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Impact of different pretreatments 
and attachment materials on shear 
bond strength between monolithic 
zirconia restorations and metal 
brackets
Rebecca Jungbauer1,2*, Peter Proff1, Daniel Edelhoff2 & Bogna Stawarczyk2

To investigate the influence of different pretreatment methods, attachment materials and artificial 
aging on shear bond strength (SBS) between monolithic zirconia and metal brackets. Zirconia 
substrates were pretreated with silica coated alumina (CoJet) and (1) clearfill ceramic primer plus (CF), 
(2) RelyX ceramic primer (RXP), (3) Futurabond U (FU). The brackets were bonded with (1) Transbond 
XT Adhesive (TB), (2) BrackFix Adhesive (BF), (3) bracepaste adhesive (BP). SBS was tested after 24 h, 
500 thermal cycles, 90 d at 37 °C with a universal testing machine. SBS values reached from 8.3 to 
16.9 MPa. The Weibull moduli ranged between 0.37 (RXP combined with BP after 90 d) and 7.42 (CF 
combined with TB after 24 h). The pretreatment with FU after 90 d, independent of the attachment 
material, and RXP with BF resulted in the lowest SBS values 8.3–9.9 MPa, the combination of RXP 
or CF with TB showed the highest (13.2–16.9 MPa) independent of aging. After FU pretreatment the 
proportion of ARI 1 and 0 was higher, of ARI 3 lower as after CF and RXP pretreatment. All tested 
combinations showed sufficiently high SBS values for clinical use. Pretreatment with FU presented the 
lowest values after 90 days.

For orthodontic treatment with fixed appliances brackets are usually bonded to the enamel surface, using the 
etch and rinse technique and phosphoric acid1. According to the literature shear bond strength (SBS) values 
between enamel and bracket of 5–10 MPa are recommended2,3. In orthodontic adult treatment the bonding of 
brackets to prosthetically restored teeth can be challenging. There is always the risk of damaging the restora-
tion, but on the other hand accidental bracket loss during the treatment implies a further pretreatment of the 
restoration, increasing the risk of fractures, but also prolongs treatment time4. Nowadays, metal-free restorations 
are increasingly used, and they are becoming more and more popular due to their good biocompatibility and 
esthetics5–7. Due to the improved esthetics of zirconia, especially 4Y-TZP and 5Y-TZP ceramics, monolithic 
restorations are used more frequently8. Therefore, apart from a reliable bonding strategy to silicate ceram-
ics, the orthodontist also needs a proven workflow for bonding to monolithic zirconia surfaces. Zirconia, in 
contrast to silicate ceramics, exhibits poor wettability. Since zirconia has no glass components, the wettability 
and at the same time the surface roughness cannot be influenced by etching with hydrofluoric acid—as known 
from silicate ceramics9. For restorative purposes, an air-abrasion using alumina powder (50 µm grain size) and 
a low pressure of 0.1 MPa or alternatively using silica coated alumina powder are described to create a suitable 
surface for adhesive bonding systems to zirconia and veneering materials10–12. In addition, the use of an acidic 
phosphate-containing monomer (e.g. MDP monomer) as a bonding agent is recommended11. To date, no gold 
standard or clinical recommendation exists for conditioning monolithic zirconia restorations when temporary 
brackets or attachments need to be bonded as part of fixed orthodontic treatment. Although different pretreat-
ment methods have been investigated, most studies focus on the pretreatment methods and include only one 
attachment material13–16. Different attachment materials might also have an influence on the bonding strength 
between bracket and zirconia surface. The only studies that investigate different attachment materials used 
bonding materials that are frequently used for prosthetic purposes17–19 and not in orthodontic daily routine. 
Furthermore, the influence of water storage as additional aging regimen has not been considered by any other 
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study. The aim of the in vitro study was therefore to compare the shear bond strength of a metal bracket and 
monolithic zirconia after air-abrasion using silica coated alumina (CoJet) and application of different adhesive 
systems using various orthodontic attachment materials and different aging regimens. The following hypotheses 
were assumed: (1) different pretreatment methods, (2) the use of different light curing attachments materials, (3) 
different artificial aging methods do not influence SBS values of metal brackets bonded to monolithic zirconia.

Material and methods
Specimen preparation.  The specimens with a minimum size of 5 × 5 × 3  mm were cut out of zirconia 
blanks (Ceramill Zolid FX Multilayer, Amann Girrbach, Koblach, Austria) and sintered in the sintering furnace 
(LHT 02/16, Nabertherm, Lilienthal/Bremen, Germany) according to the manufacturer’s instructions. Then, 
zirconia substrates were embedded in acrylic resin (ScandiQuick A and B, ScanDia, Hagen, Germany) and pol-
ished up to P1200 (SiC paper, Struers, Ballerup, Denmark) for 20 s with an automatic polishing device (Tegramin 
20, Struers) under permanent water cooling. After ultrasonically cleaning (L&R Transistor/Ultrasonic T-14, 
L&R, Kearny, NJ, USA) for 60 s in distilled water, the 405 specimens were allocated to one of the 27 test groups 
(n = 15 per group).

Zirconia pretreatment and bracket bonding.  All specimens were photographed with a microscope 
at 10× magnification (Bresser, Rhede, Germany) to search for possible cracks and afterwards cleaned prior to 
bonding with a polishing brush (Busch & Co, Engelskirchen, Germany) and pumice/water mixture (40:50 g) at 
a speed of 3000 rounds per minute moving from left to right as well as up and down for 3 s. The specimens were 
cleaned with water and air-abraded using silica coated alumina (CoJet Prep and CoJet Sand, both 3 M, Monrovia, 
USA) for 2 s at 90°, 10 mm distance, 2 bars. After rinsing off the specimens underwent different pretreatments 
according to the manufacturer’s recommendation (Clearfill Ceramic Primer Plus, CF, Kuraray Noritake, Tokyo, 
Japan; RelyX Ceramic Primer, RXP, 3 M, Monrovia, USA; Futurabond U, FU, VOCO, Cuxhaven, Germany) and 
the metal brackets were bonded to the zirconia substrate with different attachment materials (Transbond XT 
Adhesive, TB, 3 M, Monrovia, USA; BrackFix Adhesive, BF, VOCO, Cuxhaven, Germany; bracepaste adhesive, 
BP, American Orthodontics, Wisconsin, USA) as detailed presented in Fig. 1. For direct bracket bonding a thin 
layer of the respective attachment material was applied to the bracket base (Empower 2, American Orthodontics, 
Wisconsin, USA) and gently pressure was exerted on the bracket to reduce the size of the interface (amount of 
attachment material) to the possible minimum. All attachment materials were light polymerized, after removing 
the excess attachment materials around the bracket with a dental probe, for 10 s from the mesial as well as the 
distal side (1600 mW/cm2, Ortholux luminous curing light, 3 M, Monrovia, USA). After bonding, the specimens 

Figure 1.   Study workflow. The flowchart shows different pretreatments, attachment materials, and aging 
regimens of zirconia substrates.
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were directly stored in distilled water and underwent one of the three aging regimens (24 h, 500 thermal cycles, 
90 days) as shown in Fig. 1. Detailed information on the materials used is given in Table 1.

Shear bond strength testing.  Shear bond strength testing was carried out at room temperature (23 °C) 
and all specimens were wetly stored at room temperature for 1 h prior to testing. The specimens were dried 
carefully with air and placed in the universal testing machine (RetroLine, Zwick/Roell, Ulm, Germany) in a 
special test apparatus (Fig. 2), before applying a compressive force perpendicularly to the zirconia substrate and 
in an occluso-gingival direction until debonding of the bracket. A crosshead speed of 1 mm/min was used. The 
recorded maximum force (F) and the area of the bracket base (A), that was provided by the manufacturer, were 
used to calculate SBS (R) using the formula:

Afterwards, all specimens were photographed with a microscope at 10× magnification (Bresser, Rhede, Ger-
many) to evaluate the adhesive remnant index (ARI) and look for possible cracks. ARI was determined according 
to20: 0 = no remaining attachment material (AM) on the zirconia, 1 = less than 50% remaining on the zirconia, 
2 = more than 50% remaining on the zirconia, 3 = 100% AM remaining on the zirconia.

Statistical methods.  For statistical analyses IBM SPSS Statistics 25 (IBM, Armonk, NY, USA) was used. 
A global univariate ANOVA test with partial eta-squared η2p was performed to determinate the influence of the 
pretreatment methods, attachment materials and aging regimens on SBS values. Distribution of the data was 
checked using the Shapiro–Wilk-test. Since the assumption of normal distribution was violated (more than 5% 
of the tested groups), the data were analyzed non-parametrically using Kruskal–Wallis tests followed by Dunn-
Bonferroni post-hoc tests and Bonferroni correction of the p values. The distribution of ARI was checked for 
significant differences using Chi2 tests. p values of p < 0.05 were considered as statistically significant. Weibull 
module was determined using the maximum likelihood estimation method and 95% confidence interval to be 
able to predict failure probability21.

R(N/mm
2) =

F(N)

A
(

mm2
)

Table 1.   Manufacturer and composition of the luting materials applied in the present study.

Materials Manufacturer Composition

TransbondXT adhesive (TB) 3 M Silane treated quartz, bisphenol-A-diglycidyl ether dimethacrylate, bisphenol-A-bis(2-hydroxyethyl ether) dimeth-
acrylate, silane treated silica, Diphnyliodonium hexafluorophosphate

BrackFix (BF) VOCO Bisphenol A-glycidyl methacrylate, bisphenol A ethoxylated dimethacrylate

Bracepast (BP) American Orthodontics 10-Methacryloyloxydecyl-Dihydrogenphosphate, tetramethylene dimethacrylate, diphenyl(2, 4, 6-trimethylbenzoyl)
phosphine oxide

Clearfill ceramic primer plus (CF) Kuraray Noritake Ethyl alcohol, 3-methacryloyloxypropyltrimethoxysilane, 10-methacryloyloxydecyl-dihydrogenphosphate

Futurabond U (FU) VOCO 2-hydroxyethyl methacrylate, bisphenol A-glycidyl methacrylate, hexanedioldimethacrylate, acidic adhesive 
monomer,urethandimethacrylat

RelyX ceramic primer (RXP) 3 M Ethyl alcohol, water, methacryloxypropyltrimethoxysilane

Figure 2.   Experimental setup for the SBS measurements. Zirconia substrate with the metal bracket is placed 
in a special test apparatus. The force was applied in occlusal-gingival direction and the maximum force was 
recorded.
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Ethical approval.  Not applicable, because this article does not contain any studies with animal or human 
subjects.

Results
The median of the SBS values ranged between 8.3 and 16.9 MPa (Table 2). SBS values were more influenced by 
the pretreatment methods ( η2p = 0.113, p < 0.001) and attachment material ( η2p = 0.110, p < 0.001), rather than by 
aging regimens ( η2p = 0.019, p = 0.025).

Impact of pretreatment method on the shear bond strength.  Within the attachment material TB, 
FU showed lower initial SBS as well as after thermal cycling than RXP (initial p = 0.047, after TC p = 0.040) and 
CF (initial p = 0.026, after TC p < 0.001). After 90 days water storage, RXP presented higher SBS values compared 
to FU (p < 0.001) and CF (p = 0.025). With respect to the attachment material BF, FU showed after 90 days water 
storage lower values than RXP (p = 0.030) and CF (p = 0.002). Within BP and after 90 days water stored, lower 
SBS for FU than for CF (p = 0.027) was measured.

Impact of attachment material on the shear bond strength.  Within the pretreatment method CF, 
TB showed higher initial SBS than BF (p = 0.002) and after thermal cycling higher values than BP (p = 0.006). 
With respect to RXP, TB showed higher bond strength compared to BF, regardless on the aging regimen 
(p < 0.001–p = 0.043).

Impact of aging regimen on the shear bond strength.  Within TB combined with CF, after 90 days 
water storage lower SBS than after thermal cycling (p = 0.014). Attachment material BF in combination with FU 
and RXP, 90 days storing in water resulted in lower values than tested initial (FU: p = 0.020, RXP: p = 0.036) or 
after thermal cycling (FU: p < 0.001, RXP: p = 0.027).

Weibull moduli.  The lowest Weibull modulus was observed for BP combined with RXP after 90 days water 
storage (Table 3). TB combined with CF (initial) or RXP (after thermal cycling) as well as BF combined with FU 
(after 90 days water storage) showed lower Weibull modulus than TB and BF combined with FU (initial), BP 
combined with CF (after thermal cycling) and BP combined with all pretreatment methods after 90 days water 
storage.

Adhesive remnant index (ARI).  There were differences considering the distribution of the ARI within the 
different attachment material groups (Chi2 < 0.001). In the TB group an ARI of 2 was predominantly observed 
after pretreatment with CF and RXP (62.2%, 55.6%). After the pretreatment with FU an ARI of 1 was more fre-
quently determined (51.1%). In the BF, as well as the BP group an ARI of 2 was the most frequent after pretreat-

Table 2.   Medians and interquartile ranges (IQR) of shear bond strengths values in MPa. Different 
pretreatment methods and aging regimens are represented by the rows. Different attachment materials are 
represented by the columns. Statistical significance of differences (p ≤ 0.05) is indicated by superscript letters or 
numbers. Values that do not differ significantly share the same letter/number. In the rows different uppercase 
letters indicate significant differences between storage regimens and different numbers between pretreatment 
methods. Different lowercase letters indicate significant differences in the lines (between attachment 
materials). TB Transbond XT, BF BrackFix, BP bracepaste, CF Clearfil ceramic primer plus, FU Futurabond U, 
RXP RelyX ceramic primer.

Pretreatment Aging

TB BF BP

Median
[IQR] Min Max

Median
[IQR] Min Max

Median
[IQR] Min Max

CF

24 h

14.9a AB 1

[2.9] 10.0 18.0 10.8b A 1

[2.6] 7.5 17.8 11.5ab A 1

[5.2] 7.9 19.7

FU 11.5a C 2

[2.7] 9.7 21.4 10.2a B 1

[2.1] 5.9 14.6 11.6a D 1

[3.6] 8.4 19.0

RXP 15.6a D 1

[6.0] 8.7 30.5 13.5ab D 1

[4.1] 7.7 30.8 10.7b E 1

[3.5] 7.9 26.1

CF

500 TC

15.6c A 3

[5.2] 10.7 22.8 12.9cd A 2

[4.9] 4.3 26.8 10.5d A 2

[5.1] 7.8 23.5

FU 12.0b C 4

[1.8] 7.2 13.6 11.3b B 2

[4.2] 8.5 14.6 10.6b B 2

[2.1] 7.4 16.2

RXP 15.2c D 3

[5.2] 9.1 22.0 11.1c D 2

[6.3] 8.5 19.1 11.8c C 2

[4.4] 7.4 22.2

CF

90 d

13.2e B 5

[3.5] 8.2 18.3 10.5e A 3

[3.8] 8.0 22.1 11.8e A 3

[6.2] 8.1 22.1

FU 9.9c C 5

[2.3] 6.1 22.7 8.3c C 4

[3.1] 4.2 11.8 8.7c B 4

[4.2] 0.0 14.1

RXP 16.9d D 6

[8.1] 12.3 28.8 9.6e E 3

[3.2] 7.5 13.9 10.9e D 3 4

[6.5] 6.7 20.3
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ment with RXP, CF and FU (BF: 71.1%, 64.4%, 53.3%; BP: 68.9%, 60.0%, 44.4%). After FU pretreatment in all 
three groups the proportion of an ARI 1 and 0 was higher, of an ARI 3 lower as after CF and RXP pretreatment 
(Fig. 3). No cracks in the ceramic were detected in the zirconia before pretreatment nor after bracket debonding.

Discussion
To the best of the authors’ knowledge, this study is the first to compare different pretreatment methods, attach-
ment materials and aging regimens for bonding brackets to monolithic zirconia including a strategy that was 
in-vitro proven to be effective for pretreating different types of silicate ceramics.

The first hypothesis “different pretreatment methods do not influence the SBS” was rejected. Within the TB 
group the application of FU resulted in lower SBS values initially and after 500 TC. After 90 days the combina-
tion of RXP and TB showed higher SBS values as FU or CF with TB. In the BF and BP group SBS values after FU 
pretreatment were lower compared to BF/RXP and BP/CF after 90 days. For restorative purposes the general rec-
ommendation in the literature to obtain a reliable adhesion to zirconia includes surface air-abrading with either 
alumina powder or silica coating (CoJet)22 and the application of a silane containing 10-methacryloyloxydecyl 
dihydrogen phosphate (10-MDP), as the phosphate group can react chemically with the zirconia23. Lee et al. 
reported clinically sufficient SBS values between ceramic brackets and monolithic zirconia after air-abrading 
with Al3O2 and pretreatment with different zirconia adhesives but also a universal adhesive containing 10-MDP. 

Table 3.   Weibull moduli. Calculated according to the maximum likelihood estimation method with 95% 
confidence interval for each group separately. TB Transbond XT, BF BrackFix, BP bracepaste, CF Clearfil 
ceramic primer plus, FU Futurabond U, RXP RelyX ceramic primer.

Pretreatment Aging

TB BF BP

Weibull module 95% CI Weibull module 95% CI Weibull module 95% CI

CF

24 h

7.42 (4.67;13.54) 5.44 (3.19;9.26) 4.57 (2.67;7.78)

FU 3.72 (2.17;6.33) 3.88 (2.27;6.61) 5.04 (2.95;8.57)

RXP 6.64 (3.83;11.12) 5.09 (2.98;8.66) 4.89 (2.86;8.32)

CF

500 TC

5.30 (3.10;9.01) 2.65 (1.54;4.51) 4.05 (2.37;6.89)

FU 4.45 (2.60;7.58) 4.58 (2.68;7.79) 4.52 (2.65;7.69)

RXP 7.28 (4.27;12.39) 6.67 (3.91;11.34) 6.00 (3.51;10.20)

CF

90 d

5.31 (3.11;9.03) 4.66 (2.73;7.92) 3.90 (2.28;6.62)

FU 4.63 (2.71;7.88) 7.17 (4.20;12.20) 3.88 (2.27;6.60)

RXP 4.34 (2.54;7.39) 4.09 (2.39;6.97) 0.37 (0.20;0.64)

Figure 3.   Distribution of ARI. The percentage of the rated ARI (0–3) within each pretreatment and attachment 
material group is given.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8514  | https://doi.org/10.1038/s41598-022-12542-5

www.nature.com/scientificreports/

In contrast, the pretreatment with a metal primer, not containing 10-MDP, resulted in insufficient SBS values24. 
In the present study, three different types of pretreatment methods were used: CF containing the classical MDP 
monomer but also a silane. The application of CF showed reliable SBS values which is in accordance with other 
studies16,25. As further pretreatment a classical silane RXP was investigated. The idea was to have a method that 
would result in reliable SBS values for all types of ceramics. Resulting from a previous study the combination 
of CoJet and RXP was shown to be effective for bonding brackets to different types of silicate ceramics26. The 
present findings indicate also consistent adhesion using this combination when brackets are bonded to zirconia 
substrates and is in accordance with the findings of other studies19,27 although they used a ceramic instead of a 
metal bracket. A different study also found sufficiently high SBS values using the combination of CoJet and RXP, 
although the SBS values were lower and very close to the lower limit of the recommended values28. In general, the 
literature is very controversial as some studies found that air-abrasion and silane application results in sufficient 
SBS19,29 and others reported contrary findings30.

The third pretreatment was a universal adhesive (FU). Especially after 90 d of wet storage FU showed in 
comparison to the other methods lower SBS values. In a prosthetic investigation the combination of air-abrasion 
followed by CF pretreatment and Panavia F2.0 resulted in comparable tensile bond strength values as followed 
by FU combined with DuoCem after 5000 thermal cycles23. Therefore, further investigations are necessary here. 
Although other studies apply the corresponding adhesive (bonder) of the attachment material as an additional 
step of pretreatment24,28,31, the present and previous results29, indicate that this extra step seems to be mandatory.

The second hypothesis (“different light curing attachment materials do not influence SBS”) was also rejected 
as the combination of CF/TB showed higher SBS values than CF/BF after 24 h and CF/BP after 500 TC. Within 
the RXP group the application of TB resulted in higher SBS as BF. In general TB is the most frequently used 
attachment material in orthodontic SBS studies. There is only very little data on other attachment materials. The 
combination of alumina powder air-abrasion, CF and Panavia F2.0 showed higher SBS values as in the present 
study, whereas the use of RelyX U200 instead of Panavia F2.0 was comparable to TB18. Nevertheless, in a clinical 
setting it is of interest to the orthodontist to have a reliable attachment material that can be generally used to bond 
to enamel but also to artificial surfaces such as ceramic. Neither Panavia F2.0, nor RelyX U200 were developed for 
orthodontic purposes and are due to their lower viscosity compared to TB, BF or BP not the first choice for direct 
bracket placement. There is one other study that compared SBS values of TB and BF but in a different context 
as brackets were bonded to bovine enamel, but they also found similar SBS values between metal brackets and 
either TB or BF32. In accordance with this study, Cetik et al. found the combination of CF and BF to be a suitable 
pretreatment for zirconia substrate to bond metal brackets16. Nevertheless, they found almost double as high SBS 
values compared to our results. This could be caused by the fact that they treated the zirconia surface with Al3O2 
and applied an additional layer of BrackFix primer or due to the differences in the study setting since they used 
a crosshead speed of 0.5 instead of 1.0 mm/min. To the best knowledge of the authors there is no other study 
using bracepaste as attachment material for bracket bonding. Although there were some differences considering 
SBS values, all attachment materials showed sufficiently high SBS values for clinical use.

The third hypothesis (“different artificial aging methods do not influence SBS”) again was rejected. The pre-
treatment with CF and application of TB showed lower SBS values after 90 days than after 500 TC. 90 days of 
storage also reduced SBS of BF/FU and BF/RXP compared to the initial values. In the present study SBS values 
were tested 24 h after bonding and additionally after two different aging regimens. Thermal cycling is supposed to 
test the resistance of the adhesion against temperature fluctuations that may cause mechanical stress, volumetric 
changes or microleakage at the bonding area33. In the present study, thermal cycling did not have an influence 
on SBS. As recommended by the DIN 13990:2017-04 specimens underwent 500 thermal cycles34. In contrast 
to prosthetic restorations brackets need to bond to the teeth only for a limited time period of approximately 
2 years35, but on the other hand there must be a reliable adhesion throughout the whole multibracket treatment 
to avoid prolonged treatment times36 and undesired tooth movement if teeth are not fixed to the wire. Therefore, 
including aging regimens into orthodontic SBS testing seems to be of major importance, although this aspect 
still not considered in many orthodontic SBS studies1,29,37,38. Despite of thermal cycling, SBS was tested after 
90 days of wet storage at 37 °C. Although wet environment can have an influence on SBS values as is can cause 
a degradation of fillers and weaken the attachment material or hydrolysis33, this kind of aging regimen was only 
considered in two further orthodontic SBS studies26,39. Within the FU groups SBS values were lower for all the 
different attachment materials after 90 days of wet storage and the combination of FU/BF and FU/BP showed 
the lowest median SBS values within the study, but values were still in the range of the required 5–10 MPa2,3.

In other studies, zirconia was pretreated using alumina powder resulting in reliable SBS values16,25. The 
approach of the present investigation was a to find a clinical pretreatment method that could be used for all type 
of ceramics. When silicate ceramics are pretreated with alumina powder there is a higher risk to cause fractures 
and cracks within the ceramic as with silica coating (CoJet) due to the geometry of the particles10. Therefore, the 
CoJet system was used for pretreatment in accordance with a previous study26.

With respect to Weibull modulus, the combinations with the adhesive systems containing MDP-monomers 
showed trends to higher values than a silane. A high Weibull module indicates good bond strength reliability. 
However, since orthodontic adhesions usually do not have to withstand longer than 2 years, this is a factor that 
can possibly be neglected. However, further investigations are necessary here.

In all three attachment material groups the distribution of the ARI was different when FU was applied in 
comparison to CF and RXP as there was a higher percentage of ARI 1 and 0. In the other groups an ARI of 2 
was predominant. Many authors interpret an ARI of 2 or 3 as favorable as the risk of implementing cracks into 
the ceramic is reduced when the fracture occurs in the interface between bracket and attachment material. On 
the other hand, all the attachment material needs to be removed from the ceramic surface with a drilling device, 
which again can be a risk for damaging the restoration. Regardless of this consideration the results of the ARI do 
not reflect clinical reality. The force that is applied to debond a metal bracket in a clinical setting is very different 
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from the force in the standardized testing device. In-vitro the force is only applied in one direction (parallel) 
from occlusal to gingival. Clinically the brackets or wings are usually squeezed with a special debonding plier, 
straight cutter or similar. As even the use of different pliers results in significant differences in terms of ARI 
distribution40, the results of in-vitro ARI should be interpreted with great caution as their clinical relevance 
seems to be very limited.

Limitations.  The results of in-vitro SBS studies always need to be interpreted with caution and are very often 
criticized. In terms of the method, micro-tensile bond strength tests seem to be favorable compared to shear 
bond strength as they reduce for example the stress concentration41–43. Nonetheless, the shear bond strength set-
up in the orthodontic research, especially when brackets are bonded for testing, is closer to clinical conditions, 
but is also less complex and less expensive. However, there is a strong need to follow standardized protocols in 
term of study setting insofar as possible and include aging regimens as standard procedure to create a reliable 
tool for comparative measurements as a basis for further clinical research.

Conclusions
Within the limitations of the study the following conclusions can be derived:

•	 All investigated pretreatment methods and attachment materials showed sufficiently high SBS values.
•	 After 90 days of wet storage the pretreatment with FU presented lower SBS values.
•	 The previously investigated method (CoJet/CF) for bonding to silicate ceramics, can also be used for bonding 

to zirconia.

Data availability
Data will be provided upon reasonable request.
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