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7Tt is the obvious which is so difficult to see most of the time. People
say 'It’s as plain as the nose on your face.” But how much of the nose on
your face can you see, unless someone holds a mirror up to you?”

— Isaac Asimov, I, Robot
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Abstract

In the interaction with others, besides consideration of environment and
task requirements, it is crucial to account for and develop an understand-
ing for the interaction partner and her state of mind. An understanding
of other’s state of knowledge and plans is important to support efficient
interaction activities including information sharing, or distribution of sub-
tasks.

A robot cooperating with and supporting a human partner might decide
to communicate information that it has collected. However, sharing every
piece of information is not feasible, as not all information is both, currently
relevant and new for the human partner, but instead will annoy and dis-
tract her from other important activities. An understanding for the human
state of mind will enable the robot to balance communication according
to the needs of the human partner and the efforts of communication for
both.

An artificial theory of mind is proposed as Bayesian inference of human
beliefs during interaction. It relies on a general model for human infor-
mation perception and decision making. To cope with the complexity of
second order inference — estimating what the human inferred of her envi-
ronment — an efficient linearization based filtering approach is introduced.
The inferred human belief, as understanding of her mental state, is used
to estimate her situation awareness. When this is missing, e.g. the human
is unaware of some important piece of information, the robot provides
supportive communication. It therefore evaluates relevance and novelty
of information compared to communication efforts following a systematic
information sharing concept. The robot decides about whether, when and
what type of information it should provide in a current situation to sup-
port the human efficiently without annoying. The decision is derived by
planning under uncertainty while considering the inferred human belief in
relation to the task requirements. Systematic properties and benefits of
the derived concepts are discussed in illustrative example situations.

Two human robot collaborative tasks and corresponding user studies
were designed and investigated, applying artificial theory of mind as be-
lief inference and assistive communication in the interaction with humans.
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Equipped with the artificial theory of mind, the robot is able to infer in-
terpretable information about the human’s mental state and can detect a
lack of human awareness. Supported by adaptive human centric informa-
tion sharing, participants could recover much earlier from unawareness.
A comparison to state-of-the-art communication strategies demonstrates
the efficiency, as the new concept explicitly balances benefits and costs of
communication to support while avoiding unnecessary interruptions. By
sharing information according to human needs and environmental urgency,
the robot does not take over nor instruct the human, but enables her to
make good decisions herself.
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Kurzfassung

Bei der Interaktion mit Kooperationspartnern ist es wichtig, nicht nur
die aktuelle Situation und Aufgaben zu beriicksichtigen, sondern auch ein
Verstdndnis fiir den Partner zu entwickeln. Solch ein Versténdnis fiir die
Pldne und den Kenntnisstand der anderen ermdoglicht erst erfolgreiche
kooperative Téatigkeiten, wie z.B. das Teilen von relevanten Informatio-
nen oder eine sinnvolle Arbeitsteilung. Mit den gestiegenen technischen
Moglichkeiten und interaktiven Anwendungsfeldern wird es auch fiir Robo-
ter oder andere komplexe technische Systeme relevant, Interaktionsaspek-
te zu berticksichtigen. Ein Roboter oder Assistenzsystem kann z.B. einem
Menschen gewisse Informationen mitteilen. Dabei ist es jedoch nicht sinn-
voll und auch nicht moglich, jede Einzelheit zu kommunizieren, da dies
zu viel Zeit sowie kognitive Resourcen erfordern wiirde. Gleichzeitig ist
auch nicht jede Information neu und relevant und wiirde den Partner nur
storen oder ablenken. Stattdessen ist es notwendig, die Erfordernisse des
Menschen in der gegebenen Situation zu beriicksichtigen um zu erkennen,
ob zusétzliche Informationen oder anderweitige Unterstiitzung bendtigt
wird.

In dieser Arbeit wird ein Versténdnis fiir Interaktionspartner, eine
“Theory of Mind” eingefiihrt als Bayssche Inferenz des menschlichen Belief
bzw. Kenntnisstands. Es basiert auf dem beobachteten Verhalten wéihrend
der Interaktion und einem allgemeinen Modell fiir Informationsaufnah-
me und Entscheidungsfindung des Menschen in Hinblick auf eine gegebe-
ne Aufgabe. Eine besondere Herausforderung besteht dabei in der Kom-
plexitéit der hierarchischen probabilistischen Inferenz, der Inferenz der
menschlichen Inferenz. Dazu werden verschiedene Approximationen ein-
gefithrt, unter anderem ein linearisierter Filterentwurf. Mit der Schéitzung
des menschlichen Beliefs wird es moglich, das Situationsverstédndnis des
Menschen zu bewerten, bzw. zu erkennen, welche wichtigen Informationen
ihm fehlen. Darauf aufbauend wird ein intelligentes Kommunikationskon-
zept entworfen, welches relevante Informationen geméfl der geschétzten
Notwendigkeit zur Verfiigung stellt. Dies beinhaltet das Abwégen des kom-
munikativen Aufwandes gegeniiber dem erwarteten Nutzen. Durch proba-
bilistisches Planen unter Unsicherheit gelangt der Roboter zu der Ent-
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scheidung, ob, wann und welche Informationen geteilt werden sollen. Das
grundsétzliche Kommunikationsverhalten und konzeptuelle Vorteile der
neuen Konzepte werden an illustrativen Beispielen prasentiert und dis-
kutiert.

Um diese Konzepte und Methoden zu testen, wurden zwei kooperative
Mensch-Roboter-Studien aufgesetzt und durchgefithrt. Mittels Theory of
Mind ist der Roboter in der Lage, das Verhalten des Menschen zu inter-
pretieren und das Fehlen von situationsrelevanten Informationen zu erken-
nen. Durch das Teilen relevanter Inhalte wurden die Versuchsteilnehmer
der zweiten Studie unterstiitzt und waren in der Lage, Fehler schneller
zu erkennen und zu korrigieren. Im Gegensatz zu anderen Kommunikati-
onskonzepten wird die Relevanz von Informationen explizit berticksichtigt,
um zielgerichtet und effizient zu helfen, wihrend unnétige Unterbrechun-
gen vermieden werden. Durch eine solche friihzeitige, aktive Intervention
ist es oft nicht notig, direkt in die Aktionen des Menschen einzugreifen
oder zu instruieren. Stattdessen ermoglicht die intelligente bedarfsgerech-
te Kommunikation dem Partner das Treffen von eigenen, kompetenten
Entscheidungen.






1 Introduction

Technology plays an important role in our daily and working life, with
increasing functionality, complexity, and degree of automation. Examples
include vacuum cleaning robots, recommendation systems or advanced
driver assistance systems. These new technologies facilitate many tasks
and support us in many situations. With more complex functionality how-
ever, interacting with it becomes more complex and new problems arise
such as a loss of transparency and unclear responsibilities (e.g., missing
coordination of which agent needs to account for which subtask). While
classical industry robots operate in dedicated areas (spatial separation),
they can work on predefined tasks with high precision and low uncer-
tainty about environment and task. Despite their technical complexity,
they are used as tools as they fulfill a single specific, delegated subtask
(functional separation). Likewise, vacuum cleaning robots work on a clear
task, however, they have to interact with humans in a basic sense as they
are physically collocated. Their environment can change dynamically by
human behavior, introducing uncertainty regarding the robot’s plan exe-
cution requiring robust and adaptive behaviors.

Although its complexity increased, technology is often used like simple
tools to address one specific use case. We initiate a process (e.g. vacuum
cleaning) and hold a clear expectation of its outcome. Failures are usually
understandable, as the task is clear and transparent.

However, the simple interaction structure of demanding and executing
actions implies limits on the efficiency and achievable support. The tool-
like interaction mode especially becomes inadequate for complex support
systems that do not only execute orders but further influence human per-
ception and planning on different abstraction levels. Examples are complex
driver assistance systems for partly autonomous driving (e.g. automated
lane change), autopilot functions in aviation, or cooperative robots, where
the responsibility is shared between both agents. In such situations, the
human might not always understand what the system is doing, inducing
interaction problems of transparency, misunderstandings, and conflicts.
For efficient cooperation, it is necessary to extend good task functional-
ity by considering the perspective of a human partner to allow flexible
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interaction modes [103].

Approaching such a human centric direction, first applications take the
human behavior into account (also called “human in the loop”), as e.g.
in fatigue detection systems in automotive. However, these are limited
to narrow use cases and do not account for interaction effects nor human
perspectives.

For more sophisticated interaction of robots or other intelligent techni-
cal systems, the representation of current task needs to be extended with
an understanding of the human partner, like a theory of mind that humans
develop of others cognitive states, representing a key component of inter
human interactions [57]. Theory of mind is the capability to explain the
behavior of others by the inference of mental states, such as beliefs, desires,
and intentions [119]. It is a central capability for human interaction, co-
operation, and communication [40]. Since mental states of others are not
accessible, theory of mind is based on interpretation of and conclusions
from observable behavior. Based on a perception model (e.g. respecting
the differing perspectives) and a model of decision making, one can infer
latent human cognitive states that could have caused the observed actions
or information gathering. When interacting with others, theory of mind
allows to detect common goals as well as others’ false beliefs which can
be addressed in cooperative interaction. A similar capability, an artificial
theory of mind, will help a robot to flexibly cooperate with and support a
human partner. When a robot is aware of what its partner might know, be
uncertain about, or miss to know, it could warn her, or share appropriate
missing information. However, developing a theory of mind, respectively
the inference of others’ beliefs, desires, and intentions is computationally
challenging, since it requires a second order inference of what others in-
ferred about their environment. Additionally, often multiple mental con-
figurations are valid explanations of the same observed behavior, making
the inference problem ambiguous.

Current assistance systems can take over subtasks in narrowly defined
conditions (e.g. lane keeping) or instruct the human what to do, inde-
pendently of her behavior (e.g. navigation system). A human centric as-
sistance approach opens new opportunities with benefits for interaction
efficiency, transparency, and support. With an artificial theory of mind, a
technical system could respect human situation awareness and specifically
support a human partner according to her needs in a transparent way.

This can be achieved by intelligent information sharing, using a theory of
mind to tell her about relevant information she might have missed. Com-
bining inference results of human belief regarding her knowledge together



with relevance of information for the current task, a robot can support a
human partner by communicating related information aspects. State of
the art communication concepts may contain a human model, but rather
instruct her what to do, either at salient situations (navigation system) or
when a deviation from expected behavior is detected (fatigue detection).
This might prevent immediate human errors, but will not help her gaining
situation awareness and taking future decisions, as it does not account for
reasons of human behavior. Instead, when understanding why she made
an error, e.g. due to a misunderstanding or false beliefs, a robot could
directly address such mental causes by sharing important related infor-
mation, to not instruct her what to do, but to enable her making good
decisions herself.

As basic example, a blind spot assistant in a car implicitly contains and
evaluates a human model for driver support (Figure 1.1). It relies on a
static perception model that the driver cannot perceive traffic participants
located in the car’s blind spot area. If the driver nevertheless believes
the left lane to be free, she might decide to indicate and initiate lane
change. The system’s build in understanding of human perception and
decision making allows to intervene in such situations and communicate
the presence of an obstacle by visual and auditory signals enabling the
driver to correct her bad decisions and prevent severe outcomes.

Such warnings or communication interventions should not occur too fre-
quently, since they require human attention, distract, or delay other im-
portant tasks which can result in annoyance, decreased performance and
acceptance. Instead, decisions, when to interrupt and what type of infor-
mation to share, should be based on its relevance for the current situation
to respect such costs of communication. As long as the driver keeps her
lane, the presence of a car in the left is not relevant for her task. This
changes as soon as a lane change is intended. Still, a blind spot assistant is
designed for one specific use case for which human behavior and relevance
evaluation are statically encoded. When assisting a human in more gen-
eral settings, it will not be possible to account for all occurring situations
in advance and define adequate behaviors. Instead, these problems can be
addressed by creating an explicit understanding for task and human men-
tal states, a Theory of Mind, to flexibly evaluate human knowledge and
needs according to task relevance. The importance of different types of in-
formation can then be balanced against costs of communication. Such an
approach can be used to create an intelligent information sharing strategy
deciding whether, when, and what type of information to communicate to
optimally support the human while minimizing distraction and annoyance.
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Figure 1.1: Blind spot assistant for a car as example for a basic human centric
interaction concept.
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Such assistance concepts based on an understanding of human behavior
and needs allows for earlier and less intrusive intervention, compared to
emergency systems such as emergency braking. Often, it is possible to
detect and support problems in human situation awareness before a sit-
uation becomes dangerous. In this early stage, information sharing can
help the human regaining awareness of the situation and solve it herself.
Consequently, sharing important information that she probably missed,
can efficiently support her, while she stays in control, instead of ignor-
ing and taking over or instructing the human what to do. At the same
time, technological failures are less critical, as the decision is still made
by the human. Besides performance improvements, such interactive and
transparent behavior — communicating information only when necessary
to support her awareness — may lead to a high level of acceptance.

The general idea of a human centric information sharing concept pro-
posed in this thesis is illustrated in a schematic example in Figure 1.2, in
which a robot supports a human to mount a shelf. The human is not aware
about the current plank being reversed sided (respectively that the plank
is not symmetric). By observing her information gathering (the human
does not look at plank sides) and actions (the human prepare for mount-
ing the plank), the robot can infer a false human belief of the plank’s side.
It can evaluate the relevance by evaluating possible consequences or out-
comes (need for partial disassemble or aesthetic discrepancy), comparing
benefits and costs of communication. Consequently, it decides when and
what type of information it communicates to the human.

The concept is motivated to use the rising capabilities of modern tech-
nical systems by sophisticated interaction modalities to employ efficient
cooperative interaction. Human centric communication will allow for sup-
port, that does not instruct but provide necessary information and enable
well-founded human decision making.

1.1 Overview and contributions

To recognize and understand occurring challenges when intelligent agents
interact with humans, concepts from human factors and human human
interaction are presented in section 2.1. These are complemented by meth-
ods to cope with uncertainty in inference and decision making, which arise
from complex tasks, uncertain dynamics, and other agents. Regarding
understanding and communication with other agents, human model and
communication policies are discussed afterwards. The methods are rel-
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evant for understanding humans and plan communication behavior and
different approaches are discussed afterwards.

The first challenge towards human centric interaction consists in the
development of an adequate human understanding, an artificial theory
of mind. Available information of human perception and decision mak-
ing need to be combined to estimate latent human states online during
interaction. In chapter 3, a new approach of handling this problem of
second order inference, inferring what the human inferred about her envi-
ronment, is presented. The inferred human belief can be evaluated using a
decision model providing a new quantitative method to evaluate her situ-
ation awareness (section 3.4). In difference to classical situation awareness
measurement approaches (see e.g. [32]), it can be evaluated online in a
non-intrusive way, without a need for interruptions, post trial ratings, or
additional expert evaluations.

The second main question consist in how to use an understanding of hu-
man behavior to support her and create human centric interaction strate-
gies. A new concept of sharing information that is relevant and unknown
to the human is presented in chapter 4. It formalizes the general problem
of when and what type of information to communicate to support a human
partner while minimizing interruptions. Consequently, a robot policy is
developed which plans with expected benefits, uncertainties, and costs of
communication.

Humans can show a large variety of different behaviors requiring robust
interaction strategies. For tests and evaluation, it is important to consider
real interaction in user studies. Consequently, in chapter 5, task design
and results of two user studies are presented to investigate human under-
standing and communication planning and its effects on performance and
acceptance.
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Figure 1.2: Illustrating the structure of human centric assistance and informa-
tion sharing. Robot infers what human partner inferred over state and evaluates
future consequences. In this situation, she might not be aware of the plank being
reversed side front. Hinting about it might help.



2 Interacting with humans in
uncertain environments

2.1 Human factors and human interaction

Human robot cooperation is part of the field of human technology interac-
tion, subject of consideration in different research fields, from human fac-
tors and interface design, psychology, and cognitive science. Interaction
concepts and cognitive models become relevant for the design of robots
since its manipulative capabilities start to allow for interactive use cases
and the setup of human robot teams. Extending the experience of human
machine interaction, also theories from human human interaction provide
interesting insights and inspirations for the design of complex and efficient
interaction modalities. In the following, concepts from human factors in
technology interaction and inter human interaction are presented, which
provide theoretical foundations for an intelligent robotic assistant.

2.1.1 Human factors and technology

Human factors research analyzes human technology interaction from a
human perspective [20]. It considers interaction and interface design as
well as new challenges that arise from interaction, transparency, and a
change of the human role in a human automation team. There is long
research history of human technology interaction in complex environments
with applications such as aircraft operation or plant supervision. In these
domains, a human operator is supported by assistance systems that are
able to take over different sub tasks with differing levels of complexity
and abstraction. Optimally, these systems are designed to support human
situation awareness, by reducing her workload and presenting relevant
information, and the human should build an adequate level of trust.
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Situation awareness

Interactive support of a human will especially be helpful in complex dy-
namic settings with high uncertainty, such as complicated driving sce-
narios, operating an aircraft in special situations, or emergency rescue
coordination. These situations are characterized by a large amount of in-
formation, that need to be prioritized and perceived by a human operator
(e.g. objects and other traffic participants). She further needs to relate
the pieces of information to each other to evaluate the current situation
and potential future evolution (detect possible conflicts or collision paths).
These steps are considered as gaining awareness of the current situation
which is required for good planning and decision making [31].

The concept of Situation Awareness (SA) is often used to evaluate and
train human performance in such demanding scenarios [31], [1]. It de-
scribes cognitive processes involved in developing a situation understand-
ing as basis for informed decision making. It consists of information per-
ception, bringing them in relation to each other and anticipating future
evolution, which are known as the three levels of situation awareness [31].
Short decision cycles and multi-tasking can lead to a high cognitive and
perceptual load, making it necessary to pre-select possible situation rele-
vant sources from which information is gathered and processed (e.g. con-
centrating on traffic participants with potentially conflicting paths). Espe-
cially for novice users it is challenging to develop and maintain situation
awareness in such scenarios, and it can be necessary to train adequate
strategies and procedures beforehand.

To support a human operator in these domains, automation functions
were introduced. These can take over subtasks to free the human oper-
ator’s resources for other activities. However, these automated technical
systems do not only help, but also bring in new complexity into the whole
system. The human needs to know the interface, how to activate and con-
figure automation. Further, she needs to be aware of state of operation,
capabilities and limits. Otherwise, there might evolve a problem of under
relying or missing trust, where the operator does not use the system or
supervises it in detail which prevents the intended cognitive savings. Or
the opposite problem of over reliance might occur, where she totally relies
on the system without considering its limits or reliability [46]. Further, un-
clear role attributions and interdependence of agents provide dangers such
as a fight for control, when human and automated system work against
each other (as e.g. happened in the Boeing 737 Max 8 accidents, where a
faulty autopilot regularly overwrote the pilots’ control inputs who neither
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achieved to disable the function [51]).

In such interactive and interdependent settings, it is important to con-
sider the whole system including interaction processes and information
exchange, rather than only concentrating on the human and her situation
awareness in isolation. If a relevant type of information is not accessible,
this limited interface prevents her from gaining awareness and appropriate
decisions. Consequently, the concept of distributed situation awareness
takes the whole system and interactions between agents into account [98].
Situation awareness is seen as property of the system rather than that
of individuals and blaming human operators for failure generally falls too
short. Rather, it is important to analyze interaction and information ex-
change between humans and automated functions, which often plays an
important role [98]. For a system to hold situation awareness, it is crucial
that relevant information is shared between the agents or entities that are
involved in the current perception and decision making processes. By an-
alyzing information flow graphs, weaknesses and central elements of the
system can be detected and improved [98].

Since situation awareness depends on cognitive processes involved in
forming a situation understanding, it is difficult to measure it (for an
individual’s awareness as well as from a system’s perspective). Despite its
importance for task performance, it is not possible to use task performance
as a proxy for SA as even unaware humans can select good actions by
chance [32]. Different approaches were developed to measure an operator’s
situation awareness. The Situation Awareness Global Assement Test uses
a simulator for the situation of interest, and simulation is interrupted for
testing [32]. While the simulator screens are blanked, the operator is
asked questions about situation relevant aspects (e.g. depending on flight
situations, this can be own speed or state of other aircrafts). The aspects
of relevance respectively the questions for each situation need to be defined
in advance by domain experts. Although this method achieves good and
objective SA measurements [32], it comes with a high effort for preparing
questions and its intrinsic limitation to simulator studies.

Simulation interruptions can be avoided by using subjective retrospec-
tive ratings such as the Situation Awareness Rating Technique [111] or
expert assessments based on observed behaviors [109]. These SA measure-
ment techniques are used for training and evaluation of different interfaces.
However, they are not suited for online analysis and intervention to sup-
port a human directly in the situation. Similar to expert assessments an
automatic system may analyze observed behaviors to collect evidence re-
garding cognitive processes related to SA [1]. In this thesis, such a concept
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is developed and formalized (section 3.4), providing an online evaluation
of human situation awareness.

Transparency and delegation

One important factor influencing situation awareness and interaction per-
formance is transparency. It is important to enable the human developing
an adequate understanding of capabilities and limits of automation sys-
tems she interacts with to develop a good level of trust. This is necessary
to decide, which subtasks to do herself and which to delegate to automa-
tion and further the degree of detail she needs to supervise the results of
automation.

Transparency however does not mean, that the operator should track
and supervise every low-level action of the system, which would require
similar cognitive engagement and load as if she does the subtask herself
[65]. As in a human team, the operator should trust the system to execute
the delegated subtask, which in turn might report back the result or prob-
lems, respectively abstracted states of progress to acertain transparency on
a higher level. Such delegation-based interaction can significantly reduce
the operator’s cognitive load (which is then free for other tasks), while she
stays aware of the system’s activity [65]. Missing transparency can lead to
the mentioned problems of over reliance or distrust and potentially severe
outcomes [46]. The need for transparency leads to the question, which
information (regarding environment perception, task progress, or possible
problems) are relevant for a human operator and should be communicated,
which is important to achieve distributed situation awareness. It can be
further useful to communicate the degree of uncertainty of the system,
especially when reliability may change between situations [92], [52].

Human role

Besides the need for transparent and efficient interfaces and communi-
cation processes, the rising performance of autonomous systems will also
change role interpretations and responsibility attribution. Currently, a hu-
man operator usually is responsible for task achievement with options of
using technology like tools, delegate subtasks (lane keeping) or receiving
warnings (low attention warning). With the promise of highly autonomous
systems such as automated driving, the system may overtake an operating
role including responsibility. It will further need to interact cooperatively
with other traffic participants where no strict role assignment is employed,
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requiring coordination and flexible negotiation of initiative.

Although technology has shown enormous progress, it is still far from
full autonomy in many application settings (while in others, full autonomy
is never desirable [103]). Consequently, it seems reasonable, that robot and
human capabilities are used to complement each other, which should bene-
fit cooperative operation. Capabilities typically differ, as human reasoning
is very flexible and allows for highly abstracted reasoning processes. She
is good at coping with unknown situations and finding intuitive and cre-
ative solutions. On the other hand, a robot or automated system may
show benefits regarding processing and memorizing multiple information
sources, search, and precision in computation, planning and execution.
When the capabilities of agents are known or can be estimated, these can
be used to optimize for joint performance by exploiting individual agents’
strengths [118]. In general, an adequate task and role distribution will de-
pend on application domain and target. This can range from a supervisory
role to flexible, situation-based role assignments.

Performance, trust, and alignment of values

A crucial aspect for trust and the relation of humans and automated sys-
tems is the alignment of values, respectively if both entities share the same
goals. When optimizing for joint task performance in a common task, it
is important how this is specified and understood by the agents to avoid
misunderstandings. Specifying a target function of an autonomous agent
by hand can be hard and may lead to unintended effects, known as the
value alignment problem [39)].

Transparent operation and action execution is important that a human
can trust an artificial agent’s capabilities. However, for cooperative oper-
ation it is further relevant that she trusts its intention, respectively that
the systems’ goal is to support her [53]. Instead, when goals are not fully
aligned, an agent or robot could exploit human trust and let the human
contribute to its own targets [60]. Consequently, in cooperative settings, it
can be important to explain robot’s (controversial) decisions to a human
to avoid confusions and improve acceptance and trust.

Considering the value alignment problem from a more general perspec-
tive, it might not always be desirable to optimize for objective criteria such
as task success rate or speed, as this might not correlate with subjective
human satisfaction. Alternative objectives include empowerment, where a
robot aims to support a human by providing her the ability to achieve any
goal, even if it is unknown to the robot [30]. Other approaches directly ad-



2.1 Human factors and human interaction 13

dress human psychological needs, that a robot agent could support, which
are subsumed by the concept of user experience [41].

2.1.2 Human—human interaction

Due to the high complexity of autonomous technical systems like robots,
classical role understanding and interface design are not sufficient any
more, imposing problems of transparency, trust, and coordination, as dis-
cussed in the previous section. Instead, technology use should be consid-
ered from an interaction perspective, for which human human cooperation
may provide useful inspirations. Humans are able of complex forms of
interaction as they build effective teams and large societies. For efficient
interaction with partners, it is necessary to understand them, as well as to
behave transparently to be understandable [26], [19]. Humans develop a
theory of mind, an understanding of others cognitive states. This is neces-
sary to evaluate the situation, including relevance of external and internal
information for a cooperation partner (e.g. making own behavior more
transparent by communication) and to coordinate behaviors according to
a joint strategy.

Theory of mind

A theory of mind describes a representation of others’ mental states as
beliefs, intents, or desires. It is an important cognitive capability, as it
allows to understand and predict others’ behaviors, base interaction on
these expected mental states, as to initiate and understand communication
[119], [57].

A theory of mind is based on observed behaviors of others, that are ra-
tionalized, meaning that hypotheses about cognitive configurations (con-
taining intentions and beliefs) are rated regarding how well they explain
the observed behaviors. Observation may include information gathering
such as eye gaze as well as movements or manipulation actions.

To understand and interpret observed behaviors it is important to re-
spect the perspective of othersIn the literal sense, perspective taking is
important to account for what is occluded from others’ perspectives re-
spectively what action opportunities are available for others in their cur-
rent situation. Further, it is important to account for differing mental
configurations, e.g. others’ goals, priorities, or emotional states, to under-
stand behaviors and developing empathy. When holding and tracking a
mental representation of others, it is possible to attribute false beliefs, that
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is to detect that others’ belief deviates from a known environmental state.
This discrepancy in mental representations also affect the own reasoning
and can slow down responsiveness [35].

In interactive situations, others’” mental states may include their rep-
resentation of oneself. Consequently, inferring their mental states adds
a hierarchy level of reasoning (of what I believe others believe I believe)
which can be continued recursively, yielding higher orders of theory of
mind. Higher levels of theory of mind are important for strategic inter-
action (e.g. what do others want me to believe), in competitive settings
e.g. poker. But also in cooperative situations it is relevant, where knowing
intentions of others helps us in understanding their utterances and even
supports general language understandings of small talk and irony [40].

Although humans are capable in creating a sophisticated theory of mind,
it requires cognitive processing capacities. When other tasks need to be
done (that are not interactive, respectively not related to ToM), quality of
mental inferences is reduced [4]. The correlation of task solving and theory
of mind is not restricted to explicit reasoning, as also implicit processes of
theory of mind affect our cognitive performance, (and a pure presence of
a person with false or uncertain belief can slow down a response) [35].

A theory of mind is not achieved by exact emulation of cognitive pro-
cesses nor does it contain a complete set of others’ beliefs. It rather focuses
on abstracted, relevant aspects with an important influence in explaining
observed behaviors and interactions, while neglecting commonly known or
irrelevant aspects [48]. This is important for efficiency as it limits hypothe-
sis space, but may also lead to approximation errors, (e.g. when neglecting
impairments of blind people, as it easily happens when being stressed).

Communication, information sharing, and relevance

From a functional perspective, communication has the purpose of chang-
ing others’ mental states, especially their beliefs [82]. This makes theory
of mind an important capability for communication, as it is important to
consider, what they already know or what they falsely believe, as it avoids
unnecessary, and inefficient repetitions. When deciding what information
to provide, even young children do not only focus on external relevance
(how interesting or salient something is) but also account for novelty of
information for the receiver [82]. Theory of mind is important when decid-
ing for communication actions, but also for understanding communicated
utterances, as communication depends on intentions and a common frame
of reference (intent behind communication also lets us concentrate on ut-
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terances in contrast to background noise [40]).

Efficiency is a factor in communication, because it requires efforts in cog-
nitive processing of both, sender and receiver, which can delay or distract
from other tasks. These costs of communications need to be considered
when taking decisions on when or what to communicate.

It is a basic principle in relevance theory, defining relevance of infor-
mation as combination of positive cognitive effects and costs required to
transmit information [106]. Consequently, communication decisions are
made and interpreted according to the relevance of contained information.
In chapter 4, relevance of communication is quantitatively formalized for
a human robot communication setting.

Explicit communication is at first a cooperative action to provide useful
information, as otherwise the receiver can simply ignore it [47]. Commu-
nication can contain external information with the purpose of information
sharing as well as internal mental states such as intentions or proposed
plans to coordinate agents’ behaviors.

Communication has many facets, can happen via rich natural language
but also implicitly via demonstrative actions. For successful communica-
tion, it is important, that there is a common ground respectively a frame
of reference of sender and receiver [25], [35]. This can include the commu-
nication protocol (e.g. the language) but also common knowledge, context,
and conventions. When a robot wants to efficiently communicate with a
human, it is necessary to consider these aspects to adapt to and under-
stand human communication modes. This allows both to create a common
frame of communication for efficient information exchange.

Coordination and acting together

Besides sharing external information, communication can enable the co-
ordination human behaviors. Coordination is necessary in different situa-
tions and facets. Often, there are multiple ways to solve a task, but each
way will only work, if all agents agree on choosing it. Coordination ranges
from synchronization (e.g. coordinated pedaling at tandem bicycles, or
speed synchronization for platooning) to higher level goal negotiations or
role distributions in teams. Other examples include collision avoidance
e.g. for pedestrians regarding the decision on which side to pass, how to
divide work or which task to work on first.

Coordination is also related to initiative taking. Many human robot
settings consider a fixed initiative setting, where either the human takes
initiative and the robot adapts to her or the robot takes initiative while
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literally ignoring human actions with the premise that she will adapt. In
(more natural and flexible) mixed initiative settings instead, it can be
necessary to coordinate both behaviors, e.g. to agree on a common plan.

The process of achieving coordination differs depending on time con-
straints and level of abstraction. In some situations, such as pedestrians
coordinating to pass left or right, there is time to observe other’s behavior
and react multiple times until convergence to a coordinated solution. Such
agreements can be achieved via randomizing low-level actions or negotia-
tion of higher level sub goals and goals.

In contrast, in time critical situations, or if others’ behaviors cannot
be observed, the problem can be represented by a one step coordination
game [76]. Other mechanisms are required to solve coordination, such as
virtual bargaining [66], common knowledge reasoning [112] or by intro-
ducing a communication channel (which changes the problem, more in the
direction of multi step coordination, or bargaining). Coordination then
can be achieved by proposing and negotiating equilibria solutions of the
coordination problem at hand [26].

Solving human robot coordination problems goes beyond the scope of
this thesis. Still, the developed formulation for belief inference and infor-
mation sharing are useful and can be similarly applied when coordination
states are introduced in task description, as e.g. proposed in [13]. Such the-
ory of mind with coordination states will enable convergence of behaviors,
to solve human robot coordination problems.
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2.2 Coping with uncertainty

In a complex and dynamically changing world, humans and robots per-
manently have to cope with uncertainty. They need to gather relevant
information of the environment and generate robust plans for their future
behavior.

In this chapter, different probabilistic methods are introduced, regarding
inference of uncertain states and the generation of policies to effectively
behave in uncertain environments. These methods serve two purposes,
modeling and understanding a human’s behavior in uncertain domains as
well as to plan interaction with her, where she represents a new source of
uncertainty. The goal of modeling does not consist in reproducing human
reasoning exactly, but rather to obtain an abstracted understanding and
explanation of her behavior.

Uncertainty might be introduced by different factors, affecting the initial
state of the environment and stochastic state transitions [49]. Regarding
current state, limits in perception can restrict information gathering as
e.g. visual occlusions or measurement noise. Even when every piece of in-
formation could be gathered, there might be uncertainty due to perceptual
overload, meaning that there is not enough time to perceive and process
all available information until decisions need to be made, which is e.g. con-
sidered in complex situations within the concept of situation awareness.
New uncertainty can be introduced by state transition. Not every state
aspect is controllable by an agent’s action, but may depend on stochastic
events or external influences. Consequently, an agent will have to track the
actual state changes and react accordingly. When interacting with other
agents, their behaviors are not known beforehand which introduces more
uncertainty as they will also change the environment. Especially humans
can show diverse and stochastic behaviors which are difficult to predict
precisely.

2.2.1 Bayesian inference in probabilistic models

Bayesian inference is a method to quantify uncertainty in the form of
probability distributions, based on available information respectively ob-
servations. The method is shortly introduced and considered for the tem-
poral filtering problem. For a detailed introduction and formalization of
Bayesian inference, graphical probabilistic models, and approximation ap-
proaches, the reader is referred to the book of Bishop [10].

Bayesian inference considers uncertain variables of interest, which can
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be continuous or discrete, such as unknown system states s or process pa-
rameters. Despite being unknown, there might be assumptions regarding
their values, which can be expressed as prior probability distribution p(s).

For example, in the blind spot scenario from chapter 1, there is uncer-
tainty about the state of the left lane, where another vehicle could be,
which can be represented as binary state, s € {free, occupied} and a prior
probability p(s = free) = py.

To refine the prior guess, a human can gather information (e.g. collecting
visual stimuli) called observation o that depend on the underlying state
s. However, due to uncertainty in perception (the left lane is in the blind
spot of the driver), she might not receive true information about the state,
perception is not reliable. The perception model considers the generation
of an observation, given state s, formalized as probability distribution
p(o] s).

Using the evidence from the perceived observation o under the percep-
tion model p(o | s), the posterior distribution is calculated according to
Bayes theorem,

pls)plols)

2(0) (2.1)

p(slo) =

Since o is directly observed and exactly known, p(o | s) represents the
likelihood of observing o in state s, a function of uncertain state s. The
marginal likelihood p(o) = >"_ p(o | ') is independent of the current
state s. It normalizes the product of prior and likelihood to yield a proper
posterior distribution.

Through this structure, Bayesian inference can combine system knowl-
edge expressed as prior distribution with collected data respectively ex-
perience to achieve better probabilistic models of the environment. It is
a rich tool for many different problems and domains, from filtering, state
estimation and sensor fusion to classification and regression problems.

Bayes theorem eq. (2.1) describes Bayesian inference in a very general
form. Often, an inference problem can be further structured by considering
causal dependencies of involved variables, as not all variables depend on
all others. The structure can be illustrate as directed graphical model that
represents the causal interrelations of related variables. In the temporal
filter problem (considered in the next paragraph), each observation only
depends on current state and each state only on the previous state, as is
visualized in Figure 2.1.
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State °
Observation °

Figure 2.1: Directed graphical model for the filtering problem. Nodes represent
different variables (e.g. state and observations at different time steps), observed
variables are represented by filled nodes. Arrows indicate causal dependence,
e.g. each state only depends on the last state and effects current observation and
next state.

Filtering

In the blind spot scenario, a human might collect multiple observations
at different points in time, where each can be used to adapt her state
estimation. The environmental state may change over time, leading to the
iterative filtering problem. The agent may receive repeated observations or
measurements oy, one at each discrete time step k that carry information
of the current environmental state s;. In the filtering problem, state sj is
chosen such that it fully describes the environment, meaning that the next
state spy1 only depends on current state but not on past states. These
dependencies are summarized in the graphical model Figure 2.1.

At each time step, the agent can use the received observation oy, to refine
its state estimate p(sy) via Bayes theorem, which is then used to predict
the next state probabilities. Hence Bayesian filtering consists of these two
steps, state update and state prediction.

Therefore, models for state transition and generation of observations
are needed. For example, a continuous state system is often modeled
using Gaussian uncertainty around nominal transition and measurement
functions f, h, leading to transition probabilities

Sk+1 = f(sk) +ns with ng ~ M(ns | 0,%5)
P(skar | s) = N(skra | f(sx), Zs), (2:2)
and observation probabilities
ok = h(sk) + n, with n, ~ N(n, | 0,%,)
p(ok | sk) = N(ok | h(sk), o) (2.3)

Instead of inferring all hidden states sq - - - sg, one usually focuses on the
current state si and its conditional probability p(sy | 0o, - - og) (as it will
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be the basis for decision making). It is visible from the graphical model,
sk is not directly linked to previous observations, but depend on the last
state si_1, reducing the inference to

p(sk | 005+, 01) = P(sk | O,y Sk—1)P(Sk—1 | 005+, Ok—1).

The second term represents the inference result from the last time step
leading to an iterative inference approach. Starting with prior belief p(sp),
the update step is

observation model

(o | sk)
P Ok | Sk
p(sk |00, - 01) = ———= p(sp] oo, ,0k-1) (2.4)
p(ox)
and prediction step
P(Sks1 | 00, 0r) = E P(Sk+1 | sk) p(sk |00y, 0k). (2.5)
—_——

s o
k transition model

For continuous variables, the sum is replaced by integration over possible
last states s.

Filtering uses all information available in a current situation, which
might be used for decision making. From a retrospective view, also future
observations can be respected in inference yielding a more accurate esti-
mate of past states, p(so,-- St | 0p,---or). This state smoothing can be
achieved by a second reverse iteration starting with the last state estima-
tion of the filtering process.

Approximate Inference

Exact Bayesian inference is possible in finite, discrete state spaces as well
as for linear models combined with Gaussian uncertainties, as is the case
for the linear Kalman filter. For continuous states subject to nonlinear dy-
namics or non Gaussian uncertainties, exact inference becomes intractable
as it requires the integration for marginalization in eq. (2.5) and normal-
ization in eq. (2.4). Instead, approximations are necessary to derive useful
estimates [10].

Many approximation schemes have been proposed in the literature,
which either approximate nonlinear functions as in the Extended Kalman
filter, or probability distributions (UKF, variational inference, sampling
methods). In the following, linearization based Extended Kalman filter
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and sampling based particle filter are shortly presented as they are im-
portant for the next chapters, as they will be applied respectively provide
orientation for belief inference in chapter 3.

Extended Kalman Filter

The Extended Kalman filter (EKF) follows the derivation of the linear
Kalman filter while it considers nonlinear functions with Gaussian uncer-
tainties [69]. In each filtering step, the nonlinear transition and observation
functions f and h are approximated by a first order Taylor series around
the current state expectation. Consequently for each time step, a local
linear model is used and the resulting approximate distributions remain
Gaussian, as for the linear Kalman filter, and can be reused for the next
filter iteration.

The approximate prediction and inference steps of the EKF are illus-
trated for a one dimensional example in Figure 2.2 for prediction and
Figure 2.3 for the observation update. Both steps rely on a single eval-
uation of the related function and its derivative to construct the linear
approximation.

Sampling based inference

As alternative to deterministic approximations of inference, sampling
based approaches such as the particle filter can be used as stochastic ap-
proximation methods of the distribution [70].

In contrast to the EKF, a particle filter uses the full nonlinear model,
while the distribution p(sy) is approximated by a set of samples or par-
ticles. Correspondingly, expectations are approximated with a weighted
sum replacing the integration of a continuous distribution. The number of
particles is a crucial parameter here, as it trades of approximation quality
and computational load.

At the beginning of inference, an initial set of K particles is sampled
from the prior distribution, s® ~ p(sg),4 € (1,--- K), with a corresponding
initial weight w! = 1. During filtering, each particle s’ is transformed ac-
cording to the non linear transition model (e.g. eq. (2.2)) and its likelihood
is computed using the observation model, eq. (2.3), to update the particle
weight wj ;= p(o | s}, )w},.

Expectations are computed according to the weighted particle sum, e.g.

state expectation is evaluated to E[s] = Ezlswuf During the filtering
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Figure 2.2: Illustration of prediction step of extended Kalman filter. Nonlinear,
sigmoid transition function is linearized around last expectation (orange, top
left). Starting with a Gaussian distribution p(sx) (bottom left), it is predicted
to yield p(sk+1) (top right) according to nonlinear function (blue) respectively
linear approximation (red). As long as the last covariance is small compared to
the nonlinearity (narrow distribution), the approximation quality is good.
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Figure 2.3: [llustration of update step of extended Kalman filter. Top: Nonlin-
ear observation function (sigmoid, blue) is linearized around the mean (orange).
This leads to a Gaussian approximation of likelihood function (middle). The
resulting posterior Gaussian is shown together with the true posterior (bottom)
and the prior (dotted).
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process, the weights of some of the particles will decrease over time ap-
proaching zero. Since particles with low weights do not contribute to the
state estimation, this depletion effect reduces the effective sample size.
One solution is provided by resampling, where new particles are sampled
according to particle weights when particle weights become too small.

Since there is no restriction to the probability distribution, a particle
filter is able to cope with multi modal distributions, making it more flexible
than the EKF. However it requires more function evaluations (equal to the
number of particles), leading to higher computational load.

2.2.2 Acting under uncertainty

Bayesian inference and filtering provide methods to interpret observations
and understand processes and corresponding uncertainties of the environ-
ment. However, robots and humans are not passive entities or observers,
but can choose actions to change the uncertain environment towards reach-
ing a goal. The decision making problem can be formalized as Markov De-
cision Process, respectively Partially Observable Markov Decision Process,
which provide a basis for reinforcement learning and planning under un-
certainty. This section provides a short introduction of the representations
and methods which will be needed in later chapters. For a detailed con-
sideration of reinforcement learning in stochastic environments, the reader
is referred to the book of Sutton and Barto [110]. Regarding partial ob-
servability and perception uncertainties, the work of Kaelbling et al. [50]
provides a good introduction.

Markov Decision Process

A Markov Decision Process (MDP) defines the problem of an agent re-
peatedly interacting with an stochastic environment to optimize long
term rewards. An MDP is defined as fivetuple (S, A,T, R,7), of state
space S, action space A, stochastic transition function 7': S x A x § —
[0,1],T(s,a,s") = p(s' | s,a), reward function R : S x A xS — R and a
discount factor v € (0,1]. At each discrete time step k (with the current
environmental state si), the agent needs to choose an action a € A with
the target to maximize expected, accumulated reward,

T

J(sk) = Eo, | >V R(Skprs Arir, Skirin) (2.6)
7=0
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An action a effects the state according to the transition function T, in-
fluencing future rewards. State transition is uncertain and it is therefore
not possible to plan one action sequence in advance and execute the plan.
Instead, depending on the actual transition and new state siyp, it will
be necessary to adapt or replan the sequence. An important aspect of
an MDP is the Markov property, meaning that the transition to the next
state sp4+1 only depends on current state and action, but not on the his-
tory of states or actions before, p(sit+1|so,...k) = P(Sk+1lsk) = T(Sk, ax)-
The behavior of an MDP agent can be formalized as policy 7 : S x A —
[0,1], 7(sk,ar) = p(ag|sk), that assigns a probability of taking action ay
in state sg.

The resulting behavior of an agent strongly depends on the reward func-
tion. Depending on the domain, it can be difficult to specify a good reward
function that reflects the designer’s expectations [39]. Besides its central
influence on the resulting optimal behavior, the reward function also af-
fects the complexity of problem solving, respectively learning speed in
reinforcement learning.

For domains, where it is difficult to specify a reward function by hand,
Inverse Reinforcement Learning (IRL) can be an alternative [72]. In IRL,
the inverse problem is considered of finding a reward function that explains
an observed optimal policy in an MDP. Thus it is possible to demonstrate
trajectories of desired behavior and generate a reward function with IRL.
This can be used to define an MDP for the robot, employing the expected
behavior, while it typically provides more flexibility than direct imitation
learning.

IRL is also used for understanding human behavior from a rational per-
spective [6], [94]. Assuming that her actions follow a good policy in an
MDP, the observed behavior can be used to estimate an underlying re-
ward function. It is not necessary, that the human herself is aware of an
explicit reward function, respectively a weighting of different goals. This
is used for apprenticeship learning, where a robot solves a similar task as
demonstrated by a human expert [72].

Reinforcement Learning

Reinforcement learning describes the process of learning an optimal pol-
icy to solve an MDP. By interacting with its environment, observing state
transitions and rewards, a policy can be improved iteratively. If an en-
vironment model (the MDP) is known or estimated from experience, it
can be used to directly optimize for the accumulated expected reward, eq.
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(2.6) via dynamic programming [110].

Otherwise, the agent needs to explore its environment to find desirable
states and refine its policy. This requires a trade off between exploration,
to learn about new state transitions and rewards, and exploitation, opti-
mizing rewards by following the best known policy. Therefore, it is useful
to choose a stochastic policy, where the probability of expected subopti-
mal actions (exploration) is relatively high at the beginning and reduced
during learning process (to favor exploitation).

Given a policy m of the agent, a corresponding value function V; is
defined as mapping from state s, to the expected accumulated future
reward,

Va (Sk) = Esi,ai Z ’YTR(SkJrTy Ak+7, SkJrTJrl)
T

With the value of the expected next state V,i(sg+1), the value function
can be formulated recursively as

Va(sk) = Esg i an [B(sk, @k, sk41) + 7V (81k41)]
= Z ZW(Sk, ar)T(sk, ak, sk41) (R(Sk, @k, Sp1) + 7V (Sk41)) -

Sk+1 Ok

While the reward function provides feedback only regarding current state
or transition, the value function considers future and long term effects of
actions.

When the value function is available, the policy 7 can be improved by
choosing actions according to the highest value. The alternating process of
evaluating value function of the current policy and optimizing the policy
is known as policy iteration yielding the optimal value function V* and
policy 7* [110]. The optimal value function fulfills the Bellman equation
[110]

V*(sg) = Z H}IE:XT(Sbaka Sk1) (R(sk, ar, Spg1) + 7V (8k41))

Sk+1

As alternative to policy iteration, value iteration directly evaluates the
Bellman equation to iteratively compute the optimal value function (with-
out explicit consideration of policies).

Besides assigning a value to each state, it is often useful to also consider
the influence of an action. Consequently, the action value function maps
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current state and action to an expected future reward. The optimal action
value function Q*(s,a) is defined as

Q" (sk,ax) = Y Rlsk, ak, sk41) + 7V (sk41)

Sk+1
= Z R(Skh ag, Sk+1) + VEI}CaX Q*<sk+17 ak:+1)'
+1
Sk+1

For medium size discrete state MDPs, optimal value and action value
functions can be computed and represented as tensors. For large discrete or
continuous state spaces however, approximations are required, as not every
state can be fully evaluated. Powerful approximations can be obtained by
introducing artificial neural networks for value and action value function,
which are optimized by Reinforcement learning [61].

Partially Observable Markov Decision Process

An MDP models the decision problem of an agent interacting with an
environment with stochastic state transitions. Although the transition is
uncertain, the agent has direct access to current state and reward signal.
In complex environments, it is often not possible to gather all information
sources and to keep all state information in mind. If the state itself is un-
certain, respectively not fully accesible, the problem can be formulated as
Partially Observable Markov Decision Process (POMDP) [50]. Instead of
a direct access to the current state s; as in MDPs, an agent in a POMDP
only receives a state dependent observation oj according to an observation
function O(sg,0r) = p(ok | sx). The stochastic observation reveals partial
information about the true underlying state. The structure of an agent in-
teracting in a POMDP is shown in Figure 2.4. In each time step, the agent
can select an action aj as in the MDP, influencing the state transition. It
receives the observation oy generated according to the observation function
together with the current reward r,. A POMDP is formally defined as 7
tuple (S, A4,T,9Q,0, R,~), where state set, action set, transition function,
reward function, and discount factor, S, A, T, R,~y, are defined as for the
MDP. These are extended by an observation set {2 and the observation
function O : S x Q — [0,1], O(sg, 0r) = p(ok | sk)-

A POMDP provides a flexible framework to model uncertain and com-
plex situations. A POMDP agent can develop interesting behaviors includ-
ing information gathering, respectively active perception [96]. It means,
that the agent is choosing specific actions that do not progress the task
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Agent
Belief b,

Observation o,

Reward r, Action a,

State
Transition

Figure 2.4: Structure of a POMDP. An agent interacts with its environment.
Via its actions, it can influence the environmental state transition. Instead full
access to state sg, it only receives partial information via the observation oy
together with the scalar reward signal 7.

itself, but provide her more information regarding environmental state.
With this additionally gathered information, it can make better decisions
in the future. Examples for everyday information gathering actions are
asking others for information or reading a manual. Typically, the agent
needs to trade off information gathering (which is typically costly, as it
requires time or effort) and task progress using the knowledge obtained so
far.

State transitions, like in an MDP, only depend on the current state and
action and not on previous states. However, the Markov property does not
hold for the available observations. When planning with state transitions
and potential observations, the agent needs to respect the history of past
observations and actions. Therefore, it will need some form of memory.
Instead of storing the action and observation history, it can explicitly rep-
resent an uncertain estimate of underlying state, a belief, or use an implicit
representation as realized for example in recursive neural networks [67].

Agent belief

An agent in a POMDP does not know the true environmental state but
does only receive partial information via observation og. Based on the past
observations and its own actions, it can infer a probability of current state
s via Bayesian inference, respectively Bayesian filtering (section 2.2.1),
to construct its belief by, = p(sg). Since the state itself fulfills the Markov
property, the belief contains all relevant information of the history.

In each time step, it needs to update the last belief estimate by predict-
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Action @
State e
Observation @

Figure 2.5: Directed graphical model for inference in a POMDP (nodes of
observed variables are colored). With observation o, and agent action ag—1, it
can update its belief over hidden environmental state sx—1 — si. The current
state only depends on last state and last action.

ing state transition and updating with the observation. In addition to the
filtering structure (Figure 2.1) the state transition respectively prediction
is influenced by the known action ay, as represented in the graphical model
in Figure 2.5. Consequently, the belief update is computed according to

Of Sk
bit1 = p(Sk+1 | ks Opg1) = POk+1 | St1) > T(sk, ak, sxr1)p(sk)
P(0k41) spES

information gain /
filter update

state transition/
prediction

(2.7)

Starting with prior belief by = p(sp), the agent can maintain a belief over
current state s, by iteratively updating the distribution of current state.

Solving a POMDP is much harder than solving the underlying MDP
due to the state uncertainty, that is expressed in an increasing history of
observations, respectively a probability distribution of state. A simple ap-
proach to act in a POMDP is to apply an optimal MDP policy of the base
MDP by considering only one state from the belief distribution (maximum
or expectation). However, this approach ignores the state uncertainty and
expected information gains and therefore can not yield information gath-
ering policies [93], [96].

Based on the agent belief b, a POMDP can also be interpreted as an
equivalent, specially structured MDP over continuous belief space, with
transitions according to belief updates (eq. (2.7)) and expected rewards.
However, the state space of a belief MDP is continuous and increases ex-
ponentially in the number of discrete states of the POMDP, which usually
renders the application of MDP solution methods infeasible.
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Solving POMDPs

One approach for solving POMDPs consists in value iteration by itera-
tively computing a value function over beliefs, V(b) [50]. However, it is
only tractable for small state spaces or short horizons, as the complexity
increases exponentially in the number of states and observations. This
exponential increase is also described as curse of dimensionality and curse
of history [104]. As approximate method, point based value iteration re-
stricts value updates of value iteration to a limited subset of the continious
belief space [83].

As alternative to such offline methods that aim to compute a value func-
tion for the full belief space in advance, there are online approaches that
search for a good action in each time step by planning into the future
[93]. They can handle large belief spaces, as they search locally for a good
action. In a concrete situation, only a small subset of possible beliefs will
be relevant, reducing the necessary evaluations [93]. As a drawback, each
time step requires replanning and the computation of the local action val-
ues, which challenges real time applications. Online POMDP algorithms
create a planning tree over possible future actions and observations, start-
ing from the current belief, as is visualized in Figure 2.6. The planning
tree can be a full tree up to a fixed planning horizon, respectively tree
depth, or the actions and observations can be sampled or heuristically se-
lected to focus search on interesting trajectories. Still, the planning tree
will expand very fast (with size of action and observation sets, |A| - |€2| per
planning step) and it will usually not be possible to plan until the end of
an episode. Instead, tree expansion needs to be limited and values of leaf
nodes are estimated e.g. by using coarse approximations of value iteration
or MDP based values. For the base MDP, value functions for optimal pol-
icy as well as random uniform policies can be computed and used as rough
proxies for the leaf values [93]. For tree evaluation, values are propagated
through the tree, providing a good estimate for the current action values
and the expected best action can be selected.

Through leaf value estimates, online tree search is combined with ap-
proximate offline evaluations. Accuracy and computation effort depend on
planning depth and the quality of offline value estimates. This makes it
possible to solve much larger POMDPs, as demonstrated by specific imple-
mentations such as POMCP [104] or DESPOT [105]. Planning approaches
are also more flexible than offline methods, as they can cope with changes
in their environmental dynamics by adapting tree generation (while offline
methods require a full re-evaluation).
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Figure 2.6: Planning tree for POMDP online methods. Starting with current
observation and belief, future actions and observation options are evaluated to
choose a good next action.

2.2.3 Uncertainty by other agents and strategic
interaction

A POMDP provides a formalization of an agent interacting with its dy-
namic uncertain environment. If multiple agents are present, interaction
effects between these become relevant. Besides environmental uncertain-
ties, the behavior of other agents represents a new source of uncertainty
with effects on the environmental state. In a simple approach, other agents
are often considered as part of the stochastic environment instead of intro-
ducing an explicit agent representation. In this case, the problem can be
again formulated as a POMDP. However, a transition function including
other agents’ behaviors does not need to be stationary. This introduces
new challenges to solve respectively learn good policies, especially regard-
ing the convergence of policy and value functions.

For the setting of a multi agent team cooperating to reach a joint goal,
the concept of decentralized POMDP was proposed to explicitely account
for other agents in uncertain domains with limited information exchange
[71]. Although any individual agent’s policy must rely on local observa-
tions, the policy is globally optimized, being part of the joint policy, to
reach a common goal. This approach can be used to train a multi agent
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team for uncertain scenarios, but cannot cope with heterogeneous settings
with independent policies, like human robot interaction.

When policies are not synchronized or rewards of agents are not fully
aligned, the framework of interactive POMDP provides another extension
to the single agent POMDP [36]. It includes a hierarchical recursion of
modeling others (agent A believes that B believes that A believes ...),
which allows powerful logical reasoning. It comes at the expense of a high
complexity and its limitation to very small domains.

An alternative to potentially infinite recursive reasoning as in interactive
POMDPs is provided by the concept of equilibria in game theory. Game
theory investigates interaction and interaction effects of rational agents.
A Nash equilibrium describes a set of policies, where no single agent can
benefit from changing its policy, while the other agents do not. For an
introduction to game theory, the reader is referred to the book of Osborne,
[76]. Here, two phenomena of strategic interaction are introduced, as they
closely relate to human robot cooperation: coordination and signaling as
strategic information exchange.

Coordination

When interacting with others, one often faces the problem of coordination
in different forms. From a game theoretical perspective, the coordination
problem is characterized by the presence of multiple equilibria, which rep-
resent multiple ways to solve some task. Accordingly, the agents need to
agree to choose one of these, meaning to coordinate their behaviors. A
pure coordination problem is introduced with the payoff matrix shown in
Table 2.1. There are two Nash equilibria, where the agents choose the
same actions and in each of them, both agents receive the same reward of
1. Such symmetric coordination problems occur for example, when pedes-
trians moving on collision paths coordinate on passing each other on left
or right side.

Another coordination problem is present in the stag hunt game, repre-
sented by the normal form payoff matrix Table 2.2. The agents can decide
to jointly hunt for a stag, an equilibrium with high rewards for both, or
individually go for a hare with a smaller reward. Best outcome for both
agents is achieved, when they coordinate on hunting the stag (payoff dom-
inance). However, if one agent is uncertain about the other’s behavior, it
is less risky to choose the hare (risk dominance). Here, the uncertainty of
other’s behavior is central for the choice of equilibria.

These normal form games investigate one step coordination, which is
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Table 2.1: Payoff matrix for a symmetric coordination problem (entries of the
matrix are the payoffs respectively rewards of the agents, when the corresponding
actions are chosen). There are two Nash equilibria (a1,a1) and (a2, a2) which
requires coordination of the agents.

Agent 2

‘ ail a9
a; | 1,1 0,0

Agent 1 a | 0.0 1.1

Table 2.2: Payoff matrix for stag hunt game. The equilibrium with actions
(a1,a1) is payoff dominant, while (a2, az) comes with a low risk.

Agent 2

| a1 ap

a; | 3,3 0,2

Agent 1 a | 2.0 2.2

subject to dominance criteria or salience. In daily situations, coordination
often evolves over time, allowing the agents to negotiate and find common
solution in an extended time sequence, allowing to refine initial decisions.
During the process of coordination, uncertainty regarding others’ behav-
iors is reduced until coordinated behaviors are reached. This process is
investigated in repeated games, as well as in general sequential games [58],
[13], [55]. The process of coordination is supported by communication as
well as transparent policies [26]. Agent coordination is not in the main
focus of this thesis, although the contributions regarding understanding
other agents and selecting communication actions should support new,
efficient solutions of human robot coordination problems.

Signaling and information exchange

Strategic effects of information exchange are considered in signaling games
[76]. A signaling game is based on information asymmetry. One agent (the
sender) has private access to some piece of information, also considered as
the sender’s type. It can decide to share (parts) of it with the other agent
(receiver) by selecting different signaling actions (messages). In a second
step, the receiver can choose an action (depending on the sender’s message)
deciding over the final outcomes.

In such uncertain games, the agents need to develop a belief over uncer-
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tain states as basis for decision making. With a model for the sender’s pol-
icy, the receiver can use the message to refine its initial belief via Bayesian
inference. The actual amount of information exchange (equilibrium strat-
egy of the sender) depends on the alignment of interests and the costs of
misleading communication.
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2.3 Modeling human behavior for cognitive
human-robot interaction

For a robot interacting cooperatively with a human in a complex environ-
ment, an understanding for its partner is central to support her according
to her needs. In the following, an overview is presented regarding research
on cognitive human models in the application to human-robot interac-
tion. Besides testing cognitive theories and hypotheses, a human model
can serve for predicting human actions, to detect problems in her situa-
tion awareness and to support interaction and coordination. Such insights
into human cognitive states are useful when planning interventions such
as sharing relevant information to her (as in the blind spot scenario), or
adapting actions according to the human plan.

Modeling other agents is not only relevant in human-robot interaction,
but also investigated in multi agent settings, e.g. multi robot scenarios.
Depending on the domain, the complexity of other agents, and the type of
interaction, different models with varying levels of complexity are proposed
in literature. On overview of agent modeling approaches is given in the
survey of Albrecht et al. [3]. Agent models differ regarding whether and
which internal states are considered, the available information sources for
inference, whether they consider time variant behaviors, and intended use
cases. In contrast to multi agent models, humans show complex, divers
and time varying behaviors, which makes it difficult to adequately explain
these by static or type based models.

2.3.1 Complex rational human models

Subintentional models, such as rule-based models, finite state machines
or black box neural networks, can be used to predict an agent’s behavior
(78], [3], [42]. When trying to explain, why an action is chosen or which
information might be helpful to the actor, it is however necessary to reason
about the cognitive states including intentions and beliefs that could have
caused these decisions. An important underlying assumption considers
goal directed human behavior, which implies that she decides for actions
to maximize her desires and long-term goals.

Inverse Reinforcement learning

One approach to estimate cognitive states explaining human behaviors
consists in collecting observed sequences of actions and interpreting them
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retrospectively to find good explanations. This is done in inverse rein-
forcement learning (IRL, see also section 2.2.2), where an MDP model for
the human is inversed to compute a reward function that best explains the
observed behavior [72]. Since the problem of IRL is ambiguous, as several
reward functions lead to the same optimal behavior, different criteria are
proposed to derive useful explanations [126], [56], [6]. These approaches
also relax the assumption of rational observations, which is important as
humans do not always behave optimal. It is assumed commonly, that a
human decision making can be explained by a softmax strategy that as-
signs higher probabilities to better actions (e.g. [88], [6]). When actions
do not represent independent distinct options, the similarity of choices
should also be considered in the human action selection model [12]. Be-
sides decision noise, which is modeled by a softmax policy, there can also
be a human decision bias caused by a different mental representation, e.g.
regarding the transition function of an MDP [89]. Consequently, Reddy et
al. include static biases into the human model and estimate them together
with the reward function [89].

A reward function alone might not be sufficient to explain human be-
havior. In environments with uncertain environmental states that can be
formalized as POMDP, not only human goals represented as reward func-
tion, but also her beliefs as representation of her knowledge will influence
her behavior. There are extensions for IRL regarding uncertain environ-
ments with POMDP models. In a configuration, where only a robot ob-
server is uncertain, while the human demonstrations are formed under full
state knowledge, the robot can employ strategic perception, and addition-
ally use observed decisions to reduce state uncertainty [62], [43]. Choi and
Kim [24] consider the situation, that the demonstrations itself occur under
uncertain state knowledge, based on the demonstrator’s belief. Still, the
approach considers the belief to be known to both agents, which can be
reasonable in synchronized multi agent settings, but is not practicable for
human-robot interaction.

Bayesian theory of mind

Modeling the human as fully independent POMDP agent is proposed in
Bayesian theory of mind respectively Meta-Bayesian reasoning to under-
stand observed human behavior under uncertainty [84], [5], [7], [27]. In-
spired by human theory of mind (the capability of inferring other’s cog-
nitive states including desires and beliefs, see section 2.1.2), Bayesian in-
ference is applied to estimate hidden human beliefs and desires that best
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explain her behavior. This was so far used to investigate human theory
of mind, comparing inference result with human observer attributions, re-
spectively to estimate prior human beliefs, but not to improve interaction
with humans.

A POMDP formulation including human beliefs requires the specifica-
tion of human perception to yield the observation function, complementing
transition and reward function used in the noisy rational decision model in
IRL. Interpreting human perception requires perspective taking to respect
her point of view [68], and further needs to account for potential differ-
ences in information processing between human and robot (e.g. differences
between human visual perception and robot’s cameras). The resulting
POMDP model for human behavior can be used to infer hidden mental
states. The inference is still challenging, as the continuous human belief
is already the result of human state inference, leading to a second order
problem of what she inferred over state. Commonly, it is only applied to
small underlying state spaces and retrospective evaluation [5], [7], [27].

Similar to human theory of mind, artificial theory of mind should con-
centrate on relevant aspects of human belief to keep inference tractable
[48]. Correspondingly, Poppel et al. propose to reduce complexity (e.g.
the uncertain state space to consider) by switching between differently de-
tailed models according to the needs and available computational resources
[85].

When interacting with a human, a POMDP model for her, a model of
her acting in isolation with her environment, does not account for her the-
ory of mind, her representation of the robot she interacts with [80]. Full
modeling of human theory of mind would lead to recursive construction of
higher levels of theory of mind. Starting with an individual agent model
and corresponding beliefs as level zero, higher levels of beliefs respectively
behaviors can be generated recursively. Such construction of higher orders
of theory of mind is proposed in context of multi agent settings to coor-
dinate synchronized behaviors or solve logic puzzles [123], [121]. Avoiding
infinite recursion, one could estimate another agent’s recursion level from
observed interaction behavior. Such higher-level ToM can support a coor-
dination process of the agents, since one agent can expect others to reason
about own plans [121].

All these approaches are computationally demanding due to the itera-
tive construction of hierarchies. Illustrations use small multi agent set-
tings, that either do not contain state uncertainty or rely on synchronized
joint policies. When interacting with humans, higher orders of ToM be-
come increasingly sensitive to human action noise and can easily produce
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misunderstandings.

Use in repeated interaction

The human models presented so far can explain complex and goal di-
rected human behaviors. In repeated episodic interaction or similar static
settings, estimated reward functions can be used to predict human behav-
ior in future interactions, as it is e.g. proposed for driving scenarios [95],
[96]. This is based on the assumption that the human reward function
does not change between episodes. Similarly, inference results for static
human belief configurations can be used to improve robot behavior in fu-
ture episodes [89], [33]. But in practice, human belief will often change
dynamically according to her perception, and also her goals might change.

2.3.2 Human models in human-robot interaction

The complex intentional human models presented so far followed the pur-
pose to understand observed human trajectories retrospectively. It is used
for research of human mentalizing, as in cognitive science and psychology,
for training humans, or to transfer desired behaviors to a non-interactive
robot.

The setting changes when entering direct interactions with humans.
During interactions with others, a mental understanding is central to pre-
dict others’ actions, to coordinate and to assist reaching goals. A human
model to support human-robot interaction will need to be evaluated online
during interaction to enable the robot to adapt its behavior and account for
her in the current situation. In human-robot interaction research, simpler
models are commonly used, concentrating on few aspects that may distin-
guish behaviors in concrete, investigated scenario. Such aspects include
eye gaze behavior, trust, or intended movement goals.

Modeling human attention and perception

Measurement of human eye gaze can provide useful insights into human
information gathering and attention. For visual perception of their en-
vironments, humans direct their gaze in the corresponding direction to
fixate objects of interest. This can be measured via eye tracking glasses
(equipped with eye cameras and a world camera) or by stationary eye
tracking cameras.
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Gaze information can help to predict a human’s next movement. When
reaching for an object, a human often directs gaze towards it in advance,
which can be used to support early prediction of movement targets [97].
Similarly, a robot can interpret human gaze as attention signal, when as-
sisting her in an assembly task by providing corresponding pieces [97], [77].
A gaze-based model of human attention can further be used to minimize
disturbance by robot path planning, which avoids interfering with her line
of sight [79].

Visual perception is important to gather information about the sur-
rounding environment. This is necessary to gain situation awareness as
perception is considered as first level of situation awareness, see section
3.4. Awareness regarding important aspect of the current situation is cru-
cial for decision making and especially challenging in complex dynamic
domains. To analyse human information gathering, it is necessary to com-
bine gaze information with objects respectively information sources of the
environment, while respecting the human perspective and potential occlu-
sions. This is used to detect which of the objects and types of information
might be visually perceived [101]. Such analysis can be used to detect
problems in human situation awareness that are related to information
perception [28]. Higher levels of human situation awareness, the relation
and interpretation of different information sources and the prediction of
future evolution, cannot be detected by only considering human gaze.

Evaluation of human perceptual behavior can further be used for assis-
tance or warning systems. In critical situations she can be warned about
missed objects, or a warning can be triggered, whenever her gaze deviates
from required scanning patterns [102].

Aspects influencing human decision making

Besides models for human gaze and visual attention, also models for hu-
man decision making based on single hidden states, like robot trust or
movement goal, are applied to human-robot cooperation. The decision
model can be used to infer the latent variable of interest which can further
be respected in the robot policy.

When a robot needs to coordinate its action with a human, it is generally
useful to know the current human plan for her next actions. Anticipating
her next subgoal can be used to avoid collisions and to decide on which
subtasks to work on. Estimation of subgoals or movement targets is also
often called intention inference and used in different domains, such as
cooperative assembly, mobile navigation around pedestrians, automated
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driving, and virtual task planning [81], [73], [45], [114], [59], [38], [117], [87].
Methods include model free approaches, such as time series classification or
neural networks, or simple action models, where the human policy model
directly depends on the intended subgoal.

The problem of estimating human goals or intentions resembles a prob-
lem typically faced in spoken dialogue systems. Here, the system needs to
understand the hidden intention of the user that led to the engagement
with the system [122]. Uncertainty and difficulties arise from the diversity
of human utterances and noisy speech processing.

Similar to human intention or movement goals, there can be other men-
tal or other hidden aspects with significant influence on human behavior.
In human-robot interaction, there are human models considering human
trust in the robot, attentiveness respectively sleepiness, driving style, or
trustworthiness [21], [96], [54], [115]. Using a model for their influence on
human decision making, these static aspects can be inferred and used for
human action prediction to improve the robot behavior.

Limits of human modeling

Models of human behavior can provide useful insights into causes and
problems in reasoning. However, when using complex human models to
build complex robot policies, one should be aware of possible new prob-
lems, e.g. due to missing transparency [26]. For interaction, it is not only
important to understand (and adapt to) a human partner, but further
that the human partner can understand the robot, hence that it behaves
transparently. This is important as also the human will build a model
of the robot and change her behavior accordingly [19], [80]. Hence nei-
ther assuming the human to behave as pure leader (requiring the robot
to adapt) nor as pure follower (robot does not need to account for the
human, as she totally adapts to it) will be adequate. To achieve efficient
and flexible cooperation modalities, instead the robot will need to find a
balance of understanding human goals and beliefs and transparency in its
own behavior.
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2.4 Communication strategies with humans
and other agents

Communication is central for successful interaction as it enables exchange
of information and coordination of behaviors (see also section 2.1.2). In
this thesis, it is considered how communication can be used to efficiently
support a human partner. Basic support systems may interrupt and in-
struct (as in car navigation systems) or take over control (as in emergency
braking). In contrast, a less intrusive and human centric way consists in
the communication of important information. It would support the hu-
man according to her needs and enable an informed human decision for
the current situation.

When considering information sharing communication, it is central to
account for the novelty for the human receiver (does she already know it)
and the relevance of information (is this type of information important for
the current situation?).

Regarding evaluation of novelty, a human model can be used to trace
her information perception and decision-making processes. In this section,
communication concepts from literature are shortly presented which either
employ the evaluation of relevance of information for a current task, or
adapt communication to the human receiver. In chapter 4, both aspects
are combined leading to a new human-centric, information sharing concept.

Besides the questions, when information should be shared or what type
of information is relevant, it is important to consider how communication
signals are designed. This includes questions like: How can different types
of information be shared to a human, what are the cognitive effects of com-
munication, and which efforts or costs are related to it? Explicit as well
as implicit communication signals and models were developed for human
robot interaction [113], [29], [125], [18], [90]. However, the design of com-
munication signals and modalities will not be the main focus of this thesis.
Supposing an available communication interface, the remaining questions,
when and what type of information to communicate are investigated with
the target of an efficient and natural interaction between human and a
robot.

Task relevance of information

The relevance of different types of information can change during a task,
depending on the current situation and challenges. As discussed in the in-
troduction, the blind spot warning communicating the presence of another
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car on the left lane is highly relevant when a lane change is initiated, as it
may prevent an accident, but less relevant in other situations.

Task relevance is a dominating factor in critical situations, where the
cost of communication is small compared to the risk of bad decisions. Sim-
ilarly, when agents are spatially separated, such as multi agent exploration
teams or shared initiative teleoperation settings, novelty might not play a
role. It is rather obvious, that all exclusively perceived information must
be new for other agents.

Explicit reasoning for task relevance for information sharing decisions
was previously investigated in the area of multi agent research. How-
ever, these approaches rely on a synchronized joint policy for all agents.
When introducing a cost of communication or bandwidth limitation, it
becomes important to reason, “when” communication is beneficial for the
joint policy by balancing the cost of communication with expected ben-
efits [37], [120]. Goldman and Zilberstein [37] propose to optimize the
time of communication with respect to the global, joint values. Melo et al.
[64] further focus on situations or time steps in which interactions occur.
Considering communication only in these situations can limit the effort
of evaluation. Regarding the question “what” to communicate, Roth et
al. evaluate available messages regarding their impact on the joint pol-
icy, selecting the message with largest information gain (considered most
relevant).

In teleoperation settings, relevance of information can further depend
on human operator preferences for different types of information [22]. Re-
noux et al. also respect the reliability of communication in relation to other
possible information sources of the operator [91]. Therefore, the robot ex-
plicitly represents possible human beliefs to estimate effects of communi-
cation. Due to the spatial separation, it does not receive any feedback or
observation of the human, which significantly limits belief estimation.

When agents are physically co-located, their perception will partly over-
lap and each other’s actions can be observed. Consequently, these obser-
vations can be used to estimate the overlap in knowledge to avoid unneces-
sary communication (novelty) and coordinate shared local resources. One
approach of respecting perceptual overlap consists in the representation
of common knowledge, information of which everybody knows that every-
body knows. Common knowledge is useful to coordinate agent’s behavior
[99]. Foerster et al. [34] extend the concept of common knowledge to learn
effective synchronized strategic communication policies.

These approaches from multi agent communication and coordination
rely on prior synchronization and the commitment to a known joint pol-
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icy. When interacting with a human, this is not the case since policies are
not synchronized beforehand nor can a robot assume the human to repeat
the same behavior every time. Human robot cooperation rather represents
an ad hoc setting without prior synchronization and interaction policies
are required to be robust to divers human policies [108]. Barrett et al.
propose a basic approach for communication in ad hoc settings, where
communication is used to estimate others’ type and to coordinate behav-
iors [9].

Human oriented communication

The communication concepts presented so far concentrate on the evalua-
tion of external task relevance, while in the considered situations it was not
necessary to account for the receiver’s private knowledge. In human robot
cooperation and human assistance, this changes. It becomes important to
also account for the human knowledge and novelty of potential commu-
nication to achieve support while avoid repetitions and annoyance. For
example regarding the timing of communication, there can be situations
where the human is available or others, where she is engaged in activities.
Respecting the human state of engagement will reduce annoyance and may
also improve the communication success [18].

To support humans in specific situations, typical assistance approaches
compare human behavior to a predefined policy (e.g. optimal behavior).
If a deviation is detected, the system proposes an action to the human
that is appropriate in the current situations. Such systems are for ex-
ample proposed for support in health care and automotive contexts [44],
[63], [102]. These concepts may detect and support human problems in
specific situations. Still, it is not investigated, why the human deviated
from expected behavior and the human typically will not be supported to
understand her problem in situation awareness.

Communication concepts in human robot interaction research focus on
coordination of agents’ behaviors e.g. to avoid collisions [107], [74], [114].
Therefore, observed actions are considered in the planning process to de-
tect possible coordination problems. Consequently, the robot may com-
municate its own intended action or propose an alternative to her [107].
Unhelkar et al. [114] further estimate, if the human seems to know the
robot’s action.

Explaining action proposals to the human (e.g. the robot is only able
to perform one action and asks the human to do another) can help the
human to understand its underlying intention improving her trust [116].
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These approaches and the investigated tasks, such as stacking a few pieces
together or carrying a table, are designed from a robot perspective. The
only difficulty for the human typically arises due to the unexpected or
non intuitive robot behavior. Communication is e.g. used to tell the
human about the robot’s plan she needs to adapt, as the robot misses
capabilities to understand and seamlessly interact with humans. In this
thesis, a different approach is considered towards a human perspective
and human support. In complex situations with many different aspects, a
human might profit from a robot sharing relevant information at the right
time. For this approach, the robot does not only respect the difficulties
of the task but further develops and evaluates a human understanding to
decide when and what type of information to share.
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2.5 Summary and conclusion

In this chapter, concepts, methods, and literature were presented, intro-
ducing ideas from human factors and human-human interaction, methods
for inference and coping with uncertainty, human modeling and human
centric communication.

Information sharing and communication are central to achieve and main-
tain situation awareness of a team or system in complex situations which
is necessary for good decisions. When a robot interacts with humans, it
is further important to account for transparency, to support human trust
and avoid coordination and responsibility issues. To enable human cen-
tric information sharing and efficient interaction modalities, a theory of
mind is an important capability to understand causes of her behavior and
evaluate relevance of different types of information.

Complex environments as well as other agents introduce uncertainties
that the agents need to cope with to successfully solve a task. Bayesian
inference can be used for probabilistic inference of hidden states. It can
be used to track uncertain system states as well as mental states of other
agents. For nonlinear temporal filtering tasks, the Extended Kalman Filter
and the particle filter provide useful approximations to achieve tractable
inference. When uncertainty of the environment is quantified, the next
challenge consists in decision making and action planning, to fulfill the
current task or reach a goal. The decision problem can be formalized as
partially observable Markov decision process and can be solved approxi-
mately by planning in discrete search trees. For filtering as well as decision
making in large problem spaces, it is important to choose adequate repre-
sentations and solution methods to achieve tractable computations.

These methods for coping with uncertainty can be used to plan a robot’s
behavior but also to understand and model humans acting under uncer-
tainty. A variety of human models were proposed in literature to under-
stand behavior and information processing retrospectively. On the other
side, in human robot cooperation, the deployed human models are much
simpler often concentrating on a single aspect or mental state such as
attentiveness or current subgoal, which is relevant only for a single, inves-
tigated scenario. The situation is similar for communication concepts as
proposed for multi agent concepts or human assistance approaches. Rel-
evance evaluation and communication planning concepts are proposed for
multi agent scenarios. The setting differs from human robot interaction,
which additionally requires to respect for collocation and to develop robust
asynchronous policies, which prevent the direct application of these con-
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cepts. Human robot communication concepts on the other hand commonly
focus on the robot while neglecting human knowledge and needs.
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3 Artificial Theory of Mind as
online inference of human
belief

The development of a theory of mind is a fundamental cognitive capability
and essential for human interaction. Theory of mind describes a represen-
tation of others’ states of mind, such as desires, beliefs, or intentions. This
is important for understanding and predicting other’s behaviors and is
necessary to create cooperation and coordination between humans. For
effective communication, it is important to consider what a communica-
tion partner already knows and what is relevant for her with respect to
goals or desires. With this knowledge it is possible to select an appropriate
message and avoid unnecessary communication [40].

Others’ mental states are not directly accessible, one cannot literally
read others’ minds. Instead this latent information needs to be inferred
from observable behavior, including task progression and information gath-
ering. However, such observations do only represent the result of reasoning
and not the process itself and many cognitive configurations could have led
to the same observed behavior. As consequence of this sparse feedback,
the development of an understanding of others can be difficult and error
prone. From a practical view, it is not even necessary to derive a precise
model of others, since not every aspect of human belief is of interest in
an actual situation. Consequently, it will be sufficient to concentrate on
a reduced set of relevant aspects to address in inference [48]. The degree
of details can be typically reduced using higher abstraction levels, which
are sufficient to explain observed behaviors. Considering the blind spot
situation, it is not necessary to infer if the driver knows about weather
conditions or the exact relative positions of other cars. It is sufficient to
consider if she is generally aware of cars being present on related lanes.

An artificial theory of mind as human understanding will play an impor-
tant role to enable sophisticated interaction between robots and humans.
In contrast to research in cognitive science (targeting to approximate hu-
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man’s ToM [7]), and estimation of long-term human valuations via Inverse
Reinforcement Learning [72], the use case of cognitive human robot inter-
action requires an online evaluation and interpretation. Human beliefs can
change dynamically within a situation, which needs to be tracked during
interaction to provide the robot a possibility to react and support her.

As a general setting, it is assumed that a human and a robot jointly work
to fulfill a given task. Human robot cooperation will especially be useful in
complex and uncertain environments, where different types of information
need to be processed and where it is difficult to maintain situation aware-
ness. Consequently, the robot needs to infer the human belief of these
uncertain aspects to understand and efficiently support the human part-
ner. When the human goal is unknown, belief inference might further be
combined with inverse reinforcement learning to estimate possible human
goals expressed as a human reward function.

As for a human, an artificial theory of mind will need to be based on
observable information in the form of human actions and a model of hu-
man perception. An action might change the state of interest and further
reveals a decision made by the human on the basis of her belief. By ob-
serving human perception (e.g. measuring similar signals or interpreting
human information gathering behavior such as eye gaze) one can estimate,
which information the partner receives. Human perceptive capabilities
might differ from the robot’s, which has to be respected in the perception
model, additionally to perspective taking as usual in human ToM.

Human perception and decision-making behavior can be modeled as
POMDP. Compared to model free approaches (e.g. [86]), it does not require
to collect large amounts of interaction data for training [48], which would
not be easy to gather, due to the general unavailability of human mental
states. Extending prior approaches for Bayesian theory of mind (as in
[7]), in this thesis inference is done online during interaction, as this is
required to estimate her situation awareness and support her in the current
situation. To handle the double inference problem, online approximations
of belief representation and inference are introduced. A first version of
this approach was published in [15].

In the remainder of the chapter, the formal approach of online inference
of human belief is presented, that provides an understanding for the human
and is used to estimate her situation awareness. It will be illustrated with
an example, and further used and evaluated in a human robot task in
chapter 5.
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3.1 Belief definition and representation

The human is considered as an agent acting in a partially observable envi-
ronment, defined as POMDP (see section 2.2.2). Her belief is defined
as probability distribution over discrete environmental state s € S =

{30 ce SN}7
b=p(s),
respectively in vector form

p(s0)
b= .

p(s.N)

Starting with a prior belief, she can perceive new observations o and
influence the state s with her actions ay. Both lead to updates in the
probability distribution, as described by eq. (2.7). A discrete underlying
state space S is considered, as it can result from abstracting low level
sensory and motor signals to discrete actions and observations. Beyond
physical cooperation (such as carrying a sofa together), interaction will
focus on higher levels of abstraction, where a discrete state space is ad-
equate. As example, for the blind spot scenario (Figure 1.1) it is not
important (and neither predictable), if a human driver exactly knows the
position of another car (continuous state), but rather, if its location is
within some critical area. The blind spot situation can be represented
with two different state values for the left lane, to be free or occupied
s € S = {free,occupied}. The driver will not always be sure about it,
but have an uncertain belief. The belief about the state of the left lane
will be updated by human information gathering (e.g. tracking other car’s
trajectories with eye gaze) and will also be affected by human actions (e.g.
adapting speed or changing lanes).

The POMDP formulation models the human acting in isolation. To
support coordination processes, it might be extended to also account for
the human belief of the robot’s intended action or plan. Therefore, a
corresponding state aspect needs to be included, similar to a coordination
state proposed by [13].
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Human uncertainty regarding transition function and other
task processes

In a challenging task, a human might not only be uncertain about states
of the environment, but also about task processes, e.g. the exact effects
of her actions, or the precision of sensory inputs. In the formulation of
a POMDP, this could be represented as uncertain transition function 7,
reward function R, or observation function O.

However, typically these uncertainties do not span over a full function
space, but rather address a specific mode or aspect. These aspects are
considered by parameters 8 = (07,0r,00) determining the related pro-
cesses, e.g. Ty, (s,a,8") = p(s' | s,a,07). All uncertainty can be shifted
into an extended state, sexty = (s,0) that also contains these parame-
ters, leading to an equivalent new POMDP with known processes (e.g.

T((s,0),a,(s,0)) =Ty (s,a,s)).

3.1.1 Grid world illustrative example

The illustrative example considers a simulated human with limited vision
moving in a grid world to reach a goal. The robot, as the second agent,
is currently assumed as passive observer estimating human belief and sit-
uation awareness and will use it in the next chapter to provide helpful
communication. Grid world domains are often used to gain insights and
interpretative results. The configuration here was also used by the author
in [16]. It is similar to the ones used in [7], [85], [61] regarding agent
structure and perception limitations, but is designed to include multiple
independent state aspects.

The grid configuration is shown in Figure 3.1 left. The human (H) can
move forward, turn left or turn right (action set). Each action leads to the
desired state change if the target state is accessible. Moving into wall cells
(black) is not possible and the agent instead stays at the current position.
The door cell (grey) can be open or closed, which defines its accessibility.
An episode ends, when the agent H reaches the desired goal location,
which is either cell g1 = (0,2) or go = (3,5). To favor goal directed
behavior, every movement of the human, besides reaching the goal, leads
to a constant negative reward Ry (sk—1,ar—1,8k) = —1. She starts with
a prior belief and can gain new information about cells within a limited
field of view, one cell in front, to the left and to the right (blue triangle
in Figure 3.1 left). An observation informs about accessibility of the cells
in the field of view with a confidence of 90% each. She knows the overall
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Figure 3.1: Grid world example (left). Human agent needs to move to the goal
cell (yellow) while it cannot access to wall cells (black). Human can be unaware
of position and orientation, door state (grey cell), or goal location g1 or go.
Relative field of view (blue) is shown for the starting position and orientation
(red arrow). Resulting trajectory for a rational human agent with false initial
belief of an open door (right).
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wall configuration (the map), but is uncertain about its own position and
orientation, the door state, and the position of the goal g € {g1, g2}.

The environmental state contains position and orientation of the human
agent. In the case of the door cell, the human is uncertain about the
state transition Tjp,., as the door state can be considered as parameter of
transition function 67 € {open, closed}. As example, the transition success
from bottom left corner to door cell is,

Ty ((0, 0, north), forward, (0, 1, north)) = {1 ?f' Oz = open .

0 if: 7 = closed
The door parameter will be interpreted as part of environmental state
Sext for which the human knows the transition function 7'. Similarly, the
goal location is considered as state aspect yielding an extended state space
of 352 different discrete configurations that contains all aspects of human
uncertainty (22 positions x 4 directions x 2 door states x 2 goal locations).

3.1.2 Factorization of human belief

Inferring human belief means calculating a probability density over human
state probabilities, p(b) and approximations are required for interesting
scenario sizes. The first approximation will be a factorization of human
belief to avoid combinatorical increase in its dimensionality.

In typical robotic or every-day environments, many state aspects are in-
dependent from each other, such as positions of different objects or agents.
A full joint state space S = Sy x- - xS grows exponentially in the possible
combinations of single aspect subspaces S;. To limit the inference effort,
a factorization of the belief representation is considered as also proposed
by [14]. The human belief is assumed to factorize within these aspects,
corresponding to the factored distribution

p(s) = Hp(sj) = Hbj, e S;.

The factorization allows the independent representation of subbeliefs b7,
leading to an additive increase in belief space of N, =} [S;| instead of
Nean =] j |S; |. In the grid world example, the state is factorized according
to three aspects, one for combined position and orientation, one for door
state, and one for the goal location. This reduces belief dimensionality
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from 352 to 92 (=88 + 2+ 2)!

This factorization may not hold for all situations, (e.g. when one agent
is manipulating some object, agent and object states are coupled) but can
provide a pragmatic solution to handle the curse of dimensionality, limit
the effective state space size and enable tractable inference. Dynamic
factorization might also help to respect such interdependencies [23].

3.2 Human model

A model for human information processing and decision making is the basis
for an interpretation of observed behaviors and inference of her beliefs.
With the assumption of an (approximately) rational human that wants to
achieve a known task, the human model is formalized as POMDP, similar
to the approaches of retrospective Bayesian theory of mind discussed in
section 2.3.1. An abstract structure for human information processing

n this illustrative example, also the full state space could be handled, as the number
of aspects and overall dimensionality is relatively small. Factorization is introduced
to demonstrate the principle which becomes necessary for larger, structured spaces
as e.g. in chapter 5.
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and environment interaction is illustrated in Figure 3.2. Based on her
belief and the current task, she will decide for an appropriate action for
information gathering or task progression. The action can lead to a state
transition of the environment, internally represented as belief change. She
will further receive an observation that provides new information of the
current environmental state. These processes, state transition, perception
and decision making are specified in the next paragraphs. They form the
generative model that is afterwards inverted to infer the human belief.

3.2.1 Human belief transition

A human action will lead to a transition of the environmental state s;_1
to si according to the transition function T, that the human will account
for in her mental representation. As for a rational agent in a POMDP (see
section 2.2.2) the belief changes accordingly to

Plsk | ax—1) = Y T(sk—1,ak-1,55)p(sk—1)

Sk—1

bk | Ap—1 = T(ak_l) . bk—l (31)

respectively in vector form with the transition matrix T(a;_1), with ele-
ments T; ; = T(sg—1 = Sj,ax—1, Sk = §;) for the transition from state s;
to state s;.

In factored state space, an action may only effect some state aspects (e.g.
j and [), and a reduced transition matrix T7!(ay_;) for the corresponding
joint subspace can be used,

b = T (ax1) - b,

The new factorized belief components are obtained by marginalizing out
other state aspects.

For the grid world example, the deterministic transition function de-
pends on the human position, orientation and on the door state.

3.2.2 Human perception

The human can sense her surroundings, e.g. by visual perception and ex-
tract information to update her belief. Depending on the applied domain,
a model of human perception can be static, by respecting her field of view,
as in the blind spot case and grid world case, or dynamic, respecting eye
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gaze. Additionally, uncertainty can be included such as observation noise
limiting the human observation gain, e.g. for short glances. Both are com-
bined to yield the stochastic observation function O.

When receiving an observation oy, the human will extract the informa-
tion by Bayesian update, inverting the perception model (as specified in
eq. (2.7)). The Bayesian update of the human belief is modeled to follow
an observation oy (as introduced for POMDPs in section 2.2.2),

pomk | sk)p(sk)

S [0} =
Plok o) p(omH k)
b | omk = plonkls) be. (3.2)
p(OH,k)

For the grid world example, the human receives information about the
accessibility of the three cells in her field of view, the cell in front, the
cells on the left and on the right. The observation set consists of 23 =
8 different observations, Q = {free, occupied}3. The accuracy for each
field is 90%, meaning she will perceive the true configuration with 73%,
plogl|s) = 0.93~ds0m) .. 195:00) with d(s,o0p) as number of deviations
from the true configuration in her field of view.

Observation yields evidence for the human position since she knows the
overall wall configuration. Additionally, if she is in the surrounding of the
door, she will perceive the door state with 90% certainty.

Process uncertainty Human perception may not be optimally
Bayesian [90]. Therefore, process noise will be used to cover suboptimal
human inference or other unmodeled effects on human belief, such as for-
getting. As one option, process uncertainty can be formulated as Dirichlet
distribution for the human belief,

p(bi | 0m K, ak—1,br—1) = Dir (b, | &f(om &, ar—1,br—-1)), (3.3)

with precision parameter & and f representing the nominal Bayesian belief
change of transition and perception model, eq. (3.1) and (3.2),

plomk | s)

p(OH,k) ° (T(ak_l) .bk_l)

flom i, ak—1,br—1) =

3.2.3 Human decision making

A human action ay is the result of the human decision-making process
and therefore provides a source of evidence for human belief b,. The
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human decision process is assumed to be approximately rational, with an
action probability depending exponentially on the expected action values
Q(by,ar) (as it is often used, e.g. [7], [95]).

The action probabilities are described by the softmax function,

exp(7Q(bg, ax))
> exp(7Q(by, a))
= softmax(Q (b, ax)), (3.4)

plag | by) =

with rationality parameter 7 and action value function Q.

Modeling a stochastic policy accounts for uncertainties in human plan-
ning and decision making, and tolerates noise in action execution, as she
might not execute the action she intended to do. Solving the POMDP to
achieve the action values @ is computationally demanding, as discussed in
section 2.2.2. At least, state values will also be needed for a good robot
behavior and the POMDP solution could be shared between human model
and robot policy.

For the grid world example, the human action values are computed using
a tree based online solver (as introduced in section 2.2.2) with depth 2 and
evaluating the leaf nodes based on MDP values (averaging values of a blind
and a full knowledge policy).

3.3 Belief inference

The generative human model introduced in the previous section provides
the basis to infer hidden human belief. It represents a Bayesian filtering
problem structure, with the causal relations shown in the directed graph-
ical model in Figure 3.3. Inference is split into the steps of predicting the
belief transition followed by an update according to the evidence from the
observed human action,

play | by)
p(bg | ar, sk) = p(by | sp)————
(by | ax, sx) = p(bg | s1) p(an)
ar | b
= /p(bk | br—1,ak—1,sk) dby—1 w (3.5)
p(ax)
prediction ———
update

Exact inference would require to solve the integrals in prediction and
update steps, which is not feasible for meaningful state spaces. Instead,
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approximate inference methods need to be used. In their offline approach
with small examples, Baker et al. discretize the belief space either uni-
formly or select relevant configurations by hand [7]. With uniform dis-
cretization however, the number of considered beliefs increases exponen-
tially in the number of states, becoming intractable for interesting scenar-
ios. Similarly, a specification of relevant belief configurations by experts
in advance can be time consuming as well as difficult and error prone. In-
stead, general inference methods are proposed respectively refined to solve
the inference problem of human belief.

A particle filter (see section 2.2.1) follows a sampling-based approach
to approximate the resulting belief distributions and can be used to ap-
proximate eq. (3.5). Since online planning methods are used to compute
human’s action values, the evaluation of human action probabilities in
update step requires most computation effort, contradicting fast online
application. As second deterministic approach, a linearization-based filter
is developed based on parameterized distributions for the human belief. As
the deterministic approach requires only a few evaluations it provides the
potential of very fast inference and further shows benefits when observing
unexpected actions.

3.3.1 Human belief particle filter

Particle filtering can be directly applied to the generative human model,
using the equations (3.3), (3.4). Starting with an initial set of particles,
each particle is transformed and weighted according to prediction and
update equations. The weighted particle set represents the approximate
distribution of human belief.

In Figure 3.4 left, the inference is visualized for a one-dimensional ex-
ample of the blind spot case®?. Inference starts with a distribution for
the last belief (blue) favoring human beliefs where the left lane is free. 30
samples are drawn from this distribution and predicted through the model
(orange and green crosses) by modeling state transition and two possible
observation the human might receive. When observing the human action
(staying on lane), the action likelihood (violet) is used to compute the new
weights (black circles). The weighted samples approximate the posterior
distribution.

The approximation quality depends on the number of samples. Espe-
cially for unexpected human actions (human changes lane) this can be a

2For which the full belief space can be shown and the true posterior can be computed
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Figure 3.4: Illustration of one inference step for human belief inference (blind
spot example). Starting with a distribution for last belief (blue), 30 belief sam-
ples are drawn, predicted, and updated according to the action likelihood func-
tion (violet). A remapping to a Dirichlet distribution is drawn in red. In contrast
to the expected human action (left) for an unexpected action (right) only few
samples remain with relevant likelihood.

problem, as the likelihood eq. (3.4) will be high at low probability regions.
Only few samples contribute to the posterior approximation reducing in-
ference quality, see Figure 3.4 right. Increasing the number of samples will
increase the computation effort and a trade off of accuracy and resources
is required.

3.3.2 Linearization-based inference

As an alternative to sampling-based particle filter, a deterministic ap-
proach based on linearization is developed for approximate belief inference.
Like the extended Kalman filter (section 2.2.1), it is based on a parame-
terized distribution to represent uncertain human belief combined with a
Taylor series approximation for the human model.

Parameterized distributions for human belief

The belief itself represents a probability distribution over states and the
space of possible belief configurations is the probability simplex® b € RV |

by >0, b =1.

3Due to the constraint, the effective state dimension is N—1 as by = 1 —Zi\f:_ol b;. For
factorized belief representations, each subspace represents one probability simplex.
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The Dirichlet distribution and the logistic normal distribution are can-
didates for parameterized distributions to cover the probability simplex.
The Dirichlet distribution is parameterized by N parameters «. Since it
is member of the exponential family, a Bayesian belief update can be for-
mulated by linearizing the log likelihood function [10]. In contrast, the
prediction step of filtering is more complex, as the combination of Dirich-
let distributions in general does not yield another Dirichlet distribution.
One option consists in a hybrid approach, using sampling-based methods
for the prediction step (which leads to fast evaluation) combined with a
linearization-based update. However, the Dirichlet distribution further
limits the belief representation as the set of parameters cannot represent
correlations between the different belief dimensions.

More flexibility is provided by the logistic normal distribution [2]. Tt is
based on the additive logistic transform

T
xp(z exp(zny—1 N—1
b= (41+§;_7.péx;)(zj) 1+Zp§.e]ip(2j) 1_2]':1 bj) =:alt(z) (3.6)

and its inverse

2= alt (b) = (log () - log (%22))"

transforming the belief b to an N — 1 dimensional real number z € RV 1,
After transformation, a normal distribution NV (z | i, ) is considered. Cor-
relations of belief dimensions can be represented in the covariance matrix
3.

With the factorized belief representation, each subbelief is individually
transformed, z7 = alt_l(bj ) and stacked together to yield one vector of
real numbers,

The additive logistic transformation further allows application of other
distributions and algorithms for real valued random variables, e.g. a mix-
ture of Gaussian representation within the multi hypothesis filter, which
supports multi modal distributions [69].
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Approximate inference based on linearization and a logistic
normal distributions

To reduce the effort of sampling-based inference, deterministic approxi-
mations based on the logistic normal distribution can be used. Using the
additive logistic transform, the latent belief distribution is approximated
as a normal distribution in the transformed space, p(z) ~ N(z | p, ).
Consequently, the prediction step of filtering can be approximated as for
the extended Kalman filter,

P2k | 261) = N (26 | Eo1), VE() a1 Vi)™ + S )
by linearizing the transition function

7y, = f(z1_1) = alt " (F(Gp .k, an—1,alt(z1_1))),

using egs. (3.3), (3.6).

For each possible human observation o, a different prediction follows,
leading to a mixture of Gaussians. For the case, that a single observa-
tion oOpr ) dominates (as in the grid world model), it is sufficient to focus
on this observation and subsume other observations within process uncer-
tainty. The process noise is respected directly in the transformed space
with covariance ¥,,.

The update step of filtering is based on the likelihood function
l(zx) = p(ay | br = alt(zg)) (human decision model, eq. (3.4)). To regain a
normal distribution (which is central for subsequent steps), the likelihood
function needs to be approximated by a normal distribution.

In the following, this approximation is derived by first order Taylor
approximation, yielding a one-dimensional Gaussian approximation of the
likelihood function.

Therefore, the likelihood function is represented as the exponential of a
squared nonlinear function? A,

exp(—0.5h(z)?%)
h(z) = v/—2Tog(i(2)

N

=
N

N
|

4For this definition of h, the argument of the logarithm needs to be in the range
(0,1]. As the likelihood is a probability function of human action, 0 < I(z) < 1.
From a general, logical point of view, the human model should guarantee, that the
likelihood of an observed action is greater zero. This is the case for the softmax
decision model eq. (3.4).
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This function h is approximated by a first order Taylor series around a
point zg, h(z) =~ ho+ Vho(z — 2¢), where hg = h(zo), Vho = Vh(zo). This
yields a one-dimensional Gaussian approximation of likelihood,

logl(z) ~ —0.5 [ho + VAT (z — 2)]”
— 05 [ZTVhOVhOTz+
+2 (ho — Vh{zo) Vhi z+
+ (ho = Vi)’ |,

with precision matrix VhoVh{.
With this approximation and the prior distribution p(z) = N (z | u, X),
the log posterior becomes

log(p(z | a) = log(p(z) + log(l(z)) + const
~ —0.5[z" (87! + VhoVA{) z+
—2((Vh§zo — ho) VA + p"S71) 2+
+ const]

From the quadratic form, the posterior normal p(z | a) =
N (2 | pipost, Bpost) can be obtained with

Ypost = (271 + VhoVAZ) ™!
Hpost = Epost <<thZ0 - ho) Vho + E_lu) .

The point of linearization can be selected as the prior mean zg = p. As
alternative approach, one could start with the prior mean and iteratively
refine the point, based on computed posteriors (iterated extended Kalman
filter [124]).

As for the particle filter, linearization-based inference is illustrated using
the one-dimensional blind spot example in Figure 3.5. In contrast to the
particle filter, it shows a good performance nevertheless of the action like-
lihood. The derived linearization-based inference method is significantly
faster, as it only requires a single evaluation of the likelihood function and
its gradient, in contrast to an evaluation per particle of the particle filter.
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Figure 3.5: Illustrating one step of linearization-based inference (blind spot
example). The last belief (blue) is predicted for the most probable observation
and updated according to the logistic action likelihood. The left plot shows
an update for an expected human action, the right one for an unexpected. In
contrast to particle filtering, the approximate posterior is close to the true one
in both cases.

3.4 Quantitative formulation of situation
awareness

The inference of human belief can provide insights about human reasoning
and explanations for her behavior. It can further be used to quantitatively
evaluate human situation awareness (SA). In contrast to classical SA mea-
surement methods like SAGAT or SART [32], this method does not require
interruptions nor subjective assessments. In this work, situation awareness
will be formalized as a representation in the human mind which is sufficient
to enable good decision making. Hence, every environmental state aspect
that is relevant to cope with the current situation should be represented
with sufficient certainty in the human belief.

The task relevance of information can be expressed in terms of action
values, by stating that action values, given true state, should be similar to
action values based on human belief. The optimal action values Q*(s, a)
based on true state s are used to evaluate possible human decisions. If
the human belief contains all relevant aspects, her subjective action value
function should be similar enough to the optimal one to allow for good
decisions p(a | b). Situation awareness is considered as belief configuration
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with small expected value loss,

L(b,s) = max Q*(s,a) — Zp(a | b)Q*(s,a). (3.7

The value loss is a graded quantity (a measure for situation “unaware-
ness”). For a binary decision, it can be compared to a threshold § of
acceptable value loss®. Consequently, an agent with belief b at true state
s is situation aware if

L(b,s) <.

A lack of situation awareness does not mean, that the human will ac-
tually select a bad action. However, it is expected, that she considers
suboptimal actions in her decision making, since it is based on an inade-
quate situation understanding. The use of the value function also accounts
for long term effects. Even if the current decision does not cause severe
consequences immediately, it might lead to worse situations in the future.

The evaluation of situation awareness and options to support a human
will depend on the quality and the timing of the belief inference results.
It might not always be possible to detect problems in the human belief
representation before a suboptimal human decision is made due to limited
observability through sparse feedback. However, within a longer sequence,
an early unexpected action can provide the required evidence to draw
corresponding conclusions that intervention might be helpful for later sit-
uations.

3.5 Illustration

In the following, the approach of repeated inference of human belief is
demonstrated on the grid world example for multiple time steps starting
with one characteristic situation. It is used to demonstrate and evaluate
the process of double inference with the different approximate inference
approaches.

By simulating an agent in place of real human, it is possible to compare
the inference result to the true agent belief for different configurations.
The true agent belief is not used in the algorithm itself, e.g. in contrast
to learning based approaches, where artificial agents are used to generate
training data.

5The choice of § needs to respect the scale of a reward function
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3.5.1 Belief inference

In the following, one specific scenario is considered, where agent H starts
in position (2, 0, north), as shown in Figure 3.1 left. She is unaware of her
position and orientation within the set {(1, 0, north), (2, 0, north), (2, 2,
south), (1, 2, south)}. She starts with a belief for an open door (while it is
closed) and goal location gy (true location). The robot observer R starts
with a uniform belief of the H belief.

The human model uses a rationality parameter of 7 = 10. Regarding
process noise, the particle filter uses an & = 200, while process noise of
linearization-based approach is chosen to be diagonal, 3, = 0.091. Both
introduce uncertainty for the human belief in the range of 0.06. The
agent H rationally updates her belief while she receives observations of the
true surrounding. For the policy, the action value function is evaluated
using online planning with depth 2 search combined with MDP based leaf
evaluation.

The trajectory of H is shown in Figure 3.1 right and the inference results
in Figure 3.6 regarding position belief, respectively Figure 3.7 for door and
goal belief. As H does not know her position, she starts with a right turn.
The following observation allows her to disregard positions (2, 2, west),
(1, 2, west), see Figure 3.6, k = 1. Her position belief focuses on (0,
1, east) and (0, 2, east). Since H believes that the door is open, she
turns right two more times, heading towards the door in time step k = 3.
Afterwards, H moves forward until reaching the door, where her perception
yields a correction of door belief within time steps 5 and 6, see Figure 3.7.
Afterwards she takes the longer but open path to reach goal g (trajectory
shown in Figure 3.1, right).

At the beginning, the robot is mainly uncertain about the human belief.
The second human decision (second right turn at k = 1) allows the robot
to correctly infer the human door and goal beliefs (Figure 3.7). From there
on, estimated and true human beliefs remain close together.

3.5.2 Estimation of human situation awareness

At the beginning of this episode, the human agent is uncertain about state
as well as holding a false belief regarding door state. After the first time
step, observation reduces position uncertainty for H which is also expected
by R due to its perception model of H. However, the erroneous door belief
remains unknown to the robot.

The expected human belief is used to evaluate situation awareness ac-
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Figure 3.6: Mean of inferred belief of position and orientation. FEach grid
cell is divided according to possible human orientations. True agent position is
marked by red arrow. In the forth time step k = 4, the belief converges to the
true position.

cording to the quantitative criteria of expected value loss, eq. (3.7), shown
in Figure 3.8. In the beginning, the estimate of human belief is uncer-
tain (see Figure 3.7), leading to an imprecise estimation of her awareness
(not visible in the expected value). The second human decision however
provides sufficient evidence to infer her goal and door belief, and the es-
timated situation awareness converges to the true value. The suboptimal
second human decision (moving forward towards the closed door) could
not be predicted in advance, since there were not enough observations to
infer a meaningful belief. However this decision provides an indication for
the next time steps, where H will still not be aware of the situation. In
time step 4, a good human decision is expected even though she has an
uncertain door belief (in this special situation door belief is not relevant).
After the 5th action, the human corrected her initial false belief and from
there on, she maintains situation awareness.

3.5.3 Inference methods and computation times

Both approximate inference methods are able to infer the hidden human
belief, shown in Figure 3.9. They slightly differ in the speed of convergence
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Figure 3.7: Human belief and linearization-based inference results (dashed)
regarding door (blue) and goal (orange) state aspects. For belief inference, pre-
diction (cross) and update (circle) as well as standard deviation (dotted) are
shown. Second action (k = 1) reveals false door belief of human, which she
updates later on when perceiving true door state in step 3 and 4.
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Figure 3.8: Evaluation of Situation Awareness as expected value loss for ex-
pected human belief (blue) and true human belief (orange), low values mean H
is situation aware. The second action reveals that the human is not aware of the
current situation (due to her false door belief).
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Figure 3.9: Belief inference with update based on linearization (left) and sam-
pling (right, with K = 1000 particles).
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Figure 3.10: Comparison of different sample sizes for particle filter inference.
Curves show range of expectations of different runs (dark colors) and the range
of standard deviation (light colors). With a higher sample number, the results
of different runs stay closer together.

(the linearization-based approach becomes faster certain about the false
door belief). Differences might originate from the unimodal model of the
linearization-based approach, as well as from the problem of the particle
filter to process unexpected actions. Nevertheless, both curves contain the
true H belief in the confidence interval from the second time step and can
provide useful insights for the interaction.

Regarding the number of samples, Figure 3.10 shows a statistic visu-
alization of inference results for several runs with different numbers of
samples.

The difference in computation effort however can gain more impact.
The sampling-based inference becomes slow with an increasing number of
particles, even for this relatively simple, intuitive example. One evaluation
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Figure 3.11: Inference results (linearization-based) for different rationality pa-
rameters, 7 € {2,5,10,20}. With increasing rationality, belief updates (circles)
become more confident.

of human action values takes about 50 ms, which is required to update each
belief sample (programmed in python, on core i5u processor with 2 GHz).
For a number of 100 samples, evaluation takes about 5 seconds. This is a
limiting factor for the target of inferring and supporting a human online
during the interaction (as one action need to be processed until the next
is executed).

The linearization-based update requires only one evaluation of the action
values and its gradients, leading to a much faster inference step of about
0.16s. Consequently, this method is suited for much more scenarios with
shorter sample respectively human decision times.
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Figure 3.12: Inference results (linearization-based) for an unexpected human
action at time step k = 2 for rationality parameters, 7 € {5,20}. The higher
the modeled human rationality the less it tolerates noise, and inference instead
searches for alternative explanations.

3.5.4 Rationality parameter

The rationality parameter 7 (eq. (3.4)) specifies the expected randomness
of human behavior. Assuming a stochastic policy is important to tolerate
human noise, e.g. uncertainties in planning, decision making, or action
execution. A higher rationality parameter implies higher confidence that
the human takes the optimal action and hence allows faster updates of her
belief (see Figure 3.11).

On the other hand, human actions deviating from the optimal policy
will easily mislead inference of her belief when the rationality parameter
is high. Let’s assume, that the human is taking as third action “move
forward” instead of “turn right” while she is heading to the grid border
(k = 2). This action does not have an effect on the state, is unnecessary
and unexpected. The inference process tries to explain the observed action
by searching for reasonable beliefs, for example a different human goal
belief. Lower rationality assumptions are more tolerant to noise and the
influence of unexpected human actions is less severe, Figure 3.12. If the
human is taking an unexpected action, which is reasonable for a different

belief configuration, this belief configuration will be considered more likely
in all configurations.
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3.6 Summary and conclusion

A framework for online inference of human belief was presented to form
an artificial theory of mind for human robot cooperation. This human un-
derstanding is developed combining available observations of information
gathering as well as task progressing behavior to form a complete view
on human information processing. It is based on modeling the human as
approximately rational POMDP agent, representing tasks within complex
and uncertain environments. To account for the computational complexity
of second order inference, first an approximate representation of human
belief, based on factorization, is introduced. Second, two approximate
methods were proposed for actual inference, a stochastic particle filter
and a newly derived efficient linearization-based approach.

The estimate of human belief provides an understanding of human be-
havior. It is used to propose quantitative formulation of situation aware-
ness, which provides a non-intrusive estimation of human awareness ac-
cording to expected value loss of her belief configuration. The proposed
concepts and methods were demonstrated and evaluated on a grid world
example with different uncertain aspects.

The developed online inference of human belief provides a basis for hu-
man centric human robot cooperation. In the next chapter, it is used to
develop an intelligent information sharing strategy that enables a robot to
support a human according to her needs.
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4 Theory of mind based
assistive communication

An artificial theory of mind, as derived in the last chapter, provides a
rich base for human centric interaction. When it is possible to detect a
problem in human situation awareness online during interaction, this is
valuable and can be used to actively support a human partner.

Therefore, a robot could inform the human about aspects if she holds a
false or uncertain belief of it and if the information is relevant in the cur-
rent situation. This is a core idea of the developed human centric assistive
communication concept regarding the decisions when and what type of
information to share to support a human partner. Theory of mind, the
understanding of interaction partners, is an important cognitive capability
for efficient human communication [40]. Already three years old children
take receivers’ knowledge into account and decide to tell them unknown
information [35]. Sharing information that is new for a human can sup-
port her situation awareness. Still communication requires perception and
processing resources including attention mechanisms. Receiving too much
information will therefore distract and overload her and provoke annoy-
ance. Instead, only currently relevant information should be exchanged to
balance these costs of communication against expected benefits.

Combining theory of mind with an evaluation of information relevance
regarding the current task, leads to the new concept of theory of mind
based assistive communication (ToM-Com), introduced in the author’s
publication [16].

It specifies a human centric assistance concept with the target to enable
a human to make good decisions by supporting her situation awareness.
This contrasts typical approaches that simply tell her what to do, when
some deviation is detected.

The concept of theory of mind based communication considers sharing
environmental information from a robot partner to a human. Other func-
tions of communication, e.g. for coordination purposes, are not in the focus
here. A fully cooperative setting is assumed, meaning that the robot wants
to maximize human reward while minimizing cost of communication. The
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basic principle is illustrated in Figure 1.2. Based on second level reasoning
(belief inference as introduced in last chapter) the robot can anticipate and
evaluate possible outcomes to decide whether, when and what information
to communicate to a human partner. In this chapter, a principled formu-
lation for this communicative assistive communication is presented. The
problem of when and what type of information to share is formulated as a
POMDP with human belief as uncertain underlying state. Robot’s action
planning uses the estimated human belief for evaluating uncertainty and
relevance.

4.1 Effects and efforts of communication

For planning communication decisions, it is necessary to account for ef-
fects and efforts of possible communication. In the considered setting, a
robot has access to different actions with communicative effects, a. € A..
In each time step, it can choose to apply one of these or to avoid com-
munication, deciding when and what information it should share with a
human. Communication can be direct (such as speech) or indirect (via
expressive motions). Different concepts regarding the design of commu-
nication actions are presented in section 2.4. Here, it is assumed, that a
communication interface is available providing a set A, of different actions.
Each communication action will contain some type(s) of information that
can be transmitted with a corresponding confidence or success rate.

Informative effects of communication

The communication initiated by a robot action a. will generate an ad-
ditional human observation o., as she receives the communication signal.
This observation can include information regarding the true environmental
state s. Reliability of communication and the contained information will
shape the communicative observation function, p(o. | s, a.) for some com-
munication action a.. Receiving a robot’s communication can be modeled
as Bayesian belief update of the human, as for an environmental observa-
tion, eq. (3.2),

p(oc | s,ac)
ploc | ac)
- fcomm(ba Oc, ac)~ (41)

b | ac,o0. = ob
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Extending the grid world example from the previous chapter, the robot
observer now obtains the capability to support the human agent with
information. It has the choice between three communication actions, ad-
ditionally to the option of not communicating. It can tell the human
about one aspect of the true state, regarding position and direction, door
state, or goal location. The robot communicative action set is formed as,
AR = {a(Z)7 Gpos; Adoor; agoal}-

With a reliability pcomm as probability of communication success, the
aspect based communication function becomes

ise  if: 0, = &
p(oc | e, 5) _ Pcomm + Pnoise 1t O S (42)
Pnoise else

For the grid example, reliable communication is assumed, with peomm =
0.99.

In this example, communication actions in Ar only differ in the type
of information they contain. It is further possible, to use messages re-
garding the same state aspect that instead differ in their reliability (e.g.
short utterance compared to long explanations). Depending on situation,
it can be worth to spend more effort for reliable exchange or less for un-
certain communication, which is both covered in the proposed problem
formulation.

Strategic effects of communication

Besides the information that is included in the communication signal, a
human can further interpret it as the result of robot decision making. To
account for such interpretations, a robot would need even higher orders of
theory of mind (the robot reasons what the human thinks that the robot
wanted to achieve) or strategic reasoning of possible equilibria of a sig-
naling game (section 2.2.3). For example, a human could be used to be
supported by a robot, e.g. it always warns her before her making an error.
Receiving no communicative warning then tells her that everything is fine,
reducing uncertainty and allowing “riskier” behaviors. Strategic effects of
communication consequently allow for more efficient communication (as no
communication can transport information) which is interesting in settings
with sparse exchange options, e.g. considered in the card game Hanabi,
[34]. However, such implicit communication only works if both agents
perform similar strategic reasoning and otherwise may lead to misunder-
standings.
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Strategic effects might be included in the model as a human can not
only processes the communicated information o, but also accounts for an
estimated robot intention or communication policy, p(a. | s, Rg). It leads
to a third human belief update, where the robot’s communication a. serves
as additional human observation

b|a, = P%l9 oy,
plac)

This can be directly included in the belief inference framework. The
derivation of a robot policy that the human might use in her reasoning
(p(ac | 8)) however remains for future research.

Costs of communication

For each communication action, a cost of communication —Reomm (@c, )
is considered to respect cognitive efforts of both, sender and receiver and
related effects such as distractions or time delay in task execution.

The cost of communication can depend on the current situation (state
s), e.g. in high stress conditions, distraction is more severe than at more
relaxed times. Depending on the domain, it might be often sufficient to
consider a constant cost of communication for each communication action,
that e.g. represents the typical delay introduced through communication.

The communication effort might depend on the amount of information
transferred, the reliability of communication or also on the current situ-
ation, external state, or human engagement. In contrast to explicit com-
munication actions, implicit communication may additionally effect the
environmental state s, such as altered robot task behavior or demonstra-
tive movements. For example, demonstrative robot movement can reveal
information to the human at the cost of slower task progress (see e.g. [29]).

For the grid world example with explicit communication, a con-
stant communication cost is considered for all communication actions
Reomm(8,ac) = —1.5 Va, # ap. Compared to human movements with a
negative cooperative reward of —1, communication is beneficial if it saves
more than one unnecessary human action, as it may introduce processing
efforts and delays.
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4.2 Communication planning for information
sharing decisions

With the communication model from the previous section, the decision
problem of the robot can be formalized as another Partially Observable
Markov Decision Process (POMDP). This provides a principled approach
to decide when and what type of information to communicate to support
a human partner. This communication POMDP builds upon the base
POMDP for human decision making as introduced in section 3.2.

For the robot, a main source of uncertainty consists in the latent human
belief, as considered in the previous chapter. Additionally, the robot could
be uncertain about environmental state s. The state of the communication
POMDP sg combines the uncertain aspects, s = (s b CLH)7 where the
human action is required to fulfill the Markov property. The robot receives
an observation og that it uses to estimate the communication state sg.

The full robot state transition combines the transition model for human
belief, with environmental state transition function and communication
effects. The external state transition may depend on both agents’ actions,
p(Sk+1 | Sk,am,ar) = T(sg,am,ar, Sk+1). The model of human belief
transition, eq. (3.3), is extended by the effects of robot communication
actions according to eq. (4.1). Lastly, human decision making is modeled
according to the policy, eq. (3.4). These result in the robot state transition
function Tr as

Tr(SR,k—1,AR,k—1,5R,k) =P(Sk, Pr, CH K | Sk—1,Pr—1,CH k-1, AR k—1)

:P(Sk | Sk—1,0H k—1, aR,k—l) :

state transition T

p(br | Sk, ¢H k-1, R k—1Pr—1) -

belief prediction and communication
p(amk | be-1) (4.3)
~—_——

human decision

The fully cooperative reward function for the robot decision process
considers the joint task reward while also accounting for communication
efforts,

Rr(sk,amk, ark) = R(Sk, am k. ark) + Reomm (AR, k, Sk)

With a focus on human behavior and support, in the latter examples
it is assumed, that the robot has full access to the current human action
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am, and true environmental state s. Consequently, the robot observation
deterministically becomes

ORk = (Sk aH,/cf1)T

With access to environmental state and human action, it remains sufficient
for the robot to hold a belief over human belief and the configuration
represents a mixed observability setting [75].

The inference of human belief based on its observations represents the
first step for solving the POMDP. The result is used for planning under
uncertainty to compute robot action values Qi to select its best action,
as discussed in section 2.2.2. Planning with the robot belief requires high
computation efforts. First, it must plan in its continuous state space, as it
contains the human belief. Second, each robot state transition, eq. (4.3),
includes the evaluation of human policy, which itself is computed by plan-
ning in the human POMDP, leading to a hierarchical evaluation. More
efficient approximation schemes, that account for the special POMDP
structure, e.g. by directly estimating the influence of communication on
the human decisions via gradients, remain for future work. For the grid
world example, the approximate POMDP solver uses, as for the human
model, depth 2 planning with MDP leaf evaluations and 30 belief samples.

4.3 Illustration

The developed assistive communication concept is applied to and discussed
for the previously introduced grid world example, to demonstrate the re-
sulting behavior and show principle benefits compared to other commu-
nication concepts. Therefore, characteristic situations will be chosen to
illustrate the decisions about what type of information should be commu-
nicated when. For the belief inference, the linearization-based inference
approach is used, providing the robot belief for communication planning.

4.3.1 Alternative communication concepts

This new human centric communication (ToM-Com) concept is compared
to a simpler state of the art communication concept and a variation using
a theory of mind without communication planning. As discussed in section
2.4, typical assistance concepts provide information when a deviation from
an expected behavior is detected (e.g. [44], [63]). This first baseline concept
using detected human deviations (Dev) can trigger a warning, propose
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the next optimal action, or communicate all available information (for all
state aspects). Warning or proposing good actions may help the human
at the current time, but not for future decisions, as it does not support
her situation understanding. Communication based on deviations from
expected behavior does further require a threshold or definition of which
actions are considered as deviating (especially for continuous actions).
As second concept for comparisons, it is proposed to reliy only on the ar-
tificial theory of mind (ToM) presented in chapter 3 without the evaluation
of situation relevance. When a false or uncertain human belief is detected,
e.g. a deviation of expected human belief to true state, the robot could
directly decide to share information related to the state aspect. Compared
to the full ToM-Com concept, this does not use the POMDP planning for
evaluating the relevance of information. Instead, the robot communicates
whenever an uncertain or false belief is detected, according to a thresh-
old, to correct it. Since this approach does not consider task relevance
of information, it may produce irrelevant communication and avoidable
interruptions with the risk to annoy and distract the human.

4.3.2 What to communicate

Regarding the decision “what” to communicate, the scenario from the
last chapter is considered again. From the start position (Figure 3.1 left,
repeated in Figure 4.1) the human agent should reach her goal g;. She
correctly beliefs her goal to be g1, but falsely beliefs the door to be open.
Regarding her position, she is uncertain between possible start positions in
{(0,1,north), (0, 2,north), (2,1, south), (2,2,south)}. The robot initially
has a uniform belief over possible human beliefs. As first action, the
human turns right since she is not aware of her current position. With the
resulting observation, her belief shifts towards a position in (0,1) or (0, 2).
Due to the false door belief, the human tries to take the short path to gy
passing the door cell, although this is actually not accessible (this would
lead to a long detour of gathering door state information, as in Figure 3.1).

The second human action reveals this false door belief and her missing
situation awareness (Figure 3.8). Robot’s planning in the communication
POMDP evaluates the importance of the door belief and its influence on
future human behavior. Consequently, the best robot action is to com-
municate door information in the second time step (see Figure 4.2 for the
robot’s expected action values). This information sharing helps the human
to become situation aware (Figure 4.3 right) and she changes her move-
ment to the available path through the right passage, reaching her goal
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much faster (Figure 4.1).

In this scenario, the question what to communicate is of main interest.
The deviation-based method could also detect a deviation at k = 2, as
the human turns towards the closed door in the second time step (de-
viation from optimal path). However, generally warning the human or
telling the human what to do will not solve her problem. She might rec-
ognize a problem of herself but could not distinguish problems of door
belief or goal location belief. Instead, it would require further communi-
cation at later time steps. In contrast, ToM-Com (and ToM) interpret
the available information to detect the probable error cause. This is used
to precisely communicate the required information according to estimated
human needs. Specific communication of door state requires less effort
than communication of the full state with all state aspects.

The concept ToM, without relevance evaluation, would also detect an
uncertain human position belief (see Figure 3.6 for £ = 2) and, besides the
relevant door state, further share position information. However, in this
situation exact position knowledge is not relevant for the human behavior
and communication represents an avoidable interruption (compare action
values in Figure 4.2).

4.3.3 When to (not) communicate

Besides decisions what to communicate, the information sharing approach
also robustly addresses the question when to communicate. There are
situations, where a human might deviate from optimal behavior without
a need for support, or, on the other hand, dangerous situations, where
proactive intervention can be useful due to a high risk. There are even
situations, where communication can have a negative impact on the joint
reward. In the following, characteristic situations are discussed to illus-
trate these effects.

Human information gathering

As the human faces environmental uncertainty, she needs to trade off in-
formation gathering and task progress (a general problem in POMDPs,
section 2.2.2). Consequently, information gathering actions can be a rea-
son for a human to deviate from the optimal path given full knowledge. For
such a situation, the human starts in position and orientation (0, 1, west),
knowing her position and orientation, and goal location g; (Figure 4.4
left). She holds a uniform belief over door state. In this situation it is
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Figure 4.1: Scenario “what to communicate”. Starting state (left), human
agent falsely believes the door to be open. With communication support by
robot (ToM-Com), the human can recover optimal behavior after the second
time step and reaches her goal faster than without intervention.
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Figure 4.2: Expected action values for the scenario what to communicate, with
false door belief. After the second human action, her false belief can be detected,
and communication action agoor for door information is expected beneficial.
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Figure 4.3: Belief inference (left) and situation awareness estimate (right) for
the scenario what to communicate. After the second action, false human door
belief is inferred. Supported by the information sharing action of the robot, she
can correct her door belief and achieves situation awareness.

cheap to gather door information as it only requires one action to move
forward and perceive the door state, which she does in the first time step.

Afterwards, she gains information regarding true door state (Figure 4.4
top right) and communication is not needed anymore (see action values,
Figure 4.4 bottom right). Still, a deviation-based concept would intervene
and disturb the human, as she deviated from the optimal behavior, while
ToM and ToM-Com would stay silent. Neither warning, proposing next
actions or communicating all state information would help the human, as
she is already situation aware.

Human action execution noise and dangerous situations

The concept ToM-Com intrinsically accounts for noise in human decision
making or action execution, as it is included in the human model, eq. (3.4),
and respected during inference. A deviation-based approach instead needs
to define a (fixed) threshold to classify observed actions as deviations to
trigger communication (in the discrete grid world, the threshold can be
7€ero).

In contrast, ToM-Com reasons about the causes of human decisions, es-
pecially if they are unexpected. If the observed behavior can be explained
by a false human belief, this is a likely cause which can be supported
by communication. In other situations, where no reasonable explanation
exists, it will be considered as noise (see e.g. Figure 3.12). Accordingly,
ToM-Com does not use a fixed threshold, but rather adapts communica-
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Figure 4.4: Human information gathering scenario. Human start position (top
left) makes information gathering of the door state relative cheap. Estimated
belief (top right), situation awareness (bottom left) and communication action
values (bottom right) are shown for the first time steps. Though the human
deviates from the optimal path (by moving forward), it is not beneficial to share
any information since she already gathers it herself.



4.3 Illustration 83

tion decisions to the current situation and expected human needs.

If a potential human problem is however not represented in the task
model (e.g. human goal belief is another cell g3), ToM-Com would probably
interpret observed human behavior as noise and could not support the
human (the robot would not be able to detect the causes and stay passive).
In such corner cases, it is in principle not possible to accurately support
another agent and ToM-Com avoids disturbances as it tolerates unknown
human behaviors. In close cooperation, it probably would be useful to
tell the human about the fact that the robot is uncertain as it does not
understand her behavior (promoting transparency).

The respect of human and situation is further helpful for dangerous
situations, where a bad human action might occur with a large negative
outcome. It will make sense to proactively communicate before deviations
are detected due to the related risk. This is the case when the human
starts in the configuration in Figure 4.5 left. The true goal is at g;, and
her position is close to the branching point where paths to the goals split.
Independent of a true human belief for the goal position, an uncertain
robot using ToM-Com will proactively inform the human about the true
goal location (see Figure 4.5 bottom right).

This evaluation of task relevance is not done in neither of the compari-
son concepts, which cannot recognize the high risk and the corresponding
benefits of proactive assistance.

Concluding, the human centric communication concept of ToM-Com
can cover a wide range of assistive situations to flexibly evaluate the ques-
tions when and what types of information should be shared to support
the human. This cannot be achieved by simpler concepts such as the
deviation-based approaches or human belief approaches without task rel-
evance evaluation.

Negative effects of communication

In some special situations, communication can not only be irrelevant but
even have a negative effect on the joint behavior. Although the robot could
know about a false human belief, it could decide to not communicate, when
this information is not relevant, or it could lead to a worse human behavior.

For such scenario, the human starts in location (2,0, north) (Figure 4.1
left). She falsely believes the door to be open (which is closed) and the
goal at go. Let’s assume that the robot knows the true human belief. If
the robot would inform the human about the true goal location ¢g; immedi-
ately, she would try to get there via the shorter path through the (actually
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Figure 4.5: Branching situation with high risk. Human start position (left) is
close to the branching point between the two goals. Estimated belief (top right)
and communication action values (bottom right) are shown for the first time
steps. Since the robot does not know the true human goal belief, it is better to
proactively communicate, before a possible human deviation can happen. If she
would move forward, three additional steps were required (compared to the cost
of communication of 1.5) representing a high risk.
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Figure 4.6: Situation with negative effects of communication, start position as
in Figure 4.1. When the human falsely beliefs that the door is open and her goal
is g1 (left), communicating the true goal in the first two time steps would lead
to worse human behavior (right), as she would move to the door. Later, in time
step 5, it becomes important to tell the human about true goal position.

closed) door. Consequently, the robot should wait a few time steps and
communicate later, e.g. just before the branching point is reached. Ear-
lier communication would correct a false human belief but lead to worse
joint reward, which is visible in the action values, Figure 4.6 right. In
contrast, the concept ToM without relevance evaluation would not be able
to account for such effects.

Going beyond — Strategic reasoning and white lies

Including strategic interaction into ToM-Com, as sketched in section 4.1,
would allow for another solution of the previous situation. In the last
scenario, the human is uncertain about door state and holds a false goal
belief. Besides waiting until the human needs the goal information, the
robot could use indirect strategic communication and only share informa-
tion of the closed door. If she understands and considers the intention
of the robot (trusts its capabilities and intentions) she can conclude that
the door state is relevant for the joint task and consequently that her goal
must be g;. Hence strategic communication effects can transport more
information than included in the message itself, while the receiver needs
to consider the intention of the sender (the robot in this case). Espe-
cially in repeated interaction with a cooperative robot, the human might
get used to the robot’s communication and develop strategic interpreta-
tions. Still, strategic reasoning, as another recursion level, increases the
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complexity and processing load for both agents and imposes the risk of
misunderstandings.

The decision to not tell the human about her false belief (as it is ben-
eficial for her to stay ignorant), can be seen as controversial silent lie, as
the robot intentionally leaves her in ignorance. In this case, the robot’s
behavior is not transparent for the human, and it might further effect her
trust.

4.4 Summary and conclusion

In this chapter, theory of mind based communication, as principled con-
cept for assistive communication, was presented to support the human
with information according to her needs. It integrates both, the novelty of
information for the human receiver as well as its relevance for the current
situation and task. The decision problem was formulated as POMDP to
systematically balance uncertainty, cost of communication and expected
benefits for the joint behavior. It was based on the inference of human
belief and a communication model, specifying available communication ac-
tions, expected effects on human belief together with related efforts and
costs. The robot behavior is computed by solving the POMDP with plan-
ning under uncertainty, yielding effective support for the human.

The approach was applied to and discussed for an illustrative example,
clearly showing principled benefits compared to alternative communication
strategies. It can support the human awareness through well informed
decisions on when and what type of information to share. In contrast to
deviation-based approaches that instruct the human what to do, ToM-
Com addresses the causes of human behavior to enable her making good
decisions herself.

The computational effort of hierarchical planning is still a challenge that
need to be addressed in the future for online application in larger domains.
This might be achieved by either using better offline approximations of
POMDP value functions or by more efficient online planning, e.g. based
on available gradient information.

The illustration used a general human and communication model
demonstrating structural benefits of human centric communication con-
cepts. To further account for individual human preferences regarding an-
noyance or desire for support, one could allow the human to select the
communication costs herself. It could even depend on the current situa-
tion and workload, enabling dynamic alerts or hints as desired by Schutte
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5 Human centric human-robot
cooperation

In the last chapters, theoretical concepts and required methods were intro-
duced to understand and support a human partner according to her needs.
Based on an artificial theory of mind and a situation awareness evaluation,
the relevance of different types of information was evaluated yielding deci-
sions for communicative support. Principles and systematic benefits were
demonstrated on simulated, illustrative examples. Simulation explicitly
makes it possible to compare inference results with a ground truth of the
simulated agent’s beliefs. To achieve a robust robot interaction policy, a
broad probabilistic human model is used, respecting action and perceptual
uncertainties.

Regarding potential applications, it is important to test the approaches
in real interaction with humans, since humans show diverse behaviors and
problem solving strategies. For quantitative evaluations and comparison
to baseline concepts, two user studies are examined regarding the two
targets of estimating human situation awareness respectively supportive
communication. Human belief inference and awareness estimation is ap-
plied to a sequential task, orienting on cooperative manufacturing settings.
A study is conducted to test and evaluate the concept and methods for
the inference of human belief and situation awareness, presented in the
publication [15]. The designed task could generate interesting situations
where the participants missed important pieces of information leading to
a lack of situation awareness. With the proposed artificial theory of mind,
the human belief could be inferred online and problems in awareness could
be detected. A further quantitative evaluation based on the prediction of
human actions shows better performance compared to baselines.

The insights from the first study were used to design a more complex hu-
man robot sushi making task for evaluating human centric theory of mind
based communication (ToM-Com). The task was chosen and parameter-
ized to challenge human participants and generate interesting situations
where support can be evaluated. It was used for a second user study, to
investigate human support by ToM-Com, presented in publication [17].
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Figure 5.1: Human robot cooperative setup. Actions are mapped to discrete
button presses on three boards: robot board on the left, human board on the
right and shared workspace in the middle. A large screen on the wall is used
to show the task and related information. Human eye gaze is measured by gaze
tracking glasses.

Human-robot cooperative setup

The experimental setup consists of a human robot cooperative workspace,
shown in Figure 5.1, where human and robot can act jointly to reach a
common goal. A UR5 cooperative robot! is used, which is designed to
work together with humans in a common workspace. The robot detects
collisions which trigger an emergency stop. Together with reduced speed
and weight, compared to classical industry robots, safe operation together
with humans is possible. Additionally, emergency stop buttons were al-
ways in reach for participants and the operator.

Concentrating on cognitive human-robot interaction, typical robotic
problems such as grasping and manipulation are not in the focus. Con-
sequently, such manipulation actions are abstracted by button presses to
allow for flexible design and deployment of different cooperative tasks.
Each action of the agent is represented by pressing a physical button or
touch display. Three boards are placed on the workspace, each equipped
with 9 buttons respectively touch displays with similar usage. The buttons

lsee https://www.universal-robots.com/products/urs-robot/
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are illuminated in different colors, which is used to distinguish them and
map them to actions they represent. One board is placed so that it could
only be used by the robot, one by the human, and one board placed in a
shared workspace could be accessed by both agents.

Human actions are detected by the corresponding button presses (as
the robot further knows its own actions). A screen on the wall is used
to display task related information to the human, to visualize the task
and to provide visual hints as communication actions. Regarding human
information gathering, two variants are used in the different studies, the
use of distinct information gathering actions (via some of the buttons) and
an eye tracking device. Therefore, gaze tracking glasses from pupil labs?
are used. They can measure the human pupils and calculate current gaze
direction in relation to the glasses with infrared eye cameras. A world
camera of the glasses serves for absolute localization of gaze. Aruco mark-
ers on the walls at known positions allowed to compute camera position
and orientation in respect to screen and button boards.

5.1 Belief inference and situation awareness
estimation in a sequential human—robot
cooperative task

Inspired by cooperative manufacturing where robot and human jointly as-
semble pieces of a product, a sequential task is considered, where both
agents contribute to reach a final configuration. In such a task, it is im-
portant, that both agents are aware of the current situation and the other’s
behavior. Lack of human awareness might arise from different underlying
problems. The task structure can generate problems of human awareness
regarding the plan to follow, the robot’s current action, or regarding what
has already been achieved. The following section is based on the author’s
publication [15].

5.1.1 Sequential cooperative task

The sequential task is designed to meet the following requirements. For
human-robot cooperation, the task should enforce interdependence of the
actors to generate interactive situations and interaction effects. To detect

2https://pupil-labs.com/
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Figure 5.2: Task structure and visualization used in the user study. Small
black circles represent states, squares (robot actions) and large circles (human
actions) contain the color of the corresponding buttons for a state transition.
Multiple paths lead to the goal state requiring different levels of involvement for
the agents.

and evaluate situations, where a human partner is unaware, it is necessary
to have a task that is complex enough to provoke human errors.

Similar to cooperative manufacturing, the task consists of specified se-
quences of actions to execute. There can be different paths to solve the
task, to represent e.g. that the order of assembly might be interchangeable
for some parts. Task structures are automatically generated and visualized
by task graphs as in Figure 5.2. Colored nodes represent required actions
of either robot (square) or human (large circle) to progress to the next
node respectively state towards reaching the goal state®. At some states,
the task branches and the agents can choose on which path to proceed.
The structure shown in Figure 5.2 represents the task during a single ran-
dom episode. This visualization is not available throughout the task, but
the human may need to explicitly request for it (information gathering).
Before the start of an episode, the graph is displayed on the screen for
3 seconds. This time span is designed to give the human the possibility
extract some information to start with, while it is insufficient to memorize
every aspect and plan behavior in detail. Instead, she will typically need
to gather task information later by pressing the corresponding information
gathering button.

Both actors may have multiple possible actions in a state, giving them
the choice to decide on which path to proceed. This is e.g. the case for the
robot in the first node in Figure 5.2. The robot can choose between the

3For this task, the shared action space is not used, and each action is directly mapped
to one agent.
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upper (via its yellow button) or lower path (red button). Consequently,
the human needs to trace the robot’s decision as it determines if and how
she needs to react afterwards. These branching states are central for task
complexity. The concept was introduced to encourage human planning
needs (searching for shortest path) over purely reactive behavior, and to
increase interdependence and interaction, as the human needs trace the
robot’s decisions in branching states. Executing any action that does
not fit to the task (if there is no outgoing edge in the current state), is
considered as error and leads to a negative reward. The state respectively
node remains unchanged. The human participant does not receive direct
feedback on errors, such that follow up errors can provide further hints
regarding underlying error cause.

Information gathering For the sequential task, human information
gathering is made explicit via discrete information gathering actions.
Therefore, three buttons in the human space are reserved. While hold-
ing one of the gathering buttons, a corresponding type of information is
shown on the screen. This can be information of the robot’s current ac-
tion “robot gathering”, current task to accomplish “task gathering” or the
actual state in the current task, including last and next required actions
“state gathering”. During robot gathering a visualization is shown for the
robot approaching its next button?. This is useful in branching situations
to distinguish between different possible paths in the task.

To represent gathering efforts, a time delay is used, until the requested
information is displayed. The duration of time gathering delay depends on
the type of information. Since the human should always be aware and track
task progress, requesting task state information is delayed with largest
waiting time of 1 second. Task gathering is delayed by half a second. In
contrast, gathering of robot’s movement is not delayed as it is considered
as normal interaction and the human needs to dynamically adapt to its
behavior. The participants were informed about the gathering costs and
were further able to experience these during the habituation phase.

Robot behavior The robot has access to the task and current state.
It starts to perform a valid action whenever there is one available. In

4To control the human perception of the robot’s actions, the robot is simulated during
the main part of the study. Without the use of robot gathering, the human only
receives a sound indicating that the robot finished an action, similar to the noise of
a button press.
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cases with multiple opportunities, the action is selected at random, which
was explicitly communicated to the participants. This forces the human
to actively track the robot’s decision as it cannot be inferred from other
information. The robot needs 2 to 6 seconds to finish an action, from
decision until the button is pressed, depending on button location. This
time span is typically long enough for the human to gather information
about it.

5.1.2 Application of belief inference

To apply belief inference and situation awareness estimation as introduced
in chapter 3, it is necessary to formulate the task as a POMDP from the
human perspective. Therefore, state set, action set, transition function,
observation function and rewards are specified. For this study, an early
version of the belief inference algorithm was used, where the human be-
lief regarding a given aspect, b’ is parameterized by the most probable
value together with a precision parameter, instead of using the full belief
distribution [15].

Representing state and transition In this task, the human can be
uncertain about task structure, progress state and the current robot ac-
tion. These uncertain aspects form the environmental state of the human
POMDP. The progress is specified by the number of the current state in
the graph. The human belief representation further contains the current
robot action, which is relevant for states, where the robot has multiple
action opportunities.

The task is represented as graph defined by its adjacency matrix. The
human task belief is split into connectivity of nodes and the correct actions
for each transition. After the initial task gathering opportunity, the human
may select an adequate path that she wants to proceed to reach the goal
(connectivity). On this path, she further needs to know, which actions she
has to do. The task parameters are chosen, that the human is normally
not able to memorize all required actions in the beginning, but has to
gather task information during the task.

While the task adjacency matrix is constant during one episode, task
progress changes according to the selected actions and the robot action is
subject to its stochastic policy. The transition function of valid actions is
directly given by the task adjacency matrix, while errors do not alter the
task progress.
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Perception model The observation function is based on the explicit
information gathering actions and information shown on the screen. For
robot and state gathering, it is assumed, that the human does perceive all
shown information. For state gathering, the last action as well as the next
required actions are displayed to visualize the current progress. Addition-
ally to the current state, the human can also perceive the next required
action. For task gathering, the whole graph is shown, typically repre-
senting too much information for the human to perceive and memorize.
Consequently, a memory parameter is introduced in the observation func-
tion regarding the number of actions, that the participant can remember.

Reward function and human policy Two performance measures are
considered, the number of false button presses and time need to complete
the task. Accordingly, the human has to balance between performing fast
with the risk of making errors and performing safely with more frequent
information gathering. She is told about both aspects without an explicit
weighting (to limit complexity). At the end of an episode, feedback is
provided in form of a score. Since total time of an episode significantly
depends on the slow robot action execution, the time needed by robot
actions is not counted, to gain better comparability between episodes.
Error count cerror and human time needs tg are combined to yield the
final outcome J = —cepror — wtp, with a weight w = 3/s, meaning that
one human error is considered equivalent to a delay of one third of a
second. To infer the approximated human belief, the action value function
Q is needed. For the sequential task and the belief representation, it was
specified by hand, respecting the risk of failure for task actions (if she is
uncertain about task or state) and the effects and costs of information
gathering [15].

5.1.3 User study

In this study, 9 people participated, well-educated with mostly technical
background. It served for application of belief inference in the interaction
with human participants.

After consent and instructions, multiple episodes of the sequential task
were performed. In a habituation phase, the participants had the chance
to experience the overall task structure, interfaces and get used to the
gathering buttons and abstractions. After the completion of five training
episodes, in the main phase 20 episodes should be completed as fast as
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Figure 5.3: Illustration of a recorded example, where the human is unaware
due to a missed robot action (reconstructed). Task a); three consecutive button
presses b), d) and f); and human belief estimates after respective actions, c), e)
and g).

possible while avoiding false actions. Depending on the participant’s speed,
this took about 30 minutes.

False buttons were selected 21 times by the participants, that is 5% of all
task actions. The execution time varied strongly between different episodes
and participants (mean 2.2s, std 1.8s). The task seems to be complex
enough to challenge the human, since errors and situations with slow task
progress occurred. It generates situations, in which the participant is
unaware of the true required action, although it is not always possible to
distinguish awareness related from action execution errors.

On average, participants performed 2.4 task actions and 3 gathering
actions per episode. The participants developed different strategies in
using task gathering versus state gathering. Indeed, there is information
overlap, because gathering the state also provides the information over the
immediate next action. However, the strategy of relying mainly on state
gathering is not globally optimal, because it neither allows to choose the
best path nor to prepare a sequence of consecutive human actions for faster
progress. Instead, it is a simple strategy that seem to be a local optimum
in the human learning process. This strategy was observed mainly for
participants 2, 3 and 4 and partly for 5.

Qualitative evaluation The principle of belief inference is demon-
strated in Figure 5.3 for a recorded situation. The relevant part of the



96 5 Human centric human-robot cooperation

task structure is shown in 5.3 a). After an initial human action b), one
of two possible robot actions is required a). In c), the result of the in-
ference process after this action is visualized. The inferred state belief is
visualized by the width of the diamond for potential human state beliefs.
In ¢), the probability for the human state estimate is concentrated on the
first state. It is further estimated that the human is aware of the next
robot actions, but does not know the actions required afterwards (empty
circles). In this state, the robot could select the dark blue or rose buttons.
Since the robot randomly selects the action, the human should gather its
movement to track the actual state transition. However, the human misses
to gather the (simulated) robot’s decision d). The inferred human belief
e) contains relevant probability for multiple states, as these could follow
from the unknown robot action. Additionally, a low human state certainty
is estimated. Accordingly, it is expected, that the human collects state in-
formation which she needs to further progress the task. This is actually
the next human action, g) and her belief updates to the current task state
g), and similarly the belief regarding the next required action. The infer-
ence of human belief, based on the tracking of her action and information
gathering behavior, was able to detect the concrete problems in human
awareness. At the beginning, the human is not aware of the robot’s cur-
rent action. Consequently, she cannot know which state transition occurs
and loses awareness for the current state.

Quantitative evaluation

In contrast to the simulated agent scenario before, there is no ground
truth available to compare the estimated human belief. As indirect mea-
sure, the human belief estimate is used to predict the next human action
which is compared to the actual selection. The action prediction is directly
given by the human stochastic policy model, eq. 3.4, using the action val-
ues for the belief estimate. This prediction is compared to that of a human
expert observer, as well as against a heuristic rule based approach without
explicit belief representation. Prediction of human action is still not the
target of belief inference, as the insights into human reasoning can be used
to evaluate human problems and to support cooperation in other ways,
including assistive information sharing.

For action prediction, the ratio of correctly predicted human actions is
evaluated. The action with the highest predicted probability is compared
to the actually observed human action. Additionally, the action likeli-
hood, the probability with which the observed action was predicted, was
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Figure 5.4: Action prediction for the evaluation of belief inference. Prediction
results of belief inference filter lie between human expert rating and a heuristic.

evaluated. The results are very similar, why only firs hit rate is reported
here.

The hit rate based on the belief inference filter is shown in Figure 5.4 for
each participant (blue triangles). The average prediction rate is at 56%,
varying between participants. Lower prediction accuracy for participants
2 and 3 may arise from the suboptimal strategy that they have used.

A statistical baseline (dotted line) results from always predicting the
most frequent human action, which is task gathering with 26%. The pre-
diction result is further compared against a human expert (the author)
predicting participants’ actions using the same available information of
action history and task information (green squares). The expert’s perfor-
mance is slightly better with an average accuracy of 59% while similarly
varying for the different participants. For action prediction, a simpler
heuristic based approach is also introduced. It is specified by a few rules,
predicting human taking task progressing actions alternating with gather-
ing behavior according to the memory model, e.g. predicting task gathering
in a fixed interval. This heuristic leads to a hit rate of 47% (red circles).

The inference of human belief could yield an action prediction with ac-
curacy close to a human expert, while it is almost always better than the
heuristic. However, it seems that human behavior is partly unpredictable
in this task, as even a human expert has problems to correctly predict her
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actions in 40% of the cases. This is partly induced through the branching
situations, where a participant could choose between two valid options. It
is further the task structure that limits predictability. Human errors are
hard to predict as there are often no hints or indications in her behavior
in advance. In most situations, an error cause could only be found ret-
rospectively, where it is too late to intervene. Prediction of errors were
sometimes possible, when they followed in a sequence. However, also when
one human error occurred, she may recognize it herself and assistive sup-
port is rarely necessary. In this task, neither human expert nor artificial
theory of mind based prediction could significantly profit from their theory
of mind abilities to predict human errors.

5.2 Assistive communication in a complex
human robot cooperative sushi task

The discrete sequential task was designed and used to apply belief infer-
ence and estimate situation awareness in general. Regarding the second
main contribution, to support the human based on the inferred informa-
tion according to the concept of theory of mind based communication, the
requirements for the task changed. A new task was developed to generate
more interesting situations, where a human could profit from a robot’s as-
sistance, to evaluate the concept of theory of mind based communication.
It is required that the task challenges the human to regularly generate
situations, where she missed an important aspect, leading to unawareness
and a need for support. However, the assistance concept is not limited to
domains with frequent human problems, as it is not depending on training
data. It can further be relevant to cover rare but severe events as it is the
case for many types of warning or emergency support systems. The task
should further generate complex situations with many uncertain aspects.
Accordingly, depending on the cause or aspect that the human missed,
different communication actions will be appropriate to support her deci-
sions and the robot will need to reason what information to provide. As
additional requirement, it is necessary that human problems can persist
over a longer period, providing the robot the chance to detect errors and
related causes, to address them in communication. For example, in the
blind spot scenario from the introduction, an unaware driver might indi-
cate and initiate a steering maneuver long before the situation becomes
critical. These first, indicative actions only have small negative outcomes,



5.2 Assistive communication in a complex human robot cooperative

sushi task 9

but point to an underlying awareness problem.

Tasks in human robot literature

In human robot interaction literature, many tasks are designed from a
robot perspective and provide little challenge for the human participant,
as example the case for cooperative pick and place tasks, as in [74], [114].
The human can oversee the task (the current state and the required steps)
and manipulation actions provides low challenges. Typically, the only
uncertain aspect in the environment is introduced by the robot’s behavior.
This is interesting from a coordination or robotic planning perspective, but
not regarding human support. Examples with multiple uncertain aspects
that an agent needs to consider, are often grid world settings similar to
the illustrative example in chapter 3, e.g. [7], [86], [85].

Other tasks challenge a human regarding one specific difficulty, as for
example a lunar lander task which requires the human to hold a precise
dynamics model for the environment [89]. The card game Hanabi repre-
sents a challenging cooperative task with high uncertainty. It is proposed
as benchmark for agents to cooperate and coordinate with human part-
ners [8]. The game restricts communication to the exchange of very small
amounts of information. The challenge consists in finding strategic sig-
naling strategies to efficiently share available information. In contrast to
general support situations considered in this thesis, the relevance of in-
formation and the other’s uncertainty is directly known from the game
mechanism.

5.2.1 Sushi task description

As there was no task in literature according to these requirements, a co-
operative sushi making task was designed. In this task, a human needs
to assemble different types of sushi together with a robot partner to fulfill
customer orders. The task visualization, Figure 5.5, is presented to the
human on the large screen.

The task concept is similar to the video game Overcooked®, as it chal-
lenges human situation awareness regarding multiple aspects and activities
in a dynamic kitchen environment. The game Overcooked was indepen-
dently proposed for the evaluation in human-robot settings due to its
interactive and challenging structure [11].

Shttps://www.teaml7.com/games/overcooked
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Figure 5.5: Sushi task visualization. The robot can take ingredients from the
left, the human from the right storage. In the shared area in the middle, both
agents can cooperatively work to create the final sushi. Current customer orders
are presented at the top.
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In the sushi task, human and robot each have access to a set of base
ingredients (Figure 5.5, left for robot, right for human), from which some
are available for both while some are exclusively to one side. These in-
gredients need to be processed and assembled to finally yield a sushi as
ordered by the “customers”. Some ingredients need to be cooked at the
cooking pot or cut at the cutting board, shaped by the human and finally
stacked together on the assembly board. For each recipe, up to 4 different
ingredients and different processing steps are necessary to successfully cre-
ate the product. Sequences of in average 15 actions are necessary to serve
a final sushi from the plate. In case of an error in the processing, there is
the possibility to trash an item and free the corresponding location. This
is necessary, as all locations, besides the assembly board, can only carry a
single item. On the assembly board, the ingredients are stacked together
to the final sushi. Due to these limitations, planning of the agents is re-
quired to coordinate the use of locations and which order to process first.
Further, both agents need to contribute at some point, as ingredients from
their private storage are required.

Using the cooperative setup with action abstraction (see Figure 5.1), all
available actions are mapped to the button boards via colors, shown on
the screen (Figure 5.5).

A set of 6 different sushi recipes is used leading to an adequate level of
difficulty for the participants. During the experiment, up to two orders are
sampled from this set. When one sushi is served on a plate, a new order
is generated after a short delay. The orders do only show the final sushi
visualization but not all required ingredients nor the detailed processing
steps.

Task difficulties

The task is designed to challenge human participants in different aspects.
One type of difficulty is induced by the visual design of ingredients, as
similar looking fish or shellfish types. So, a human might take a different
type of fish and process it, being unaware of the error. Depending on the
current customer orders, the required ingredients and processing actions
change, requiring flexible planning. The cooperation with the robot pro-
vides the chance to distribute work between the agents and progress faster.
But it also induces challenges. Actions need to be coordinated on action
level, as well as on a strategic level. Since only one sushi can be made on
the assembly board at a time, it is necessary to coordinate which order to
prepare first. Further, if the robot is taking rice as required by the current
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order, the human should not do the same. These location constraints, as
well as the complexity of the recipes challenge human action planning.

In this task, the human needs to respect different aspects and face differ-
ent types of difficulties. It is required to differentiate ingredient symbols,
memorize complex recipes, plan action sequences while coordinating with
the robot.

5.2.2 Human model and robot behavior

For the application of the human centric concept of ToM-Com, proposed
in chapter 4, it is necessary to formulate the task as POMDP for the
human, including state representation, transition and perception models.
For a robot’s supportive information sharing, communication options need
to be specified that contain different types of useful information.

State aspects and state space

In the sushi task, the human can be uncertain about the content of different
locations, the recipes for the different sushi types, and the current robot
action. Consequently, the location contents are considered as first part
of the state space and each location is represented by one state aspect
(leading to one subbelief). For the assembly board (that can hold more
items) there is one state aspect per item that it can hold. The robot hand
is also considered as location, as it can hold an item that the robot will
place or process somewhere. This belief aspect (robot hand content) is
used instead of explicitly representing the current robot action.

Regarding recipe beliefs, a full representation of all possible recipe com-
binations with up to 4 ingredients would produce a very large state space,
which would not be feasible. Instead, recipe belief errors are considered as
modifications to a true recipe. For each recipe, there are a few typical con-
fusions that were intended by design respectively observed in a prestudy.
A human can miss on required ingredients (especially as not all are visible
from the order), she can take additional ingredients, or exchange them, as
there are similar looking fish types. Further she can confuse processing
steps, e.g. forget to cook an ingredient. For every recipe, one state aspect
is introduced which considers 4 respectively 5 recipe variants.

The 10 locations can each carry, depending on their use case, 8,
15, 21 or 37 different possible contents. Together with the 6 sushi
recipes, the combinatorical state space has a size of [S| = [[;[5;| =

37°-.21-15-82-6-5%-42 ~ 8.4 -10'. Due to factorization according
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to the state aspects, the human belief representation can be reduced to
Ny =3, |S;] = 271 dimensions.

Transition and reward function

The transition function is directly specified by the task mechanism. While
the recipe definition remains constant, the location contents change accord-
ing to the agents’ actions. Depending on the current state configuration,
different action opportunities are available, hence the actions set depends
on the current state, A(s).

To favor fast and efficient task completion, a reward of R = —1 is used
for every action besides serving a completed sushi. When the agents send
out an order according to the customer’s wish, a benefit of R = 10 is given,
if the plate content differs, the customer is expected to be unsatisfied and
a reward of R = —10 is used.

Model of human perception

To complete the POMDP model, the observation function needs to be
specified. Visual perception represents the main source of information for
participants in the task. It is used to gather information about the task
displayed on the screen or by observing robot’s behavior. Human eye gaze
direction is measured by gaze tracking glasses and used to estimate her
information gain.

The content of each location is visualized on the screen and can be
perceived by human gaze. For each fixation, information provided in sur-
rounding locations might be perceived. Therefore, a Gaussian is considered
locally around the gaze point to describe a probability pg, of human state
perception according to gaze distance,

d2
PHp = PHpo €XP (—0.52 ) .
OHad

Here, d describes the distance (in pixel on the screen or in gaze angle)
between gaze measurement and a task location center and opg a typical
distance, representing the angle of foveal vision together with measurement
uncertainties. The maximum observation probability pgp,o describes an
amount of information that can be perceived from a single gaze sample,
respectively considers the time required to fully perceive some information.
This spatial configuration is visualized in Figure 5.6 for a few gaze samples
collected during one action execution. The accumulated Gaussian mask
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Figure 5.6: Visualization of human information gathering model. Measured
eye gaze samples (red crosses) and Gaussian masks around. In this example,
human might have perceived information about the first order and the cutting
board content.

around gaze samples (red crosses), represents the areas of the screen that
the human might have perceived.

For each location that the human might have perceived, a perception
update is considered for the corresponding state aspect s’ according to the
observation function

p(oi | si) = {pHp tpu if of = )
Pu else

with uncertainty p, = (1 — pgp)/N;.

The maximum probability pgpo = 0.03 of perceiving some information
is chosen according to gaze measurement sample time (120Hz) and typical
fixation durations (around 330ms).

Action set as observation

In the sushi task, not all actions are available in every state, e.g. only if
a location contains an item, the agents can move the item to their hands
(take it). Further, a sushi assembly action is only available (assembling
is only supported by the task mechanism), if the correct ingredients are
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Figure 5.7: Communication signals: Display the current recipe (left) or direct
attention to a specific location and corresponding content (right).

located on the board. This mechanism can be used by the human to update
her recipe belief. Correspondingly, the available action set represents an
additional observation for the human.

It is modeled, that the human perceives the actual action set with a
probability of 99%, while the action set is generated according to the task
mechanism.

Design of communication signals

To support human awareness according to ToM-Com, the robot needs to be
equipped with a set of communication actions transmitting different types
of information. These are realized as visual hints, displayed prominently on
the screen. To cover typical human awareness problems, communication
signals are designed to inform about the recipe of a current order, or direct
the human focus to relevant locations. Regarding recipe communication,
the required base ingredients are shown as in Figure 5.7 left. Although
the content of locations on the screen are always visible for the human,
it can be helpful to highlight a specific location, as the robot hand or the
assembly board (Figure 5.7 right). These locations are especially relevant
to coordinate behavior with the robot.

To illustrate a human awareness problem and its consequences, an exam-
ple situation is shortly described. The human has access to two different
shellfish types. If the human falsely believes that a recipe requires the
second type, this false belief can start a longer sequence of bad human
actions. The human might take the wrong shellfish, cut it on the cutting
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board and place it onto the assembly board. All the suboptimal actions of
this sequence are caused by the false recipe belief. By displaying the true
required ingredients as in Figure 5.7 left, the human can recover from the
false belief. This need for communication can be estimated in the begin-
ning of the sequence and communicative intervention has the potential to
prevent most unnecessary actions of this sequence of errors.

Besides missing recipe knowledge, awareness problems can further result
from coordination failures. If the robot started with one order while the
human is working for another, the usage of locations might lead to a con-
flict and need to be resolved. Similar on action level, coordination conflicts
appear when both agents want to do the same subtask, e.g. bringing the
same ingredient (Fig. 5.7 right).

As for the grid world example, reliable communication (pecomm = 0.99)
is modeled for the effects of these communication actions (eq. (4.2)). To
respect negative effects of communication, such as distraction and delays
of task progressing, a constant cost Reomm = —1.5 is used, corresponding
to the effort of 1.5 additional task actions.

Action planning and robot task behavior

To solve the task and to serve the ordered sushi, several steps are necessary.
A planning module searches for possible trajectories to reach the target
configuration from the current state, evaluates the number of required
actions and provides the set of best next actions for both agents. These
results are used for the robot’s task behavior. Further, for the human
decision model POMDP planning is achieved by evaluating planning trees
with a depth of two, as in the illustration 4.3. Leaf nodes are evaluated
based on the number of further required actions.

The robot selects an action from the set of required actions, as com-
puted by the planning module. If multiple actions are possible, it ran-
domly chooses one. This means, it reacts to the human partner’s past
actions (which lead to the current state) without explicitly considering
coordination. Implicitly, this results in a mixed initiative setting. When
the human is passive and does not start preparation, the robot will choose
some action to progress one of the customer orders. At some point, it will
still require human engagement, as she has to contribute her private in-
gredients. If the human starts preparing one sushi type, the robot adapts
as it selects actions best for the current situation. It still can happen that
both agents act at the same time and block each other.
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Planning communication

With the POMDP model for the sushi task, inference of human belief
and communication planning can be applied as generally introduced in
chapters 3 and 4. For this user study, the sampling-based particle filter
approach was used for inference. To allow faster inference and planning,
transition and observation functions were precomputed and cached. Still,
belief inference and communication planning are not fast enough to allow
online application in the used configuration. Especially planning in the
human model takes time, which need to be repeated for inference as well
as communication planning. Depending on the numbers of samples in the
different stages of the algorithms, a computation time of about 8s (single
core computation @ 3.70GHz, implemented in python) is achieved per
observed action. In contrast, a typical human action lasts two seconds and
can be much faster. In a prestudy, it was tested to limit action execution
speed to a duration of 8 seconds by introducing a time delay for each action.
However, this significantly changed the nature of the task, effecting human
behavior, difficulty and performance. The participants had more time to
evaluate the current situation leading to fewer and less predictable errors.
Regarding the inference of human belief, the linearization based method
was introduced in section 3.3.2 which significantly reduces the computation
effort compared to the particle filter approach.

For this study, a “Wizard of Oz” setting is used, where the available
communication actions are selected by a human expert (the author) in
the assisted condition. The wizard followed the concept of theory of mind
based communication with the same information available, meaning ac-
cess to system state and gaze measurements. The wizard was trained in
advance during training runs to detect and evaluate task situations fast
enough for online intervention (even for a human it is hard to fulfill real
time requirements). For evaluations of the concept, the similarity of deci-
sions by wizard and offline decisions of the robot will be evaluated.

5.2.3 User study

A user study is done to evaluate benefits and opportunities of the devel-
oped human centric communication concept based on an artificial theory
of mind, ToM-Com.

The target of the user study is to evaluate benefits and chances of the
human centric assistive communication concept. Therefore, the following
hypotheses are investigated: Communicative assistance based on a theory
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of mind (wizard) improves joint task performance (H1). The decisions of
the robotic communication assistant (ToM-Com) are close a human expert
(wizard) (H2). ToM-Com assistant supports a human partner respecting
relevance and efficiency criteria, leading to fewer interruptions and higher
acceptance, compared to alternative communication concepts (H3).

To account for the high variability in performance of different partici-
pants, a within subject design is used, where all participants experienced
two conditions, one with and one without support by information signals.

For the study, 14 participants, well-educated and with mostly technical
background, cooperated with the robot on the sushi task. Participants
were randomly divided into two groups, one started with an assisted trial,
the other started unassisted. The duration per participant was 1 hour
and limited the total number of recorded actions. The participants had
no prior experience with the task and started with instructions and a
familiarization phase. After they got used to the task (they were able to
successfully complete orders), two subsequent trials were recorded with
both assistance conditions. After each trial, subjective impressions were
collected regarding general task understanding including types of difficulty,
and regarding effectiveness and acceptance of assistance. The developed
questionnaire and the results are provided in annex A.

Human task performance

The task challenged the participants and generated situations where hu-
mans were not aware of important aspects. Out of 8515 recorded actions,
587 are considered as errors, as they are progressing the current orders.
481 of those were retrospectively classified by a human expert (author) to
be caused by different types of belief related awareness problems, by also
considering subsequent human actions (which is not possible in the situ-
ation itself). The remaining errors (e.i., seemingly random actions that
were directly reverted by H) were probably caused by color mismatch or
erroneous button presses (which corresponds to action execution noise in
the human model). A false belief of one important aspect (as the cur-
rent recipe) normally leads to a longer sequence of errors, e.g. where the
participant works with wrong ingredients. Accordingly, the 481 belief re-
lated bad actions were clustered into 153 error sequences of actions with
an expected common cause.
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Figure 5.8: Action duration change during the experiment. The decrease in
action duration shows the learning process of participants. During habituation
phase, action duration drops significantly as the participants get used to the
task, although it slightly decreases until the end of experiment.

Learning effect

Although the task is inspired by an everyday cooking scenario, the ex-
act principles and mechanisms are new to the participants. Accordingly,
in the first habituation phase, the participants could experience the task
and get used to the mechanisms. This habituation respectively learning
can be seen in the median action duration shown in Figure 5.8. The ac-
tion duration drops significantly and the variance between participants
decreases. Still, during the whole experiment, a learning effect could be
observed. With more experience, the participants became faster. Learning
represents an unwanted side effect, as it not only effects the human action
execution speed, but also the number of errors respectively the perfor-
mance. To balance this learning effect, it is important to split participants
into the two groups with assistance conditions in differing orders.
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Figure 5.9: Variation in participant performance. For each participant (dif-
ferent color), median action duration and number of errors are shown for both
experimental runs.

Diversity of human behaviors

The participants showed diverse behaviors and a high variance in perfor-
mance. Some had problems to cope with the situation and to understand
their task, while others seemed to interact intuitively with a low number
of errors. The diversity can be seen in Figure 5.9, where error number
and action duration are visualized. The large individual differences also
make it hard to select an appropriate level of difficulty. Instead of a fixed
task design, it could be useful to adapt difficulty according to the human
performance as in different game levels.

Understanding communication signals

In the assisted condition, the human participant received support by com-
munication signals triggered by the wizard. Most of the time, the partic-
ipants could understand the received communication signals and recover
from awareness problems. However, information sharing was not always
successful and few participants had problems to extract the communicated
information and update their beliefs accordingly. As consequence, not all
error sequences could be solved by communication. Issues in understand-
ing the communication were also reported in the questionnaires, as 4 par-
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Figure 5.10: Subjective understanding of communication signals, reported by
the participants after the trial. Responses to the statement “The signals were
understandable” from -2 to 2.

ticipants mentioned that they did not fully understand the communication
signals (“The signals were understandable”, Figure 5.10).

Hence it seems, that communication was not always as reliable as ex-
pected, especially for some of the participants and not all awareness prob-
lems could be solved. Different designs of communication signals (which
is not in the focus of this thesis) might be investigated to better support
human understanding. Also prior explanations of communications and the
information contained might help to improve participants’ understanding.

5.2.4 Performance improvement by human centric
assistance

Wizard similarity

Before investigating the performance improvement by communicative sup-
port, the similarity between the communication decisions of the wizard and
the communication planning ToM-Com is considered (H2). The recorded
data is played back and evaluated retrospectively to compare communica-
tion decisions. In general, the artificial assistant ToM-Com would commu-
nicate more often and more proactively. For 74% of the communication
actions by the wizard, a similar decision is selected by the assistant, mean-
ing the agent would communicate in nearby time steps.

To understand the differences better, characteristic example situations
were analyzed, where the wizard communicated while the agent assistant
would not. Within these, there are false positives of the wizard as well as
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situations, where the wizard reacted lately to an awareness problem, while
the assistant would have intervened earlier. Still there are cases where
the assistant does not intervene. These occurred often during short error
sequences where it might have intervened later on, i.e., evidence accumu-
lation was slower than for the wizard. Regarding the similarity hypothesis
(H2), behaviors do not match exactly, but still show similar patterns in
many situations. Consequently, it is expected that similar positive effects
of communication could be achieved by the automated system. Besides
performance effects, similarity to the advice of a human expert itself is
desirable, as humans are good at and used to interaction with others.
Approaching human capabilities in theory of mind and supportive com-
munication will yield more intuitive interfaces for an efficient and natural
interaction.

Number of errors

Hypothesis H1 states that joint performance is improved by supportive
communication respecting estimated human error causes within a theory
of mind. Therefore, the results in both conditions, with and without com-
munication assistance, are compared. For this analysis, the assistance
data from the human wizard assistance is used, for which a similar behav-
ior could be found. As performance measures, the number of errors and
the lengths of error sequences are considered. A human error is defined
as a suboptimal action, which decreases the achievable collected reward.
Similar results are obtained for other performance measures, such as the
time needed for fulfilling orders or the number of actions exceeding optimal
behavior.

The number of errors for each participant is shown in Figure 5.11 left for
the two conditions with and without support. Besides the condition, also
the learning effect influences the number of errors. Differences between the
two groups are clearly visible. When the first run was assisted (solid lines),
the participants’ experience was higher in the second unassisted condition
and the error number even decreased for some participants. Hence, only
considering error numbers does not allow to distinguish effects of experi-
ence from those of assistance condition. The strong learning effect partially
hides the influence of assistance on the number of errors. To distinguish
the effects, experience gain is explicitly considered as independent effect.
The experience of human participants is further directly related to the
action duration, as visualized in Figure 5.8. The action duration for the
different runs of the participants, Figure 5.12, in contrast shows no depen-
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Figure 5.11: Performance for assistance conditions: Error number of partici-
pants (left), with first assisted group (solid lines), first unassisted group (dash-
dotted), and mean (dotted). The difference of the runs (first run minus second
run) is shown as histogram for both groups (right).

dence to the assistance condition. For another visualization, in Figure 5.12
right, the duration difference from the first to the second trial is shown,
which is similar for both groups. This supports the assumption, that ex-
perience (measured by action execution duration) represents an effect that
is independent of the assistance condition.

To separate both effects on the performance, Figure 5.11 right shows the
difference of error counts from the first to the second trial, split accord-
ing to the assistance condition. The experience effect reduces the error
count for all participants independent of their group, while the assistance
condition affects the groups in opposite directions. Accordingly, the clear
difference in group means (dashed lines) shows the positive effect of as-
sistance on the participants performance. The Pearson correlation factor
between assistance condition and error reduction is calculated as r = 0.64
(with p = 0.014).

As statistical evaluation, a mixed analysis of variance (mixed ANOVA)
is applied. The assistance condition represents the within-subjects variable
while the group respectively the order of trials is the in-between-subject
variable. The analysis shows a significant influence from the assistance
aspect, with p = 0.014. The in—between effect of experience is also signif-
icant, with p = 0.0004.
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Figure 5.12: Assistance condition and experience effects on human action du-
ration. The human action duration is split according to the participants groups
(left). Taking the difference from first to second run (histogram on the right),
the action duration is unaffected by the assistance condition.

Error sequence length

Human centric communication aims to support human awareness by shar-
ing relevant information. An influence will consequently be visible, when
looking at the sequences of errors, which are caused by the same underlying
awareness problem. The positive effect is visible when looking at the error
sequence lengths which is the number of errors in one sequence. Figure
5.13 shows the distributions of error sequence lengths for both conditions.
Assisting the human with information reduces the length of human error
sequences respectively the impact of a false belief situation. Compared to
the unassisted case, she can recover much earlier from belief related prob-
lems. When sharing information adapted to her needs, most sequences
end after one or two errors. This performance measure is not affected by
the experience effect.

The sequence length distributions also provide two more insights. Even
in the unassisted condition, 25% of the error sequences end after only
one error where communication would not help, demonstrating the im-
portance of relevance evaluation. The state-of-the-art deviation-based ap-
proach would always communicate after the detection of a human error
even when the sequence would end nevertheless which happened in 25%
of the cases. Considering relevance and the human needs instead safes un-
necessary communications in many cases. As similar number, 20% of the
error sequences of the assisted condition, the sequence length is one while
there is no communication triggered. In Figure 5.14 the sequence lengths
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Figure 5.13: Relative frequency of error sequence lengths, the error numbers
per sequence. Histograms are split according to the assistance condition. Com-
municative assistance reduces error sequence length and allows the human to
recover earlier from false belief situations.

are shown according to the number of communication interventions. As-
suming similar distributions for assisted and unassisted runs, it can be
expected, that about 80% of the 25% sequences of length one are correctly
classified as the human is aware of the situation, and communication is not
necessary, saving 80% of potential interventions. The situation seems to
be similar for the length 2 error sequences, although the numbers cannot
be compared directly (due to the assistance effects on the distribution).
The second insight considers the success of communication. In some sit-
uations, the shared information could seemingly not achieve the intended
effects, as there are still longer sequences in the assisted condition (Fig-
ure 5.13). Even repeated communication seems not to be helpful in some
cases, with long error sequences despite 2-5 communication events (Fig-
ure 5.14). This can be partly explained by some participants’ difficulty to
understand the communication signals, as already discussed and reported.

Human acceptance

One central motivation for information sharing according to human needs
is the acceptance by the human partner. This is expected to depend on
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Figure 5.14: Relative frequency of error sequence lengths for the assistance
condition. Histogram split according to the count of communication interrup-
tions. Hence, in 20% of the sequences unnecessary communication is avoided,
since there is no communication at a length of 1.

the efficiency of communication, as it should be limited to relevant aspects
while avoiding unnecessary interruptions. The results from the question-
naire support a corresponding hypothesis. Combining the responses for
the statements “The signals were given too often” and “The signals an-
noyed me” | an acceptance measure is formed, shown in Figure 5.15. 7 par-
ticipants reported high acceptance (they highly disagreed for both state-
ments), while 6 seem to be uncertain. Lower acceptance may result from
the difficulty of understanding communication signals. The subjective re-
sponses show correlations between the understanding of communication
signals and acceptance (Pearson correlation » = 0.53, p = 0.06, Figure
5.16).

5.2.5 Comparison of information sharing concepts

In the last section, the influence of communication on the joint perfor-
mance was considered, comparing results to the condition without assis-
tance. It is further interesting to compare the communication decision to
other communication concepts, as it was done for the grid world example
in chapter 4. As in section 4.3, a state-of-the-art deviation-based concept
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Figure 5.15: Participants acceptance as reported in the questionnaire. Com-
bining the questions regarding annoyance and frequency of communication.
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Figure 5.16: Responses regarding acceptance and understanding of communi-
cation signals by the participants. Issues in understanding may lead to lower
acceptance, independently from the communication concept.
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and a theory of mind concept without communication planning are con-
sidered. Comparison and evaluation is performed offline using the trials
without assistance.

The deviation-based approach (DEV), as state-of-the-art concept, in-
tervenes when the human deviates from the expected behavior, which is
here considered as human error. Consequently it could warn the human or
propose a good next action. Considering the action proposal, it can help
the human to select a good next action, but will in general not support the
human to understand the situation and the error she made. For a quanti-
tative evaluation, it is modeled that participants would follow the action
proposal and that the deviation-based concept would prevent a following
human error. To improve the support, the robot can not only propose
one next action but intervene for a longer sequence proposing k£ good next
actions.

As a second approach, a theory of mind based alternative without com-
munication planning (ToM) is considered. It communicates when a false
or uncertain human belief is estimated. This policy should support the hu-
man and prevent errors similar to ToM-Com, but may lead to unnecessary
communication, when a communicated false belief aspect is not relevant
for current decisions. Here, a threshold needs to be selected to classify the
inferred belief as false.

As analyzed in the last section, information sharing could achieve a sig-
nificant reduction of error sequence length. Consequently, it is assumed,
that providing information in a situation with a false human belief would
prevent the subsequent errors in the current sequence (neglecting partial
problems of understanding communication, which could be addressed by
other means). This is modeled as effect of communication for both con-
cepts using a theory of mind for information sharing (with and without
communication planning).

The different concepts, ToM-Com, DEV and ToM, are compared re-
garding their potential in preventing human errors as well as the number
of interruptions for the human (cost of communication). By varying the
decision parameters of the concepts, a receiving operator characteristic
(ROCQ) is created, drawing the true positive rates (potentially prevented
errors divided by total errors) against the false positive rate (unnecessary
interruptions divided by number of optimal human actions), shown in Fig-
ure 5.17. For ToM-Com, the cost of communication represents an explicit
parameter to handle the false positives against false negatives. For the
deviation-based communication the number k of next actions proposed is
varied and for ToM, the decision threshold serves as variable.
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Figure 5.17: ROC curves for communication concepts. ToM-Com with com-
munication costs between 0.5 and 2.4, a theory of mind approach without com-
munication planning (ToM) with erroneous belief thresholds between 0.4 and
0.99, and a simple deviation-based approach (DEV) proposing the next 1 to 5
actions after a human error.

Comparing the different concepts, ToM-Com outperforms the other con-
cepts. It can prevent more human errors while reducing unnecessary dis-
turbances for the human partner. Communication with belief inference
but without communication planning can achieve better results than the
purely reactive deviation-based approach but would sometimes lead to
avoidable interruptions.

5.3 Summary and conclusion

In this chapter, the results for two user studies were presented, consider-
ing a sequential, human robot cooperative manufacturing and a complex
sushi making task. It could be demonstrated, that the developed theo-
retical concepts can be applied to true human interaction data. It is pos-
sible, to interpret human behavior to infer reasonable human beliefs and
to detect false or uncertain configurations leading to a lack of situation
awareness. A challenge that remains is the real time application, as re-
lated computations are extensive. Depending on task and sample time, an
online application could not be achieved so far. A theory of mind provides
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a good basis for information sharing decisions to support a human part-
ner. The human participants could profit from targeted communication
signals and recover much faster from a lack of situation awareness. Ret-
rospective concept comparisons could show large benefits of the concept
of theory of mind based assistive communication compared to a state-of-
the-art deviation-based approach and a concept without communication
planning. It could support the human more efficiently, reducing unneces-
sary human interruptions.
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6 Conclusion

For efficient and natural human robot interaction, a robot or technical
system should not only concentrate on the task but also consider and un-
derstand its human partner. The topic of human centric human robot
cooperation is framed from a conceptual side by considering research on
human factors and human human interaction, including related challenges,
effects and processes. To consider complex situations and information ex-
change, a formal consideration of uncertainty is important, as it is provided
by the areas of Bayesian inference and reinforcement learning. Uncertainty
is present in complex environments as well as introduced by other agents.
Literature from human modeling in human robot interaction and existing
communication concepts complement the background.

A human understanding as artificial theory of mind is essential for a
complex cooperative robot. A new approach is introduced for inferring
the human belief during interaction, as second order inference of what the
human inferred of her environment. To handle the complexity of second
order inference while allowing the online use during interaction with a
human, approximations of belief representation as well as inference were
developed and tested. Estimates of human belief provide insights into
possible human problems and can be evaluated regarding her awareness
for the current situation.

When it is inferred that a human partner missed an important piece
of information, it will be a good idea to share such information with her.
Accordingly, supportive information sharing is formalized in the concept
of theory of mind based assistive communication. It represents a human
centric communication concept deciding when and what type of informa-
tion to provide. This decision is based on the evaluation of novelty for
the human receiver together with task relevance in the current situation,
yielding expected benefits of communication. Further, costs and efforts of
communication need to be respected and balanced against benefits.

The developed concepts and methods of human belief inference, situ-
ation awareness estimation and communication planning were applied to
interaction data, collected in user studies. It could be shown that they
are capable to detect problems in human belief representations leading
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to human errors, and to improve the joint performance by human centric
communication. Compared to alternative state of the art communication
concepts, theory of mind based communication is more efficient and in-
stead of instructing, it enables the human to become situation aware and
make good decisions herself.

As challenge remains the computation effort, which is essential for real
time application, due to the complexity of planning in large uncertain
spaces. Regarding the inference of human belief, significant improvements
were achieved by introduced methods. To similar improve communication
planning, first ideas were given. Theoretical extensions of the concepts
could further consider strategic effects of information sharing, that occur
when the human also interprets robot’s intentions. There, it is important
to make the robot’s decisions transparent to allow robust signaling and
avoid misunderstandings. Besides for sharing relevant environmental in-
formation, theory of mind will be important for coordination of agents’
behaviors. To support the process of coordination, information about the
robot’s actions and plans might be communicated to find a joint solution.
For initiate such interaction strategies it may be further useful to also in-
clude coordination states (what does the human believe the robot wants to
do) in the representation of human belief for the artificial theory of mind.

The concepts of belief inference as artificial theory of mind and commu-
nication planning are formulated in a general way independent of a specific
scenario or domain. The application to different scenarios (the user studies
and illustrations) required a specification of task and perception model,
while the belief inference and intervention concepts and implementation
remains the same. This demonstrates the flexibility of the approach open-
ing a broad area of potential applications. The concepts and methods will
enable complex human centric assistance approaches in diverse domains.
Such intelligent assistance will not replace nor instruct the human what
to do, but efficiently support a human specifically according to her needs.
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A Questionnaire and results

During the second human robot interactive user study, subjective re-
sponses of the human participants were collected after each of the two
trials. The developed questionnaire is shown in Figure A.1 and the re-
sponses are given in the tables A.1 and A.2.
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Questionnaire: Assistance in collaborative tasks

Please select the answer, that best matches your experience in the last trial.

Disagree Slightly Neutral Slightly Agree
disagree agree
General task
| understood the task ] ] O O O
| was capable to solve the task O O O O O
| had enough information to solve the | O O [} O
task
| often had to wait for the robot O O O O O
Task difficulty
It was difficult to plan the actions for | O O [} O
the current recipe
| planned multiple orders in parallel O O O O O
It was difficult to respect location O O O O O
availability
I looked for the robot's current action O O O O O
It was difficult to coordinate with the O O O [} O
robot
It was difficult to manage all subtasks O O O [} O
in parallel
Assistance with visual signals
| noticed visual communication signals Yes O No O
If yes: Disagree Slightly Neutral Slightly Agree
disagree agree
The signals were understandable O O O O O
The signals were helpful | O O O O
The signals were given too often O ] O O O
The signals helped to understand the O O O O O
current situation
The signals helped to chose the next | O O [} O
action
The signals distracted me | ] O O O
The signals annoyed me ] O O O O
The signals appeared when | missed | O O [} O
some aspect of the situation
The signals informed about an aspect O O O O O
that | missed
Experiment ID: Trial:

Figure A.1: User study questionnaire
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Participant | 1 2 3 4 5 6 7
Trial | 1A 2B 1A 2B 1A 2B 1A 2B 1A 2B 1A 2B 1A 2B
Q1 1 1 1 2 2 2 -1 1 1 2 1 2 1 2
Q2 1 1 1 2 2 2 0 2 2 2 2 2 1 2
Q3| 1 1 2 2 0 2 -1 1 2 2 1 0 2 2
Q4 1 1 0 -1 -2 1 0 1 -1 0 0 2
Q5| -1 -1 1 1 1 1 1 -1 1 1 0 -1 1 -2
Q6 | -1 -1 -1 -2 -2 1 -2 0 -1 1 2 2 0 -1
Q7 | -1 1 1 1 1 0 0 -1 1 1 -1 -1 2 -1
Q8 | 2 2 1 1 -1 -1 1 1 1 1 1 1 2 2
Q9 | -1 -1 1 0 0 1 -1 -2 1 2 -1 0 1 1
Q10 | -1 -1 2 2 2 1 0 1 1 -1 -1 1 0
Q11 1 1 1 1 1 0 1
Q12 | -1 -2 2 0 -1 2
Q13 | -1 -2 2 1 0 1
Q14 0 0 -2 -1 -2 -1
Q15| 0 -1 2 0 0 2
Q16 | 0 2 2 1 -1
Q17 2 1 -2 -1 -2 -1
Q18 | 1 1 -2 0 -2 -2
Q19 1 2 1 0 1 1
Q20 | -1 0 2 1 1 2

Table A.1: Questionnaire results for the first group with assistance in the first

trial.
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Participant | 8 9 10 11 12 13 14
Trial | 1B 2A 1B 2A 1B 2A 1B 2A 1B 2A 1B 2A 1B 2A
QL | 1 1 1 2 2 2 2 2 2 2 2 1 2 2
Q21| 0 0 2 2 2 1 1 2 1 1 1 2
Q3| 0 1 -1 1 1 2 -2 1 1 2 2 -1 -1 2
Q4| 2 1 0 0 1 1 -1 -1 -1 -1 -2 -2 -1 1
Q5| 2 1 0 -1 0 1 -1 1 -1 -1 1 1 1 -1
Q6 | -1 0 2 2 2 2 -1 1 0 0 2 2 -1 1
Q7| -1 2 0 0 2 1 -1 -1 0 0 1 1 -1 1
Q8| 2 2 1 2 2 2 1 1 1 -1 -2 1 0
Q9 | -1 1 -1 -1 0 1 0 -1 -1 -1 1 1 -1 -1
Q10| 0 1 1 -1 -1 0 0 1 -1 -1 1 -1 1 1
Q11 1 1 1 1 1 1 1
Q12 2 2 2 2 0 1 -2
Q13 1 2 2 0 2 -2
Q14 0 -1 -2 -2 -2 2 -2
Q15 2 2 2 2 1 2 -2
Q16 2 2 0 2 0 2 -2
Q17 0 -2 -2 -2 -2 -1 1
Q18 -1 -2 -2 -2 -2 -2 1
Q19 2 2 2 1 -1 1 2
Q20 2 2 2 -1 2 1

Table A.2: Questionnaire results for the second group with assistance in the
second trial.
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