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Abstract
The existence theory is developed for solutions of the inhomogeneous linearized field equa-
tions for causal variational principles. These equations are formulatedweaklywith an integral
operator which is shown to be bounded and symmetric on a Hilbert space endowed with a
suitably adapted weighted L2-scalar product. Guided by the procedure in the theory of lin-
ear elliptic partial differential equations, we use the spectral calculus to define Sobolev-type
Hilbert spaces and invert the linearized field operator as an operator between such function
spaces. The uniqueness of the resulting weak solutions is analyzed. Our constructions are
illustrated in simple explicit examples. The connection to the causal action principle for static
causal fermion systems is explained.
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1 Introduction

Causal variational principles were introduced in [4] as a mathematical generalization of the
causal action principle, being the analytical core of the physical theory of causal fermion
systems (for the general context see the reviews [6, 9, 12], the textbooks [5, 18] or the
website [22]). In general terms, given a manifold G together with a non-negative func-
tion L : G × G → R

+
0 , in a causal variational principle one minimizes the action S given

by

S(μ) =
∫
G

dμ(x)
∫
G

dμ(y) L(x, y)

under variations of the measure μ on G, keeping the total volume μ(G) fixed (for the precise
mathematical setup see Sect. 2.1 below). The support of the measure μ denoted by

N := suppμ ⊂ G

has the interpretation as the underlying space or spacetime. A minimizing measure satisfies
corresponding Euler–Lagrange (EL) equations (for details see the preliminaries in Sect. 2.1
or [18, Chapter 7]). For the detailed analysis of minimizing measures, it is very useful to
consider first variations of the measure μ which preserve the EL equations. Such a variation
is described by a so-called jet v = (b, v), which consists of a scalar function b and a vector
field v [for details see (2.8) in Sect. 2.2 below] satisfying the homogeneous linearized field
equations

�v = 0,

where the operator � is defined by

�v(x) = ∇
(∫

N

(∇1,v + ∇2,v
)L(x, y) dμ(y) − ∇v s

)
.

Here s is a positive parameter, and the jet derivative∇ is a combination of multiplication and
directional derivative (for details see again Sect. 2.2). For the mathematical analysis of the
linearized field equations, it is preferable to include an inhomogeneity w,

�v = w. (1.1)
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In view of the formal similarity to the Poisson equation, we sometimes refer to the operator�
as the Laplacian. Despite this analogy, one should keep in mind that the inhomogeneous lin-
earized field equations are not differential equations, but instead they are nonlocal equations
involving integrals of specific integral kernels. Nevertheless, it turns out that methods of par-
tial differential equations (PDEs) can be used for their analysis. This has first been explored
in [3], where methods of hyperbolic PDEs were used to prove under general assumptions that
the Cauchy problem is well-posed. In the present paper, we explore how methods of the the-
ory of elliptic PDEs are applicable to the analysis of the linearized field equations. The main
application in mind are static linearized fields in static causal fermion systems. In analogy to
the scalar wave equation, which for time-independent fields goes over to the Poisson equa-
tion, one might expect that the linearized field equations of the underlying causal variational
principle might change from hyperbolic to elliptic type. It is the goal of this paper to show
that this naive expectation is indeed correct. Moreover, we work out abstractly how elliptic
estimates can be used for the analysis of the linearized field equations in the static setting. To
this end, we realize the Laplacian as a bounded symmetric operator on a weighted L2-space.
Using the spectral calculus, we define Sobolev-type Hilbert spaces and prove that the Lapla-
cian, considered as an operator between such function spaces, has a well-defined inverse.
Our abstract constructions are illustrated in various examples.

The paper is organized as follows. Section 2 provides the necessary preliminaries on causal
variational principles and the linearized field equations. In Sect. 3, the bilinear form obtained
by weak evaluation of the linearized field equations is written as 〈〈u,�Nv〉〉, where 〈〈., .〉〉 is a
weighted L2-scalar product (with a suitable “adapted” weight function h constructed out of
the Lagrangian), and �N is a bounded symmetric operator on the resulting Hilbert space. In
Sect. 4, we proceed by solving the inhomogeneous linearized field equations. In Sect. 5 we
illustrate our constructions in simple explicit examples. In Sect. 6 we explain the connection
to static linearized fields in static causal fermion systems. Finally, in “Appendix” the role of
the scalar components of the jets is clarified.

2 Preliminaries

We now recall the basics on causal variational principles in the setting needed here. More
details can be found in [13, 18].We use a slightly different notation in order to get consistency
with the causal variational principle in the static case to be introduced in Sect. 6.

2.1 Causal variational principles in the non-compact setting

We consider causal variational principles in the non-compact setting as first introduced
in [13, Section 2]. Thus we let G be a (possibly non-compact) smooth manifold of dimen-
sion m ≥ 1 and μ a (positive) Borel measure on G. Moreover, we are given a non-negative
function L : G × G → R

+
0 (the Lagrangian) with the following properties:

(i) L is symmetric: L(x, y) = L(y, x) for all x, y ∈ G.
(ii) L is lower semi-continuous, i.e. for all sequences xn → x and yn′ → y,

L(x, y) ≤ lim inf
n,n′→∞

L(xn, yn′).
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The causal variational principle is to minimize the action

S(μ) =
∫
G

dμ(x)
∫
G

dμ(y) L(x, y) (2.1)

under variations of the measure μ, keeping the total volume μ(G) fixed (volume constraint).
If the total volume μ(G) is finite, one minimizes the causal action within the class of all

regular Borel measures with fixed total volume. If the total volume μ(G) is infinite, however,
it is not obvious how to implement the volume constraint, making it necessary to proceed as
follows. We make the following additional assumptions:

(iii) The measure μ is locally finite (meaning that any x ∈ G has an open neighborhood U
with μ(U ) < ∞) and regular (meaning that the measure of a set can be recovered by
approximation from inside with compact and from outside with open sets).

(iv) The function L(x, .) is μ-integrable for all x ∈ G, giving a lower semi-continuous and
bounded function on G.

Given a regular Borel measure μ on G, we vary over all regular Borel measures μ̃ with∣∣μ̃ − μ
∣∣(G) < ∞ and

(
μ̃ − μ

)
(G) = 0 (2.2)

(where | · | denotes the total variation of a measure). For such variations, the difference of
the actions is well-defined by

S(μ̃) − S(μ) =
∫
G

d(μ̃ − μ)(x)
∫
G

dμ(y) L(x, y) +
∫
G

dμ(x)
∫
G

d(μ̃ − μ)(y) L(x, y)

+
∫
G

d(μ̃ − μ)(x)
∫
G

d(μ̃ − μ)(y) L(x, y). (2.3)

The measure μ is said to be a minimizer under variations of finite volume if this difference
is non-negative for all regular Borel measures satisfying (2.2). The existence theory for such
minimizers is developed in [14]. Moreover, it is shown in [13, Lemma 2.3] that a minimizer
satisfies the Euler–Lagrange (EL) equations which state that for a suitable value of the
parameter s > 0, the lower semi-continuous function � : G → R

+
0 defined by

�(x) :=
∫
G
L(x, y) dμ(y) − s (2.4)

is minimal and vanishes on the support of μ,

�|suppμ ≡ inf
G

� = 0. (2.5)

For further details we refer to [13, Section 2].

2.2 The restricted Euler–Lagrange equations and jet spaces

We denote the support of μ by N ,

N := suppμ ⊂ G.

The EL equations (2.5) are nonlocal in the sense that they make a statement on � even for
points x ∈ G which are far away from N . It turns out that for the applications in this paper, it
is preferable to evaluate the EL equations only locally in a neighborhood of N . This leads to
the restricted EL equations introduced in [13, Section 4]. We here give a slightly less general
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version of these equations which is sufficient for our purposes. In order to explain how the
restricted EL equations come about, we begin with the simplified situation that the function �

is smooth. In this case, the minimality of � implies that the derivative of � vanishes on N , i.e.

�|N ≡ 0 and D�|N ≡ 0 (2.6)

(where D�(p) : TpG → R is the derivative). In order to combine these two equations in a
compact form, it is convenient to consider a pair u := (a, u) consisting of a real-valued
function a on N and a vector field u on TG along N , and to denote the combination of
multiplication and directional derivative by

∇u�(x) := a(x) �(x) + (
Du�

)
(x). (2.7)

Then the Eq. (2.6) imply that ∇u�(x) vanishes for all x ∈ N . The pair u = (a, u) is referred
to as a jet.

In the general lower-continuous setting, onemust be careful because the directional deriva-
tive Du� in (2.7) need not exist. Our method for dealing with this issue is to restrict attention
to vector fields for which the directional derivative is well-defined. Moreover, we must spec-
ify the regularity assumptions on a and u. To begin with, we always assume that a and u
are smooth in the sense that they have a smooth extension to the manifold G. Thus the jet u
should be an element of the jet space

J := {
u = (a, u) with a ∈ C∞(N ,R) and u ∈ �(N , TG)

}
, (2.8)

where C∞(N ,R) and �(N , TG) denote the space of real-valued functions and vector fields
on N , respectively, which admit a smooth extension to G. We always denote spaces of
compactly supported jets with a subscript 0; for example,

J0 := {
u ∈ J

∣∣ supp u compact
}
. (2.9)

Clearly, the fact that a jet u is smooth does not imply that the functions � or L are
differentiable in the direction of u. This must be ensured by additional conditions which are
satisfied by suitable subspaces of J which we now introduce. First, we let �diff be those
vector fields for which the directional derivative of the function � exists,

�diff = {
u ∈ C∞(N , TG)

∣∣ Du�(x) exists for all x ∈ N
}
.

This gives rise to the jet space

Jdiff := C∞(N ,R) ⊕ �diff ⊂ J. (2.10)

For the jets in Jdiff , the combination of multiplication and directional derivative in (2.7) is
well-defined. We choose a linear subspace Jtest ⊂ Jdiff with the properties that its scalar and
vector components are both vector spaces,

Jtest = C test(N ,R) ⊕ �test ⊆ Jdiff ,

and that the scalar component is nowhere trivial in the sense that1

for all x ∈ N there is a ∈ C test(N ,R) with a(x) �= 0. (2.11)

Then the restricted EL equations read (for details cf. [13, (eq. (4.10)])

∇u�|N = 0 for all u ∈ Jtest. (2.12)

1 This assumption is convenient, because then the restricted EL equations (2.12) imply that � vanishes iden-
tically on M .
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We remark that, in the literature, the restricted EL equations are sometimes also referred to
as the weak EL equations. Here we prefer the notion “restricted” in order to avoid confusion
with weak solutions of these equations as constructed in [3] (in the static setting, such weak
solutions will be constructed in Sect. 4). The purpose of introducing Jtest is that it gives the
freedom to restrict attention to the part of information in the EL equations which is relevant
for the application in mind.

We conclude this section by introducing spaces of jets with suitable differentiability
properties. Before beginning, we point out that, here and throughout this paper, we use
the following conventions for partial derivatives and jet derivatives:

• Partial and jet derivatives with an index i ∈ {1, 2}, as for example in (2.14), only act on
the respective variable of the function L. This implies, for example, that the derivatives
commute,

∇1,v∇1,uL(x, y) = ∇1,u∇1,vL(x, y).

• The partial or jet derivatives which do not carry an index act as partial derivatives on the
corresponding argument of the Lagrangian. This implies, for example, that

∇u

∫
G

∇1,v L(x, y) dμ(y) =
∫
G

∇1,u∇1,v L(x, y) dμ(y). (2.13)

Thus jets are never differentiated. We now introduce the spaces J�, where � ∈ N0 ∪ {∞} can
be thought of as the order of differentiability if the derivatives act simultaneously on both
arguments of the Lagrangian:

Definition 2.1 For any � ∈ N0 ∪ {∞}, the jet space J� ⊂ J is defined as the vector space of
test jets with the following properties:

(i) For all y ∈ N and all x in an open neighborhood of N , directional derivatives(∇1,v1 + ∇2,v1

) · · · (∇1,vp + ∇2,vp

)L(x, y) (2.14)

(computed componentwise in charts around x and y) exist for all p ∈ {1, . . . , �} and
all v1, . . . , vp ∈ J�.

(ii) The functions in (2.14) are μ-integrable in the variable y, giving rise to locally bounded
functions in x. More precisely, these functions are in the space

L∞
loc

(
N , L1(N , dμ(y)

); dμ(x)
)
.

(iii) Integrating the expression (2.14) in y over N with respect to the measure μ, the resulting
function (defined for all x in an open neighborhood of N ) is continuously differentiable
in the direction of every jet u ∈ Jtest .

2.3 The linearized field equations

The EL equations (2.5) [and similarly the restricted EL equations (2.6)] are nonlinear equa-
tions because they involve the measure ρ in a twofold way: first, the measure comes up as
the integration measure in (2.4), and second the function � is evaluated on the support of
this measure. Following the common procedure in mathematics and physics, one can sim-
plify the problem by considering linear perturbations about a given solution. As an example
in classical field theory, considering a family (gτ )τ∈[0,1) of Lorentzian metrics which all
satisfy the vacuum Einstein equations, the linearization ∂τ gτ describes gravitational waves
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propagating in the spacetime with metric gτ . The analogous notion in the setting of causal
fermion systems is a linearization of a family of measures (μ̃τ )τ∈[0,1) which all satisfy the
restricted EL equations (2.12) (for fixed values of the parameters κ and s). It turns out to be
fruitful to construct this family of measures by multiplying a given minimizing measure μ

by a weight function fτ and then “transporting” the resulting measure with a mapping Fτ .
More precisely, we consider the ansatz

μ̃τ = (Fτ )∗
(

fτ μ
)
, (2.15)

where fτ ∈ C∞(N ,R+) and Fτ ∈ C∞(N ,G) are smooth mappings, and (Fτ )∗μ denotes
the push-forward (defined for a subset	 ⊂ G by ((Fτ )∗μ)(	) = μ(F−1

τ (	)); see for exam-
ple [2, Section 3.6]).

The property of the family of measures (μ̃τ )τ∈[0,1) of the form (2.15) to satisfy the
restricted EL equation for all τ means infinitesimally in τ that the jet v defined by

v = (b, v) := d

dτ
( fτ , Fτ )

∣∣
τ=0 (2.16)

satisfies the linearized field equations. We now recall the main step of the construction. Using
the definition of the push-forward measure, we can write the restricted EL equations (2.12)
for the measure μ̃τ as

∇u

( ∫
N
L(

Fτ (x), Fτ (y)
)

fτ (y) dμ − s

)
= 0.

Since the function � vanishes on the support, we may multiply by fτ (x) to obtain

∇u

(∫
N

fτ (x) L
(
Fτ (x), Fτ (y)

)
fτ (y) dμ − fτ (x) s

)
= 0. (2.17)

At this point, the technical complication arise that one must specify the τ -dependence of
the jet spaces, and moreover the last transformation makes it necessary to transform the jet
spaces. Here we do not enter the details but refer instead to the rigorous derivation in [8, Sec-
tion 3.3] or to the simplified presentation in the smooth setting in the textbook [18, Chapter 6].
Differentiating (2.17) with respect to τ gives the homogeneous linearized field equations

〈u,�v〉|N = 0 for all u ∈ Jtest, (2.18)

where

〈u,�v〉(x) := ∇u

(∫
N

(∇1,v + ∇2,v
)L(x, y) dμ(y) − ∇v s

)
. (2.19)

We denote the vector space of all solutions of the linearized field equations by Jlin ⊂ J1.

2.4 Positive functionals arising from second variations

Another ingredient to our constructions are positive functionals which arise in the analysis
of second variations [7]. We now recall a few concepts and results.

Clearly, if μ is a minimizing measure, then second variations are non-negative. For our
purposes, it again suffices to consider variations of the form (2.15), where for simplicity we
assume that fτ and Fτ are trivial outside a compact set. Under these assumptions, it is proven
in [7, Theorem 1.1] that the positivity of second variations gives rise to the inequality∫

N
dμ(x)

∫
N

dμ(y) ∇1,v∇2,vL(x, y) +
∫

N
∇2�|x(v, v) dμ(x) ≥ 0,
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where jet v ∈ J0 is again an infinitesimal generator of a variation of the form (2.16), which,
however, does not need to respect the EL equations [and J0 are the compactly supported
jets (2.9)]. For our purposes, it is preferable to write this inequality as

1

2

∫
N

dμ(x)
∫

N
dμ(y)

(∇1,v + ∇2,v
)2L(x, y) −

∫
N
(∇2s)(v, v) dμ ≥ 0. (2.20)

Then it is obvious that the integrals are well-defined if we assume that u, v ∈ J2 (see
Definition 2.1). Moreover, using (2.4) and (2.19), the inequality can be written in the compact
form

〈v,�v〉N ≥ 0 for all v ∈ J20, (2.21)

where we used the notation

〈u,�v〉N :=
∫

N
〈u,�v〉(x) dμ(x). (2.22)

In other words, the operator representing 〈·,�·〉N is positive semi-definite. This positivity
property is not an assumption, but it follows already from the structure of causal variational
principles. It might come as a surprise, because the analogous inequality for thewave operator
in Minkowski space is violated. Instead, this inequality holds (up to an irrelevant sign) for
the Laplacian in the Riemannian setting. These facts are not a contradiction if one keeps in
mind that the operator � has a structure which is very different from a differential operator.
The basic reason why (2.21) holds is that, in the setting of causal variational principles, we
consider minimizers. In contrast, the Dirichlet energy in the hyperbolic setting is unbounded
from below, making it necessary to work instead with critical points. The fact that, in the
theory of causal fermion systems, the dynamics in spacetime is described byminimizers (and
not merely critical points) is a specific feature of the causal action principle. We refer the
interested reader to the text books [5, 18].

3 The Laplacian as a bounded symmetric operator

3.1 The adapted weighted L2-scalar product

In preparation, we let �x be the subspace of the tangent space spanned by the test jets,

�x := {
u(x) | u ∈ �test} ⊂ TxG.

We introduce aRiemannianmetric gx on�x. ThisRiemannianmetric also induces a pointwise
scalar product on the jets. Namely, setting

Jx := R ⊕ �x,

we obtain the scalar product on Jx

〈·, ·〉x : Jx × Jx → R, 〈v, ṽ〉x := b(x) b̃(x) + gx
(
v(x), ṽ(x)

)
, (3.1)

were the scalar and vector components of v and ṽ are denoted by v = (v, b), ṽ = (ṽ, b̃). We
denote the corresponding norm by ‖·‖x. We note for clarity that the choice of the Riemannian
metric gx involves a certain degree of freedom. This freedom can be used to our advantage
in order to help to arrange the technical assumptions needed below (in particular that the

norm ‖∇2L(x, y)‖ in (3.4) be finite almost everywhere). We point out that the subsequent
constructions may depend on the choice of gx .
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In order to have the largest possible flexibility, we shall work with a subspace Jvary of the
compactly supported test jets,

Jvary ⊂ Jtest ∩ J20, (3.2)

which we can choose arbitrarily depending on the application in mind. In particular, the
scalar component of Jvary does not need to be nontrivial in the sense (2.11). Indeed, a case of
particular interest is when the Jvary has no scalar component, as will be explained in detail
in “Appendix”. We now consider the bilinear form [see (2.22)]

〈·,�·〉N : Jvary × Jvary → R. (3.3)

This bilinear form is positive semi-definite according to (2.21). Using the abbreviation

∇w := (∇1,w + ∇2,w
)
,

we write (2.20) as

〈v,�v〉N = 1

2

∫
N

dμ(x)
∫

N
dμ(y) ∇v∇vL(x, y) −

∫
N
(∇2s)(v, v) dμ ≥ 0

(and (∇2s)(v, v) = ∇v∇vs = b(x)2 s). This shows in particular that the bilinear
form 〈 . , � . 〉N is symmetric. For all x, y ∈ N we define

∥∥∇2L(x, y)
∥∥ := sup

u,v∈Jvary

∣∣∇u∇vL(x, y)
∣∣(‖u(x)‖x + ‖u(y)‖y

)(‖v(x)‖x + ‖v(y)‖y
) , (3.4)

where the supremum is taken only over those jets for which the denominator is non-zero.
Furthermore, we assume that the Lagrangian is sufficiently regular such that this quantity is
finite for almost all x, y ∈ N . Then for any v = (v, b) ∈ Jvary:

∥∥∇v∇vL(x, y)
∥∥ ≤ ∥∥∇2L(x, y)

∥∥ (‖v(x)‖x + ‖v(y)‖y
)2

≤ 2
∥∥∇2L(x, y)

∥∥ (‖v(x)‖2x + ‖v(y)‖2y
)
.

We thus obtain the estimate

〈v,�v〉N ≤
∫

N
dμ(x)

∫
N

dμ(y)
∥∥∇2L(x, y)

∥∥ (‖v(x)‖2x + ‖v(y)‖2y
) −

∫
N

b(x)2 s dμ(x)

= 2
∫

N
dμ(x)‖v(x)‖2x

∫
N

dμ(y)
∥∥∇2L(x, y)

∥∥ −
∫

N
b(x)2 s dμ(x). (3.5)

Definition 3.1 The adapted weighted L2-scalar product is defined by

〈〈u, v〉〉 :=
∫

N
〈u(x), v(x)〉x h(x) dμ(x), (3.6)

where h is the weight function

h(x) := 1 +
∫

N

∥∥∇2L(x, y)
∥∥ dμ(y). (3.7)

The corresponding norm is denoted by ||| · |||.
We assume that this norm is finite for all jets in Jvary, thus defining a scalar product

on Jvary,
〈〈·, ·〉〉 : Jvary × Jvary → R. (3.8)
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This assumption is satisfied for example if we assume that the integral in (3.7) is a locally
bounded function in x (note that the jets in Jvary are all compactly supported). If the function h
is unbounded, one can still arrange in many situations that the scalar product (3.8) is finite
by adapting Jvary appropriately (for instance by working with compactly supported jets; see
the example in Sect. 5.3). Taking the completion, we obtain the Hilbert space (h, 〈〈·|·〉〉). By
definition, the weighted norm is larger than the L2-norm, i.e.

‖u‖L2(N ,dμ) ≤ |||u||| for all u ∈ Jvary,

giving rise to a natural embedding h ↪→ L2(N , dμ).

3.2 Spectral decomposition of the Laplacian

The estimate (3.5) shows that the bilinear form 〈·,�·〉N is boundedwith respect to the adapted
weighted L2-scalar product introduced in Definition 3.1, i.e. there is a constant C > 0 such
that

∣∣〈u,�v〉N
∣∣ (∗)≤ √〈u,�u〉N

√〈v,�v〉N ≤ C |||u||| |||v||| for all u, v ∈ Jvary,

where in (∗)we applied the Cauchy–Schwarz inequality to the positive semi-definite bilinear
form 〈·,�·〉 [see (2.21)]. The Fréchet–Riesz theorem yields a uniquely determined bounded
and symmetric operator �N with the property that

〈u,�v〉N = 〈〈u,�N v〉〉 for all u, v ∈ h. (3.9)

We let hC be the complexification of the vector space h, i.e.

hC = h ⊕ ih

with the obvious multiplication by complex numbers. Extending the bilinear form 〈〈·|·〉〉 to a
sesquilinear form on hC by

〈〈(u + iv) | (z + iw)〉〉 := 〈〈u | z〉〉 − i 〈〈v | z〉〉 + i〈〈u |w〉〉 + 〈〈v |w〉〉,
we obtain the complex Hilbert space (hC, 〈〈·|·〉〉). The Laplacian �N extends to a complex-
linear bounded operator on hC by

�N (u + iv) := �Nu + i�Nv.

The resulting operator is again symmetric and positive semi-definite, i.e.

〈〈u | �N v〉〉 = 〈〈�N u | v〉〉 and 〈〈u | �N u〉〉 ≥ 0 for all u, v ∈ hC.

The spectral theorem for bounded symmetric operators on a complex Hilbert space yields
the decomposition

�N =
∫

σ(�N )

λ d Eλ, (3.10)

where d Eλ is a compactly supported projection-valued Borel measure onR+
0 (for details see

for example [23, Section VII.3]). Let f be a real-valued (possibly unbounded) Borel function
on σ(�N ) ⊂ R

+
0 which is finite almost everywhere. Using the spectral calculus for (possibly

unbounded) Borel functions (for details see for example [23, Section VIII.3]), the operator

f
(
�N

) =
∫

σ(�N )

f (λ) d Eλ (3.11)
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with domain

D
(

f
(
�N

)) :=
{
u ∈ hC

∣∣∣
∫

σ(�N )

| f (λ)|2 d〈〈u | Eλu〉〉 < ∞
}

is selfadjoint. If Eλ = 0 for all points λ with f (λ) ∈ {±∞}, then the domain is dense. In
particular, this is the case if E has no point spectrum. We remark that, if the function f
is bounded, then the operator f (�N ) is also bounded, and its domain is the whole Hilbert
space.

Remark 3.2 Wealso have a spectral decomposition on the realHilbert space h in the following
sense. Starting from the spectral decomposition (3.10), we write the spectral measure in a
block operator form for the real and imaginary parts,

d Eλ =
(

d E11
λ d E12

λ

d E21
λ d E22

λ

)
. (3.12)

Next, by construction of the complexification, the operator �N has the block operator form

�N =
(

�R

N 0
0 �R

N

)
,

where for clarity �R

N : h → h is the operator on the real Hilbert space. Using the functional
calculus, we find that for every real-valued Borel function f , the operator f (�N ) is again
block diagonal,

f (�N ) =
(

f (�R

N ) 0
0 f (�R

N )

)
.

Comparing this equation with (3.12) and using that f is arbitrary, we conclude that

d E11
λ = d E22

λ and d E12
λ = 0 = d E21

λ .

Hence d E11
λ is the desired spectral measure of the operator �R

N .

4 Construction of weak solutions

4.1 The weak linearized field equations

Given a suitable jet w, we want to solve the inhomogeneous linearized field equations (1.1)
in the weak formulation

〈u,�v〉N = 〈u,w〉N for all u ∈ Jvary, (4.1)

where we use the pointwise scalar product on the jets (3.1) in order to identify dual jets with
jets. Using (3.9), we can rewrite the left side with the operator �N ,

〈〈u,�Nv〉〉 = 〈u,w〉N for all u ∈ Jvary. (4.2)

Using this formula in (4.1) has the disadvantage that we obtain different inner products on the
left and on the right. This problem can be cured by absorbing one over the weight factor (3.7)
into the inhomogeneity. Thus we write (4.2) equivalently as

〈〈u,�Nv〉〉 = 〈〈u, ŵ〉〉 for all u ∈ Jvary, (4.3)
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where ŵ is the new inhomogeneity

ŵ(x) := 1

h(x)
w(x).

We refer to (4.3) as the weak linearized field equations formulated with the adapted weighted
L2-scalar product.

4.2 Solutions in Sobolev-type Hilbert spaces

Formally, the weak linearized field equations (4.3) can be solved by setting v = (�N )−1u.
Our strategy formakingmathematical sense of the inverse is towork in suitableHilbert spaces
constructed from the spectral calculus for the Laplacian (3.11). Since the Laplacian �N is
bounded, the interesting point is the behavior of the spectrum near zero. This leads us to
consider negative powers of the spectral parameter.

Definition 4.1 Given k ∈ N0, the complex scalar product space (V , 〈〈·|·〉〉hk ) is defined by

V =
{
u ∈ hC

∣∣∣∣
∫

σ(�N )

λ−k d〈〈u | Eλu〉〉 < ∞
}

(4.4)

〈〈u|v〉〉hk =
∫

σ(�N )

λ−k d〈〈u | Eλv〉〉. (4.5)

Its Hilbert space completion is denoted by (hk, 〈〈·|·〉〉hk ). We refer to the hk as Sobolev-type
Hilbert spaces.

Clearly, the Hilbert space h0 coincides with hC. If k ≥ 1, the condition for the integral in (4.4)
to be finite implies in particular that u must be orthogonal to the kernel of �N , i.e.

〈〈u | v〉〉 = 0 for all v ∈ ker�N . (4.6)

Moreover, for any ε > 0, the subspace E(ε,∞)(h
C) is contained in hk . This means that (4.5)

poses a condition only for vectors whose spectral decomposition extends to the origin. The
name Sobolev-type Hilbert space is motivated by the fact that the spectral decomposition
with respect to �N gives information on the regularity of the jets; this will be explained in
Sect. 5.1 in a simple example.

We also note that, the higher k is chosen, the stronger the condition in (4.4) becomes. This
shows that we have the sequence of inclusions

hC = h0 ⊃ h1 ⊃ h2 ⊃ · · · .

Moreover, the Laplacian �N is a well-defined mapping

�N : hk → hk+2.

Theorem 4.2 Let ŵ ∈ hk+2 with k ∈ N0. Then the inhomogeneous linearized field equations

�N u = ŵ

have a unique weak solution u ∈ hk given by

u =
∫

σ(�N )

λ−1 d Eλŵ, (4.7)

where the integral converges in hk .
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Proof First of all, we know from (4.6) that ŵ ∈ (ker�N )⊥. Thus E{0}ŵ = 0. As a conse-
quence, the following integral exists and is finite,∫

σ(�N )

λ−k d〈〈u | Eλu〉〉 =
∫

σ(�N )

λ−k−2 d〈〈ŵ | Eλŵ〉〉 = ‖ŵ‖2hk+2 < ∞.

As a consequence, the integral (4.7) converges in the Hilbert space hk . Moreover, it follows
from the spectral calculus that

�Nu = �N

∫
σ(�N )

λ−1 d Eλ ŵ =
∫

σ(�N )

λ λ−1 d Eλ ŵ = ŵ.

This concludes the proof. ��
Finally, it is convenient to introduce the function spaces

Wk := {h(x) ŵ(x) | ŵ ∈ hk}.
Then the mapping

�−1 : Wk+2 → hk, w �→ v :=
∫

σ(�N )

λ−1 d Eλ

w

h

gives the desired weak solution of the inhomogeneous linearized field equations (1.1).

5 A few simple explicit examples

In this section we illustrate the previous abstract constructions and results by a few simple
examples. These examples are chosen specifically in such a way that a minimizing measure
can be given in closed form, making it possible to analyze the system explicitly.

5.1 A one-dimensional Gaussian

We let G = R and choose the Lagrangian as the Gaussian

L(x, y) = 1√
π

e−(x−y)2 . (5.1)

Lemma 5.1 The Lebesgue measure

dμ = dx

is a minimizer of the causal action principle for the Lagrangian (5.1) in the class of variations
of finite volume [see (2.3) and (2.2)]. It is the unique minimizer within this class of variations.

Proof Writing the difference of the actions as in (2.3), we can carry out the integrals over μ

using that the Gaussian is normalized,∫
G
L(x, y) dμ(y) = 1.

We thus obtain

S(μ) − S(μ̃) = 2
∫

N
d(μ − μ̃)(x) +

∫
N

d(μ − μ̃)(x)
∫

N
d(μ − μ̃)(y) L(x, y)

=
∫

N
d(μ − μ̃)(x)

∫
N

d(μ − μ̃)(y) L(x, y),
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where in the last line we used the volume constraint (2.2). In order to show that the last
double integral is positive, we take the Fourier transform and use that the Fourier transform
of a Gaussian is again a Gaussian. More precisely,∫

N
eipx L(x, y) dx = e− p2

4 =: f (p).

Moreover, the estimate ∣∣∣∣
∫

N
eipx d(μ − μ̃)(x)

∣∣∣∣ ≤ ∣∣μ̃ − μ
∣∣(G) < ∞

shows that the Fourier transform of the signed measure μ̃ − μ is a bounded function g ∈
L∞(R). Approximating this function in L2(R), we can apply Plancherel’s theorem and use
the fact that convolution in position space corresponds to multiplication in momentum space.
We thus obtain∫

N
d(μ − μ̃)(x)

∫
N

d(μ − μ̃)(y) L(x, y)

=
∫

N

(F−1( f g)
)
(x) d(μ − μ̃)(x) =

∫ ∞

−∞
g(p) e− p2

4 g(p) dp ≥ 0, (5.2)

and the inequality is strict unless μ̃ = μ. This concludes the proof. ��
The EL equations read ∫

G
L(x, y) dμ(y) = 1 for all x ∈ R. (5.3)

We now specify the jet spaces. Since the Lagrangian is smooth, it is obvious that

Jdiff = J = C∞(R) ⊕ C∞(R)

(where we identify a vector field a(x) ∂x on R with the function a(x)). The choice of Jtest is
less obvious. In order to ensure that the conditions in Definition 2.1 are satisfied, we restrict
attention to functions which are bounded together with all their derivatives, denoted by

C∞
b := {

f ∈ C∞(R)
∣∣ f (n) ∈ L∞(R) for all n ∈ N0

}
.

Now different choices are possible. Our first choice is to consider jets whose scalar compo-
nents are compactly supported,

Jtest = C∞
0 (R) ⊕ C∞

b (R).

The linearized field equations (2.18) reduce to the scalar equation∫
N

(∇1,v + ∇2,v
)L(x, y) dμ(y) − ∇v 1 = 0 for all x ∈ R,

because if this equation holds, then the x-derivative of the left side is also zero. Using the EL
equations (5.3), the linearized field equations simplify to∫

N
∇2,vL(x, y) dμ(y) = 0 for all x ∈ R.

A specific class of solutions can be given explicitly. Indeed, choosing

u = (a, A) with a ∈ C∞
0 (R) and A(x) :=

∫ x

∞
a(t) dt ∈ C∞

b (R), (5.4)
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integration by parts yields∫
N

∇2,uL(x, y) dμ(y) =
∫

N

(
A′(y) + A(y) ∂y

)L(x, y) dy = 0. (5.5)

These linearized solutions are referred to as inner solutions, as introduced in a more general
context in [10]. Inner solutions can be regarded as infinitesimal generators of transformations
of N which leave the measure μ unchanged. Therefore, inner solutions do not change the
causal fermion system, but merely describe symmetry transformations of the measure. With
this in mind, inner solutions are not of interest by themselves. But they can be used in order
to simplify the form of the jet spaces. We shall come back to these inner solutions in the
general setting in “Appendix”, where we will show that, by adding suitable inner solutions,
one can arrange that the test jets have vanishing scalar components. In our example, this can
be arranged by the transformation

v = (b, v) �→ ṽ := v + u with u = (−b,−B),

where B is an indefinite integral of b.
In our example, we can also use the inner solutions alternatively in order to eliminate the

vector component of the test jets. To this end, it is preferable to choose the space of test jets
as

Jtest = C∞
b (R) ⊕ C∞

b (R). (5.6)

Now the vector component disappears under the transformation

v = (b, v) �→ ṽ := v + u with u = (−v′,−v) ∈ Jtest.

Therefore, it remains to consider the scalar components of jets. For technical simplicity, we
restrict attention to compactly supported functions. Thuswe choose the jet space Jvary in (3.2)
as

Jvary = C∞
0 (R) ⊕ {0}.

Then the Laplacian reduces to the integral operator with kernel L(x, y),

(
�(b, 0)

)
(x) =

∫
G
L(x, y) b(y) dy.

The bilinear form (3.3) takes the form

〈·,�·〉N : Jvary × Jvary → R, 〈a,�b〉N =
∫
G

dμ(x)
∫
G

dμ(y) L(x, y) a(x) b(y).

Moreover, ‖∇2L(x, y)‖ = L(x, y), so that the function h in (3.7) is constant,

h(x) := 1 +
∫

N
L(x, y) dμ(y) = 2.

Therefore, the adapted weighted scalar product 〈〈·, 〉〉 is twice the L2-scalar product,

〈〈a, b〉〉 := 2
∫

N
ab dμ,

making it possible to identify h with L2(N , dμ). Consequently, the Laplacian �N defined
by (3.9) simply is the convolution with the Gaussian,

�N : h → h, (�N a)(x) = 1

2

∫
N
L(x, y) a(y) dμ(y).

123



  133 Page 16 of 33 F. Finster, M. Lottner

The spectral decomposition of this operator is obtained by Fourier transformation,

�N a = F−1
(
1

2
e− p2

4
(Fa

)
(p)

)
.

Thus, inmomentumspace, the operator�N is amultiplication operator. Therefore, its spectral
measure is obtained by multiplying with the characteristic function of the level sets,

E	 = F−1 χg−1(	) F with g(p) := 1

2
e− p2

4 .

In particular, one sees that the high momenta (i.e. large |p|) correspond to the spectrum
near zero. Therefore, the negative powers of the spectral parameter in (4.5) capture the high-
frequency behavior of the jets. This is quite similar to the usual Sobolev norms on W 2,k(R),
as becomes clear when writing them in momentum space as

‖u‖2W 2,k (R)
=

∫ ∞

−∞
(
1 + |p|2 + · · · + |p|2k) |û(p)|2 dp.

This is why we refer to the hk as Sobolev-type Hilbert spaces.
Before going on, we remark that the above methods works more generally if L(x, y) is

chosen as a function of x − y which has the properties that it is non-negative and that its
Fourier transform is strictly positive (or non-negative, in which case the minimizing measure
may not be unique). In order to give a simple example, choosing the Lagrangian as the
one-dimensional Yukawa potential,

L(x, y) = g(x − y) := e−|x−y|

|x − y| ≥ 0,

its Fourier transform is computed by

ĝ(k) = 4π

1 + |k|2 ,

which, as desired, is strictly positive. Therefore, the Lebesgue measure dμ = dx is again the
unique minimizer of the causal action within the class of variations of finite volume.

5.2 Aminimizingmeasure supported on a hyperplane

In the previous example, the support of the minimizing measure was the whole space G. In
most examples motivated from the physical applications, however, the minimizing measure
will be supported on a low-dimensional subset of G (see for instance the minimizers with
singular support in [1, 17]). We now give a simple example where the minimizing measure
is supported on a hyperplane of G. We let G = R

2 and choose the Lagrangian as

L(x, y; x′, y′) = 1√
π

e−(x−x′)2(1 + y2
)(
1 + y′2), (5.7)

where (x, y), (x′, y′) ∈ G.

Lemma 5.2 The measure
dμ = dx × δy (5.8)

(where δy is the Dirac measure) is the unique minimizer of the causal action principle for
the Lagrangian (5.7) under variations of finite volume [see (2.3) and (2.2)].
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Note that this measure is supported on the x-axis,

N := suppμ = R × {0}.
Proof of Lemma 5.2 Let μ̃ be a regular Borel measure on G satisfying (2.2). Then the differ-
ence of actions (2.3) is computed by

S(μ̃) − S(μ) = 2√
π

∫
G

d(μ̃ − μ)(x, y)
∫

N
dx′ e−(x−x′)2 (1 + y2) (5.9)

+ 1√
π

∫
G

d(μ̃ − μ)(x, y)
∫
G

d(μ̃ − μ)(x′, y′) e−(x−x′)2 (
1 + y2

)(
1 + y′2).

(5.10)

Using that the negative part of themeasure μ̃−μ is supported on the x-axis, the first term (5.9)
can be estimated by

2√
π

∫
G

d(μ̃ − μ)(x, y)
∫

N
dx′ e−(x−x′)2 (1 + y2)

(∗)≥ 2√
π

∫
G

d(μ̃ − μ)(x, y)
∫

N
dx′ e−(x−x′)2 =

∫
G

d(μ̃ − μ)(x, y) = 0,

where in the last step we used the volume constraint. The second term (5.10), on the other
hand, can be rewritten as

1√
π

∫
G

dρ(x, y)
∫
G

dρ(x′, y′) e−(x−x′)2

with the signed measure ρ defined by

dρ(x, y) := (
1 + y2

)
d(μ̃ − μ)(x, y).

Now we can proceed as in the proof of Lemma 5.1 and use that the Fourier transform of the
integral kernel is strictly positive. For the uniqueness statement one uses that the inequality
in (∗) is strict unless μ̃ is supported on the x-axis. Then one can argue as in the proof of
Lemma 5.1.

For the minimizing measure (5.8), the function � takes the form

�(x, y) =
∫
G
L(x, y; x′, y′) dμ(x′, y′) − 1 = y2,

showing that the EL equations (2.5) are indeed satisfied.We now specify the jet spaces. Since
the Lagrangian is smooth, it is obvious that

Jdiff = J = C∞(R) ⊕ C∞(R,R2), (5.11)

where C∞(R,R2) should be regarded as the space of two-dimensional vector fields along
the x-axis. Similar as explained after (5.6), we want to use the inner solutions for simplifying
the vector components of the jets. To this end, in analogy to (5.6) we choose

Jtest = C∞
b (R) ⊕ C∞

b (R,R2). (5.12)

The linearized field equations (2.18) read

∇u

(∫ ∞

−∞
(∇1,v + ∇2,v

)
e−(x−x′)2(1 + y2

)(
1 + y′2) dx′ − ∇v

√
π

) ∣∣∣∣
y=y′=0

= 0. (5.13)

123



  133 Page 18 of 33 F. Finster, M. Lottner

Now the inner solutions are generated by the vector fields tangential to the x-axis. More
precisely, in analogy to (5.4), we consider the jet

v = (
b, (B, 0)

)
with b ∈ C∞

0 and B(x) :=
∫ x

∞
b(t) dt ∈ C∞

b (R). (5.14)

Substituting this jet into (5.13), the linearized field equations simplify to

∇u

((
1 + y2

) ∫ ∞

−∞
(∇1,v + ∇2,v

)
e−(x−x′)2 dx′ − ∇v

√
π

) ∣∣∣∣
y=y′=0

= 0.

The second component of the vector field u yields a y-derivative, giving rise to a factor 2y,
which vanishes at y = 0. Therefore, it suffices to test with a vector field u which is tangential
to the x-axis. Now we are back in the example of the one-dimensional Gaussian. Integrating
by parts as in (5.5) one sees that the jet v indeed satisfies the linearized field equations.

By suitably subtracting inner solutions, we can compensate the tangential components of
the jets. This leads us to choose

Jvary = C∞
0 (R) ⊕ ({0} ⊕ C∞

0 (R)
)
. (5.15)

Then the Laplacian simplifies as follows,

〈u,�v〉(x)
= 1√

π
∇u

(∫ ∞

−∞
(∇1,v + ∇2,v

)
e−(x−x′)2 (

1 + y2
)(
1 + y′2) dx′ − ∇v

√
π

) ∣∣∣∣
y=y′=0

= 2√
π

u(x) v(x)
∫ ∞

−∞
e−(x−x′)2 dx′ + 1√

π
a(x)

∫ ∞

−∞
e−(x−x′)2 b(x′) dx′

+ a(x)
(

1√
π

∫ ∞

−∞
b(x) e−(x−x′)2 dx′ − b(x)

)

= 2 u(x) v(x) + 1√
π

a(x)
∫ ∞

−∞
e−(x−x′)2 b(x′) dx′,

where u = (a, (0, u)) and v = (b, (0, v)). Hence the inhomogeneous linearized field
equations (1.1) with w = (e, w) give rise to separate equations for the scalar and vector
components,

1√
π

∫ ∞

−∞
e−(x−x′)2 b(x′) dx′ = e(x), v(x) = w(x)

2
. (5.16)

The bilinear form (3.3) reduces to

〈u,�v〉N = 2
∫ ∞

−∞
u(x) v(x) dx + 1√

π

∫ ∞

−∞
dx

∫ ∞

−∞
dx′ e−(x−x′)2 a(x) b(x′).

Moreover,

∇u∇vL
(
x, y; x′, y′) = 1√

π

(
a(x) + a(x′)

)(
b(x) + b(x′)

)
e−(x−x′)2

+ 2√
π

(u(x) v(x) + u(x′)v(x′)
)

e−(x−x′)2 .

As a consequence, ∇2L is estimated from above and below by the Gaussian, i.e.

1

c
e−(x−x′)2 ≤ ‖∇2L(x, y; x′, y′)‖ ≤ c e−(x−x′)2
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for a suitable numerical constant c > 0. As a consequence, the weight function (3.7) is
bounded,

h
(
(x, 0)

) ≤ 1 + c
√

π.

Hence the adapted scalar product agrees, up to an irrelevant constant, with the L2-scalar
product. This reflects the fact that the Laplacian is already bounded with respect to the
L2-scalar product, making it unnecessary to introduce the adapted scalar product. ��

5.3 An adapted L2-scalar product with non-trivial weight

In the previous example, the weight function h(x) in (3.7) was constant by symmetry. More-
over, the linearized field equations for the vector component were local [see the second
equation in (5.16)]. We now modify this example in order to make it more interesting in
these respects. We again let G = R

2 and choose the Lagrangian as

L(x, y; x′, y′) = 1√
π

e−(x−x′)2 e2yy
′(
1 + x2y2

)(
1 + x′2y′2).

In order to show that the measure (5.8) is again a minimizer of the causal action principle
under variations of of finite volume [see (2.3) and (2.2)], one argues as follows. Similar as
in the proof of Lemma 5.2], the difference of actions has a contribution linear in μ̃ − μ

[see (5.9)] and a contribution quadratic in μ̃ − μ [see (5.10)]. Using again that the negative
part of the measure μ̃ − μ is supported on the x-axis, the linear term is estimated by

∫
G

d(μ̃ − μ)(x, y)
∫

G
dμ(x′, y′) L(x, y; x′, y′)

= 1√
π

∫
G

d(μ̃ − μ)(x, y)
∫

N
dx′ e−(x−x′)2 (

1 + x2y2
)

≥ 1√
π

∫
G

d(μ̃ − μ)(x, y)
∫

N
dx′ e−(x−x′)2 =

∫
G

d(μ̃ − μ)(x, y) = 0.

The quadratic term in μ̃ − μ, on the other hand, can be rewritten as
∫
G

d(μ̃ − μ)(x, y)
∫
G

d(μ̃ − μ)(x′, y′) L(x, y; x′, y′)

= 1√
π

∫
G

dρ(x, y)
∫
G

dρ(x′, y′) e−(x−x′)2 e−(y−y′)2 ,

where ρ is the signed measure

dρ(x, y) = (
1 + x2y2

)
ey

2
d(μ̃ − μ)(x, y).

Now we can proceed again as in the proof of Lemma 5.1 and use that the Fourier transform
of the integral kernel is strictly positive.

The function � takes the form

�(x, y) =
∫
G
L(x, y; x′, y′) dμ(x′, y′) − 1

= 1√
π

∫ ∞

−∞
e−(x−x′)2 (

1 + x2y2
)

dx′ − 1 = x2y2.

123



  133 Page 20 of 33 F. Finster, M. Lottner

We again choose the jet spaces Jdiff , Jtest and Jvary according to (5.11), (5.12) and (5.15).
Then

〈u,�v〉(x)
= ∇u

(
1√
π

∫ ∞

−∞
(∇1,v + ∇2,v

)
e−(x−x′)2

× e2yy
′(
1 + x2y2

)(
1 + x′2y′2) dx′ − ∇v 1

)∣∣∣∣
y=y′=0

= 2√
π

u(x) v(x)
∫ ∞

−∞
e−(x−x′)2 x2 dx′

− 2√
π

u(x)
∫ ∞

−∞
e−(x−x′)2 v(x′) dx′ + 1√

π
a(x)

∫ ∞

−∞
e−(x−x′)2 b(x′) dx′

= 2 u(x) v(x) x2

− 2√
π

u(x)
∫ ∞

−∞
e−(x−x′)2 v(x′) dx′ + 1√

π
a(x)

∫ ∞

−∞
e−(x−x′)2 b(x′) dx′.

Thus, as desired, the linearized field equations are nonlocal also for the vector component.
Next, for any (x, y), (x′, y′) ∈ R × {0}

∇u∇vL
(
x, y; x′, y′) = 1√

π

(
a(x) + a(x′)

)(
b(x) + b(x′)

)
e−(x−x′)2

+ 2√
π

(u(x) v(x) x2 + u(x′) v(x′) x′2) e−(x−x′)2 .

Hence

‖∇u∇vL
(
x, y; x′, y′)‖ � (

1 + x2 + x′2) e−(x−x′)2

(here we make use of the fact that the jets in Jvary can be chosen independently at the points x
and x′).We conclude that the weight function (3.7) in the adapted weighted L2-scalar product
takes the form

h(x) = 1 +
∫

N

∥∥∇2L(x, y)
∥∥ dμ(y) � 1 + x2.

Thus the adapted weighted L2-scalar product is not equivalent to the standard L2-scalar
product. This example explains why the adaptation of the weight is needed in order to realize
the Laplacian as a bounded symmetric operator on a Hilbert space.

5.4 A non-homogeneousminimizingmeasure

In the previous examples, the minimizingmeasureμwas translation invariant in the direction
of the x-axis. We now give a general procedure for constructing examples of causal varia-
tional principles where the minimizing measure has no translational symmetry. In order to
work in a concrete example, our starting point is again the one-dimensional Gaussian (5.1).
But the method can be adapted to other kernels in a straightforward way. In view of these
generalizations, we begin with the following abstract result.
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Lemma 5.3 Let ρ be a measure on the m-dimensional manifold G whose support is the whole
manifold,

supp ρ = G.

Moreover, let L(x, y) ∈ (C0 ∩ L∞)(G × G,R+
0 ) be a symmetric, non-negative, continuous

and bounded kernel on G × G. Next, let h ∈ C0(G,R+) be a strictly positive, continuous
function on G. Assume that:

(i)
∫
G L(x, y) h(y) dρ(y) = 1 for all x ∈ G.

(ii) For all compactly supported bounded functions with zero mean,

g ∈ L∞
0 (G,R+) and

∫
G

g dρ = 0,

the following inequality holds,∫
G

dρ(x)
∫
G

dρ(y) L(x, y) g(x) g(y) ≥ 0. (5.17)

Then the measure dμ := h dρ is a minimizer of the causal action principle under variations
of finite volume [see (2.3) and (2.2)]. If the inequality (5.17) is strict for any non-zero g, then
the minimizing measure is unique within the class of variations

dμ̃τ = dμ + τ g dρ. (5.18)

Proof We begin with variations of the form (5.18), which we write equivalently as

dμ̃τ = (h + τg) dρ. (5.19)

Note that the function h is continuous and strictly positive. Moreover, the function g is
bounded and compactly supported. This implies that the function h + τg is non-negative for
sufficiently small |τ |. Furthermore, using that g has mean zero, we conclude that (5.19) is
an admissible variation of finite volume (2.2). Moreover, the difference of the actions (2.3)
is well-defined and computed by

S(ρ̃τ ) − S(μ)

= 2τ
∫
G

dμ(x) g(x)
∫
G

dμ(y) h(y) L(x, y) + τ 2
∫
G

dμ(x)
∫
G

dμ(x) L(x, y) g(x) g(y)

≥ 2τ
∫
G

g(y) dμ(y) = 0,

where in the second step we used the above assumptions (i) and (ii). The last step follows
from the fact that g has mean zero.

We conclude that the measure μ is a minimizer under variations of the form (5.19). In
order to treat a general variation of finite volume (2.2), we use the following approximation
argument. Our task is to show that∫

G
d(μ̃ − μ)(x)

∫
G

d(μ̃ − μ) L(x, y) ≥ 0. (5.20)

Exhausting G by compact sets and using that the Lagrangian is bounded and that |μ̃ − μ| is
finite, it suffices to consider the case that μ̃ − μ is compactly supported,

supp(μ̃ − μ) ⊂ K � G.
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We choose a partition of unity (η�)�∈N of G which is subordinate to the atlas of G. Then each
measure μ̃� := η�(μ̃ − μ) is compactly supported in the domain of a chart. Thus we can
identify it with a compactly supported measure on R

m , which for ease in notation we again
denote by μ̃�. Given k ∈ N, we decompose Rm into cells of size 1/k,

R
m =

⋃
�k∈(Z/k)m

C�k with C�k := �k +
[
0,

1

k

)m

and define functions g(�)
k by

g(�)
k (x) =

∑
�k∈(Z/k)m

μ̃�(C�k)
ρ(C�k)

χC�k (x) (5.21)

(where χ is again the characteristic function). Note that in (5.21) only a finite number of
summands are non-zero because the measure μ̃� is compactly supported. Moreover, each
summand is finite because the functions g(�)

k are bounded since the measure ρ(C�k) > 0;

here we use that the support of ρ is all of G. Hence g(�)
k ∈ L∞

0 (Rm), and a straightforward
estimate shows that

lim
k→∞

∫
Rm

φ(x) g(�)
k (x) dρ(x) =

∫
Rm

φ(x) dμ̃�(x) for all φ ∈ C0
0 (R

m).

In other words, the measures g(�)
k dρ converge in the weak∗-topology to the measure dμ̃�.

Moreover, one verifies immediately that the approximation preserves the total volume and
the bound for the total variation, i.e.∫

Rm
g(�)

k dρ = μ̃�

(
R

m)
and

∫
Rm

∣∣g(�)
k

∣∣ dρ ≤ ∣∣μ̃�

∣∣.
Finally, we introduce the function gk by

gk(x) =
∞∑

�=1

g(�)
k (x).

Here the sum is finite, because only a finite number of charts intersect K . Moreover, using
that the measure μ̃ has finite total variation, one sees from (5.21) that the functions g� are
all bounded. Moreover, the measures gk dρ all have finite total variation. Furthermore, they
converge on K to the signed measure μ̃ − μ. Using that the Lagrangian is continuous, it
follows that

0 ≤
∫

N
dμ(x)

∫
N

dμ(x) L(x, y) gk(x) gk(y)

k→∞−−−→
∫

N
d(μ̃ − μ)(x)

∫
N

d(μ̃ − μ) L(x, y),

concluding the proof. ��
Our goal is to apply this lemma to kernels of the form

L(x, y) = f (x) e−(x−y)2 f (y) (5.22)

with x, y ∈ R and a strictly positive function f , which for convenience we again choose as
a Gaussian,

f (x) = eαx2 with α ∈ R. (5.23)
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In order for this Lagrangian to be bounded, we choose α < 1. This kernel has the property (ii)
with respect to the Lebesgue-measure dρ = dx because for all non-trivial g ∈ L∞

0 (G,R+),
∫
G

dρ(x)
∫
G

dρ(y) L(x, y) g(x) g(y) =
∫
G

dx
∫
G

dy e−(x−y)2 ( f g)(x) ( f g)(y) > 0,

where the last step is proved exactly as in the example of the Gaussian [see (5.2)] In order to
arrange (i), for h we make an ansatz again with a Gaussian,

h(x) = c eβx2 . (5.24)

Then∫
G
L(x, y) h(y) dρ(y) = c

∫ ∞

−∞
eαx2 e−(x−y)2 e(α+β)y2 dy

= c exp

(
αx2 − x2 − x2

α + β − 1

) ∫ ∞

−∞
exp

{
(α + β − 1)

(
y + x

α + β − 1

)2
}

dy

= c
√

π

1 − α − β
exp

(
αx2 − x2 − x2

α + β − 1

)
.

In order to arrange that this function is constant one, we choose

c =
√
1 − α − β

π
and β = −α(2 − α)

1 − α
. (5.25)

In order for the above Gaussian integral to converge, we need to ensure that 1− α − β > 0.
In view of the formula

1 − α − β = 1

1 − α
,

this inequality holds because we chose α < 1. Our finding is summarized as follows.

Proposition 5.4 For any α < 1, we let f and h be the Gaussians (5.23) and (5.24) with c
and β according to (5.25). Then the measure dμ = h dx is a minimizer of the causal action
corresponding to the Lagrangian (5.22) within the class of variations of finite volume. It is
the unique minimizer within the class of variations (5.18).

As a concrete example, we consider the well-known Mehler kernel (see for exam-
ple [19, Section 1.5])

E(x, y) = 1√
1 − ρ2

exp

(
−ρ2(x2 + y2) − 2ρxy

(1 − ρ2)

)

with ρ > 0. Rescaling x and y according to

x, y →
√
1 − ρ2

ρ
x,

√
1 − ρ2

ρ
y,

the Mehler kernel becomes

E(x, y) = 1√
1 − ρ2

exp
(

− ρ(x2 + y2) − 2xy
)
.

123



  133 Page 24 of 33 F. Finster, M. Lottner

This kernel is of the desired form (5.22) if we choose

α = 1 − ρ < 1, β = ρ2 − 1

ρ
.

We finally remark that this non-homogeneous example can be used as the starting point
for the construction of higher-dimensional examples with minimizing measures supported
on lower-dimensional subsets, exactly as explained for the Gaussian in Sect. 5.2.

6 Example: static causal fermion systems

In view of the physical applications, the most important example of a causal variational prin-
ciple is the causal action principle for causal fermion systems. In this context, the methods
developed in the present paper should apply to static systems. This can be understood in
general terms as follows. As worked out in detail in [3], the linearized field equations can
be analyzed with energy methods inspired from the theory of hyperbolic PDEs. If one con-
siders time-independent solutions, hyperbolic equations (like the wave equation) give rise to
corresponding elliptic equations (like the Poisson equation). This suggests that, in the static
situation, the linearized field equations should be analyzed with methods from elliptic PDEs.
As already mentioned in the introduction, this analogy was our starting point for developing
the methods in this paper.

Before introducing the static setting, we explain why themethods developed in the present
paper do not apply to the causal action principle in the time-dependent setting. A simple
explanation is that elliptic methods are not suitable for solving hyperbolic equations. On a
more technical level, the reasons are more involved. Apart from regularity assumptions and
technicalities, the main restriction for our methods to apply is that the second variation of the
Lagrangian (3.4) should be finite and integrable, in the sense that the weight function (3.7) be
finite almost everywhere. These conditions are harder to fulfill in the time-dependent setting,
because the norm in (3.4) may be singular on the light cone. Another problem is related
to the kernel of the Laplacian �N . A hyperbolic equation (like the scalar wave equation)
typically has a large kernel (namely, all homogeneous equations like plane scalar waves). In
our treatment with Sobolev-like function spaces, we always assume that the inhomogeneity
is orthogonal to this kernel, and the constructed solution is also orthogonal to this kernel.
Such a treatment, even if it applies mathematically, does not seem useful if the kernel of �N

is too large. This is whywe do not expect the methods in this paper to be helpful for analyzing
time-dependent situations. Instead, it is preferable to use the hyperbolic methods developed
in [3].

Static causal fermion systems were first considered in [16]. We here present a somewhat
simpler setting where the constraints are built in right from the beginning.

6.1 Causal fermion systems with fixed local trace

We begin with the general definition of a causal fermion system with fixed local trace.

Definition 6.1 Given a separable complex Hilbert space H with scalar product 〈·|·〉H and
a parameter n ∈ N (the spin dimension), we let F ⊂ L(H) be the set of all symmetric
operators A onH of finite rank which have trace one,

tr A = 1, (6.1)
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andwhich (countingmultiplicities) have atmostn positive and atmost n negative eigenvalues.
On F we are given a positive measure ρ (defined on a σ -algebra of subsets of F). We refer
to (H,F, ρ) as a causal fermion system with fixed local trace.

On F we consider the topology induced by the operator norm

‖A‖ := sup
{‖Au‖H with ‖u‖H = 1

}
.

Spacetime M is defined to be the support of this measure,

M := supp ρ ⊂ F.

It is a topological space (again with the topology induced by the operator norm). The fact
that the spacetime points are operators gives rise to many additional structures which are
inherent in the sense that they only use information already encoded in the causal fermion
system. A detailed treatment can be found in [5, Section 1.1].

6.2 The reduced causal action principle

In order to single out the physically admissible causal fermion systems, one must formulate
physical equations. To this end, we impose that the measure ρ should be a minimizer of
the causal action principle, which we now introduce. For any x, y ∈ F, the product xy is an
operator of rank at most 2n. However, in general it is no longer symmetric because (xy)∗ =
yx , and this is different from xy unless x and y commute. As a consequence, the eigenvalues
of the operator xy are in general complex. We denote the nontrivial eigenvalues counting
algebraic multiplicities by λ

xy
1 , . . . , λ

xy
2n ∈ C (more specifically, denoting the rank of xy

by k ≤ 2n, we choose λ
xy
1 , . . . , λ

xy
k as all the non-zero eigenvalues and set λxy

k+1, . . . , λ
xy
2n =

0). Given a parameter κ > 0 (which will be kept fixed throughout this paper), we introduce
the κ-Lagrangian and the causal action by

κ-Lagrangian : L(x, y) = 1

4n

2n∑
i, j=1

(∣∣λxy
i

∣∣ − ∣∣λxy
j

∣∣)2 + κ

⎛
⎝ 2n∑

j=1

∣∣λxy
j

∣∣
⎞
⎠

2

causal action : S(ρ) =
∫∫

F×F
L(x, y) dρ(x) dρ(y).

The reduced causal action principle is to minimize S by varying the measure ρ under the

volume constraint ρ(F) = const.

This variational principle is obtained from the general causal action principle as introduced
in [5, §1.1.1] as follows. Using that minimizing measures are supported on operators of
constant trace (see [5, Proposition 1.4.1]), we may fix the trace of the operators and leave
out the trace constraint. Moreover, by rescaling all the operators according to x → λx
with λ ∈ R, we may assume without loss of generality that this trace is equal to one (6.1).
Next, the κ-Lagrangian arises when treating the so-called boundedness constraint with a
Lagrangemultiplier term. Here we slightly simplified the setting by combining this Lagrange
multiplier term with the Lagrangian.
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6.3 Static causal fermion systems

We now specialize our setting to the static case. Adapting the causal action principle to static
causal fermion systems and imposing a regularity condition, we will then get into the setting
of causal variational principles (Sects. 6.4 and 6.5).

Definition 6.2 Let (Ut )t∈R be a strongly continuous one-parameter group of unitary trans-
formations on the Hilbert space H (i.e. s-limt ′→t Ut ′ = Ut and UtUt ′ = Ut+t ′ ). The causal
fermion system (H,F, ρ) is static with respect to (Ut )t∈R if it has the following properties:

(i) Space-time M := supp ρ ⊂ F is a topological product,

M = R × N or M = S1 × N . (6.2)

We write a space-time point x ∈ M as x = (t, x) with t ∈ R and x ∈ N , where in the
case M = S1 × N we identify the circle with the unit interval via

S1 � R mod Z.

(ii) The one-parameter group (Ut )t∈R leaves the measure ρ invariant, i.e.

ρ
(
Ut 	U−1

t

) = ρ(	) for all ρ-measurable	 ⊂ F.

Moreover,

Ut ′ (t, x) U−1
t ′ = (t + t ′, x)

(where in the case M = S1 × N the sum t + t ′ is taken modulo Z).

The two cases in (6.2) are referred to as spacetimes of finite and infinite lifetime, respectively.
Here we can treat both cases together.

Given a static causal fermion system, we also consider the set of operators

N := {(0, x)} ⊂ F.

The measure ρ induces a measure μ on N defined by

μ(	) := ρ
([0, 1] × 	

)
.

The fact that the causal fermion system is static implies that ρ([t1, t2]×	) = (t2− t1) μ(	),
valid for all t1 < t2. This can be expressed more conveniently as

dρ = dt dμ.

6.4 The causal action principle in the static setting

The causal action principle can be formulated in a straightforward manner for static causal
fermion systems. The only point to keep in mind is that, when considering families of mea-
sures, these measures should all be static with respect to the same group (Ut )t∈R of unitary
operators (see Definition 6.2). In order to make this point clear, right from the beginning we
choose a group of unitary operators (Ut )t∈R on H. We denote the equivalence classes of F
under the action of the one-parameter group by

G := F/R := {Ut x U−1
t | x ∈ F, t ∈ R}.
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We denote the elements of F/R just as the spatial points by x and y. Next, we define the
following functions:

static κ-Lagrangian L(x, y) :=
∫

I
L(

(0, x), (t, y)
)

dt, (6.3)

where I is a generalized interval chosen in infinite lifetime as I = R, and in finite lifetime
as I = [0, 1). Note that, for ease in notation, we use the same symbol for the static as
for the original Lagrangian. But they can be distinguished by their arguments, because the
static Lagrangian depends on spatial points in G whereas the original Lagrangian is defined
on space-time operators in F. For a measure ρ which is static with respect to (Ut )t∈R, we
introduce the

static causal action S(μ) =
∫
F/R

dμ(x)
∫
F/R

dμ(y) L(x, y).

The static causal action principle is to minimize S by varying the measureμwithin the class
of regular Borel measures on F/R under the

volume constraint μ(F/R) = const.

6.5 The regular setting as a causal variational principle

We now explain how to get to the setting of causal variational principles introduced in
Sect. 2.1. In order to give the set of operators a manifold structure, we assume that ρ is
regular in the sense that all operators in its support have exactly n positive and exactly n
negative eigenvalues. This leads us to introduce the setFreg as the set of all linear operators F
on H with the following properties:

(i) F is selfadjoint, has finite rank and (counting multiplicities) has exactly n positive and n
negative eigenvalues.

(ii) The trace is constant, i.e. tr(F) = c > 0 (with c independent of F ∈ Freg).

At this point, one must distinguish the cases that H is finite- or infinite-dimensional. In
the infinite-dimensional setting, the set Freg is an infinite-dimensional Banach manifold (for
details see [15]). In order to get into the setting of causal variational principles with a locally
compact manifold G, one must restrict attention to a finite-dimensional submanifold of Freg.
Clearly, this submanifold must contain the supports of both measures ρ and all its considered
variations, and the unitary group (Ut )t∈R must map the submanifold to itself. Moreover, the
vector fields of the jets needed for the analysis must all be tangential to this submanifold.
Then we can simply choose G as the equivalence classes of this submanifold under the action
of the group (Ut )t∈R. One also needs to verify that the resulting static κ-Lagrangian (6.3)
has the properties (i)–(iv) in Sect. 2.1.

The finite-dimensional setting is considerably easier. In this case, the setFreg has a smooth
manifold structure (see the concept of a flag manifold in [20] or the detailed construction
in [11, Section 3]). Assuming that the action of the group (Ut )t∈R on Freg is proper and has
no fixed points, the quotient

G := Freg/R

is again a manifold. In this way, we get into the setting of causal variational principles as
introduced in Sect. 2.1. The resulting static κ-Lagrangian indeed has the properties (i)–(iv)
in Sect. 2.1 (for details see [16, Section 3.3]).
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7 Conclusion and outlook

In the present paper we showed that linearized fields of causal variational principles can be
analyzed with functional analytic tools in suitable function spaces. This opens the door to
the analysis of corresponding nonlinear equations, in particular of the restricted EL equa-
tions (2.12). For the explicit analysis one can proceed perturbatively as worked out in general
in [8]. But one can also use and adapt methods of nonlinear elliptic partial differential equa-
tions. In particular, it seems a promising strategy to analyze nonlinear equations with fixed
point methods and suitable a-priori estimates.

Appendix: The kernel of the Laplacian

The kernel of the Laplacian �N plays an important role for the solvability of the linearized
field equations (4.3). Namely, since the operator�N is symmetric, its image is the orthogonal
complement of its kernel. Therefore, one sees immediately from (4.3) that theweak linearized
field equations do not admit solutions unless the inhomogeneity ŵ is in the orthogonal
complement of the kernel of �N . This is reflected in our general existence results by the fact
that the vectors in the weighted Hilbert spaces hk for k > 0 are in the orthogonal complement
of the kernel of the operator�N [see (4.6)].With this inmind, it is an important task to analyze
this kernel.

In this appendix we show that, under additional smoothness assumptions, there is indeed
an explicit class of jets which are in the kernel. We also show how these jets can be treated
when constructing inhomogeneous solutions. We need to make the following assumptions.

Definition A.1 The support N := suppμ has a smooth manifold structure if the following
conditions hold:

(i) N is a k-dimensional smooth, oriented and connected submanifold of F. Equipped with
a smooth atlas, we also denote it by N .

(ii) In a chart (x, U )of N , themeasureμ is absolutely continuouswith respect to theLebesgue
measure with a smooth, strictly positive weight function,

dμ = h(x) dk x with h ∈ C∞(N ,R+).

Let v ∈ �(N , T N ) be a vector field. Then its divergence div v ∈ C∞(N ,R) may be
defined by the relation ∫

N
div v η(x) dμ = −

∫
N

Dvη(x) dμ(x),

to be satisfied by all test functions η ∈ C∞
0 (N ,R). In a local chart (x, U ), the divergence is

computed by

div v = 1

h
∂ j

(
h v j )

(where, following the Einstein summation convention, we sum over j = 1, . . . , k).
When integrating by parts using the Gauß divergence theorem, we need to make sure

that we do not get boundary values at infinity. To this end, it is convenient to choose the
Riemannian metric gx introduced before (3.1) to be compatible with the smooth manifold
structure in the following sense.
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Definition A.2 The Riemannian metric g on �x is adapted at infinity if there is a
sequence (ηn)n∈N of compactly supported functions, ηn ∈ C∞

0 (N ,R), with the following
properties:

(i) The functions ηn are non-negative, monotone increasing and exhaust N in the sense that
for any compact set K ⊂ N there is N with ηn |K ≡ 1 for all n ≥ N .

(ii) The derivatives tend uniformly to zero, i.e.

lim
n→∞ sup

x∈N
‖Dηn‖x = 0,

where ‖ · ‖x is the norm on Tx N ⊂ �x induced by the Riemannian metric g.

This definition poses an implicit condition on the behavior of the Riemannian metric g at
infinity. A typical example is that N has one asymptotic end in the sense that there is a
compact subset K ⊂ N such that N\K is diffeomorphic to R

k minus a closed ball. In this
case, one can choose the Riemannian metric g outside K as the pull-back of the Euclidean
metric, and extend it smoothly to N . Then one can choose the ηn as the pull-back of cutoff
functions in Rk which fall off for example in annular regions B2n\Bn .

Definition A.3 An inner solution is a jet v of the form

v = (div v, v) with v ∈ �(N , T N ).

We make the following regularity and decay assumptions:

(i) The vector field v can be extended to a vector field ṽ ∈ �(U , TF) defined in a neighbor-
hoodU of N such that the directional derivative (D1,ṽ +D2,ṽ)L(x, y) exists for all x ∈ U
and y ∈ N and is integrable in y, i.e.∫

N

∣∣∣(D1,ṽ + D2,ṽ
)L(x, y)

∣∣∣ dμ(y) < ∞ for all x ∈ U .

Moreover, the directional derivative Dṽ�(x) exists for all x ∈ U and is continuous in U .
(ii) The integral ∫

N
L(x, y) ‖v(y)‖y dμ(y)

is finite and bounded locally uniformly in a neighborhood of N (where ‖ · ‖y is again the
norm corresponding to the scalar product (3.1) and the Riemannian metric is adapted at
infinity according to Definition A.2).

(iii) For any test jet u ∈ Jtestμ , the directional derivative Dvu (computed in the same charts
used for computing the higher derivatives in Definition 2.1) is again in Jtestμ .

The vector space of all inner solutions is denoted by Jinμ .

Note that (i) implies that every inner solution is in J1μ∩Jdiffμ [see (2.10) andDefinition 2.1].
The name “inner solution” is justified by the following lemma:

Lemma A.4 Let μ be a critical measure [meaning that the EL equations (2.5) hold]. Then
every inner solution v ∈ Jinμ is a solution of the linearized field equations, i.e.

〈u,�v〉|N = 0 for all u ∈ Jtestμ .
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The proof is given in [10, Lemma 3.3].
We next show that for any function a on N one can find an inner solution whose scalar

component coincides with a. If N were compact, the analogous statement would be the
infinitesimal version of Moser’s theorem (see for example [21, Section XVIII, §2]). Here we
give a detailed proof if N is non-compact, based on [21, Theorem 1.2 in Section XVIII].

Proposition A.5 Assume that N has a smooth manifold structure and that the Riemannian
metric g on �x is adapted at infinity (see Definitions A.1 and A.2). Then to any a ∈ C∞(N )

we can find a vector field u ∈ �(N , T N ) with div u = a.

Proof We again consider the functions ηn in Definition A.2. By construction, these func-
tions ηn are monotone increasing and exhaust N in the sense that for any compact set K ⊂ N
there is N with ηn |K ≡ 1 for all n ≥ N . Next, we introduce the non-negative functions

φn :=
{

η1 if n = 1
n − n + 1 if n > 1.

Possibly by leaving out some of these functions we can arrange that none of the φn is
identically equal to zero. Then all φn are in C∞

0 (N ,R) and form a locally finite partition of
unity. Moreover, the sets Nn defined by

Nn :=
{
suppφ1 if n = 1
suppφn ∪ suppφn−1 if n > 1.

form a locally finite covering of N .
We adapt the proof of [16, Lemma 2.7] to our setting. We express the measure μ using a

volume form ψ ∈ �k(N ), i.e.:

μ(U ) =
∫

U
ψ for all compact U ⊆ N .

Similarly, we can also find a volume form ω ∈ �k(N ) representing aμ:∫
U

a(x) dμ(x) =
∫

U
ω, for all compact U ⊆ N .

Now choose c1 ∈ R such that:

0 =
∫

N
(φ1 ω − c1 φ1 ψ) =

∫
N1

(φ1 ω − c1 φ1 ψ).

Then, in view of [21, XVIII, Theorem 1.2] applied to N1 (which, due to our assumptions,
is a connected oriented manifold without boundary), there exists a compactly supported
(k − 1)-form η1 ∈ �

(k−1)
0 (N1) with

(φ1 ω − c1 φ1 ψ)
∣∣
N1

= dη1.

Clearly, we can extended η1 by zero to N .
Now for any n ∈ N, inductively choose cn+1 ∈ R such that∫

N

(
φn+1 ω + cn φn ψ − cn+1 φn+1ψ

)
=

∫
Nn+1

(
φn+1 ω + cn φn ψ − cn+1 φn+1ψ

)
= 0.

Now [21, XVIII, Theorem 1.2] again provides a (k − 1)-form ηn+1 ∈ �
(k−1)
0 (Nn+1) such

that

φn+1 ω + cn φn ψ − cn+1 φn+1ψ = dηn+1,
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where we again extended ηn+1 by zero to N . For ease in notation, from now on by ηn we
always mean the smooth extensions to N . Then each ηn has compact support in Nn .

As (Nn)n∈N is locally finite, the series η := ∑∞
n=1 ηn converges and can be computed to

be

dη =
∞∑

n=1

dηn = φ1 ω − c1 φ1 ψ +
∞∑

n=1

(
φn+1 ω + cn φn ψ − cn+1 φn+1 ψ

)

= −c1 φ1 ψ + ω

∞∑
n=1

φn +
∞∑

n=1

(
cn φn ψ − cn+1 φn+1 ψ

)
.

The last sum is telescopic, giving c1φ1ψ , which cancels the first summand in the last line.
Furthermore, as (φn)n∈N is a partition of unity, the second summand in the last line reduces
to ω. We conclude that

dη = ω.

It remains to find a vector field u ∈ �(N , T N ) such that div udμ = dη. This can be done
just as described in [16, proof of Lemma 2.7]: By a conformal transformation of the metric g
we arrange that the corresponding volume form coincides with μ. Then we set

uα := ĝαβ(�η)β

with the Hodge star � : �(k−1)(N ) → �1(N ). Then u has the desired property (up to a sign
depending on the dimension of N ). ��

Let us discuss the significance of the inner solutions. As alreadymentioned in Sect. 5.1 in a
simple example, inner solutions can be regarded as infinitesimal generators of transformations
of N which leave the measure μ unchanged. Similar to gauge transformations, they describe
infinitesimal symmetries of the system. Using these symmetry transformations, one can
simplify the form of the jet spaces. For example, under suitable assumptions we can remove
the scalar components of linearized solutions, as we now explain. Let v = (b, v) ∈ Jvary.
Then, according to (3.2), the scalar component b has compact support. We choose a = −b.
Applying Proposition A.5, there is a smooth vector field u with div u = a. If a has mean
zero, ∫

N
a(x) dμ(x) = 0,

then u can be chosen to be also compactly supported (as one sees immediately from the above
proof or alternatively in [21, XVIII, Theorem 1.2]). Otherwise, the vector field u typically
decays at infinity, but is not compactly supported. As a simple example, in the case of one
asymptotic end introduced after Definition A.2, the vector field hu is divergence-free with
respect to the Euclidean metric. Applying the Gauss divergence theorem, the flux of this
vector field through a sphere of radius r does not depend on r , making it possible to arrange
the decay rate

(hu)(x) � 1

‖x‖k−1

(where ‖ · ‖ is the Euclidean norm). As a consequence, the integral in (3.6) is finite if k ≥ 3
and dμ goes over asymptotically to the Lebesgue measure. More generally, here we assume
for simplicity that the resulting jet u := (a, u) has a finite adapted norm, |||u||| < ∞. Then
we can redefine Jvary as all the jets v + u. In contrast to (3.2), the vector components of
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the resulting jets are no longer compactly supported, but the adapted norm is still finite,
making sure that our existence proof still goes through. As a result of this procedure, the
scalar components of all linearized solutions vanish. As a further advantage, the kernel of
the operator �N has become smaller.

We finally point out that, even after the above procedure, in typical examples the
Laplacian �N still has a non-trivial kernel. For example, every compactly supported
divergence-free vector field v gives rise to an inner solution (0, v) with vanishing scalar
component, which lies in the kernel of the Laplacian. In order to mod out the correspond-
ing infinitesimal symmetry transformations in the construction of inhomogeneous linearized
field equation, we set up the Hilbert space formulation in such a way that the inhomogene-
ity ŵ must be in the orthogonal complement of the kernel of �N . Likewise, the constructed
solution is orthogonal to the kernel. In this way, we can solve the linearized field equations
modulo vectors in the kernel of the Laplacian.
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