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Abstract
Gated Recurrent Neural Networks (RNNs) such as LSTM and GRU have been highly effec-
tive in handling sequential time series data in recent years. Although Gated RNNs have an
inherent ability to learn complex temporal dynamics, there is potential for further enhance-
ment by enabling these deep learning networks to directly use time information to recognise
time-dependent patterns in data and identify important segments of time. Synonymous with
time series data in real-world applications are missing values, which often reduce a model’s
ability to perform predictive tasks. Historically, missing values have been handled by simple
or complex imputation techniques as well as machine learning models, which manage the
missing values in the prediction layers. However, these methods do not attempt to identify
the significance of data segments and therefore are susceptible to poor imputation values or
model degradation from high missing value rates. This paper develops Cyclic Gate enhanced
recurrent neural networks with learnt waveform parameters to automatically identify impor-
tant data segments within a time series and neglect unimportant segments. By using the
proposed networks, the negative impact of missing data on model performance is mitigated
through the addition of customised cyclic opening and closing gate operations. Cyclic Gate
Recurrent Neural Networks are tested on several sequential time series datasets for classifica-
tion performance. For long sequence datasets with high rates of missing values, Cyclic Gate
enhanced RNN models achieve higher performance metrics than standard gated recurrent
neural network models, conventional non-neural network machine learning algorithms and
current state of the art RNN cell variants.

Keywords Time series · Missing values · Recurrent neural network · GRU · LSTM · RNN

1 Introduction

Due to the numerous types of sensing devices or recording practices that generate data, it is
rare for raw time series data to have all input features sampled at a constant rate with common
timestamps and consistency across multiple features [1]. Missing observations are common
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in univariate and multivariate datasets. Missing data occur in univariate data generated from
a single feature variable measured at a sampling rate without a consistent interval between
observations due to unstructuredmanual processes, event-drivenmonitoring, device or signal
failure, and intentional omissions based on cost or importance. For multivariate datasets
derived from numerous measuring techniques and instruments, the frequency at which each
variable is sampledwill often be different and result inmissing values for one ormore features
at any given timestamp.

The impact ofmissing values ondatamodelling often results in performance degradation in
forecasting and classification tasks [2]. Therefore, dealingwithmissing values is an important
and often overlooked part of building an effective model. There are two common approaches
for handling missing values in time series data: missing value imputation at the data pre-
processing stage [3–6] and modification of algorithms to directly handle missing values in
the learning process [7, 8]. Imputation basedmethods estimatemissing values and reconstruct
a complete time series which is subsequently fed into prediction layers. Methods that rely on
algorithms within the prediction model to handle missing values during the learning process,
do not aim to develop the most accurate estimation of missing values but rather optimise the
final prediction capability taking into account the missing values.

Over the past few decades, most approaches to tackling missing values in datasets have
focused on imputation techniques, which range from simple statistical methods such asmean,
moving average and simple regression to complex imputation methods involving machine
learning (ML) to predict accurate missing values. Simple statistical imputation methods can
often introduce a loss of accuracy or bias to models, while complex imputation models
are computationally expensive [9, 10]. When applied to time series data, most imputation
techniques fail to capture the temporal dependencies between observations in univariate or
multivariate data. Additionally, missing patterns, which can be time-dependent, are hidden
by imputation techniques and not effectively explored in the prediction layers, resulting in
sub-optimal models. Utilising time information in addition to feature variable data has been
shown to improve a number of machine learning models for time series prediction tasks with
missing or irregular data [8]. Augmentation ofmodel inputs with time values or time intervals
can be applied in several ways, including their use in learnt decay functions to imputemissing
values [11] or direct input of time values as a feature variable for the prediction layers [12].

Standard gated Recurrent Neural Network (RNN) models such as LSTM and GRU and
their associated variants provide an ideal starting point for handling time sequential data due
to their success in providing state-of-the-art performance in sequential data modelling tasks.
Their successful applications have includedmachine translation, speech recognition and other
natural language processing (NLP) applications that require learning temporal dependencies
within a sequence of text [13]. Gated recurrent neural networks are capable of utilising
time inputs within the model and learning temporal patterns in sequential time series data
[14]. Their architectures have the flexibility to allow for modifications to address specific
data issues, including irregular time series sequences [10]. Traditional machine learning
techniques for handling sequential data not based on Neural Network (NN) architectures
have included examples such as Naive Bayes, k-Nearest Neighbor (KNN), Support Vector
Machine (SVM) and Random Forest (RF), which predominantly rely on feature extraction
prior to inference and therefore fail to utilise the rich information associated with the raw time
sequence. Time information has been successfully utilised as part of structural modification
of conventional recurrent neural networks, such as the LSTM and GRU, by modification
of their gate operations [1, 8]. These modifications allow for better prediction of sequences
that can be long, noisy or sparse, by enabling the model to be aware of patterns in time that
identify more and less significant segments of data. The time-aware concepts behind these
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structural changes to recurrent neural networks can similarly be applied to missing data so
that the prediction model can be less susceptible to poor imputation values. They can also
identify patterns in the missing data or input values, allowing only essential data segments
to be input or remembered by the model’s current state.

However, handling missing time series data as part of the learning process with a time-
aware architecture is still a relatively undeveloped field given the limited body of research
in this area. Many current state-of-the-art models continue to be significantly impacted by
the occurrences of high levels of missing data [15]. Recent cutting edge RNN based models
that address the missing value problem have applied time intervals to generate time decay
functions used by gated RNN models [11, 16, 17] for regulating imputation values with
time. Innovative models with modified recurrent cell architectures with time-aware units [7,
8] have not been applied to missing values data with real-valued feature variables. None of
these current works focus on identifying patterns within the data to distinguish important
segments of data with respect to time in order to manage missing values.

Solving the challenge of missing values is often dependent on the type of data in which
the missing values occurs and how the missing data occur [18]. Both these characteristics
provide valuable information which can be learnt and used to mitigate the negative effects of
missing values on a model’s performance. Time awareness in data can refer to the periodicity
of occurrences of important or unimportant data segments, which may occur as a well-
defined repeating pattern or within consistently positioned timesteps within a sequence.
Supplementing existing gatedRNNarchitectureswith additional gates defined by appropriate
waveforms provides a technique for learning the patterns associated with significant sections
of data within a sequence.

We draw upon the successful development of models in different but related areas, in this
case, long term sequential data modelling, to providemethods for resolving themissing value
problem. Our proposed models extend concepts introduced by Neil et al. [1] by introducing
alternatewaveforms for customisation of gate control on the LSTMandGRUmodels to better
identify important data segments for datasets with missing data. The Phased LSTM’s gate
control is limited to a piecewise linear function, analogous to a Relu, which aims to learn long
sequences and accelerate training. The model does not specifically address missing values
but does consider asynchronous sampling rates, which pose similar issues to missing values
and therefore provide a valid application for missing values in time series.

This paper develops a novel deep learning cell architecture called Cyclic Gate Recur-
rent Neural Networks to exploit informative input and missingness patterns based on time
information. The models further develop the concept of discriminating rhythmic signals by
using simple and Fourier Series waveforms. Cyclic Gate Recurrent Neural Networks use
time information to generate periodic waveforms that control the gates’ opening and closing
characteristics in the recurrent cells. Instead of memory and output updates on every fixed
time step, the use of learnt waveforms allows updates only when necessary, which allow for
more fine-tuned updates of the recurrent cell and assists in reducing the effect of missing
values. The proposed models aim to enhance the performance of model predictions against
the original gated RNNs and recent variants.

Empirical experiments on several real-world time series datasets with simulated missing
values of different types, MCAR, MAR and MNAR, demonstrate that our proposed model
outperforms the baselines RNN models and a number of recent gated RNN variants. The
experiments show that ourmethod is suitable for a range of time series classification problems
with high rates ofmissing data, and in particular, is highly suited to predictive tasks on datasets
that have periodic behaviour. The main contributions of the paper are:
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(1) Providing a modified recurrent neural network architecture to be applied to time series
data with high rates ofmissing data that can capture time-based patterns of input features
and improve classification performance. The modifications include the use of differen-
tiable Fourier Series waveforms for driving gate activation to learn cyclic patterns within
time series sequences.

(2) Modelling long sequence time series data with missing values, while avoiding vanishing
gradients by using shortened back-propagation paths.

(3) Handling missing values by considering the significance of segments of data while
utilising aminimalmissing value imputation strategy to reduce the potential inaccuracies
associated with imputed data.

(4) Performing model modifications at the cell level instead of the more commonly applied
network level, which allows for subsequent incorporation of cells into higher level
network architectures.

2 Background

Recurrent Neural Networks (RNN) are a leadingmachine learning technique for dealing with
sequential data [19] and tasks requiringmemory of past events [20]. In particular, Long Short-
Term Memory (LSTM) [21], as well as Gated Recurrent Units (GRU) [22] have emerged as
two of the most effective models for sequential data modelling due to their ability to handle
long sequences while limiting the effect of vanishing gradients.

One of the most prevalent types of sequential data, alongside language data, is time
series data which arises wherever collected data is indexed and ordered by time. Gated RNN
models are well suited to modelling time series data with long-term dependencies [21, 23]
due to their internal memory mechanism that allows access to the history of previous time
series values. In the medical diagnostics field, Lipton et al. [12] use LSTMS for diagnoses
classification of critical care patients by recognising patterns in multivariate time series data,
while Malhotra et al. [24] uses stacked LSTM networks for anomaly detection in ECG time
series data. Hsu et al. [25] present a model which combines LSTM and Auto-encoder (AE)
architectures to capture long-term dependencies across data points. Malhotra et al.’s Timenet
[26] demonstrate the strength of pre-trained deep RNNs for time series classification, using
a Sequence Auto-Encoder (SAE) to learn latent representations of time series data. Qin
et al. [27] successfully combine a LSTM encoder-decoder architecture with dual Attention,
to extract relevant driving RNNS for time series with missing values. Shukla et al. [28]
utilise Multi-Time Attention Networks to learn embedding of continuous-time values by
applying bidirectional RNNs and an attention mechanism to handle sparse and irregular data.
Wang et al. [29] develop an ensemble architecture with a CNN combined with a Sequence-
to-Sequence Attention mechanism in the hidden state of the LSTM for long time series
forecasting.

In recent years there has been an increasing interest by researchers in designing modified
recurrent cell architectures of gated RNNs to increase the efficiency and accuracy of the
models for various data types. In order to reduce the number of cell parameters and provide
for faster training, Zhou et al. [30] developed the Minimal Gated Unit (MGU). Nina and
Rodriguez [31] andHu [32] also simplify the LSTMcell by coupling the forget gate and input
gate into one gate for greater accuracy in image descriptions and long time series, respectively.
Jozefowicz et al. [33] conducted a comprehensive evaluation of RNN architectures, involving
a review of over 10,000 different architectures, which identified three specific models that
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outperformed the LSTM and GRU on a selection of tasks. Modification of internal RNN
architectures has also involved changes beyond increasing and decreasing gate functions,with
Rahman, Mohammed, and Azad [34] presenting a biologically inspired variant of the LSTM,
which changes the update mechanism of the LSTM cell state to enhance cell capacity and
improve sentiment analysis of textual data. An LSTMwith working memory was introduced
by Pulver and Lyu [35], and Mirza [36] modified the GRU model by performing linear
calculations in the frequency domain prior to performing non-gating functions. In both these
cases, the focuswas on providing a gated RNNvariant for improving prediction performance.

Of the research that has been conducted on RNN internal cell modifications, several have
included optimisation for handling missing or irregular data, as well as the direct utilisation
of time information. Che et al. [11] investigate the application of Gated Recurrent Units with
trainable decays on multivariate time series with missing data. Pham et al. [7] modifies an
LSTMmodel to generate predictions based on healthcare observations using time parameter-
isations to handle irregular timed events, moderating the forget operation and consolidation
of memory cells. Baytas et al. [8] further develop irregular data research through a proposed
time-aware LSTM (T-LSTM) model to handle irregular time intervals in longitudinal patient
records by using the elapsed time between consecutive elements to adjust thememory content
of the LSTM unit. Similar to the T-LSTM, Tan et al. [16] use a time-aware GRU structure to
provide an end-to-end dual-attention time-aware gated recurrent unit (DATA-GRU) to predict
patients’ mortality risk on multivariate data.

Neil et al. [1] introduce a Phased LSTM model which modifies the base LSTM unit by
adding a new timing gate that is of an oscillatory nature, which updates the memory cell only
during a fraction of its cycle and therefore handles asynchronous input data from sensors with
irregular sampling rates. The model differs from the standard LSTM by requiring the input of
event times. An independent periodic function based on a piecewise linear function analogous
to the Relu function determines the opening and closing of a new time gate. The paper focuses
on accelerated learning of long sequences and discriminating rhythmic signals. The Phased
LSTM has been applied in several subsequent research papers [37], which demonstrate its
effectiveness in handling long, sparse time series. The Phased LSTM has limited benefit for
short sequences, and its proposed piecewise linear gating function is unlikely to be flexible
enough to assist in discriminating certain data signals or patterns due to its short fully-open
period. Skip RNNs [38, 39] also focus on accelerated learning of long sequences, in this case,
through the use of gate structures with skip connections to manage time scales with learned
gate parameters. TheMS-LMNmodel [40] considers the importance of different frequencies
in long sequence data by separating hidden states in the simple RNN into different modules
with different sampling rates, using an incremental training algorithm to target multiscale
learning.

In our proposedmodels, we extend the concept of oscillatory learned gates and discrimina-
tory rhythmic signals [1] in order to handlemissing data from univariate andmultivariate time
series data. The handling of sparse updates is extended tomissing values as amethod for iden-
tifying patterns in time series data through time augmentation and waveform-controlled gate
activations.We generate several simple and sophisticatedwaveformswith learned parameters
and apply them to gated recurrent neural networks to test their performance against base-
line recurrent neural networks, conventional non-neural network ML algorithms and several
recent state of the art gated RNNs.
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3 The Cyclic Gate RNNModel

This section describes the recurrent neural network cells with modified gates, whereby cyclic
waveforms control their opening and closing operation. The resulting recurrent cell aims to
make sparser updates to units, thereby being more selective on when input data updates the
memory and when updates to the hidden state occur. We begin by providing notation for time
series data, followed by the equations for the recurrent cells.

Assume a multivariate time series X � {x1, . . . , xt , . . . , xT } ∈ R
T×D with time series

length Twhere the sample xt � (
x1t , .., x

d
t , . . . , xDt

)
has Dmultivariate dimensions.Missing

indicators md
t � 1i f xdt is observed and md

t � 0i f xdt is missing. In a labelled dataset with N

samples, we have a set of features and labels
{(
X (n), y(n)

)}N
n�1, where each timeseries X(n)

has an associated label y(n).

3.1 Standard Gated Recurrent Model

Modifications are made to standard LSTM and GRU cells, resulting in cell models termed
the Cyclic Gate LSTM and Cyclic Gate GRU.

LSTMs are defined by the following equations [21].

ft � σ
(
Wx f · xt +Whf · ht−1 + b f

)
(1)

it � σ(Wxi .xt +Whi .ht−1 + bi ) (2)

ot � σ(Wxo.xt +Who.ht−1 + bo) (3)

c′
t � tanh

(
Wxg.xt +Whg.ht−1 + bg

)
(4)

ct � ft � ct−1 + it � c′
t (5)

ht � ot � tanh(ct ) (6)

where xt is the input at time step t; W are weight parameter matrices; b are bias vectors; ct
is the cell state at time step t; ht is the hidden state at time step t; "." is an inner product
for standard matrix multiplication; � is the elementwise (Hadamard) product; and σ is the
Sigmoid function. Both weights and biases are shared through all time steps. Three gates,
consisting of the input gate i, forget gate f , and output gate o, modulate the flowof information
inside the cell by generating values in the range [0, 1] to write the input to the internal memory
ct , reset the memory, or read from memory, respectively.

GRUs are defined by the following equations [22].

rt � σ(Wxr .xt +Whr .ht−1 + br ) (7)

zt � σ(Wxz .xt +Whz .ht−1 + bz) (8)

h′
t � tanh(Wxh′ .xt +Whh′ .(rt � ht−1) + bc) (9)

ht � (zt ) � h′
t + (1 − zt ) � ht−1 (10)

where xt is the input at time step t; W are weight parameter matrices; b are bias vectors; ht
is the hidden state at time step t; "." is an inner product for standard matrix multiplication;
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� is the elementwise (Hadamard) product; and σ is the Sigmoid function. Both weights and
biases are shared through all time steps. Two gates, consisting of the reset gate r and update
gate z, modulate the flow of information inside the cell by generating values in the range [0,
1] to determine how much past information to reset or forget and how much of the current
input and previous state to output to the new hidden state.

3.2 Cyclic Gated Recurrent Model

The Cyclic Gate LSTM uses two new gates, one for controlling the input to the cell state
memory and one for controlling the output to the hidden state. The GRU does not have
a distinct cell state like the LSTM and only propagates the hidden state ht through time;
therefore, the Cyclic Gate GRU cell has a single new gate that controls output to the hidden
state.

A time-dependent waveform controls the operation of the Cyclic Gates. Four learned
parameters define the waveform.

T—Period (wavelength).
S—Phase Shift.
R—Ratio On–Off (duration of the “open” state to the duration of the full period T).
A – Amplitude.
Unlike conventional gated RNNs, the Cyclic Gate models do not require the RNN to

update at every regular time timestep but can alternatively update at sparse points in time and
neglect time periods in between. This functionality also allows for different update rates for
features with different sampling periods. For a particular RNN cell, the update time between
observations of a feature can occur with sparse and irregular intervals between updates. As an
example of sparse timing of a feature variable, for a time window of 10 s, the time sequence
t’ may differ from regular sampling sequence t, as shown below.

Timestamp (sec) 1 2 3 4 5 6 7 8 9 10
t t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t’ t’1 t’2 t’3

The waveform equation which drives the cyclic gates is represented by the notation gt ′ .
This wave function gt ′ will be described in detail in the next section.

The internal architecture of a single Cyclic Gate LSTM cell is shown in Fig. 1a. The
additional Cyclic Gate LSTM equations are:

c̃t ′ � ft ′ � ct ′−1 + it � c′
t ′ (11)

ct ′ � gt ′ � c̃t ′ + (1 − gt ′) � ct ′−1 (12)

h̃t ′ � ot ′ � tanh(c̃t ′) (13)

ht ′ � gt ′ � h̃t ′ + (1 − gt ′) � ht ′−1 (14)

The internal architecture of a single Cyclic Gate GRU cell is shown in Fig. 1b. The
additional Cyclic Gate GRU equations are:

h̃t ′ � zt ′ � h′
t ′ + (1 − zt ′) � ht ′−1 (15)

ht ′ � gt ′ � h̃t ′ + (1 − gt ′) � ht ′−1 (16)
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Fig. 1 Cyclic Gate Models with modification in red a Cyclic Gate LSTM, b Cyclic Gate GRU

To simplify the architecture drawings in Fig. 1, we use summary notations G
′
t ′ and Gt ′ to

represent the equations applying gt ′ as follows.
For Fig. 1a, G

′
t ′ � gt ′ � c̃t ′ + (1 − gt ′) � ct ′−1, which refers to Eq. (12) and Gt ′ �

gt ′ � h̃t ′ + (1 − gt ′) � ht ′−1, which refers to Eq. (14).
For Fig. 1b, Gt ′ � gt ′ � h̃t ′ + (1 − gt ′) � ht ′−1, which refers to Eq. (16).

3.3 Waveform Equations

We generate a number of periodic waveforms in order to determine which wave types better
capture patterns in the input features, taking into account missing values. The wave types
include simple and complex forms of square, triangular and sawtooth waves. The new gate
controls supplement the current gate activations [1, 21, 22] and therefore enable an immediate
opening and closing action (square wave), a ramped opening and closing action (triangular
wave) or a ramped opening action with an immediate closing action (sawtooth). The wave-
forms are generated as pulsed trains, with only positive amplitude, flat intervals between
pulses, and a delay between the start of the wave period and the start of the pulse. The square,
triangle or sawtooth shapes can represent the level of fine-tuning required for opening the
gate for small or large sections of important data and whether a gradual (ramped) input of
data is required on either side of the fully open gate value. This can alternatively be con-
sidered as a method of noise filtering or dropout; for example, square waves have complete
filtering of unwanted data, triangular waves have graduated filtering, and sawtooth waves
have graduated filtering only during gate opening and complete filtering afterwards.

To accurately develop a differentiable periodic function for our pulse trains, we use finite
Fourier series approximations. The basic concept of the Fourier series is that any periodic
waveform can be represented by the sum of harmonically related sinusoidal functions. The
sinusoids that make up the resulting waveform have frequencies that are integer multiples of
a fundamental frequency, also known as harmonics of the fundamental frequency. A Fourier
series expansion of a periodic function is represented as:

f (t) � a0 + a1 cos kt + b1 sin kt + a2 cos 2kt + b2 sin 2kt + a3 cos 3kt . . . (17)

or,

f (t) �
∞∑

n�0

an . cos nkt +
∞∑

n�0

bn . sin nkt (18)
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where k � 2π/T and a0, an, bn are Fourier Coefficients and n � 0,1,2,3..∞ is considered
the harmonic number. The Fourier Coefficients can be given for a T-period signal by the
following equations.

a0 � 1

T

T∫
0
f (t)dt (19)

an � 2

T

T∫
0
f (t) cos nktdt (20)

bn � 2

T

T∫
0
f (t) sin nktdt (21)

The Fourier series can be approximated by a finite number of harmonics for each type
of periodic function, where n � 0,1,2,3,..,m. The sine or cosine functions can be simplified
based on trigonometric identities, integrals and whether the function is odd or even. Where
f(t) is even, the bn coefficients will be zero, while if f(t) is odd, the an coefficients will be zero.
The resulting Fourier Series representation of continuous time periodic signals is a weighted
sum of sinusoidal signals. For the purposes of gate opening operations, our resulting Fourier
Series equations are required to generate a train of pulses, which are dependent on time and
where the pulse is only active for a fraction of the total period of each cycle.

In addition to Fourier series waveforms, we also use simpler equations for each of the
waveforms to compare their performance, taking into account the high computation com-
plexity associated with Fourier series waveforms. Figure 2 shows the resulting waveforms,
and the associated equations are presented in the formulas for g(t) below.

Fourier Square g(t) � TP
T

+
m∑

n�1

(
2

nπ

)
sin

(
nπTP
T

)
. cos

(
2πnt

T

)
(22)

Fourier Triangular g(t) � TP
2T

+
m∑

n�1

(
4T

TP (nπ)2

)
sin2

(
nπTP
2T

)
. cos

(
2πnt

T

)
(23)

Fourier sawtooth g(t) � TP
4T

+
m∑

n�1

(
T

4TP (nπ)2

)((
jn2πTP

T
+ 1

)
.e

− jn2πTP
T − 1

)
.e

jn2π t
T

(24)

Simple Square g(t) � 0i f T . f loor

(
t − s

T

)
> t > T . f loor

(
t − s

T

)
+ TP

� 1i f T . f loor

(
t − s

T

)
< t < T . f loor

(
t − s

T

)
+ TP

(25)

Simple Triangular g(t) � 2ϕ(t)

R
i f ϕ(t) <

R

2

� 2 − 2ϕ(t)

R
i f

R

2
≤ ϕ(t) ≤ R

� α.ϕ(t)i f R < ϕ(t)

where, ϕ(t) � mod(t − s, T )

T

(26)
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Fig. 2 Waveforms a Fourier square wave b Fourier triangle wave c Fourier sawtooth wave d Sign square wave
e Simple square wave f Simple triangle wave g Simple sawtooth wave
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Simple Sawtooth g(t) � 2ϕ(t)

R
i f ϕ(t) <

R

2

� 0i f
R

2
≤ ϕ(t) ≤ R

� α.ϕ(t)i f R < ϕ(t)

where, ϕ(t) � mod(t − s, T )

T

(27)

Sign Square g(t) � 1 + sign(mod((t − s), T ) − (T − TP )) (28)

where t � time, s � phase shift, T � Period (or cycle), Tp � Pulse width, ϕ � phase inside
a cycle, R � ratio of ON period to total period, α � leak rate, m � finite number of terms for
the series.

We note that finite Fourier series representations are smooth waveforms, which are contin-
uous and have well defined derivatives for back-propagation. The non-Fourier waveforms are
piecewise continuous functionswhich are not differentiable at every point due to discontinuity
in their derivatives. Although discontinuity in the derivatives does notmake back-propagation
impossible, due to the availability of sub-gradients, the presence of multiple points of dis-
continuity may have some impact on the back-propagation process [41, 42].

3.4 Computational Complexity

Considering only Time Complexity, which is the quantity of time taken by an algorithm to
run, as a function of the length of the input, as denoted using the big-O notation. The standard
LSTM is known to be local in time complexity, meaning that its time complexity per time
step and weight is O(1) constant [21, 43]. The LSTM architecture contains an input layer, a
recurrent layer and an output layer. The total number of weight parameters W, with one cell
in each memory block and ignoring bias, is shown below.

W � (Nc × Nc × 4) + (Ni × Nc × 4) + (Nc × No) + (Nc × 3)

whereNc is the number ofmemory cells, Ni is the number of input units, andNo is the number
of output units. Given that the computational complexity of LSTM models per weight and
time step when using stochastic gradient descent (SGD) optimisation isO(1), the complexity
per time step is O(W) [43]. Similarly, for other RNN variants, the time complexity is O(W)
and linear.

Within the predictivemodels, augmentation of input valueswithmissing indicators or time
information increases complexity from standard gated RNN models to a small degree due
to larger weight matrices associated with a larger number of input features. RNN modified
gate structures introduce new weight parameters with each additional gate, increasing the
complexity of the standard LSTM or GRU model.

A Fourier trigonometric series has a time complexity of O(n2) [44]. The complexity is
large because the sine, cosine or multiply operations need to be done for each time step and
each harmonic frequency. This results in high time complexity of O(n2), meaning that as the
number of points of the time series increases, the time to calculate the series will increase by
the square of the number of points.
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4 Experiments and Results

In this section, we will present the implementation settings, the different datasets and met-
rics, and the experimental results to evaluate the performance of the Cyclic Gated recurrent
network models.

4.1 Implementation Details

We implement Cyclic Gate RNN networks in Tensorflow (Python) using a single RNN layer
followed by a single fully connected layer. For consistent comparisons, the number of hidden
units which reflect the hidden state vector is set at 32 for all the recurrent network models.
A single fully-connected layer (perceptron) serves as a classifier on top of the recurrent
network layer to map the final state ht to a class probability. The model is trained with the
Adam optimiser [45] for classification prediction, with mini-batch sizing varying with each
dataset. The learning rate is initially set to 0.0025 and decay rate of 0.9 (first moment) and
0.999 (second moment) after each batch iteration. Each dataset is trained for at least 300
epochs.

4.2 Datasets

We evaluate the proposed models on four real-world time series datasets, which are sequen-
tial and therefore characterised by relationships between past and future data points. Both
univariate and multivariate datasets are included in the experiments. The four datasets have
been selected for experimentation to provide a variety of periodicity levels, ranging from
very low periodicity to high periodicity across the datasets. We simulate a high missing value
rate of 50% for each dataset as a percentage of total data. Recurrent network cell models in
Python Tensorflow cannot operate with missing values represented by NaN (Not a Number)
input values so very simple imputation of NaN observations are performed using either last
observation caried forward (LOCF) or zero value replacement. We include experimentation
with three different missing data generation mechanisms as outlined in the section below.

4.2.1 Missing Data Mechanism

Rubin et al. [9] classified missing data problems into three categories based on the missing
data mechanism; ’Missing completely at random’ (MCAR), ’Missing at random’ (MAR),
’Missing not at random’ (MNAR).

Missing Completely at Random (MCAR) In this category, missing data points occur com-
pletely at random, so there is no systematic mechanism for the cause of the missing data.
The probability of a specific observation being missing is independent of the observed data,
including time variables, and is also independent of the unobserved (missing) data. For exam-
ple, random transmission failure of a wireless sensor sending observation from the field to a
back-end system would result in MCAR data.

Missing at Random (MAR) For MAR data, the probability of a specific observation being
missing is independent of the unobserved data but is dependent on the values of the observed
data. As an example, missing data from sensors data may be dependent on time, such that the
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probability of missing data is high on the weekend, wheremaintenance on a faulty transmitter
is unlikely to occur.

Not Missing at Random (MNAR) A missing observation in this group is dependent on the
unobserved data and may also be dependent on the observed data. For example, a sensor’s
value will be missing if it is outside the range of the sensors calibrated limits.

4.2.2 Datasets Descriptions

Descriptions of each dataset are presented in this section. The original datasets do not con-
tain any missing values, and therefore all missing values are generated using simulation
mechanisms based on the missing data categories described in the previous section.

Non-Invasive Fetal ECG Thorax (ECG) This dataset contains data from non-invasive fetal
electrocardiographic (NIFECG) monitoring using electrodes placed on a maternal abdomen,
which is used in determining the level of fetal distress based on deceleration of fetal heart rate
[46, 47]. The multivariate dataset contains two features corresponding to ECG recordings
from the left and right thorax. There are 42 labelled classes and a fixed sequence length of
750 timesteps. The training sample size is 1800, and the test sample size is 1965.

Earthquakes (EQ) The dataset is from Northern California Earthquake Data Center, and
each data point is an averaged seismograph reading for one hour, with readings over 36 years
[47]. It is a univariate dataset with two labelled classes, representing a major earthquake
event, with a Richter scale value above 5 or not a major event, with a Richer scale value
below 4. The Sequence length is 512, and the training and test sample sizes are 322 and 139,
respectively. There is no overlap in time for each sequence, as segmentation is used instead
of a sliding window.

Internal Bleeding (IB) The dataset is generated from three vital signs monitored on 52
pigs before and after an induced injury. The three features monitored were Airway Pressure
(airway pressure), Art Pressure (arterial blood pressure) and CVP (central venous pressure)
[48]. The time series sequence length is 2000, and there are 52 labelled classes representing
each subject animal monitored. There are 104 training samples and 208 test samples.

EOG The source data is from an electrooculography signal (EOG), which measure the
electrical potential between electrodes close to the eyes of human subjects [49]. Horizontal
and vertical channel signals were measured by taking readings between two electrodes on
the left and right of the subject’s eye and between the top and bottom of the subject’s eye.
The two channels represent the two features of the multivariate time series, and there are 12
resulting classes representing stroke identification. The time series sequence length is 1250,
and the samples sizes are 362 for training and 362 for testing.

4.2.3 Data Sequence Characteristics

Analysis of the datasets used for experimentation involved the generation of the Discrete
Fourier Transform (DFT) of each sequence in a dataset. The Fast Fourier Transform (FFT) is
an implementation of the DFT, so the single-sideband spectrum of the FFT was generated for
each sequence to identify the dominantDFT coefficients and their corresponding frequencies.
For each feature variable within a dataset, the mean value of the two largest DFT coefficients
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Table 1 Dominant frequencies and periods of dataset features

Dataset DFT 1 Freq. 1 Period 1 DFT 2 Freq. 2 Period 2

Non-Invasive Fetal ECG

Feature 1 250.5282 0.001745 572.7620 142.4506 0.007435 134.4889

Feature 2 256.2887 0.001608 621.8332 144.3580 0.007330 136.4188

Earthquakes

Feature 1 57.37488 0.183642 5.445369 51.78263 0.200055 4.998605

Internal Bleeding

Feature 1 2881.707 0.007730 129.3532 1048.514 0.012754 78.40181

Feature 2 11,064.22 0.006000 166.6666 4286.687 0.012471 80.18504

Feature 3 1057.144 0.004432 225.5965 703.2799 0.008082 123.7358

EOG

Feature 1 30,360.99 0.003292 303.6912 16,369.36 0.006082 164.4258

Feature 2 26,064.80 0.003207 311.8538 14,015.53 0.006039 165.5689

and their frequencies were recorded. Table 1 summarises the DFT dominant coefficient
values, frequencies and periods for the datasets used in experiments.

The frequency, period and DFT coefficient values provided in Table 1 are unitless values.
All the original datasets contained regular sampling rates, and each sampling event was
allocated an incremental integer number in the sequence (e.g., 0,1,2,..,N � Sequence Length
− 1), which was input into the FFT.

4.3 Baselines Models

We compare ourmodel to several baseline recurrent neural networks, RNN, LSTMandGRU.
LSTM and GRU models with feature augmentation of missing value indicators is included
in the set of comparative models. We also compare our model to more recent variations of
recurrent cell architectures, the T-LSTM [8] and GRU-D [11].

We provide an additional comparison of our proposed models to several non-neural
network-based models to give context to our results against a broader set of ML methods.
Support Vector Machines (SVM), k-Nearest Neighbor (KNN) and Random Forest(RF) are
adopted to represent a set of frequently applied algorithms for the classification of sequential
and time series data [50]. These methods generally rely on feature extraction or generation
prior to classification of time series data, without inputting the complete time series directly
into the classifier [51]. Therefore, two of our baseline non-NNmodels, SVMandRF, use time
series feature extraction. For the KNN algorithm, we implement a model named KNN-FE
with feature extraction and also a model named KNN-TS, which directly inputs the com-
plete time series sequence for classification. Feature extraction includes features from the
frequency domain, using the DFT of the time series. The non-NN models are tuned with
grid-search hyper-parameter optimisation.

In our experimentation we intentionally exclude high-level network architectures that
use RNN layers such as sequence-to-sequence models [19] or ensemble models like CNN-
LSTM [52] or ConvLSTM [53], as our focus is on improving the cell architecture and not the
high-level network architecture, which these ensemble models are characterised by. The cell
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architectures proposed in this paper may be implemented within these high-level networks
as part of future works.

4.4 Metrics

Our experiments have been confined to binary or multiclass classification problems on time
series datasets, where each sample has a single mutually exclusive class label value. Our
evaluation metrics include recall (sensitivity), precision (positive predictive value), F1 score,
and area under the curve (AUC) for the Receiver operating characteristic. Accuracy, F1-
score and AUC are widely used to measure the classification prediction performance for
machine learning approaches. We focus on the AUC and F1-score (harmonic mean between
precision and recall), as both the AUC and F1-score are less influenced by imbalanced data
with varying class frequencies. In contrast, overall accuracy tends to be biased towards the
most dominant classes. Datasets in experiments were not altered to improve class balance.
Therefore, a review of results associated with the accuracy metric confirmed values that
primarily reflected predictions biased to the majority class and which did not represent a
suitable measure of model performance. For this reason, accuracy was omitted from our set
of performance evaluation metrics due to its likelihood of leading to erroneous conclusions.

The metrics set also includes an additional AUC metric variation for one of the datasets,
named AUC_predicted, where the standard AUC produces values with minimal variation.
This metric is provided to distinguish AUC results between models for the Fetal ECG dataset
in which the standard AUC metric does not allow for adequate AUC value comparisons.
Given that a ROC curve can be generated using any measure of confidence, not just predicted
probabilities, we use a predicted decision � f(X) ε [0,1] instead of predicted probability
� f(X) ε {0,1}. The predicted decision has a lower ROCAUC, as it effectively rounds up
or rounds down the predicted probability to 1 or 0 depending on if it is above or below the
threshold and results in a larger error. In addition to comparatively viewing the AUC between
different models, we also view the change in AUC values between a complete dataset and
the same dataset with missing values. This value is presented in the results tables as the AUC
�, representing the change in the AUC values caused by the missing values.

4.5 Results

In this section, we present the experimental results for a variety of binary and multiclass
classification scenarios for testing the Cyclic Gate RNNs. We consider the RNN, LSTM and
GRU as the baseline models for comparison, followed by the LSTM and GRU with missing
indicators augmented into the input feature set and then finally comparison with the more
recent T-LSTM and GRU-D. We also compare the different types of waveforms used by the
proposed model to identify any relationships associated with the model’s waveform and the
characteristics of the data sequence beingmodelled. Themetrics are presented in the tables in
this section with graduated cell colouring, with the darkest cells representing the best values
for each metric. The model with the highest AUC value is also formatted in bold text for easy
identification in each table.

The Non-invasive Fetal ECG dataset is characterised by a sequence length per sample
which broadly represents the cycle length of a repeating pattern; therefore, there is only one
cycle within the sequence length of each sample. The volatility of the sequence is low, and
therefore in a 750 timestep sequence containing a single cycle, missing values will have a
lower impact onmodellingoutcomes. From thevalues inTable 2, the baselineLSTMandGRU
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Table 2 Non-invasive Fetal ECG dataset results

Model Precision Recall F1_Score AUC* AUC Δ*
RNN 0.4539 0.4382 0.4268 0.7124 13.13%
LSTM 0.6464 0.6188 0.6117 0.8049 6.17%
GRU 0.6898 0.683 0.6779 0.8377 5.95%
LSTM Missing Indicators 0.6575 0.6514 0.6388 0.8216 5.70%
GRU Missing Indicators 0.769 0.7537 0.7517 0.874 3.46%
T-LSTM 0.5069 0.4916 0.4833 0.7397 14.02%
GRU-D 0.3765 0.371 0.3553 0.668 13.20%
Phased-LSTM 0.8046 0.7919 0.7872 0.8934 2.30%
Phased-GRU 0.8005 0.7903 0.7891 0.8927 4.40%
Cyclic Gate LSTM – Square Wave 0.7876 0.7746 0.774 0.8846 2.42%
Cyclic Gate LSTM - Triangle Wave 0.8184 0.8092 0.804 0.9023 2.16%
Cyclic Gate LSTM - Sawtooth Wave 0.8008 0.7944 0.7927 0.8948 3.65%
Cyclic Gate LSTM - Square Sign Wave 0.7334 0.7059 0.6936 0.8495 0.13%
Cyclic Gate LSTM - Simple Square Wave 0.7121 0.6972 0.6884 0.845 5.36%
Cyclic Gate LSTM - Simple Sawtooth 0.5658 0.4836 0.4328 0.7294 1.19%
Cyclic Gate GRU – Square Wave 0.8086 0.8 0.8007 0.8976 1.28%
Cyclic Gate GRU - Triangle Wave 0.792 0.7852 0.7841 0.8901 2.66%
Cyclic Gate GRU - Simple Square Wave 0.8161 0.7954 0.7883 0.8954 2.84%

*AUC_predicted applied instead of AUC based on the predicted probability

have AUC* values averaging 0.821, the T-LSTM and GRU-D have AUC* values averaging
0.704, missing value indicator models average 0.848, while the top 3 Cyclic Gate models
average 0.898. The Cyclic Gate LSTM model with triangular waveform provides superior
metrics in almost all categories. The Cyclic Gate models have AUC* value improvements
over the baseline LSTM and GRU models ranging from 6 to 9%.

The Earthquakes dataset is characterised by a 512-length sequence length per sample,
which contains up to 100 repetitions of a cycle of approximate length 5. The volatility of
the sequence is high, and the periodicity is also high, although there is some inconsistency
in the cycle length over the full sequence. Based on the sequence characteristics, the impact
of missing values in a sample will be high. From the values in Table 3, the baseline LSTM
and GRU have AUC values averaging 0.613, the T-LSTM and GRU-D have AUC values
averaging 0.674, missing value indicator models average 0.644, while the top 3 Cyclic Gate
models average 0.738. The best performing model on this dataset is the Cyclic Gate LSTM
simple square waveform, which achieves the highest AUC and recall values. The original
Phased-LSTM, which is effectively an example of a Cyclic Gate with a simple triangular
waveform, achieves the highest F1_score for this dataset.

The EOG dataset does not represent a repeating pattern within each sample sequence
or a set of connected sequences from consecutive samples. However, there are important
segments of data that are significant to the classification task and other sections which would
be considered unimportant, which are consistent across all samples. This dataset is considered
an example of a time series dataset with very low periodicity. The sequence has low volatility
and a long sequence length of 1250 timesteps. From the values in Table 4, the baseline
LSTM and GRU have AUC values averaging 0.814, the T-LSTM and GRU-D have AUC
values averaging 0.843, missing value indicator models average 0.839, while the top 3 Cyclic
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Table 3 Earthquakes dataset results

Model Precision Recall F1_Score AUC AUC Δ
RNN 0.6739 0.7266 0.6839 0.5424 9.08%
LSTM 0.6539 0.6763 0.6635 0.5709 17.99%
GRU 0.7335 0.7626 0.7335 0.656 7.94%
LSTM Missing Indicators 0.7317 0.7626 0.7283 0.697 3.38%
GRU Missing Indicators 0.6627 0.6691 0.6658 0.5909 17.53%
T-LSTM 0.6416 0.7122 0.66 0.6412 11.35%
GRU-D 0.8157 0.7554 0.6571 0.7066 7.01%
Phased-LSTM 0.7347 0.7554 0.7406 0.7547 6.87%
Phased-GRU 0.6605 0.6763 0.6676 0.614 16.13%
Cyclic Gate LSTM – Square Wave 0.7122 0.7122 0.7122 0.6882 –2.75%
Cyclic Gate LSTM - Triangle Wave 0.7417 0.7626 0.6932 0.6838 8.90%
Cyclic Gate LSTM - Sawtooth Wave 0.6439 0.6691 0.6491 0.6 2.14%
Cyclic Gate LSTM - Square Sign Wave 0.688 0.7338 0.6954 0.6712 14.15%
Cyclic Gate LSTM - Simple Square Wave 0.7428 0.7698 0.728 0.7703 4.64%
Cyclic Gate LSTM - Simple Sawtooth 0.7033 0.7482 0.6991 0.6898 5.47%
Cyclic Gate GRU - Square Wave 0.7096 0.741 0.7168 0.6797 0.55%
Cyclic Gate GRU - Triangle Wave 0.7417 0.7626 0.6932 0.6728 1.92%
Cyclic Gate GRU - Simple Square Wave 0.7305 0.7626 0.7226 0.6739 14.01%

Table 4 EOG dataset results

Model Precision Recall F1_Score AUC AUC Δ
RNN 0.2295 0.2818 0.2459 0.7481 0.70%
LSTM 0.4708 0.4448 0.4469 0.835 3.15%
GRU 0.3378 0.3508 0.3398 0.7924 4.25%
LSTM Missing Indicators 0.4382 0.4475 0.4321 0.8389 1.50%
GRU Missing Indicators 0.4813 0.4669 0.4676 0.839 1.63%
T-LSTM 0.4118 0.3978 0.3952 0.8172 –3.91%
GRU-D 0.4558 0.4558 0.449 0.8696 1.95%
Phased-LSTM 0.506 0.4834 0.4855 0.8575 1.17%
Phased-GRU 0.3428 0.337 0.337 0.7895 8.28%
Cyclic Gate LSTM – Square Wave 0.4705 0.442 0.4404 0.8637 –1.69%
Cyclic Gate LSTM - Triangle Wave 0.5007 0.4862 0.476 0.8575 –1.49%
Cyclic Gate LSTM - Sawtooth Wave 0.4851 0.4392 0.4419 0.8517 –0.52%
Cyclic Gate LSTM - Square Sign Wave 0.5368 0.5166 0.5214 0.8605 1.47%
Cyclic Gate LSTM - Simple Square Wave 0.5524 0.5359 0.5277 0.8877 –2.93%
Cyclic Gate LSTM - Simple Sawtooth 0.5108 0.4917 0.492 0.8791 –0.70%
Cyclic Gate GRU – Square Wave 0.3901 0.395 0.3821 0.8321 –0.04%
Cyclic Gate GRU - Triangle Wave 0.4593 0.4503 0.451 0.8509 1.19%
Cyclic Gate GRU - Simple Square Wave 0.5893 0.5829 0.5741 0.9095 –5.70%
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Table 5 Internal bleeding dataset results

Model Precision Recall F1_Score AUC AUC Δ
RNN 0.003 0.1429 0.0058 0.4764 0.0455
LSTM 0.0629 0.1974 0.092 0.7258 0.1051
GRU 0.2075 0.375 0.2035 0.9029 –0.0777
LSTM Missing Indicators 0.1637 0.1707 0.1351 0.7655 –0.004
GRU Missing Indicators 0.4511 0.5122 0.422 0.9481 –0.125
T-LSTM 0.0998 0.0781 0.0794 0.7103 0.0594
GRU-D 0.0605 0.0637 0.0595 0.715 0.1402
Phased-LSTM 0.2176 0.25 0.2019 0.7884 0.0747
Phased-GRU 0.0408 0.1875 0.0601 0.6657 0.1355
Cyclic Gate LSTM – Square Wave 0.149 0.2071 0.1591 0.7643 0.0136
Cyclic Gate LSTM - Triangle Wave 0.1271 0.1786 0.1244 0.8394 –0.1444
Cyclic Gate LSTM - Sawtooth Wave 0.0977 0.125 0.0987 0.7484 –0.0758
Cyclic Gate LSTM - Square Sign Wave 0.0859 0.1364 0.0774 0.7586 –0.0161
Cyclic Gate LSTM - Simple Square Wave 0.1193 0.2059 0.1307 0.8698 –0.0498
Cyclic Gate LSTM - Simple Sawtooth 0.1593 0.1742 0.1311 0.8388 –0.0382
Cyclic Gate GRU – Square Wave 0.5277 0.5585 0.5145 0.9594 –0.2274
Cyclic Gate GRU - Triangle Wave 0.2527 0.2981 0.1781 0.8768 0.0735
Cyclic Gate GRU - Simple Square Wave 0.2372 0.42 0.2632 0.8655 0.0747

Gate models average 0.892. The experimental results for this dataset show that for a non-
periodic waveform, there is still a performance improvement from the Cyclic Gate RNNs
over the baselines models and other variations of recurrent models.

The internal bleeding dataset includes a very long sequence length of 2000 timesteps
per sample, containing periodic patterns within each sample, ranging from two to thirteen
cycles. The sequence is relatively volatile and highly periodic. From the values in Table 5, the
baseline LSTM and GRU have AUC values averaging 0.811, the T-LSTM and GRU-D have
AUC values averaging 0.713, missing value indicator models average 0.857, while the top 3
Cyclic Gate models average 0.902. The best performing model on this dataset is the Cyclic
Gate GRU with a Fourier square waveform, achieving the highest values on all metrics. The
GRU with missing indicators also performs well on this dataset, achieving the next best set
of performance metrics.

Reviewing the AUC results of each model across all datasets shows that the model with
the highest average AUC is the Cyclic Gate LSTM with simple square waveform, followed
by the Cyclic Gate GRUwith simple square waveform and the Cyclic Gate GRUwith Fourier
square waveform. For the F1_score across all datasets, the model with the highest average
value is the Cyclic Gate GRU with Fourier square waveform, followed by the Cyclic Gate
GRU with simple square waveform and then the GRU with missing indicators. Of the 18
models experimented with across all datasets, the top 6 models with respect to the average
AUC change between a complete dataset and a dataset with missing values were all Cyclic
Gate models. The top three Cyclic Gate models for each dataset also had the lowest average
negative impact onAUCvalues between a complete dataset and a dataset withmissing values.
This indicates that the Cyclic Gate models predominantly resulted in lower AUC drops on
the introduction of high rates of missing values compared to alternate models tested.
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The top three Cyclic Gate models identified by the average AUC across all the datasets
were compared against conventional machine learning algorithms outside neural networks.
KNN, SVM and RF algorithms were adopted for comparison against these Cyclic Gate RNN
algorithms. The average AUC results across the four datasets are provided below in tabular
and graphical representations in Table 6 and Fig. 3, respectively.

The comparison of the three leading Cyclic Gate RNN models with the non-NN models,
as shown in Fig. 3, demonstrates a margin of higher AUC performance from the Cyclic
Gate RNNs. The Random Forest algorithm performs marginally lower than the Cyclic Gate
models, followed by the SVM and KNN models. The individual results in Table 6 show
a general consistency in performance across each dataset, while the non-NN models show
a higher variance in results across the datasets. For instance, the Random Forest algorithm
performed best on the Internal Bleeding dataset, approaching values close to 100%; however,
its relative performance in the other datasets was only moderate.

Table 6 Average AUC results across all the datasets using NN and non-NN models

Model Datasets

ECG EQ EOG IB Average

Cyclic Gate LSTM—Simple Square 0.8450 0.7703 0.8877 0.8698 0.8432

Cyclic Gate GRU—Square 0.8976 0.6797 0.8321 0.9594 0.8422

Cyclic Gate GRU—Simple Square 0.8954 0.6739 0.9095 0.8655 0.8361

k-Nearest Neighbor—TS (KNN-TS) 0.9078 0.5045 0.7831 0.6275 0.7057

k-Nearest Neighbor—FE (KNN-FE) 0.7734 0.6411 0.6609 0.8333 0.7272

Support Vector Machine (SVM) 0.8857 0.5434 0.8697 0.7167 0.7539

Random Forest (RF) 0.8341 0.5651 0.8571 0.9896 0.8115

Fig. 3 Comparing average AUC results across all the datasets using NN and non-NN models
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The preceding experimental results used the MCARmissing value generation mechanism
with “Last Observation Carried Forward” (LOCF) replacement of Nan observations. In the
next set of experiments, we validated the performance of the models using MAR andMNAR
data generation mechanisms and included zero value imputation. The multivariate datasets
with two or more features, Internal Bleeding Dataset and EOG Dataset, were used for these
experiments. The results are shown in Table 7a–f.

The results in Table 7 present the top three performing Cyclic Gate models as well as the
six comparative models for each dataset. The ability for Cyclic Gate models to exceed the
performance of the comparative LSTMandGRUbasemodels and their variants ismaintained
with experiments involving zero value imputation and MAR missing value generation, as
shown in Tables 7a–d. However, for the MNAR missing values, the Cyclic Gate models
provide comparable results but do not provide the best performance in both datasets, as
shown in Tables 7e and f. The GRU with missing indicators provided higher AUC values
than the Cyclic Gate models for MNARmissing values. The results show that MNAR data is
particularly difficult to model and indicates the requirement for learning a joint distribution
for both the data and the missingness mechanisms [54], which shall be further discussed in
Sect. 5.

Figure 4 provides a visualisation of the resulting confusionmatrix for the Internal Bleeding
dataset with MAR missing value generation, comparing the Cyclic GRU—Fourier Triangle

Table 7 (a) Internal Bleeding Dataset, MCAR, 0 Value Imputation, (b) EOGDataset, MCAR, 0 Value Imputa-
tion (c) Internal Bleeding Dataset, MAR, LOCF (d) EOGDataset, MAR, LOCF (e) Internal Bleeding Dataset,
MNAR, LOCF (f) EOG Dataset, MNAR, LOCF

Model Precision Recall F1_Score AUC
(a)
Cyclic GRU- SS 0.1795 0.17 0.16 0.7878
Cyclic LSTM – SS 0.8725 0.9896 0.8176 0.7346
Cyclic GRU- FT 0.9989 0.7212 0.756 0.70543
LSTM 0.31283 0.4687 0.3231 0.5886
GRU 0.104 0.0944 0.0882 0.648
LSTM Missing Ind 0.0497 0.0739 0.0559 0.6369
GRU Missing Ind 0.0859 0.0677 0.0658 0.6425
T-LSTM 0.0769 0.0577 0.0583 0.5196
GRU-D 0.0964 0.0833 0.0829 0.6948

Model Precision Recall F1_Score AUC
(b)
Cyclic GRU - SS 0.6178 0.605 0.5997 0.9181
Cyclic GRU - FT 0.5133 0.4834 0.4894 0.8589
Cyclic LSTM - SS 0.4071 0.4061 0.3893 0.8582
LSTM 0.2382 0.2293 0.23 0.7057
GRU 0.4132 0.4033 0.403 0.8097
LSTM Missing Ind 0.2258 0.2293 0.2247 0.7089
GRU Missing Ind 0.3882 0.3785 0.3784 0.786
T-LSTM 0.2579 0.2459 0.2488 0.7075
GRU-D 0.4953 0.4862 0.4796 0.8888

(c)
Cyclic GRU - FT 0.494 0.4948 0.4546 0.9575
Cyclic GRU - FS 0.3709 0.4405 0.3819 0.9309
Cyclic GRU - SS 0.2954 0.4063 0.3096 0.929
LSTM 0.0782 0.0938 0.0678 0.7625
GRU 0.201 0.2635 0.184 0.8362
LSTM Missing Ind 0.0868 0.119 0.0898 0.7513
GRU Missing Ind 0.2755 0.4 0.2577 0.8792
T-LSTM 0.1455 0.1276 0.121 0.7661
GRU-D 0.1171 0.1224 0.1135 0.7685

(d)
Phased GRU 0.6036 0.5856 0.5907 0.8964
Cyclic LSTM - FT 0.5082 0.5028 0.4964 0.8759
Cyclic GRU - FS 0.5212 0.4807 0.4839 0.8687
LSTM 0.4946 0.4641 0.4646 0.854
GRU 0.401 0.3702 0.3755 0.8239
LSTM Missing Ind 0.395 0.384 0.3789 0.8161
GRU Missing Ind 0.4167 0.3923 0.395 0.8152
T-LSTM 0.3607 0.3508 0.3509 0.8191
GRU-D 0.4837 0.489 0.4835 0.8788

(e)
Phased GRU 0.3006 0.375 0.2825 0.9215
Cyclic GRU - FS 0.2438 0.3141 0.2266 0.9173
Cyclic GRU - SS 0.3014 0.3261 0.2667 0.8935
LSTM 0.1878 0.25 0.2022 0.8075
GRU 0.3035 0.4286 0.3233 0.9195
LSTM Missing Ind 0.1347 0.1786 0.1324 0.7902
GRU Missing Ind 0.4818 0.5284 0.4526 0.9584
T-LSTM 0.149 0.1615 0.1481 0.7926
GRU-D 0.1856 0.17 0.1538 0.8119

(f)
Cyclic LSTM - FS 0.2864 0.3011 0.2891 0.7678
Cyclic LSTM - FT 0.3626 0.3591 0.3583 0.7647
Phased LSTM 0.3434 0.3481 0.3355 0.7613
LSTM 0.2642 0.2707 0.2562 0.7486
GRU 0.3055 0.2956 0.2922 0.752
LSTM Missing Ind 0.349 0.2928 0.2952 0.7906
GRU Missing Ind 0.3579 0.3508 0.3396 0.7896
T-LSTM 0.2673 0.2652 0.2595 0.7542
GRU-D 0.5117 0.489 0.4804 0.8662

SS � Simple Square, FS � Fourier Square, FT � Fourier Triangle
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Fig. 4 a Confusion Matrix for LSTM model of Internal Bleeding dataset with MAR missing values (b) Con-
fusion Matrix for Cyclic GRU—Fourier Triangle waveform model of Internal Bleeding dataset with MAR
missing values
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Fig. 5 a EOG Dataset Missing Type Comparison with Non-NN Models. b Internal Bleeding Dataset Missing
Type Comparison with Non-NN Models
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waveform to the LSTM model. Comparison of the matrices illustrates an example of the
improved classification performance of a Cyclic Gate model over the baseline LSTM.

As a final comparison, we ran the EOG and Internal Bleeding datasets on the four non-
NN models KNN-TS, KNN-FE, SVM and RF, using the same missing value generation
mechanisms presented in Table 7. Figure 5a and b provide a graphical representation of the
AUC values’ results for each missing value type and algorithm. The results from the three
leading Cyclic Gate RNN models in each sub-table of Table 7 are labelled as Models 1 to 3
and used for comparison against the non-NN models.

The comparative results for the EOG dataset show that the Cyclic Gate RNN models
exceed the non-NNmodels for each missing value category, with the exception of theMNAR
category, in which the SVM and RF algorithms perform better than the Cyclic Gate RNN
models. For the Internal Bleeding dataset, the Cyclic Gate RNN models exceed the non-NN
models, excluding the RF algorithm, which performed best in every category for this dataset.
As identified in the earlier set of experiments, the classification of the InternalBleeding dataset
is handled exceptionally well by the Random Forest model due to its feature importance
identification. Overall, the results shown in Fig. 5 are consistent with earlier results which
demonstrated the superior performance of the Cyclic Gate RNNmodels onMCAR andMAR
data, while their performance was lower on MNAR data.

5 Discussion

In our experimental datasets, there are a variety of periodicity levels, ranging from the EOG
dataset which has very low periodicity, the ECG dataset which has a single period per sam-
ple, the Internal Bleeding dataset which has between 2 and 13 periods per sample and the
Earthquakes dataset which contains up to 100 cycles per sample. The Cyclic Gate recurrent
models are best suited to datasets with a high level of periodicity within a sample or where
there are segments of data within samples that are significant to the classification objec-
tive and recur at consistent regions within the sample (i.e., with similar timestep values). In
such cases, the Cyclic Gate models can identify data patterns or important data segments
which minimise the impact of missing values. Where pattern occurrences are more random
or important segments of data occur at irregular regions, the effectiveness of the cyclic gates
will be reduced. The results show that the performance improvements of the Cyclic Gate
models from the baselines GRU and LSTM cells and the more recent variants T-LSMT and
GRU-D are more pronounced in the datasets with strong periodic behaviour. In datasets that
have very low periodic behaviour within a sequence but have consistent behaviour across
samples, the cyclic gates can still show an improvement over baseline and recent recurrent
cell models when dealing with missing values in time series data.

The three general waveforms used by the Cyclic Gate models were the square wave, trian-
gle wave and sawtooth wave. These waveforms had simple equation implementations as well
as Fourier Series implementations. The difference between square and triangle waveforms in
terms of gate activation is that the triangle wave gate has stages of opening and closing, which
result in very fine control of the fully open period. In contrast, the square wave gate does not
have opening stages and has a broader fully open period. This would indicate that where a
data sequence was more dependent on very fine segments of important data and a portion
of the immediately surrounding data, then the triangle waveform may be beneficial. The
square wave would be advantageous if the data sequence was more dependent on a broader
segment of important data. However, the ability to focus on specific sizes of data segments
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is also addressed by the “Ratio On” and Period parameters. Therefore, it is unlikely that
this difference in waveforms would result in a significant difference in performance on our
selected datasets, which is reflected by our experimental results. The square wave performs
marginally better than the triangle wave on all datasets except the ECG dataset, where the
triangle wave performs slightly better. The sawtooth waveform does not perform as well as
the square and triangle waveforms.

A general comparison of results was provided by experiments to show the relative per-
formance of the Cyclic Gate RNNs to traditional machine learning algorithms. The results
indicated that the AUC values of the proposed models showed better consistency across the
datasets and a margin of improvement in performance. However, the Random Forest algo-
rithm did perform exceptionally well on the Internal Bleeding (IB) dataset and yielded the
best performance values. It was identified that the IB dataset contains a small set of extracted
statistical features with a very strong correlation with the classification target. Given that the
implemented RFmodel relies on feature extraction prior to classification and RFmodels have
the ability to select these superior features better than alternate models [55], this is the likely
reason the RF model performed well on this dataset. This specific result indicates that the RF
algorithm may be more effective on certain datasets with extracted features that have strong
correlations with classification outcomes. In contrast, the Cyclic Gate models will tend to
be more effective on datasets with complex temporal patterns where extracted features have
subtle correlations with classification targets or where missing values significantly degrade
these correlations.

Experiments included evaluating the models against different missing value data genera-
tion mechanisms, MCAR, MAR and MNAR. With MNAR data, the missingness is related
to unobserved variables and therefore, the distribution of the missing data cannot be ignored,
unlike MCAR and MAR data. To properly handle MNAR data, there is a requirement for
models to account for the inference based on observed data as well as the missing data in
order to reduce estimate bias [56]. Therefore, modelling MNAR is generally more difficult
than modelling MCAR and MAR data [57]. Although the Cyclic Gate models provide com-
parable results to alternate recurrent cell models and show some improvement over standard
LSTM and GRU models, they do not present a clear advantage over all the recurrent cell
variants. This outcome was also evident in experimental results for the KNN, SVM and RF
models, where the Cyclic Gate models did not provide a clear advantage for MNAR data.
It is expected that the Cyclic gate models, similar to the standard LSTM and GRU, require
additional model architecture to account for the MNAR missing value mechanism. There-
fore, the Cyclic Gate models by themselves will have limited advantages in this case. This
is supported by the superior performance of recurrent models with missing indicators on
MNAR data, which provide a degree of missing value modelling.

For all the experiments conducted, each neuron’s phase shift, S, was uniformly chosen
from the interval [0, T], where T was the period length. The parameters T and S were learnt
during training, while the Ratio On parameter R was manually set during training. R was set
at 0.5 for datasets with short period lengths (e.g., period < 20 timesteps) and at 0.1 otherwise.
The model allows the R parameter to be learnt if required; however, for our experimentation
results, we identified that allowing all of thewaveform parameters to be learnt did not produce
the best results. Therefore, Rwas set at fixed values to reduce the number of learnt parameters
that defined the waveform.

It was identified that setting the initial period parameter with an appropriate value was an
important step in producing an optimal outcome from the model. A heuristic approach was
used to set the period parameter’s starting value. The oscillation period was drawn uniformly
from an exponential distribution T ~ Exp(U(A, B)), where A and B were initially selected
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based on the dominant frequency identified from the discrete Fourier transform of the data
sequence. For cases resulting in very large period lengths relative to the sequence length, there
was too much loss of data from a limited gate opening time within the period length, and
therefore the initial period length was reduced to less than 50 timesteps. Our experimentation
investigated increasing the learning rate so that the initial period settingwas not so significant;
however, the resulting performance metrics were not optimal.We believe there is future work
in this area associated with customised learning rates for the waveform parameters, which
may reduce the dependency of the initial period value prior to learning.

For the Fourier series equations, we used 50 harmonics to define the series in each experi-
ment. Initial experimentation also trialled 100 harmonics; however, any resulting increase in
classification performance was not considered worth the additional processing time associ-
ated with the additional harmonics. Further increase in the number of harmonics above 100
was found to be impractical in terms of the extensive processing time required to perform
classifications on the datasets. Similar to the number of harmonics used in the waveform
equations, the hidden size of the recurrent cells as well as the associated gate size for the
additional cyclic gates significantly impacted on the processing time of the models.

6 Conclusion

This paper proposes amodified gated recurrent cell with cyclic waveformswith learnt param-
eters to enhance the existing LSTM and GRU cells to better handle missing values. The
proposed cell structure can learn an optimal waveform equation for rhythmic activation and
inactivation of the cell state andhidden state gates, enabling timingdiscrimination tominimise
the adverse effects of missing data. The model can potentially identify periodic segments of
missing data which degrade a model’s forecasting outcome or otherwise reduce the effect of
randomly missing data within a sequence by effectively dropping out some of these missing
values.

Experimental results on a series of sequence classification tasks with a high rate of missing
data demonstrate that the proposed method can achieve superior performance metrics over
baseline gated recurrentmodels and recent state of the art recurrent cell variants. The proposed
models also showageneral performance improvement and greater consistency across datasets
over several traditional non-neural network models. The Cyclic Gate models provided the
best performance on MCAR and MAR missing value generation mechanisms, as well as
comparable results for MNAR data.

Our overall research findings indicate that Cyclic Gate models learn to select informative
parts of the input and discard uninformative parts in a more finely tuned manner than current
recurrent neural network architectures. Their performance in handlingmissing data is optimal
when informative information is periodic instead of where informative observations are arbi-
trarily scattered across the time sequence. Our model adaptations are focused at the cell level
and their resulting flexibility provides for integration into sophisticated high-level network
structures and data augmentation with missing indicators to allow for further improvements
in performance.

Although the periodic activation of our model results in a shorter gradient backpropa-
gation path, it is acknowledged that the greater computation complexity associated with a
Fourier Series generated waveform more than offsets any speed and efficiency benefits of
shorter backpropagation. Future work will involve reducing this computation complexity
with experimentation on the ideal number of harmonics in the Fourier Series and the size of
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the wave equation learnt variables. Simple waveforms provide one form of implementation
with lower computational complexity and impressive results, with the Cyclic Gate LSTMand
GRU with a simple square wave being two of the leading models across the tested datasets.
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