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ABSTRACT

Detection of early knee osteoarthritis remains a driving force in the search for more promising quantitative assessment 
approaches. Apart from other conventional methods such as radiography, computed tomography, and sonography, 
magnetic resonance imaging has become more widely available and has made it essential to visualize the knee's entire 
anatomy. Biomarkers such as joint space narrowing, articular cartilage thickness, cartilage volume, cartilage surface 
curvature, lesion depth, and others are used to determine disease progression in non-invasive manner. In this research, 
a regional cartilage normal thickness approximation (RCN-ta) model was developed with MATLAB to enable rapid 
cartilage thickness assessment with a simple click. The model formulated was compared to the FDA-cleared software 
measurements. A reasonable range of 0.135-0.214 mm of root-mean-square error may be predicted from the model. With 
a high ICC > 0.975, the model was highly accurate and reproducible. A good agreement between the proposed model 
and the medically used software can be found with a high Pearson correlation of r > 0.90.

Keywords:  Cartilage thickness; quantitative assessment; normal thickness; knee osteoarthritis; MATLAB

INTRODUCTION

Knee osteoarthritis (OA) is a frequently seen disease among 
the elderly and adults suffering from obesity or weakened 
anatomy due to serious knee injuries (Bijlsma et al. 2011). 
Evident pathological changes, such as cartilage erosion 
and regional thickness changes, can be seen in early illness 
and disease development. In Malaysia, the most common 
seen traditional diagnosis is joint-space narrowing (JSN) 
detection assisted with X-ray measurements due to its low 
cost and easy accessibility. However, this technique lacks 
statistical strength. OA signs are found only at a late stage 
of the disease, usually, in Kellgren and Lawrence (KL) 
grades 3 and 4, where the articular cartilage has undergone 
significant loss of its cartilaginous components and the 
development of osteophytes and sclerosis at the subchondral 
bone ends (Hayashi et al. 2012). Magnetic resonance 

imaging (MRI) is becoming more commonly available, 
making it a better measurement approach due to its ability 
to visualize the knee's entire joint structure (Eckstein et al. 
2006). 

Biomarkers such as JSN, articular cartilage thickness 
(ACT), cartilage volume, cartilage surface curvature, lesion 
depth, and others are used to determine disease progression 
in non-invasive manner. Among the tests, thickness 
calculation is the most direct quantitative approach to assist 
in diagnosis (Eckstein et al. 2006). 2-D thickness tests the 
distance between the articular cartilage and the ultrasonic 
knee bone (Steppacher et al. 2019). Some advanced 3-D 
knee cartilage reconstruction techniques allow for more 
accurate measurement of thickness perpendicular to the 
joint surface (Burgkart et al. 2001; Millington et al. 2007). 
Thickness estimation with 3-D reconstructed cartilage 
benefits in longitudinal studies while the 2-D calculation 
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is more based on disease diagnosis. On the contrary, a 
promising 3-D cartilage reconstruction needs intense 
attention on the part of experts to define cartilage 
boundaries using a snake model or an active shape family 
(Solloway et al. 1997).  Recently, several interactive (H. 
S. Gan et al. 2014; Tang et al. 2006) and fully automated 
cartilage (Asghar et al. 2017; F. Liu et al. 2018; Yin et al. 
2020) segmentation models have been proposed to replace 
the laborious marking process. Deep learning interferes 
with the development to replace human judgment on 
cartilage segmentation. As described above, a reliable 
database needs a high demand of experts’ attention and 
time for labelling. The accuracy of automated whole knee 
cartilage segmentation remains insufficient to generate 
promising 3-D thickness computation.

To allow a prompt evaluation of ACT on the human 
knee MRI, we proposed a fast acquisition of average 
cartilage thickness with projections of cartilage edges on 
the Cartesian plane. The proposed model was built with 
the application MATLAB, where it had not been introduced 
in the database previously. In this paper, the related work 
on cartilage thickness computing was discussed in the next 
section, and the proposed thickness approximation system 
was presented in the methodology section; the results of 
the proposed model were contrasted with the measurements 
of the FDA-cleared ONIS-PACS application as discussed in 
the fourth section, the overall conclusion was made in the 
last part of the paper. 

RELATED WORKS

Various methods are used to approximate cartilage 
thickness, including distance calculation using normal lines 
between intersection points on opposing cartilage 
boundaries, vertical distance or z-distance between 
boundaries, local thickness approximation, and field line 
projections, as shown in Figure 1 (Heuer et al. 2001; Maier 
et al. 2017). A small plane is fitted to the surrounding points 
to produce normal lines, the normal vector with an essential 
peculiar value of the covariance matrix is indicated. In 
most studies, the final thickness is then measured using 
Euclidean Distance Transform (EDT) and is proven to be 
the most appropriate distance approximation method (Desai 
& Hacihaliloglu, 2019; Dias, Vera Junn, Eunsung 
Mouradian, 2008; Graichen et al. 2003; Kauffmann et al. 
2003; Y. Liu et al. 2020; Pakin et al. 2002; Tang et al. 2006). 
However, surface normal thickness computation is 
vulnerable to cartilage irregularities that causes outliers in 
the computed thickness map, as stated (Maier et al. 2017). 
The accuracy of the calculation can be enhanced by 
bringing further surrounding points into the own vector's 

formulation stage. Standard thickness computing can be 
easily influenced by noise, but current medical imaging 
contrast enhancement methods that provide resistance to 
noise amplification can overcome the problem (Asghar et 
al. 2017; H.-S. Gan et al. 2014; Sia et al. 2020). In addition 
to EDT, Eulerian partial differential equations (PDEs) were 
also proposed to quantify distance by integrating two 
solutions of Laplace equations obtained by the inner 
boundary and the outer boundary (Yezzi & Prince 2003).

FIGURE 1. Four approaches in cartilage thickness computation 
with (a) surface normal (b) vertical lines (c) local thickness and 

(d) field lines.

Vertical distance approximation results in the most 
significant variance of measurements relative to other 
techniques. Among the methods of comparison, the 
technique produces the highest deviation of 7.06 percent 
from the calibration object, as stated (Heuer et al. 2001), 
showing the lack of relevance of the vertical distance 
approach in cartilage thickness measurement. For local 
thickness computation, the largest sphere is allocated to fit 
into the space given in the cartilage layer (Hildebrand & 
Rüegsegger 1997). Local thickness computation is 
vulnerable to error from the previous study. The 
underestimation in tibial cartilage thickness indicates that 
only a sphere with a maximum diameter will fit into 
irregular tibial cartilage (Shah et al. 2019). Field line (FL) 
thickness calculation is a newer method that suggests 
calculating the length of the FL emitted from one surface 
to another, provided that the two surfaces have different 
potentials. Unlike the normal line, FL is less susceptible to 
noise (Cao et al. 2015).

METHODOLOGY

KNEE MRI ACQUISITION AND SOFTWARE USED

20 MRI scans, including healthy knee (KL0) and diagnosed 
with disease progression (KL1 and KL2), were collected 
from the Osteoarthritis Initiative (OAI) database. Dual-echo 
steady-state (DESS) knee MRI with water excitation (we) 
is better positioned to visualize the human knee structure. 
Further information on the MRI protocols can be found on 
the following website: https:/nda.nih.gov/oai. The model 
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was fully developed with MATLAB version 2019a, and the 
data collected was analyzed with IBM SPSS Statistics 26. 

REGIONAL CARTILAGE NORMAL THICKNESS 
APPROXIMATION (RCN-ta)

The proposed thickness computation model did not include 
a segmentation protocol, so the manual cartilage 
segmentations were carried out and checked by two expert 
observers. The segmentation results were then converted 
to binary images, resulting in bright pixels and dark pixels, 
representing cartilages and background respectively. As 
the average distance was determined between two opposing 
boundaries, the Sobel edge detector was slid through the 
image yielding the tibiofemoral cartilages' edges. Given 
that gradient g(m,n) where m and n are the pixel row and 
pixel column in an image I, can be defined as follows:

(1)

(2)

(3)

Sobel edge detectors apply both horizontal gradient 
operator gm and vertical gradient approximator gn. The 
gradient’s direction can be approximated with the 
information obtained from the horizontal and vertical 
operators. 

Notably that the input boundary image in Figure 2 was 
flipped upside down due to the difference in origin position. 
To allow the proper orientation of the pixel, the boundary 
pixels were mirrored with the centre line at the y-axis. The 
proposed RCN-ta model required a ‘click’ on any boundary 
point (p,q) as an input data cursor. Later, the point and its 
neighbouring pixels were convoluted with a 7×7 orientation 
detector to define its tangent direction, O. 

(4)

From equation (4), the tangent line orientation  O1 that 
falls in any of the four quadrants, the normal orientation 
O2 can be obtained with the following equation:

(5)

To generate a linear line to intersect the opposing 
boundary from the chosen point, the y-intersection was 
obtained with simple linear equation

		  c  =  q  -  tan  (O2)p	              (6)

A normal line was generated with the given linear 
equation as

	           y  =  tan  (O2)  x  +  c 	              (7)

For vertical tangent line, the resulting orientation is 
infinity. Therefore, there would be no linear estimation of 
the linear equation. The q coordinate was used to draw a 
straight line along the point with y = q. Similar to the 
horizontal tangent line, the resulting orientation is zero. 
The p coordinate was used to draw a straight line with         
x  =  p.

Surface normal is sensitive to surface irregularities 
present in the binary segmentation resulting from the 
previous stage. Improving the thickness measurements' 
precision, a bunch of normal lines near the clicked position 
may be emitted to their opposite borders. As a result, the 
average Euclidean pixel distance of the normal emitting 
lines was obtained instead of a single normal line. Since 
point (x, y) is the intersection point at opposing boundary 
and (xo,yo) is the normal line emission point, the single-pixel 
distance, the P equation can be computed as

(8)

With a preset distance magnitude of 3, the nearest 
boundary points emitted their respective n normal lines. 
The total pixel distance Ptotal of all normal lines and the 
average pixel distance Pavg  are shown as follows:

(9)

(10)

The number of pixels, Pavg  that laid within the 
intersections, was determined. The field of view (FOV) of 
the MRI slice was used to measure the actual cartilage 
thickness. Field of view of the MRI slice, FOV could be 
obtained by its pixel spacing, ∆w. In this study, the MR 
images have a pixel width of  0.36458333 mm and an image 
size of l.
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FIGURE 2. General illustration of thickness approximation process on Cartesian plane

The cartilage thickness estimation models discussed 
were validated with in-vitro disarticulated cartilage from 
removal surgery or a cadaver (Burgkart et al. 2001; 
Graichen et al. 2003; Millington et al. 2007) and in-vivo 
methods such as synthetic model (Kauffmann et al. 2003) 
and with calibrated measurement tools (Steppacher et al. 
2019). In this analysis, the proposed model’s measurements 
were compared with the FDA-cleared ONIS-PACS software 
at the six similar boundary locations (FCA,FCB,FCC,TCA,TCB,TCC) 
as shown in Figure 4. The root-mean-square error (RMSE) 
and the maximum deviation between the measurements 
taken by the ONIS software and the proposed model were 
obtained. To detect the systemic error of the proposed 

	 	 FOV   =   ∆w  ×  l	            (11)

Given that the size of the image was 384 pixels, FOV 
calculated was 140mm. Thickness, T could be transformed 
with the following equation:

(12)
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             (a)                                                 (b)

FIGURE 4. A total of six measuring locations on weight-
bearing regions. (a) Sample measurements with ONIS-PACS 

software. (b) Sample measurements with proposed model with 
vertical lines annotation to allow thickness computation at the 

same point as (a).

RESULTS AND DISCUSSIONS

To make a fair comparison between the proposed measuring 
tool and the ONIS software, the manual segmentations 
validated by two clinical radiologists were first fitted to the 
real cartilage edges with 3 to 5 iterations of the active contour 
using the Chan-Vese process. This stage was done to reduce 
the propensity of the image to be over-or under-segmented. 
From Table 1, the maximum observed errors and the root-
mean-square error in the calculation of femoral cartilage 
thickness by Observer 2 is significantly higher than that of 
Observer 1. However, both Observer 1 and Observer 2 
manual segmentations of tibial cartilage were subjected to 
higher error scores than femoral cartilage segmentation. The 
mean thickness of the 20 femoral and tibial cartilages were 
2.190 mm and 2.215 mm, respectively. The RMS deviations 
recorded were 0.135 - 0.192 mm (observer 1) and 0.173 – 
0.214 mm (observer 2) in femoral and tibial cartilages 
thickness measurements that fell in acceptable range of 

model, the Bland-Altman analysis (Steppacher et al. 2019) 
was performed by plotting the difference between the 
measurement instruments and their average thickness. 
Pearson coefficient and linear regression plot were used to 
check the association between the two measurements. The 
Pearson coefficient was rated as very weak for r<0.2, weak 
for 0.20-0.39, moderate for 0.40-0.59, strong for 0.60-0.79, 
and very strong for r ≥0.8. In order to determine the 
reproducibility and reliability of the proposed model, intra-
class correlation (ICC) was calculated. Given that ICC was 
graded as slight agreement at ICC<0.20, fair for 0.21-0.40, 
moderate for 0.41-0.60, substantial for 0.61-0.80, and good 
agreement for ICC>0.80.

±0.2-0.3 mm at weight-bearing regions (Koo et al. 2005). 
Referring to the Bland-Altman plots in Figure 4, the 

nodes were uniformly and randomly distributed, suggesting 
no bias or major systematic error in the proposed thickness 
measurement model. The close relationship between the 
thickness measured from the proposed model and the ONIS 
program can be seen in Figure 5. High Pearson correlation 
scores were recorded between Observer 1 and validation set 
(r=0.973,p<0.01 for femoral cartilage; (r=0.909,p<0.01 for 
tibial cartilage). Similar to Observer 2, the Pearson 
correlation values between Observer 2 and the validation 
set were substantially high (r=0.954,p<0.01for femoral 
cartilage; r=0.911,p<0.01).

Based on ICC results in Table 2, the proposed model 
was highly reproducible and accurate with intra-observer 
values of 0.985 and 0.977 to measure femoral segment 
thickness, 0.953, and 0.951 for the tibial segment. The two 
observers' reliability ratings were 0.965 (femoral cartilage) 
and 0.940 (tibial cartilage).

The A-mode ultrasonic cartilage thickness measurements 
recorded in the past study can achieve a mean accuracy of 
0.074 mm and 6% of the mean error (Ssteppacher et al. 2019). 
The promising accuracy of the control factors is restricted 
as follows: manual control of the angle of insonation 
(Steppacher et al. 2019), high spatial resolution (Graichen 
et al. 2003), suitable velocity (Millington et al. 2007) and 
other factors. In addition, the measurement's location 
retrieval is performed manually, which possibly examines 
different locations during the comparison stage. Although 
the proposed RCN-ta is prone to exhibit more significant 
RMS error when comparing exact position thickness 
measurements, it remains feasible to carry out a prompt knee 
OA assessment given the presence of specular noise and 
artifacts in the MRI. The proposed model is adaptable with 
variant cartilage segmentation tools to access the thickness 
of the cartilage. The precision of the cartilage thickness 
calculation relies strongly on the accuracy that can be tested 
with Dice similarity coefficient or Matthews correlation 
coefficient (MCC).

In future work, it is suggested that RCN-ta to be enhanced 
to enable the registration of medical images. For example, for 
the follow-up quantitative evaluation, the following session's 
MR slice, which demonstrates the most remarkable 
resemblance to the MR section of the previous clinical 
screening session, is selected. Retrospectively, the thickness 
of the cartilage can vary in the stage of disease development. 
Thus, the ability to monitor the thickness between similar 
slices at fixed locations helps to develop longitudinal disease 
pathogenesis studies and treatment progress.
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TABLE 1. Maximum error and root mean square error between the manual segmented results collected through proposed thickness 
measurement model and ONIS software.

Examined Parts Manual Segmentation
Observer 1 Observer 2

Femoral Cartilage Mean thickness error/mm 0.002 0.060
Max error/ mm 0.270 0.390
RMS error/ mm 0.135 0.173

Tibial Cartilage Mean thickness error/mm 0.078 0.104
Max error / mm 0.350 0.330
RMS error /mm 0.192 0.214

TABLE 2. Reproducibility and reliability test using ICC.
Parameter Intra-observer 1 Intra-observer 2 Inter-Observer

FC Thickness 0.985(0.976 - 0.991) 0.977(0.961 – 0.986) 0.965(0.942 - 0.979)
TC Thickness 0.953(0.921 - 0.972) 0.951(0.918 – 0.971) 0.940(0.900 – 0.964)

* FC = femoral cartilage, TC = tibial cartilage
Values are expressed with mean of 95% confidence interval

FIGURE 4. Bland-Altman plots of difference between the femoral cartilage thickness results obtained through the proposed model 
and ONIS software on manual segmentation (a) by observer 1 on femoral cartilage and (b) on tibial cartilage and (c) by observer 2 

on femoral cartilage and (d) on tibial cartilage.

(a) (b)

(c) (d)
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FIGURE 5. Linear regression plots cartilage thickness results obtained through the proposed model and ONIS software on manual 
segmentation by (a) observer 1 on femoral cartilage (b) on tibial cartilage (c) observer 2 on femoral cartilage and (d) on tibial cartilage.

(a) (b)

(c) (d)

CONCLUSION

Quantitative evaluation, such as cartilage thickness 
estimation, remains vital for access to disease progression 
and treatment effectiveness. The proposed RCN-ta model 
is tested with RMS error, intraclass correlation coefficient, 
systematic error detection with Bland-Altman analysis, 
and linear regression. A reasonable range of 0.135-0.214 
mm RMS error could be expected from the model. With a 
high ICC > 0.975, the model is highly reliable and 
reproducible. A good agreement between the proposed 
model and the FDA-cleared ONIS-PACS program with a 
high Pearson correlation of r > 0.90 can be observed. The 
RCN-ta model allows for rapid cartilage evaluation. The 
registration feature is also encouraged to be applied to the 
proposed model to allow longitudinal follow-up evaluation.
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