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Bioenergetic approaches are increasingly used to understand how marine mammal populations could be affected by a
changing and disturbed aquatic environment. There remain considerable gaps in our knowledge of marine mammal bioen-
ergetics, which hinder the application of bioenergetic studies to inform policy decisions. We conducted a priority-setting
exercise to identify high-priority unanswered questions in marine mammal bioenergetics, with an emphasis on questions
relevant to conservation and management. Electronic communication and a virtual workshop were used to solicit and collate
potential research questions from the marine mammal bioenergetic community. From a final list of 39 questions, 11 were
identified as 'key’ questions because they received votes from at least 50% of survey participants. Key questions included those
related to energy intake (prey landscapes, exposure to human activities) and expenditure (field metabolic rate, exposure to
human activities, lactation, time-activity budgets), energy allocation priorities, metrics of body condition and relationships
with survival and reproductive success and extrapolation of data from one species to another. Existing tools to address key
questions include labelled water, animal-borne sensors, mark-resight data from long-term research programs, environmental
DNA and unmanned vehicles. Further validation of existing approaches and development of new methodologies are needed
to comprehensively address some key questions, particularly for cetaceans. The identification of these key questions can
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provide a guiding framework to set research priorities, which ultimately may yield more accurate information to inform policies

and better conserve marine mammal populations.
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Introduction

Bioenergetics is the study of the acquisition and allocation
of energy by individuals to support maintenance, activity,
growth and reproduction (Lavigne et al., 1982). It is an
integral component of conservation physiology, which aims
to understand and predict how organisms, populations and
ultimately ecosystems respond to environmental variation
and stressors (Cooke et al., 2013). Many of the conservation
challenges facing marine mammals today revolve around
bioenergetics, such as environmental variability, climate
change, fisheries interactions, predation risk, offshore devel-
opment, and noise pollution (Wirsing ez al., 2008; Davidson et
al.,2012; Kovacs et al., 2012; Avila et al., 2018). For example,
climate change may alter an individual’s energy intake
through changes in prey distribution, abundance, and energy
density (von Biela et al., 2019; Gallagher et al., 2022). It can
also affect energy expenditure through changes in habitat
availability (Pagano and Williams, 2021) or thermal land-
scapes (Cunningham ez al., 2021). Evidence is mounting that
the inability to obtain sufficient energy is affecting individual
growth, reproduction, and survival of marine mammals
(Stirling and Derocher, 2012; Ferguson et al., 2017,
Christiansen et al., 2020, 2021; Stewart et al., 2021a). If
a sufficiently large number of individuals are affected, this
can ultimately affect population growth rates (New et al.,
2014; Baylis et al., 2015), as illustrated by the Population
Consequences of Disturbance (PCoD) framework (Pirotta et
al., 2018a).

The first comprehensive review of marine mammal
bioenergetics occurred at the Mammals in the Seas conference
organized by the United Nations Food and Agriculture
Organization in 1976 (Lavigne et al., 1982). The impetus
for this effort was an interest in quantifying the impacts of
marine mammals on commercially valuable fish populations.
This review stimulated studies that examined the general
patterns of energetics at the population level (Lockyer, 1981;
Lavigne, 1982), feeding rates of marine mammals (Innes
et al., 1987), and a review of metabolic rates (Lavigne
et al., 1986). Many of these papers challenged early hypothe-
ses that marine mammals have higher metabolic rates than
would be predicted for similarly sized terrestrial mammals
(Scholander et al., 1950; Kanwisher and Ridgway, 1983), a

topic still debated today (Nagy ez al., 1999; Hunter et al.,
2000; Williams and Yeates, 2004; Costa and Maresh, 2017;
Williams ez al., 2020). A symposium in 1985 highlighted
advances in our understanding of the energetics of marine
mammals and technological developments (Huntley ez al.,
1987). Our knowledge of energetics has continued to grow,
as have the implications and applications to conservation and
management issues. Recently, there has been a resurgence in
the use of bioenergetic modelling approaches to quantify
predator—prey interactions (e.g. Fortune et al., 2013; Chasco
etal.,2017; McHuron et al., 2020; Acevedo and Urban, 2021)
and predict the individual- and population-level effects of
altered environments on marine mammals (e.g. Christiansen
and Lusseau, 2015; Udevitz et al., 2017; Nabe-Nielsen et al.,
2018; Farmer et al., 2018b; Pirotta et al., 2019; Gallagher
et al., 2020; Silva et al., 2020; Gavrilchuk et al., 2021).
Technological and analytical advances have furthered these
empirical and modelling methodologies (Pirotta, 2022).

Despite recent advances, the field is still hindered by many
of the same uncertainties and data deficiencies that existed
nearly four decades ago, especially for cetaceans. As it is not
feasible to address these deficiencies for all 127 extant marine
mammal species, research priorities must be identified based
on the perceived needs of the bioenergetics community. To
achieve this, increased communication within the bioenergetic
community is needed to align data needs and data generation.
Our aim was to identify ‘key’ outstanding questions in the
field of marine mammal bioenergetics. The intent is to stim-
ulate and focus research that will most effectively lead to an
increased understanding of the ecology and population biol-
ogy of marine mammals, ultimately facilitating conservation
and management efforts. This effort was conducted in tandem
with a bioenergetics workshop to discuss and review the
current state of knowledge on marine mammal bioenergetics.

Methods

We invited 62 scientists with experience in marine mammal
physiology, bioenergetics, trophic ecology and population
dynamics, to identify unanswered questions in marine
mammal bioenergetics. The participant list was generated
by the workshop organizers with additional suggestions
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Figure 1: Process for identifying key bioenergetic questions. Figure
after Sutherland et al. (2022). The number of participants compared
with invitees is shown in blue text for the initial question submission
and the voting on final questions. The number of invitees increased
from 62 to 82 due to additional participant suggestions by
co-authors.

from invited participants. Identification of participants by
workshop organizers was based on personal knowledge of
participants’ research and queries of the relevant bioenergetic
and marine mammal literature. Participants were asked to
submit no more than 10 questions each with the following
guidelines. Questions (i) could not be answered with a simple
‘yes’, ‘no’ or ‘depends’; (ii) could be related to any aspect of
bioenergetics but should be applicable to methods used in
marine mammal management and conservation; (iii) could
be unanswerable or infeasible given current methods; and
(iv) could be either species-specific or broadly relevant to
a taxonomic group (e.g. pinnipeds, cetaceans). Questions
were collated and revised over email discussions and during
the bioenergetic workshop (Fig. 1). Questions that were not
directly related to bioenergetics were removed from further
consideration.

The final list of questions was circulated for voting to
the original 62 survey invitees and 20 additional individuals
identified by the co-authors of this paper during the pro-
cess. Participants voted for no more than 15 questions each,
with the guidance that a question need not be applicable
to all marine mammals (i.e. it might only be important or
unanswered for certain species, taxonomic groups or species
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with similar life history strategies). Voting occurred virtually
via a Google Forms survey (25 August—27 September 2021).
Survey participants were also asked to provide information
on their expertise in marine mammal physiology and whether
they had experience developing bioenergetic models (each on
a scale of 1-10, from least to most experience). This was to
help inform whether any key questions were deemed impor-
tant by individuals with greater expertise in one discipline
over the other (physiologists vs. bioenergetic modellers).

Results and discussion

A total of 284 initial questions were submitted by 37 of the
62 original invited participants. They ranged from detailed
physiological questions to broad overarching questions about
the impacts of climate change, anthropogenic disturbance
and fisheries on marine mammal populations. Questions were
revised by co-authors and other bioenergetic workshop par-
ticipants (Fig. 1) such that detailed physiological questions fell
under the umbrella of more general questions. This ensured
that final questions were not too narrow in scope. Broad
overarching questions were not explicitly included in the
final question list because numerous research priorities were
needed to address such broad questions, and there was often
overlap in research priorities among these questions (i.e. the
same research priorities were needed to address a diversity of
broad questions). Instead, the final list of questions reflected
these individual research priorities. Collation resulted in 39
final questions (Fig. 1). A complete list of the initial and final
questions can be found in Tables S1 and S2.

Forty-two of the 82 (62 original +20 additional) invited
participants voted in the final survey. Most of the voting
participants had current jobs in academia (78 %), followed by
non-profits (7.1%), government agencies (4.8 %), a combina-
tion of academia and consulting (2.4%), the private sector
(2.4%) or were self-employed (2.4%; Fig. 2). One participant
declined to include their affiliation. Self-assigned scores for
physiological and bioenergetic modelling knowledge (on a
scale of 1-10) ranged from 3-10 (average of 7.3) and 2-10
(average of 6.8), respectively. There were 11 questions that
at least 50% of the participants voted for, 16 questions that
25-50% of the participants voted for and 12 questions that
received <25% of votes (Fig. 2). We selected those questions
that received >50% of votes as key questions. Average exper-
tise scores for key questions were similar (absolute differences
of 0.06-1.0 on a scale of 1-10), suggesting broad agreement
within the community about research priorities.

The following sections briefly describe how each question
is relevant to bioenergetics and conservation efforts and high-
light important data gaps. Additional information on topics
covered here, such as bioenergetic models, metabolic rates,
body condition and growth and reproductive energetics can
be found elsewhere in this special issue (also see reviews by
Iverson et al., 2010; Rosen and Worthy, 2018; Watanabe
and Goldbogen, 2021). We conclude by discussing some of
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Field metabolic rate
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Body condition effects on survival
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Figure 2: The percentage of survey participants that voted for each of the 39 questions, ordered (and coloured) from least to greatest number
of votes. Key questions were defined as those voted by at least 50% of participants. The inset pie graph shows the self-reported employment
type of participants that voted in the final survey. The full phrasing of each question can be found in Fig. 3 and Table S2.

the existing methodologies available to address key questions
and areas where further methodological advancements are
needed. The headers below have been paraphrased from the
key questions (Fig. 3) and in some cases encompass more than
one key question for brevity. As we did not rank key questions
in terms of importance, the order of questions below follows
the numerical order from Fig. 3.

What is the abundance, distribution and
energy density of prey? (Q1)

Knowledge of the abundance, distribution and energy density
of prey in time and space is critical to answering a variety
of bioenergetic questions. For example, is there enough prey
biomass (of the right type) in the right place, at the right time
to support individual and population energy needs? How
do factors such as interannual variability, climate change,
fisheries and habitat loss affect prey availability? Climate
change, which is rapid in some regions, is predicted to have
considerable impacts on the distribution, biomass, energy
density and body size of prey species (Flores et al., 2012;
Yasumiishi ez al., 20205 Florko ez al., 2021). Such changes
have clear bioenergetic implications for marine mammals
and the ecosystems they inhabit (Costa, 2008; Laidre et al.,
2020; Gallagher et al., 2022). Since the prey landscape is a
major driver of the spatiotemporal distribution of marine
mammals (Sveegaard et al., 2012; Zerbini et al., 2016;

Sigler et al., 2017, Straley et al., 2018; Pendleton et al., 2020),
knowledge of prey fields and how they may be changing
provides insight into the potential impact of anthropogenic
disturbances on energy budgets (Keen ez al., 2021). As such,
prey fields are critical components of many PCoD models
(Nabe-Nielsen et al., 2018; Pirotta et al., 2019; McHuron et
al., 2021). At finer temporal and spatial scales (e.g. within
a prey patch), measurements of the prey landscape can
inform relationships between prey density, foraging effort
and energy gain (Bowen et al., 2002; Hazen et al., 2015;
Cade et al., 2021). Even in well-studied ecosystems, there
are very few (if any) marine mammal species for which the
prey landscape (including energy density of prey species) has
been sufficiently resolved to predict behaviour and fine-scale
spatial distribution through time.

At what thresholds do disturbance from
human activities affect energy intake and
expenditure? (Q2, Q4)

Direct exposure of marine mammals to human activities
can elicit behavioural responses (e.g. changes in foraging
behaviour) or cause direct (e.g. injuries from vessels or nets)
or indirect (e.g. pollution, physiological effects) physical
impacts that have implications for energy balance. For
example, marine mammals may spend less time foraging
when disturbed (Senigaglia et al., 2016; Harris et al., 2018),
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Key bioenergetic questions

What is the abundance, distribution and energy density of prey available to
marine mammal species over time and space?

How does direct exposure to human activities (e.g. vessels, entanglement) affect
prey intake and what intrinsic (e.g. age, behavioural state) and extrinsic (e.g. prey
availability) factors influence this cost?

What are the field metabolic rates of marine mammals with respect to intrinsic
(e.g. mass, age, sex, reproductive status, molt, body condition, psychological
stress) and extrinsic factors (e.g. season, temperature, prey availability)

© 06 00

resulting from direct exposure to human activities (e.g. vessels, entanglement)
and how do these thresholds and costs vary with intrinsic (e.g. age, behavioral
state, reproductive state, prior disturbances) and extrinsic (e.g. environment)
factors?

What are the time-activity budgets of marine mammals and how are they
changing in relation to altered environmental conditions (e.g. loss of habitat, prey
availability)?

How do marine mammals allocate energy to growth, maintenance and
reproduction in relation to intrinsic (e.g. body condition, age) and extrinsic (e.g.
environment) factors?

Considering body condition is defined as an individual's energy reserves relative
to structural size, what metric/s best capture body condition?

How does body condition relate to survival and how is this relationship affected
by intrinsic (e.g. metabolism of core protein, age, length) and extrinsic (e.g.
environment) factors?

How does body condition relate to reproductive success (e.g. abortion, offspring
survival, and inter-birth interval) and how is this relationship affected by intrinsic
(e.g. offspring sex, maternal age) and extrinsic (e.g. environment) factors?

What is the daily energetic cost of lactation and how does this cost change
throughout lactation?

How do we best extrapolate data (e.g. metabolic rates, body condition,
reproductive behaviour, prey intake) from one species or population to inform
conservation and decision making for data poor species/populations?

e 06 60 06 O

At what thresholds (e.g. distance, sound level, duration) is there a metabolic cost e ‘,) : J
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Figure 3: The key outstanding bioenergetic questions identified as part of this exercise (left) and a conceptual diagram of where each question
(excluding Q11) fits in the energy flow through an animal (grey circle). Questions are coloured based on the general categories of prey intake
(green), energy expenditure on self (gold) and energy allocation and storage for other processes, such as reproduction (blue).

which could reduce energy intake. At the same time, a
disturbance may alter energy expenditure if it elicits a
strong physiological response (Christiansen et al., 2014a;
Williams et al., 2017) or causes a switch to activities that
have greater energetic costs, such as the increase in surface
activity exhibited by some delphinids when exposed to vessels
(Coscarella et al., 2003; Lusseau, 2006; Noren et al., 2009,
2012). Traumatic stressors, such as non-lethal entanglement
or vessel strikes, can impact energy budgets by altering
movement costs, foraging behaviour or energy investment
in tissue healing and regrowth (Wells ez al., 2008; van der
Hoop et al., 2017; Pettis et al., 2017), or cause permanent
energetic changes from severe injuries (e.g. amputation).
While not a classical disturbance, exposure to contaminants
has been linked with metabolic disruptions in grey seals
(Halichoerus grypus), leading to reduced weaning mass of
pups (Robinson et al., 2018; Bennett et al., 2021). This key
question is the logical next step in ongoing research into the
behavioural responses of marine mammals to disturbance, as
it addresses the thresholds (e.g. duration, severity) that induce
behavioural responses that are energetically meaningful to an
individual and thus have the potential for population-level
consequences. When assessing thresholds, it is important
to consider the extent and timescales at which an animal
can compensate (Hin er al., 2019; Pirotta et al., 2019;
Booth, 2020). Our ability to accurately quantify the energetic
implications of disturbance in part relies on addressing other

key questions (Q1 on prey landscapes and Q3 on metabolic
rates).

Field metabolic rates (FMRs) represent an individual’s daily
energy expenditure at a given time, which underpins many
of the other key questions we identified in this exercise.
The costs contained within FMR comprise the majority of
an individual’s energy budget (Winship ez al., 2002; Rech-
steiner et al., 2013; Bejarano et al., 2017; McHuron et al.,
2020). Marine mammal FMRs can vary with behavior, sea-
son, age class and among species (Arnould et al., 1996b;
Costa and Gales, 2000; Mellish et al., 2000; Bowen et al.,
2001; Trillmich and Kooyman, 2001; Costa and Gales, 2003;
Fowler et al., 2007; Costa, 2008; Villegas-Amtmann et al.,
2017a; Jeanniard du Dot et al., 2018; McHuron et al., 2018;
Rojano-Donite et al., 2018; McHuron et al., 2019). Otariids
generally have elevated FMRs compared with those of pho-
cids (Costa and Maresh, 2017), and limited data from bot-
tlenose dolphins (Tursiops truncatus) and harbour porpoise
(Phocoena phocoena) indicate that FMRs of small odonto-
cetes may align more closely with the high-energy lifestyle
of otariids (Costa and Maresh, 2017; Rojano-Donate et al.,
2018). Due to the logistical challenges in measuring FMR
in free-ranging marine mammals, most existing measure-
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ments are from pinnipeds during lactation. Considerable data
gaps remain for many marine mammals, particularly deep-
diving beaked (Ziiphidae) and sperm whales (Physeter macro-
cephalus) and baleen whales. These gaps often result in the use
of general allometric equations to estimate metabolic rates
in bioenergetic models (e.g. Bejarano et al., 2017; Acevedo
and Urban, 2021). Existing intra- and inter-group-specific
differences in marine mammal FMRs, and evidence that there
is heterogeneity in allometric scaling factors with body mass
and taxonomy (McNab, 2008; Kolokotrones et al., 2010;
Hudson et al., 2013), highlight the need for additional FMR
data.

The amount of time an animal spends engaged in certain
activities (e.g. resting, foraging, travelling, breeding/socialis-
ing) influences its energy budget through changes in intake,
expenditure or both. Climate change and habitat loss alter
environmental conditions, forcing (or facilitating) species to
either move into new environments or adapt to their existing
ones that may be undergoing rapid changes (Silber ez al.,
2017; Pinsky er al., 2020). Effects of climate change on
time-activity budgets have been documented for some marine
mammals (Hamilton et al.,, 2018; Blanchet er al., 2020).
While time-activity budgets have been estimated for numer-
ous species, new studies are needed to capture responses
to recent environmental changes at varying temporal scales,
as environmental variation may influence activity budgets
at some scales and not others (Austin et al., 2006). A bet-
ter understanding of activity-specific metabolic costs is then
needed to assess how such changes affect energy expenditure,
although this question did not receive enough votes to be
classified as a key question in this exercise (Fig. 2). In addi-
tion to assessing effects on energy balance, understanding
time-activity budgets can also provide insight into a species’
flexibility to respond to environmental perturbations. For
example, near-continuous foraging in northern elephant seals
(Mirounga angustirostris; Adachi et al., 2021), harbour por-
poises (Wisniewska et al., 2016) and sperm whales (Watwood
et al., 2006; Farmer ef al., 2018a) indicate these species
may have little flexibility to adjust to reductions in food
availability or interruptions in foraging (but see Hoekendijk
et al., 2018; Booth, 2020).

Once ingested, energy is directed to a variety of processes,
such as digestion, the maintenance of cellular function,
production of waste products, thermoregulation, mechanical
work/activity, structural growth, reproduction and storage

Conservation Physiology - Volume 10 2022

(Fig. 3). Energy allocation must be prioritised when energy
intake is insufficient to fuel all these costs (see review
by Glazier, 2009). This prioritisation exists at different
hierarchical levels, from partitioning among processes (e.g.
maintenance vs. growth) to partitioning among organs or
tissues within individual compartments. In general, energy
allocation to maintenance is prioritised before growth and
reproduction (Costa et al., 1989; Soto et al., 2004; Wheatley
et al., 2006; Christiansen et al., 2014b, 2018; Kershaw
et al., 2021; Smith, 2021). Compensatory mechanisms, such
as metabolic depression, may help cope with energy limitation
(Markussen et al., 1992; Rosen and Trites, 2002) or periods
of high energy demand (Mellish et al., 2000; Shuert et al.,
2020), although little is known about the drawbacks of such
mechanisms (Halsey, 2021). Understanding these priorities is
important as many bioenergetic models use researcher-defined
rules regarding allocation when energy intake is insufficient
to meet an individual’s needs, such as when foraging
may be disrupted by a disturbance (e.g. Villegas-Amtmann
et al., 2017b; Farmer et al., 2018b). Reduced allocation to
reproduction could lead to changes in offspring body size
that persist across an individual’s lifetime, an issue recently
highlighted for North Atlantic right whales (Eubalaena
glacialis; Stewart et al., 2021b). Understanding when reduced
energy allocation to growth may occur, and the magnitude of
such reduction, is critical since smaller body size could have
wide-ranging impacts on reproductive behaviour and success
of many marine mammals.

Body condition, defined as the amount of energy reserves
relative to structural size, is a physiological unit of consider-
able interest in conservation-focused bioenergetic studies. As
the physical manifestation of energy balance, body condition
provides essential information about the health of individ-
uals and populations (Brock et al., 2013; Williams et al.,
2013; Christiansen et al., 2020; Raverty et al., 2020; Stewart
et al., 2021a). A variety of metrics have been developed to
estimate body condition of free-ranging marine mammals,
such as those derived from blubber measures, morphometrics,
biochemical or chemical markers, body composition and
omics (see reviews in Bowen and Northridge, 2010; Castrillon
and Bengtson Nash, 2020). A universal metric does not
currently exist for marine mammals due to their differences in
life -history traits, habitat use, accessibility, body morphology,
and the dynamics of energy storage and utilization (Noren
and Wells, 2009; Noren et al., 2015, 2021; Kershaw et al.,
2017; Castrillon and Bengtson Nash, 2020; Larrat and Lair,
2022). Even within a species, different metrics may be needed
depending on the disposition (e.g. free-ranging vs. stranded)
and state (e.g. reproductive status) of the animal. Thus, met-
rics often need to be validated (e.g. Noren et al., 2019)
for individual species or groups when possible. Within the
context of bioenergetics, metrics that are comparatively inex-
pensive and non-invasive (i.e. do not require animal handling
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or tissue sampling) are likely to be the most useful, such as the
recent use of unmanned aerial vehicles to estimate body mor-
phology (see What tools do we have to address these key ques-
tions?). Such approaches allow body condition data to be col-
lected from many individuals of all age and size classes, repro-
ductive states and body conditions with minimal disturbance.

Behavioural changes are one of the first observable responses
of individuals to disturbances or environmental perturba-
tions. The resulting impact of that behavioural change on
survival and reproductive success is what drives population
dynamics (Pirotta et al., 2018a). As illustrated in the PCoD
framework (Pirotta et al., 2018a, Fig. 1), exposure to stressors
may affect vital rates through bioenergetic (e.g. changes in
energy stores) or (mostly) non-bioenergetic pathways (e.g.
immune function, contaminant burden). There also may be
feedback between these pathways, such as when a disturbance
alters energy balance, which then leads to reduced immune
function (or vice versa; Brock et al., 2013; Vera-Massieu
etal.,2015). While the focus here is on bioenergetic pathways,
relationships between body condition and vital rates may
thus incorporate the effects of non-bioenergetic pathways as
well. In marine mammals, body size and condition metrics are
positively related to foetal growth (Christiansen et al., 2014Db),
pregnancy rates (Williams ez al., 2013; Smout et al., 2020),
offspring growth (Christiansen ez al., 2018) and survival
probability (Hall ez al., 2001; Beauplet et al., 2005; Harding
et al., 2005; McMahon and Burton, 2005; Bowen et al.,
2015; Cheney et al., 2018; Oosthuizen et al., 2018; Stewart
et al., 2021a). For most marine mammals, these relation-
ships and thresholds of body condition that equate to failed
reproduction or imminent mortality remain largely unknown.
In addition to the ability to directly link measured body
condition from free-ranging animals with vital rates, these
relationships (as well as the upper and lower bounds of body
condition) are parameters in many PCoD models (Farmer
et al., 2018a; Pirotta et al., 2019; Gallagher et al., 2020).
Predictions from such models can be sensitive to parame-
ters associated with relationships between body condition
and survival (Pirotta et al., 2018b). Even when predicted
behavioural patterns are robust to uncertainty in these rela-
tionships, the absolute survival values are not (McHuron
et al.,2021).

Lactation is the most costly life -history event that a female
mammal will likely experience in her lifetime (Gittleman and
Thompson, 1988). Unfavourable environmental conditions
(or other changes that affect energy reserves available for
lactation) can result in reduced maternal condition or energy
delivery to offspring, altered weaning times or longer inter-
birth intervals, with different effects depending on reproduc-
tive strategy (Trillmich and Limberger, 1985; Arnbom et al.,
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1997; Noren et al.,2003; Costa, 2008; Chambert et al., 20135;
Chinn et al., 2016; Gailey et al., 2020). Knowing how much
energy is needed each day to support reproduction is thus key
in estimating prey needs and predicting how alterations to
energy intake will affect vital rates and population dynamics.
The daily cost of lactation has been relatively well studied
in pinnipeds using approaches that typically involve repeated
handling of individuals, such as combining estimates of milk
intake derived from doubly labelled water (DLW) with mea-
surements of milk energy density (e.g. Costa et al., 1986; Iver-
son et al., 1993; Oftedal et al., 1993; Arnould et al., 1996a;
Lydersen et al., 1997; Mellish et al., 1999; Donohue et al.,
2002; Wheatley et al., 2006; McDonald et al., 2012). Empir-
ical attempts to estimate lactation costs in most other marine
mammals, particularly cetaceans, have been hampered by the
inability to quantify milk intake. Relative costs of lactation
have been estimated for free-ranging southern right whales
(Eubalaena australis) by measuring changes in body size and
condition of lactating females relative to the growth of their
dependent calves (Christiansen et al., 2018), an approach that
requires an estimate of the female’s FMR. Other studies have
relied on data derived from captive individuals (Williams ez
al., 2011) or by summing the estimated costs experienced by
a dependent calf (Fortune et al., 2013; Villegas-Amtmann et
al., 2015).

Marine mammals are notoriously difficult to study in a
natural setting due to logistical challenges that prevent
direct measurement. Simple bioenergetic questions, such
as ‘how much does an animal weigh?” or ‘how much
prey does an animal consume?’, often require complex or
imaginative solutions as most species are either too large
to handle or spend most of their time in remote areas
underwater. Researchers must extrapolate from the best
available biological knowledge when data are missing for
their species of interest, with little formal guidance to
help inform decisions. Should we look to a closely related
species even though they may not share similar body sizes
or ecological roles? Should we prioritise habitat use and
behavioural similarities over phylogeny? Or should we rely
on anecdotal observations from the species of interest even
though they may be based on observations from just a
few individuals? Choosing the correct input parameters
for bioenergetic models has real-world consequences for
developing quality management decisions and conservation
policy. Several recent meta-analyses have explored varia-
tion in metabolic rates (Costa and Maresh, 2017), milk
intake (Riek, 2008, 2011, 2021) and lactation strategies
(Schulz and Bowen, 2004). Further efforts are needed to
understand species groupings across a suite of parameters
that are influential on bioenergetic model outputs (Winship
etal.,2002; New et al., 2013; Bejarano et al., 2017; Gallagher
et al., 2018; McHuron et al., 2020), and whether the appro-
priate proxy varies depending on the parameter of interest.
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Figure 4: Examples of common and emerging tools or methodologies that can be used to address the key bioenergetic questions identified as
part of this exercise. Questions (excluding Q11) are colour-coded as in Fig. 3, with black lines connecting the question to the tool/methodology.
Bolded outlines correspond to tools/methodologies that are linked to multiple key questions. In some instances, these represent different tools
for collecting the same type of data (e.g. unmanned vehicles and boat-based surveys using acoustic data to characterize prey landscapes),
whereas in others they represent different methodologies to address the same question (e.g. eDNA vs. boat-based surveys to characterize prey

landscapes).

What tools do we have to address these key
questions?

Many of the methods or tools needed to address these key
questions have been around since the inception of the field
of marine mammal bioenergetics (Fig. 4). Labelled water,
a method that was pioneered in the 1950s (Lifson and
McClintock, 1966), remains one of the most direct measures
of FMR, milk intake and body composition, and is still
widely used for these purposes (e.g. Mellish ez al., 1999;
Arnould et al.,, 2003; Fowler et al., 2007; Lang et al.,
2011; Pagano et al., 2018). This approach, however, has
limited application to cetaceans given logistical constraints
surrounding sample collection and potential violation of
the assumption that no seawater is ingested during the
measurement period (Hui, 1981). Observations of marked
individuals throughout their lifetime, such as those obtained

from long-term research programs, have provided a wealth of
information on reproductive success and survival (e.g. Ford
et al., 2010; Schwarz et al., 2013; Wells et al., 2014; Bowen
et al., 2015; Le Boeuf et al., 2019). It is difficult to envision
how questions that relate bioenergetics to survival and
reproductive success could be answered without continued
support for such efforts.

Emerging technologies and innovative solutions have
played a pivotal role in our ability to answer some of
these key questions (Fig.4). For example, animal-borne
sensors, and associated statistical approaches for analysing
data, have become an invaluable tool for addressing a wide
range of questions identified as part of this exercise (Fig. 4).
New sensors facilitate data collection on prey capture (e.g.
Tennessen et al., 2019; Olivier et al., 2022), drift rates (used to
infer body condition; e.g. Biuw, 2003; Biuw et al., 2007) and
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acceleration, breath rate and heart rate (used to infer FMRs;
e.g. Isojunno et al., 2018; Wilson et al., 2020; McDonald
et al., 2021). They also provide information on the physical
and biological environment that can characterise the prey
landscape (Arranz et al., 2011; Goulet et al., 2019; McMahon
et al., 2019, 2021). Unmanned systems are currently being
applied to marine mammal bioenergetics, particularly the use
of aerial systems to estimate body condition and growth
(Fearnbach et al., 2018; Lemos et al., 2020; Aoki et al.,
2021; Currie et al., 2021; Shero et al., 2021; Stewart et al.,
2021a; Christiansen et al., 2022), and surface and underwater
systems to survey prey communities (Kuhn et al., 2019;
Benoit-Bird er al., 2020). Environmental DNA (eDNA) is
a promising emerging tool for addressing questions related
to prey landscapes, as it appears able to characterise the
distribution and diversity of prey communities (Visser et al.,
2021) as well as prey biomass (Rourke et al., 2022). While
still in its infancy, eDNA has been used to quantify prey
distribution and diversity in areas with critically endangered
populations of Yangtze finless porpoise (Neophocaena
asiaeorientalis; Qu et al., 2020) and to detect spatiotemporal
variability in pelagic forage fish in the Saguenay-St. Lawrence
Marine Park, an area used by endangered beluga whales
(Delphinapterus leucas; Berger et al., 2020).

Regardless, some key questions are unlikely to be compre-
hensively addressed without further technological advance-
ments or validation. In particular, the question about FMR,
which was the most agreed-upon key question by survey
participants, is one area where both validation and advance-
ments are needed. For example, there remains uncertainty
in how the approaches commonly used to estimate, or infer,
cetacean FMRs (e.g. breathing rates) compare with methods
that provide a more direct measure of FMR (e.g. DLW) and
the level of uncertainty around estimates given the assump-
tions of such approaches (Fahlman ez al., 2016 and asso-
ciated responses). New methods that provide estimates or
broad scale proxies of FMR from tissue samples (e.g. Chung
et al., 2019) would be extremely valuable in furthering our
understanding of FMRs in marine mammals, particularly
baleen whales and deep-diving odontocetes. Non-invasive
sensing technology using near-infrared spectroscopy that con-
tinuously measures the rate of O, consumption is being devel-
oped, which provides a new avenue to understand energetic
regulation in marine mammals (Ruesch et al., 2022). Other
areas where advancements are needed include continuing
efforts to improve animal-borne sensors (e.g. miniaturisation,
data transmission and processing) and validation of existing
and development of new approaches for estimating body
condition and lactation costs of cetaceans.

Concluding remarks

Marine mammals tend to live in spatially and temporally
variable environments that are changing rapidly with recent
climate changes. At the same time, they are also facing increas-
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ing exposure to human activities in the marine environment.
Such conditions will continue to influence individuals and
populations through bioenergetic pathways, which can have
cascading impacts on the ecosystems they inhabit through
consumptive or non-consumptive mechanisms (Kiszka et al.,
2015; Estes et al., 2016; Savoca et al., 2021). Changing
environmental conditions may not always negatively impact
species, and in some cases may facilitate range expansion,
which could alter consumptive pressure on prey populations
and create new management challenges. Here we have identi-
fied 11 key questions that may help guide research priorities
to further our understanding of these pathways. While com-
prehensive, this list of key questions is certainly not exhaustive
and does not necessarily imply that questions that were
not included are unimportant or should not be addressed.
Instead, they represent the questions that most participants
agreed were important gaps, indicating that addressing these
questions might have the broadest application across different
disciplines, species and approaches.

The end goal of many marine mammal bioenergetic studies
is to provide information that can be used to inform policies
to better conserve populations by minimising or mitigat-
ing risks from human activities in the context of ecosys-
tem management. For example, research on energy require-
ments, prey intake and body condition of Southern Resi-
dent killer whales has contributed to management decisions
aiming to ensure adequate Chinook salmon (Oncorbynchus
tshawytscha) availability to aid in killer whale population
recovery (Ford et al., 2010; Noren, 2011; Williams et al.,
2011; Chasco et al., 2017; Wasser et al., 2017; Stewart et al.,
2021a). Similarly, PCoD modelling of sperm whales (Farmer
et al.,2018a) was used to inform NOAA’s Biological Opinion
on federal oil and gas program activities in the Gulf of Mex-
ico. In addition to providing information about the health
of marine mammal populations and insights into factors that
may be affecting population trajectories, the data collected to
address the key questions identified in this exercise will help
refine and verify the values of the parameters used in bioen-
ergetic models. This will ensure more accurate predictions of
energy needs and the consequences of anthropogenetic and
environmental impacts on marine mammal populations.
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