDC2017T10 test set. Mean
(£s.d.) over 4 seeds.

S Experiments

Our models are initialized with pre-trained T5
(Raffel et al., 2019), but our approach can be com-
bined with other PLMs such as BART (Lewis et al.,
2020). Our implementation is based on Hugging
Face Transformer models (Wolf et al., 2019). We
use TSpase for all experiments and report results
with TS5y, for the test sets.® We use the Adam
optimizer (Kingma and Ba, 2015) and employ a
linearly decreasing learning rate schedule without
warm-up. BLEU is used for the stopping criterion.
Following recent work (Mager et al., 2020; Zhang
et al., 2020b), we evaluate our proposed models on
LDC2017T10 and LDC2020T02 corpora.

Evaluation. We evaluate the results with BLEU
(Papineni et al., 2002) and chrF++ (Popovi¢, 2015)
metrics. We also report the meaning (M) compo-
nent of the M F-score (Opitz and Frank, 2021),
which measures how well the source AMR graph
can be reconstructed from the generated sentence.
We use BERTScore (Zhang et al., 2020a) allow-
ing a semantic evaluation that depends less on the
surface forms. Finally, we also perform a human
evaluation (§5.2).

5.1

We compare STRucTADAPT With four methods: fine-
tuning (FINE-TUNE), fine-tuning only the top or bot-
tom 2 layers (FT-tor2, FT-BoTrTOoM2) and Apapt. All

Main Results

®Hyperparameter details are in the appendix A.

4273

99



BLEU chrF++ M BERT

Zhang et al. (2020b) 343 63.7 - -

Bevilacqua et al. (2021) 44.9 729 - -

Tslarge

FINE-TUNE 41.64+0.6 70.4+0.5 78.5+02 96.0+0.1
FT-TOP2(7.9%) 33.44+05 63.5+03 73.4404 94.340.1
FT-BOTTOM2(7.9%) 38.24+02 68.3+0.1 78.1+£0.2 95.6+0.1
ADAPT(6.8%) 43.04£0.2 71.34+02 79.34+0.1 96.240.1
STRUCTADAPT-GCN(1.7%)  46.2402 71.8402 79.4+03 96.0+0.2
STRUCTADAPT-GCN(6.8%) 47.1+£0.4 72.540.1 79.7402 96.240.1
STRUCTADAPT-RGCN(5.1%) 48.0+0.2 73.2+0.1 80.1+0.3 96.3+0.1

Table 2: Results on the LDC2020T02 test set.

models use the same graph linearization generated
by the depth-first traversal. We also report recent
state-of-the-art results on both datasets. Tables 1
and 2 show the results.

We find that training only 5.1% task-specific
parameters, STRUCTADAPT-RGCN achieves a BLEU
score of 46.6 in LDC2017T10, substantially im-
proving over FINE-TUNE and other lightweight base-
lines (ApapT, FT-TOP2, FT-BOoTTOM2), and outper-
forming Ribeiro et al. (2020a) and Hoyle et al.
(2021) which fine-tune TS updating significantly
more parameters. STRUCTADAPT also achieves state-
of-the-art performance on LDC2020T02, consid-
erably improving over Bevilacqua et al. (2021),
which implicitly models the graph structure infor-
mation using linearization techniques.

In general, STRUCTADAPT is better than ADAPT
when training the same number of parameters, and
slightly better even when training only 1.7% of
the parameters for both datasets. This highlights
that the gains not only come from using an adapter
architecture, but from considering the graph con-
nectivity. STRUCTADAPT-RGCN is more effective than
STRUCTADAPT-GCN using fewer parameters, demon-
strating that considering reverse relations is advan-
tageous. ADAPT is consistently better than FINE-
TUNE, agreeing with our intuition of catastrophic
forgetting when fine-tuning. Interestingly, in con-
trast to popular strategies that focus on upper layers
in fine-tuning (Howard and Ruder, 2018; Houlsby
etal., 2019; Li and Liang, 2021), FT-BoTTOM2’S per-
formance is better than FT-top2’s, suggesting that
lower layers have a significant impact in adapting
the PLM to structured data.

Different from our work, both Mager et al.
(2020) and Ribeiro et al. (2020a) use the PENMAN
notation which makes the input much longer (con-
taining more tokens), and demonstrate that this rep-
resentation is able to achieve strong results — this is
orthogonal to our STRUCTADAPT representation and

Graph Size ADAPT STRUCTADAPT-RGCN

All 5.6% 6.17
01-30 6.14 6.24
31-60 5.4* 5.4
>60 5.24 6.27

Table 3: Meaning similarity obtained in the human eval-
uation. The ranking was determined by Mann-Whitney
tests with p<0.05. Difference between systems which
have a letter in common is not statistically significant.

can be incorporated in future work.

Overall, the results indicate that explicitly con-
sidering the graph structure using an adapter mech-
anism is effective for AMR-to-text generation, sig-
nificantly reducing the number of trained parame-
ters while improving generation quality.

5.2 Human Evaluation

To further assess the quality of the generated texts
by the adapter-based models in LDC2020T02, we
conduct a human evaluation via crowdsourcing us-
ing Amazon Mechanical Turk. We follow previous
work (Ribeiro et al., 2019; Castro Ferreira et al.,
2019) and evaluate the meaning similarity, i.e., how
close in meaning is the generated text to the ref-
erence sentence.” We divide the datapoints into 3
different sets by by the graph size, i.e., the num-
ber of nodes, after converting edges into nodes (cf.
§4.2). This setting allows us to evaluate the perfor-
mance of the models based on the complexity of
the AMR graph.

We randomly select 100 generated texts for each
set and each model (total of 600), which anno-
tators then rate on a 1-7 Likert scale. For each
text we collect scores from 3 annotators and use
MACE (Hovy et al., 2013), a Bayesian model that
incorporates the reliability of individual workers,
to merge sentence-level labels.® Table 3 shows
that STRUCTADAPT improves the meaning similarity
over ApapT with statistically significant margins
(p<0.05). Note that the gains mainly come from
datapoints with >60 nodes, indicating that STrRUC-
TADAPT is better when encoding larger graphs.

5.3 Detailed Discussion

Parameter/Performance Trade-off. We investi-
gate how the number of parameters affects the mod-
els. A higher hidden dimensionality means more

"We also assessed the fluency of the texts and the differ-
ences between the models were not statistically significant.

8Refer to Appendix B for a detailed description of the
human evaluation.

4274

100



o e
e —+=Fine-tune
=P .o Adapt
- —=—StructAdapt-RGCN

ob o3 1% 20w sa% 3%
W00y Gooy (o0 o0 000 (3000)
Training Set Size

(adapter capacity / basemodel capacity)

Figure 4: (a) Impact (measure with BLEU) of the num-
ber of parameters in the LDC2017T10 dev set. (b)
Performance in the LDC2017T10 test set when experi-
menting with different amounts of training data.

trainable parameters, and smaller adapters intro-
duce fewer parameters at a possible cost to perfor-
mance. That is, the adapter size controls the param-
eter efficiency. Figure 4a shows the effect of the
number of trained parameters in the performance
measured using BLEU. Each point in the Apapt and
STRUCTADAPT curves represents a hidden dimension
in the range [8, 16, . . ., 2048]. STRUCTADAPT-GCN is
consistently better than Apapt over all model capac-
ities, even though both approaches train the same
number of parameters. STRUCTADAPT-RGCN achieves
similar performance than FINE-TUNE when train-
ing only 0.8% of the parameters whereas ADAPT
achieves similar performance to 8.5%, demonstrat-
ing the effectiveness of injecting the graph structure
into the PLM.

Low-data Setting. Previous work (Li and Liang,
2021) has shown that lightweight fine-tuning has
an advantage in some generation tasks when the
training size is smaller. Therefore, we investigate
how STrRucCTADAPT behaves in a low-data setting.
We subsample the LDC2017T10 training set to
analyze different smaller training sets. For each
size, we sample 5 different datasets and average
over 2 training random seeds. Thus, we average
over 10 models to get an estimate for each low-data
setting.” Figure 4b shows the results. First note that
both adapter-based approaches improve over FINE-
TUNE. When training with only 1000 datapoints,
STRUCTADAPT outperforms FINE-TUNE by 8.2 BLEU
points. Also note that the gap between Apapt and
FINE-TUNE decreases when the size of the training
set increases. In general, STRUCTADAPT outperforms
FINE-TUNE and ADAPT in low-resource scenarios by
7.3 and 4.8 BLEU points on average, respectively,
whereas requiring much fewer trained parameters

*We use the LDC2017T10 dev set to choose hyperparame-
ters and do early stopping.

(b / break-up-08
:ARGI (i/1)
:ARG3 (p / person
:ARGO-of (h / have-rel-role-91
:ARGI (p2 / person
:ARGO-of (h2 / have-rel-role-91
:ARG1 i
:ARG?2 (s3 / son)))
:ARG2 (f/ father)))
:time (s2 / since
:opl (d / date-entity :month 8)))

REFERENCE: Me and my son’s father have been broken up
since August.

FINE-TUNE-2000: I've broken up with my son and father
since August.

FINE-TUNE: I’ve been with my son’s father since August.

STRUCTADAPT-2000: Since August 8 I have broken up
with my son’s father.

STRUCTADAPT: I've been breaking up with my son’s father
since August.

Table 4: An example of an AMR graph and generated
sentences by different models trained on full data and
on a low-data setting with 2000 datapoints.

than FINe-TUNE and fewer number of parameters
than Apapr.

Case Study. We perform a case study to provide
a better understanding of the STRucTADAPT’S perfor-
mance. Table 4 shows an AMR graph in PENMAN no-
tation containing reentrancies (marked in bold) and
sentences generated by FINE-TUNE and STRUCTADAPT
trained on the LDC2017T10 full training set and
in a low-data setting where the models are trained
with 2000 data points. FINE-TUNE fails in generat-
ing a sentence with the correct concept break-up
whereas STRUCTADAPT correctly generates a sen-
tence that describes the input graph. The incorrect
verb tense is due to lack of tense information in
AMR. FINE-TUNE-2000 mixes the semantic relation
between I and son (i.e., mistranslation of the edges
in the graph) whereas STRUCTADAPT-2000 generates
a correct sentence (except by generating the num-
ber 8). Overall, STRUCTADAPT produces a more
accurate text output than FINE-TUNE by generating
correct pronouns and mentions when control verbs
and reentrancies are involved, in both full and low-
data scenarios.

Model Variations. In Table 5, we report an abla-
tion study on the impact of distinct adapter compo-
nents, using adapters only in the encoder or decoder.
We evaluate different architecture configurations
keeping the same number of parameters for a fair
comparison. We find that only training adapters in

4275

101



BLEU BERT

FINE-TUNE 38.5 95.6
ADAPT ONLY ENC 38.5 95.7
ADAPT ONLY DEC 11.6 90.3
ADAPT ENC + DEC 38.6 95.6
STRUCTADAPT-GCN ONLY ENC 40.3 95.9
STRUCTADAPT-GCN ENC + DEC 41.7 96.0

Table 5: Impact of the adapter modules in the encoder
or decoder in the LDC2017T10 dev set. All adapter-
based models have the same number of parameters.

the decoder is not sufficient for a good performance,
even having the same number of parameters. This
suggests that adapting the PLM encoder to handle
graph structures is key in AMR-to-text tasks. Inter-
estingly, the model that only employs STRUCTADAPT
in the encoder (i.e., no ApAPT is used in the decoder)
has a better performance (+1.7 BLEU) than using
ADAPT in both encoder and decoder, highlighting
STRUCTADAPT’S strong graph encoding abilities. Fi-
nally, the best performance is achieved when we
employ STRUCTADAPT in the encoder and ApAPT in
the decoder, reaching 41.7 BLEU points.

6 Graph Representation Evaluation

In this section, we explore how different graph
properties impact the models’ abilities to encode
the input graph structure.

6.1 Impact of the Graph Representation

Inspired by Damonte and Cohen (2019), we inves-
tigate two different approaches when linearizing
the AMR: (i) only nodes have explicit representa-
tions, whereas edge relations are represented by
the adapter parameters using the RGCN;!? and (ii)
the sequence of nodes and edges using depth-first
traversal of the graph.

We also propose and evaluate three different
graph structures based on subwords (cf. §4.2): repl:
for each edge, we connect every token from the
source node to every token of the target node; rep2:
we connect the last token of the source node to
the first token of the target node and connect the
tokens of a node sequentially; rep3: we connect
the first token of the source node to the first token
of the target node and connect the token of a node
sequentially. Figure 3 shows an example of the
three representations for an AMR graph structure.

"We use regularization based on the basis decomposition
for relation weights (Schlichtkrull et al., 2018) since AMR
can contain around 150 different edge types.

Graph

Linearization R . BLEU BERT
epresentation
repl 39.1 95.8
(i) only nodes rep2 38.5 95.6
rep3 38.9 95.7
repl 41.7 96.0
(i1) nodes and edges rep2 40.4 95.8
rep3 40.8 95.9
complete graph ~ 39.4 95.8

Table 6: Performance on the LDC2017T10 dev set
when using different graph representation strategies.

Additionally, we also investigate a fully connected
graph structure (complete graph), that is, similarly
to the self-attention mechanism in Transformers,
all nodes and edges are connected.

As shown in Table 6, explicitly considering
nodes and edges in the graph linearization is bene-
ficial. This approach has the advantage of allowing
the model to handle new edge relations during infer-
ence, as they are not encoded as model parameters.
Note that the complete graph representation has
relatively inferior performance, again demonstrat-
ing the advantage of explicitly encoding the input
graph connectivity.

Finally, we observe that the best configuration is
using nodes and edges with rep/ (see an example
in Figure 3c). We believe that this is because rep/
allows direct interactions between all source and
target tokens, making all token representations of
an AMR node directly influenced by the neighbour-
ing tokens.

6.2 Robustness to Graph Linearization

A critical advantage of modeling the graph struc-
ture is to be less dependent on linearization strate-
gies because the graph connectivity is invariant to
the graph linearization. We thus are interested in
measuring the impact of the graph linearization in
the models.

Following Hoyle et al. (2021), we investigate
three different graph linearizations: (i) canon: the
original order of the canonical human-created lin-
earizations in AMR corpora; (ii) REcoNF: the order
from the canonical graph linearization is ignored,
except for the top node;!!' and (iii) RaNpOM: con-
structs a linearization from a random node in the
graph, disregarding all order information from the
canonical format, but it remains a valid traversal
of the graph. All linearizations are converted to a

""RECONF can significantly modify the linearization, in-
cluding shifting edge labels (e.g., poss to poss-of).

4276

102



CANON RECONF RANDOM

FINE-TUNE 38.0 35.6 31.3
ADAPT +0.9 +0.8 +0.9
STRUCTADAPT-RGCN  +4.1 +3.6 +5.9

Table 7: Differences, with respect to FINE-TUNE, in the
BLEU score of the LDC2017T10 test set as a function
of different graph linearizations.

sequence of node and edge labels using depth-first
traversal and used for both training and evaluation.
Examples of such graph linearizations are shown
in Appendix C.

Table 7 presents the results. Note that while
RECONF has a negative impact on all models, STruc-
TADAPT has the best performance. Apapt has similar
performance gains over FINE-TUNE in all graph lin-
earizations. Finally, note that for RaNDoOM, there is
a drastic performance drop in FINE-TUNE and the
gap between STRUCTADAPT and FINE-TUNE is widest
(+5.9 BLEU), demonstrating that explicitly encod-
ing the graph structure is beneficial and that STruc-
TADAPT is much less impacted by different graph
linearizations.

6.3 Graph Properties

Table 8 shows the effects of the graph size, graph
diameter and reentrancies in the performance. First,
note that the BLEU scores decrease as the graph
size increases since larger graphs often are more
complex. The performance gap between STRuC-
TADAPT and FINE-TUNE becomes larger for relatively
larger graphs, showing that STRUCTADAPT is able
to better encode complex graphs. As ADAPT is not
aware of the graph connectivity, it has much worse
scores compared to STRUCTADAPT, especially for
larger graphs.

It is expected that the benefit of the STRUCTADAPT
will be more evident for AMR graphs containing
larger diameter as the encoder is aware of the input
graph structure. As seen in Table 8, similarly to
the graph size, the scores decrease as the graph
diameter increases. STRUCTADAPT achieves a clear
improvement when handling graphs with >20 di-
ameter, with a improvement of +4.2 BLEU points
over FINE-TUNE.

Previous work (Damonte and Cohen, 2019; Szu-
bert et al., 2020) showed that reentrancies (nodes
with multiple parents) pose difficulties in encod-
ing AMRs correctly. Because STRUCTADAPT is the
only approach to model reentrancies explicitly, we
expect it to deal better with these structures. The

graph size 1-30  31-60 >60
# datapoints 548 537 286
FINE-TUNE 40.6 37.3 38.1
ADAPT +0.5 +1.4  +1.1
STRUCTADAPT-RGCN  +2.3 +4.0 +4.6
graph diameter 1-10  11-20 >20
# datapoints 384 769 218
FINE-TUNE 433 37.6 38.5
ADAPT -0.1 +1.7  +0.3
STRUCTADAPT-RGCN  +0.5 +4.3 +4.2
# reentrancies 0 1-3 4-20
# datapoints 619 664 88

FINE-TUNE 42.9 38.0 31.3
ADAPT +0.2 +1.7 +0.8
STRUCTADAPT-RGCN  +34 +44 +44

Table 8: Differences, with respect to FINE-TUNE, in the
BLEU score of the LDC2017T10 test set as a function
of the graph size, graph diameter and number of reen-
trancies.

gap between STRUCTADAPT and the other models
is widest for examples with more reentrancies,
confirming our hypothesis. In particular, when
graphs contain >4 reentrancies, STRUCTADAPT has
an improvement of +3.6 BLEU points compared
t0 ADAPT.

7 Conclusion

We presented STRUCTADAPT, a novel adapter archi-
tecture to explicitly model graph structures into
pretrained language models, providing an exten-
sive evaluation of our approach and showing that
it achieves state-of-the-art results on two AMR-to-
text benchmarks, training much fewer parameters.
We also found that STRUCTADAPT is more effective
when encoding complex graphs, when trained on
fewer datapoints, and is more robust to different
graph linearizations and reentrancies. In future
work, we plan to consider other graph-to-text tasks,
such as those based on Knowledge Graphs.

Acknowledgments

We thank our anonymous reviewers for their
thoughtful comments. We also would like to thank
Jonas Pfeiffer, Jorge Cardona, Juri Opitz, Kevin
Stowe, Thy Tran, Tilman Beck and Tim Baumgrt-
ner for their feedback on this work. This work has
been supported by the German Research Founda-
tion (DFG) as part of the Research Training Group
“Adaptive Preparation of Information form Hetero-
geneous Sources” (AIPHES, GRK 1994/1) and as
part of the DFG funded project UKP-SQuUARE with
the number GU 798/29-1.

4277

103



References

Xuefeng Bai, Linfeng Song, and Yue Zhang. 2020. On-
line back-parsing for AMR-to-text generation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1206—1219, Online. Association for Computa-
tional Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178-186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018.  Graph-to-sequence learning using gated
graph neural networks. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 273-283, Melbourne, Australia. Association
for Computational Linguistics.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One spring to rule them both: Sym-
metric amr semantic parsing and generation with-
out a complex pipeline. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(14):12564—
12573.

Deng Cai and Wai Lam. 2020. Graph transformer
for graph-to-sequence learning.  Proceedings of
the AAAI Conference on Artificial Intelligence,
34(05):7464-7471.

Thiago Castro Ferreira, Chris van der Lee, Emiel
van Miltenburg, and Emiel Krahmer. 2019. Neu-
ral data-to-text generation: A comparison between
pipeline and end-to-end architectures. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 552-562, Hong
Kong, China. Association for Computational Lin-
guistics.

Marco Damonte and Shay B. Cohen. 2019. Structural
neural encoders for AMR-to-text generation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 3649-3658,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),

pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and
Jaime Carbonell. 2016. Generation from Abstract
Meaning Representation using tree transducers. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 731-739, San Diego, California. Association
for Computational Linguistics.

Qiankun Fu, Linfeng Song, Wenyu Du, and Yue Zhang.
2021. End-to-end AMR corefencence resolution.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4204-4214, Online. Association for Computational
Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124—133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Tan J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron
Courville, and Yoshua Bengio. 2014. An empirical
investigation of catastrophic forgeting in gradient-
based neural networks. In Proceedings of Inter-

national Conference on Learning Representations
(ICLR).

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and Wei
Lu. 2019. Densely connected graph convolutional
networks for graph-to-sequence learning. Transac-
tions of the Association for Computational Linguis-
tics, 7:297-312.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. WARP: Word-level Adversar-
ial ReProgramming. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 4921-4933, Online. Associa-
tion for Computational Linguistics.

Hamza Harkous, Isabel Groves, and Amir Saffari. 2020.
Have your text and use it too! end-to-end neural
data-to-text generation with semantic fidelity. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 2410-2424,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings

4278

104



of Machine Learning Research, pages 2790-2799.
PMLR.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning whom to trust
with MACE. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1120-1130, Atlanta, Georgia.
Association for Computational Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328-339, Melbourne, Australia.
Association for Computational Linguistics.

Alexander Miserlis Hoyle, Ana Marasovié¢, and
Noah A. Smith. 2021. Promoting graph awareness
in linearized graph-to-text generation. In Findings
of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 944-956, Online. Asso-
ciation for Computational Linguistics.

Mihir Kale. 2020. Text-to-text pre-training for data-to-
text tasks. arXiv e-prints.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of
Sciences, 114(13):3521-3526.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146—157, Vancouver,
Canada. Association for Computational Linguistics.

Anne Lauscher, Olga Majewska, Leonardo F. R.
Ribeiro, Iryna Gurevych, Nikolai Rozanov, and
Goran Glavas. 2020. Common sense or world
knowledge? investigating adapter-based knowledge
injection into pretrained transformers. In Proceed-
ings of Deep Learning Inside Out (DeeLlO): The
First Workshop on Knowledge Extraction and Inte-
gration for Deep Learning Architectures, pages 43—
49, Online. Association for Computational Linguis-
tics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871-7880, Online. Association
for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4582-4597, Online. Association for Computational
Linguistics.

Kexin Liao, Logan Lebanoff, and Fei Liu. 2018. Ab-
stract Meaning Representation for multi-document
summarization. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1178-1190, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. GPT
understands, too. CoRR, abs/2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv e-prints.

Manuel Mager, Ramén Fernandez Astudillo, Tahira
Naseem, Md Arafat Sultan, Young-Suk Lee, Radu
Florian, and Salim Roukos. 2020. GPT-too: A
language-model-first approach for AMR-to-text gen-
eration. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1846—1852, Online. Association for Computa-
tional Linguistics.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit
Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xian-
gru Tang, Aadit Vyas, Neha Verma, Pranav Kr-
ishna, Yangxiaokang Liu, Nadia Irwanto, Jessica
Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mu-
tuma, Yasin Tarabar, Ankit Gupta, Tao Yu, Yi Chern
Tan, Xi Victoria Lin, Caiming Xiong, Richard
Socher, and Nazneen Fatema Rajani. 2021. DART:
Open-domain structured data record to text genera-
tion. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 432—-447, Online. Association for Com-
putational Linguistics.

Juri Opitz, Angel Daza, and Anette Frank. 2021.
Weisfeiler-leman in the bamboo: Novel amr graph
metrics and a benchmark for amr graph similarity.
Transactions of the Association for Computational
Linguistics.

4279

105



Juri Opitz and Anette Frank. 2021. Towards a decom-
posable metric for explainable evaluation of text gen-
eration from AMR. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
1504-1518, Online. Association for Computational
Linguistics.

Juri Opitz, Letitia Parcalabescu, and Anette Frank.
2020. AMR similarity metrics from principles.
Transactions of the Association for Computational
Linguistics, 8:522-538.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann,
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and
Dipanjan Das. 2020. ToTTo: A controlled table-to-
text generation dataset. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1173-1186, On-
line. Association for Computational Linguistics.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-Destructive Task Composition
for Transfer Learning. In Proceedings of the 16th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics (EACL), Online.
Association for Computational Linguistics.

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aish-
warya Kamath, Ivan WVuli¢, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. 2020a.
AdapterHub: A framework for adapting transform-
ers. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 46—54, Online. Asso-
ciation for Computational Linguistics.

Jonas Pfeiffer, Ivan Vuli¢, Iryna Gurevych, and Se-
bastian Ruder. 2020b. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654-7673, Online. Association for Computa-
tional Linguistics.

Maja Popovi¢. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392-395, Lisbon, Portugal. Association for
Computational Linguistics.

Nima Pourdamghani, Kevin Knight, and Ulf Herm-
jakob. 2016. Generating English from Abstract
Meaning Representations. In Proceedings of the 9th
International Natural Language Generation confer-
ence, pages 21-25, Edinburgh, UK. Association for
Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. In Tech-
nical report, OpenAl.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. In Advances in Neural Infor-
mation Processing Systems, volume 30, pages 506—
516. Curran Associates, Inc.

Leonardo F. R. Ribeiro, Claire Gardent, and Iryna
Gurevych. 2019. Enhancing AMR-to-text genera-
tion with dual graph representations. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3183-3194, Hong
Kong, China. Association for Computational Lin-
guistics.

Leonardo F. R. Ribeiro, Jonas Pfeiffer, Yue Zhang, and
Iryna Gurevych. 2021. Smelting gold and silver for
improved multilingual amr-to-text generation. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2021, Punta Cana, November 7-11, 2021.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich
Schiitze, and Iryna Gurevych. 2020a. Investigating
pretrained language models for graph-to-text gener-
ation. arXiv e-prints.

Leonardo F. R. Ribeiro, Yue Zhang, Claire Gardent,
and Iryna Gurevych. 2020b. Modeling global and
local node contexts for text generation from knowl-
edge graphs. Transactions of the Association for
Computational Linguistics, 8:589-604.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. 2018. Modeling relational data with graph
convolutional networks. In ESWC 2018, Heraklion,
Crete, Greece, June 3-7, 2018, Proceedings, pages
593-607.

Martin Schmitt, Leonardo F. R. Ribeiro, Philipp Dufter,
Iryna Gurevych, and Hinrich Schiitze. 2021. Mod-
eling graph structure via relative position for text
generation from knowledge graphs. In Proceedings
of the Fifteenth Workshop on Graph-Based Methods
for Natural Language Processing (TextGraphs-15),
pages 10-21, Mexico City, Mexico. Association for
Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational

4280

106



Linguistics (Volume 1: Long Papers), pages 1715-
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo
Wang, and Jinsong Su. 2019. Semantic neural ma-
chine translation using amr. Transactions of the As-
sociation for Computational Linguistics, 7:19-31.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for AMR-
to-text generation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1616—
1626, Melbourne, Australia. Association for Compu-
tational Linguistics.

Ida Szubert, Marco Damonte, Shay B. Cohen, and
Mark Steedman. 2020. The role of reentrancies in
Abstract Meaning Representation parsing. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 2198-2207, Online. As-
sociation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998—6008. Curran Asso-
ciates, Inc.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018. Graph attention networks. In 6th Inter-
national Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings.

Pavlos Vougiouklis, Hady Elsahar, Lucie-Aimée
Kaffee, Christophe Gravier, Frédérique Laforest,
Jonathon Hare, and Elena Simperl. 2018. Neu-
ral wikipedian: Generating textual summaries from
knowledge base triples. Journal of Web Semantics,
52-53:1 - 15.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 3266-3280.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353-355, Brussels, Belgium.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-

ing.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2019. How powerful are graph neural net-
works? In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019.

Jeffrey O. Zhang, Alexander Sax, Amir Zamir,
Leonidas J. Guibas, and Jitendra Malik. 2019. Side-
tuning: Network adaptation via additive side net-
works. arXiv e-prints.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020a. Bertscore: Eval-
uating text generation with BERT. 1In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020.

Yan Zhang, Zhijiang Guo, Zhiyang Teng, Wei Lu,
Shay B. Cohen, Zuozhu Liu, and Lidong Bing.
2020b. Lightweight, dynamic graph convolutional
networks for AMR-to-text generation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2162-2172, Online. Association for Computational
Linguistics.

4281

107



Appendices

In this supplementary material, we detail experi-
ments’ settings and additional information about
the human evaluation and graph representations.

A Details of Models and
Hyperparameters

The experiments were executed using the version
3.3.1 of the transformers library released by Hug-
ging Face (Wolf et al., 2019). In Table 9, we report
the hyperparameters used to train the models pre-
sented in this paper. We train until the development
set BLEU has not improved for 5 epochs.

learning rate batch size beam search size
FINE-TUNE 3e-05 4 5
FT-TOP2 le-04 4 5
FT-BOTTOM?2 le-04 4 5
ADAPT le-04 4 5
STRUCTADAPT le-04 4 5

Table 9: Hyperparameter settings for our methods.

B Details on the Human Evaluation

The human evaluation was conducted via Amazon
Mechanical Turk. We randomly select 100 gener-
ated texts for each of the 3 sets and each adapter
model (ADAPT, STRUCTADAPT-GCN), With a total of
600 texts to be evaluated. The annotators then rate
the meaning similarity on a 1-7 Likert scale. For
each text, we collect scores from 3 annotators. We
use MACE (Hovy et al., 2013) to further improve
upon these raw answers by unsupervised estimation
of worker trustworthiness and subsequent recovery
of the most likely score. Models are ranked ac-
cording to the mean of sentence-level scores. We
defined a filter for all our evaluations, allowing to
participate only workers who have more than 5000
HITs approved and with an acceptance rate of 95%
or higher. The task took workers a median time
of 1.6 minutes per pair of sentences. We apply a
quality control step filtering workers who do not
score some faked and known sentences properly or
did the experiment in a very short time.

C Example of Graph Linearizations

In Table 10, we present three different lineariza-
tions for the same AMR graph and its correspond-
ing reference sentence. Figure 5 shows the two pos-
sible graphs that are represented by the lineariza-
tions. In particular, Figure 5a shows a graph that
is represented by canon and RECONF linearizations

and Figure 5b shows a graph that is represented by
raNDOM. Note that whereas the linearizations can
greatly differ from each other, the graph structure
for all linearizations remains very similar.

(a) (b)

subsidize-01

Figure 5: Two AMR graphs with the same meaning.

CANON

(s / subsidize-01
:ARGTI (u/ utility
:poss (s2 / she)
:mod (a/ all)))

RECONF

(s / subsidize-01
:ARGI (u / utility
:mod (a/ all)
:poss (s2 / she)))

RANDOM

(s2/ she
:poss-of (u / utility
:ARG1-of (s / subsidize-01)
:mod (a/ all)))

SENTENCE: Her utilities are all subsidized.

Table 10: Different linearizations for an AMR graph.

4282

108



Chapter 9

Smelting Gold and Silver for
Improved Multilingual AMR-to-Text
(Generation

109



Smelting Gold and Silver for Improved Multilingual
AMR-to-Text Generation

Leonardo F. R. Ribeiro!, Jonas Pfeiffer’, Yue Zhang' and Iryna Gurevych’

TUbiquitous Knowledge Processing Lab, Technical University of Darmstadt
tSchool of Engineering, Westlake University
ribeiro@aiphes.tu-darmstadt.de

Abstract

Recent work on multilingual AMR-to-text gen-
eration has exclusively focused on data aug-
mentation strategies that utilize silver AMR.
However, this assumes a high quality of gen-
erated AMRs, potentially limiting the trans-
ferability to the target task. In this paper,
we investigate different techniques for auto-
matically generating AMR annotations, where
we aim to study which source of information
yields better multilingual results. Our mod-
els trained on gold AMR with silver (machine
translated) sentences outperform approaches
which leverage generated silver AMR. We find
that combining both complementary sources
of information further improves multilingual
AMR-to-text generation. Our models surpass
the previous state of the art for German, Italian,
Spanish, and Chinese by a large margin.!

1 Introduction

AMR-to-text generation is the task of recover-
ing a text with the same meaning as a given Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013), and has recently received much re-
search interest (Ribeiro et al., 2019; Wang et al.,
2020; Mager et al., 2020; Harkous et al., 2020; Fu
etal., 2021). AMR has applications to a range of
NLP tasks, including summarization (Hardy and
Vlachos, 2018) and spoken language understand-
ing (Damonte et al., 2019), and has the potential
power of acting as an interlingua that allows the
generation of text in many different languages (Da-
monte and Cohen, 2018; Zhu et al., 2019).

While previous work has predominantly focused
on monolingual English settings (Cai and Lam,
2020b; Bevilacqua et al., 2021), recent work has
also studied multilinguality in meaning represen-
tations (Blloshmi et al., 2020; Sheth et al., 2021).
Whereas Damonte and Cohen (2018) demonstrate

'Our code and checkpoints are available at
https://github.com/UKPLab/m-AMR2Text.

—— AMR-to J

n Their life looks glorious.
&» Su vida parece gloriosa.
L» La loro vita sembra gloriosa.
[De Ihr Leben sieht herrlich aus.
Do finfr1fe P A KA SE.

Figure 1: A generation example from English AMR to
multiple different languages.

that parsers can be effectively trained to transform
multilingual text into English AMR, Mille et al.
(2018, 2019) and Fan and Gardent (2020) discuss
the reverse task, turning meaning representations
into multilingual text, as shown in Figure 1. How-
ever, gold-standard multilingual AMR training data
is currently scarce, and previous work (Fan and
Gardent, 2020) while discussing the feasibility of
multilingual AMR-to-text generation, has inves-
tigated synthetically generated AMR as the only
source of silver training data.

In this paper, we aim to close this gap by provid-
ing an extensive analysis of different augmentation
techniques to cheaply acquire silver-standard mul-
tilingual AMR-to-text data: (1) Following Fan and
Gardent (2020), we parse English sentences into
silver AMRs from parallel multilingual corpora
(SILVERAMR), resulting in a dataset consisting of
grammatically correct sentences with noisy AMR
structures. (2) We leverage machine translation
(MT) and translate the English sentences from the
gold AMR-to-text corpus to the respective target
languages (SILVERSENT), resulting in a dataset with
correct AMR structures but potentially unfaithful
or non-grammatical sentences. (3) We experiment

742

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 742—750
November 7-11, 2021. (©2021 Association for Computational Linguistics

110



with utilizing the AMR-to-text corpus with both
gold English AMR and sentences in multi-source
scenarios to enhance multilingual training.

Our contributions and the organization of this
paper are the following: First, we formalize the
multilingual AMR-to-text generation setting and
present various cheap and efficient alternatives for
collecting multilingual training data. Second, we
show that our proposed training strategies greatly
advance the state of the art finding that SILVERSENT
considerably outperforms SiLvERAMR. Third, we
show that SILvERAMR has better relative perfor-
mance in relatively larger sentences, whereas SiL-
VERSENT performs better for relatively larger graphs.
Overall, we find that a combination of both strate-
gies further improves the performance, showing
that they are complementary for this task.

2 Related Work

Approaches for AMR-to-text generation predom-
inantly focus on English, and typically employ
an encoder-decoder architecture, employing a lin-
earized representation of the graph (Konstas et al.,
2017; Ribeiro et al., 2020a). Recently, models
based on the graph-to-text paradigm (Ribeiro et al.,
2020b; Schmitt et al., 2021) improve over lin-
earized approaches, explicitly encoding the AMR
structure with a graph encoder (Song et al., 2018;
Beck et al., 2018; Ribeiro et al., 2019; Guo et al.,
2019; Cai and Lam, 2020b; Ribeiro et al., 2021).
Advances in multilingual AMR parsing have fo-
cused on a variety of different languages such as
Brazilian Portuguese, Chinese, Czech and Spanish
(Haji¢ et al., 2014; Xue et al., 2014; Migueles-
Abraira et al., 2018; Sobrevilla Cabezudo and
Pardo, 2019). In contrast, little work has focused on
the reverse AMR-to-text setting (Fan and Gardent,
2020). We aim to close this gap by experiment-
ing with different data augmentation methods for
efficient multilingual AMR-to-text generation.

3 Multilingual AMR-to-Text Generation

In AMR-to-text generation, we transduce an AMR
graph G to a surface realization as a sequence of
tokens y = (y1,...,Yy).- As input we use an
English-centric AMR graph where the output y can
be realized in different languages (see Figure 1).

3.1 Approach

We employ mT5 (Xue et al., 2021), a Transformer-
based encoder-decoder architecture (Vaswani et al.,

2017), motivated by prior work (Ribeiro et al.,
2020a, 2021) that leverages TS (Raffel et al., 2019)
for AMR-to-text generation.

We define © = LIN(G), where LIN is a function
that linearizes G into a sequence of node and edge
labels using depth-first traversal of the graph (Kon-
stas et al., 2017). x is encoded, conditioned on
which the decoder predicts y autoregressively.

Consequently, the encoder is required to learn
language agnostic representations amenable to be
used in a multilingual setup for the English AMR
graph; the decoder attends over the encoded AMR
and is required to generate text in different lan-
guages with varied word order and morphology.

To differentiate between languages, we prepend
a preﬁx “translate AMR to <tgt_language>:”
to the AMR graph representation.”> We add the
edge labels which are present in the AMR graphs
of the LDC2017T10 training set to the encoder’s
vocabulary in order to avoid considerable subtoken
splitting — this allows us to encode the AMR with a
compact sequence of tokens and also learn explicit
representations for the AMR edge labels. Finally,
this multilingual approach allows us to have more
AMR data on the encoder side when increasing
the number of considered languages. This could
be particularly helpful when using languages with
little training data.

3.2 Data

Since gold-standard training data for multilingual
AMR-to-text generation does not exist, data aug-
mentation methods are necessary. Given a set of
gold AMR training data for English and parallel
corpora between English and target languages, we
thus aim to identify the best augmentations strate-
gies to achieve multilingual generation.

As our monolingual AMR-to-text training
dataset, we consider the LDC2017T10 dataset
(GoLDAMR), containing English AMR graphs and
sentences. We evaluate our different approaches on
the multilingual LDC2020T07 test set by Damonte
and Cohen (2018) consisting of gold annotations
for Spanish (ES), Italian (IT), German (DE) and Chi-
nese (zH).> For our multilingual parallel sentence
corpus we consider data from different sources.
For ES, 1T and DE, we use: Europarl-v7 (Koehn,
2005), an aligned corpus of European Union parlia-

For example, for AMR-to-Spanish we use the prefix
“translate AMR to Spanish:”.

3This dataset was constructed by professional translators
based on the LDC2017T10 test set.

743

111



BLEU BERTSscore

ES IT DE ZH All ES IT DE ZH All
MT (Fan and Gardent, 2020) 21.6 19.6 157 - - - - - - -
Multilingual model (Fan and Gardent, 2020) 21.7 198 153 - - - - - - -
MT 276 242 194 233 236 87.1 857 835 799 84.0
SILVERAMR 233 212 169 20.1 204 845 837 820 763 8l1.6
SILVERSENT 283 243 189 222 234 873 857 835 79.6 84.0
SILVERAMR + GOLDAMR 282 249 194 229 239 876 859 839 795 842
SILVERSENT + GOLDAMR 285 246 192 223 237 873 858 836 79.6 840
SILVERAMR + SILVERSENT 30.7 264 206 242 255 87.8 863 84.1 805 84.7
SILVERAMR + SILVERSENT + GOLDAMR 304 26.1 205 234 251 88.0 863 841 80.1 84.6

Table 1: Results on the multilingual LDC2020T07 test set. When training on multiple seeds, the standard deviation
is between 0.1 an 0.3 BLEU. The results of our models compared to the MT baseline are statistically significant.

mentary debates; Tatoeba,* a large database of ex-
ample sentences and translations; and TED2020,>
a dataset of translated subtitles of TED talks. For
zH, we use the UM-Corpus (Tian et al., 2014).

3.3 Creating Silver Training Data

We experiment with two augmentation techniques
that generate silver-standard multilingual training
data, described in what follows.

SiLVERAMR. We follow Fan and Gardent (2020)
and leverage the multilingual parallel corpora de-
scribed in §3.2 and generate AMRs for the respec-
tive English sentences.® While the multilingual
sentences are of gold standard, the AMR graphs
are of silver quality. Similar to Fan and Gardent
(2020), for each target language we extract a paral-
lel dataset of 1.9M sentences.

SILVERSENT. We fine-tune mT5 as a translation
model for English to the respective target lan-
guages, using the same parallel sentences used in
SILVERAMR. Then, we translate the English sen-
tences of GOLDAMR into the respective target lan-
guages, resulting in a multilingual dataset that con-
sists of gold AMRs and silver sentences. The mul-
tilingual training dataset contains 36,521 examples
for each target language.

4 Experiments

We implement our models using mT5p,se from Hug-
gingFace (Wolf et al., 2020). We use the Adafac-
tor optimizer (Shazeer and Stern, 2018) and em-
ploy a linearly decreasing learning rate schedule
without warm-up. The hyperparameters we tune in-
clude the batch size, number of epochs and learning

*https://tatoeba.org/

>https://github.com/UKPLab/sentence-
transformers/tree/master/docs/datasets

The English sentences of the parallel corpus are parsed
using a state-of-the-art AMR parser (Cai and Lam, 2020a).

rate.” The models are evaluated in the multilingual
LDC2020T07 test set, using BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2014),
chrF++ (Popovi¢, 2015) and BERTscore (Zhang
et al., 2020) metrics. We compare with a MT base-
line — we generate the test set with an AMR-to-
English model trained with TS (Ribeiro et al., 2021)
and translate the generated English sentences to the
target language using MT. For a fair comparison,
our MT model is based on mT5 and trained with
the same data as the other approaches.

Training Strategies. We propose different train-
ing strategies under the setting of §3.2 in order to in-
vestigate which combination leads to stronger mul-
tilingual AMR-to-text generation. Besides training
models using SILVERAMR or SILVERSENT, We in-
vestigate different combinations of multi-source
training also using GOLDAMR.

Main Results. Table 1 shows our main results.?
First, SILVERAMR substantially outperforms Fan
and Gardent (2020) despite being trained on the
same amount of silver AMR data. We believe this is
because we utilize mT5, whereas Fan and Gardent
(2020) use XLLM (Conneau et al., 2020), and our
parallel data may contain different domain data.
SILVERSENT considerably outperforms SILVER-
AMR in all metrics, despite SILVERAMR consisting
of two orders of magnitude more data. We believe
the reasons are twofold: Firstly, the correct seman-
tic structure of gold AMR annotations is necessary
to learn a faithful realization; Secondly, SILVERSENT
provides examples of the same domain as the eval-
uation test set. We observe similar performance
to SILVERSENT when training on both GoLDAMR
and SILVERAMR, indicating that the combination
of target domain data and gold AMR graphs are

"Hyperparameter details are in the appendix A.
SMETEOR and chrF++ results can be found in Appendix
Table 6.

744

112



SilverAMR |
SilverSent - SilverAMR |
GoldAMR - SilverAMR |
SilverSent |
SilverAMR - SilverSent |
GoldAMR - SilverSent |
SilverAMR - GoldAMR
SilverSent - GoldAMR {id

SilverAMR+Si|verSent—

0 5 10 15 20 25
BLEU

Figure 2: Order impact of sequential fine-tuning for IT.

necessary for downstream task performance. How-
ever, training on both GoLDAMR and SILVERSENT
yields small gains, indicating that the respective
information is adequately encoded within the silver
standard dataset.

We observe similar patterns when combin-
ing the silver standard datasets. While SILVER-
AMR+SILVERSENT complement each other, resulting
in the overall best performance, adding GoLbAMR
does not yield any notably gains. These results
demonstrate that both gold AMR structure and
gold sentence information are important for train-
ing multilingual AMR-to-text models, while Sir-
VERSENT are seemingly more important.

Effect of the Fine-tuning Order. In Figure 2 we
illustrate the impact of different data source or-
derings when fine-tuning in a two-phase setup for
1T.” Firstly, we observe a decrease in performance
for all sequential fine-tuning settings, compared to
our proposed mixed multi-source training, which
is likely due to catastrophic forgetting.'® Secondly,
training on SILVERAMR and subsequently on SiL-
VERSENT (Or vice versa), improves performance
over only using either, again demonstrating their
complementarity. Thirdly, SILVERSENT continues to
outperform SILVERAMR as a second task. Finally,
GOLDAMR is not suitable as the second task for
multilingual settings as the model predominantly
generates English text.

Impact of Sentence Length and Graph Size. As
silver annotations potentially lead to noisy inputs,
models trained on SILVERAMR are potentially less
capable of encoding the AMR semantics correctly,
and models trained on SILVERSENT potentially gen-
erate fluent sentences less reliably. To analyze the
advantages of the two forms of data, we measure
the performance against the sentence lengths and

°Other languages follow similar trends and are presented
in Figure 4 in the Appendix.
19The model trained on the second task forgets the first task.

BZ0-0.7 =J0.71-0.9 E5>0.9

30

.

1 SilverAMR
g CJ SilverSent

es it “de h

Figure 3: Impact of the sentence length and graph size
ratio y on the LDC2020T07 multilingual test set.

ES IT DE ZH
SILVERAMR 19.3 165 11.8 11.9
SILVERSENT 223 173 12.7 11.9
SILVERAMR + SILVERSENT 23.5 19.2 15.0 13.0

Table 2: BLEU results for out of domain evaluation.

graph sizes.!! We define  to be a ratio of the sen-
tence length, divided by the number of AMR graph
nodes. In Figure 3 we plot the respective results
for SILVERAMR and SILVERSENT, categorized into
three bins. We find that almost all SILVERAMR’s
BLEU increases for longer sentences, suggesting
that training with longer gold sentences improves
performance. In contrast, with larger graphs, the
BLEU performance improves for SILVERSENT, indi-
cating that large gold AMR graphs are also impor-
tant. SILVERAMR and SILVERSENT present relative
gains in performance on opposite ratios of sentence
length and graph size, suggesting that they capture
distinct aspects of the data.

Out of Domain Evaluation. To disentangle the ef-
fects of in-domain sentences and gold quality AMR
graphs in SILVERSENT, we evaluate both silver data
approaches on the Weblog and WSJ subset of the
LDC2020T07 dataset; The domain of this subset
is not included in the LDC2017T10 training set.
We present the BLEU results in Table 2.!> While
we find that SILVERSENT prevails in achieving bet-
ter performance — demonstrating that AMR gold
structures are an important source for training mul-
tilingual AMR-to-text models — SiLvERAMR and
SILVERSENT perform more comparably than when
evaluated on the full LDC2020T07 test set. This
demonstrates that the domain transfer factor plays
an important role in the strong performance of Sir-
VERSENT. Overall, SITLVERAMR+SILVERSENT outper-
forms both single source settings, establishing the

Sentence lengths were measured using subwords.
2BERTscore results can be found in Appendix Table 5.

745

113



Model Examples

AMR (m / multi-sentence
:sntl (w2 / wish-01

:ARGO (i2 /1)

:ARGTI (p / possible-01

:ARG1 (w

3 / wipe-out-02

:ARGO i2
:ARGI1 (s / she)
:source (1/1live-01

:snt2 (g / good-02

ARGO i2))))

:ARG]1 (t/ thing)
:degree (m2 / more
:degree (m3 / much
:degree (52 / 50)))
:prep-without (s3 / she)))

SILVERAMR

SILVERSENT
SILVERAMR+SILVERSENT
Reference

Ojala pudiera borrarla de

English Reference

Con ella, las cosas son mucho mejor. Deseo que pudiera eliminarla de mi vida.
Desearia que podia eliminarla de mi vida. Las cosas serfan mucho mejor sin ella.

Desearia poder eliminarla de mi vida, las cosas serian mucho mejor sin ella.

mi vida, las cosas hubieran sido mucho mejor sin ella.

I wish I could wipe her out of my life - things would be so much better without her.

Table 3: Example of an AMR, generated texts in ES by the different models, and its ES and EN references. We
indicate in red errors (unfaithfulness in SILVERAMR and incorrect grammar in SILVERSENT) that are not present in
SILVERAMR+SILVERSENT and in the human-written reference.

complementarity of both silver sources of data.

Case Study. Table 3 shows an AMR, its reference
sentences in ES and EN, and sentences generated
in ES by SILVERAMR, SILVERSENT, and their com-
bination. The incorrect verb tense is due to the
lack of tense information in AMR. SiLvERAMR fails
in capturing the correct concept prep-without gen-
erating an unfaithful first sentence. This demon-
strates a potential issue with approaches trained
with silver AMR data where the input graph struc-
ture can be noisy, leading to a model less capable
of encoding AMR semantics. On the other hand,
SILVERSENT correctly generates sentences that de-
scribe the graph, while it still generates a grammat-
ically incorrect sentence (wrongly generating que
podia after desearia). This highlights a potential
problem with approaches that employ silver sen-
tence data where sentences used for the training
could be ungrammatical, leading to models less
capable of generating a fluent sentence. Finally,
SILVERAMR+SILVERSENT produces a more accurate
output than both silver approaches by generating
grammatically correct and fluent sentences, correct
pronouns, and mentions when control verbs and
reentrancies (nodes with more than one entering
edge) are involved.

5 Conclusion

The unavailability of gold training data makes mul-
tilingual AMR-to-text generation a challenging
topic. We have extensively evaluated data augmen-
tation methods by leveraging existing resources,
namely a set of gold English AMR-to-text data and
a corpus of multilingual parallel sentences. Our
experiments have empirically validated that both
sources of silver data — silver AMR with gold sen-
tences and gold AMR with silver sentences — are
complementary, and a combination of both leads to
state-of-the-art performance on multilingual AMR-
to-text generation tasks.

Acknowledgments

We would like to thank Go6zde Giil Sahin, Ji-
Ung Lee, Kevin Stowe, Kexin Wang and Nandan
Thakur for their feedback on this work. Leonardo
F. R. Ribeiro is supported by the German Re-
search Foundation (DFG) as part of the Research
Training Group “Adaptive Preparation of Informa-
tion form Heterogeneous Sources” (AIPHES, GRK
1994/1) and as part of the DFG funded project UKP-
SQuARE with the number GU 798/29-1. Jonas
Pfeiffer is supported by the LOEWE initiative
(Hesse, Germany) within the emergenCITY center.
746

114



References

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178-186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018.  Graph-to-sequence learning using gated
graph neural networks. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 273-283, Melbourne, Australia. Association
for Computational Linguistics.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One spring to rule them both: Sym-
metric amr semantic parsing and generation with-
out a complex pipeline. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(14):12564—
12573.

Rexhina Blloshmi, Rocco Tripodi, and Roberto Navigli.
2020. XL-AMR: Enabling cross-lingual AMR pars-
ing with transfer learning techniques. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2487-2500, Online. Association for Computational
Linguistics.

Deng Cai and Wai Lam. 2020a. AMR parsing via
graph-sequence iterative inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1290-1301, On-
line. Association for Computational Linguistics.

Deng Cai and Wai Lam. 2020b. Graph trans-
former for graph-to-sequence learning. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):7464-7471.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Marco Damonte and Shay B. Cohen. 2018. Cross-
lingual Abstract Meaning Representation parsing.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1146-1155, New
Orleans, Louisiana. Association for Computational
Linguistics.

Marco Damonte, Rahul Goel, and Tagyoung Chung.
2019. Practical semantic parsing for spoken lan-
guage understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Industry Papers),
pages 16-23, Minneapolis, Minnesota. Association
for Computational Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376-380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Angela Fan and Claire Gardent. 2020. Multilingual
AMR-to-text generation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 2889-2901, On-
line. Association for Computational Linguistics.

Qiankun Fu, Linfeng Song, Wenyu Du, and Yue Zhang.
2021. End-to-end AMR corefencence resolution.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4204—4214, Online. Association for Computational
Linguistics.

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and Wei
Lu. 2019. Densely connected graph convolutional
networks for graph-to-sequence learning. Transac-
tions of the Association for Computational Linguis-

tics, 7:297-312.

Jan Haji¢, Ondfej Bojar, and Zdetika UreSova. 2014.
Comparing Czech and English AMRs. In Pro-
ceedings of Workshop on Lexical and Grammatical
Resources for Language Processing, pages 5564,
Dublin, Ireland. Association for Computational Lin-
guistics and Dublin City University.

Hardy Hardy and Andreas Vlachos. 2018. Guided neu-
ral language generation for abstractive summariza-
tion using Abstract Meaning Representation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 768—
773, Brussels, Belgium. Association for Computa-
tional Linguistics.

Hamza Harkous, Isabel Groves, and Amir Saffari. 2020.
Have your text and use it too! end-to-end neural
data-to-text generation with semantic fidelity. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 2410-2424,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Philipp Koehn. 2005. Europarl: A Parallel Corpus
for Statistical Machine Translation. In Conference
Proceedings: the tenth Machine Translation Summit,
pages 79-86, Phuket, Thailand. AAMT, AAMT.

747

115



Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146—157, Vancouver,
Canada. Association for Computational Linguistics.

Manuel Mager, Ramén Fernandez Astudillo, Tahira
Naseem, Md. Arafat Sultan, Young-Suk Lee, Radu
Florian, and Salim Roukos. 2020. Gpt-too: A
language-model-first approach for amr-to-text gener-
ation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 1846—1852.

Noelia Migueles-Abraira, Rodrigo Agerri, and Arantza
Diaz de Ilarraza. 2018. Annotating Abstract Mean-
ing Representations for Spanish. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The first
multilingual surface realisation shared task (SR’18):
Overview and evaluation results. In Proceedings of
the First Workshop on Multilingual Surface Realisa-
tion, pages 1-12, Melbourne, Australia. Association
for Computational Linguistics.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, and Leo Wanner. 2019. The second mul-
tilingual surface realisation shared task (SR’19):
Overview and evaluation results. In Proceedings of
the 2nd Workshop on Multilingual Surface Realisa-
tion (MSR 2019), pages 1-17, Hong Kong, China.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Maja Popovi¢. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392-395, Lisbon, Portugal. Association for
Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Leonardo F. R. Ribeiro, Claire Gardent, and Iryna
Gurevych. 2019. Enhancing AMR-to-text genera-
tion with dual graph representations. In Proceed-
ings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3183-3194, Hong
Kong, China. Association for Computational Lin-
guistics.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich
Schiitze, and Iryna Gurevych. 2020a. Investigating
pretrained language models for graph-to-text gener-
ation. arXiv e-prints.

Leonardo F. R. Ribeiro, Yue Zhang, Claire Gardent,
and Iryna Gurevych. 2020b. Modeling global and
local node contexts for text generation from knowl-
edge graphs. Transactions of the Association for
Computational Linguistics, 8:589—-604.

Leonardo F. R. Ribeiro, Yue Zhang, and Iryna
Gurevych. 2021. Structural adapters in pretrained
language models for amr-to-text generation. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021,
Punta Cana, November 7-11, 2021.

Martin Schmitt, Leonardo F. R. Ribeiro, Philipp Dufter,
Iryna Gurevych, and Hinrich Schiitze. 2021. Mod-
eling graph structure via relative position for text
generation from knowledge graphs. In Proceedings
of the Fifteenth Workshop on Graph-Based Methods
for Natural Language Processing (TextGraphs-15),
pages 10-21, Mexico City, Mexico. Association for
Computational Linguistics.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4596-4604.
PMLR.

Janaki Sheth, Young-Suk Lee, Ramén Fernandez As-
tudillo, Tahira Naseem, Radu Florian, Salim Roukos,
and Todd Ward. 2021. Bootstrapping multilingual
AMR with contextual word alignments. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 394-404, Online. Association
for Computational Linguistics.

Marco Antonio Sobrevilla Cabezudo and Thiago Pardo.
2019. Towards a general Abstract Meaning Repre-
sentation corpus for Brazilian Portuguese. In Pro-
ceedings of the 13th Linguistic Annotation Work-
shop, pages 236-244, Florence, Italy. Association
for Computational Linguistics.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for AMR-
to-text generation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1616—
1626, Melbourne, Australia. Association for Compu-
tational Linguistics.

748

116



Liang Tian, Derek F. Wong, Lidia S. Chao, Paulo
Quaresma, Francisco Oliveira, and Lu Yi. 2014.
Um-corpus: A large english-chinese parallel corpus
for statistical machine translation. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation, LREC 2014, Reykjavik,
Iceland, May 26-31, 2014, pages 1837-1842.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998—6008. Curran Asso-
ciates, Inc.

Tianming Wang, Xiaojun Wan, and Hangqi Jin. 2020.
AMR-to-text generation with graph transformer.
Transactions of the Association for Computational
Linguistics, 8:19-33.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, EMNLP 2020 - Demos, On-
line, November 16-20, 2020, pages 38—45. Associa-
tion for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mTS5: A massively
multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483-498, Online. Association for Computa-
tional Linguistics.

Nianwen Xue, Ondfej Bojar, Jan Haji¢, Martha Palmer,
Zdetika UreSova, and Xiuhong Zhang. 2014. Not
an interlingua, but close: Comparison of English
AMRs to Chinese and Czech. In Proceedings of
the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 1765—
1772, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with BERT. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020.

Huaiyu Zhu, Yunyao Li, and Laura Chiticariu. 2019.
Towards universal semantic representation. In Pro-
ceedings of the First International Workshop on De-
signing Meaning Representations, pages 177-181,

Florence, Italy. Association for Computational Lin-
guistics.

Appendices
A Details of Models and
Hyperparameters

The experiments were executed using the version
4.4.0 of the transformers library by Hugging Face
(Wolf et al., 2020). Table 4 shows the hyperpa-
rameters used to train our models. BLEU is used
for model selection using translated sentences of
the LDC2017T10 development set. We train until
the results on the development set BLEU have not
improved for 6 epochs.

learning rate le-04
batch size 8
beam search size 6
max source length 350
max target length 200

Table 4: Hyperparameter settings for our methods.

B Main Results: Additional Metrics

In Table 6 we present additional results on the mul-
tilingual LDC2020T07 test set using METEOR
(Denkowski and Lavie, 2014), chrF++ (Popovic,
2015) metrics.

C Results: Out of Domain Evaluation

In Table 5 we show BERTscore (Zhang et al., 2020)
results for out of domain evaluation on the Weblog
and WS]J subset of the LDC2020T07 dataset.

ES IT DE ZH
SILVERAMR 83.3 81.2 79.8 73.6
SILVERSENT 84.6 83.0 80.4 73.0

SILVERAMR + SILVERSENT 84.6 83.2 81.2 74.1

Table 5: BERT scores for out of domain evaluation.

D Results: Sequential Fine-tuning

In Figure 4 we present the impact of sequential
fine-tuning strategies in the LDC2020TO07 test set
for ES, DE and ZH.

749

117



METEOR chrF++

ES IT DE ZH All ES IT DE ZH All

MT 299 272 232 257 265 548 520 473 223 44.1
SILVERAMR 283 260 227 233 250 513 496 459 19.5 415
SILVERSENT 306 273 23.0 249 264 556 522 472 217 44.1
SILVERAMR + GOLDAMR 208 269 23,6 252 263 559 517 475 223 443
SILVERSENT + GOLDAMR 304 275 233 249 265 553 523 473 218 44.1
SILVERAMR + SILVERSENT 319 287 244 264 278 572 540 494 23.0 459

SILVERAMR + SILVERSENT + GOLDAMR 317 286 242 257 275 572 53.6 486 225 454

Table 6: METEOR and chrF++ results on the multilingual LDC2020T07 test set.

es de zh

SilverAMR
SilverSent - SilverAMR
GoldAMR - SilverAMR
SilverSent

SilverAMR - SilverSent
GoldAMR - SilverSent
SilverAMR - GoldAMR
SilverSent - GoldAMR
SilverAMR+SilverSent

0 10 20 30 0 10 200 0 10 20
BLEU BLEU BLEU

Figure 4: Order impact of sequential fine-tuning in the LDC2020T07 test set for ES, DE and ZH.

750

118



Part 111

Epilogue



Chapter 10

Conclusion and Future Work

10.1 Conclusion

Graph-to-text generation has the potential to enable Al systems to communicate
complex information stored into graph-based inputs to humans in the form best
understood by us — natural language. In this thesis, we have focused on the impor-
tant advances achieved by applying deep learning techniques to this task. We have
proposed novel neural approaches for encoding graph-based data and demonstrated
that they are able to better represent semantic graph structures leading to improved
text generation in different downstream applications. These encoding mechanisms
are essential for developing generative natural language models that can deal with
complex relational data stored in the form of graphs, and are valuable tools that
enable the easy consumption of knowledge for people all over the world.

Our proposed methods are incorporated into several text generation models en-
abling the capacity to explicitly capture the semantic relations between nodes in
the input graph, consequently improving the generated text’s fluency and faithful-
ness. In Chapter 4, we developed a dual graph encoder for AMR-to-text generation
that produces parallel top-down and bottom-up representations of nodes capturing
contrasting views of the graph and showed that this encoding strategy improves
the meaning similarity and readability of the generated sentences. Subsequently,
in Chapter 5, we showed a graph-to-text framework based on graph attention net-
works that provides different configurations to incorporate global and local node
aggregation, promoting the generation of more coherent multi-sentence outputs and
enhancing their fluency and adequacy. In Chapter 6, we presented a self-attention
strategy for injecting graph connectivity into Transformer architecture that learns
differently connected views and global patterns extracted from the input graph, en-
abling better text generation while being parameter efficient. Taken together, these
methods are applicable to a variety of other data-to-text tasks and represent com-
plementary approaches that can be used to enhance encoder-decoder neural models
in different setups that operate with structured data.

This thesis also addressed the challenges of adapting language models that were

120



10.2. FUTURE WORK

primarily pretrained in plain text to structured data. In Chapter 7, we studied
the adaptation of text-to-text models pretrained on natural language for graph-
based inputs and analyzed the impact of different task-adaptive pretraining strate-
gies for graph-to-text generation across three graph domains: meaning representa-
tions, Wikipedia and scientific knowledge graphs. Further, in Chapter 8 we contin-
uously adjusted these methods to handle complex graph structures, implementing
an adapter method that injects graph connectivity into the pretrained model, only
training a small fraction of the original model parameters. We found that our tech-
nique is more effective when encoding complex graphs, when trained on a limited
number of examples, and is more robust to different graph linearizations. Finally,
in Chapter 9, we proposed multilingual multi-task training methods to create novel
multilingual models capable of decoding into over four different languages from the
same structured AMR. The proposed approaches — task-adaptive pretraining, struc-
tural adapters and multilingual multi-task structural training — effectively adapt
pretrained language models to graph-based inputs leading to state-of-the-art results
in different scenarios. Our proposed techniques facilitate the practical use of the
promising pretrained language models for downstream text generations that con-
sume structured data.

10.2 Future Work

We end this work by discussing interesting research directions from distinctive per-
spectives. The focus of this thesis is on better encoding into neural models meaning
and knowledge stored in graph-based inputs, with the premise that this structured
semantic information is external and must be incorporated into the model for pro-
ducing text. Recent research has shown significant potential for neural models that
store in their parameters implicit knowledge learned through training on extremely
large corpora (Petroni et al., 2019; Roberts et al., 2020). This implicit knowledge
can be extracted from those pretrained models to fill in masked facts presented in
natural text created using knowledge graph triples. Combining external and implicit
knowledge in order to better represent the information to be realized in natural lan-
guage is an important area of study. For example, knowledge graphs are known
to be incomplete, and facts extracted from pretrained models can be exploited to
complete a partial subgraph. Furthermore, various semantic representations such as
Abstract Meaning Representation (AMR) do not fully represent co-references that
cross sentence boundaries, and the implicit knowledge encoded in pretrained models
can help to capture relations between entities across different sentences.

While studying multilingual text generation for AMR-to-text models in Chap-
ter 9, we witnessed that current multilingual data for structured representations is
scarce. Machine translation approaches can be employed for translating knowledge
graph triples, meaning representations and the target text. Furthermore, one may
think of the use of cross-lingual transfer learning (Liu et al., 2020a; Xue et al., 2021)
to generate multilingual text or the extraction of entity mappings from multilingual
resources (De Cao et al., 2022) to augment or create graph relations and node/edge
attributes. In such cases, a text generation model for multiple languages would be

121



CHAPTER 10. CONCLUSION AND FUTURE WORK

enhanced with additional relations and entities constructed from multilingual re-
sources. Moreover, it would be particularly interesting to study multilingual models
in zero-shot or few-shot graph-to-text settings. In this scenario, natural language
data used for training would consist of only a few languages, while the models would
be evaluated in unseen languages.

The capacity to scale neural encoder-decoder models to many millions, if not
billions, of learned parameters is one of the main causes of their success. While
the performance of such large models on diverse text generation tasks is impressive,
this capability comes at the cost of increasing latency and energy consumption due
to the high computational costs. While larger models continue to be developed,
recent studies propose various strategies for making such models smaller and faster
with relatively minor performance drawbacks. It will be vital to be able to distill,
quantize or minimize model size while maintaining performance (Sanh et al., 2019;
Jiao et al., 2020). This is particularly important for text generation models since
those approaches employ expensive decoding algorithms (e.g., beam search). In this
way, such models can be used in devices with limited computation capacity and
storage, such as smartphones and smartwatches, enabling their usage for a wide
range of users.

Finally, it will be necessary to conduct a more in-depth study on the limitations
of end-to-end neural systems for text generation from structured data. Traditional
data-to-text generation systems were inherently grounded and controllable due to a
planning phase that was essential in organizing and ordering the data and anchoring
the text generation to the plan (Castro Ferreira et al., 2019). Although modern neu-
ral generation systems have advanced text generation beyond initial expectations,
some of the most desired features, such as controllability and grounding, are still
challenging to be implemented (Narayan et al., 2021). In fact, many current models
suffer from a severe limitation, generating text that is not factually consistent, that
is, the content of the generated text does not meet all the facts of the input struc-
tured data. This limitation is especially prominent in out-of-domain scenarios. As
we consider the creation of models that truly work for people worldwide in differ-
ent applications, we are required to develop novel neural generation techniques that
function in a controllable, inspectable, and trustworthy way.

122



Bibliography

Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019. Massively multilingual neu-
ral machine translation. In Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 3874-3884, Minneapolis,
Minnesota. Association for Computational Linguistics.

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A
transformer-based approach for source code summarization. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pages
4998-5007, Online. Association for Computational Linguistics.

Uri Alon and Eran Yahav. 2021. On the bottleneck of graph neural networks and its
practical implications. In International Conference on Learning Representations.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization.
arXiv e-prints.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align and translate. In 3rd International Con-
ference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider.
2013. Abstract Meaning Representation for sembanking. In Proceedings of the 7th
Linguistic Annotation Workshop and Interoperability with Discourse, pages 178
186, Sofia, Bulgaria. Association for Computational Linguistics.

Valerio Basile and Johan Bos. 2011. Towards generating text from discourse repre-
sentation structures. In Proceedings of the 13th European Workshop on Natural
Language Generation, pages 145-150, Nancy, France. Association for Computa-
tional Linguistics.

Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Sima’an.
2017. Graph convolutional encoders for syntax-aware neural machine translation.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pages 1957-1967, Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Anja Belz. 2008. Automatic generation of weather forecast texts using compre-

123


https://doi.org/10.18653/v1/N19-1388
https://doi.org/10.18653/v1/N19-1388
https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
http://arxiv.org/abs/2112.07877
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://aclanthology.org/W13-2322
https://aclanthology.org/W11-2819
https://aclanthology.org/W11-2819
https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.1017/S1351324907004664
https://doi.org/10.1017/S1351324907004664
https://doi.org/10.1017/S1351324907004664

BIBLIOGRAPHY

hensive probabilistic generation-space models. Natural Language Engineering,
14(4):431-455.

Anja Belz, Michael White, Dominic Espinosa, Eric Kow, Deirdre Hogan, and
Amanda Stent. 2011. The first surface realisation shared task: Overview and
evaluation results. In Proceedings of the 13th European Workshop on Natural
Language Generation, pages 217-226, Nancy, France. Association for Computa-
tional Linguistics.

Kalina Bontcheva and Yorick Wilks. 2004. Automatic report generation from on-
tologies: The miakt approach. In Natural Language Processing and Information
Systems, pages 324-335, Berlin, Heidelberg. Springer Berlin Heidelberg.

Mihaela Bornea, Ramon Fernandez Astudillo, Tahira Naseem, Nandana Mihin-
dukulasooriya, Ibrahim Abdelaziz, Pavan Kapanipathi, Radu Florian, and Salim
Roukos. 2021. Learning to transpile AMR into SPARQL. arXiv e-prints.

Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra,
Fredrick Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin. 1990. A

statistical approach to machine translation. Computational Linguistics, 16(2):79-
85.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L.
Mercer. 1993. The mathematics of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2):263-311.

Ralf Brown and Robert Frederking. 1995. Applying statistical English language
modelling to symbolic machine translation. In Proceedings of the Sizth Confer-
ence on Theoretical and Methodological Issues in Machine Translation of Natural
Languages, Katholieke Universiteit, Leuven.

Aoife Cahill and Josef van Genabith. 2006. Robust PCFG-based generation using
automatically acquired LFG approximations. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics, pages 1033-1040, Sydney, Australia.
Association for Computational Linguistics.

Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh, Chris van der Lee, Simon
Mille, Diego Moussallem, and Anastasia Shimorina. 2020. The 2020 bilingual, bi-
directional WebNLG+ shared task: Overview and evaluation results (WebNLG+
2020). In Proceedings of the 3rd International Workshop on Natural Language
Generation from the Semantic Web (WebNLG+), pages 5576, Dublin, Ireland
(Virtual). Association for Computational Linguistics.

Thiago Castro Ferreira, Chris van der Lee, Emiel van Miltenburg, and Emiel Krah-
mer. 2019. Neural data-to-text generation: A comparison between pipeline and
end-to-end architectures. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pages 552-562, Hong
Kong, China. Association for Computational Linguistics.

124


https://doi.org/10.1017/S1351324907004664
https://doi.org/10.1017/S1351324907004664
https://doi.org/10.1017/S1351324907004664
https://doi.org/10.1017/S1351324907004664
https://aclanthology.org/W11-2832
https://aclanthology.org/W11-2832
http://arxiv.org/abs/2112.07877
https://aclanthology.org/J90-2002
https://aclanthology.org/J90-2002
https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003
https://aclanthology.org/1995.tmi-1.17
https://aclanthology.org/1995.tmi-1.17
https://doi.org/10.3115/1220175.1220305
https://doi.org/10.3115/1220175.1220305
https://aclanthology.org/2020.webnlg-1.7
https://aclanthology.org/2020.webnlg-1.7
https://aclanthology.org/2020.webnlg-1.7
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052

BIBLIOGRAPHY

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. 2021. Evaluation of text
generation: A survey. arXiv e-prints.

David L. Chen and Raymond J. Mooney. 2008. Learning to sportscast: A test
of grounded language acquisition. In Proceedings of the 25th International Con-
ference on Machine Learning, ICML 08, page 128-135, New York, NY, USA.
Association for Computing Machinery.

Marco Damonte and Shay B. Cohen. 2018. Cross-lingual Abstract Meaning Rep-
resentation parsing. In Proceedings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1146-1155, New Orleans, Louisiana.
Association for Computational Linguistics.

Marco Damonte, Rahul Goel, and Tagyoung Chung. 2019. Practical semantic pars-
ing for spoken language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 2 (Industry Papers), pages 16-23,
Minneapolis, Minnesota. Association for Computational Linguistics.

Nicola De Cao, Ledell Wu, Kashyap Popat, Mikel Artetxe, Naman Goyal, Mikhail
Plekhanov, Luke Zettlemoyer, Nicola Cancedda, Sebastian Riedel, and Fabio
Petroni. 2022. Multilingual Autoregressive Entity Linking. Transactions of the
Association for Computational Linguistics, 10:274-290.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Association
for Computational Linguistics.

Shibhansh Dohare, Vivek Gupta, and Harish Karnick. 2018. Unsupervised seman-
tic abstractive summarization. In Proceedings of ACL 2018, Student Research
Workshop, pages 74-83, Melbourne, Australia. Association for Computational
Linguistics.

Tobias Falke, Leonardo F. R. Ribeiro, Prasetya Ajie Utama, Ido Dagan, and Iryna
Gurevych. 2019. Ranking generated summaries by correctness: An interesting but
challenging application for natural language inference. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 2214—
2220, Florence, Italy. Association for Computational Linguistics.

Angela Fan, Claire Gardent, Chloé Braud, and Antoine Bordes. 2019. Using local
knowledge graph construction to scale Seq2Seq models to multi-document inputs.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 4186-4196, Hong Kong, China. Association for
Computational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini.

125


http://arxiv.org/abs/2006.14799
http://arxiv.org/abs/2006.14799
https://doi.org/10.1145/1390156.1390173
https://doi.org/10.1145/1390156.1390173
https://doi.org/10.18653/v1/N18-1104
https://doi.org/10.18653/v1/N18-1104
https://doi.org/10.18653/v1/N19-2003
https://doi.org/10.18653/v1/N19-2003
https://doi.org/10.1162/tacl_a_00460
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-3011
https://doi.org/10.18653/v1/P18-3011
https://doi.org/10.18653/v1/P19-1213
https://doi.org/10.18653/v1/P19-1213
https://doi.org/10.18653/v1/D19-1428
https://doi.org/10.18653/v1/D19-1428

BIBLIOGRAPHY

2017. The WebNLG challenge: Generating text from RDF data. In Proceedings
of the 10th International Conference on Natural Language Generation, pages 124
133, Santiago de Compostela, Spain. Association for Computational Linguistics.

Albert Gatt and Emiel Krahmer. 2018. Survey of the state of the art in natural
language generation: Core tasks, applications and evaluation. Journal of Artificial
Intelligence Research, 61(1):65-170.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
2017. Convolutional sequence to sequence learning. In Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 1243-1252. PMLR.

Sebastian Gehrmann, Tosin Adewumi, Karmanya Aggarwal, Pawan Sasanka Am-
manamanchi, Anuoluwapo Aremu, Antoine Bosselut, Khyathi Raghavi Chandu,
Miruna-Adriana Clinciu, Dipanjan Das, Kaustubh Dhole, Wanyu Du, Esin Dur-
mus, Ondfej Dusek, Chris Chinenye Emezue, Varun Gangal, Cristina Garbacea,
Tatsunori Hashimoto, Yufang Hou, Yacine Jernite, Harsh Jhamtani, Yangfeng
Ji, Shailza Jolly, Mihir Kale, Dhruv Kumar, Faisal Ladhak, Aman Madaan,
Mounica Maddela, Khyati Mahajan, Saad Mahamood, Bodhisattwa Prasad Ma-
jumder, Pedro Henrique Martins, Angelina McMillan-Major, Simon Mille, Emiel
van Miltenburg, Moin Nadeem, Shashi Narayan, Vitaly Nikolaev, Andre Niy-
ongabo Rubungo, Salomey Osei, Ankur Parikh, Laura Perez-Beltrachini, Niran-
jan Ramesh Rao, Vikas Raunak, Juan Diego Rodriguez, Sashank Santhanam,
Joao Sedoc, Thibault Sellam, Samira Shaikh, Anastasia Shimorina, Marco An-
tonio Sobrevilla Cabezudo, Hendrik Strobelt, Nishant Subramani, Wei Xu, Diyi
Yang, Akhila Yerukola, and Jiawei Zhou. 2021. The GEM benchmark: Natural
language generation, its evaluation and metrics. In Proceedings of the 1st Work-
shop on Natural Language Generation, Evaluation, and Metrics (GEM 2021),
pages 96-120, Online. Association for Computational Linguistics.

Dale Gerdemann and Erhard W. Hinrichs. 1990. Functor-driven natural language
generation with categorial-unification grammars. In Proceedings of the 13th Con-
ference on Computational Linguistics - Volume 2, COLING 90, page 145-150,
USA. Association for Computational Linguistics.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A new model for
learning in graph domains. Proceedings of the 2005 IEEE International Joint
Conference on Neural Networks, 2005., 2:729-734 vol. 2.

Valerie Hajdik, Jan Buys, Michael Wayne Goodman, and Emily M. Bender. 2019.
Neural text generation from rich semantic representations. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pages 2259-2266, Minneapolis, Minnesota. Association for Computational
Linguistics.

David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. 2011. Wavelets on
graphs via spectral graph theory. Applied and Computational Harmonic Analysis,
30(2):129-150.

126


https://doi.org/10.18653/v1/W17-3518
https://proceedings.mlr.press/v70/gehring17a.html
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.3115/997939.997964
https://doi.org/10.3115/997939.997964
https://doi.org/10.18653/v1/N19-1235
https://doi.org/https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/https://doi.org/10.1016/j.acha.2010.04.005

BIBLIOGRAPHY

Hardy Hardy and Andreas Vlachos. 2018. Guided neural language generation for ab-
stractive summarization using Abstract Meaning Representation. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 768-773, Brussels, Belgium. Association for Computational Linguistics.

Hamza Harkous, Isabel Groves, and Amir Saffari. 2020. Have your text and use it
too! end-to-end neural data-to-text generation with semantic fidelity. In Proceed-
ings of the 28th International Conference on Computational Linguistics, pages
2410-2424, Barcelona, Spain (Online). International Committee on Computa-
tional Linguistics.

Xiaodong He and Li Deng. 2017. Deep learning for image-to-text generation: A
technical overview. IEEE Signal Processing Magazine, 34(6):109-116.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
Computation, 9(8):1735-1780.

J. J. Hopfield. 1982. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences of the
United States of America, 79(8):2554-2558.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 2790-2799. PMLR.

Alexander Miserlis Hoyle, Ana Marasovi¢, and Noah A. Smith. 2021. Promoting
graph awareness in linearized graph-to-text generation. In Findings of the Associ-
ation for Computational Linguistics: ACL-IJCNLP 2021, pages 944-956, Online.
Association for Computational Linguistics.

Luyang Huang, Lingfei Wu, and Lu Wang. 2020. Knowledge graph-augmented
abstractive summarization with semantic-driven cloze reward. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pages
5094-5107, Online. Association for Computational Linguistics.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang,
and Qun Liu. 2020. TinyBERT: Distilling BERT for natural language understand-
ing. In Findings of the Association for Computational Linguistics: EMNLP 2020,
pages 4163-4174, Online. Association for Computational Linguistics.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng
Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, Mac-
duff Hughes, and Jeffrey Dean. 2017. Google’s multilingual neural machine trans-
lation system: Enabling zero-shot translation. Transactions of the Association for
Computational Linguistics, 5:339-351.

Juraj Juraska, Kevin Bowden, and Marilyn Walker. 2019. ViGGO: A video game
corpus for data-to-text generation in open-domain conversation. In Proceedings of
the 12th International Conference on Natural Language Generation, pages 164—
172, Tokyo, Japan. Association for Computational Linguistics.

127


https://doi.org/10.18653/v1/D18-1086
https://doi.org/10.18653/v1/D18-1086
https://doi.org/10.18653/v1/2020.coling-main.218
https://doi.org/10.18653/v1/2020.coling-main.218
https://doi.org/10.1109/MSP.2017.2741510
https://doi.org/10.1109/MSP.2017.2741510
http://view.ncbi.nlm.nih.gov/pubmed/6953413]
http://view.ncbi.nlm.nih.gov/pubmed/6953413]
https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/2021.findings-acl.82
https://doi.org/10.18653/v1/2021.findings-acl.82
https://doi.org/10.18653/v1/2020.acl-main.457
https://doi.org/10.18653/v1/2020.acl-main.457
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.18653/v1/W19-8623
https://doi.org/10.18653/v1/W19-8623

BIBLIOGRAPHY

Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos,
Alexander Gray, Ramoén Fernandez Astudillo, Maria Chang, Cristina Cornelio,
Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio Gliozzo, Sairam Gurajada,
Hima Karanam, Naweed Khan, Dinesh Khandelwal, Young-Suk Lee, Yunyao
Li, Francois Luus, Ndivhuwo Makondo, Nandana Mihindukulasooriya, Tahira
Naseem, Sumit Neelam, Lucian Popa, Revanth Gangi Reddy, Ryan Riegel, Gae-
tano Rossiello, Udit Sharma, G P Shrivatsa Bhargav, and Mo Yu. 2021. Leverag-
ing Abstract Meaning Representation for knowledge base question answering. In
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
pages 3884-3894, Online. Association for Computational Linguistics.

David Kauchak and Regina Barzilay. 2006. Paraphrasing for automatic evaluation.
In Proceedings of the Human Language Technology Conference of the NAACL,
Main Conference, pages 455-462, New York City, USA. Association for Compu-
tational Linguistics.

Thomas N. Kipf and Max Welling. 2017. Semi-supervised classification with graph
convolutional networks. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceed-

mngs.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Fed-
erico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens,
Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses:
Open source toolkit for statistical machine translation. In Proceedings of the 45th
Annual Meeting of the Association for Computational Linguistics Companion Vol-
ume Proceedings of the Demo and Poster Sessions, pages 177-180, Prague, Czech
Republic. Association for Computational Linguistics.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and Hannaneh
Hajishirzi. 2019. Text Generation from Knowledge Graphs with Graph Trans-
formers. In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2284-2293, Minneapolis, Minnesota.
Association for Computational Linguistics.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin Choi, and Luke Zettlemoyer.
2017. Neural AMR: Sequence-to-sequence models for parsing and generation.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 146-157, Vancouver, Canada. Asso-
ciation for Computational Linguistics.

Ioannis Konstas and Mirella Lapata. 2013. A global model for concept-to-text gen-
eration. Journal of Artificial Intelligence Research, 48(1):305-346.

Karen Kukich. 1983. Design of a knowledge-based report generator. In 21st An-
nual Meeting of the Association for Computational Linguistics, pages 145150,
Cambridge, Massachusetts, USA. Association for Computational Linguistics.

Anne Lauscher, Olga Majewska, Leonardo F. R. Ribeiro, Iryna Gurevych, Nikolai
Rozanov, and Goran Glavas. 2020. Common sense or world knowledge? investigat-

128


https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://aclanthology.org/N06-1058
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://aclanthology.org/P07-2045
https://aclanthology.org/P07-2045
https://doi.org/10.18653/v1/N19-1238
https://doi.org/10.18653/v1/N19-1238
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.3115/981311.981340
https://doi.org/10.18653/v1/2020.deelio-1.5
https://doi.org/10.18653/v1/2020.deelio-1.5
https://doi.org/10.18653/v1/2020.deelio-1.5

BIBLIOGRAPHY

ing adapter-based knowledge injection into pretrained transformers. In Proceed-
ings of Deep Learning Inside Out (DeeLIO): The First Workshop on Knowledge
Eaxtraction and Integration for Deep Learning Architectures, pages 43-49, Online.
Association for Computational Linguistics.

Rémi Lebret, David Grangier, and Michael Auli. 2016. Neural text generation from
structured data with application to the biography domain. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages
1203-1213, Austin, Texas. Association for Computational Linguistics.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature,
521(7553):436.

Chris van der Lee, Emiel Krahmer, and Sander Wubben. 2017. PASS: A Dutch data-
to-text system for soccer, targeted towards specific audiences. In Proceedings of
the 10th International Conference on Natural Language Generation, INLG'2017,
pages 95-104, Santiago de Compostela, Spain. Association for Computational
Linguistics.

Fei-Tzin Lee, Chris Kedzie, Nakul Verma, and Kathleen McKeown. 2021. An anal-
ysis of document graph construction methods for amr summarization. arXiv e-
prints.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef,
Soren Auer, and Christian Bizer. 2015. Dbpedia - a large-scale, multilingual
knowledge base extracted from wikipedia. Semantic Web, 6(2):167-195.

Leo Leppéanen, Myriam Munezero, Mark Granroth-Wilding, and Hannu Toivonen.
2017. Data-driven news generation for automated journalism. In Proceedings of
the 10th International Conference on Natural Language Generation, pages 188
197. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: De-
noising sequence-to-sequence pre-training for natural language generation, trans-
lation, and comprehension. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 7871-7880, Online. Association
for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts
for generation. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 4582-4597, Online.
Association for Computational Linguistics.

Jungwoo Lim, Dongsuk Oh, Yoonna Jang, Kisu Yang, and Heuiseok Lim. 2020. I
know what you asked: Graph path learning using AMR for commonsense rea-
soning. In Proceedings of the 28th International Conference on Computational
Linguistics, pages 2459-2471, Barcelona, Spain (Online). International Commit-
tee on Computational Linguistics.

129


https://doi.org/10.18653/v1/2020.deelio-1.5
https://doi.org/10.18653/v1/2020.deelio-1.5
https://doi.org/10.18653/v1/2020.deelio-1.5
https://doi.org/10.18653/v1/2020.deelio-1.5
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/D16-1128
http://aclweb.org/anthology/W17-3513
http://aclweb.org/anthology/W17-3513
http://arxiv.org/abs/2111.13993
http://arxiv.org/abs/2111.13993
http://dblp.uni-trier.de/db/journals/semweb/semweb6.html#LehmannIJJKMHMK15
http://dblp.uni-trier.de/db/journals/semweb/semweb6.html#LehmannIJJKMHMK15
https://doi.org/10.18653/v1/W17-3528
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2020.coling-main.222
https://doi.org/10.18653/v1/2020.coling-main.222
https://doi.org/10.18653/v1/2020.coling-main.222

BIBLIOGRAPHY

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and Zhifang Sui. 2018.
Table-to-text generation by structure-aware seq2seq learning. In Proceed-
ings of the Thirty-Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence Conference and

FEighth AAAI Symposium on FEducational Advances in Artificial Intelligence,
AAAT18/TAAT'18/EAAT’18. AAAI Press.

Yang Liu and Mirella Lapata. 2019. Text summarization with pretrained encoders.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-1JCNLP), pages 3730-3740, Hong Kong, China. Association for
Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvinine-
jad, Mike Lewis, and Luke Zettlemoyer. 2020a. Multilingual denoising pre-training
for neural machine translation. Transactions of the Association for Computational
Linguistics, 8:726-742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2020b. Roberta: A
robustly optimized bert pretraining approach. arXiv e-prints.

Wei Lu and Hwee Tou Ng. 2011. A probabilistic forest-to-string model for language
generation from typed lambda calculus expressions. In Proceedings of the 2011
Conference on Empirical Methods in Natural Language Processing, pages 1611—
1622, Edinburgh, Scotland, UK. Association for Computational Linguistics.

[ain Macdonald and Advaith Siddharthan. 2016. Summarising news stories for chil-
dren. In Proceedings of the 9th International Natural Language Generation con-
ference, pages 1-10, Edinburgh, UK. Association for Computational Linguistics.

Manuel Mager, Ramén Fernandez Astudillo, Tahira Naseem, Md Arafat Sultan,
Young-Suk Lee, Radu Florian, and Salim Roukos. 2020. GPT-too: A language-
model-first approach for AMR-to-text generation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics, pages 1846-1852,
Online. Association for Computational Linguistics.

Diego Marcheggiani and Ivan Titov. 2017. Encoding sentences with graph convolu-
tional networks for semantic role labeling. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pages 1506-1515, Copen-
hagen, Denmark. Association for Computational Linguistics.

Kathleen R. McKeown. 1982. The text system for natural language generation: An
overview. In 20th Annual Meeting of the Association for Computational Linguis-
tics, pages 113-120, Toronto, Ontario, Canada. Association for Computational
Linguistics.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter. 2016. What to talk about
and how? selective generation using LSTMs with coarse-to-fine alignment. In Pro-
ceedings of the 2016 Conference of the North American Chapter of the Association

130


https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://aclanthology.org/D11-1149
https://aclanthology.org/D11-1149
https://doi.org/10.18653/v1/W16-6601
https://doi.org/10.18653/v1/W16-6601
https://doi.org/10.18653/v1/2020.acl-main.167
https://doi.org/10.18653/v1/2020.acl-main.167
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.3115/981251.981285
https://doi.org/10.3115/981251.981285
https://doi.org/10.18653/v1/N16-1086
https://doi.org/10.18653/v1/N16-1086

BIBLIOGRAPHY

for Computational Linguistics: Human Language Technologies, HLT-NAACL’16,
pages 720-730, San Diego, California. Association for Computational Linguistics.

Mohsen Mesgar, Leonardo F. R. Ribeiro, and Iryna Gurevych. 2021. A neural graph-
based local coherence model. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 23162321, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Noelia Migueles-Abraira, Rodrigo Agerri, and Arantza Diaz de Ilarraza. 2018. An-
notating Abstract Meaning Representations for Spanish. In Proceedings of the
FEleventh International Conference on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Resources Association (ELRA).

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Graham, Emily Pitler, and Leo Wan-
ner. 2018. The first multilingual surface realisation shared task (SR’18): Overview
and evaluation results. In Proceedings of the First Workshop on Multilingual Sur-
face Realisation, pages 1-12, Melbourne, Australia. Association for Computational
Linguistics.

Shashi Narayan, Yao Zhao, Joshua Maynez, Gongalo Simoes, Vitaly Nikolaev, and
Ryan McDonald. 2021. Planning with learned entity prompts for abstractive
summarization. Transactions of the Association for Computational Linguistics,
9:1475-1492.

Franz Josef Och, Christoph Tillmann, and Hermann Ney. 1999. Improved alignment
models for statistical machine translation. In 1999 Joint SIGDAT Conference on
Empirical Methods in Natural Language Processing and Very Large Corpora.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhin-
gra, Diyi Yang, and Dipanjan Das. 2020. ToTTo: A controlled table-to-text
generation dataset. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1173-1186, Online. Association
for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representa-
tions. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 2227-2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Fabio Petroni, Tim Rocktéschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin,
Yuxiang Wu, and Alexander Miller. 2019. Language models as knowledge bases?
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-1JCNLP), pages 2463-2473, Hong Kong, China. Association for
Computational Linguistics.

Vassilis Plachouras, Charese Smiley, Hiroko Bretz, Ola Taylor, Jochen L. Leidner,
Dezhao Song, and Frank Schilder. 2016. Interacting with financial data using
natural language. In SIGIR, pages 1121-1124. ACM.

131


https://doi.org/10.18653/v1/2021.findings-emnlp.199
https://doi.org/10.18653/v1/2021.findings-emnlp.199
https://aclanthology.org/L18-1486
https://aclanthology.org/L18-1486
https://doi.org/10.18653/v1/W18-3601
https://doi.org/10.18653/v1/W18-3601
https://doi.org/10.1162/tacl_a_00438
https://doi.org/10.1162/tacl_a_00438
https://aclanthology.org/W99-0604
https://aclanthology.org/W99-0604
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D19-1250
http://dblp.uni-trier.de/db/conf/sigir/sigir2016.html#PlachourasSBTLS16
http://dblp.uni-trier.de/db/conf/sigir/sigir2016.html#PlachourasSBTLS16

BIBLIOGRAPHY

Francois Portet, Ehud Reiter, Albert Gatt, Jim Hunter, Somayajulu Sripada,
Yvonne Freer, and Cindy Sykes. 2009. Automatic generation of textual sum-
maries from neonatal intensive care data. Artificial Intelligence, 173(7-8):789 —
816.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei
Zhang, and Ming Zhou. 2020. ProphetNet: Predicting future n-gram for sequence-
to-SequencePre-training. In Findings of the Association for Computational Lin-
quistics: EMNLP 2020, pages 2401-2410, Online. Association for Computational
Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language models are unsupervised multitask learners. arXiv
e-prints.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of

transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res.,
21:140:1-140:67.

Sudha Rao and Hal Daumé III. 2018. Learning to ask good questions: Ranking clar-
ification questions using neural expected value of perfect information. In Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2737-2746, Melbourne, Australia. Association
for Computational Linguistics.

Ehud Reiter and Robert Dale. 2000. Building Natural Language Generation Systems.
Cambridge University Press, USA.

Leonardo F. R. Ribeiro, Claire Gardent, and Iryna Gurevych. 2019. Enhancing
AMR-to-text generation with dual graph representations. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3183-3194, Hong Kong, China. Association for Computational
Linguistics.

Leonardo F. R. Ribeiro, Jonas Pfeiffer, Yue Zhang, and Iryna Gurevych. 2021a.
Smelting gold and silver for improved multilingual AMR-to-Text generation. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 742-750, Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich Schiitze, and Iryna Gurevych.
2021b. Investigating pretrained language models for graph-to-text generation. In
Proceedings of the 3rd Workshop on Natural Language Processing for Conversa-
tional Al pages 211-227, Online. Association for Computational Linguistics.

Leonardo F. R. Ribeiro, Yue Zhang, Claire Gardent, and Iryna Gurevych. 2020.
Modeling global and local node contexts for text generation from knowledge
graphs. Transactions of the Association for Computational Linguistics, 8:589—
604.

132


https://doi.org/10.18653/v1/2020.findings-emnlp.217
https://doi.org/10.18653/v1/2020.findings-emnlp.217
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P18-1255
https://doi.org/10.18653/v1/P18-1255
https://doi.org/10.18653/v1/D19-1314
https://doi.org/10.18653/v1/D19-1314
https://doi.org/10.18653/v1/2021.emnlp-main.57
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.1162/tacl_a_00332
https://doi.org/10.1162/tacl_a_00332

BIBLIOGRAPHY

Leonardo F. R. Ribeiro, Yue Zhang, and Iryna Gurevych. 2021c. Structural adapters
in pretrained language models for AMR-to-Text generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, pages
4269-4282, Online and Punta Cana, Dominican Republic. Association for Com-
putational Linguistics.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020. How much knowledge can you
pack into the parameters of a language model? In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pages
5418-5426, Online. Association for Computational Linguistics.

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils
Reimers, and Iryna Gurevych. 2021. AdapterDrop: On the efficiency of adapters
in transformers. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 7930-7946, Online and Punta Cana, Domini-
can Republic. Association for Computational Linguistics.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning
Representations by Back-propagating Errors. Nature, 323(6088):533-536.

Vasile Rus, Brendan Wyse, Paul Piwek, Mihai Lintean, Svetlana Stoyanchev, and
Cristian Moldovan. 2011. Question generation shared task and evaluation chal-
lenge — status report. In Proceedings of the 15th European Workshop on Natural
Language Generation, pages 318-320, Nancy, France. Association for Computa-
tional Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. In

5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @
NeurIPS 2019.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, [van
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In The Semantic Web - 15th International Conference, ESWC 2018,
Heraklion, Crete, Greece, June 3-7, 2018, Proceedings, pages 593-607.

Martin Schmitt, Leonardo F. R. Ribeiro, Philipp Dufter, Iryna Gurevych, and Hin-
rich Schiitze. 2021. Modeling graph structure via relative position for text gen-
eration from knowledge graphs. In Proceedings of the Fifteenth Workshop on
Graph-Based Methods for Natural Language Processing (TextGraphs-15), pages
10-21, Mexico City, Mexico. Association for Computational Linguistics.

Yuanlong Shao, Stephan Gouws, Denny Britz, Anna Goldie, Brian Strope, and Ray
Kurzweil. 2017. Generating high-quality and informative conversation responses
with sequence-to-sequence models. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing, pages 2210-2219, Copenhagen,
Denmark. Association for Computational Linguistics.

Anastasia Shimorina, Elena Khasanova, and Claire Gardent. 2019. Creating a cor-
pus for Russian data-to-text generation using neural machine translation and
post-editing. In Proceedings of the 7th Workshop on Balto-Slavic Natural Lan-

133


https://doi.org/10.18653/v1/2021.emnlp-main.351
https://doi.org/10.18653/v1/2021.emnlp-main.351
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://aclanthology.org/W11-2853
https://aclanthology.org/W11-2853
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.18653/v1/2021.textgraphs-1.2
https://doi.org/10.18653/v1/2021.textgraphs-1.2
https://doi.org/10.18653/v1/D17-1235
https://doi.org/10.18653/v1/D17-1235
https://doi.org/10.18653/v1/W19-3706
https://doi.org/10.18653/v1/W19-3706
https://doi.org/10.18653/v1/W19-3706

BIBLIOGRAPHY

guage Processing, pages 44-49, Florence, Italy. Association for Computational
Linguistics.

Chang Shu, Yusen Zhang, Xiangyu Dong, Peng Shi, Tao Yu, and Rui Zhang. 2021.
Logic-consistency text generation from semantic parses. In Findings of the As-
sociation for Computational Linguistics: ACL-IJCNLP 2021, pages 4414-4426,
Online. Association for Computational Linguistics.

Marco Antonio Sobrevilla Cabezudo and Thiago Pardo. 2019. Towards a general
Abstract Meaning Representation corpus for Brazilian Portuguese. In Proceed-
ings of the 13th Linguistic Annotation Workshop, pages 236-244, Florence, Italy.
Association for Computational Linguistics.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo Wang, and Jinsong Su. 2019. Se-
mantic neural machine translation using AMR. Transactions of the Association
for Computational Linguistics, 7:19-31.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel Gildea. 2018. A graph-to-
sequence model for AMR-to-text generation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pages 16161626, Melbourne, Australia. Association for Computational Lin-
guistics.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. Conceptnet 5.5: An open
multilingual graph of general knowledge. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, AAAT'17, page 4444-4451. AAAT Press.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in Neural Information Processing Systems,
volume 27. Curran Associates, Inc.

Tao Tao, Xuanhui Wang, Qiaozhu Mei, and ChengXiang Zhai. 2006. Language
model information retrieval with document expansion. In Proceedings of the Hu-
man Language Technology Conference of the NAACL, Main Conference, pages
407-414, New York City, USA. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, I ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. 2018. Graph Attention Networks. In International Conference
on Learning Representations, Vancouver, Canada.

Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond J. Mooney,
Trevor Darrell, and Kate Saenko. 2015. Sequence to sequence - video to text. In
ICCV, pages 4534-4542. IEEE Computer Society.

Pavlos Vougiouklis, Hady Elsahar, Lucie-Aimée Kaffee, Christophe Gravier,
Frédérique Laforest, Jonathon Hare, and Elena Simperl. 2018. Neural wikipedian:

134


https://doi.org/10.18653/v1/2021.findings-acl.388
https://doi.org/10.18653/v1/W19-4028
https://doi.org/10.18653/v1/W19-4028
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.18653/v1/P18-1150
https://doi.org/10.18653/v1/P18-1150
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://aclanthology.org/N06-1052
https://aclanthology.org/N06-1052
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
http://dblp.uni-trier.de/db/conf/iccv/iccv2015.html#VenugopalanRDMD15
https://doi.org/https://doi.org/10.1016/j.websem.2018.07.002
https://doi.org/https://doi.org/10.1016/j.websem.2018.07.002
https://doi.org/https://doi.org/10.1016/j.websem.2018.07.002

BIBLIOGRAPHY

Generating textual summaries from knowledge base triples. Journal of Web Se-
mantics, 5b2-53:1 — 15.

Denny Vrandec¢i¢ and Markus Krotzsch. 2014. Wikidata: A free collaborative
knowledgebase. Communications of the Association for Computing Machinery,
57(10):78-85.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S. Yu. 2018. Improving Automatic Source Code Summarization via Deep
Reinforcement Learning, page 397-407. Association for Computing Machinery,
New York, NY, USA.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael,
Felix Hill, Omer Levy, and Samuel Bowman. 2019. Superglue: A stickier bench-
mark for general-purpose language understanding systems. In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. In Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353-355,
Brussels, Belgium. Association for Computational Linguistics.

Tsung-Hsien Wen, Milica Gasi¢, Nikola Mrksi¢, Pei-Hao Su, David Vandyke, and
Steve Young. 2015. Semantically conditioned LSTM-based natural language gen-
eration for spoken dialogue systems. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 1711-1721, Lisbon, Por-
tugal. Association for Computational Linguistics.

Michael White, Rajakrishnan Rajkumar, and Scott Martin. 2007. Towards broad
coverage surface realization with CCG. In Proceedings of the Workshop on Using
corpora for natural language generation, Copenhagen, Denmark.

Sam Wiseman, Stuart Shieber, and Alexander Rush. 2017. Challenges in data-to-
document generation. In Proceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2253-2263, Copenhagen, Denmark.
Association for Computational Linguistics.

David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R
Grant, Tanvir Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, Nazanin Assem-
pour, Ithayavani Iynkkaran, Yifeng Liu, Adam Maciejewski, Nicola Gale, Alex
Wilson, Lucy Chin, Ryan Cummings, Diana Le, Allison Pon, Craig Knox, and
Michael Wilson. 2017. DrugBank 5.0: a major update to the DrugBank database
for 2018. Nucleic Acids Research, 46(D1):D1074-D1082.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro
Yasunaga, Chien-Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Victor
Zhong, Bailin Wang, Chengzu Li, Connor Boyle, Ansong Ni, Ziyu Yao, Dragomir
Radev, Caiming Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith, Luke Zettle-
moyer, and Tao Yu. 2022. Unifiedskg: Unifying and multi-tasking structured
knowledge grounding with text-to-text language models.

135


https://doi.org/https://doi.org/10.1016/j.websem.2018.07.002
https://doi.org/https://doi.org/10.1016/j.websem.2018.07.002
https://doi.org/https://doi.org/10.1016/j.websem.2018.07.002
https://doi.org/https://doi.org/10.1016/j.websem.2018.07.002
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D15-1199
https://aclanthology.org/2007.mtsummit-ucnlg.4
https://aclanthology.org/2007.mtsummit-ucnlg.4
https://doi.org/10.18653/v1/D17-1239
https://doi.org/10.18653/v1/D17-1239
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/nar/gkx1037
http://arxiv.org/abs/2201.05966
http://arxiv.org/abs/2201.05966

BIBLIOGRAPHY

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018a. Representation learning on graphs
with jumping knowledge networks. In Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of Machine Learning Re-
search, pages 5453-5462. PMLR.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng, and Vadim Sheinin. 2018b.
SQL-to-text generation with graph-to-sequence model. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 931-936,
Brussels, Belgium. Association for Computational Linguistics.

Wei Xu, Alan Ritter, Bill Dolan, Ralph Grishman, and Colin Cherry. 2012. Para-
phrasing for style. In Proceedings of COLING 2012, pages 2899-2914, Mumbai,
India. The COLING 2012 Organizing Committee.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya
Siddhant, Aditya Barua, and Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 483-498, Online. Association for Computa-
tional Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language
understanding. In Advances in Neural Information Processing Systems, volume 32,
pages 5753-5763. Curran Associates, Inc.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph convolutional networks
for text classification. In Proceedings of the Thirty-Third AAAI Conference on
Artificial Intelligence and Thirty-First Innovative Applications of Artificial In-
telligence Conference and Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, AAAT'19/TAAT'19/EAAT'19. AAAT Press.

Chengxiang Zhai and John Lafferty. 2001. Model-based feedback in the language
modeling approach to information retrieval. In Proceedings of the Tenth Interna-
tional Conference on Information and Knowledge Management, CIKM ’01, page
403410, New York, NY, USA. Association for Computing Machinery.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. 2020. PEGASUS:
Pre-training with extracted gap-sentences for abstractive summarization. In Pro-
ceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages 11328-11339. PMLR.

Xingxing Zhang and Mirella Lapata. 2017. Sentence simplification with deep rein-
forcement learning. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 584-594, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Chao Zhao, Marilyn Walker, and Snigdha Chaturvedi. 2020. Bridging the structural
gap between encoding and decoding for data-to-text generation. In Proceedings of

136


https://proceedings.mlr.press/v80/xu18c.html
https://proceedings.mlr.press/v80/xu18c.html
https://doi.org/10.18653/v1/D18-1112
https://aclanthology.org/C12-1177
https://aclanthology.org/C12-1177
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.1145/502585.502654
https://doi.org/10.1145/502585.502654
https://proceedings.mlr.press/v119/zhang20ae.html
https://proceedings.mlr.press/v119/zhang20ae.html
https://doi.org/10.18653/v1/D17-1062
https://doi.org/10.18653/v1/D17-1062
https://doi.org/10.18653/v1/2020.acl-main.224
https://doi.org/10.18653/v1/2020.acl-main.224

BIBLIOGRAPHY

the 58th Annual Meeting of the Association for Computational Linguistics, pages
2481-2491, Online. Association for Computational Linguistics.

137



Appendix A

Data Handling

In accordance with DFG’s “Principles for the Handling of Research Data”,! we en-
sured the long-term preservation of research data and/or experimental software that
has been developed as part of this dissertation. We made this data openly accessi-
ble when possible. The following software has been made available for the scientific
community (see the repositories for licensing details):

e Chapter 4: https://github.com/UKPLab/emnlp2019-dualgraph

e Chapter 5: https://github.com/UKPLab/kg2text

Chapter 6: https://github.com/mnschmit/graformer

Chapter 7: https://github.com/UKPLab/plms-graph2text

Chapter 8: https://github.com/UKPLab/StructAdapt

Chapter 9: https://github.com/UKPLab/m-AMR2Text

Our trained models are distributed via UKP Lab’s public webserver, due to the
large size of the data (License: Creative Commons Attribution Share-Alike 4.0):

e Chapter 4: https://public.ukp.informatik.tu-darmstadt.de/ribeiro/
emnlpl9_dualgraph

e Chapters5and 7: https://public.ukp.informatik.tu-darmstadt.de/ribeiro/

graph2text

e Chapter 8: https://public.ukp.informatik.tu-darmstadt.de/ribeiro/
structadapt

e Chapter 9: https://public.ukp.informatik.tu-darmstadt.de/ribeiro/

! https://www.dfg.de/download/pdf/foerderung/grundlagen_dfg_foerderung/
forschungsdaten/leitlinien_forschungsdaten.pdf

138


https://github.com/UKPLab/emnlp2019-dualgraph
https://github.com/UKPLab/kg2text
https://github.com/mnschmit/graformer
https://github.com/UKPLab/plms-graph2text
https://github.com/UKPLab/StructAdapt
https://github.com/UKPLab/m-AMR2Text
https://public.ukp.informatik.tu-darmstadt.de/ribeiro/emnlp19_dualgraph
https://public.ukp.informatik.tu-darmstadt.de/ribeiro/emnlp19_dualgraph
https://public.ukp.informatik.tu-darmstadt.de/ribeiro/graph2text
https://public.ukp.informatik.tu-darmstadt.de/ribeiro/graph2text
https://public.ukp.informatik.tu-darmstadt.de/ribeiro/structadapt
https://public.ukp.informatik.tu-darmstadt.de/ribeiro/structadapt
https://public.ukp.informatik.tu-darmstadt.de/ribeiro/graph2text/mt5_base_silveramr_silversent.tar.gz
https://public.ukp.informatik.tu-darmstadt.de/ribeiro/graph2text/mt5_base_silveramr_silversent.tar.gz
https://www.dfg.de/download/pdf/foerderung/grundlagen_dfg_foerderung/forschungsdaten/leitlinien_forschungsdaten.pdf
https://public.ukp.informatik.tu-darmstadt.de/ribeiro/graph2text/mt5_base_silveramr_silversent.tar.gz
https://www.dfg.de/download/pdf/foerderung/grundlagen_dfg_foerderung/forschungsdaten/leitlinien_forschungsdaten.pdf
https://public.ukp.informatik.tu-darmstadt.de/ribeiro/graph2text/mt5_base_silveramr_silversent.tar.gz
https://public.ukp.informatik.tu-darmstadt.de/ribeiro/graph2text/mt5_base_silveramr_silversent.tar.gz

APPENDIX A. DATA HANDLING

graph2text/mt5_base_silveramr_silversent.tar.gz

All publications related to this thesis are publicly available on the ACL Anthol-
ogy (aclweb.org/anthology/):

e Chapter 4: https://aclanthology.org/D19-1314/

Chapter 5: https://aclanthology.org/2020.tacl-1.38/

Chapter 6: https://aclanthology.org/2021.textgraphs-1.2/

Chapter 7: https://aclanthology.org/2021.nlp4convai-1.20/

Chapter 8: https://aclanthology.org/2021.emnlp-main.351/
e Chapter 9: https://aclanthology.org/2021.emnlp-main.57/

Moreover, all research results of the aforementioned publications are documented
in the present thesis, which is archived by the Universitats- und Landesbibliothek
Darmstadt.

139


https://public.ukp.informatik.tu-darmstadt.de/ribeiro/graph2text/mt5_base_silveramr_silversent.tar.gz
https://public.ukp.informatik.tu-darmstadt.de/ribeiro/graph2text/mt5_base_silveramr_silversent.tar.gz
https://public.ukp.informatik.tu-darmstadt.de/ribeiro/graph2text/mt5_base_silveramr_silversent.tar.gz
https://public.ukp.informatik.tu-darmstadt.de/ribeiro/graph2text/mt5_base_silveramr_silversent.tar.gz
https://aclanthology.org/D19-1314/
https://aclanthology.org/2020.tacl-1.38/
https://aclanthology.org/2021.textgraphs-1.2/
https://aclanthology.org/2021.nlp4convai-1.20/
https://aclanthology.org/2021.emnlp-main.351/
https://aclanthology.org/2021.emnlp-main.57/

	I Synopsis
	Publications and My Contributions
	Introduction
	Thesis Outline

	Text Generation from Structured Data
	Text Generation
	Generating Text from Structures
	Abstract Meaning Representation to Text
	Knowledge Graphs to Text


	Graph-to-Text Generation
	Task Definition
	Encoder-Decoder Model
	Transformers
	Linearized Graph Representation

	Encoding the Graph Structure
	Graph Neural Networks
	Graph-to-text Architecture
	Our Contributions

	Graph-to-Text Generation with Pretrained Language Models
	Pretrained Language Models
	Our Contributions



	II Publications
	Enhancing AMR-to-Text Generation with Dual Graph Representations
	Introduction
	Related Work
	Graph-to-Sequence Model
	Graph Preparation
	Dual Graph Encoder
	Graph Neural Networks
	Decoder

	Data
	Experiments and Discussion
	Implementation Details
	Results
	Additional Training Data
	Ablation Study
	Impact of Graph Size, Arity and Sentence Length
	Semantic Equivalence
	Human Evaluation
	Semantic Adequacy

	Conclusion
	Appendix

	Modeling Global and Local Node Contexts for Text Generation from Knowledge Graphs
	Introduction
	Related Work
	AMR-to-Text Generation
	KG-to-Text Generation

	Graph-to-Text Model
	Graph Preparation
	Graph Neural Networks
	Global Graph Encoder
	Local Graph Encoder
	Combining Global and Local Encodings
	Decoder and Training

	Data and Preprocessing
	Experiments
	Results on AGENDA
	Results on WebNLG
	Development Experiments
	Ablation Study
	Impact of the Graph Structure and Output Length
	Human Evaluation
	Additional Experiments

	Conclusion

	Modeling Graph Structure via Relative Position for Text Generation from Knowledge Graphs
	Introduction
	Related Work
	The Graformer Model
	Graph Data Structure
	Graformer encoder
	Self-attention for Text and Graphs with Relative Position Embeddings
	Graformer Decoder
	Training

	Experiment
	Datasets
	Data Preprocessing
	Hyperparameters and Training Details
	Epoch Curriculum

	Results and Discussion
	Overall Performance
	Performance on Different Types of Graphs
	Ablation Study

	Learned Graph Structure
	Conclusion
	Appendix

	Investigating Pretrained Language Models for Graph-to-Text Generation
	Introduction
	Related Work
	Graph-to-Text Learning
	Pretrained Language Models

	PLMs for Graph-to-Text Generation
	Models in This Study
	Task-specific Adaptation

	Datasets
	Additional Task-specific Data

	Experiment
	Results on AMR-to-Text
	Results on WebNLG
	Results on AGENDA
	Human Evaluation
	Limiting the Training Data

	Influence of the Graph Structure
	Quantitative Analysis
	Qualitative Analysis

	Conclusion
	Appendix

	Structural Adapters in Pretrained Language Models for AMR-to-Text Generation
	Introduction
	Related Work
	Fine-tuning for Graph-to-Text Generation
	Lightweight Fine-tuning

	Graph-to-Text Model
	Encoder-Decoder Architecture
	Fine-tuning
	Baseline Adapter
	Limitation

	Structural Adapter
	Intuition
	Graph Representation
	Method

	Experiments
	Main Results
	Human Evaluation
	Detailed Discussion

	Graph Representation Evaluation
	Impact of the Graph Representation
	Robustness to Graph Linearization
	Graph Properties

	Conclusion
	Appendix

	Smelting Gold and Silver for Improved Multilingual AMR-to-Text Generation
	Introduction
	Related Work
	Multilingual AMR-to-Text Generation
	Approach
	Data
	Creating Silver Training Data

	Experiments
	Conclusion
	Appendix


	III Epilogue
	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix Data Handling


