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Abstract 

The recent conversion to digital pathology using Whole Slide Images (WSIs) from 

conventional pathology opened the doors for Artificial Intelligence (AI) in pathology 

workflow. The recent interests in machine learning and deep learning have gained a 

high interest in medical image processing. However, WSIs differ from generic medical 

images. WSIs are complex images which can reveal various information to support 

different diagnosis varying from cancer to unknown underlying conditions which were 

not discovered in other medical investigations. These investigations require expert 

knowledge spending a long time for investigations, applying different stains to the 

WSIs, and comparing the WSIs. Differences in WSI differentiate general machine 

learning methods that are applied for medical image processing. Co-analysing multi-

stained WSIs, high variation of the WSIs from different sites, and lack of labelled data 

are the main key interest areas that directly influence in developing machine learning 

models that support pathologists in their investigations. However, most of the state-of-

the-art machine learning approaches cannot be applied in the general clinical workflow 

without using high compute power, expert knowledge, and time. Therefore, this thesis 

explores avenues to translate the highly computational and time intensive model to a 

clinical workflow. Co-analysing multi-stained WSIs require registering differently 

stained WSI together. In order to get a high precision in the registration exploring non-

rigid and rigid transformation is required. The non-rigid transformation requires 

complex deep learning approaches. Using super-convergence on a small 

Convolutional Neural Network model it is possible to achieve high precision compared 

to larger auto-encoders and other state-of-the-art models. High variation of the WSIs 

from different sites heavily effect machine learning models in their predictions. The 

thesis presents an approach of using a pre-trained model by using only a small number 

of samples from the new site. Therefore, re-training larger deep learning models are 

not required which saves expert time for re-labelling and computational power. 

Finally, lack of labelled data is one of the main issues in training any supervised 

machine learning or deep learning model. Using a Generative Adversarial Networks 

(GAN) is an approach which can be easily implemented to avoid this issue. However, 

GANs are time and computationally expensive. These are not applicable in a general 
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clinical workflow. Therefore, this thesis presents an approach using a simpler GAN 

that can generate accurate sample labelled data. The synthetic data are used to train 

classifier and the thesis demonstrates that the predictive model can generate higher 

accuracy in the test environment. This thesis demonstrates that machine learning and 

deep learning models can be applied to a clinical workflow, without exploiting expert 

time and high computing power.  
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 Introduction 

Digital pathology has increased the opportunities improve the pathology workflow. 

Before the introduction of digital pathology, the pathology workflow, consisted of 

specimen retrieval, tissue preparation on the glass slide, courier the glass slides, 

manual slides analysis in the pathology laboratory and generating manual patient 

diagnosis report. Whereas the digital pathology workflow includes specimen retrieval, 

tissue preparation, creation of digital slides, computerised analysis of digital slides and 

generating automated patient diagnosis report [1, 2].  

 

1.1 DIGITAL PATHOLOGY 

Digital pathology is a growing field in the medical domain. The process of digitising 

the histopathology specimens using whole-slide scanners and analysing  digital slides 

using computational approaches is known as digital pathology [3]. Slide digitisation 

and computational analysis have helped to improve the efficiency and effectiveness in 

the pathology workflows [3].  

 

In digital pathology workflow, the glass slide is scanned creating a digitised version 

of the slide which can be viewed and analysed in any magnification using a computer. 

The digitised slides are known as Whole Slide Images (WSIs) which are high 

resolution images which capture the entire glass slide. Figure 1.1 shows the efficient 

process of creating WSIs compared to using glass slides and manual analysis. In 

traditional pathology workflow, glass slides are manually annotated and manually 

transported to analyse using a microscope with a camera by which the specimen can 

be viewed as a video via computer software. In digital pathology, the glass slides are 

scanned using whole slide image scanners to generate digitised version of the glass 

slide [4].   

 

WSIs are Giga-pixel images that are file sizes up to 10+GB with multiple levels of 

zoom levels for a single slide as shown in Figure 1.2 [5]. The zoom levels can vary 

from 3 to 7 levels depending on the imaging method. Each zoom level in a WSI 
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provides a different level of information about the slide. The low zoom levels with 

resolutions around 1,000 ´ 1,000 pixels would provide information about regions 

which may need further examination, and higher zoom levels ranging from 35,000 ´ 

45,000 pixels to 100,000 ́  100,000 pixels at full resolution would provide more details 

of the regions with cells and spatial arrangement characteristics to support diagnosis. 

 

In the conventional pathology workflow, the glass slide storage requires a standard 

storage facility but due to increased slide volume and storage, management of slides 

are challenged as the slide quality and chances of loss of slides are increased [6]. 

Hospitals in remote locations need to transport slides to locations where experts are 

available and thus is a complex process. On the other hand, performing manual glass 

slide sample analysis and generating diagnosis for a patient require multiple expert 

opinions. Multiple expert opinion is becoming a scarce resource, as its challenged by 

the increased volume potential new cases [7, 8].  

 

Compared to glass slides, storage of WSIs can be performed by using disks or cloud 

storage or combination of storage options. The digitised slides can be shared easily, 

which can be viewed and analysed using visualisation software locally and remotely 

by different stakeholders including pathologists, patients, research institutes, etc. [2, 

9]. Use of WSIs helps to minimise the analytical and diagnostic step problems as the 

pathologist could use the zoom levels of WSI to analyse the WSI in different levels 

and perform a proper diagnosis. Giovanni et al., (2021) presents the business and 

monetary benefits of digital pathology workflow [4]. Enabling automated image 

analysis techniques implemented in the digital pathology flow will bring benefits in 

the diagnosis, prognosis, risk stratification and therapeutic selection [4]. 

 

Overall, the digitisation of histopathology slides has resulted in improved pathology 

workflow by minimising risks of handling glass slides and errors in managing and 

storing slides, improving visualisation with zooming and annotation functionalities, 

increased cost effectiveness by eliminating steps and bringing benefits of globalisation 

by sharing digitised slides. Furthermore, advancements in AI have shown promising 

outcomes in medical image processing. AI applications for WSIs have the potential of 

better time efficiency with faster data processing, analysis, and diagnosis [10].  
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Figure 1.1 – A typical slide preparation process  

Figure 1.2 - An illustration of a whole slide Image at different levels ranging 

from resolutions at 1x, 10x, and 40x magnifications. [5] 
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1.2 ARTIFICIAL INTELLIGENCE FOR DIGITAL PATHOLOGY 

AI is used in many domains and has shown high promise in accuracy and performance. 

Breakthroughs in AI have resulted in various products over the years. Drug discovery, 

stock market predictions, fraud detection, healthcare and education are among domains 

which have benefited from the advancements in AI. The ML and DL subcategories are 

the most popular approaches. ML focuses on learning patterns from historical data and 

features. DL is suitable for complex features with large amounts of high variation data. 

The capability of DL to learn hidden patterns of data is highly effective. Two main 

categories which ML and DL techniques can be categorised are, supervised and 

unsupervised. In supervised methods the model relies on the availability of known 

output, while unsupervised approaches are suitable when the output is not labelled. In 

medical domain both approaches are used. However, AI for cancer diagnosis in digital 

pathology was started to be explored in a slower pace compared to other medical 

imaging types such as, Computed Tomography Scan (CT) and Magnetic Resonance 

Imaging (MRI).  

 

Assistance from automated methods for early cancer diagnosis can support to identify 

abnormal cells faster and accurately to handle the high number of new cancer cases 

reported. The computational techniques to analyse the WSIs and generate diagnosis 

have evolved rapidly over the recent years. Early computer aided design (CAD) 

systems to automate pathology workflow were challenged due to the unavailability of 

digitised data and later with insufficient computational resources [2, 7, 11, 12].  

 

Recent availability of WSI and improved computational hardware and computational 

algorithms have brought histopathology forward despite the past lag compared to 

radiology and cardiology image analysis [13]. Though the early methods were not 

successful, the improvements to histopathology specimen scanning, computational 

hardware and machine learning (ML) which is a sub-category of AI has shown the 

potential of clinically applicable computerised methods [14]. ML requires training data 

for a given task in order to learn patterns in data. The training data supports the ML 

models to adjust to the training data. This allows ML models to learn the variations in 

the data and to adjust to a given task. ML models learn by themselves without any 
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specific manual tailoring to the training data. ML approaches have shown promising 

results for simple data [7, 15].  

 

However, ML is affected by barriers in improving achievements in medical images 

compared to ML performance for natural images [13]. Complex data require higher 

processing and learning of data. WSI data are high resolution images and therefore 

consist of complex hidden features. Simplicity of ML methods is an advantage but the 

inability to identify and use large number of features including hidden features is a 

disadvantage. The limitation can be commonly identified as disadvantage of 

dimensionality due to the complexities in developing algorithms for high 

dimensionality. Support vector machines (SVM), and Random Forrest are ML 

methods that depends on feature selection and feature extraction techniques. Xing, et 

al., (2016) discuss the differences of SVM and Random Forrest in relying on hand-

crafted features compared to Convolutional Neural Networks (CNNs). CNN 

automatically learn hierarchies of hidden features [10]. This need for pre-defined 

features leads to require more complex approaches to process the hidden patterns in 

high resolution images where a CNN can outperform by automated feature learning. 

 

DL has progressed in the recent years to develop practical applications to various areas 

of research [16]. The further improvements in computational power, availability of 

larger amounts of data and the methods with capabilities of automatically identifying 

unseen features to learn patterns in data resulted in impressive progress in developing 

applications [9].  Among the various research fields, the medical field has benefitted 

from the DL techniques [17]. The improvements in medical imaging devices resulted 

in availability of data in various formats supporting automated diagnosis process [7].  

 

The digital pathology diagnosis tasks can be identified as classification, segmentation, 

registration, detection and grading [7, 14, 18]. A DL classification method proposed 

by Miyoshi et al., (2020) differentiates WSI patches from different magnifications. A 

comparison of the DL model performance with pathologists’ performances shows the 

potential in DL supporting malignant lymphoma diagnosis [19]. Prior research shows 

progress in segmenting WSIs to identify locations of interested regions. The authors 

review segmentation methods for colorectal cancer using an improved U-shape 

network with VGGNet as the backbone [20]. U-shape networks consist of an encoder 
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and a decoder and VGGNet is a pre-trained CNN using a dataset that consist of a large 

number of natural images. WSI image registration to align multi stained WSIs with 

DL features for rigid and non-rigid registration has shown progress in a multistep 

approach [21]. Furthermore, detection and grading methods have shown promising 

results. Yusuf et al., (2020) showed promising performance in detecting cells using 

pre-trained models for invasive ductal carcinoma (IDC) [22]. The mitotic count of 

invasive breast cancer is required for histological grading. A study which developed a 

DL based technique for mitotic counting concluded that CNN based counting is 

comparable to observer’s manually calculated results and that it is a reliable method 

to assist in grading [23]. 

 

However, despite the numerous successful performances, research shows that there is 

still room to improve in order to apply in clinical flow [24]. The specific process of 

preparing WSIs, complex process of diagnosis, high variation in patient samples, and 

feature rich high dimensional WSIs leads to gaps in translating AI to digital pathology 

workflow. Identifying the gaps in AI research translation to digital pathology is crucial 

for future improvements of the workflow for an efficient and accurate diagnosis 

outcome [25]. 

 

1.3 CHALLENGES IN TRANSLATING AI TO DIGITAL PATHOLOGY 

WSI processing is a challenging and unique task in image processing, because of the 

variation in each imaging type (size, colour, hue etc.). This depends on the tissue 

sample preparation standards, imaging modality, image acquisition methods [26]. This 

limits the practical aspect of using one method that fits all for WSI processing. 

Compared to radiology images, WSIs are different and complex resulting barriers in 

translating analysis methods to WSI from other medical image types [27]. There are 

numerous methods with high variation that are applied for digital pathology. However, 

each method has own unique capabilities and flaws. Therefore, identifying the 

challenges which creates a gap between translating AI methods and digital pathology 

workflow is crucial. Identifying the challenges and factors will help to ensure a 

smoother translation of AI models to the digital pathology workflow. 
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DL methods have shown capability of improving the results and efficiency for digital 

pathology workflow [8]. However, prior literature identifies pre-analytical factors, 

analytical factors, and post - analytical factors as main categories of barriers translating 

AI methods to digital pathology. David F. Steiner et al., (2020) reviews challenges in 

detail and potential improvements to the digital pathology workflow to handle the 

shortage of trained pathologists and handle increasing number of new cases, etc. [25].   

Hamid Reza et al., (2018) discuss challenges and opportunities in AI for digital 

pathology [24]. Challenges which limit the employment of AI methods to the digital 

pathology flow are identified as lack of labelled data, pervasive variability, non-

boolean nature of diagnostic tasks, dimensionality obstacles, Turing test dilemma, uni-

task orientation, computational expenses, adversarial attacks, lack of transparency and 

interpretability, and realism of AI. 

 

Opportunities to mitigate the challenges have been discussed in prior literature. Many 

of the challenges results in lack of annotated data where techniques which use least 

amount of annotated data, or no annotations are an opportunity. Attempts to minimise 

the gaps in translating AI to digital pathology have been developed. A DL based 

confidence scoring method to handle high inter-pathologist discordance have been 

developed using multi-site data which is one such attempt [28]. Methods which use 

one class data, which are weakly labelled data with labels available only for one of the 

classes and other techniques using partially labelled data are beneficial as well as 

methods which use the unlabelled data. However, further research and development to 

align AI and digital pathology needs to be conducted based on impact factors 

identified. There are a few main obstacles which multiple prior literature has identified 

as barriers of implementation of AI methods in digital pathology workflow.  

 

The WSIs are Giga-pixel images with very high zoom levels and resolutions with 

1,000 ´ 1,000 pixels to 100,000 ´ 100,000 pixels. Figure 1.2 shows an example of a 

WSI in the low resolution and a section in high resolution. Annotating and analysing 

WSI is a complex task which requires expert knowledge and time [15, 29, 30]. 

Therefore, it requires a long time and is very costly. Along the annotation difficulties, 

the uni-task oriented solutions which are trained only to perform one task and high 

variability in data due to differences in slide preparation process are commonly 

identified pre-analytical factors. Capturing the variability in data is important to train 
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models, but such variation is not readily available in data due to annotation 

complexities. Pathologists co-analyse WSI samples in multiple types of stains to 

identify different tissues and cells. The co-analysis adds more complexity to the 

annotating process. Variation in data from different locations which use different 

scanners and standards also result in a challenge to translate AI applications to the 

digital pathology workflow. Prior research shows the importance of having a large 

amount of labelled data which capture the high variation of WSIs to achieve promising 

outcome from trained models. The limitations in available training data increase the 

need of methods to utilise the limited labelled data to maximise by augmentation or 

models requiring minimal labelled data. Furthermore, the dimensionality obstacle of 

WSIs needs to be considered along with the affordability of computational expenses. 

Therefore, these factors affect the performance of the models threatening the realism 

of AI applications to the digital pathology workflow. The above challenges lead to the 

problems focused on this thesis.  

 

1.3.1 Problem Statements 

1. Co-Analysing multi-stained data  

Tissue structures are complex and consist of several types of tissue 

including nuclei, small holes, vacuoles, cells and different spatial 

arrangements. Pathologists use biomarkers which are known as stains to 

help differentiate tissue types and spatial arrangements [31]. The analysis 

requires co-image analysis for the same tissue with many stain types which 

result in many WSIs for the same sample. Co-analysis requires WSI 

registration in order to identify corresponding tissue and cells identified in 

multi-stained WSIs [21]. Figure 1.3 shows WSIs stained using different 

types of stains to identify different cells. Expert pathologists use different 

stains to identify regions of interest on the WSIs, however, the process is 

time consuming. Therefore, registering the WSIs using different stains is 

important to support pathologists [32]. The main challenge is when the 

WSIs are re-stained and scanned which result in movement in tissue sample 

and changes in placing it compared to the original WSI resulting rigid and 

non-rigid deformations [33]. The rigid transformations do not change the 

shape or size of the content of the image, but non-rigid transformations are 
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due to changes in the structure of the content in the image.                                        

 

 

Figure 1.4 - Visual difference of WSI image patches for follicular lymphoma from 

different sites. Dataset – Site 1 is publicly available data and Dataset – Site 2 is from a 

private dataset. 

 

 

 

 
 

 

Figure 1.3 - Four different stain types applied to the same WSI at low resolution (A) 

and to the same WSI patch at high resolution (B)  
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complex due to changes in the structure of the content in the image. 

Furthermore, the registration step is only one sub-step towards diagnosis 

and should have a dynamic approach addressing non-rigid transformations 

which is not time consuming and requiring very high computational 

memory. The efficiency of registration as a sub-step is important to be 

translated to the digital pathology workflow. Requiring high computational 

power and longer processing times challenges the resources of already 

challenged health sector [32]. 

 

2. High variance in data due to inter-site differences 

The pervasive variability complicates the labelling process due to the several tissue 

types present in a sample [15, 24]. Due to different procedures and standards, the WSIs 

from different institutions increases the variations which effects the generalisation of 

DL models. The slides are stained for visibility of different features of cells. The stain 

preparation, and the standards from one laboratory to another can be different leading 

to added variation in WSIs [26]. Therefore, as Figure 1.4 shows, the WSIs from 

different sites show different data distributions [27, 28, 34]. This causes WSI 

processing to perform differently though the same stain is applied to the same type of 

tissue. Therefore, a model trained on different laboratories may not perform similar to 

trained laboratory WSIs [35]. The WSIs should be trained for different laboratories. 

The uni-task orientation where methods developed to one site/institution is not directly 

transferable to another institution with data from different modalities or different 

equipment’s [28]. The large variations result in poor performances in the same 

methods applied to data from different institutions leading to a gap in translating the 

methods.  Requiring annotations from various institutions for the same tasks are not 

feasible as the complex annotation process needs to be followed repeatedly.  

 

3. Lack of annotated data 

The requirement of image-level, patch-level, and pixel-wise annotations to 

successfully train and evaluate DL models is a difficult task. Lack of labelled data is 

one of the main challenges identified by many researchers [30]. The need of expert 

annotated data is limited by time constraint and financial bottleneck for app 
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development [24]. Crowdsourcing, active learning and generating synthetic data are 

few options that’s considered to increase labelled data. 

Use of annotated WSIs from each institution to train generalised DL models is not 

feasible due to the large dimensions and training using patches or segmented regions 

of interests. Generating synthetic data using Generative Adversarial Networks (GAN) 

have shown promising results for natural images as well as for medical images. 

However, the high complex model architectures and long training times are 

challenging the capability of translating the methods to the digital pathology workflow. 

Methods which can use the limited annotated data without adding large costs to health 

systems are required [32]. Therefore, using GAN as an approach to generate synthetic 

data based on the available annotated data from a new site can reduce the translation 

gap in digital pathology.  

 

1.4 OBJECTIVES 

 

This section focuses on discussing the main factors affecting translation of AI methods 

in digital pathology. AI approaches that are developed for natural images and publicly 

available WSI datasets are not directly transferable. Therefore, enhancements are 

required to implement AI approaches for digital pathology workflow. Comparisons 

between models on limited publicly available data and real-world data are presented 

with the challenges in transferring knowledge between models. Solutions are proposed 

to overcome challenges identified to improve clinical digital pathology workflow by 

dealing with scarce data and high variation by minimising complexities in data and 

models. 

 

 Main Objective 
 

The main objective of the thesis is to design and develop deep learning approaches to 

learn from limited real-world WSI data. 

In order to achieve the main objective, following sub objectives are created. 
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Sub-Objectives 

1. Improving multi-stained WSI data registration with fast converging 

deep learning model 

Registration is an important sub-step towards analysing WSIs. WSIs can be stained 

with multiple stains. Various stains reveal various features in WSIs and provide 

different information and perspectives to pathologists. The combination of stains 

would give a further insight into WSIs and help pathologists in their diagnosis. 

Registration of WSIs places the same WSI with different stains to overlap each other 

and match the exact points to give a clear insight to the pathologists to co-analyse and 

provide diagnosis without manually matching WSIs. Due to the high non-rigid 

deformities in the WSI samples, use of DL to learn and extract hidden deep features 

for registration has shown progress. However, the high computational memory 

required to train the complex models is a challenge to adopt deep feature-based 

registration to digital pathology workflow. Therefore, methods which learn and 

converge faster by using minimal computational memory are important.   

 

2. Addressing inter-site differences in WSIs using transfer learning 

WSIs are giga-pixel images and labelling them are time consuming and requires a large 

amount of expert knowledge. Therefore, creating datasets for DL models for real-

world WSI is a complex task. Pre-trained models are trained on public data and the 

weights of the models are saved. These models and saved weights are used for similar 

data which do not have large amounts of training data (Transfer Learning Models). 

Transfer learning (TL) is highly suitable for WSI processing because of the limited 

annotated WSI data. Furthermore, training models with data from multiple sites have 

shown to result in better model performances. Therefore, limitation of acquiring 

sufficient data from different sites can be handled by only using a smaller dataset from 

a new site.  

 

3. Addressing lack of labelled data WSIs using synthetic data 

Synthetic data is created to support DL models which have minimal number of training 

data. DL models require large amounts of training data. Therefore, when minimal 
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number of training data is available, creating synthetic data supports training machine 

learning models. Medical images with annotations are minimal because medical 

images and annotation are complex, time consuming and costly. Therefore, creating 

synthetic data is an efficient method to create images for machine learning models to 

train. Investigating simpler solution to be able to reduce the gap of translating AI to 

digital pathology is another aspect of this objective. 

 

1.5 CONTRIBUTIONS 

The contributions of this thesis are three-fold. 

1. To simplify and improve performance of unsupervised non-rigid 

registration by using deep learning features and faster convergence. 

Assisting to identify corresponding tissue types and spatial arrangements in the same 

tissue sample by using multiple stains is WSI registration. De-staining and re-staining, 

the tissue specimen changes by adding artifacts and loss of information. Therefore, 

identifying corresponding locations and conducting co-analysis for diagnosis is a 

complex task and time-consuming task for expert pathologists. Conventional 

registration methods require intense parameter tuning. Therefore, use of DL for 

automated feature extraction demonstrates the benefit allowing faster parameter tuning 

for registration. However, compared to supervised methods, unsupervised methods are 

becoming popular due to the limitations in large, labelled datasets for training. The 

available unsupervised methods are complex, requiring longer training times and using 

complex architectures with large number of deep features. Furthermore, the 

unsupervised approaches can be unpredictable. Therefore, a novel method combining 

supervised and unsupervised approaches which learns and converges faster using 

minimal amount of computational memory is developed. The method handles the 

unsupervised registration technique’s complexity with a simpler model architecture 

and faster convergence. 
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2. To improve transfer learning-based method by handling inter-site 

differences with minimal labelled data. 

This explores the possibility of using a small dataset from a class of interest to train 

deep learning algorithms for FL detection from WSI images. FL is a sub-type of 

lymphoma which grows silently, without symptoms and therefore harder to identify 

early. The proposed method reduces the need for a large amount of labelled data by 

training a classifier for FL in a target environment. In this approach, a pre-trained 

AlexNet model fine-tuned using a publicly available Lymphoma dataset. The proposed 

approach combines the Lymphoma dataset to a smaller sample of a private dataset of 

the FL class obtained from a new site. This approach requires only a small amount of 

labelled training data from the class of interest to improve the performance on data 

from a new site. The proposed solution reduces the time and effort incurred to train 

new models to new data, which helps to minimise translation gap of AI to digital 

pathology workflow. 

 

3. To improve classification performance by using synthetic data to handle 

lack of labelled WSI data for a new site. 

Published research information shows that the lack of labelled data and the problem of 

generalisation to data from different sites affect the performance of DL models. After 

studying the availability of a small amount of annotated data for the class of interest 

from different sites, the chapter focuses on improving generalisation of models to new 

sites using the one-class data from new sites. The capability of GANs to create 

synthetic data has been a promising approach to handle limitations in data. Therefore, 

this contributes and investigates the GANs influence in the one class classification 

tasks by creating synthetic data for the labelled one class data in the private dataset. In 

order to classify one-class private data, the public dataset’s, negative class is passed 

down as non-target data for classification. The use of limited one class data from new 

sites with GAN significantly contributes to reducing the differences in data 

distributions of different sites which caused a generalisation problem. The technique 

showed possibility of generalisation by using one-class data without needing to retrain 

models for the new site, thus contributing to minimise challenges in translate AI to 

digital pathology workflow. 
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1.6 THESIS OUTLINE 

Chapter 1 provides a description of the recent advancements and challenges in deep 

learning and digital pathology. The motivation for the proposed approaches to address 

the problems in applying Deep Learning to WSI are described. The chapter also 

highlights the contributions in the thesis for DL applications to WSIs. 

Chapter 2 presents the prior literature to identify factors translating AI to the digital 

pathology workflow.  Furthermore, a problem-based taxonomy and provides the main 

types of solutions in the research field. The chapter concludes by providing the gaps 

in WSI classification. 

Chapter 3 contributes to WSI registration with faster convergence to unsupervised 

non-rigid registration. 

Chapter 4 contributes to explore the use of transfer learning to handle differences of 

data from different sites.  

Chapter 5 contributes to study the effects of synthetic data for a new site and handle 

the challenge of limited number of labelled data. 

Chapter 6 summarises the thesis contribution and reflects the opportunities for future 

work based on the research findings presented here. 
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 Literature Review 

This chapter reviews methods addressing factors of translating AI for digital 

pathology. Section 2.1 provides a discussion on digital pathology workflow followed 

by AI applications to WSIs. Section 2.3 presents a taxonomy of factors translating AI 

in digital pathology and discusses the different methods developed to address the 

factors. 

2.1 DIGITAL PATHOLOGY 

Digital pathology is identified as the process of diagnosing using digitised glass 

specimens for examination and analysis to provide a final diagnosis for a patient. The 

digitised glass specimens are commonly known as WSIs. 

 

Before introducing WSIs, a manual process of cancer diagnosis was performed for 

tissue samples prepared on glass slides and using a microscope to examine the tissue 

samples [12]. The tissue samples needed to be stained to assist the microscopic 

examination. The staining highlights different tissues and cells with high contrast to 

help pathologists assess the tissue samples [13].  The process from preparing tissue 

samples to examination to identify and analyse the cell structures and its features are 

cumbersome. The microscopic examination requires multiple pathologists’ 

assessment, and the outcome of the examination is subjective, leading to inter and intra 

observer variability [13, 36]. Furthermore, the physical handling, storage and 

transportation of the glass slides needs cautious attention [37].   

 

The availability of digitised tissue samples helped to ease the process of tissue sample 

examination and analysis. The pathologists can examine the digitised samples known 

as WSIs at different magnification levels, share the WSIs with experts in the field using 

computer-based systems, which allows viewing WSIs locally or remotely [14, 37].  

However, the slide preparation for WSI acquisition is still complicated compared to 

the radiology image acquisition process [30]. It is a multi-step process that consists of 

fixation, dehydration, clearing, infiltration, embedding, sectioning, and staining. 

Figure 2.1 shows the cancer diagnosis process; fixation is required to preserve the 

tissue in the same state as when they were alive to harden the sample in order to retain 
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the molecular structure [5]. After fixation, the sample is processed by dehydration, 

clearing, infiltration and embedding. The sample is sectioned prior to staining, which 

creates the glass slides. Once the glass slide is prepared, image acquisition can be 

performed. The process of preparing tissue specimens for acquisition may take 12 

hours to 24 hours.  As discussed, the complexities of the essential slide preparation 

process and the growing number of new cases increase the need for automated methods 

to speed up the whole procedure. 

 

 

 

2.2 AI FOR DIGITAL PATHOLOGY 

The introduction of WSIs has bridged digital pathology and machine learning (ML) 

methods to handle different tasks, including classification, segmentation and 

registration, in order to assist the diagnosis process [7, 17, 18]. 

 

2.2.1 Early Medical Image Processing methods 

Medical imaging is essential for medical image diagnosis. The complexities in the 

process from image acquisition to diagnosis show the need for Computer-Aided 

Design (CAD) systems to assist with image analysis for a faster diagnosis [28]. The 

use of statistical methods and rule-based methods have aided in early medical image 

analysis. Various imaging types are available in the medical domain, which includes 

radiology, histology etc. These image types significantly differ from each other due to 

its technicalities and capturing angles. Leading to require different image processing 

techniques [5, 24].  However, due to the computational limitations to handle complex 

image types and scarcity of digital images, some medical image types such as WSIs 

challenged to the application of CAD systems. With improvements in technology, 

advanced medical imaging techniques and computational hardware were built to gain 

Figure 2.1 - Full diagnosis process of digital pathology imaging in detail  
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the capability of processing high dimensional imaging types [14]. The computational 

methods for WSI diagnosis assistance have to include pre-processing, segmentation, 

feature extraction, dimension reduction, and detection and classification. The outcome 

of the detection or classification needs further post-processing and assessment in order 

to derive the final disease diagnosis and grading results (Figure 2.2) [5]. ML 

techniques, specifically DL techniques have proven to show high performances in 

various fields of research [5, 14, 24, 28, 29, 32, 36]. 

 

 

 

Figure 2.2 - The full process for computational analysis of WSIs  

 

 

 

2.2.2 Machine Learning Approaches 

 

 

Figure 2.3 - The data distributions for supervised learning and 

unsupervised learning  
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Machine learning (ML) provides the capability of learning patterns in data to support 

a given task. ML approaches have been popular due to the capability of identifying 

patterns and relationships in complex data based on historical data [13, 15]. Altaf et 

al., (2019) shows ML for medical image analysis applied under two broad areas of 

unsupervised and supervised learning [30]: 

1. Unsupervised Learning draws inferences from data without any labels. 

2. Supervised Learning draws inferences from labelled training data to achieve a 

regression or classification. 

In this section, unsupervised and supervised learning will be further discussed (Figure 

2.3). There are different types of function approximators, linear models, decision trees, 

Gaussian processes, deep learning etc. Unsupervised learning uses unlabelled data to 

infer and identify patterns to achieve a task. The unsupervised algorithms learn without 

labels to find patterns in the data, which is fully unguided [15]. These approaches can 

produce features and clusters which are not visibly obvious, and the inferences can 

also introduce new knowledge about the data, especially in medical imaging. Hence 

concluding that, unsupervised algorithms are capable of revealing new knowledge and 

patterns which were not known before [24]. Surprising results were inferred from 

unsupervised algorithms in medical imaging. Comparatively there is limited control 

on the results of unsupervised learning algorithms to supervised learning algorithms. 

 

Supervised learning is mapping and learning from sample inputs to outputs. It is 

important to have the sample input (!) to !	 ∈ $. Therefore, supervised learning 

algorithms match to the actual input ($) and learn to produce the expected output (%). 

Supervised learning algorithms are catered into generating the output (%). Medical 

imaging with its unique data can be highly influenced by supervised learning because 

the supervised learning algorithm can be learnt from the medical knowledge and 

guidance. However, supervised learning approaches require high dimensional feature 

engineering and the input of medical expertise. Therefore, deep learning, which does 

not require high dimensional feature engineering, has potential in medical image 

processing [5, 7, 15, 18, 30].  
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Figure 2.4 - Architecture of a deep neural network  

 

 

2.2.3 Deep Learning approaches 

During the last decade, deep learning has revolutionised image processing, natural 

language processing and time-series approaches [16, 38]. Deep neural networks can 

identify hidden patterns in data using its hidden neural network. The deep neural 

network has multiple layers, which extract various hidden features from data (Figure 

2.4). This ability to extract features varies from one layer to another. The abstract 

features are extracted from the first layers, and the last layers extract more complex 

and extracts deep features. This ability in deep neural networks has gained momentum 

in research for image processing.  

 

& = ((!; +)  (1) 

ℎ = .(/! ∙ !	 +	2!)        (2) 

 

General functionality of deep neural network is expressed in Equation 1. The output 

of the deep neural network is represented by (y). + represents the learnable weights. x 

represents the input to the deep learning model. f is the general function that can be 

the activation function.   
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The deep neural networks have multiple succession processing layers, which 

comprises non-linear transformations that lead to learning different levels of 

abstractions. According to equation 2, the deep neural network result (h) is with an 

input column vector (!) and non-linear activation functionality (.) multiplied by (/!) 

and a bias of (2!).  

 

The non-linear transformation of the deep neural networks can extract the abstract and 

deep features of the input vectors. Therefore, deep neural networks are capable of 

learning features from images and supporting image processing tasks. Especially 

convolutional layers are used for image processing due to the translation invariance 

property [39]. The Figure 2.5 shows the architecture of a CNN named AlexNet. The 

layers consist of learnable filters which activate when different features are detected. 

Figure 2.5 - Example architecture of a CNN – 

Architecture of AlexNet model. 
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The first layers learn to detect the edges, textures and patterns. The following layers 

detects parts of the objects as well as the whole object. This combination of learning 

in convolutional layers allows to further elaborate on the analysis of image data. 

Therefore, Convolutional Neural Networks (CNNs) are adapted heavily into image 

processing tasks. CNNs are used for medical image processing by utilising the above 

processing capabilities. 

 

WSIs are large, complex images with complex features. Therefore, CNNs have the  

capabilities of processing multiple complex features in WSIs. CNNs are capable of 

extracting features from WSI for analysis [40-42]. Furthermore, WSIs hidden feature 

can be extracted using CNNs. Therefore, CNNs would have the capability to extract 

various features and be used for WSI analysis. The complex feature extraction in the 

convolutional layers has a high potential to support the WSI analysis. However, having 

multiple convolutional layers is computationally expensive. Furthermore, it’s 

impossible to apply complex CNN models in every situation. Therefore, it is important 

to come up with the models which are computationally efficient to extract features and 

analysis of WSIs. 

 

2.3 FACTORS OF TRANSLATING AI 

Medical image classification is a popular research domain for applying and developing 

deep learning techniques. Among the various types of medical imaging, the histology 

images had a gap in developing machine learning-based techniques due to the 

unavailability of digitised version of the glass tissue slide samples. However, with the 

development of whole slide image scanners, the problem of unavailability of data was 

solved. The WSI domain gained popularity in deep learning-based techniques to assist 

the diagnosis process. Prior research shows promising results in deep learning-based 

techniques for WSI. The techniques are developed but not limited to classification, 

segmentation, object detection and image registration. However, translation of DL 

methods to digital pathology is challenged by various factors.  

 

The present thesis focuses on factors of translating WSI registration and WSI 

classification in digital pathology. Registration is the alignment of multi-stained data 

to assist co-analysis which is a crucial sub-step in the diagnosis process. AI techniques 
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have benefitted WSI registration by better handling the high dimensionality, large 

deformations, and faster registration [21, 43, 44]. The registration methods address 

rigid transformations and non-rigid transformations. Rigid transformations do not 

change the size or the shape of the images. Rotation, translation, and reflections are 

considered as rigid transformations [43]. Non-rigid transformations show non-linear 

changes which occur in the slide preparation process [45]. Recent successful 

performances have shown that a combination of rigid and non-rigid transformations  

 

Table 2.1 – Main challenges and potential solutions identified in prior research 

focusing translation of AI in digital pathology 

 

Research Title Challenges Potential solutions 

Deep learning 

in 

histopathology

: The path to 

the clinic  
 [46] 

 

Datasets are not truly representative 

of clinical data 

Use of multi-site data 

Low generalisability  Use of multi-site data still 

result in poor 

generalisability. Limited 

research available. 

Low robustness due to high variation 

in clinical data 

Combination of data with 

different stains, sites and 

use of augmentation to 

artificially generate data. 
Both data augmentation 

and image normalisation 

are necessary 

High dimensionality Use of GPU, compress 

WSIs 

Funding  Rural areas can benefit if 

access full digital 

pathology infrastructure is 

possible 

Model evaluation for regulatory 

approvals 

Standards in model 

evaluation 

Explainability of algorithms Standards are required due 

to debatable nature. 

Different stakeholders 

expect explanations in 

different angles.  

Closing the 

translation 

gap: AI 

applications in 

Pre analytical factors – complexities 

in glass slides and WSIs. Effects the 

generalisability of models. 

 

Diversity and 

representation of clinical 

data to the model. 
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digital 

pathology [25] 
 

Analytical factors – regulatory needs.  

 

Clinical validation, quality 

control, interaction with 

pathologists 

 

Post analytical – Documentation, 

result verification and 

communication after initial 

development and validation. 

 

Validation standards. 

Including single site to 

multi-site validation. 

 

Careful integration -

despite the powerful and 

accurate models. Model 

should be able to merge 

with other systems in 

place. 

 

Collaboration of 

pathologists, developers, 

and researchers. 

 

 

Translational 

AI and Deep 

Learning in 

Diagnostic 

Pathology [47] 

Low ability to generalise - Extremely 

difficult challenge 

 

Use of multiple variations 

of data for testing 

Testing with various data is costly 

and time consuming  

 

 

Legal and regulatory aspects  

Artificial 

intelligence 

and digital 
pathology: 

Challenges and 

opportunities 

[24] 

Lack of labelled data, variability, 

uni-task orientation 

 

Pretraining models, 

handcraft features, 

generative models, 

unsupervised learning, use 

of features identified by 

stains  

High dimensionality Use of image patches and 

regions of interest. 

Downsampling (Risks in 

loss of crucial 

information) 

Non-Boolean outputs – Sometimes 

pathologists use descriptive 

terminology to describe the outcome 

of the diagnosis. 

 

Turing test dilemma –May not know 

the Turing test explicitly for 

pathology.  
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Affordability of computational 

expenses. 

 

Digital 

Pathology: The 

Time Is Now 

to Bridge the 

Gap between 

Medicine and 

Technological 

Singularity. 
[48] 

Infrastructure and resource support  

Integration to existing systems 

 

Communication with 

pathologists during 

development process 

 

 

have a drastic improvement in registration outcome [21, 49, 50]. Furthermore, limited 

research using unsupervised registration methods address the limitations in annotated 

data. In recent DL based methods, computational memory requirement is a limitation 

to translate to clinical workflow. Therefore, computationally efficient methods need 

further exploration to assist with co-analysing multi-stained data.  

 

Classification assists in categorising the WSIs based on the class of interest. The 

limitations in labelled WSI data and gathering labelled data from different sites is the 

main challenge when it comes to classification. The WSI images with image level 

labels are insufficient due to the rich features present at high resolution of WSIs. 

Therefore, patch level, and pixel level labelling is essential for training and evaluation 

which challenge the availability of data. Furthermore, the high variation in data causes 

limitations in generalised classification methods. The variations in data can be caused 

by the differences in staining techniques, slide preparation procedures, and different 

scanning equipment available at each institution. The dataset requires to capture the 

data distribution to train models with higher generalisability. The collection of data 

from different institutions is a complicated task. Therefore, methods which use limited 

labelled data or methods which train in unsupervised manner have been investigated 

for in the latest research. Identification of such limitations are important to address the 

challenges in translating AI in digital pathology. 

 

 

 



 

26 Chapter 2: Literature Review 

2.4 TAXONOMY FOR FACTORS TRANSLATING AI TO DIGITAL 
PATHOLOGY 

  

Figure 2.6 - Taxonomy for factors translating AI in digital pathology 

 

Despite the recent success in deep learning for WSI, there are challenges that have 

been faced by researchers in translating methods to the digital pathology workflow. 

Prior literature analysis leads to DL technique-oriented solutions and WSI data-

oriented solutions [14, 24]. The main challenges that have been identified are scarcity 

of labels, high variation in histology structures and the large dimensions of WSI 

images. The Table 2.1 identified main challenges and solutions discussed in prior 

research focused in exploring translation of AI in digital pathology. The taxonomy 

shown in Figure 2.6 is based on the main challenges summarised in Table 2.1 and 

approaches to handle and assist diagnosis. The sections highlighted in red are the main 

problems focused on this thesis. 
 

The challenge of limited labels is further divided into small datasets, weakly labelled 

datasets and unlabelled dataset. This categorisation is based on the different 

availabilities of data. Further categorisations for the weakly labelled data are given as 

referring to numerous definitions of weakly labelled in the prior literature. We have 

identified two main categories in weakly labelled data as image-level labelled and 

Factors 
implementing  

AI

Limited labels

Small 
datasets

Weakly 
labelled

image level 
labels

Partially 
labelled

one class 
data

postive and 
unlabled

Unlabelled

High Variation 

inter and 
intra -site 

differences

Multi stain 
mapping

Large 
Dimensions
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partially labelled data. The one-class problem is identified as one way of handling 

partially labelled data (highlighted in red in Figure 2.6).  

 

The challenge of high variation in WSIs is caused by inter-site and intra-site 

differences and co-analysis of multi-stained WSI mapping (highlighted in red in Figure 

2.6). The inter-site and intra-site differences have been handled mainly by fusing 

external data and/or using techniques to minimise differences in the data distributions. 

The differences in data distribution can be handled by using traditional methods or 

learning-based methods. The high variation of data due to multi staining of the same 

sample in different stains is carried out to highlight different cell structures which 

causes co-analysis of WSIs a challenging task. Registration methods specific to WSIs 

are required to map the corresponding features in the multiple stains (highlighted in 

red in Figure 2.6). Another aspect of multi stains have been handled with generating 

synthetic data. This is used to generate different stains as well as to generate more data 

from the same stain to generalise models.   

 

Furthermore, the discussion of methods show that different problems focused by 

various researchers have followed a hybrid/combination of techniques to handle 

multiple challenges that needs to be addressed. For example, a method may have to 

address the lack of data, and large dimensionality in the same technique developed 

[51].  

 

2.4.1 Limited labels 

Limitations in labelled data is identified as a main factor challenging the translation of 

AI techniques to the digital pathology workflow (Figure 2.6). The limitations are due 

to the specific nature of the labelling procedure for WSIs. The limitation of labelled 

data has been identified as a subcategory based on prior research.  The limitations are 

present in the form of small datasets, which are fully labelled but are insufficient, or 

weakly labelled data, which are partially labelled data or as one class dataset in which 

labelled data are only available for one of the classes. This is mainly due to the 

unavailability of sufficient data for rare instances. Also, there are instances with no 

labelled data. The sub-categories of the taxonomy for limited labels (small datasets, 
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Weakly labelled and unlabelled) and methods used to handle them are discussed 

below. 

 

Small datasets 

DL techniques require a large number of high-quality annotations [52]. However, due 

to complexities in acquiring images and labelling data, a DL task can be presented with 

a small dataset in order to develop a solution. Prior research identifies two main 

incomplete dataset types as scarce datasets, which have limited data, and weak 

datasets, which have partial labels or image-level labels. Our taxonomy also 

considered datasets without labels which can be categorised as unlabelled datasets. 

The two main approaches of handling the datasets are either by increasing the amount 

of labelled data in the datasets or developing models that can learn with smaller 

labelled datasets.  

 

Augmentation techniques increase the amount of data in the dataset. There are 

different methods to augment data. Traditional augmentation by spatial transformation 

changes, which includes flipping, translation, rotation etc., adds variation to the dataset 

with additional data as well. Colour augmentation is another aspect in which the data 

are augmented by changes to different intensity statistic ranges [27, 53]. The 

brightness, saturation and contrast are the main statistics that researchers have focused 

to add colour-based augmentation to WSI datasets (Figure 2.7). 

Generating synthetic data using GANs is another method that is vastly applied in 

recent research methods. The learning based GANs learns the distribution of the 

training dataset and generates new data within the learnt distribution [54]. GAN 

models are also popular for image translation tasks, which can translate images from 

one style to another. Research has shown success in converting WSI images to the 

desired image style with style translation GANs. CycleGAN, StyleGAN, StainGAN 

are examples of image translation methods used for WSI [53-59]. However, GANs are 

computationally expensive, and the training dataset should consist of a sample that can 

capture the variation of the WSI domain. Therefore, synthetic data generation with 

simpler GANs are more feasible for digital pathology. 
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Figure 2.7 - Colour augmentation to WSI patches 

 

 

 

 Figure 2.9- Creating a pre-trained model and using it to fine-tune for a medical 

dataset [62] 

Figure 2.8 - Types of transfer learning methods [60] 
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Transfer learning (TL) is a popular approach to handle small, labelled datasets. The 

distribution of transfer learning solutions is based on availability of labelled data. 

Figure 2.8 shows the types of TL based on the availability of labelled data [60]. If 

target domain has labelled data its identified as inductive TL, transductive TL will be 

when only the source domain has labelled data, and unsupervised TL is when labelled 

data are not available in source or the target. Inductive TL has been further divided 

into two categories as based on whether labelled data are available (case 1) in the 

source domain or not (case 2). Case 1 will be identified as self-taught learning, where 

case 2 is multi-task learning due to source and target being learnt simultaneously.  

Lastly transductive TL is categorised first as domain adaptation to perform single task 

over different domains. Second category is sample selection bias with the assumption 

of single domain and single task. 

 

Recently transfer learning has been applied in two main ways. For fine-tuning or to 

use as a feature extractor. Transfer learning with fine-tuning uses pre-trained deep 

learning models and re-trains only the fully-connected layers in order to achieve the 

specific features of the small dataset [41, 61]. Since the pre-trained model consists of 

the basic features of data, large amounts of data are not required for training a full DL 

model (Figure 2.9) [62]. WSI classification with transfer learning methods has 

achieved better performances compared to models trained from scratch. 

 

Few shot learning methods are popular for instances where a very small amount of 

data is available. Two networks are trained to learn the models. Chaitanya et al., (2019) 

proposed a technique using few-shot learning for segmentation based on augmentation 

[63]. Another technique developed used few-shot learning to classify whether an 

image patch contains tumour cells [64]. Another method proposed a method for object 

detection [51]. 

 

Weakly labelled 

Weakly labelled datasets are defined differently in various research. Weakly labelled  

data can be identified as datasets with image-level labels and partially labelled datasets 

[15]. Partially labelled datasets can be a challenge to develop techniques where the 
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availability of labels is specific. However, new techniques have been introduced to 

handle unique problems in partially labelled data.  

 

Multiple instance learning is a method that has shown potential in developing methods 

for datasets with limited labels. The data will consist of a majority of the negative class 

and a minority of the positive class. Dataset is arranged in two bags, one bag containing 

only negative data and the second bag consisting of both positive and negative data 

[65].  

 

One-class labelled data only consist of data from one class, in the instance where few 

samples of labelled data are available from a rare class commonly known as the class 

of the interest challenge classification methods due to only having data for one class 

[66]. 

 

Instances of availability of unlabelled data and limited positive class data lead to 

methods inspired by anomaly detection to be applied to WSIs. Use of positive data to 

learn the algorithms and boost the performance using the unlabelled data is a semi 

supervised approach that has been used [67]. Limited research is available in semi 

supervised methods for WSIs. Therefore, there’s scope to improve methods to reduce 

the translational gap using limited data. 

 

Unlabelled 

The final sub category of limited data is unlabelled data that do not have annotations 

for data. Therefore, clustering methods, auto-encoders are some examples of 

unsupervised learning methods [15, 24, 68]. Further improvisations and research need 

to be carried out on unsupervised methods as the knowledge available is limited. The 

use of DL methods as feature extractors is another popular component in feature 

learning for the development unsupervised technique.  

 

2.3.2 High Variation 

Another major challenge identified in Figure 2.6 is the high variability. The tissue 

structures are in high variability. Even patient to patient variability can be identified. 

To handle this, various normalisation techniques have been developed.  Furthermore,  
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due to the differences in the sample preparation procedures and scanning equipment, 

a variation occurs in the data which leads to poor generalisation in trained models for 

data from different locations, which were not included in training [26, 69]. Therefore, 

the performance is negatively impacted during the translation of the developed 

methods to the digital pathology workflow. Main causes for high variation have been 

identified as inter-site and intra-site variability and multi-stain mapping. 

 

Inter-site and Intra- site variability  

The staining techniques and scanners used at different laboratories cause colour 

variations in WSIs. Intra-site variability is when the WSI data produced at the same 

institution has a high variation mainly in the colour distribution (Figure 2.10) [53]. 

Intra-site variabilities occur due to different timing of staining procedures, and 

scanning process, and lighting conditions. Inter-stain variation result in high variation 

in data depending on the institution where the tissue specimens were processed. The 

inter-site differences mainly occur due to changes in slide preparation techniques and 

scanning equipment differences. 

 

The stain variations affect the applicability due to performance changes of the 

automated diagnose techniques. Techniques/solutions to handle the above-mentioned 

problem take two main categories. Data-oriented solutions and algorithm-oriented 

problems [18]. Inter-site and intra-site differences in WSI causes poor generalisation 

Figure 2.10 - Stain variation in WSI data [53] 
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towards trained models [26]. Therefore, it requires methods to mitigate the low 

performances. The use of external data is one approach to handle the challenge, which 

results in increased variation in the distribution of data. Minimising differences is 

another approach to handle the differences in the data distributions [27, 53].  

 

Multi-stain mapping 

Use of different stain types on the same sample will highlight different cell types. The 

staining procedure must be performed for each stain type to be used. After the 

acquisition of specimen with one type of a stain, it needs to be de-stained which is 

about a 2-hour procedure [70]. The de-staining process consists of several critical 

manual steps from washing the current stain and preparing to apply the next stain 

without damaging the tissue [71]. Thereafter, another type of stain will be applied, and 

image acquisition is performed. Once the WSIs for the same specimen are prepared 

with different stains, the examination of conducted by experts. The examination on 

separate WSIs needs to be consolidated to finalise the examination’s outcome.  Use of 

image registration techniques will align the WSIs and support co-analysis for 

diagnosis. DL based registration methods have shown promising performances. 

However due to large dimensionality of images and complexity in methods, there’s a 

need for improvement. 

 

 

 

Figure 2.11 - The requirement of ROIs to apply DL [28] 
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2.3.3 Large Dimensions 

The WSIs have captured the specimen prepared in the glass slide at multiple levels. 

Therefore, the pathologists can navigate the WSI at different zoom levels in order to 

examine and analyse. The different levels of the WSIs provide different characteristics 

regarding the tissue specimen’s cells, tissue structures and special arrangements. The 

high-resolution WSIs have captured the entire specimen which enables to visualise and 

capture the rare formations in cells. 

 

Large dimensions of WSI are a barrier to train models as well as to label images. The 

large dimensions can be reduced by focusing on the region of interest (ROIs) and 

processing the ROIs as input to the deep learning techniques (Figure 2.11) [28]. Rich 

feature extraction is also an important task. If methods are capable of extracting good 

(capture prominent differentiating features) features, then the model performances can 

be increased with a smaller amount of data [26, 72]. This type of approaches can 

support solving the issues with regard to high dimensionality and the need for a large 

amount of data.  

 

2.5 SUMMARY  

This chapter presented the literature for the objectives of the present thesis. The main 

aim of the thesis is to identify the factors influencing the translation of AI techniques 

to the digital pathology workflow. The cancer diagnosis process and the application 

areas of AI are discussed in order to derive the gaps in translating AI. The taxonomy 

further discusses the limitations in labelled data, high variation and large dimensions 

as broad areas of factors translating AI to Digital pathology. The taxonomy 

demonstrates three main approaches to handle the challenges of co-analysing multi-

stained data, high variance due to inter-site differences and lack of annotated data.  
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 Non-Rigid Registration of Multi-
Stained WSIs using Deep 
Convolutional Neural Networks 
with Super-Convergence 

Image registration is a fundamental image processing task that matches the alignment 

of two or more images taken at different times, different imaging modes or different 

viewpoints. To register images, the spatial transformation is calculated to align images. 

A broad range of registration techniques have been developed that can be categorised 

as rigid registration and non-rigid registration. This chapter aims to enhance 

unsupervised non-rigid registration of WSIs using super-convergence. Recent AI 

techniques to WSI tasks have shown the capability of unseen features of high 

dimensional WSIs. The application of deep features to the registration of multi-stained 

WSIs have also showed improvements compared to traditional registration methods. 

Identifying matching features under each stain type is difficult compared to the 

capability of DL models in learning hidden features from WSIs. The high variations 

and large deformations in different stains leads to the need of investigating methods to 

better handle WSI registration with DL to increase potential in improving pathology 

workflow. The registration can assist an important sub-step of co-analysing multi-

stained WSIs for diagnosis. Deep models have shown promising results in registering 

several types of stains faster, using a combination of rigid and non-rigid methods. 

These deep models are complex model architectures requiring large amounts of 

memory to train. Therefore, the focus of this chapter is to investigate the complexity 

of the deep models and explore the possibility of faster convergence in deep models. 

The application of super-convergence to a simpler deep model instead of the U-Net 

like model has shown promising improvement to the model. This chapter consist of 

sections 3.1 and 3.2 which comprise an introduction and literature review discussing 

the background and the aims of the research. Section 3.3 presents the proposed 

improved technique followed by the results and a discussion in sub-section 3.4. The 

conclusion in the section 3.5 summarises the chapter.  
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3.1 INTRODUCTION 

Cancer diagnosis is a part of the digital pathology workflow conducted by expert 

pathologists. Identifying and analysing patients’ samples requires examination of 

abnormal cell structures and spatial arrangements [3]. The use of multiple stains to 

prepare the specimens supports the examining stage by highlighting different 

categories of cells. There are various stain types which are used including, 

Hematoxylin and Eosin (H&E) and with immunohistochemistry (IHC) with an 

antibody against the estrogen receptor (ER), progesterone receptor (PR), and Her2-neu 

[21, 50]. The Figure 3.1 shows an example of a WSI under multiple stain types. 

 

These stains used in breast cancer diagnosis assist to observe different features in the 

specimen. The commonly seen H&E staining consists of Eosin which is combined 

used to identify basic tissue structures. Eosin is a negatively charged acidic colour stain 

which shows tissue structures in red or pink while hematoxylin dyes the acidic 

structures in purplish blue showing the nucleus in purple stain. IHC is another mostly 

used staining type which assists in predicting the stage of cancer according to the 

presence of types of proteins [73]. ER or PR positivity gives information on important 

prognostic and predictive features of breast cancer which can influence the therapeutic 

choice and patient survival [74, 75]. HER2-neu is another stain type in breast cancer 

diagnosis providing prognostic indicators to guide therapeutic decisions. The 

HER2/neu positive breast cancer prognosis is indicative of the presence of human 

epidermal growth factor receptor 2, which promotes growth of cancer cells.  The ER, 

PR and HER2/neu evaluations together are required for management and prognosis of 

breast cancer. [76, 77]. 

 

The different cells using one stain need to be co-analysed with the cells identified using 

other types of stains. Differential cell characteristics from each stain type provides 

information for the diagnosis. Due to the complexities in large WSIs, identifying 

corresponding characteristics for co-analysis is difficult [49]. This is due to the process 

of re-staining the same specimen for each stain type which results in complex and large 

deformations. The Figure 3.2 shows the deformation of the same region of the same 

WSI (rectangle box) in different stains in which rotations and translations are clearly 

visible. Due to clearing of one stain and applying another stain, the samples may be 
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deformed. The slight movements, folds and artefacts can occur in subsequently applied 

stain. During the scanning process, the environment lighting conditions and use of 

different scanners added further deformations to the WSI [45, 49, 78].  The large 

deformations need to be resolved to identify corresponding cells in the differently 

stained WSI samples. The deformations are non -rigid deformations due to the changes 

to structures and spatial arrangements and requires non-rigid image registration. Non-

rigid registration for digital pathology poses unique challenges due to the high 

resolution, large dimension of images, and the need for fast and accurate performance 

despite the complex deformations [21, 31].  

 

Expert pathologists are challenged by the need to visually locate corresponding 

locations of samples which are de-stained and re-stained with various stains [21, 31, 

44]. Deformations occur at slide preparation and image acquisition steps. Therefore, 

consolidating observations on differently stained WSIs of the same sample is complex 

due to possibilities of being slow, inaccurate and difficulties in applying it to stacks of 

WSI images of the same sample [49]. Therefore, automated methods to register WSIs 

are beneficial to reduce the complexity of examining slides with multiple stains [31].  

However, automated WSI registration has unique limitations compared to radiology 

image registration. The high resolution of WSIs, complex and large non-rigid 

deformations and specimen artefacts due to the re-staining leads to the need of methods 

addressing the complexities in WSIs [24, 49]. Current computational methods for WSI 

registration take two main approaches as traditional approaches and ML based 

approaches. Use of traditional approaches and shallow ML techniques have shown 

limitations in handling the high dimensionality of the WSIs [16, 21]. The methods 

require to identify features separately which is complex due to the high variations in 

multi-stained data. The traditional methods are time consuming to register a pair of 

WSIs. In comparison, recent methods developed using deep models for registration 

have shown improvements in identifying hidden features automatically and registering 

images faster [21, 50]. This is an important outcome to develop AI techniques which 

could translate to the digital pathology workflow. 

 

The DL methods to solve this complex multi-stain registration uses rigid and non-rigid 

approaches [21, 50, 79, 80].  Due to the large deformations, the use of rigid methods 

first aligns the WSIs according to rigid transformations. As the next step applying non-
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rigid registrations addresses non-rigid transformations for a better outcome. The 

combination of these two has shown promising results.  

 

However, this combination is computational costly and cannot be reproduced without 

a high-power GPU (GTX RTX 2080 minimum). High computational cost is required 

by the U-Net like autoencoder which is used for non-rigid transformations. Methods 

requiring high computational costs are limiting the potential opportunities in 

translating the methods to the pathology workflow.  Methods which can successfully 

adapt to variations in several stains are important to the co-analysis step of the 

diagnosis process. Therefore, in this chapter a smaller architecture is introduced to 

learn deep features for the non-rigid transformation which uses super convergence. 

The proposed architecture can learn the non-rigid transformation and improve the non-

rigid registration compared to the U-Net-like autoencoder’s outcome. 

 

 

 

Figure 3.2 - Shows the deformation of the WSI in 2 different stains (H&E and ER) of 

ANHIR data 

 

Figure 3.1 - Same WSI in multiple stains from ANHIR challenge data 
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3.2 RELATED WORK 

Image registration is used in many image processing applications, ranging from 

medical image processing to 3D image construction [43, 81]. However, image 

registration has shown a profound effect on medical image processing which can help 

reduce human error in medical image-based diagnosis [49]. Registration has been 

applied for radiology imaging types including MRI, CT, X-ray, retinal images and 

histology images known as WSIs [78, 81].  

 

Prior research for radiology image registration uses segmented images to train CNNs 

for local and global image registrations [82], an unsupervised method using a 

convolutional stacked auto-encoder (CAE) to extract features from fixed and moving 

images showed promising registration outcome [83]. Categories of radiology images 

consist of different features which provides different types of information. Integration 

of these information is important for clinical diagnosis [43]. 

 

Methods applied to radiology imaging are not directly applicable to WSIs due to the 

differences in them [28]. The large dimensions of WSIs require them to be processed 

in smaller regions of interest or patches. Image-level and pixel level annotations are 

important to differentiate different areas and cells at different magnifications. The 

large variations in WSIs due to slide preparation, staining process and scanning 

methods from different institutions challenge developing generalised automated 

methods for diagnosis. The large deformations in tissue samples caused by re-staining 

and re-scanning adds another challenge requiring methods to handle misaligned WSIs 

to support co-analysis. The co-analysis is a crucial step for diagnosis by visual 

examination is prone to errors and inter and intra variability and therefore efficient AI 

methods for registration will largely benefit the process [21, 43].  

 

The registration techniques allow to align the WSIs by transforming the different 

alignments. Image registration can be broadly categorised into two categories, rigid 

registration and non-rigid registration. Prior literature for WSI registration mostly 

focuses on traditional methods, with recent research exploring ML based methods. 
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3.2.1 Traditional methods 

The traditional methods focusing on intensity, landmarks and features have been 

developed. Due to the complexities in WSIs, the traditional methods are not directly 

translatable and does not perform same when applied to different stains [21]. Prior 

research showed that different pairs of stains perform differently when same methods 

are applied [21, 45]. However, combinations of multiple methods have shown better 

performances for WSI registration [21, 44].  

 

Intensity based methods require mutual information to be presented in the pair of WSIs 

to be registered [49]. The purpose of using different stains is to identify specific cell 

types which another stain would not capture. Therefore, the relationship of pixel 

intensities vary in which intensity based registration shows better outcome with 

landmark based and feature based registration [49, 84]. The landmark-based methods 

require accurate corresponding points identified in the WSIs to be registered, which is 

a complex task. Therefore feature-based methods are developed for WSI registration. 

Jun Jiang et.al (2019) developed a feature-based method using information-rich low 

resolution layers for kernel density estimation and regressing against the hierarchical 

structure [85]. However as the authors mention, this method have not incorporated 

non-rigid transformation and has been tested only with two types of stains, IHC and 

H&E [85]. The piecewise approach for WSI registration compares Scale Invariant 

Feature Transform (SIFT), Multi-Scale Oriented Patches (MOPS) and using a tool 

developed for manual comparisons. Comparing automated features and manual 

features across regions of interests or full WSI is a tedious task where different types 

of stains will show different cell types which means different features to be compared 

[84]. 

 

However, despite the satisfactory performance using multiple methods makes the 

registration process complex and time consuming. There is a limitation when it comes 

to translating the developed methods to the digital pathology workflow. It is important 

to complete the registration in a reasonable time to proceed with steps needed for 

diagnosis [49]. The need for identifying the suitable features and parameters is a 

tedious task [21]. It is important to minimise the complexities in the registration 

process.  
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3.2.2  Machine learning-based methods 

ML methods have shown potential in digital pathology due to the capability of learning 

features from given data. However, ML methods have limitations of curse of 

dimensionality. ML models require careful engineering and domain knowledge to 

develop a feature extractor [16]. On the other hand, DL methods have shown better 

registration outcome accuracy and time compared to traditional methods [21, 45, 78]. 

Compared to ML’s shallow learning due to the deep nature of model architectures, DL 

is capable of extracting hidden features automatically from high dimensional WSI data 

[16]. DL based techniques have shown promising outcome for WSI registration. DL 

methods extract features and can identify unseen patterns resulting in more features 

for registration.  

 

• Supervised learning 

DL methods trained in a supervised manner requires large amounts of labelled data for 

training. WSI labelling is a complex process in which pathologists examine WSIs of 

every patient in multiple magnification levels [78]. Therefore methods, which do not 

use labelled data or only use limited number of data are feasible [82]. Unsupervised 

methods which do not use labelled data in training is beneficial for registration [43, 

86]. The limited research in unsupervised methods using deep features has shown the 

potential for WSI registration. Improving the efficiency in registration step with 

simpler methods which is not time-consuming leads to a better outcome in the 

following steps to diagnosis.  

 

• Unsupervised learning with Transfer-learning Feature Extraction  

Due to the need of large amount of labelled WSIs, the registration methods have 

focused on the possible methods which use limited number of labelled WSIs or 

unsupervised methods which do not use labelled data [83, 87]. The affine registration 

using unsupervised ResNet features for rigid registration with non-rigid features using 

U-Net shows comparable promising results [50]. 
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The unsupervised feature extraction has shown promising outcome but is less explored 

due to model complexities and high computational requirements [44]. WSI registration 

is only a small step towards the WSI analysis and final diagnosis. Therefore, methods 

with simpler models using reduced computational memory would be beneficial to the 

digital pathology workflow [44, 49].  

 

Computationally efficient solutions are an important factor to apply AI methods to real 

world applications. Previous research has focused on methods which could generate 

an outcome with a least cost in time and computational memory. Prior research 

explores the concept of super convergence for deep learning focusing the learning rate, 

batch size, weight decay and momentum [88]. The performances for Cifar dataset 

show a comparable result within a smaller number of training epochs [88]. Super 

convergence for WSI data has improved performance for Pap smear image 

classification. 

 

3.3 METHODOLOGY 

The method presented in this chapter combines a rigid and non- rigid architecture for 

WSI registration. The rigid method aligns the majority sections of the WSIs. However, 

fine tuning the registration is important for accurate registration. The method 

introduced by Wodzinski et al., (2021) uses a U-net like encoder decoder model for 

non-rigid transformations. This approach is time and memory expensive [50].  

The chapter introduces a novel architecture for the non-rigid transformation by using 

a 2-D Convolutional Neural Network (CNN) with the use of super convergence which 

achieves comparable results to the Wodzinski et al., (2021) with a large encoder 

decoder architecture [50]. 

 

The proposed architecture uses a 3 layer 2-D CNN with a lower learning rate and a 

higher weight decay as shown in Figure 3.3. This approach helps the model to achieve 

faster convergence with limited computational power and reduced time. The proposed 

non-rigid architecture has a smaller, deep learning architecture and achieves 

comparable results.  
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WSI registration uses both rigid transformation and non-rigid transformation. The non-

rigid transformation is highly computationally inefficient and requires GPUs and large 

memory capacities. Furthermore, due to the complexity in the architecture, the model 

cannot be considered the optimal architecture for non-rigid transformation for WSI 

registration. The chapter works on the non-rigid transformation for WSI registration 

based on findings of prior research showed the need of addressing complexities in 

methods for non-rigid transformations [50]. This chapter introduces a smaller CNN 

structure for non-rigid transformations. A three-layer 2D CNN architecture is modified 

for super convergence. The super-convergence has shown to be able to train models 

faster with comparable results.  Reducing the learning rate and increasing the weight 

decay is a common method of achieving super convergence and by using large learning 

rates to regularise training and reduce other regularisation methods to balance the 

regularisation [50, 89].   

 

The simple CNN architecture uses less computational power and memory compared 

to the prior research outcome. The U-Net based model uses an encoder and decoder 

architecture which is highly computationally expensive and costly [50]. The 3-layer 

CNN architecture has an input of a 2D-CNN and output of a 2D-CNN with Relu 

transformation. The CNN is as shown in Figure 3.3.  The proposed architecture using 

Super Convergence is developed by using PyTorch. The non- rigid registration was 

implemented in a GPU. The non-rigid CNN architecture follows layers of 2D conv 

layer, pooling layer, dropouts with learning rate and weight decay. Furthermore, the 

batch size was reduced to 1. The deformation field from the CNN was extracted for 

the non-rigid registration. Furthermore, the affine registration step was simplified by 

reducing the fully connected layers. 
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Figure 3.3 - Improved non-rigid registration with 2D CNN which uses super 

convergence 

 

3.3.1 Dataset  

The ANHIR challenge dataset is used in the experiments. The challenge was created 

due to the complex deformations that occur in tissue samples after staining. The 

pathologists require to identify corresponding features of same WSI under different 

stains. Due to deformations, it becomes a tedious task. Therefore, the challenge aimed 

at developing automated methods which are accurate, fast and robust. The high-

resolution dataset consists of data from various organs in different stains. The original 

size of the WSIs varies from 15,000 ´ 15,000 to 50,000 ´ 50,000 pixels. 

The data is provided in different scales. The medium dataset consists of data with a 

scale of 20 – 25. The dataset consists of, breast, COAD, lung lobes, lung lesions, 

kidney, and mouse kidney. Each WSI is provided in several stains including, clara cell 

10 protein, prosurfactant protein C, hematoxylin and eosin, antigen KI-67, platelet 

endothelial cell adhesion molecule (PECAM-1, also known as CD31), human 

epidermal growth factor receptor 2 (c-erbB-2/HER-2-neu), estrogen receptor, 

progesterone receptor, cytokeratin, and podocin. For example, the breast tissue 

contains unstained adjacent sections stained with H&E and IHC with ER, PR and 

Her2-neu. 
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3.3.2 Experiments 

The breast cancer dataset consists of WSIs upto 40x magnification which has a average 

pixel size of 65,000 x 60,000. The experiments consisted of pre-processing, initial 

alignment and affine registration according to the methods followed by Wodzinski et 

al., (2021) [50]. Following steps were taken to pre-process the images. Image pairs 

were padded and converted to uncompressed .mha format. Once data are loaded 

images are converted to grayscale and down-sampled to 512 pixels to a lower 

resolution. These images are the input to the segmentation which then is input to initial 

transformation. The affine registration by a ResNet-like model is conducted before 

Nonrigid registration. A CNN with four layers is used for nonrigid registration. The 

Figure 3.3 demonstrates the steps of the method, including the CNNs architecture. The 

images after the affine registration are the input to the CNN to learn the features and 

deformations. 

 

The experiments were designed to demonstrate the capabilities of the proposed 

architecture to improve non-rigid registration mainly to reduce the complex 

architecture of model DHR_20 shown in Table 3.1 and Table 3.2. The experiments 

aim to explore the proposed simplistic model using super-convergence compared to 

the U-Net like architecture.  

 

Optimal model architecture was identified experimentally by comparing the CNN 

without dropout and CNN with dropout for regularisation. The effect of the concept of 

super-convergence is a crucial factor for faster convergence. Therefore, we have 

evaluated the effects of using low learning rates with high weight decay and high 

learning rates with low weight decay to the study the possibility of faster learning and 

model convergence. 

 

3.3.3 Evaluation 

The evaluation of the registration method was conducted by calculating the Target 

Registration Error (TRE) values and timing for registration (Equation 3). In TRE 

landmark coordinates are the xT and xW of the target and warped image and Euclidean 

distance is de(.). All TRE values are normalised by the image diagonal rTRE 

(Equation 4), where w and h are image weight and height respectively. Additionally, 

other parameters are, Average robustness, Average median rTRE, Average rank of 
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median rTRE, Average max rTRE and Average rank max rTRE, Average execution 

time measured in minutes. The results are calculated using the online submission 

evaluations of ANHIR challenge [21]. 

 

 

 

 

 

 

3.4 RESULTS  

The experiments were conducted to identify the effect of simpler CNN model for non-

rigid registration. The effect of dropouts and super-convergence were considered to 

achieve a comparable result at 10 epochs and exceed the performances at 20 epochs. 

A GeForce GTX 1080 Ti was used to conduct all experiments. Following are the 

nomenclature for the experimented models presented in the Tables 3.1 – 3.2.  

1. DHR - DeepHistReg – The model presented at ANHIR challenge [add ref] 

2. DHR2 - The DHR model trained for 20 epochs to compare the performance. 

3. BMC_ND - Proposed base model CNN instead of U-Net model. The proposed 

CNN is tested without adding Dropouts. 

4. BMC - Proposed Base Model CNN tested with dropouts  

5. HLLW1 - Proposed CNN model with super-convergence. High Learning Rate, 

Low Weight Decay trained for 10 epochs.  

6. LLHW - Proposed CNN model with super-convergence. Low Learning Rate, High 

weight Decay for 10 epochs 

7. LLHW1N - LLHW without Dropouts. 

8. HLLW2 - Proposed CNN model with super-convergence. High Learning Rate, 

Low Weight Decay (HLLW1) trained for 20 epochs. 

 

Feature extraction using a simpler CNN model compared to the U-Net like model used 

was one of the aims of the experiments. The benchmark results (DHR2 in red, Table 

3.1) at 20 epochs for the breast cancer data of ANHIR data were compared. The CNN 

without dropout (model BMC-ND of Table 3.1) showed higher TRE for training and 

testing TRE values and low robustness as Table 1 shows. Therefore, the model was 

tested with dropouts (model BMC of Table 3.1) due to over-fitting. Compared to the 

TRE=de (xtT, xtW) (3) 

rTRE=     TRE   

             √ w2+h2  

 

(4) 



 

Chapter 3: Non-Rigid Registration of Multi-Stained WSIs using Deep Convolutional Neural Networks with 
Super-Convergence 47 

benchmark results of model DHR2, the model with dropouts resulted in lower 

performances, but it showed an improvement compared to the CNN without dropout 

(BMC_ND). 

 

Table 3.1 - Overall performance for breast cancer data. DHR - DeepHistReg, DHR2-

DeepHistReg at 20 epochs, BMC_ND – Base Model CNN Without Dropout, BMC – 

Base Model CNN, HLLW1 – High Learning Rate, Low Weight Decay for 10 epochs, 

LLHW – Low Learning Rate, High weight Decay for 10 epochs, LLHW1N – 

LLHW10 No Dropout, HLLW2 – High Learning Rate, Low Weight Decay for 20 

epochs. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 DHR DHR

2 

BMC_N

D 

BMC HLL

W1 

LLHW

1 

LLHW1

N 

HLLW2 

Median-max-tre 0.018 0.380 0.406 0.392 0.421 0.396 0.382 0.365 

Avg-max-tre 0.021 0.385 0.402 0.386 0.401 0.393 0.374 0.368 

Median 

robustness 

1.0  0.924 0.810 0.794 0.632 0.871 0.810 0.897 

Avg robustness 1.0  0.560 0.512 0.553 0.516 0.558 0.550 0.567 

Median-median-

tre 

0.002  0.235 0.217 0.195 0.231 0.221 0.216 0.226 

Avg-median-tre 0.004 0.215 0.228 0.212 0.239 0.219 0.220 0.210 

Median-avg-tre 0.003 0.220 0.231 0.209 0.234 0.221 0.211 0.215 

Avg-avg-rtre 0.005 0.214 0.230 0.212 0.235 0.218 0.217 0.209 
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 Table 3.2 - Training and evaluation for Breast cancer data. DHR-DeepHistReg, 

DHR_20-DeepHistReg at 20 epochs, BMC – Base Model CNN, HLLW1 – High 

Learning Rate, Low Weight Decay for 10 epochs, LLHW1 – Low Learning Rate, High 

weight Decay for 10 epochs, LLHW10-ND – LLHW10 No Dropout, HLLW2 – High 

Learning Rate, Low Weight Decay for 20 epochs. 

 

 

Figure 3.4 - The Benchmark model's U-Net like model for non-rigid WSI registration 

 

 

 DHR 
DHR

2 
BMC HLLW1 LLHW1 

LLHW1

N 
HLLW2 

Median-max-tre 0.262 0.380 0.395 0.425 0.408 0.378 0.365 

Avg-max-tre-train 0.023 0.377 0.387 0.412 0.406 0.388 0.391 

Median-max-rtre eval 0.018 0.394 0.388 0.402 0.393 0.387 0.361 

Median-robust train 1.0 0.925 0.898 0.974 0.974 0.936 0.949 

Avg-max-tre-eval 0.021 0.387 0.386 0.399 0.389 0.371 0.362 

Avg-robust train 1.0 0.811 0.803 0.804 0.811 0.773 0.805 

Median-median rtre-train 0.007 0.235 0.175 0.254 0.215 0.216 0.229 

Avg-median-rtre-train 0.007 0.234 0.191 0.247 0.229 0.242 0.230 

Median-Average-rTRE-train 0.008 0.220 0.208 0.234 0.219 0.209 0.228 

Median-Robustness eval 1.0 0.451 0.414 0.241 0.522 0.485 0.534 

Average-Average-rTRE-train 0.008 0.231 0.206 0.237 0.226 0.242 0.233 

Average robustness eval 1.0 0.497 0.491 0.444 0.495 0.494 0.508 

Median-Median-rTRE eval 0.001 0.231 0.217 0.230 0.225 0.216 0.212 

Average-Median-rTRE-eval 0.003 0.211 0.217 0.237 0.216 0.214 0.205 

Median-Average-rTRE-eval 0.002 0.225 0.221 0.233 0.225 0.215 0.213 

Average-Average-rTRE-eval 0.004 0.209 0.213 0.234 0.216 0.211 0.203 
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Due to the drawback of benchmark method's model complexity and high training time, 

super-convergence was added to the CNN. We tested low learning rates and high 

weight decay and high learning rates and low weight decay to study the effect of faster 

convergence to the model performances. Both models showed an improvement. 

However, the model trained with low learning rates and high weight decay for 10 

epochs resulted in comparable results to DHR2 and at 20 epochs it (HLLW2 model 

text in red Table 3.1 and 3.2) could exceed the result of DHR2 (shown in red in Table 

3.1 and Table 3.2) 

 

3.5 DISCUSSION 

Non-rigid transformation is a computationally intensive task which requires a high 

computational power with multiple GPU cores. Addressing non-rigid transformations 

in WSIs is a key factor to improve registration performance, due to high deformations 

in the multi-stained WSIs. Therefore, non-rigid transformation is a key aspect to 

identify and address the transformations. The method proposed by Wodzinski et al., 

(2021) used a U-Net like architecture (Figure 3.4) which consists of an encoder and a 

decoder [50]. The authors specified the complexity of the non-rigid registration 

method as a limitation of the method. Identifying the non-rigid transformations require 

learning low-level features from both images to match similarities. Registering non-

rigid transformation requires complex models for high dimensional feature 

recognition. However, the practicality of using complex models in the digital 

pathology workflow for non-rigid transformations is low. Therefore, finding a solution 

which is not complex, and suits multiple stain types is an essential requirement.   

 

Importance of bridging the gap in translating DL models to the digital pathology 

workflow is increasing.  DL model architectures to learn specific features of a limited 

number of stain types limit the model’s generalisability to wider range of stain types. 

Therefore, smaller DL architectures learning abstract features, are sufficient to identify 

the required features for registration. Complex DL model architectures requiring high 

computational power to train high dimensional WSIs is another limitation handled by 

this chapter. Super-convergence is applied in the proposed approach for faster training 

of DL models. 
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The proposed model is a small CNN model that is capable of performing similar to a 

complex model's non-rigid transformation, with a lower number of epochs (Table 3.3 

and 3.4) Comparison against a U-Net like model has shown that the proposed 

architecture outperforms the U-Net model-based approach. Therefore, the smaller 

CNN architecture with super-convergence has shown to achieve similar results to the 

encoder decoder architecture.  

 

The improved model's TRE values are a result of the smaller CNN architecture which 

could extract similar features as the complex U-Net. The Table 3.4 shows the 

comparison of the two model architectures where the U-Net model has 11 layers and 

the CNN has 4 layers.  These features extracted from the smaller CNN architecture are 

sufficient for the non-rigid transformation which shows comparable results at 10 

epochs and exceed at 20 epochs. Therefore, adding a complex auto-encoder is not 

required to achieve high result that would consume higher computational memory. 

Furthermore, using super-convergence, the model is capable of converging faster to 

an optimal convergence. However, to understand and synthesise the simple model, 

multiple experiments had to be carried out.   

 

Initially, the CNN size was reduced and given a simple CNN architecture to understand 

the feature extraction capabilities and reduce the computational costs. Use of the CNN 

minimised the computational costs to train the non-rigid registration. However, the 

registration performance was lower than reported which. During the training 

procedure, overfitting was noticed, and therefore, dropout rates were introduced (Table 

3.1).  
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Table 3.3 - Shows an example of source and target images and the transformed image 

for benchmark method, CNN outcome before applying dropout and super-

convergence, and finally the transformation for the proposed model 

 

 

 
 
 
 
 
 
 
 
 
 

Transformed image 

Benchmark method 

 
Before applying dropout 
and super-convergence to 
the CNN 

 
Proposed improved 
model architecture  
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Table 3.4 – Comparison of the base model and proposed model architectures 

 

Non-Rigid Registration 
Network Base Model Proposed Model 

Model U-Net like 2D CNN 

No of layers 11 4 

Kernel size 3 3 

Stride 2 2 

Activation Function PReLU PReLU 

Dropout use - Ö 

 

 

 

 

Figure 3.5 - Overall performance for breast cancer data 
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Figure 3.6 - Training and evaluation for breast cancer data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 - Robustness of the proposed model 
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Table 3.5 - Comparison of time taken to register 10 pairs of WSIs. Base model and 

proposed model are compared. 

Sample  Time to register (Seconds) 
Benchmark model  Proposed model  

1 0.767 0.746 

2 0.759 0.730 

3 0.754 0.736 

4 0.811 0.762 

5 0.770 0.766 

6 0.791 0.774 

7 0.773 0.766 

8 0.784 0.764 

9 0.678 0.655 

10 0.762 0.747 

 

 

Use of dropouts handled the model over-fit, however the model did not train 

sufficiently. Therefore, super-convergence was introduced to let the model learn faster 

and adapt faster. This approach also, prevented the model from overfitting, but 

produced a higher result compared to the U-Net based model. Table 3.3 shows an 

example of the registered image pair of the benchmark method and the registered pair 

with the improved model.  

 

The Figure 3.5 and Figure 3.6 demonstrates the overall performances and training and 

evaluation performances of each model. The reduced error rates and improved 

performance using a simpler model is important as a sub-step in the cancer diagnosis 

process. 

 

Figure 3.7 further demonstrated the robustness of the models. The median and average 

values for the evaluation and training stages are comparable and improved with the 

use of super-convergence in a simpler model for generalised model outcome. Finally, 

the time for registration was evaluated. Ten sample pairs of the dataset are shown in 

Table 3.4 with the time spent to register each pair. Comparing the base model and the 

proposed model timing shows how the proposed model has reduced the time to 

register. The high robust model with lower error rates leads to time efficient 

registration of WSIs. 
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Therefore, it is evident that this approach is a simple and less complex approach 

compared with the U-Net-like auto-encoder. The introduced model is computationally 

less complex and dynamic to learn with only 10 epochs. 

 

3.6 CONCLUSION 

In this chapter, registration techniques for multi-stained WSIs are explored. The high 

deformations in WSIs require methods that are able to learn complex features in data 

to address the transformations. However, the non-rigid methods applied for WSIs are 

complex models requiring large amounts of data and computational memory which 

limit the translation of methods to the digital pathology workflow. Therefore, 

computationally efficient methods that are trained with the least number of labels or 

allow unsupervised training are needed.  

 

The present approach is a novel, improved, non-rigid registration method for multi-

stained WSIs. The results were improved with super-convergence by which the model 

converged faster as a technique to train a model faster. The improved method achieves 

improved results with a reduced number of training epochs using a simple CNN. Thus, 

the model is simplified as well as trains with faster convergence, which helps to 

translate the method to the digital pathology workflow. 
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 Improving Follicular 
Lymphoma Identification using 
the class of interest for Transfer 
Learning 

Among the leading deaths from cancer, Follicular Lymphoma (FL) is a type of 

lymphoma that grows silently and is usually diagnosed in its later stages. FL is the 

most common subtype of non-Hodgkin lymphomas. To increase the patients' survival 

rates, FL requires a fast diagnosis. While, traditionally, the diagnosis is performed by 

visual inspection of Whole Slide Images (WSI), recent advances in deep learning 

techniques provide an opportunity to automate this process. The main challenge, 

however, is that WSI images often exhibit large variations across different operating 

environments, hereinafter referred to as sites. As such, deep learning models usually 

require handling the variation of data from each new site. This is, however, not feasible 

since the labelling process requires pathologists to visually inspect and label each 

sample. In this chapter, we propose a deep learning model that uses transfer learning 

with fine-tuning to improve the identification of Follicular Lymphoma on images from 

new sites that are different from those used during training.  Our results show that the 

proposed approach improves the prediction accuracy by 12% to 52% compared to the 

initial prediction of the model for images from a new site in the target environment. 
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4.1 INTRODUCTION 

Follicular Lymphoma (FL) is one of the common B-cell non-Hodgkin lymphomas 

[90]. It frequently presents at a late clinical stage as painless lymphadenopathy, with 

symptoms often only appearing after its transformation to more aggressive forms [91]. 

Accurate and early diagnosis is a critical step as it could improve chances of survival 

[92]. However, the current diagnostic procedure is time-consuming and requires expert 

knowledge and multiple reviews before finalising the decision [36]. With the 

increasing number of new cancer cases being identified [93], the diagnosis process 

becomes even more challenging.  

 

WSI led ML techniques applied to digital pathology [7] DL,  in particular, has achieved 

high performance in many applications due to its capability to learn the features that 

are best-suited for the application at hand [7, 8, 18, 94]. However, using DL for the 

analysis of histology images is challenging due to the lack of labelled training data. 

This has motivated research towards developing supervised learning techniques that 

require a minimal number of labelled data [15, 95].  

 

This generalisation problem for data from new sites has been addressed by using pre-

processing techniques [7] e.g., by grayscale conversion, colour normalisation, and 

colour augmentation,  or classification algorithms [61], to minimise variation in the 

data [7]. Grayscale transformation can result in a loss of important features compared 

to colour representations. Colour normalisation techniques, which match the colour 

distributions of the source and target domains, are domain-specific [7] and thus require 

extensive tuning to accommodate variations in data from different sites [98]. These 

techniques do not perform well on data from a new site as they are developed 

specifically for the data sites used in training.  Therrien et al., (2018) focus on the effect 

of improving the variation of data used for training by comparing models trained with 

data from a single site and multiple sites [99]. They showed that a model trained with 

multiple sites generalises better to data from an unseen new site compared to a model 

trained with a single-site data.  

 

Since these techniques are specific to the model and datasets on which they have been 

trained, they do not perform the same on a new test dataset coming from a new site 
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[26]. Thus, the possibility of re-using a deep learning model trained on one site is 

limited, especially since some labelled data of past research are not available to the 

research community [15]. This degradation in performance raises the need to re-train 

them with a large amount of labelled data from the new site, which is not practical in 

the pathology context [100]. In fact, to create labelled datasets, pathologists need to 

visually inspect and manually label WSIs for each class. This is, however, time 

consuming and can incur a high financial cost.  

 

This chapter explores the possibility of using a small dataset from a class of interest to 

train deep learning algorithms for FL detection from WSI images. Present research is 

a method to reduce the need for a large amount of labelled data by training a classifier 

for FL in a target environment. In this approach, a pre-trained AlexNet model fine-

tuned using a publicly available Lymphoma dataset is combined with another smaller 

sample of a private dataset of the FL class obtained from a new site [98]. This method 

has shown an increase the accuracy to up to 100% on the private dataset compared to 

the 58% accuracy achieved in the conventional method. This new approach requires a 

small amount of labelled training data from the class of interest to improve the 

performance on data from a new site. As such, the proposed solution reduces time, 

effort, and costs incurred for accurate diagnosis. 

 

4.2 BACKGROUND 

Lymphomas, the most common type of cancers, have more than 38 sub-types. The 

current cancer diagnosis procedure requires experts to closely study each sample for 

each cell to identify abnormalities. This process is time consuming and requires expert 

knowledge [101]. This raises the need for research in lymphoma identification with 

faster and accurate diagnosis [100]. The use of glass slide samples was a barrier for 

early research using image processing techniques in the pathology domain. Later, the 

introduction of WSIs bridged the gap between histology glass sample diagnosis and 

digital image processing. 

 

Traditionally, image processing techniques have been used to extract hand-crafted, 

e.g., morphological, and textural, features. These are then  combined with machine 

learning techniques, to support Lymphomas diagnosis [18] and to identify 
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abnormalities [102]. These techniques, however, require domain-specific knowledge 

from pathologists [100]. Also, the performance of traditional machine learning 

techniques heavily depends on the type of features they use [16]. The use of 

inappropriate features may lead to under-performing  models [24].  

 

Deep learning, which has been introduced to avoid the high dependency on feature 

engineering,  is capable of learning the most suitable features from  training data [36]. 

They  have been recently applied to digital pathology [24, 103]. and have achieved 

promising results [103]. For instance, Janowczyk et al., (2016) utilise one model 

architecture for seven different tasks by only changing the patch selection technique 

[98]. Another research proposed an automated diagnosis for lymphoma using a deep 

learning model which achieves an overall of 95% prediction accuracy [104]. Deep 

learning models, however, are successful when a large amount of labelled data is 

available. As such, the performance on histology data is not as impressive as for natural 

image datasets, mainly due to the lack of accurately annotated training data. 

Consequently, techniques that require limited amount of labelled data are receiving 

increasing attention from the community [7]. TL is a popular method which requires a 

limited number of labelled data. 

 

TL is capable of transferring knowledge from a source domain to a target domain and 

it leads to a decrease in the number of labelled data required from the target domain. 

In TL models, shallow features are generic features and deep features are specific to 

the domain [95]. The shallow features are not specific to the source domain or dataset. 

Thus, these features are applicable to different and new tasks and datasets. Features 

learned in the deep layers are specific to the task. A base network is first trained with 

source data and the weights of the network are transferred to train on a target dataset. 

The transferred features include the shallow features which are common to any type 

of image dataset [95]. Initialising networks with features of pre-trained networks 

improve the performance compared to random initialisation [96]. 

 

TL has been commonly applied as a feature extractor with fine-tuning pre-trained 

models. The ImageNet dataset has been commonly used as the source dataset in most 

TL based models [42]. The differences between the source domain and target domain 

affects the performance of TL. Therefore, identifying the differences between the 
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domains is important. Cheplygina et al., (2019) discuss TL in medical domain based 

on the difference or similarity between the source and target domains and tasks [15]. 

There are three possible ways that the domains and tasks can be similar or different as 

follows. First is the same domain and different task option in which multiple tasks for 

the same dataset is conducted. Second is the different domain and same task option, 

which resulted by differences in data acquisition procedures and the use of different 

scanners at different data sources. Third, is the different task and different domain 

scenario where a source task is used to pre-train a network, which can be as a feature 

extractor for a classifier, or for fine-tuning to the target task [15].  

 

In the second combination as described before and presented by Cheplygina et al., 

(2019), different domains and same task resulted from different procedures followed 

at different sites raise the need to investigate ways of adapting the trained models to 

new sites [15].  Prior research conducted for medical imaging data have shown the 

effect to the DL performances for data from new sites. Segmentation for MRI data 

from different scanners which result in different data distribution due to appearances 

and populations in images have been studied [15]. In ultrasound images, the absence 

and presence of blood flow will be assessed based on the type of scan. The following 

research has focused on techniques that learn features from multiple sources [26]. 

However, these models generalise poorly to data from a new site that has not been 

included in the training [97]. Findings by Zech et al., (2018) from a research conducted 

on generalisability of Convolutional Neural Networks (CNN) shows that CNN 

performance on test data from sites used to train the model overestimates performance 

on another site [97]. In pathology, re-training models for new sites are infeasible since 

labelling data is an obstacle, which requires time and domain expertise. The effect of 

pre-processing techniques including normalisation have shown an improvement in 

generalisability [7]. It has been investigated in past research for models with multi-site 

data. These techniques are heuristic and specific to the domain [105].  

 

Techniques to improve generalisability in models either increase the variability in data 

or minimise the differences between the source data and target data. Increasing the 

variability requires adding more data to the dataset which captures the variations in 

data. Data from different sites can be included to capture a higher variation [97]. In 

pre-processing approaches, increasing the variation can be achieved through 
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augmentation or by adding new data from the target domain. In order to minimise the 

differences between the data, Komura et al., (2018) use pre-processing techniques such 

as normalisation [7]. This process is specific to the task conducted and may not 

perform well for new data from new sites. In TL approaches, models aim at achieving 

optimal learning from a minimal amount of data from the target domain. The sameness 

or the difference between the source domain and target domain affects the 

performance. Achieving the capability of handling the variation in data from a minimal 

amount of data is beneficial to the research. 

 

This chapter addresses the generalisation problem of deep neural networks for 

Lymphoma diagnosis.  In particular, different approaches to improve generalisation 

were explored by using a small amount of labelled data for one class from a new data 

site. To minimise the amount of labelled training data required, the chapter also 

investigates the effects of pre-processing, specifically augmentation and histogram 

equalisation on the generalisation to new sites. 

 

 

 

Figure 4.1 - Proposed model. The input to the pre-trained model is created by 

combining data from the class of interest from site 1 and site 2. 
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4.3 METHODOLOGY 

The method is presented for binary classification using models trained from scratch 

and pre-trained models.  

 

4.3.1 One Class Joint Classification 

This chapter focuses on using a very small amount of data from the class of interest of 

a new site. The class of interest is usually the positive class in a binary classification 

problem. The data with cancer cells is the class of interest in a classifier differentiating 

normal cells and cancer cells. Figure 4.1 illustrates the proposed TL by fine-tuning 

method, which is to combine a small amount of data from the class of interest of a 

second site to the first site's class of interest. Five hundred image patches from the 

class of interest of site two are combined with site one’s class of interest. 

 

- Training Pre-trained model 

The pre-trained model is trained under two options of domain and task combinations 

presented by Cheplygina et al., (2019) [15]. 

 

1. Different domains and different tasks 

Different domains and different tasks option is followed when the source domain and 

the target domain are different, and the source task and the target task are different. 

The pre-trained model is experimented by using the ImageNet dataset [42], which is 

composed of natural images, and for the source dataset and it’s fine-tuned to a target 

dataset from histopathology. 

 

2. Different domains and the same task 

Second, the different domains and the same task option is followed when the source 

task and the target task are the same, but the source domain and the target domain are 

different. According to Cheplygina et al., (2019) two domains are considered different 

when the data from the source and the target are provided by different sites, which 

leads to differences in the data distributions due to different slide preparation and 

scanning procedures [15]. Datasets from two different sites are used for the 

experiments. The second dataset is from a new site which consists of a small number 

of images from only the class of interest 
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- Training models from scratch 

These models are first trained on data from the first site. Then, the models are re-

trained with a dataset created by combining the first site's dataset with one class dataset 

from the new site. 

 

4.3.2 Data Augmentation and Histogram Equalisation 

Augmentation by adding variations to the data or by minimising the difference 

between the datasets are performed during pre-processing to improve performance. 

The proposed approach compares the effect of augmentation and histogram 

equalisation as steps to add variation and minimise the differences between the two 

sites. Augmentation is conducted by flipping and rotation to add variation. The colour 

contrast variations in the two datasets were minimised by performing histogram 

equalisation.  

 

The outcomes of these pre-processing steps are compared with the outcome of models 

by training models with the combined dataset of the first site and the second site. This 

was to identify how the data variation from the one-class data of the second site 

affected the generalisation performance towards the testing data from the second site. 

 

4.4 RESULTS AND DISCUSSION 

4.4.1 Datasets 

In this chapter, two datasets acquired from different sites were considered.  

 

1. Dataset 1  

Experiments were conducted based on a publicly available datasets for Lymphoma 

subtype classification [98]. The dataset created by National Institute on Aging (NIA) 

includes three subtypes of lymphoma: FL, Chronic Lymphocytic (CLL), and Mantle 

Cell Lymphoma (MCL). The images are Hematoxylin and Eosin (H&E) stained, and 

the data were gathered from multiple sites to add high staining variation to the dataset. 

The dataset consisted of 374 images of size 1388*1040. The number of images 

belonging to three classes were 113 for the CLL 139 for the FL and 122 for the MCL. 
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The images were split into non-overlapping patches of 227*227. This chapter focussed 

on classifying FL, the MCL and CLL classes were combined to generate the negative 

class which is defined as Non-FL class. 

 

2. Dataset 2  

The second dataset was provided by PathWest Laboratory Medicine WA. It included 

three H&E stained WSIs, scanned using the Aperio WSI scanner. Experienced 

pathologists labelled the images for the FL class, which was the class of interest. ROIs 

were extracted, and non-overlapping patches of 227*227 were created as it is the 

standard input size for the model (AlexNet) to be applied to. The patches that contained 

more background were eliminated from the dataset. Patch extraction was performed 

by using Distinct Block Processing from the blockproc function of Matlab's Image 

Processing Toolbox. A blind test set containing 213 image patches from this dataset 

had been created for the experiments. The models trained with dataset 1 were tested 

with the blind test set from dataset 2. 

 

Since these datasets belonged to different sites, their distributions were significantly 

different. The variations resulted due to the slide preparation procedures and scanning 

equipment led to differences in the data. Further, different structural variations were 

also present in the two datasets (Figure 1.4) The histogram information from the two 

datasets showed the intensity ranges of the images vary. Figure 4.2 shows the first 

site's dataset and second site's dataset histogram for the RGB colour space. The first 

site dataset showed a high frequency compared to the second site. The differences in 

the datasets were caused by the differences in slide preparation and scanning 

procedures at the sources. This led to different distributions in the data. As such, deep 

learning techniques did not perform well for a blind test set from a new site. 
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Figure 4.2 - Variations in the histograms for the data from the two sites. TOP: 

The histogram variation for both datasets. MIDDLE: The colour histogram in 

RGB colour space for the first site, BOTTOM: The colour histogram in RGB 

colour space for the second site. 
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Table 4.1 - The parameters for the trained models 

 

 

 

 

 

 

 

 

 

 

 

4.4.2 Model Architectures 

Three models were implemented. Their parameters are summarised in Table 4.1. 

 

1. Model 1 Pre-trained model.  

The AlexNet pre-trained model is trained on the ImageNet dataset consisting of 1000 

classes of natural images [41]. The model was fine-tuned incrementally to identify the 

level of fine-tuning required for the dataset as suggested by Tajbakhsh et al., (2016) 

[41]. Five-fold cross-validation was conducted in all the experiments. Experiments for 

both different tasks and different domains approach and different domains and same 

task approach were conducted to understand the effect on generalisability to data from 

different sites. 

 

2. Model 2 - Trained from scratch. 

 The model architecture of CIFAR AlexNet was applied to the dataset released in [16]. 

was used in the experiments. Five-fold cross-validation was used in all the 

experiments.  Table 4.1 shows the model parameters. 

 

3. Model 3 - Trained from scratch. 

The performance of fine-tuned AlexNet pre-trained model was compared with the 

same architecture trained from scratch. Five-fold cross-validation was conducted in all 

experiments. 

 Model 1 Model 2 Model 3 

Input size 227*227 227*227 227*227 

Learning rate 1*10-6 1*10-6 1*10-6 

Dropout 0.5 0.5 0.5 

Epochs 100 100 100 

Batch size 128 15 128 
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4.4.3 Experiments 

The following experiments were conducted to study the generalisability of high 

performing DL models.  

1. The pre-trained model was fine-tuned with 6 layers for the dataset from first 

site and the models to be trained from scratch were trained with data from 

the first site.  

2. The experiments were conducted to identify the effect from data 

augmentation and histogram equalisation. The dataset from the first site was 

augmented to study the effect of augmentation. 

3. Histogram equalisation was applied to the dataset from site 1. 

4. Both augmentation and histogram equalisation were performed to the first-

site dataset.  

5. The three models were tested with a blind test set from the second site. The 

accuracies for the blind test were compared. 

Further experiments to study the effect of combining data from the second site were 

conducted. Five hundred image patches from the class of interest from the second site 

were combined with the first site's class of interest. Then, the above listed experiments 

were conducted to the models by training with the combined dataset. The effect of 

joining a small amount of data from the class of interest with the effect of augmentation 

and histogram equalisation was studied. The study aimed to identify the possibility of 

limiting the required labelled data only from the class of interest. 

 

Table 4.2 - Incremental fine-tuning with dataset1 to identify the optimal level of fine-

tuning. 

 

No of FC layers Replace 1 Replace 2 Replace 3 

Test set - Site 1 97.2 97.4 89.8 

Blind test set - Site 2  35.0 58.0 54.0 
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Table 4.3 – Accuracy % for test sets from site 1 and blind test set from site 2. 

 

 

 

 

 

 

4.4.4 Fine-tuning level for transfer learning 

The experiment was conducted to identify the optimal fine-tuning level required for 

pre-trained AlexNet to be applied in further experiments (Table 4.2). The experiment 

was conducted with a training on a dataset from the first site with five-fold cross 

validation. It showed that the performance increases when fine-tuning up to two fully 

connected layers but fine-tuning three or more fully connected layers showed a 

decline. Models learn the low-level features in convolutional layers from the ImageNet 

data, and high-level features were learned in the fully connected layers from dataset 1. 

The performances for the first site's data are evaluated using accuracy for a test set 

from the same site's data and a blind test set created from a new site (Table 4.3) This 

experiment followed fine-tuning by replacing layer by layer from the last fully 

connected layer upwards. For this model, the optimal level of fine-tuning was two 

fully-connected layers.  

 

4.4.5 Comparing models from scratch and transfer learning 

The experiments were conducted to identify the generalisability of the models. The 

models were trained and tested on Dataset 1 to compare the accuracy. The models 

achieved high accuracy for the dataset 1's test set. Compared to performances on 

Dataset 1, all models underperformed on predicting the unseen Dataset 2 from the new 

site. The dissimilarity in the datasets created a high generalisation gap to Dataset 2. 

Though the domain and task of both datasets were similar, differences in image 

acquisition tools and techniques affected the features, intensity, and proportion of data. 

 

Test set Model (1) % Model (2) % Model (3) % 

Test set - Site 1 97.4 96.58 92.02 

Blind test set - Site 2 58.0 67.0 46.0 
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4.4.6 Effect of augmentation and histogram equalisation.  

The effect of augmentation and histogram equalisation in the dataset from a new site 

were explored (Table 4.4 - Predictions for Dataset 2, Trained on Dataset 1). Predictions 

for the default state of dataset 1 had decreased with augmentation in some instances. 

Through augmentation, a model was given an increased number of samples with 

different views. This specialised the model to learn the training dataset better and 

results in overfitting, which led to a poor generalisation to the unseen dataset 2. 

Comparison of the datasets showed different variations in histograms due to 

differences in the acquisition procedures at the two sites. Thus, the effect of histogram 

equalisation on generalising the models were tested. The outcome showed a high 

increase in predictions. Both pre-trained and models from scratch showed an 

improvement by applying histogram equalisation, which minimised the gap between 

the datasets. This proved that a main cause for the dissimilarity in the datasets was due 

to intensity differences in procedures followed at different sources. Applying 

augmentation and histogram equalisation eliminated the negative effect of 

augmentation in some instances (models trained from scratch). The pre-trained 

AlexNet model did not show a negative effect from augmentation due to the 

transferred weights. 

 

4.4.7 One class joint training 

The aim of this experiment was to improve generalisation accuracy for a new site when 

a small number of images from the class of interest (Dataset 2) was joined with Dataset 

1's class of interest (Table 4.4 - Trained on Dataset 1 and Dataset 2). The performance 

was studied comparing the effect of augmentation and histogram equalisation to 

Dataset 2, which was jointly trained with Dataset 1. Significant performance 

improvement was seen in adapting a model to data from a new site. The models 

resulted in high improvement in predictions recovering the initial generalisation gap 

in the range of 12% to 52%. Histogram equalisation on dataset 2 did not add a benefit 

compared to the improvement achieved by augmenting data. Dataset 2 benefitted by  
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Table 4.4 - The pre-trained AlexNet improved performance for dataset 2 after 

combining a small amount of data of the class of interest. The Table shows the 

improved accuracy for the blind test set of dataset 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.5 - Effect of augmentation and histogram equalisation to predict blind test set 

from site two 

 

 

 

 

Predictions for site 2 (blind test set). Trained with site 1  

Dataset1 Model (1) Model (2) Model (3) 

Default 58.0 67.0 46.0 

Augmented 48.0 62.0 48.0 

Histogram equalise 85.0 96.0 99.5 

Augmented and 

histogram equalise 

88.0 93.0 85.0 

 

Predictions for site 2.  Combined Training with Site 1 and site 2 

Dataset2 Model (1) Model (2) Model (3) 

Default 100.0 97.0 100.0 

Augmented 100.0 100.0 100.0 

Histogram equalise 95.0 100.0 98.0 

Augmented and 

histogram equalise 

97.0 97.7 100.0 

98.1% 99.9% 100.0% 
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Table 4.6 - The table shows the time taken to fine tune pre-trained AlexNet model 

and AlexNet trained from scratch 

 

 Pre- AlexNet AlexNet trained from 

scratch 

Time taken for 

training 

51 min 11 sec 196 min 30 sec 

Epochs 100 100 

Hardware  GeForce GTX 1080 Ti GeForce GTX 1080 Ti 

 

augmenting small amount of FL data by adding a higher variance to the training. Both 

pre-trained and models trained from scratch could predict test images by only joining 

five hundred images of the class of interest, which minimised the differences between 

the datasets.  

 

TL by fine-tuning was capable of training in less than half the time compared to the 

models from scratch, which would be beneficial when adapting a model. TL by fine-

tuning had been trained by fine-tuning the last two fully connected layers with the joint 

dataset. Transferred weights from the ImageNet data and minimal training cost for 

fine-tuning results would be the best option for the generalised model for the new site.  

Table 4.6 shows examples of identification from Dataset 2. The proposed method 

proved that a small amount of labelled data of the class of interest would be sufficient 

from a new site for generalisation, which helps to improve the use of artificial 

intelligence in pathology. 

 

4.5 CONCLUSION 

In this chapter, a technique is proposed to utilise a small amount of labelled data from 

the class of interest at the new site to improve the Follicular Lymphoma identification 

at the new site. The differences caused by the sample preparation process and data 

acquisition procedure at new sites would normally cause the prediction accuracy to be 

affected at the new sites. This leads to the need for a large amount of labelled data 

from the new site to train better models. The complexities in the labelling procedure 

challenges the establishing an accurate model at the new sites. The proposed model in 
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this chapter would help to deal with the problem of needs for large amount of labelled 

data at the target sites. Experiment results showed that promising results could be 

obtained by combining only five hundred image patches from the class of interest of a 

new site. 
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 The use of Generative 
Adversarial Networks with 
Multi-site data in One-Class 
Follicular Lymphoma 
Classification 

Recent advances in digital technologies have lowered the costs and improved the 

quality of digital pathology WSIs, thus opening the door to apply ML techniques to 

assist in cancer diagnosis. DL has produced impressive results in diverse image 

classification tasks in pathology, but the uptake of ML as a diagnostic tool in digital 

pathology workflow remains limited. A major obstacle is the insufficient labelled data 

for training neural networks and other classifiers, especially for new sites where 

models have not been established yet. This has multiple causes including the cost and 

time required for domain experts to manually segment regions of interest in WSI, in 

the relatively small archives of WSI available within many pathology institutions. 

There are other causes such as the limitations of generalising learning from public data 

sets of WSI that are often significantly larger than local WSI archives, the class 

imbalance problems that can arise with pathology data sets, and the differences in WSI 

from different sites due to variations in tissue staining and digital scanning techniques. 

Until these obstacles are overcome, it is unlikely that pathologists will be able to 

leverage the full potential of DL in their workflow. Recently, image synthesis from 

small, labelled datasets using Generative Adversarial Networks (GAN) has been used 

successfully to create high-performing classification models. Considering the domain 

shift and complexity in annotating data, in the present study, an approach based on 

GAN that minimised the differences in WSI between large public data archive sites 

and a much smaller data archive at the new sites was investigated. This approach 

allowed the tuning of a deep learning classification model for the class of interest to 

be improved using a small training set available at the new sites. The approach utilised 

GAN with the one-class classification concept to model the interest data, which 

minimised the need for large amounts of labelled data from the new site needed to train 

the network.  
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The GAN generated and synthesised one class WSI images were used to jointly train 

the classifier with WSIs available from the new sites. In this chapter, the proposed 

approach for follicular lymphoma data of a new site were tested by utilising the data 

archives from different sites. The synthetic images for the one class data generated 

from the data obtained from different sites with minimum amount of data from the 

new site resulted in a significant improvement of 15% for the area under the curve 

(AUC) for the new site that was needed to establish a new follicular lymphoma 

classifier. The test results have shown that the test site classifier could perform well by 

utilising GAN to generate synthetic data from existing data of test sites’ archives 

without obtaining large training datasets. 

 

5.1 INTRODUCTION 

Cancer is the second leading cause of death worldwide. The World Health 

Organisation (WHO) reported 18 million worldwide new cancer cases in 2018 [8]. The 

reports for commonwealth nations stated a 35% increase of new cases between  2008 

and 2018, with nearly 1.7 million deaths in 2018 [106]. Follicular lymphoma (FL) is 

the most common subtype taking up to 20% - 25% of non-Hodgkin lymphomas. It is 

crucial to diagnose FL early due to slow growth symptoms shown in later stages [107]. 

Medical imaging is an essential tool for diagnosis of cancer and cancer research [28, 

108, 109]. 

 

DL has shown promising performance in pathology, for classification, segmentation, 

object detection and registration tasks using WSIs and offering opportunities to 

improve the efficiency and accuracy of pathology diagnosis [18, 108, 111, 112].  

However, there are key differences between radiology and pathology images which 

challenge the translation of DL techniques from one domain to the other [14, 113]. 

These differences include but are not restricted to the following. 

 

1. The large dimensions of WSI that requires them to be partitioned into large number 

of patches to use in classification, with partitioning required at both low and high 

magnifications due to the different features presented at different levels; this 

presents significant computational challenges.  
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2. The requirement for image-level as well as pixel-level labelling for grading and 

localisation in WSI data and for cell-wise classification via cell-level labelling to 

train DL models, which requires time-consuming and expensive involvement of 

domain experts [114]. This reflects the pyramidal nature of WSIs which comprise 

multiple levels with different dimensions containing different types of important 

features for diagnosis. 

3. The significant variation in WSIs between sites are due to differences in tissue 

preparation steps such as sectioning, staining scanners as well as different scanning 

procedures [108, 113, 115, 116]. These variations cause many trained models to 

generalise poorly to data from new sites. Additionally establishing new models for 

different new sites which required a large amount of ground truth data from the 

sites [28, 108, 117]. 

4. The time and specialised domain knowledge required to label data in pathology, 

are more complex when compared to other medical image types [118]. Images 

often portray different types of diseases of non-standardised appearance 

representing large number of pathological abnormalities that require highly 

specialised domain knowledge, which is a challenge that pathologists can only deal 

with after years of specialised training [28, 53].   

5. Requirement of methods to handle the paucity of large labelled pathology data sets 

and small data sets from new sites have not captured the wide variance in clinical 

samples [15, 22, 118]. 

 

To minimise the adverse effects of small data sets on network performance in 

pathology, transfer-learning (TL), weakly supervised classification and the use of 

synthetic data using Generative Adversarial Networks (GAN) have been used  [15, 

119]. These techniques address the numerically small size of datasets but still they 

must deal with variation in pathology data from different sites or hospitals due to the 

differences in imaging technologies and staining processes discussed above. This 

problem could be addressed by normalising data to minimise the difference in data 

distribution and/or increasing variation in local datasets [26, 69]. The combination of 

these approaches has shown to better improve classification [27, 120, 121].  

 

In the normalisation approach, all the data are normalised into one style for training. 

Normalisation techniques differ between datasets, and suitable normalisation 
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techniques must be identified for each different dataset depending on the desired 

applications [7]. Three main types of methods have been used to handle stain 

differences; colour matching techniques that match colour to a reference template 

image, stain-separation methods that normalise each channel independently, and pure 

learning-based techniques including GAN that handle the problem as a stain transfer 

method. Learning-based methods reduce the drawbacks of colour matching, which can 

lead to improper colour mapping due to the use of the same transformation across the 

datasets, and are superior to stain-separation techniques, which do not consider spatial 

features of tissue [59]. However, learning as a style transfer technique is 

computationally expensive and this barrier has prompted a search for computationally 

simpler solutions to handle the stain differences in WSIs especially for different sites. 

The variance approach to small datasets attempt to increase the variance captured by 

the data set and modify the data distribution [26].  This could be achieved by adding 

more labelled data if sufficient domain experts are available to assign labels. If not, 

techniques such as TL and GAN that use minimal labelled data can be explored.  

 

TL has shown promising results in pathology [122, 123]. In TL, models trained on a 

source dataset are adapted to a target dataset either by using the pre-trained model as 

a feature extractor or by fine-tuning the pre-trained model to the target dataset [15]. 

TL based methods for WSIs have proven to improve performance using a smaller 

dataset [22]. However, the investigations of the impact of TL used for new sites with 

limited labelled data and the impact of using data from multiple sites are not well 

reported. Prior research presents an approach to fine-tune a pre-trained model using 

data from the class of interest of a new site trained with a dataset from another site. 

This reduced the need for labelled data from the new site [122]. However, the approach 

reported in the paper [31] would lead to overfitting at if insufficient data are available 

for training. If limited labelled data are available and the training models consist of 

millions of parameters, steps should be taken to perform thorough evaluations with 

testing data which captures the data distribution. Therefore, this chapter investigates 

the possible use of GAN to generate more data for the new site. 

 

Recent research on using GAN for WSI has shown the value of generating realistic 

synthetic data to increase the labelled data for classification [118, 119]. Where a class 

imbalance exists, the one-class classification approach can be used [124], and this 



  

Chapter 5: The use of Generative Adversarial Networks with Multi-site data in One-Class Follicular Lymphoma 
Classification 77 

focuses on developing non-target data in order to perform binary classification. One-

class classification has been discussed in medical image classification and has shown 

promising results in multiple domain areas, although relatively limited research has 

focussed on histology image processing [124, 125].  

 

Apparently, GAN for one-class image classification for WSIs has limited 

investigations. Therefore, the chapter investigates the GANs influence in the one-class 

classification tasks by creating synthetic data for the labelled one-class data in the 

private dataset. To classify one-class new site data, the multi-site dataset’s negative 

class is passed down as non-target data for classification. The use of limited one-class 

data from new sites with GAN significantly contributes to reducing the differences in 

data distributions of different sites and the resulting generalisation problem. The 

performance of the classification showed promising improvement in the generalisation 

by using one-class data without needing to retrain models for the new site.  

 

5.2 GANS FOR DIGITAL PATHOLOGY  

GANs have attracted much attention recently and have been used in the medical 

imaging domain [118]. GANs have also been applied to be used for WSIs, in the areas 

of augmentation, segmentation, virtual staining, stain normalisation and stain style 

transfer [54, 59, 119]. 

 

The most common application in pathology is to eliminate the stain differences in WSI 

data, and there is a growing interest in using GAN to produce synthetic images to 

increase the amount of data to train the DL models [56, 118, 119]. This application 

addresses a specific issue in pathology, which is that images with small and large 

amounts of positive features will both be classified as positive by a pathologist, in 

contrast to general domains which have distinct classes. A method based on 

CycleGAN has been used to augment positive samples by translating easy-to-classify 

samples into hard-to-classify samples [26, 69]. GAN as an image translation method 

has been proposed with a Conditional Generative Adversarial Networks (CGANs) for 

histopathological to immunofluorescent image translation [126]. Preliminary 

investigations show that GANs could be used to handle inter-site differences in WSIs 

was developed in which discriminative knowledge from a source domain was 
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effectively transferred using a Siamese network [127]. The study investigated colour 

normalisation and adversarial training to adapt knowledge from the source domain to 

the target domain, with significant improvement. However, the authors also mention 

the drawback of two-step training, the effects of using higher number of samples and 

different complexities of models. The method also depends on the reference images 

used and the normalisation techniques applied to the images. Improving generalisation 

through staining invariant features is another approach to improve classification using 

CNNs [53]. Colour normalisation and colour augmentation have been investigated to 

address the inter-site differences in WSIs. Furthermore, in the instance when there is 

only one-class WSIs available, which are from the class of interest, the classification 

is challenged [66].  

 

An additional problem experienced across imaging domains is the class imbalance that 

can arise due to numerical imbalance between the positive class (e.g., cancer) and 

negative class (not cancer). Cancer in medical data is often the minority class due to 

various factors including the relative paucity of cancer tissue compared to normal 

background tissue, the complexity of labelling small regions of cancer (often single 

cells) and the lack of openness of medical domains. Auto-labelling techniques are 

preferred as a method to handle the cost of the labelling problem. However, in 

unsupervised techniques, there is no constraint on the boundaries of the clusters, which 

may fail to provide the accurate segmentation of regions of interest at the pixel level 

required to develop models [128].  

 

One-class classification has been applied as a learning-based technique using positive 

and unlabelled data, a novelty and outlier detection technique and a one class support 

vector machine (SVM) based technique [66, 124]. The limitations of a one class 

approach has been studied [129]. This includes the tendency of pathologists to label 

images at the whole-image level regardless of how much cancer is present in the image, 

whereas in natural image domains the images usually have a distinct label [26, 69]. 

Therefore, annotations in the images of class of interest are important to train models 

to assist diagnosis. Much research of deep learning-based techniques and many 

shallow learning techniques explores the novelty/outlier detection technique. This 

method focuses on artificially created outliers for binary classification along with the 
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labelled positive data. The target dataset given to the models should capture the high 

variability in the distribution to support classification with the artificially created class.  

Inspired by the prior research for the one-class data problem in other domains, this 

chapter uses the one-class data as a solution to minimise the required amount of 

labelled data. Models trained only with a small one-class dataset from a new site 

decrease the need for a large number of labelled data from the new site [122]. In WSIs, 

the class of interest has minimal labelled data. Due to lack of generalisation, it is not 

feasible to directly transfer a model trained with one site’s data to another site’s data. 

Therefore, to improve the performance of models, we suggest that the one-class dataset 

can consist of small amount of data from the class of interest. Limited research focuses 

on using one-class data to handle the lack of labelled data while handling WSIs from 

different sites. The chapter introduces a solution to address the limitations in labels 

and differences in data from different sites in WSIs.  

 

5.3 METHODOLOGY 

5.3.1  Overview of the Proposed Structure  

Figure 5.1 presents the overview of the proposed architecture to learn from the new-

site’s WSIs. Figure 5.2 shows the combination of one-class data from a new site and 

multi-site data. The proposed architecture supports: 

- The use of one-class data and GAN to effectively minimise the need for labelled 

data from new sites. 

- Minimising the distribution difference on the WSIs from multiple sites and the new 

sites. 

 

In the proposed approach, a GAN is used to create new data points for synthetic one 

class WSIs patches. These synthetic patches are generated for the new Site (S_2) which 

has minimal number of labelled WSIs. The Classifier combines WSIs' patches from n 

sites (MS_1) and the new site S_2 which improves the differences of the distribution 

of WSIs. The GAN generates synthetic data for the new site.  Therefore, the classifier 

is more generalised to classify WSIs from different sites. 
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5.3.2 Using GAN to Increase the Number of Patches for New Site 

GANs are based on two CNNs trained as a generator and a discriminator. The network 

for the generator learns the distribution of the real images to generate new data points, 

on which synthetic images are belonging to the real data distribution. The generator's 

aim is to maximise the capability of creating realistic images to trick the discriminator 

while the discriminator aims to maximise the capability of differentiating the synthetic 

data from the real data.  

 

In the proposed approach a GAN is used to create synthetic WSI patches for the new 

site, S_2 which has a limited number of labelled WSIs for the class of interest. The 

synthetic WSI patches create additional training data for the new site, S_2. This 

minimises the differences in sites and improves the classification model. The chapter 

examines the effects of combining WSIs from a new site, with the use of synthetic data 

generated based on the Deep Convolutional Generative Adversarial Networks 

(DCGAN) for the small one-class data from the new site, S_2. The DCGAN consist 

of a Convolutional Neural Network (CNN) combined with the traditional GAN to 

achieve a deep feature-based representation of data. The architecture of the DCGAN 

is capable of generating better quality images with stable training compared to the 

traditional GAN [130].  

 

The DCGAN is also a model which does not require a high computational power [41].  

The DCGAN consists of a generator G, and a discriminator D. The input to G is a 

vector of 100 elements with a random normal distribution. The generator will learn 

and create data for the target dataset which is the one-class dataset (G(x) =x). The 

discriminator's aim is to differentiate the generated fake image (x_f) and real target 

image (x_t) which were the inputs to the discriminator. The generator and the 

discriminator are learned adversarial in a minmax game, in which the discriminator’s 

objective is to maximise the ability to differentiate between fake (G(x)= x_f) and (x_t), 

while the generators objective is to create target like synthetic images (x_s). The 

Equation 5 is used by the generator and discriminator. The DCGAN constructed is 

used to create S_2 patches and passed on to the classifier. The model based on the 

DCGAN architecture is illustrated in Figure 5.1 which is based on [131]. The generator 

of the DCGAN with the input of 100 element vector outputs a synthetic image after 

propagating through the model. The output generated is a 64x64x3 image. The network 
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consists of a fully connected layer and four deep convolutional layers. Batch 

normalisation layers and Relu layers are applied to the convolutional layers of the 

network.   

 

The discriminator network of the DCGAN has a CNN architecture with an input of 

64x64x3. The synthetic images from the generator and the target data which are real 

images are learned in order to differentiate the real and fake images. The network of 

the discriminator consists of four deep convolutional layers and a fully connected 

layer. The network consists of batch normalisation layers and Relu layers in the 

convolutional layers. The GAN was trained for 100 epochs. 

 

 

 

5.4 ONE-CLASS CLASSIFICATION 

As shown in Figure 5.2 the new site, S_2 with its limited WSI patches contain only 

one class and therefore, a one-class classifier is applied for classification. However, 

the one-class classifier receives WSI patches from MS_1 (contains patches from the 

target class and non-target class), S_2 (contains only target class patches) and S_2 

synthetic data generated from the DCGAN Figure 5.1. In order to handle the one class 

problem, the non-target class is taken from MS_1 non-target class. Therefore, the final 

classifications target class comprises of WSI patches from MS_1, S2 and S2 synthetic 

and the non-target class comprises only of S1's non-target class. The target and non-

target WSI patches are classified using as CNN. The CNN comprises of three layers 

with sigmoid activation function and the final layer comprises of a softmax activation. 

The CNN takes an input of 64x64x3. A dropout of 0.5 is applied to all the layers. The 

CNN optimiser is RMS-prop, and the loss is binary classifier. 
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Figure 5.1 - The block diagram architecture for the overall proposed model. 

Figure 5.2 - The block diagram for input data 
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5.5 EXPERIMENTS 

5.5.1 Datasets 

The experiments were conducted based on a publicly available multi-site dataset for 

Lymphoma subtype classification and a new site class dataset which contain data for 

the class of interest. The publicly available dataset has been created by National 

Institute on Aging (NIA). This dataset includes three subtypes of lymphoma (Follicular 

Lymphoma (FL), Chronic Lymphocytic (CLL), and Mantle Cell Lymphoma (MCL)). 

The Hematoxylin and Eosin (H&E) stained images were gathered from multiple sites 

to add high staining variation. Furthermore, the dataset consists of 374 images of 

1388x1040 dimensions. Each class has images as follows, 113 for the CLL 139 for the 

FL and 122 for the MCL. In order to conduct the experiments, the images were split 

into non-overlapping patches of 64x64. The chapter focuses on binary classification 

and therefore the CLL and MCL classes were considered as the non-FL non-target 

class, while the FL class was the class of interest. 

 

The second dataset was provided by PathWest Laboratory Medicine WA. This private 

dataset is considered as the dataset from the second site. It includes three H\&E stained 

WSIs, scanned using the Aperio WSI scanner. Experienced pathologists have labelled 

the images for the FL class, which is the class of interest. The Regions of Interest (ROI) 

were extracted based on the coordinates of the annotations, and non-overlapping 

patches of 64x64 were created. The patches that contained more background were 

eliminated from the dataset. Patch extraction was performed by using Distinct Block 

Processing from the blockproc function of Matlab's Image Processing Toolbox. A 

blind test set from this dataset has been created for the experiments. The models trained 

with the public dataset (multi-site) were tested with this blind test set from the private 

dataset (new site). 

 

5.5.2 Experiments 

The differences in the data from the public multi-site dataset and the private new site 

dataset were explored. A visual comparison of the differences in data could be 

identified based on Figure 5.3. Additionally, t-Distributed Stochastic Neighbour 

Embedding (t-SNE) plots the two datasets which were created to understand the data 

distribution and differences in the datasets. Identifying the distribution and the 
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differences is important to address the possible generalisation problems using the 

proposed approach. The t-SNE plots are suited for visualisation of high-dimensional 

datasets. Based on the generated t-SNE plot, for the two datasets it was possible to 

identify a significant difference in the data distributions of the class of interest from 

different sites. Based on the findings of the differences in the data distributions, 

detailed experiments were conducted in order to validate the proposed method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 - Examples of data from different sites.  Figures show the contrast 

difference and structural variability in the datasets from different sites 

 

   

   

   
Data from the public source 

   

   

   
Data from the multi-site data set. 
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The approach of using synthetic data from GAN to validate the effectiveness of the 

proposed method was necessary. The proposed method was compared with synthetic 

data and without synthetic data for a fair comparison. 

 

The experiment without synthetic data was conducted by creating the classifier with 

data from the first sites. The classifiers were trained, and performance of the 

classification was obtained. The experiment with synthetic data has two phases. The 

first phase was to create synthetic data for the one class data.  Figure 5.4 provides 

examples of generated synthetic data using the DCGAN for the new site. The synthetic 

data were combined with the dataset of first site as the input to the classifier. The 

proposed approach develops GAN as a method to handle differences in the data from 

different sites. In order to build the negative class of the multi-site data are considered 

as the negative class for the one-class dataset. The classifiers were trained with the 

joint dataset and performance was evaluated comparison with the experiment without 

any synthetic data. 

 

    

    

    

Figure 5.4 - Examples of synthetic data generated using DCGAN for the new one 

class site 
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The experiments were conducted to small scale images though there were successful 

prior research for images with higher dimensions (256*256, 128*128). The models at 

relatively small scales for computational ease and prior research showed that still low-

resolution images with large number of cells needed improvement compared to cell 

images [42]. After generating synthetic data for the private dataset, a t-SNE plot was 

generated in order to identify the changes in the data distributions. Figure 5.5 

demonstrates that the synthetic data generated by the GAN had contributed to merge 

the gap between the distributions of the multi-site dataset and the new site dataset. 

 

5.6 RESULTS  

The experiments with synthetic data to classify one class data from the new site were 

conducted, and the performance was calculated for evaluation. The multi-site dataset 

and the synthetic data for the one class private dataset were used as the input to the 

classifier. The classifier was trained with the synthetic data to align the differences 

between the datasets.  

Figure 5.5 - The 2-dimensional t-distributed stochastic neighbour embedded 

(t-SNE) plot for the class of interest from different sites and synthetic data. 

Each point represents values of each image patch of WSIs 
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The results showed better performance by using synthetic data to minimise the 

differences and improve performance for the data from new site. The classifier acts as 

a method to handle the one class data problem by using the multi-site dataset's negative 

class. The results showed an improvement to both the new site dataset's and multi-site 

dataset's performance. Table 5.1 shows the performance without synthetic data and 

with synthetic data for the validation data of the multi-site dataset. It indicated an 8% 

increase in Accuracy and Area Under Curve (AUC) values. Table 5.1 also presents the 

improvements to the F1-score, Precision and Recall performing a fair comparison of 

the performance for the one-class dataset. 

 

5.6.1 Comparison of Classification 

Differences in the new site data caused poor generalisation in trained models which 

could be seen in Table 5.2 (1st column). The AUC 89.75 for the same site validation 

set but AUC was 60.66 for the new site test set. In order to conduct a fair comparison, 

the evaluation metrics for the F1-score, precision and recall were derived, which 

reflected the performance for the two classes. 

 

The proposed approach utilised a small amount of one-class data from a new site to 

improve the learned features. Table 5.1 shows that the validation set from the same 

site also had a performance improvement. Table 5.2 shows the improvement of the test 

set from the unseen new site. 

 

5.6.2 Using GAN to Handle Differences 

In order to handle the differences in the data from new sites, the proposed method takes 

a different approach using GAN. The synthetic data generated by the GAN was used 

to increase the amount of one class target data while increasing the variation in the 

data distribution with a limited amount of labelled data. The enriched data distribution 

aligns the features in the multiple datasets, which leads to minimising the gap between 

the datasets. Instead of data normalisation or colour matching, this learning approach 

was much more beneficial [59]. The other learning-based approaches' model 
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complexity is a limitation and applying synthetic data as an approach to align the data 

was much more efficient. 

 

Table 5.1 - Validation set - The model evaluation for one class classification.   

 

 

Table 5.2 - Blind test set - The model evaluation for one class classification 

 

 Without Synthetic With Synthetic 

Precision FL 86 93 

Precision Non-FL 79 87 

Recall FL 76 86 

Recall Non-FL 88 94 

F1-Score FL 81 89 

F1-Score Non-FL 83 90 

Accuracy 82 90 

AUC 82 89.75 

 Without Synthetic With Synthetic 

Precision FL 57 73 

Precision Non-FL 64 78 

Recall FL 58 74 

Recall Non-FL 63 77 

F1-Score FL 57 73 

F1-Score Non-FL 64 77 

Accuracy 61 75 

AUC 60.66 75.33 
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5.7 DISCUSSION  

The evidence based on the prior research showed the challenges of WSIs to apply DL 

techniques. Despite the promising performances in DL application to WSIs, the 

domain shift caused by the WSIs from completely new sites resulted in a lack of 

generalisation in models. The barrier of differences could be approached by obtaining 

large amounts of labelled data from new sites. However, it would be an infeasible 

approach considering the complex tasks of labelling WSIs and developing specific DL 

models to cater differences of each site. Thus, there is a need to handle the domain 

shift in WSIs using limited labelled data. Therefore, inspired by the one-class 

classification techniques, the approach of one-class data classification using GAN is 

proposed to handle inter-site differences in WSI data. The method could be used for 

new sites by only using a small one-class data set of the class of interest.  

 

In the present study a larger dataset from a publicly available source and a small 

amount of one class data from a new site were incorporated. We provided a comparison 

of performance for the data from the new site with and without the synthetic data. By 

using a sufficient number of labelled data from a multi-site dataset and a small number 

of synthetic data, the accuracy of the CNN could reach an appreciable 15% increase 

in classifying FL and non-FL data. The method could minimise the need for a large 

amount of labelled data from the new site and handle differences. This was achieved 

without compensation for the image variations and non-morphological differences in 

data from different sites. Figure 5.5 demonstrates the differences by separating the data 

from the public domain and the private domain into two clusters. It demonstrates that 

the differences were minimised, after generating synthetic data for the new site. It 

demonstrates the change to the t-sne plot's probability distribution based on the 

neighbouring points from the synthetic data [132]. Furthermore, the performance 

evaluation for the experiments significantly presents that the synthetic data for the one-

class data from the new site supported to increase the performance for the unseen new 

dataset and the validation data of the multi-site data. 

 

Based on the findings discussed in relation to Table 5.1 and 5.2, further experiments 

were conducted to explore the effect of the amount of synthetic data.  
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Table 5.3 - The classification outcome for validation data explored with different 

amounts of synthetic data 

 

 

Figure 5.6 - Model performances for validation data using synthetic data ranging from 

50 images to 600 images. 
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600 synthetic 

images 

400 synthetic 

images 

100 synthetic 

images 

50 synthetic 

images 

Precision FL 93 75 80 60 

Precision Non-FL 87 90 96 96 

Recall FL 86 92 97 98 

Recall Non-FL 94 70 76 33 

F1-Score FL 89 83 88 74 

F1-Score Non-FL 90 79 85 49 

Accuracy 90 81 86 66 

AUC 89.75 81 86 65 
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Table 5.4 - The classification outcome for blind set data explored with different 

amounts of synthetic data 

 

 

 

Figure 5.7 - Model performances for blind test data using synthetic data ranging from 

50 images to 600 images. 
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With 

Synthetic 

600 

With 

synthetic - 

400 

With 

synthetic 

100 

With 

synthetic 50 

Precision FL 73 85 79 70 

Precision Non-FL 78 76 76 81 

Recall FL 74 66 68 80 

Recall Non-FL 77 90 85 72 

F1-Score FL 73 74 73 75 

F1-Score Non-FL 77 82 80 76 

Accuracy 75 79 77 75 

AUC 75 77 76 75 
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The Table 5.3 shows the model evaluations for classification using 600, 400, 100 and 

50 synthetic images. The Figure 5.4 shows the table 5.3 in a bar chart where the 

performance of the classifiers is fluctuating precision for non-FL and Recall for FL are 

increased compared to decreased amount of synthetic data. However, the Precision for 

FL, recall for FL, F1 scores, accuracy and AUC are decreasing as the number of 

synthetic data are decreased. The performance for the blind test shows a different 

pattern where Recall for non-FL and F1 score for non-FL and accuracy increased at 

400 and 100 synthetic images. However, recall for FL, Precision for non-FL have 

shown a decrease. Therefore, the classifiers show unstable performances as synthetic 

data numbers are reduced.  

 

Furthermore, the proposed approach is a computationally, less demanding approach 

than the commonly used GAN architectures. The proposed approach was tested on a 

NVIDIA 1080i 1 GPU. The most common GAN types, StarGAN, StyleGAN and 

CycleGANs require a higher GPU power. In general the starGAN requires a NVIDIA 

Titan Xp GPU with 4000 training images [133]. StyleGAN recommends using 

NVIDIA DGX-1 with 8 Tesla V100 GPUs and training for a week [58]. Although 

CycleGAN could use the NVIDIA 1080i GPU, it takes approximately 72 hours to run 

100 epochs, whereas the proposed approach generates images by running 100 epochs 

in less than one hour. Figure 5.8 shows the images generated by CycleGAN after 10 

epochs running for 3 hours. It shows image translation converting multisite images to 

new site images which do not capture the heterogeneous tissue structures, and it fails 

    
Synthetic data for the multisite dataset. 

    
Synthetic data for the new site’s dataset. 
 

Figure 5.8 - Examples of synthetic data generated using CycleGAN for multi-site and 

new site data 
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in translating private images to public images which have heterogeneous features in 

the tissue structures. Previous research on CycleGAN also showed that complex 

texture and shape structures were not captured by the CycleGAN [134]. Adapting a 

model to capture real-world data distribution is essential. Therefore, the proposed 

approach is an efficient method compared to the other methods due to its capability of 

addressing the unique features from the new site using limited computational power. 

Therefore, the proposed GAN based approach is a faster method which can generate 

synthetic data with a limited number of labelled data from a new site. 

 

Taken together, these results suggest that there is an improvement in the classification 

performance of deep learning models by using synthetic data generated by a GAN for 

a small one class dataset from a new class. It is a promising approach to handle 

differences in data from new sites and align the data to improve classifiers performance 

for the unseen data from a new site. 

 

5.8 CONCLUSION 

Chapter 5 presents a different approach to handle inter-site differences while 

minimising the need for labelled data. The chapter presents a GAN-based technique to 

approach the one-class data problem as a solution to minimise the number of required 

labels while improving the performance for data from new sites. Based on the 

empirical evaluation, forwarding data for the non-target class from a different site to 

be jointly trained with synthetic data and data from the new site for the class of interest 

shows significant improvement in performance for the new site's data. The proposed 

technique could be applied to any new site with a minimal number of labelled data for 

the class of interest. The research discovered a different approach of applying GAN to 

handle the differences in data from new sites.  
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 Conclusions 

Efforts were made to identify factors influencing the translation of AI techniques to 

the digital pathology workflow. The thesis focused on co-analysing multi-stained 

WSIs, high variation of inter-site WSIs and labelling for more generalised outcomes 

from AI. The prior research has shown the limitations in AI techniques which affect 

the successful translation of them into the pathology workflow. These issues affected 

the performance of AI techniques especially in machine learning and deep learning 

techniques. The complexity of WSI data itself challenge the application of AI 

techniques to pathology. Therefore, highlighted the need to investigate the factors 

influencing translating AI. Prior research has attempted to develop techniques to 

address the factors influencing translating AI in digital pathology. However, research 

is limited in investigating challenges and methods specifically in translating AI to 

pathology. 

 

Based on findings in the literature, DL based approaches for improving unsupervised 

non-rigid WSI registration by super-convergence, improving inter-site data predictions 

via transfer learning using class of interest, and handling lack of data from different 

sites using class of interest WSIs to generate synthetic WSI data using GAN for 

classification were investigated. 

 

Contributions of the Thesis 
The findings from this research provide contributions to the field of AI in digital 

pathology. The thesis focused on identifying factors influencing the translation of AI 

in digital pathology.  

The contributions of the present thesis are as follows, 

1. The simplified unsupervised non-rigid registration using deep features and fast 

convergence. 

When multi-stained WSIs are created to co-analyse as a sub step of the diagnosis 

process, the WSIs result in large non-rigid transformations. The complex annotation 

process limits the applicability of supervised methods and long training times requiring 
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high computational memory are a drawback in DL methods which increase the 

translation gap of the methods. Therefore, the thesis focused on a solution based on 

training a simpler DL model for feature extraction with super-convergence which 

resulted in faster training and improved registration performance, thus assisting the co-

analysis process and minimising the translation gap of AI in digital pathology.  

 

2. Transfer learning-based method to handle inter-site differences using limited 

data from a new site 

A trained DL model should be able to perform similar when predicting for WSIs of 

the same cancer type from a different site. However, trained DL models do not perform 

well for unseen WSIs from different sites. This is due to the pervasive variability in 

WSIs. Therefore, the second contribution of the thesis investigated the differences of 

WSIs from different sites to handle the affect from inter-site differences to DL models. 

The solution presented focused on fine tuning a pre-trained model with data from a 

new site joined with a publicly available dataset. The results showed improvements to 

the new site only by combining five-hundred image patches from a new site. 

Therefore, minimising the performance gap of the DL model.  

 

3. GAN based method to reduce need for labelled data from new sites using 

limited data 

The third contribution of the thesis focused on limitations in acquiring sufficient 

amount of labelled data to train DL models. Complex annotation process limits the 

ability to have large amount of data from multiple sites. Therefore, in this thesis the 

possibility of using synthetic data as an approach to handle lack of data from new sites 

was investigated. Furthermore, to minimise the computational complexities, a simpler 

DCGAN method was used to generate synthetic data for a new site. The results showed 

that training a classifier with publicly available data and synthetic data from the new 

site showed an improvement in predicting for the new site. 
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Limitations 
Model execution depends on hardware availability including GPUs. The speed of 

model execution largely depends on the available computational power. The chapter 

3, 4, and 5 trains DL and GAN models that require a single GPU.  

Proposed methods’ requires annotated data to train the models. Therefore, the models 

rely on labelled training data. The training data allows the models to learn and produces 

better results. However, the proposed methods require only a small amount of 

annotated data which allows the models to be versatile in real-world application with 

limited annotated training data. 

Unavailability of large datasets capturing the true data distribution of clinical data is a 

limitation in DL for digital pathology research. A challenge mentioned in translational 

research is the importance of model testing under different variations of data. Analysis 

of the clinical data distribution and testing will provide models proposed in this thesis 

to further improve to meet the need of clinical workflow. 

 

Future Work 
Further investigations of the factors translating AI in digital pathology needs to be 

conducted. The lack of transparency and interpretability is one such important factor 

to be addressed. The prior literature had identified it under analytical factors which 

focus on management of tasks between pathologists and AI techniques. This requires 

handling tasks allocated to AI and pathologists to work collaboratively. At that stage 

interpretability of AI models is an important factor to be handled. 

Furthermore, the factors which the present thesis contributed could be further 

enhanced to further minimise the gap of translating AI in digital pathology. 

 

1. The unsupervised non-rigid registration technique to handle multi stain 

registration has been improved using super-convergence. This method is 

improved using learning rates and weight decay. However, when using the 

super-convergence, the learning rate, batch, momentum, and weight decay can 

be optimised to reach a super-convergence. Therefore, it is important to 

investigate other optimisation options and extend the findings.  
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2. The limitations in trained deep learning models’ capability to generalise to data 

from new sites is a barrier and using pre-trained networks for one class data 

improved the performances for the new site WSIs. The pre-trained models can 

be further improved with fusion techniques to address new site’s WSIs. 

 

3. Use of GAN to handle lack of data for classification is proven to perform well. 

However, the dimensionality of WSIs and computationally expensive GAN 

models can be explored to further enhance the efficiency of synthetic data 

generation.
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