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ABSTRACT

4 Dimensional Magnetic Resonance Imaging (4D MRI) is currently gaining attention as an imaging modality which is 
able to capture inter-cycle variability of respiratory motion. Such information is beneficial for example in radiotherapy 
planning and delivery. In the latter case, there may be a need for organ segmentation, however 4D MRI are of low 
contrast, which complicates automated organ segmentation. This paper proposes a multi-subject thoracic-abdominal 
organ segmentation propagation scheme for 4D MRI. The proposed scheme is registration based, hence different 
combinations of deformation and similarity measures are used. For deformation we used either just an affine 
transformation or additionally free form deformation on top of an affine transform. For similarity measure, either the 
sum of squared intensity differences or normalised mutual information is used. Segmentations from multiple subjects are 
registered to a target MRI and the average segmentation is found. The result of the method is compared with the ground 
truth which is generated from a semi-automated segmentation method. The results are quantified using the Jaccard 
index and Hausdorff distance. The results show that using free form deformation with a sum of squared intensity 
differences similarity measure produces an acceptable segmentation of the organs with an overall Jaccard index of over 
0.5. Hence, the proposed scheme can be used as a basis for automated organ segmentation in 4D MRI.
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INTRODUCTION

Respiratory motion effects are inevitable in thoracic-
abdominal imaging and image guided interventions. For 
example in radiotherapy planning, radiation dose 
calculations will be affected by tumour motion due 
respiratory motion. Because of respiratory motion, 4 
dimensional (4D) imaging such as 4D computed tomography 
(4D CT) are increasingly used to account for respiratory 
motion in such procedures (Czerska et al. 2021). However, 
the drawback and limitation of 4D-CT imaging is that it is 
not time-resolved i.e. it can only capture the average motion 
during many respiratory cycles and hence information 
about its inter cycle variability is not available. Additionally 
4D CT imaging leads to higher dose exposure.

In light of the limitations of conventional 4D CT, there 

have been efforts at utilising time-resolved 4D imaging 
such as 4D Magnetic Resonance Imaging (4D MRI) (Li et 
al. 2019;  Stemkens et al. 2018; Wang & Yin, 2019; Liney 
& van der Heide 2019). Such time-resolved 4D imaging 
are able to capture the inter cycle variability of respiratory 
motion. With such imaging modalities, there may be a need 
for organ segmentation, for instance in radiotherapy dose 
calculation, similar to when CT imaging is used. However, 
in the case of 4D MRI, while there is the added advantage 
of time-resolved volumetric imaging, image quality is 
typically lower than compared to for example 4D CT and 
this complicates accurate organ segmentation.

Manual segmentation of organs is tedious and time-
consuming. Various efforts have been performed to 
automate segmentation (Li et al. 2020 ; Kayur et al. 2021). 
Amongst those are ones based on prior information, such 
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as those based on generic deformable models in ultrasound 
imaging (Zhan & Shen, 2006) and more specifically 
statistical shape models for multiple imaging modalities 
(Wu et al. 2019; Cerrolaza et al. 2016). However, in the 
case of shape models based on prior knowledge, the 
limitation is that new cases may somewhat vary considerably 
from the training cases. An alternative which is not 
constrained by training data is utilising image registration 
for segmentation (Kéchichian et al. 2018; Oliveira et al. 
2018). Both Kéchichian (2018) and Oliveira (2018) applied 
their method on CT and MRI. However, the MR images 
used are the normal 3D images with high resolution. In our 
work, we wish to perform segmentation on a frame from 
a 4D MRI sequence which is of lower resolution.

In this paper, we are proposing a multi-organ 
segmentation framework for 4D-MR data.  The organs that 
are segmented are the lungs, liver, heart, spleen, stomach 
and kidneys. Semi-automated segmentation of these organs 
in training images constitute prior information instead of 
an explicit atlas. The training images are then registered 
to the test image using affine and free form deformation 
(FFD)-based registration. These steps are describe in further 
detail in the methodology below.

FIGURE 1. The proposed automated organ segmentation 
scheme

(1)

METHODOLOGY

In our proposed method, there are two categories of images, 
sources images which are pre-segmented and the target 
image to which we wish to propagate those segmented 
organs. The source MR images are registered to the target 
image using either affine or free form deformation. The 
deformation found is then utilized to propagate the 
segmented organs to the target image. The mean of the 
propagated organs then forms the output which are the 
target segmented organs. The overall process for a 
particular organ is as shown in Figure 1.

In our proposed method, the source images are pre-
segmented using a semi-automated organ segmentation 
method which is described below, after which the 
registration methods used itself is described in more detail. 
We then describe the evaluation data and evaluation scheme 
and metric respectively. 

SEMI-AUTOMATED ORGAN SEGMENTATION

A semi-automated segmentation method is based on active 
contours (Chan & Vese, 2001) and it is selected for the 
pre-segmentation of the source images. It is based on an 
energy minimization inside and outside the curve 
representation. The formulation used is the Chan-Vese 
energy or uniform modelling as shown in Equation (1):

where δ(x,y) refers to the image, and I_1,I_2 are 
average intensities inside and outside of the curve  C 
respectively. An example of the semi-
automated segmentation process on a liver for one 
image slice is shown in Figure 2. Here the process 
starts from manual rough delineation of the liver (Figure 
2(a)), which is then refined by the active contour method 
(Figure 2(b)). This manual initialization is performed by 
an expert. This semi-automated segmentation is 
performed on all slices of an image volume. A final 
render of all organs using this technique is shown in 
Figure 3(c). The organs which are included are the 
lungs, heart, liver, spleen, stomach and kidneys. Note 
that the respiratory system itself (lungs and airways) was 
segmented using a more automated procedure as 
described in (Abd. Rahni et al. 2013).
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FIGURE 2. An example of the semi-automated organ segmentation process for a liver on a specific slice (white outline). (a) The 
liver is roughly delineated with manually selected points, (b) segmentation refinement using the active contour method and, (c) 
renders of the segmented organs, namely the lungs (blue), liver (magenta), stomach (peach), heart (red), spleen (cyan), kidneys 

(dark red)

REGISTRATION

Registration of the whole body is performed to propagate 
the pre-segmented organs in the source images to the target 
images. This is performed via an affine transformation 
which preserves the straightness of lines. Additionally, to 
overcome residual misalignment from affine registration, 
registration based on free form deformation (FFD) using 
B-Splines (Modat et al. 2010) is performed as an additional 
option on top of affine registration. Registration is 
performed directly on the 4D MR images without prior 
preprocessing as it is deemed adequate.

For both affine and free form deformation methods, 
we either use the sum of squared intensity differences (SSD) 
or normalized mutual information (NMI) as the similarity 
measure. It is shown that SSD is the optimal measure when 
the voxel differences between an image α and registered 
image β' has a Gaussian distribution (Sonka & Fitzpatrick, 
2000). The SSD measure is defined as in Equation (2):

(2)

where N is the number of voxels in α∩β' (Sonka & 
Fitzpatrick 2000). 

The other similarity measure used, NMI, is based on 
the joint histogram of image α and registered image β', 
which should be maximized to find the desired 
transformation. NMI is defined as in Equation (3):

(3)

where H is entropy.

EVALUATION DATA 

To demonstrate and evaluate the proposed scheme, 
dynamic MR images are used. These were acquired during 
normal free breathing. The images of five volunteers were 
used. The volunteers consist of three males and two females 
with no abnormality (Tsoumpas et al. 2011). The MR 
images were acquired using a 1.5 T Philips AchievaTM 
scanner with a 32-channel coil. As a result, thirty five 
volumes were captured in a fast dynamic MR acquisition 
over multiple frames during free breathing with a 0.7 s 
frame rate, an image dimension of 336×45×336 voxels and 
a 1.48214 ×5.5 ×1.48214 mm3 voxel size. For the purpose 
of this paper, the first volume of each volunteer were used 
for evaluating our method.

 EVALUATION SCHEME AND METRICS

For evaluation a leave one out cross validation scheme 
is used. For each targeted volunteer, source MRI images 
from the other volunteers are used and registered to the 
target image. For each organ, the average of the propagated 
organs from each source MRI is used as the final propagated 
segmentation. This is then compared to the pre-segmented 
organs of the targeted volunteer which is considered as the 
ground truth. To evaluate the agreement of the segmented 
organs with the ground truth, we use two approaches. The 
first approach is to measure overlap using the Jaccard index 
(Tan et al. 2006). For single organs, this is defined as in 
Equation (4):

(4)
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FIGURE 3. The result of the proposed segmentation scheme on the liver in a particular coronal slice of one volunteer (white 
outline). The combination of deformation and similarity measure used are: (a) affine and NMI, (b) affine and SSD, (c) FFD and 

NMI and (d) FFD and SSD

where the ratio is the total number of voxels, denoted by 
the modulus operator |X|, of the organ-wise intersection, 
∩, over the organ-wise union,    . β' denotes the segmented 
organ whereas α denotes the adopted ground truth. 
Additionally, we also measure the aggregate overlap over 
all organs, using a multi-label Jaccard index (MLJI), defined 
similarly as in (Crum et al. 2006), according to Equation 
(5):

(5)

which is defined over all the organs considered (i.e. labels 
l).

Alternatively, we also measure segmentation accuracy 
using the Hausdorff distance for each organ. This is defined 
as the maximum distance between corresponding surface 

∩

points of the segmented organ Sβ' and the ground truth 
surface points Sα. The corresponding point to a ground 
truth surface point pα є Sα is defined as the nearest surface
point in the segmentation pβ' є Sβ' to it. Formally, using
Euclidean distances to find point correspondences, the 
Hausdorff distance d can thus be defined as:

(6)

However,  Equation  (6)  is  not  symmetrical  as                                      
   . Therefore the symmetrical 

Hausdorff distance (Cignoni et al. 1998) which we use 
in this paper is defined by finding the maximum, H, of 
both the forward and backward Hausdorff distances:

(7)

RESULTS

Using the methodology described above, we compare the 
result of the segmentation scheme using different 
combinations of deformation and similarity measures, 
namely: affine with NMI, affine with SSD, FFD with NMI 
and FFD with SSD. Figure 3 shows the result of this 
segmentation scheme on the liver in a particular coronal 
slice of one volunteer, using the above mentioned 
combinations. As mentioned in Section 2, the organs which 
were evaluated using the proposed scheme were the lungs, 
liver, heart, spleen, stomach and kidneys.

Figure 4 on the other hand shows the translucent 3D 
renders of the result of the proposed scheme (blue), overlaid 
over the adopted ground truth (red), for one volunteer, 
using the different combinations of deformation and 
similarity measure. Visually, it can be seen that for all 
organs, FFD performs better than just using affine 
deformation. Additionally, using SSD as a similarity 
measure results in a better overlap than using NMI.

Figure 5 shows the mean Jaccard indices of the overlap 

of the segmented organs with the adopted ground truth 
over the five volunteers. The error bars show the standard 
deviation over the volunteers. Quantitatively, the best 
overlap is achieved using FFD with the SSD measure for 
all organs. The numerical values are as shown in Table 1. 
A higher Jaccard index signify a better overlap.

TABLE 1. Mean Jaccard indices of the segmented organs

Organ
Affine FFD

NMI SSD NMI SSD

Right Lung 0.60 0.63 0.63 0.68
Left Lung 0.51 0.52 0.53 0.58
Liver 0.45 0.53 0.56 0.65
Heart 0.45 0.48 0.56 0.69
Spleen 0.23 0.20 0.34 0.51
Stomach 0.29 0.30 0.44 0.56
Right Kidney 0.17 0.12 0.29 0.35
Left Kidney 0.14 0.14 0.40 0.46
Overall 0.36 0.36 0.47 0.56
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FIGURE 4. Translucent renders of the segmented organ (blue) and the adopted ground truth (red) for one volunteer using the 
combinations: affine-NMI (first column), affine-SSD (second column), FFD-NMI (third column) and FFD-SSD (fourth column). 

The organs of concern are the (a) lungs, (b) heart, (c) liver, (d) spleen, (e) stomach and (f) kidneys

FIGURE 5. Mean Jaccard indices of the segmented organs using the combinations: affine-NMI, affine-SSD, FFD-NMI and FFD-
SSD
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As in Figure 5, Figure 6 show the multi-label Jaccard 
indices over all volunteers for each combination of 
deformation and similarity measure. 

To investigate the segmentation results in more details, 
we look at the Hausdorff distance error (Equation 7), H, 
for each organ segmented using FFD with the SSD measure. 
The numerical values are shown in Table 2.

Using this metric, on average the lungs show the 
largest error compared to the kidneys which has the 
smallest error. The left lung has an average error value 
of H=19.44 mm whereas the left kidney has an average 
error value of H=14.20 mm. This can be attributed to the 
large size of the lungs and relatively small size of the 
kidneys.

DISCUSSION 

The scheme described in the methodology is proposed for 
segmentation propagation of thoracic-abdominal organs 
in low contrast 4D-MR images. Due to organ variability, it 
does not use explicit shape models. As the proposed scheme 

is registration based, different combinations of deformation 
and similarity measure are used. The result shows that the 
scheme can segment multiple organs of various sizes, 
shapes and intensities in low contrast MR data.

Bigger organs such as the lungs, liver and heart have 
better overlap indices with the adopted ground truth 
compared to the small organs such as kidneys, however 
this may be due to the nature of overlap indices which is 
based on percentage of overlap rather than actual volume 
e.g. mm3. This is corroborated with the Hausdorff distance 
error shown in Table 2. Nevertheless, it was found that 
using FFD with the SSD measure produces the best per-
organ as well as overall segmentation. The advantage of 
using FFD over just affine deformation is obvious, given 
inter-subject variability. On the other hand, the advantage 
of SSD over NMI in this application can be explained by 
the fact that the differences in the registered source images 
and the target images can be represented by a Gaussian 
distribution [12]. The results thus suggest the proposed 
scheme can be used as a basis for automated organ 
segmentation in 4D MRI, such as when one needs to perform 
radiotherapy treatment planning.

TABLE 2. Hausdorff distance in mm for each organ segmented using FFD-SSD

Volunteer Left Lung Right Lung Liver Heart Spleen Stomach Left Kidney Right Kidney
1 15.30 16.46 19.76 18.42 18.20 16.26 16.34 18.29
2 16.11 17.48 21.25 14.33 18.07 18.01 18.47 16.80
3 24.47 11.93 9.92 9.62 6.37 8.51 5.86 7.37
4 20.09 16.96 16.29 10.58 12.78 11.93 10.93 13.14
5 21.22 26.20 24.92 19.04 15.95 22.78 19.42 21.90

Mean 19.44 17.80 18.43 14.40 14.27 15.50 14.20 15.50

FIGURE 6. Mean multi-label Jaccard indices of the segmented 
organs using the combinations: affine-NMI, affine-SSD, FFD-

NMI and FFD-SSD

CONCLUSION

The presented segmentation propagation scheme based on 
intensity based image registration is proposed as an organ 
segmentation method for low resolution 4D-MR data. The 
proposed scheme is fully automated for the target image 
and it is tested for multiple thoracic-abdominal organs 
namely the lungs, liver, heart, spleen, stomach and kidneys. 
The results were evaluated with different combinations of 
deformation (affine or FFD) and similarity measure (SSD 
or NMI). It was found that FFD with the SSD measure 
produces the best segmentation per-organ as well as overall 
organs. It is proposed that the scheme can be used where 
there is a need for automated organ segmentation in 4D 
MRI such as for radiotherapy treatment planning.
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