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ABSTRACT

This paper discusses a procedure for model selection in ANFIS for time series forecasting with a calendar effect. 
Calendar effect is different from the usual trend and seasonal effects. Therefore, when it occurs, it will affect 
economic activity during that period and create new patterns that will result in inaccurate forecasts for decision making 
if not considered. The focus is on the model selection strategy to find the appropriate input variable and the number of 
membership functions (MFs) based on the Lagrange Multiplier (LM) test. The ARIMAX stochastic model is used at the 
preprocessing stage to capture calendar variations in the data. The calendar effect observed is the Eid al-Fitr holiday in 
Indonesia, a country with the largest Muslim population in the world. The data of Tanjung Priok port passengers used 
as a case study. The result shows that hybrid ARIMAX-ANFIS  based on the LM test can be an effective procedure for 
model selection in ANFIS for time series with calendar effect forecasting. Empirical results show that the use of the 
calendar effect variable provides more accurate predictions as indicated by smaller RMSE and MAPE values than without 
the calendar effect variable.
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ABSTRAK

Kertas ini membincangkan prosedur pemilihan model ANFIS untuk peramalan siri masa dengan kesan kalendar. Kesan 
kalendar berbeza daripada aliran biasa dan kesan bermusim. Oleh itu, apabila ia berlaku, ia akan menjejaskan aktiviti 
ekonomi dalam tempoh tersebut dan mewujudkan corak baharu yang akan mengakibatkan ramalan yang tidak tepat 
untuk membuat keputusan jika tidak dipertimbangkan. Fokus adalah pada strategi pemilihan model untuk mencari 
pemboleh ubah input yang sesuai dan bilangan fungsi keahlian (MF) berdasarkan ujian Pengganda Lagrange (LM). 
Model stokastik ARIMAX digunakan pada peringkat prapemprosesan untuk mengesan variasi kalendar dalam data. 
Kesan kalendar yang diperhatikan ialah cuti Hari Raya Aidilfitri di Indonesia, sebuah negara dengan penduduk Islam 
terbesar di dunia. Data penumpang pelabuhan Tanjung Priok digunakan sebagai kajian kes. Keputusan menunjukkan 
bahawa ARIMAX-ANFIS hibrid berdasarkan ujian LM boleh menjadi prosedur yang berkesan untuk pemilihan model 
dalam ANFIS dalam siri masa dengan ramalan kesan kalendar. Keputusan empirik menunjukkan bahawa penggunaan 
pemboleh ubah kesan kalendar memberikan ramalan yang lebih tepat seperti yang ditunjukkan oleh nilai RMSE dan 
MAPE yang lebih kecil berbanding tanpa pemboleh ubah kesan kalendar. 
Kata kunci: ANFIS; ARIMAX; kesan kalendar; siri masa; ujian LM 

INTRODUCTION

In recent times, the development of forecasting methods 
has been widely used and benefits various fields. The use 
of nonlinear models with the help of machine learning 

for forecasts has also been widely studied. Adaptive 
Neuro-Fuzzy Inference System (ANFIS) combines two 
soft computing methods, namely ANN and fuzzy logic 
(Jang 1993). In ANFIS, the fuzzy inference system is 
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implemented in the adaptive network framework. ANFIS 
has several advantages: a high convergence rate, good 
stability, a repeatable training process, high prediction 
precision, and very suitable for dealing with time series 
prediction problems (Liu & Zhou 2017). There have 
been many studies related to the advantages of ANFIS 
for prediction and forecasting, among them Duan et 
al. (2019), Lei and Wan (2012), Nayak et al. (2004), 
Sumithira and Nirmal (2014), and Wei et al. (2011). The 
development of ANFIS with various other methods that 
produce hybrid methods to get better results has also 
been studied by Gunasekaran and Ramaswami (2014), 
Liu and Zhou (2017), and Sood et al. (2020). In addition, 
several studies on hybrid models, including Kamisan et 
al. (2018) and Suhartono et al. (2019), also show that the 
hybrid model can give good results.

Various modelling problems in the real world are 
generally influenced by many potential inputs that can 
be incorporated into the built model. Therefore, an 
investigation is needed to determine the appropriate 
potential input that is made a priority. There is no definite 
procedure for choosing an ANFIS architecture that 
combines input variables, number of MFs, and ANFIS 
rules to find the optimal ANFIS. In general, there is a 
trial and error to find the input variable and the number 
of MFs. There is no standard method to determine this, 
therefore, various proposed new methods were given 
and carried out by several researchers. How to perform 
preprocessing to obtain optimal ANFIS is a topic 
discussed by several researchers, namely Azadeh et al. 
(2011), Polat (2012), and Yunos et al. (2008). How to 
find the best ANFIS model, i.e. how to find a combination 
in ANFIS architecture the number of input variables and 
the number of MFs has also been studied by several 
researchers such as Jang et al. (1997), Nauck (2000), 
Prasad et al. (2016), Tarno et al. (2017), and Septiarini 
and Musikasuwan (2018). 

Many time series data relating to the economy 
are affected by many interventions such as government 
political policies, disaster events, or holidays in a long 
period of time. Interventions that can affect the data 
need to be considered so that data analysis results can 
be described properly. In real cases, some products and 
consumer behaviour patterns are related to the occurrence 
of holiday events that result in changes in the number of 
sales of a product according to the holiday events that 
occur. The religious holidays that occur are not always 
influenced by the Gregorian calendar, which routinely 
occurs on the same date and time for each period. This 

phenomenon is known as the calendar effect. Several 
studies on the effect of calendars on time series data 
include Cleveland and Delvin (1982), Hillmer (1982), 
Kling and Gao (2005), Liu (1980), Mills and Andrew 
(1995), Seyyed et al. (2005), Sullivan et al. (2001), and 
Vergin and McGinnis (1999). 

One of the holiday events that occurred in Indonesia 
is Eid al-Fitr. Eid al-Fitr holidays are calculated based on 
the lunar calendar so that the time of occurrence in each 
year is constantly changing and has a forward pattern 
that shifts around 11 to 12 days. In this study, the effect of 
the Eid Al-Fitr holiday calendar on time series data was 
observed. For this purpose, actual data on the number of 
visitors to Tanjung Priok Port, the most populous Port 
in Indonesia influenced by the Eid al-Fitr holiday, is used.

The motivation in this research arises from the fact 
that no published works have examined time series data 
with calendar variations using ANFIS. With the holiday 
effect on time series observation data, the ARIMA model to 
determine the input variables proposed by Jang (1996) is 
no longer able and suitable to describe the data adequately 
in this study, therefore, the ARIMAX model is proposed 
to accommodate the calendar effect. By utilizing soft 
computing and the advantages of the ANFIS method, the 
hybrid ARIMAX ANFIS method will be applied to time 
series data with calendar variations. This paper aims 
to develop an ANFIS optimal architecture formation 
method proposed by Tarno et al. (2013) to determine 
the input and number of MFs in ANFIS architecture, 
especially for time series data influenced by calendar 
effects. This paper is organized as follows. Next section 
contains theoretical studies of identification methods in 
ANFIS of a time series affected by calendar effects and 
describes the ANFIS architecture. The following section 
describes the structure and learning rules of adaptive 
networks in time series with calendar effect. Subsequent  
section introduces the procedure proposed in this paper. 
Application examples of case studies are given in the 
next section. The last section concludes this paper by 
providing extensions and future directions for this work.

MATERIALS AND METHODS

AUTOREGRESSIVE INTEGRATED MOVING AVERAGE 
WITH EXOGENOUS VARIABLES (ARIMAX)

Time series modeling can be done by using historical data 
and adding other variables that are considered to have a 
significant influence on the data to improve forecasting 
accuracy. ARIMAX model is a modification of the ARIMA 
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model with the addition of predictor variables. In this 
model, the factors affecting the response variable Z at time 
t are not only a function of Z variable in time but also by 
other independent variables at time t. In general, the shape 
of the ARIMAX(p,d,q) model is given by the equation
		
	

with Zt response variable, ∅p is autoregressive parameter 
to-p, θq is moving average parameter to-q, Xit, i = 1,2,⋯, 
k are the time series of exogenous variables (predictors), 
α1,⋯,αk = coefficient of exogenous variables, with ∅p (B) 
= (1-∅1 B-⋯-∅p B

p) and θq (B) = (1-θ1 B-⋯-θq B
q ) are AR 

and MA processes, respectively. In this model, Zt and Xit 
are assumed to be stationary. ARIMAX modelling steps 
are generally the same as ARIMA modelling through 
three-stage: model identification, parameter estimation, 
and diagnostic checking Box et al. (2015). But in 
model estimation, the components of other independent 
variables are added to the model.

ANFIS ARCHITECTURE

ANFIS Architects consist of five layers built with three 
main components consecutive fuzzification, fuzzy 
inference systems, defuzzification. In the time series 
data with calendar effects, there are additional variables 
that can be input candidates, namely dummy variables, 
which indicate the calendar effect on the data. If there 
are p lag input variables, say Zt-1, Zt-2⋯, Zt-p and a number 
of i dummy variables that represent the calendar effect 
on D1, D2,⋯, Di data and one output Zt with the number 
of membership functions is m, assuming the first-order 
Sugeno rules is as follows.

where  Z t-k i s  A kj as  premise  parameter,  whi le 

𝑍𝑍𝑡𝑡
(𝑗𝑗) = 𝜃𝜃𝑗𝑗0 ∑  𝜃𝜃𝑗𝑗𝑗𝑗𝑍𝑍𝑡𝑡−𝑘𝑘

𝑝𝑝+𝑖𝑖
𝑘𝑘=1     

𝑍𝑍𝑡𝑡
(𝑗𝑗) = 𝜃𝜃𝑗𝑗0 ∑  𝜃𝜃𝑗𝑗𝑗𝑗𝑍𝑍𝑡𝑡−𝑘𝑘

𝑝𝑝+𝑖𝑖
𝑘𝑘=1    as a consequent parameter, θjk, θj0 as a linear 

parameter, Akj  as a nonlinear parameter with j = 1, 2,⋯, 
m (rules), k =1, 2, ⋯, p, p + 1, ⋯, p + i.
If the firring strength for m (rules) is 𝑍𝑍𝑡𝑡

(1), 𝑍𝑍𝑡𝑡
(2),⋯ , 𝑍𝑍𝑡𝑡

(𝑚𝑚),  
are w1, w2, ⋯, wm, then the output of Zt can be expressed 
in the form

			 

Here, if the dummy variable calendar effects D1, D2, ⋯, 
Di are expressed as 𝑍𝑍𝑡𝑡−(𝑝𝑝+1), 𝑍𝑍𝑡𝑡−(𝑝𝑝+2),, ⋯ , 𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖),  then the first order Sugeno rules become. 

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴11, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴21, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1) is 𝐴𝐴(𝑝𝑝+1)1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2)  is 𝐴𝐴(𝑝𝑝+2)1  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖)is𝐴𝐴(𝑝𝑝+𝑖𝑖)1, then 𝑍𝑍𝑡𝑡
(1) = 𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃12𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃1𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃1(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) +

𝜃𝜃1(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃1(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

⋮  

If  𝑍𝑍𝑡𝑡−1 is 𝐴𝐴1𝑚𝑚, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴2𝑚𝑚, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝𝑝𝑝, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  is 𝐴𝐴(𝑝𝑝+1)𝑚𝑚, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2) is 𝐴𝐴(𝑝𝑝+2)𝑚𝑚  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖) is 𝐴𝐴(𝑝𝑝+𝑖𝑖)𝑚𝑚, the 𝑍𝑍𝑡𝑡
(𝑚𝑚) = 𝜃𝜃𝑚𝑚1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑚𝑚2𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃𝑚𝑚𝑚𝑚𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑚𝑚(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  +

𝜃𝜃𝑚𝑚(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃𝑚𝑚(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

 

𝑍𝑍𝑡𝑡−(𝑝𝑝+1), 𝑍𝑍𝑡𝑡−(𝑝𝑝+2),, ⋯ , 𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖),  then the first order Sugeno rules become. 

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴11, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴21, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1) is 𝐴𝐴(𝑝𝑝+1)1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2)  is 𝐴𝐴(𝑝𝑝+2)1  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖)is𝐴𝐴(𝑝𝑝+𝑖𝑖)1, then 𝑍𝑍𝑡𝑡
(1) = 𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃12𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃1𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃1(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) +

𝜃𝜃1(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃1(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

⋮  

If  𝑍𝑍𝑡𝑡−1 is 𝐴𝐴1𝑚𝑚, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴2𝑚𝑚, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝𝑝𝑝, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  is 𝐴𝐴(𝑝𝑝+1)𝑚𝑚, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2) is 𝐴𝐴(𝑝𝑝+2)𝑚𝑚  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖) is 𝐴𝐴(𝑝𝑝+𝑖𝑖)𝑚𝑚, the 𝑍𝑍𝑡𝑡
(𝑚𝑚) = 𝜃𝜃𝑚𝑚1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑚𝑚2𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃𝑚𝑚𝑚𝑚𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑚𝑚(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  +

𝜃𝜃𝑚𝑚(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃𝑚𝑚(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

 

then
the first order Sugeno rules bocome.

ANFIS architecture illustrated in Figure 1 consists of five 
layers (Jang et al. 1997) described below.

Layer 1 Each node in the first layer is adaptive with 
one activation function. The output of each node is the 
degree of membership value given by the input of the 
membership function.

(1 − 𝐵𝐵)𝑑𝑑∅𝑝𝑝(𝐵𝐵)𝑍𝑍𝑡𝑡 = 𝜇𝜇 + 𝜃𝜃𝑞𝑞(𝐵𝐵)𝑎𝑎𝑡𝑡 + 𝛼𝛼1𝑋𝑋1𝑡𝑡 + ⋯+ 𝛼𝛼𝑘𝑘𝑋𝑋𝑘𝑘𝑘𝑘,  

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴11, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴21, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝1, 𝐷𝐷1 is 𝐴𝐴(𝑝𝑝+1)1, 𝐷𝐷2 is 𝐴𝐴(𝑝𝑝+2)1  ⋯, 𝐷𝐷𝑖𝑖 is 𝐴𝐴(𝑝𝑝+𝑖𝑖)1, then 

𝑍𝑍𝑡𝑡
(1) = 𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃12𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃1𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃1(𝑝𝑝+1)𝐷𝐷1 + 𝜃𝜃1(𝑝𝑝+2)𝐷𝐷2 + ⋯ + 𝜃𝜃1(𝑝𝑝+𝑖𝑖)𝐷𝐷𝑖𝑖. 

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴12, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴22, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝2, 𝐷𝐷1 is 𝐴𝐴(𝑝𝑝+1)2, 𝐷𝐷2 is 𝐴𝐴(𝑝𝑝+2)2  ⋯, 𝐷𝐷𝑖𝑖 is 𝐴𝐴(𝑝𝑝+𝑖𝑖)2, then 

𝑍𝑍𝑡𝑡
(2) = 𝜃𝜃21𝑍𝑍𝑡𝑡−1 + 𝜃𝜃22𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃2𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃2(𝑝𝑝+1)𝐷𝐷1 + 𝜃𝜃2(𝑝𝑝+2)𝐷𝐷2 + ⋯ + 𝜃𝜃2(𝑝𝑝+𝑖𝑖)𝐷𝐷𝑖𝑖. 

⋮  

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴1𝑚𝑚, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴2𝑚𝑚, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐷𝐷1 is 𝐴𝐴(𝑝𝑝+1)𝑚𝑚, 𝐷𝐷2 is 𝐴𝐴(𝑝𝑝+2)𝑚𝑚  ⋯, 𝐷𝐷𝑖𝑖 is 𝐴𝐴(𝑝𝑝+𝑖𝑖)𝑚𝑚, 

then 𝑍𝑍𝑡𝑡
(𝑚𝑚) = 𝜃𝜃𝑚𝑚1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑚𝑚2𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃𝑚𝑚𝑚𝑚𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑚𝑚(𝑝𝑝+1)𝐷𝐷1 + 𝜃𝜃𝑚𝑚(𝑝𝑝+2)𝐷𝐷2 + ⋯ +

𝜃𝜃𝑚𝑚(𝑝𝑝+𝑖𝑖)𝐷𝐷𝑖𝑖. 
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If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴12, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴22, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝2, 𝐷𝐷1 is 𝐴𝐴(𝑝𝑝+1)2, 𝐷𝐷2 is 𝐴𝐴(𝑝𝑝+2)2  ⋯, 𝐷𝐷𝑖𝑖 is 𝐴𝐴(𝑝𝑝+𝑖𝑖)2, then 

𝑍𝑍𝑡𝑡
(2) = 𝜃𝜃21𝑍𝑍𝑡𝑡−1 + 𝜃𝜃22𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃2𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃2(𝑝𝑝+1)𝐷𝐷1 + 𝜃𝜃2(𝑝𝑝+2)𝐷𝐷2 + ⋯ + 𝜃𝜃2(𝑝𝑝+𝑖𝑖)𝐷𝐷𝑖𝑖. 

⋮  

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴1𝑚𝑚, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴2𝑚𝑚, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐷𝐷1 is 𝐴𝐴(𝑝𝑝+1)𝑚𝑚, 𝐷𝐷2 is 𝐴𝐴(𝑝𝑝+2)𝑚𝑚  ⋯, 𝐷𝐷𝑖𝑖 is 𝐴𝐴(𝑝𝑝+𝑖𝑖)𝑚𝑚, 

then 𝑍𝑍𝑡𝑡
(𝑚𝑚) = 𝜃𝜃𝑚𝑚1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑚𝑚2𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃𝑚𝑚𝑚𝑚𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑚𝑚(𝑝𝑝+1)𝐷𝐷1 + 𝜃𝜃𝑚𝑚(𝑝𝑝+2)𝐷𝐷2 + ⋯ +

𝜃𝜃𝑚𝑚(𝑝𝑝+𝑖𝑖)𝐷𝐷𝑖𝑖. 

 

𝑍𝑍𝑡𝑡 = 𝑤𝑤1𝑍𝑍𝑡𝑡
(1)+𝑤𝑤2𝑍𝑍𝑡𝑡

(2)+⋯+𝑤𝑤𝑚𝑚𝑍𝑍𝑡𝑡
(𝑚𝑚)

𝑤𝑤1+𝑤𝑤2+⋯+𝑤𝑤𝑚𝑚            

𝑍𝑍𝑡𝑡−(𝑝𝑝+1), 𝑍𝑍𝑡𝑡−(𝑝𝑝+2),, ⋯ , 𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖),  then the first order Sugeno rules become. 

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴11, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴21, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1) is 𝐴𝐴(𝑝𝑝+1)1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2)  is 𝐴𝐴(𝑝𝑝+2)1  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖)is𝐴𝐴(𝑝𝑝+𝑖𝑖)1, then 𝑍𝑍𝑡𝑡
(1) = 𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃12𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃1𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃1(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) +

𝜃𝜃1(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃1(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

⋮  

If  𝑍𝑍𝑡𝑡−1 is 𝐴𝐴1𝑚𝑚, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴2𝑚𝑚, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝𝑝𝑝, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  is 𝐴𝐴(𝑝𝑝+1)𝑚𝑚, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2) is 𝐴𝐴(𝑝𝑝+2)𝑚𝑚  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖) is 𝐴𝐴(𝑝𝑝+𝑖𝑖)𝑚𝑚, the 𝑍𝑍𝑡𝑡
(𝑚𝑚) = 𝜃𝜃𝑚𝑚1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑚𝑚2𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃𝑚𝑚𝑚𝑚𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑚𝑚(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  +

𝜃𝜃𝑚𝑚(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃𝑚𝑚(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

 

𝑍𝑍𝑡𝑡−(𝑝𝑝+1), 𝑍𝑍𝑡𝑡−(𝑝𝑝+2),, ⋯ , 𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖),  then the first order Sugeno rules become. 

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴11, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴21, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1) is 𝐴𝐴(𝑝𝑝+1)1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2)  is 𝐴𝐴(𝑝𝑝+2)1  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖)is𝐴𝐴(𝑝𝑝+𝑖𝑖)1, then 𝑍𝑍𝑡𝑡
(1) = 𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃12𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃1𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃1(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) +

𝜃𝜃1(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃1(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

⋮  

If  𝑍𝑍𝑡𝑡−1 is 𝐴𝐴1𝑚𝑚, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴2𝑚𝑚, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝𝑝𝑝, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  is 𝐴𝐴(𝑝𝑝+1)𝑚𝑚, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2) is 𝐴𝐴(𝑝𝑝+2)𝑚𝑚  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖) is 𝐴𝐴(𝑝𝑝+𝑖𝑖)𝑚𝑚, the 𝑍𝑍𝑡𝑡
(𝑚𝑚) = 𝜃𝜃𝑚𝑚1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑚𝑚2𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃𝑚𝑚𝑚𝑚𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑚𝑚(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  +

𝜃𝜃𝑚𝑚(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃𝑚𝑚(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

 

𝑍𝑍𝑡𝑡−(𝑝𝑝+1), 𝑍𝑍𝑡𝑡−(𝑝𝑝+2),, ⋯ , 𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖),  then the first order Sugeno rules become. 

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴11, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴21, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1) is 𝐴𝐴(𝑝𝑝+1)1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2)  is 𝐴𝐴(𝑝𝑝+2)1  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖)is𝐴𝐴(𝑝𝑝+𝑖𝑖)1, then 𝑍𝑍𝑡𝑡
(1) = 𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃12𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃1𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃1(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) +

𝜃𝜃1(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃1(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

⋮  

If  𝑍𝑍𝑡𝑡−1 is 𝐴𝐴1𝑚𝑚, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴2𝑚𝑚, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝𝑝𝑝, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  is 𝐴𝐴(𝑝𝑝+1)𝑚𝑚, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2) is 𝐴𝐴(𝑝𝑝+2)𝑚𝑚  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖) is 𝐴𝐴(𝑝𝑝+𝑖𝑖)𝑚𝑚, the 𝑍𝑍𝑡𝑡
(𝑚𝑚) = 𝜃𝜃𝑚𝑚1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑚𝑚2𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃𝑚𝑚𝑚𝑚𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑚𝑚(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  +

𝜃𝜃𝑚𝑚(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃𝑚𝑚(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

 

𝑍𝑍𝑡𝑡−(𝑝𝑝+1), 𝑍𝑍𝑡𝑡−(𝑝𝑝+2),, ⋯ , 𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖),  then the first order Sugeno rules become. 

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴11, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴21, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1) is 𝐴𝐴(𝑝𝑝+1)1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2)  is 𝐴𝐴(𝑝𝑝+2)1  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖)is𝐴𝐴(𝑝𝑝+𝑖𝑖)1, then 𝑍𝑍𝑡𝑡
(1) = 𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃12𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃1𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃1(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) +

𝜃𝜃1(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃1(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

⋮  

If  𝑍𝑍𝑡𝑡−1 is 𝐴𝐴1𝑚𝑚, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴2𝑚𝑚, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝𝑝𝑝, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  is 𝐴𝐴(𝑝𝑝+1)𝑚𝑚, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2) is 𝐴𝐴(𝑝𝑝+2)𝑚𝑚  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖) is 𝐴𝐴(𝑝𝑝+𝑖𝑖)𝑚𝑚, the 𝑍𝑍𝑡𝑡
(𝑚𝑚) = 𝜃𝜃𝑚𝑚1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑚𝑚2𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃𝑚𝑚𝑚𝑚𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑚𝑚(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  +

𝜃𝜃𝑚𝑚(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃𝑚𝑚(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

 

𝑍𝑍𝑡𝑡−(𝑝𝑝+1), 𝑍𝑍𝑡𝑡−(𝑝𝑝+2),, ⋯ , 𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖),  then the first order Sugeno rules become. 

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴11, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴21, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1) is 𝐴𝐴(𝑝𝑝+1)1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2)  is 𝐴𝐴(𝑝𝑝+2)1  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖)is𝐴𝐴(𝑝𝑝+𝑖𝑖)1, then 𝑍𝑍𝑡𝑡
(1) = 𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃12𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃1𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃1(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) +

𝜃𝜃1(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃1(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

⋮  

If  𝑍𝑍𝑡𝑡−1 is 𝐴𝐴1𝑚𝑚, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴2𝑚𝑚, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝𝑝𝑝, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  is 𝐴𝐴(𝑝𝑝+1)𝑚𝑚, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2) is 𝐴𝐴(𝑝𝑝+2)𝑚𝑚  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖) is 𝐴𝐴(𝑝𝑝+𝑖𝑖)𝑚𝑚, the 𝑍𝑍𝑡𝑡
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𝜃𝜃1(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃1(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

⋮  

If  𝑍𝑍𝑡𝑡−1 is 𝐴𝐴1𝑚𝑚, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴2𝑚𝑚, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝𝑝𝑝, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  is 𝐴𝐴(𝑝𝑝+1)𝑚𝑚, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2) is 𝐴𝐴(𝑝𝑝+2)𝑚𝑚  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖) is 𝐴𝐴(𝑝𝑝+𝑖𝑖)𝑚𝑚, the 𝑍𝑍𝑡𝑡
(𝑚𝑚) = 𝜃𝜃𝑚𝑚1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑚𝑚2𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃𝑚𝑚𝑚𝑚𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑚𝑚(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  +

𝜃𝜃𝑚𝑚(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃𝑚𝑚(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

 

𝑍𝑍𝑡𝑡−(𝑝𝑝+1), 𝑍𝑍𝑡𝑡−(𝑝𝑝+2),, ⋯ , 𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖),  then the first order Sugeno rules become. 

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴11, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴21, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1) is 𝐴𝐴(𝑝𝑝+1)1, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2)  is 𝐴𝐴(𝑝𝑝+2)1  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖)is𝐴𝐴(𝑝𝑝+𝑖𝑖)1, then 𝑍𝑍𝑡𝑡
(1) = 𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃12𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃1𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃1(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) +

𝜃𝜃1(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃1(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

⋮  

If  𝑍𝑍𝑡𝑡−1 is 𝐴𝐴1𝑚𝑚, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴2𝑚𝑚, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝𝑝𝑝, 𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  is 𝐴𝐴(𝑝𝑝+1)𝑚𝑚, 𝑍𝑍𝑡𝑡−(𝑝𝑝+2) is 𝐴𝐴(𝑝𝑝+2)𝑚𝑚  ⋯, 

𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖) is 𝐴𝐴(𝑝𝑝+𝑖𝑖)𝑚𝑚, the 𝑍𝑍𝑡𝑡
(𝑚𝑚) = 𝜃𝜃𝑚𝑚1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑚𝑚2𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃𝑚𝑚𝑚𝑚𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑚𝑚(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1)  +

𝜃𝜃𝑚𝑚(𝑝𝑝+2)𝑍𝑍𝑡𝑡−(𝑝𝑝+2) + ⋯ + 𝜃𝜃𝑚𝑚(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖). 

 

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴11, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴21, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝1, 𝐷𝐷1 is 𝐴𝐴(𝑝𝑝+1)1, 𝐷𝐷2 is 𝐴𝐴(𝑝𝑝+2)1  ⋯, 𝐷𝐷𝑖𝑖 is 𝐴𝐴(𝑝𝑝+𝑖𝑖)1, then 

𝑍𝑍𝑡𝑡
(1) = 𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃12𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃1𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃1(𝑝𝑝+1)𝐷𝐷1 + 𝜃𝜃1(𝑝𝑝+2)𝐷𝐷2 + ⋯ + 𝜃𝜃1(𝑝𝑝+𝑖𝑖)𝐷𝐷𝑖𝑖. 

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴12, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴22, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝2, 𝐷𝐷1 is 𝐴𝐴(𝑝𝑝+1)2, 𝐷𝐷2 is 𝐴𝐴(𝑝𝑝+2)2  ⋯, 𝐷𝐷𝑖𝑖 is 𝐴𝐴(𝑝𝑝+𝑖𝑖)2, then 

𝑍𝑍𝑡𝑡
(2) = 𝜃𝜃21𝑍𝑍𝑡𝑡−1 + 𝜃𝜃22𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃2𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃2(𝑝𝑝+1)𝐷𝐷1 + 𝜃𝜃2(𝑝𝑝+2)𝐷𝐷2 + ⋯ + 𝜃𝜃2(𝑝𝑝+𝑖𝑖)𝐷𝐷𝑖𝑖. 

⋮  

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴1𝑚𝑚, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴2𝑚𝑚, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐷𝐷1 is 𝐴𝐴(𝑝𝑝+1)𝑚𝑚, 𝐷𝐷2 is 𝐴𝐴(𝑝𝑝+2)𝑚𝑚  ⋯, 𝐷𝐷𝑖𝑖 is 𝐴𝐴(𝑝𝑝+𝑖𝑖)𝑚𝑚, 

then 𝑍𝑍𝑡𝑡
(𝑚𝑚) = 𝜃𝜃𝑚𝑚1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑚𝑚2𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃𝑚𝑚𝑚𝑚𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑚𝑚(𝑝𝑝+1)𝐷𝐷1 + 𝜃𝜃𝑚𝑚(𝑝𝑝+2)𝐷𝐷2 + ⋯ +

𝜃𝜃𝑚𝑚(𝑝𝑝+𝑖𝑖)𝐷𝐷𝑖𝑖. 

 

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴11, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴21, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝1, 𝐷𝐷1 is 𝐴𝐴(𝑝𝑝+1)1, 𝐷𝐷2 is 𝐴𝐴(𝑝𝑝+2)1  ⋯, 𝐷𝐷𝑖𝑖 is 𝐴𝐴(𝑝𝑝+𝑖𝑖)1, then 

𝑍𝑍𝑡𝑡
(1) = 𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃12𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃1𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃1(𝑝𝑝+1)𝐷𝐷1 + 𝜃𝜃1(𝑝𝑝+2)𝐷𝐷2 + ⋯ + 𝜃𝜃1(𝑝𝑝+𝑖𝑖)𝐷𝐷𝑖𝑖. 

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴12, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴22, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝2, 𝐷𝐷1 is 𝐴𝐴(𝑝𝑝+1)2, 𝐷𝐷2 is 𝐴𝐴(𝑝𝑝+2)2  ⋯, 𝐷𝐷𝑖𝑖 is 𝐴𝐴(𝑝𝑝+𝑖𝑖)2, then 

𝑍𝑍𝑡𝑡
(2) = 𝜃𝜃21𝑍𝑍𝑡𝑡−1 + 𝜃𝜃22𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃2𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃2(𝑝𝑝+1)𝐷𝐷1 + 𝜃𝜃2(𝑝𝑝+2)𝐷𝐷2 + ⋯ + 𝜃𝜃2(𝑝𝑝+𝑖𝑖)𝐷𝐷𝑖𝑖. 

⋮  

If 𝑍𝑍𝑡𝑡−1 is 𝐴𝐴1𝑚𝑚, 𝑍𝑍𝑡𝑡−2 is 𝐴𝐴2𝑚𝑚, ⋯, 𝑍𝑍𝑡𝑡−𝑝𝑝 is 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐷𝐷1 is 𝐴𝐴(𝑝𝑝+1)𝑚𝑚, 𝐷𝐷2 is 𝐴𝐴(𝑝𝑝+2)𝑚𝑚  ⋯, 𝐷𝐷𝑖𝑖 is 𝐴𝐴(𝑝𝑝+𝑖𝑖)𝑚𝑚, 

then 𝑍𝑍𝑡𝑡
(𝑚𝑚) = 𝜃𝜃𝑚𝑚1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑚𝑚2𝑍𝑍𝑡𝑡−2 + ⋯ + 𝜃𝜃𝑚𝑚𝑚𝑚𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑚𝑚(𝑝𝑝+1)𝐷𝐷1 + 𝜃𝜃𝑚𝑚(𝑝𝑝+2)𝐷𝐷2 + ⋯ +

𝜃𝜃𝑚𝑚(𝑝𝑝+𝑖𝑖)𝐷𝐷𝑖𝑖. 
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The membership function used in this study is the 
Gaussian membership function (gaussmf) which can be 

stated as 𝜇𝜇𝐴𝐴𝑘𝑘𝑘𝑘(𝑍𝑍𝑡𝑡−𝑘𝑘) = 𝑒𝑒𝑒𝑒𝑒𝑒(−1
2(

𝑍𝑍𝑡𝑡−𝑘𝑘 − 𝑐𝑐𝑗𝑗𝑗𝑗
𝑎𝑎𝑗𝑗𝑗𝑗 )

2
),  𝜇𝜇𝐴𝐴𝑘𝑘𝑘𝑘(𝑍𝑍𝑡𝑡−𝑘𝑘) = 𝑒𝑒𝑒𝑒𝑒𝑒(−1

2(
𝑍𝑍𝑡𝑡−𝑘𝑘 − 𝑐𝑐𝑗𝑗𝑗𝑗

𝑎𝑎𝑗𝑗𝑗𝑗 )
2
), with j = 1, 

2, ⋯, m; k = 1, 2,⋯, p, p + 1, ⋯, p + i. This parameter is 
called the premise parameter.

FIGURE 1. ANFIS architecture with a dummy calendar effect

𝜇𝜇𝐴𝐴11𝑍𝑍𝑡𝑡−1, 𝜇𝜇𝐴𝐴12𝑍𝑍𝑡𝑡−1,⋯ , 𝜇𝜇𝐴𝐴1𝑚𝑚𝑍𝑍𝑡𝑡−1, 𝜇𝜇𝐴𝐴21𝑍𝑍𝑡𝑡−2, 𝜇𝜇𝐴𝐴22𝑍𝑍𝑡𝑡−2,⋯, 

𝜇𝜇𝐴𝐴2𝑚𝑚𝑍𝑍𝑡𝑡−2,⋯ , 𝜇𝜇𝐴𝐴𝑝𝑝1𝑍𝑍𝑡𝑡−𝑝𝑝, 𝜇𝜇𝐴𝐴𝑝𝑝2𝑍𝑍𝑡𝑡−𝑝𝑝,⋯, 𝜇𝜇𝐴𝐴𝑝𝑝𝑝𝑝𝑍𝑍𝑡𝑡−𝑝𝑝,⋯,

𝜇𝜇𝐴𝐴(𝑝𝑝+1)1𝑍𝑍𝑡𝑡−(𝑝𝑝+1), 𝜇𝜇𝐴𝐴(𝑝𝑝+1)2𝑍𝑍𝑡𝑡−(𝑝𝑝+1),⋯ , 𝜇𝜇𝐴𝐴(𝑝𝑝+1)𝑚𝑚𝑍𝑍𝑡𝑡−(𝑝𝑝+1),⋯,

𝜇𝜇𝐴𝐴(𝑝𝑝+𝑖𝑖)1𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖), 𝜇𝜇𝐴𝐴(𝑝𝑝+𝑖𝑖)2𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖),⋯ , 𝜇𝜇𝐴𝐴(𝑝𝑝+𝑖𝑖)𝑚𝑚𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖) 

 

Layer 2 Each node in the second layer is a fixed node 
where the output of this layer is the sum of the incoming 
signals. Generally used AND fuzzy operators. Each node 
represents the firing strength of wj from rule to j-th.

𝑤𝑤𝑗𝑗 =∏𝜇𝜇𝐴𝐴𝑘𝑘𝑘𝑘(𝑍𝑍𝑡𝑡−𝑘𝑘)
𝑝𝑝+𝑖𝑖

𝑘𝑘=1
, 𝑗𝑗 = 1,2,⋯ ,𝑚𝑚

 

Layer 3 All nodes in this layer are fixed nodes, which 
is the result of calculating the ratio of firing strength to 
j-th with the sum of all the existing firing strengths of 
the rules.

Layer 4 Every node is an adaptive node with output for 
each node defined as

Page 899, first column, garisan di atas abjad 

 

𝑤𝑤𝑗𝑗̅̅̅ =
𝑤𝑤𝑗𝑗

∑ 𝑤𝑤𝑗𝑗𝑚𝑚
𝑗𝑗=1

 

Layer 4  

𝑤𝑤𝑖𝑖̅̅̅𝑍𝑍𝑡𝑡
(𝑗𝑗) = 𝑤𝑤𝑖𝑖̅̅̅(𝜃𝜃𝑗𝑗1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑗𝑗2𝑍𝑍𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑗𝑗𝑗𝑗𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑗𝑗(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) + ⋯+ 𝜃𝜃𝑗𝑗(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖)) 

 

Layer 5 

 

𝑍𝑍𝑡𝑡 =∑𝑤𝑤𝑖𝑖̅̅̅(𝜃𝜃𝑗𝑗1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑗𝑗2𝑍𝑍𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑗𝑗𝑗𝑗𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑗𝑗(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) + ⋯+ 𝜃𝜃𝑗𝑗(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖))
𝑚𝑚

𝑗𝑗=1
 

𝑍𝑍𝑡𝑡 =∑∑𝜃𝜃𝑗𝑗𝑗𝑗
𝑝𝑝+𝑖𝑖

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1
(𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) +∑𝜃𝜃𝑗𝑗0

𝑚𝑚

𝑗𝑗=1
𝑤𝑤𝑗𝑗̅̅̅ 

Page 899, second column, first paragraph – missing formula in between text 

 

… say 𝑍𝑍𝑡𝑡−1, 𝑍𝑍𝑡𝑡−2 ⋯ , 𝑍𝑍𝑡𝑡−𝑝𝑝  and 
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with j = 1, 2, ⋯, m and wj is the normalized firing strength 
in the third layer, with θj1, θj2,⋯, θjp, θj(p+1), ⋯, θj(p+i) being 
the consequent parameters.

Layer 5 This layer produces a single node that is a fixed 
node that computes all incoming signals, the output is 
the overall output of the network.

We used a hybrid learning algorithm, which in forward 
pass the consequent parameter is identified by the least-
squares method. Meanwhile, in the backward pass, the 
premise parameter is updated using gradient descent.

Based on architecture with these five layers, the 
general model of ANFIS can be expressed as

LAGRANGE MULTIPLIER TEST PROCEDURE FOR 
ADDING VARIABLE

Lagrange Multiplier (LM) test is used to test hypotheses 
related to adding variables and the number of 
membership functions to the ANFIS architecture. 
The determination of input variables using LM test 
procedure, begins with testing using a minimum number 
of inputs, number of membership functions, and rules. 
The first stage, the ANFIS model was formed by using 
1 input variable selected from several input candidates, 
2 number of membership functions, and 2 rules. The 
variable, which was first tested to be included in the 
ANFIS architecture, was the variable with the largest R2 
value from the previous partial test. 

In data with calendar effects, additional variables can 
be input candidates, namely dummy variables that refer to 
the calendar effect on the data. For p lag input variables, 
say Zt-1, Zt-2 ..., Zt-p and a number of i dummy variables 
that state the calendar effect symbolized by D1, D2,⋯, Di 
with the number of MFs of m, then the restricted model 
for this case can be stated as
	

where 𝜀𝜀𝑡𝑡~𝑁𝑁(0, 𝜎𝜎𝜀𝜀2)  and unrestricted model to add one 
input Zt-(p+i+1) is
	

	

where 𝜐𝜐𝑡𝑡~𝑁𝑁(0, 𝜎𝜎𝜐𝜐2). 

The null hypothesis for testing the addition of variables 
is formulated as follows,

If the 𝐿𝐿𝐿𝐿 = 𝑛𝑛𝑅𝑅𝜀𝜀𝑡𝑡2 > 𝜒𝜒(𝛼𝛼,𝑑𝑑𝑑𝑑)2  then H0 is rejected.

The LM test introduced by Lee et al. (1993) and Terasvirta 
et al. (1994) was also used to test linearity. The test 
is carried out through the χ2 test with the following 
procedure (Gujarati 2009).

i.  Regress Zt to Zt-1, Zt-2, ⋯, Zt-p, Zt-(p+1),⋯, Zt-(p+i) and 
estimate the parameters on the restricted model using 
the OLS method. 
ii.  Calculate the residual estimated 𝜀𝜀𝑡̂𝑡 = 𝑍𝑍𝑡𝑡 − ∑    ∑ 𝜃𝜃𝑗𝑗𝑗𝑗 (𝑤𝑤𝑗𝑗𝑍𝑍𝑡𝑡−𝑘𝑘)

𝑝𝑝+𝑖𝑖

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1
− ∑ 𝜃𝜃𝑗𝑗0𝑤𝑤𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

 from the 
regression, with

Regress 𝜀𝜀𝑡̂𝑡 = 𝑍𝑍𝑡𝑡 − ∑    ∑ 𝜃𝜃𝑗𝑗𝑗𝑗 (𝑤𝑤𝑗𝑗𝑍𝑍𝑡𝑡−𝑘𝑘)
𝑝𝑝+𝑖𝑖

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1
− ∑ 𝜃𝜃𝑗𝑗0𝑤𝑤𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

 to Zt-1, Zt-2, ⋯, Zt-p, Zt-(p+1),⋯, Zt-(p+i) and m 
additional predictors, then calculate the coefficient of 
determination R2 from the regression. 

THE PROCEDURE OF THE PROPOSED METHOD: ARIMAX-
ANFIS BASED THE LM TEST

The determination of ANFIS input in time series cases can 
be identified by the significant lag partial autocorrelation 
function (PACF) plot. ARIMA subset model can be formed 
based on significant lag, which is then used to model 
time series data affected by the Eid al-Fitr holidays. The 
subset ARIMA model can be easily identified, estimated, 
and used for forecasting by forming a representative 
parsimony model. Furthermore, the subset ARIMA 
develops into the ARIMAX by adding a calendar effect 
variable as an exogenous variable.

At this stage, the variable that refers to the Eid al-Fitr 
holiday calendar effect intervention is defined. Forming 
a calendar effect variable is done in the following two 
ways.

𝐻𝐻0: 𝜃𝜃1(𝑝𝑝+𝑖𝑖+1) = 𝜃𝜃2(𝑝𝑝+𝑖𝑖+1) = ⋯ = 𝜃𝜃𝑚𝑚(𝑝𝑝+𝑖𝑖+1) = 0

 

Page 899, first column, garisan di atas abjad 

 

𝑤𝑤𝑗𝑗̅̅̅ =
𝑤𝑤𝑗𝑗

∑ 𝑤𝑤𝑗𝑗𝑚𝑚
𝑗𝑗=1

 

Layer 4  

𝑤𝑤𝑖𝑖̅̅̅𝑍𝑍𝑡𝑡
(𝑗𝑗) = 𝑤𝑤𝑖𝑖̅̅̅(𝜃𝜃𝑗𝑗1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑗𝑗2𝑍𝑍𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑗𝑗𝑗𝑗𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑗𝑗(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) + ⋯+ 𝜃𝜃𝑗𝑗(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖)) 

 

Layer 5 

 

𝑍𝑍𝑡𝑡 =∑𝑤𝑤𝑖𝑖̅̅̅(𝜃𝜃𝑗𝑗1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑗𝑗2𝑍𝑍𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑗𝑗𝑗𝑗𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑗𝑗(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) + ⋯+ 𝜃𝜃𝑗𝑗(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖))
𝑚𝑚

𝑗𝑗=1
 

𝑍𝑍𝑡𝑡 =∑∑𝜃𝜃𝑗𝑗𝑗𝑗
𝑝𝑝+𝑖𝑖

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1
(𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) +∑𝜃𝜃𝑗𝑗0

𝑚𝑚

𝑗𝑗=1
𝑤𝑤𝑗𝑗̅̅̅ 

Page 899, second column, first paragraph – missing formula in between text 

 

… say 𝑍𝑍𝑡𝑡−1, 𝑍𝑍𝑡𝑡−2 ⋯ , 𝑍𝑍𝑡𝑡−𝑝𝑝  and 

Page 899, first column, garisan di atas abjad 

 

𝑤𝑤𝑗𝑗̅̅̅ =
𝑤𝑤𝑗𝑗

∑ 𝑤𝑤𝑗𝑗𝑚𝑚
𝑗𝑗=1

 

Layer 4  

𝑤𝑤𝑖𝑖̅̅̅𝑍𝑍𝑡𝑡
(𝑗𝑗) = 𝑤𝑤𝑖𝑖̅̅̅(𝜃𝜃𝑗𝑗1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑗𝑗2𝑍𝑍𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑗𝑗𝑗𝑗𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑗𝑗(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) + ⋯+ 𝜃𝜃𝑗𝑗(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖)) 

 

Layer 5 

 

𝑍𝑍𝑡𝑡 =∑𝑤𝑤𝑖𝑖̅̅̅(𝜃𝜃𝑗𝑗1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑗𝑗2𝑍𝑍𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑗𝑗𝑗𝑗𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑗𝑗(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) + ⋯+ 𝜃𝜃𝑗𝑗(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖))
𝑚𝑚

𝑗𝑗=1
 

𝑍𝑍𝑡𝑡 =∑∑𝜃𝜃𝑗𝑗𝑗𝑗
𝑝𝑝+𝑖𝑖

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1
(𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) +∑𝜃𝜃𝑗𝑗0

𝑚𝑚

𝑗𝑗=1
𝑤𝑤𝑗𝑗̅̅̅ 

Page 899, second column, first paragraph – missing formula in between text 

 

… say 𝑍𝑍𝑡𝑡−1, 𝑍𝑍𝑡𝑡−2 ⋯ , 𝑍𝑍𝑡𝑡−𝑝𝑝  and 

Page 899, first column, garisan di atas abjad 

 

𝑤𝑤𝑗𝑗̅̅̅ =
𝑤𝑤𝑗𝑗

∑ 𝑤𝑤𝑗𝑗𝑚𝑚
𝑗𝑗=1

 

Layer 4  

𝑤𝑤𝑖𝑖̅̅̅𝑍𝑍𝑡𝑡
(𝑗𝑗) = 𝑤𝑤𝑖𝑖̅̅̅(𝜃𝜃𝑗𝑗1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑗𝑗2𝑍𝑍𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑗𝑗𝑗𝑗𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑗𝑗(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) + ⋯+ 𝜃𝜃𝑗𝑗(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖)) 

 

Layer 5 

 

𝑍𝑍𝑡𝑡 =∑𝑤𝑤𝑖𝑖̅̅̅(𝜃𝜃𝑗𝑗1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑗𝑗2𝑍𝑍𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑗𝑗𝑗𝑗𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑗𝑗(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) + ⋯+ 𝜃𝜃𝑗𝑗(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖))
𝑚𝑚

𝑗𝑗=1
 

𝑍𝑍𝑡𝑡 =∑∑𝜃𝜃𝑗𝑗𝑗𝑗
𝑝𝑝+𝑖𝑖

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1
(𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) +∑𝜃𝜃𝑗𝑗0

𝑚𝑚

𝑗𝑗=1
𝑤𝑤𝑗𝑗̅̅̅ 

Page 899, second column, first paragraph – missing formula in between text 

 

… say 𝑍𝑍𝑡𝑡−1, 𝑍𝑍𝑡𝑡−2 ⋯ , 𝑍𝑍𝑡𝑡−𝑝𝑝  and 

Page 899, first column, garisan di atas abjad 

 

𝑤𝑤𝑗𝑗̅̅̅ =
𝑤𝑤𝑗𝑗

∑ 𝑤𝑤𝑗𝑗𝑚𝑚
𝑗𝑗=1

 

Layer 4  

𝑤𝑤𝑖𝑖̅̅̅𝑍𝑍𝑡𝑡
(𝑗𝑗) = 𝑤𝑤𝑖𝑖̅̅̅(𝜃𝜃𝑗𝑗1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑗𝑗2𝑍𝑍𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑗𝑗𝑗𝑗𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑗𝑗(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) + ⋯+ 𝜃𝜃𝑗𝑗(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖)) 

 

Layer 5 

 

𝑍𝑍𝑡𝑡 =∑𝑤𝑤𝑖𝑖̅̅̅(𝜃𝜃𝑗𝑗1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑗𝑗2𝑍𝑍𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑗𝑗𝑗𝑗𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑗𝑗(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) + ⋯+ 𝜃𝜃𝑗𝑗(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖))
𝑚𝑚

𝑗𝑗=1
 

𝑍𝑍𝑡𝑡 =∑∑𝜃𝜃𝑗𝑗𝑗𝑗
𝑝𝑝+𝑖𝑖

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1
(𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) +∑𝜃𝜃𝑗𝑗0

𝑚𝑚

𝑗𝑗=1
𝑤𝑤𝑗𝑗̅̅̅ 

Page 899, second column, first paragraph – missing formula in between text 

 

… say 𝑍𝑍𝑡𝑡−1, 𝑍𝑍𝑡𝑡−2 ⋯ , 𝑍𝑍𝑡𝑡−𝑝𝑝  and 

Page 899, first column, garisan di atas abjad 

 

𝑤𝑤𝑗𝑗̅̅̅ =
𝑤𝑤𝑗𝑗

∑ 𝑤𝑤𝑗𝑗𝑚𝑚
𝑗𝑗=1

 

Layer 4  

𝑤𝑤𝑖𝑖̅̅̅𝑍𝑍𝑡𝑡
(𝑗𝑗) = 𝑤𝑤𝑖𝑖̅̅̅(𝜃𝜃𝑗𝑗1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑗𝑗2𝑍𝑍𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑗𝑗𝑗𝑗𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑗𝑗(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) + ⋯+ 𝜃𝜃𝑗𝑗(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖)) 

 

Layer 5 

 

𝑍𝑍𝑡𝑡 =∑𝑤𝑤𝑖𝑖̅̅̅(𝜃𝜃𝑗𝑗1𝑍𝑍𝑡𝑡−1 + 𝜃𝜃𝑗𝑗2𝑍𝑍𝑡𝑡−2 + ⋯+ 𝜃𝜃𝑗𝑗𝑗𝑗𝑍𝑍𝑡𝑡−𝑝𝑝 + 𝜃𝜃𝑗𝑗(𝑝𝑝+1)𝑍𝑍𝑡𝑡−(𝑝𝑝+1) + ⋯+ 𝜃𝜃𝑗𝑗(𝑝𝑝+𝑖𝑖)𝑍𝑍𝑡𝑡−(𝑝𝑝+𝑖𝑖))
𝑚𝑚

𝑗𝑗=1
 

𝑍𝑍𝑡𝑡 =∑∑𝜃𝜃𝑗𝑗𝑗𝑗
𝑝𝑝+𝑖𝑖

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1
(𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) +∑𝜃𝜃𝑗𝑗0

𝑚𝑚

𝑗𝑗=1
𝑤𝑤𝑗𝑗̅̅̅ 

Page 899, second column, first paragraph – missing formula in between text 

 

… say 𝑍𝑍𝑡𝑡−1, 𝑍𝑍𝑡𝑡−2 ⋯ , 𝑍𝑍𝑡𝑡−𝑝𝑝  and 

Page 899, second column, garisan di atas abjad 

 

𝑍𝑍𝑡𝑡 = ∑ ∑ 𝜃𝜃𝑗𝑗𝑗𝑗
𝑝𝑝+𝑖𝑖
𝑘𝑘=1

𝑚𝑚
𝑗𝑗=1 (𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) + ∑ 𝜃𝜃𝑗𝑗0

𝑚𝑚
𝑗𝑗=1 𝑤𝑤𝑗𝑗̅̅̅ + 𝜀𝜀𝑡𝑡    

 

𝑍𝑍𝑡𝑡 = ∑ ∑ 𝜃𝜃𝑗𝑗𝑗𝑗
𝑝𝑝+𝑖𝑖+1
𝑘𝑘=1

𝑚𝑚
𝑗𝑗=1 (𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) + ∑ 𝜃𝜃𝑗𝑗0

𝑚𝑚
𝑗𝑗=1 𝑤𝑤𝑗𝑗̅̅̅ + 𝜐𝜐𝑡𝑡    

 

𝜀𝜀𝑡̂𝑡 = 𝑍𝑍𝑡𝑡 − ∑ ∑ 𝜃𝜃𝑗𝑗𝑗𝑗

𝑝𝑝+𝑖𝑖

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1
(𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) − ∑ 𝜃𝜃𝑗𝑗0

𝑚𝑚

𝑗𝑗=1
𝑤𝑤𝑗𝑗̅̅̅ 

Page 900, second column, formula 

 

𝐷𝐷𝑡𝑡−1 = {1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  

𝐷𝐷𝑡𝑡 = {1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  

𝐷𝐷𝑡𝑡+1 = {1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  

Page 900, second column, last paragraph - missing symbols in between text 

to 𝑘𝑘(∅𝑘𝑘𝑘𝑘) twice the standard error ∅𝑘𝑘𝑘𝑘, then 

Page 901, first column, garisan di atas abjad 

 

𝑍𝑍𝑡𝑡 = 𝑤𝑤1̅̅̅̅ (𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃10) + 𝑤𝑤2̅̅̅̅ (𝜃𝜃21𝑍𝑍𝑡𝑡−1 + 𝜃𝜃20) + 𝜀𝜀𝑡𝑡. 

 

𝜀𝜀𝑡𝑡 = 𝑤𝑤1̅̅̅̅ (𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃12𝑍𝑍𝑡𝑡−1 + 𝜃𝜃10 ) + 𝑤𝑤2̅̅̅̅ (𝜃𝜃21𝑍𝑍𝑡𝑡−2 + 𝜃𝜃22𝑍𝑍𝑡𝑡−2 + 𝜃𝜃20) + 𝜐𝜐𝑡𝑡. 

Page 899, second column, garisan di atas abjad 

 

𝑍𝑍𝑡𝑡 = ∑ ∑ 𝜃𝜃𝑗𝑗𝑗𝑗
𝑝𝑝+𝑖𝑖
𝑘𝑘=1

𝑚𝑚
𝑗𝑗=1 (𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) + ∑ 𝜃𝜃𝑗𝑗0

𝑚𝑚
𝑗𝑗=1 𝑤𝑤𝑗𝑗̅̅̅ + 𝜀𝜀𝑡𝑡    

 

𝑍𝑍𝑡𝑡 = ∑ ∑ 𝜃𝜃𝑗𝑗𝑗𝑗
𝑝𝑝+𝑖𝑖+1
𝑘𝑘=1

𝑚𝑚
𝑗𝑗=1 (𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) + ∑ 𝜃𝜃𝑗𝑗0

𝑚𝑚
𝑗𝑗=1 𝑤𝑤𝑗𝑗̅̅̅ + 𝜐𝜐𝑡𝑡    

 

𝜀𝜀𝑡̂𝑡 = 𝑍𝑍𝑡𝑡 − ∑ ∑ 𝜃𝜃𝑗𝑗𝑗𝑗

𝑝𝑝+𝑖𝑖

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1
(𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) − ∑ 𝜃𝜃𝑗𝑗0

𝑚𝑚

𝑗𝑗=1
𝑤𝑤𝑗𝑗̅̅̅ 

Page 900, second column, formula 

 

𝐷𝐷𝑡𝑡−1 = {1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  

𝐷𝐷𝑡𝑡 = {1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  

𝐷𝐷𝑡𝑡+1 = {1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  

Page 900, second column, last paragraph - missing symbols in between text 

to 𝑘𝑘(∅𝑘𝑘𝑘𝑘) twice the standard error ∅𝑘𝑘𝑘𝑘, then 

Page 901, first column, garisan di atas abjad 

 

𝑍𝑍𝑡𝑡 = 𝑤𝑤1̅̅̅̅ (𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃10) + 𝑤𝑤2̅̅̅̅ (𝜃𝜃21𝑍𝑍𝑡𝑡−1 + 𝜃𝜃20) + 𝜀𝜀𝑡𝑡. 

 

𝜀𝜀𝑡𝑡 = 𝑤𝑤1̅̅̅̅ (𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃12𝑍𝑍𝑡𝑡−1 + 𝜃𝜃10 ) + 𝑤𝑤2̅̅̅̅ (𝜃𝜃21𝑍𝑍𝑡𝑡−2 + 𝜃𝜃22𝑍𝑍𝑡𝑡−2 + 𝜃𝜃20) + 𝜐𝜐𝑡𝑡. 

Page 899, second column, garisan di atas abjad 

 

𝑍𝑍𝑡𝑡 = ∑ ∑ 𝜃𝜃𝑗𝑗𝑗𝑗
𝑝𝑝+𝑖𝑖
𝑘𝑘=1

𝑚𝑚
𝑗𝑗=1 (𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) + ∑ 𝜃𝜃𝑗𝑗0

𝑚𝑚
𝑗𝑗=1 𝑤𝑤𝑗𝑗̅̅̅ + 𝜀𝜀𝑡𝑡    

 

𝑍𝑍𝑡𝑡 = ∑ ∑ 𝜃𝜃𝑗𝑗𝑗𝑗
𝑝𝑝+𝑖𝑖+1
𝑘𝑘=1

𝑚𝑚
𝑗𝑗=1 (𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) + ∑ 𝜃𝜃𝑗𝑗0

𝑚𝑚
𝑗𝑗=1 𝑤𝑤𝑗𝑗̅̅̅ + 𝜐𝜐𝑡𝑡    

 

𝜀𝜀𝑡̂𝑡 = 𝑍𝑍𝑡𝑡 − ∑ ∑ 𝜃𝜃𝑗𝑗𝑗𝑗

𝑝𝑝+𝑖𝑖

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1
(𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) − ∑ 𝜃𝜃𝑗𝑗0

𝑚𝑚

𝑗𝑗=1
𝑤𝑤𝑗𝑗̅̅̅ 

Page 900, second column, formula 

 

𝐷𝐷𝑡𝑡−1 = {1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  

𝐷𝐷𝑡𝑡 = {1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  

𝐷𝐷𝑡𝑡+1 = {1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  

Page 900, second column, last paragraph - missing symbols in between text 

to 𝑘𝑘(∅𝑘𝑘𝑘𝑘) twice the standard error ∅𝑘𝑘𝑘𝑘, then 

Page 901, first column, garisan di atas abjad 

 

𝑍𝑍𝑡𝑡 = 𝑤𝑤1̅̅̅̅ (𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃10) + 𝑤𝑤2̅̅̅̅ (𝜃𝜃21𝑍𝑍𝑡𝑡−1 + 𝜃𝜃20) + 𝜀𝜀𝑡𝑡. 

 

𝜀𝜀𝑡𝑡 = 𝑤𝑤1̅̅̅̅ (𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃12𝑍𝑍𝑡𝑡−1 + 𝜃𝜃10 ) + 𝑤𝑤2̅̅̅̅ (𝜃𝜃21𝑍𝑍𝑡𝑡−2 + 𝜃𝜃22𝑍𝑍𝑡𝑡−2 + 𝜃𝜃20) + 𝜐𝜐𝑡𝑡. 



900	

a.  Dummy variable calendar effect

The first way is to use a dummy variable to declare the 
Eid al-Fitr holiday.

In this model, the intercept is removed to avoid the 
dummy variable trap.

b.  Variable days proportion calendar effects

The second method is done by calculating day 
proportions by assuming Eid al-Fitr events are distributed 
uniformly over 10 days, starting from 3 days before Eid 
and 7 days after that, including Eid al-Fitr (Liu 1986). 
The days proportion calendar effect DPt are set as 
follows and shown in Table 1.

TABLE 1.  The days proportion of the Eid al-Fitr calendar effect 

Year Date Month Week DPt DPt DPt+1

2006 24 10 4 0 1 0

2007 13 10 2 0 1 0

2008 1 10 1 0.3 0.7 0

2009 20 9 3 0 1 0

2010 9 9 2 0 1 0

2011 30 8 4 0 0.5 0.5

2012 18 8 3 0 1 0

2013 7 8 3 0 1 0

2014 28 7 4 0 0.7 0.3

2015 17 7 3 0 1 0

2016 6 7 1 0 1 0

2017 25 6 4 0 0.9 0.1

2018 15 6 3 0 1 0

2019 5 6 1 0 1 0

THE PROPOSED PROCEDURE

Modeling problems in the real world are generally 
influenced by many potential inputs that can be 
incorporated into the built model. Therefore, an 
investigation is needed to determine the appropriate 
potential input that is made a priority. This study 
constructs the ANFIS architecture with preprocessing 
stages using ARIMAX and the LM test inference 
procedure. The LM test is used to test hypotheses for 
the determination of input variables and the number 

of membership functions to form the optimal ANFIS 
architecture for prediction of time series, which is 
affected by calendar effects. The data analysis steps in 
this study are as follows.

PREPROCESSING DATA

Input determination begins by plotting a PACF plot 
from time series data. The PACF plot is used to identify 
whether a lag variable affects the data. If the PACF lag 
value to 
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	 	 901

lag-k can be identified as an ANFIS input variable. Based 
on the significant lag and calendar effect, the ARIMAX 
model can be identified. This model contains several 
input variables that can be entered into the ANFIS model. 
Furthermore, the formation of the ARIMAX model is 
continued with parameter estimation to see significant 
variables, and diagnostic testing is carried out by testing 
the residual independence and normality. The ARIMAX 
model that meets all the conditions with the smallest 
Akaike Information Criterion (AIC) value is then 
determined as a model of the ARIMAX calendar effect.	
	

FORECASTING WITH ANFIS

Determine the appropriate input variables
The first input to be entered in the model is determined 
based on the R2 value. The variable with the largest R2 

will be the first input. Determination of variable inputs in 
the ANFIS model is done one by one on all existing input 
candidates until all suitable input candidates are tested. 
At this stage, all input variables that will meet the LM 
test will be obtained. The optimization of variable input 
stops when the LM test value is not significant for the 
addition of input. At this stage, taking into account the 
principle of parsimony, ANFIS architecture is used with 
two membership functions and two rules. 

The steps for using the LM Test to determine the 
input variable in accordance with the subsection LM 
Test Procedure for Adding Variable are described as 
follows.
i.  Choose the first input variable that has the largest 
R2.	

ii.  Estimating parameters in the restricted ANFIS model 
with the output variable Zt.

Suppose the first input variable is Zt-1, then Zt = 
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iii.  Calculates the estimated residual (εt) value of the 
restricted model.	

iv.  Enter an additional candidate variable input that is the 
candidate input variable with the next largest R2 value, 
supposed Zt-2.	
	
v.  Form an unrestricted ANFIS model to increase the 
number of input lag variables (input becomes 2) with the 
residuals of the restricted model being input variables

vi.  Calculates the value of 𝑅𝑅𝜀𝜀𝑡𝑡2  from the regression 
estimation of residual εt values and unrestricted ANFIS 
models for the addition of one input lag.		

vii.  Determine the conclusions of the hypothesis LM test.

Repeat steps (i) to (vii) until all the candidate input 
variables obtained from the best ARIMAX model are 
all tested. Furthermore, increasing the number of input 
variables continues so that all the inputs variables can 
be determined.

Determine the optimal number of membership functions.

The steps for using the Lagrange Multiplier Test to 
determine the number of membership functions is as 
follows.

i.  Forming the ANFIS model by entering all the input 
variables selected in the previous stage by increasing 
the number of clusters starting from 2 clusters then 
calculating the RMSE and MAPE value of the ANFIS 
architecture that was formed.
	
ii.  Increase the number of membership functions to the 
optimal number of membership functions that provide 
the smallest RMSE and MAPE value.

iii.  Determine the optimal number of membership 
functions that provide the smallest RMSE and MAPE using 
the LM test previously described.			 

Forecasting
	
Forecasting is done using the ANFIS architecture from the 
results in Determine the optimal number of membership 
functions and Forecasting steps.
 
i.  The initial stage is done by determining the input and 
output variables.	

ii.  Divide the data into two parts, namely training 
(insample) and testing (outsample).

iii.  Determine the Gauss function as membership 
function.	

iv. Use the number of MFs that satisfy the LM test 
obtained in Forecasting steps.
v.  Training ANFIS parameters with the training 
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Page 899, second column, garisan di atas abjad 

 

𝑍𝑍𝑡𝑡 = ∑ ∑ 𝜃𝜃𝑗𝑗𝑗𝑗
𝑝𝑝+𝑖𝑖
𝑘𝑘=1

𝑚𝑚
𝑗𝑗=1 (𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) + ∑ 𝜃𝜃𝑗𝑗0

𝑚𝑚
𝑗𝑗=1 𝑤𝑤𝑗𝑗̅̅̅ + 𝜀𝜀𝑡𝑡    

 

𝑍𝑍𝑡𝑡 = ∑ ∑ 𝜃𝜃𝑗𝑗𝑗𝑗
𝑝𝑝+𝑖𝑖+1
𝑘𝑘=1

𝑚𝑚
𝑗𝑗=1 (𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) + ∑ 𝜃𝜃𝑗𝑗0

𝑚𝑚
𝑗𝑗=1 𝑤𝑤𝑗𝑗̅̅̅ + 𝜐𝜐𝑡𝑡    

 

𝜀𝜀𝑡̂𝑡 = 𝑍𝑍𝑡𝑡 − ∑ ∑ 𝜃𝜃𝑗𝑗𝑗𝑗

𝑝𝑝+𝑖𝑖

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1
(𝑤𝑤𝑗𝑗̅̅̅𝑍𝑍𝑡𝑡−𝑘𝑘) − ∑ 𝜃𝜃𝑗𝑗0

𝑚𝑚

𝑗𝑗=1
𝑤𝑤𝑗𝑗̅̅̅ 

Page 900, second column, formula 

 

𝐷𝐷𝑡𝑡−1 = {1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  

𝐷𝐷𝑡𝑡 = {1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  

𝐷𝐷𝑡𝑡+1 = {1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  

Page 900, second column, last paragraph - missing symbols in between text 

to 𝑘𝑘(∅𝑘𝑘𝑘𝑘) twice the standard error ∅𝑘𝑘𝑘𝑘, then 

Page 901, first column, garisan di atas abjad 

 

𝑍𝑍𝑡𝑡 = 𝑤𝑤1̅̅̅̅ (𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃10) + 𝑤𝑤2̅̅̅̅ (𝜃𝜃21𝑍𝑍𝑡𝑡−1 + 𝜃𝜃20) + 𝜀𝜀𝑡𝑡. 

 

𝜀𝜀𝑡𝑡 = 𝑤𝑤1̅̅̅̅ (𝜃𝜃11𝑍𝑍𝑡𝑡−1 + 𝜃𝜃12𝑍𝑍𝑡𝑡−1 + 𝜃𝜃10 ) + 𝑤𝑤2̅̅̅̅ (𝜃𝜃21𝑍𝑍𝑡𝑡−2 + 𝜃𝜃22𝑍𝑍𝑡𝑡−2 + 𝜃𝜃20) + 𝜐𝜐𝑡𝑡. 
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and testing data. At this stage, the RMSE and MAPE 
values for the training and testing process for all 
ANFIS architectures will be obtained. The best ANFIS 

architecture is determined by looking at the smallest 
RMSE and MAPE in the testing data.

The procedure of the method proposed in this study is 

FIGURE 2. The procedure for the proposed method 
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illustrated in Figure 2.
			 

ACCURACY CRITERIA

There are many criteria that can be used to evaluate 
forecasting methods, the accuracy of forecasting is 
generally the basis for determining the appropriate 
model. Measurement error forecasting accuracy 
has been widely studied by experts to investigate the 
accuracy of various forecasting methods (Makridakis et 
al. 1997). There are three performance measurements 
used in this study to evaluate the accuracy of the proposed 
methods both in training and testing data, namely Root 
Mean Square Error (RMSE), Mean Absolute Percentage 
Error (MAPE) and Coefficient of determination (R2). 
These three measurement criteria are stated with,
			 

RESULTS AND DISCUSSION

This paper’s data study is the monthly volume of visitors 
to Jakarta’s Tanjung Priok Port from January 2006 to 
November 2019 obtained from Statistics Indonesia. By 
examining the data, the Eid holiday causes an increase 
in the recurring pattern in the months of Eid al-Fitr each 
year. Figure 3(a) illustrates this pattern. Based on the 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛 ∑   (𝑍𝑍𝑡𝑡 − 𝑍̂𝑍𝑡𝑡)2𝑛𝑛

𝑡𝑡=1       

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100 × 1
𝑛𝑛 ∑   |𝑍𝑍𝑡𝑡−𝑍̂𝑍𝑡𝑡

𝑍𝑍𝑡𝑡
|𝑛𝑛

𝑡𝑡=1      

𝑅𝑅2 = 1 − ∑   
𝑡𝑡 (𝑍𝑍𝑡𝑡−𝑍̂𝑍𝑡𝑡)2

∑   
𝑡𝑡 (𝑍𝑍𝑡𝑡−𝑍𝑍𝑡𝑡)2  

 

FIGURE 3.  (a) Tanjung Priok Port Passenger Plot, (b) Sample PACF Plot
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data plot, the data has a recurring pattern every 11 or 
12 months. There is a pattern that is almost the same in 
every data point with a red line. During this time, there 
was a pattern of a significant increase in data. This pattern 
indicates a calendar effect on the data. 

After determining the calendar effect dummy 
variable (Table 1), then at the data preprocessing stage the 
input variable was determined by applying the ARIMAX 
and LM test models. This process begins with modeling 
the data using ARIMA to see the significant lag and the 
most efficient model. In this study, for convenience and 

ARIMA

Model
ARIMA

([1,11,12],1,0)
ARIMA

([11,12],1,0)
ARIMA

([11,12,13],1,0)
ARIMA

([1,2,3,11,12,13],1,0)
ARIMA

([1,11,12,13],1,0)
ARIMA

([1,2,11,12,13],1,0)

a1 Sig Sig Sig Sig

a2 Sig

a3 Not Sig

a11 Sig Sig Sig Sig Sig Sig

a12 Sig Sig Sig Sig Sig Sig

a13 Sig Sig Sig Sig

R2 0.63 0.56 0.57 0.67 0.67 0.67

SSR 3.35E+09 4.16E+09 4.05 E+09 3.05E+09 3.14E+09 3.08 E+09

AIC 19.763 19.984 19.964 19.729 19.738 19.725

White Noise 

Num of 
Variable

3 2 3 6 4 5

Furthermore, calendar effect variables that 
significantly affect the data will also be candidates for 
input variables in ANFIS. Table 3 shows the calendar 
effect ARIMAX model which contains significant 
variables as an alternative to determining the input 
variables for the ANFIS model. There are six candidate 
input variables that can be included in the ANFIS model. 
The R2 for each variable are 0.396 for Lag-1, 0.255 for 
Lag-11, 0.478 for Lag-12, 0.259 for Dt  0.020 for Dt+1 
and 0.259 for DPt. The following Table 4 is the result 
of testing the addition of variable input in the Tanjung 
Priok Port Passenger data. Based on the value of R2, 
Lag-12 is selected as the first input variable of the ANFIS 
architecture. The next step is to add other inputs to the 

simplicity, the ARIMA model used is limited to only 
using lag data from the AR section and does not take into 
account the lag in the MA section. This is done by only 
paying attention to the PACF plot of the observed data. 
Based on the PACF plot in Figure 3(b), it can be seen that 
the significant lag is lag 1, 2, 3, 11,12, 13. From Table 
2, based on the AIC model value, significant lag, and the 
number of variables that affect the model, based on the 
parsimony principle, the ARIMA([1,11,12],1,0) model 
chosen as the best model used for the next stage.

TABLE 2. Determining significant input variable using 

ANFIS architecture in stages according to the large order 
value of R2. The step-by-step results from the analysis of 
adding input variables are shown in Table 4. The LM test 
value of the three models shows a value greater than the 
χ2

(α, df) which means that additional input variables can 
be accepted and included in the model. We can conclude 
that the optimal input variables for the calendar effect 
of dummy models are Lag-1, Lag-11, Lag-12, Dt, and 
Dt+1. Meanwhile, the optimal input variables for the days 
proportion calendar effect models are Lag-1, Lag-11, 
Lag-12, and DPt. This shows that, all significant input 
candidates based on the ARIMAX model can be entered 
into ANFIS input variables.
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TABLE 3.  Forecasting calendar effect using ARIMAX

Model Input Variable R2 SSR AIC White 
Noise

Normality 
Residual

ARIMA([1,11,12],1,0) Lag-1 0.63 3.45E+09 19.806 √ ×
Lag-11

Lag-12

ARIMA([1,11,12],1,0) Lag-1 0.64 3.35E+09 19.789 √ √

with Dt, Dt+1, Lag-11

Lag-12

Dt

Dt+1

ARIMA([1,11,12],1,0) Lag-1 0.66 3.25E+09 19.763 √ √

with DPt Lag-11

Lag-12

DPt

			 

TABLE 4.  ANFIS variable input determination

Model Input Variable RMSE LM Stat Conclusion

Without dummy variables calendar effect

ARIMA([1,11,12],1,0) Lag-12 5982.4 68.288 var added

Lag-12, Lag-1 5509.5 31.072 var added

Lag-12, Lag-1, Lag-11 5374.9 36.421 var added

Dummy variables calendar effect

ARIMA([1,11,12],1,0) Lag-12 5982.4 68.295 var added

with Dt, Dt+1, Lag-12, Lag-1 5509.5 31.106 var added

Lag-12, Lag-1, Dt 5115.0 46.542 var added

Lag-12, Lag-1, Dt ,Lag-11 5012.0 50.444 var added

Lag-12, Lag-1, Dt , Lag-11, Dt+1 4559.6 66.411 var added

Days proportion calendar effect variable

ARIMA([1,11,12],1,0) Lag-12 5982.4 68.302 var added

with DPt Lag-12, Lag-1 5509.6 31.076 var added

Lag-12, Lag-1, DPt 5084.0 46.712 var added

Lag-12, Lag-1, DPt, Lag-11 5022.9 50.000 var added
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After obtaining the input variable, the next step is 
to determine the number of MFs. The number of MFs 
used starts from 2 and then gradually increases until 
the maximum number of MFs gives the smallest error 
value. In determining the optimum number of MFs, a 
fuzzy C-Means (FCM) clustering technique is used, which 
is determined by using the LM test with the procedure 
described earlier.

The number of MFs is restricted so that the estimated 
number of parameters is not more than the amount of 
data analyzed so that the resulting error tends to increase. 
Because the number of parameters estimated does not 
more than the observational data, 3 are the maximum 
number of MFs that can be used for models with calendar 
effects and 4 number of MFs for models without including 
calendar effects. When using to many MFs, the results 
obtained may be better, but there is a danger that if too 
many membership functions are used, the system will 
become overfitted. Overfitting can make the prediction 
results too precise for the training data, and therefore that 
does not give good results on other data (testing). 

Table 6 summarizes the results of ANFIS forecasting 
in the training and testing stages by using an optimal 
variable input and numbers of MFs from the previous 

Table 5 shows that the ANFIS models can use 2 to 
4 numbers of MFs because of the LM test value more 
significant than the χ2

(α, df). For models with calendar 
effect variables, using 3 number of MFs give the smallest 
RMSE. At this stage, a significant input variable has been 
obtained and the optimal number of MFs for the ANFIS 
architecture will be used for forecasting. Forecasting is 
carried out using the ANFIS architecture obtained in the 
previous stage. First, divide the data into two parts: data 
training (in sample) from January 2006 to December 
2016 and data testing (out sample) from January 2017 
to November 2019. The input nodes are the previous 
lagged observation that is significant to the data based 
on the results of preprocessing data with ARIMAX. At 
the same time, the output provides the forecasting for 
future values. The previous lagged that uses as an input 
variable is a significant lag. The ANFIS architecture 
model used is a model with a significant input variable 
and the optimal number of MF based on the LM test. As 
a limitation, the membership function used in ANFIS is 
Gaussian. Gaussian chose because of its simple function, 
with only two parameters (mean and variance) estimated.

TABLE 5.  Determination of the number of ANFIS membership function

Num of MFs RMSE LM Stat Conclusion

Without dummy variables calendar effect with 3 input variables

2 6228.4 68.316 MFs can be added

3 5097.9 11.227 MFs can be added

4 4977.8 17.817 MFs can be added

Dummy variables calendar effect with 5 input variables

2 4549.2 103.129 MFs can be added

3 4412.8 9.370 MFs can be added

Days proportion calendar effect variable with 4 input variables

2 5013.4 94.657 MFs can be added

3 4705.6 20.840 MFs can be added

step. In a fuzzy system, each number of MFs is considered 
a rule. Therefore, the number of fuzzy rules is equal to 
the number of membership functions developed with 
FCM.	
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TABLE 6.  Training and testing ANFIS

Number of RMSE MAPE R2

MFs Training Testing Training Testing Training     Testing

Without dummy variables calendar effect with 3 input variables

4 6147.9 9119.9 9.362 14.156 0.453 0.698

Dummy variables calendar effect with 5 input variables

3 4948.3 7799.0 7.297 13.021 0.661 0.882

Days proportion calendar effect variable with 4 input variables

3 5633.6 8437.7 8.469 13.829 0.635 0.768

FIGURE 4. Plot training and testing ANFIS
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In this case, the ANFIS architecture is tested with 
the best number of MF used based on the previous stage. 
In the calendar effect dummy model used, the use of 
several numbers of MFs affects the forecast error value. 
This shows that increasing the number of MFs to a certain 
amount can improve accuracy. However, if the number of 
MFs is used too much, it will make the analysis process 
longer because more parameters must be estimated. Based 
on results in Table 6, the optimal architecture for both the 
dummy and the days proportion calendar effect model is 
obtained when using three numbers of MFs with five and 
four input variables, respectively. The RMSE testing value 
for both models was 7799.0 and 8437.7, respectively, with 
MAPE testing being 13.021 and 13.829. The testing error 
use as an accurate measure of the performance model. 
Therefore, the best model occurs when the testing error 
is minimal. 

In constructing time series models, it is generally 
assumed that interventions have effect on the overall data 
pattern. In this study, data on the volume of passengers at 
Tanjung Priok Port is influenced by calendar variations, 
namely the effect of the Eid al-Fitr holiday. The shape 
of the calendar effect patterns that occur on the data 
during the Eid al-Fitr holiday is seen to have a linear 
increase. The ARIMAX model represents the calendar 
effect in the data. By combining the ARIMA model and 
calendar effect, parameter estimation is obtained. As 
a comparison, ARIMA model is also formed without 
a calendar effect. It seems that a model that considers 
calendar effects provides less error than a model without 
including calendar effects in the analysis. We can see 
this from the RMSE and MAPE values of the ARIMA 
model, which are higher than the ARIMAX model and 
the smaller coefficient of determination compared to 
models that include calendar effects. Figure 4 shows an 
illustration of forecast training and test data with ANFIS 
optimal architecture. In this study, it has been shown 
that calendar interventions can significantly influence 
the data patterns. When there is a calendar effect, an 
initial approach to the data is needed before identifying 
the model. This paper presents a comprehensive step for 
identifying and estimating time series models affected by 
calendar interventions.

CONCLUSION

The proposed method for  select ing input  and 
determining the number of MF for ANFIS uses the 
ARIMAX model, and the LM test is tested on real-world 
problems; the number of visitors to Tanjung Priok Port 

that influenced by the calendar effects. ARIMAX can 
capture the effect of calendar variations on time series 
data. Based on the result, LM tests can be considered 
as an alternative way to determine input variables and 
number of MFs in ANFIS. Variables that are known to 
have no significant effect from the beginning have been 
eliminated so that the possibility of using too many input 
variables but no significant impact can be minimized. In 
the time series, data indicated to be influenced by calendar 
effects, ANFIS training and testing results indicate that 
for predicting time series data by entering the calendar 
effect gives better results when compared to without 
entering the calendar effect variable in the calculation. 
The small RMSE and MAPE values indicate this. The use 
of two types of calendar effect variables in this study 
shows that using the dummy calendar effect provides 
more accurate results than the days proportion calendar 
effect. The proposed method can be an alternative way 
that provides effective results for determining input 
priorities for ANFIS modelling. 		
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