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Abstract
Ecological restoration of former agricultural land can improve soil conditions, recover 
native vegetation, and provide fauna habitat. However, restoration benefits are often 
associated with time lags, as many attributes, such as leaf litter and coarse woody de-
bris, need time to accumulate. Here, we experimentally tested whether adding mulch 
and logs to restoration sites in semi-arid Western Australia can accelerate restoration 
benefits. All sites had been cropped and then planted with native trees and shrubs 
(i.e., Eucalyptus, Melaleuca, and Acacia spp.) 10 years prior to our experiment, to re-
establish the original temperate eucalypt woodland vegetation community. We used 
a Multi-site Before-After-Control-Impact (MBACI) design to test the effects on 30 
abiotic and biotic response variables over a period of 2 years. Of the 30 response vari-
ables, a significant effect was found for just four variables: volumetric water content, 
decomposition, native herbaceous species cover and species richness of disturbance 
specialist ants. Mulch addition had a positive effect on soil moisture when compared 
to controls but suppressed growth of native (but not exotic) herbaceous plants. On 
plots with log additions, decomposition rates decreased, and species richness of dis-
turbance specialist ants increased. However, we found no effect on total species rich-
ness and abundance of other ant species groups. The benefit of mulch to soil moisture 
was offset by its disbenefit to native herbs in our study. Given time, logs may also 
provide habitat for ant species that prefer concealed habitats. Indeed, benefits to 
other soil biophysical properties, vegetation, and ant fauna may require longer time 
frames to be detected. Further research is needed to determine whether the type, 
quantity, and context of mulch and log additions may improve their utility for old field 
restoration and whether effects on native herbs are correlated with idiosyncratic cli-
matic conditions.
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1  |  INTRODUC TION

Agricultural land practices can lead to land degradation and biodi-
versity loss. Ecological restoration of abandoned agricultural land is 
a key activity to improve biodiversity and ecosystem functioning. 
In particular, active restoration measures (i.e., direct seeding and 
seedling planting) in agricultural landscapes where abiotic and bi-
otic barriers persist (Cramer et al., 2008) have the potential to im-
prove soil condition and habitat suitability for fauna. However, full 
ecosystem recovery may not occur, even after long timeframes (i.e., 
decades to centuries) (Isbell et al., 2019; Parkhurst, Prober, Hobbs, 
& Standish, 2021).

Incomplete recovery of biodiversity and ecosystem functions 
on restored old fields may be due to abiotic and biotic constraints 
to recovery, such as depleted soil chemical and biophysical func-
tions, altered edaphic properties, and competition mechanism of 
native and invasive plant species (Shackelford et al.,  2021) (Flinn 
& Marks,  2007; Piché & Kelting,  2015; Standish et al.,  2006). For 
example, compacted soils and depleted soil carbon concentra-
tions limit key ecosystem functions such as water infiltration and 
water storage capacity, therefore reducing ecosystem productivity 
(Franzluebbers, 2002).

In addition, recovery may also be limited by time lags in the devel-
opment and repair of fauna habitat and ecosystem functions (Isbell 
et al., 2019; Prober et al., 2014; Vesk et al., 2008). In particular, re-
sources such as leaf litter, and fine and coarse woody debris in young 
restoration sites, are less abundant than in mature vegetation states 
(Manning et al.,  2013; Parkhurst, Prober, & Standish,  2021). Yet, 
leaf litter and woody debris are vital components of the plant–soil 

feedback (Sayer,  2006) and provide essential resources and im-
portant habitat components to fauna (Gibb & Cunningham, 2013; 
Sandström et al., 2019; Sayer et al., 2006).

Debris from the planted vegetation interacts directly and indi-
rectly with the soil surface's physical and biogeochemical functions 
through complex processes and feedback loops (see Figure  1 in 
Prober et al.,  2014). Direct interactions include not only diverting 
water run-off and providing a protective surface layer that reduces 
evaporation and loss of soil moisture, soil surface temperatures, 
erosion, and mineral leaching but also presents a physical barrier 
for seeds and seedlings (Bowman & Facelli,  2013; Lindenmayer 
et al., 2002; Xu et al., 2013). These changes to water and tempera-
ture facilitate further changes, such as increased soil organic matter 
and biological activity, which in turn, result in altered soil surface 
properties (i.e., reduced compaction), soil structure and texture, 
and carbon and nutrient cycling (Colloff et al., 2010; Sayer, 2006). 
Improvements in soil physical and chemical conditions can then 
positively influence plant establishment and growth, stimulate soil 
microbiological activity and alter decomposition rates, and promote 
soil-  and surface-active invertebrates, creating a feedback loop 
to ecosystem functioning (Colloff et al.,  2010; Sayer et al.,  2006; 
Snyder & Hendrix, 2008).

Litter and woody debris also directly shape plant species com-
position by either promoting or suppressing seedling germination, 
emergence, and survival in patches where it is present (Bowman & 
Facelli, 2013; Facelli & Pickett, 1991). In particular, plant species di-
versity (Xiong & Nilsson, 1999) and understory vegetation patterns 
are influenced by leaf litter inputs and deposition patterns (Sydes & 
Grime, 1981).

T A X O N O M Y  C L A S S I F I C A T I O N
Restoration ecology

F I G U R E  1 (a) Study location extent 
in the western Australian wheatbelt; (b) 
five experimental study sites; (c) four 
MBACI treatment plots per study site; 
and (d) mulch and log addition treatment 
application in 2017
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For ground-dwelling and soil invertebrate fauna, litter and woody 
debris provide habitat (Sandström et al., 2019; Seibold et al., 2015). 
In particular, litter, but also fine and coarse woody debris, maintain a 
stable microclimate by reducing fluctuations of soil moisture content 
and soil surface temperatures (Fekete et al., 2016). In addition, lit-
ter and woody debris provide habitat through the provision of food 
sources, nesting sites, and refugia from climatic conditions and pred-
ators (Gibb et al., 2006, 2012; Sayer, 2006).

Adding fine and coarse woody debris either for the purpose of 
soil amendments or habitat improvements has been found beneficial 
for restoring soil conditions and fauna habitat at restored mine sites 
(Adl, 2008; Craig et al., 2014), soil biophysical properties, understory 
plants (Goldin & Hutchinson, 2015; Prober et al., 2014), and habitat 
for reptiles and birds in degraded and restored temperate wood-
lands (Mac Nally, 2006; Mac Nally et al., 2001; Manning et al., 2013; 
Shoo et al., 2014).

However, understanding of how additional restoration measures 
may accelerate desired changes to soil chemical and biophysical 
functions, native herbaceous vegetation, and invertebrates after 
old field restoration in semi-arid landscapes is limited (Sandström 
et al., 2019). This is despite the urgent need to improve restoration 
outcomes in agricultural landscapes across the globe (Parkhurst, 
Prober, Hobbs, & Standish, 2021). Arid to semi-arid landscapes re-
quire particular attention because low and variable rainfall patterns, 
as well as slow biomass production, can prolong ecosystem recovery 
following restoration actions (Aronson et al., 1993).

In this study, we experimentally tested whether the addition of 
mulch and wood (proxies for leaf litter and fine debris, and coarse 
woody debris, respectively) accelerates restoration outcomes after 
2 years in young (~10 years) restoration plantings in a semi-arid agri-
cultural landscape in Western Australia. Old fields had been planted 
with native woody vegetation aiming to restore the native reference 
eucalypt woodland community.

To measure the effectiveness of our restoration treatments, we 
drew on key measures of soils, vegetation, and fauna communities 
to provide a broad representation of biodiversity and ecosystem 
processes known to be valued or important for ecosystem func-
tions. For soils, we focused on biogeophysical measures as those 
are key functional restoration barriers and are often understudied 
(Kollmann et al., 2016). For vegetation, the herbaceous layer is par-
ticularly vulnerable to degradation and weed invasion, yet supports 
about half of the diversity in these ecosystems (Parkhurst, Prober, 
& Standish, 2021), hence is a critical restoration focus. For fauna, 
we focused on ants because they are responsive to old field resto-
ration interventions and may indicate impending recovery of other 
fauna (Parkhurst, Standish, Andersen, & Prober,  2021; Sandström 
et al., 2019). Ants have been widely used as bioindicators of ecologi-
cal change, both at the species and functional group level (Andersen 
& Majer,  2004; Hoffmann & Andersen,  2003; King et al.,  1998). 
Here, we focus on functional groups based on their habitat prefer-
ences and adaptations to environmental stressors as proposed by 
Andersen  (1995) because they can provide important insights into 
the restoration process. In particular, key ant functional groups 
(e.g., cryptic species, subordinate Camponotini, hot and climate 

specialists) show responses to land conversion in temperate zones 
(de Jesus Santos et al., 2021).

We used a multi-site before-after-control-impact (MBACI) ex-
perimental design to examine the effects of woody debris addition 
on soil condition and biodiversity (flora and ants) to accelerate the 
restoration of old fields (Green, 1979; Underwood, 1994).

We hypothesized that the addition of mulch and logs to restored 
old fields in a semi-arid agricultural landscape would:

1.	 improve soil biophysical condition, specifically increase soil 
moisture, soil organic matter and carbon, and available nitro-
gen (Prober et al.,  2014; Sayer,  2006), therefore reduce bulk 
density, increase soil microbial activity, and decomposition rates 
(Xu et al.,  2013), (n  =  14 response variables).

2.	 reduce bare ground and increase woody debris, as well as increase 
herbaceous vegetation cover and richness due to improved soil 
condition, while potentially suppressing native herbaceous spe-
cies, which are predominantly fine seeded (Prober et al., 2014), 
(n = 6 response variables).

3.	 provide habitat for ants, evidenced by increased abundance and 
diversity of functional groups that forage and nest in woody de-
bris (e.g., cryptic species) (Gibb & Cunningham,  2013), and re-
duce abundance and richness of ant species with a preference 
for hot, open areas (e.g., hot climate specialist) (Hoffmann & 
Andersen, 2003) (n = 10 response variables).

2  |  MATERIAL S AND METHODS

2.1  |  Study sites

Experimental sites were established in the northern wheat-growing 
district of Western Australia (Lat −29.66°, Long 116.18°) in August 
2017, and monitored through to November 2019. The landscape 
is dominated by agriculture (grazing and cropping), and remnants 
of native vegetation are small and highly fragmented (Figure 1). A 
Mediterranean to semi-arid climate, with dominant but variable 
winter rainfall characterizes the region (Hobbs,  1993). During the 
study, winter rainfall was dominant but bolstered by significant, 
unusual spring and summer rainfall in 2017 (Figure  S1). Rainfall 
varied spatially too. The two northern sites received 198.9 mm of 
rain in 2017 and 181.9 mm in 2019, well below the long-term annual 
mean of 325 mm (recorded at the nearest rainfall station in the town 
of Perenjori [Bureau of Meterology,  2020]). Rainfall for the three 
southern sites totaled 371 mm in 2017 and 215 mm in 2019. The 
long-term annual average is 334 mm (recorded at the nearest rainfall 
station on Koobabbie farm near the town of Coorow).

We selected five planted old field sites with similar soil types 
and vegetation composition. Old fields were planted with York 
gum (Eucalyptus loxophleba Benth.) and dominant shrubs as under-
story (planting and species details provided in Parkhurst, Prober, 
& Standish, 2021). At the time of sampling in 2017, vegetation age 
ranged from 8 to 13 years and the distance from remnant measured 
279 m (±162 m).
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2.2  |  Experimental design

We established two control and two treatment plots, each meas-
uring 5  m × 5  m, in the interrows of five planted old field sites 
(Figure 1). Both treatments were randomly assigned to plots within 
each site. Between August and early November 2017, we measured 
a total of 30 response variables at each of the control and treat-
ment plots (Table S1). Response variables included soil physical and 
chemical properties (bulk density, penetration resistance, soil mois-
ture, and nitrogen and carbon pools), microbial biomass, decomposi-
tion rate of rooibos and green tea as per the standardized Tea Bag 
Index (TBI) protocol developed for comparison of litter decompo-
sition rates across various ecosystems by Keuskamp et al.  (2013), 
herbaceous vegetation cover and richness, and ant abundance and 
richness, as well as abundance and richness of ant functional groups 
(Table S1). Detailed sampling method descriptions are provided in 
the Supporting Information section.

In November 2017, one treatment plot at each site was uniformly 
covered with 13 kg of freshly mulched York gum branches including 
leaves, and a second treatment plot with three York gum logs (av-
erage length and circumference = 80.3 cm [1–121 cm] and 33.2 cm 
[13–62 cm]) (Figure  1). The mulch and log application rate mimics 
leaf litter and fine and coarse woody debris cover of the intact York 
gum woodland remnants as presented in Parkhurst, Prober, and 
Standish  (2021). York gum mulch was sourced from roadside tree 
lopping of a local shire and the logs were cut to size from recently 
fallen York gum branches.

After 2 years, between August and November 2019, we re-
measured all 30 response variables across the control and treatment 
plots (Figure 2, Table S1).

2.3  |  Data analysis

We used a multi-site before-after-control-impact (MBACI) de-
sign (Underwood,  1991) to evaluate changes resulting from log 
and mulch additions at planted old field sites on soil chemical and 
biophysical properties, and vegetation and ant communities. The 
multi-site BACI design was chosen to increase the reliability of de-
tecting a treatment effect because it controls for non-treatment 
variation (Underwood, 1994). In addition, the MBACI design is suit-
able in landscapes such as ours where ecological variation due to 

climate and other factors is high but decipherable by comparing 
BACI plots. The analysis of the Before-After-Control-Impact ex-
periment tests for a significant interaction term because this sig-
nifies a bigger effect of the treatment than time. In other words, 
the analysis detects an impact when the change in the BA factor 
is significantly different for the impact samples compared to the 
control samples (i.e., difference of the mean of the two changes 
[controlafter − controlbefore] − [impactafter − impactbefore]).

To determine the potential effects of log and mulch additions 
on soil chemical and biophysical properties, and vegetation and ant 
communities, we ran linear mixed models using the lme function 
of the nlme package R (Pinheiro et al., 2021), with a fixed effect of 
time (BA) and treatment (CI) and their interaction (BA*CI), and site 
as the random factor. We validated all models by checking distri-
butions of normality and equal variances, visually and statistically, 
using Levene's test homogeneity of variance and Shapiro–Wilk test 
to confirm normality of residuals. If normality and homoscedasticity 
were not met, data were log or sqrt transformed (Table S2). We used 
the R package “interplot” (Solt & Hu,  2021) to visualize the BACI 
model interaction terms.

We used non-metric multidimensional scaling (nMDS) based on 
Bray–Curtis dissimilarity to assess variation in vegetation and ant 
species and functional group composition among treatments, as 
well as differences in soil physical and biochemical variables using 
Euclidian dissimilarities with the metaMDS function in the vegan 
package (Oksanen et al., 2007) in R. We applied a perMANOVA to 
the BACI model to test for multivariate differences in (a) soil phys-
ical, (b) soil biochemical, and (c) biotic variables (Table S1) using the 
“adonis” function in the vegan package in R.

3  |  RESULTS

3.1  |  Soil physical and biochemical responses

Across all 14 soil biochemical and physical response variables, we 
found a significant BACI effect only for volumetric water content 
(p = .01) and decomposition (p = .03). In the mulch treatment, the BACI 
interaction effect showed that volumetric water content was signifi-
cantly higher 2 years after application, compared to the control treat-
ment plots (Table S2, Figure 3). In the log treatment, decomposition 
was significantly lower in the log treatment plots compared to the 

F I G U R E  2 Example mulch and log 
addition treatments after 2 years showing 
patchy mulch distribution and some aging 
of the log surface
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controls (Table S2, Figure 3). While we found statistically significant 
differences between periods for gravimetric water content, indicating 
a much drier sampling season in the late spring of 2019 (Figure S1), and 
also statistically significant differences between sites for dissolved 
organic nitrogen, nitrate, organic carbon, and microbial biomass ni-
trogen, the BACI interaction for those variables was not statistically 
significant (Table S2, Figures 3). While other soil properties (organic 
matter and dissolved organic carbon) showed a positive response to 
mulch addition, the effect was not statistically significant. We found 
no BACI treatment effect for multivariate differences for soil physical 
components (perMANOVA, BA:CI interaction, p = .87) as well as soil 
chemical components (perMANOVA, BA:CI interaction, p = .91).

While we measured penetration resistance across all plots using 
a handheld electronic penetrometer in 2017, almost all measure-
ments in 2019 were error readings due to the extreme dryness of 
the soil. Therefore, we did not include penetration resistance data 
in the results section.

3.2  |  Herbaceous vegetation and ground cover

We recorded a total of 23 herbaceous plant species in the 2 sampling 
years across all plots, with equal proportions of native (52%) and 
exotic (48%) species. Average native species richness per plot was 
lower (5, ±0.8) compared to exotic species richness (7.2, ±1.2). The 
BACI interaction effect showed a significant decline in mean native 
species cover (p = .03) as well as a near significant decline in mean na-
tive species richness (p = .05) on the mulch-treated sites, (Table S2, 
Figure 4). Treatments of mulch and logs had no effects on exotic spe-
cies cover and richness or bare ground (Table S2, Figure 4). Woody 
debris cover in 2019 was significantly higher (P = .008) on plots with 
mulch-added compared with control plots (Figure 4). Woody debris 
cover included any woody material smaller than 10 cm in diameter 
(twigs, small branches, and added mulch).

We did not find any distinct patterns of the BACI interaction in 
flora species composition using nMDS scaling (Figure S2). We found 
no BACI treatment effect for multivariate differences in herbaceous 
vegetation abundance (perMANOVA, BA:CI interaction, p = .99).

3.3  |  Ant community

We recorded a total of 83 species from 11 genera and 8 func-
tional groups during the two sampling periods across all sites and 
treatments. The richest genera were Melopherus (21 species), 
Camponotus (16), Iridomyrmex (12), Monomorium (11), and Pheidole 
(8). The genus Iridomyrmex had by far the highest abundance of ants 
(78%), followed by Melopherus (8%), Monomorium (7%), Pheidole (2%), 
Rhytidoponera (2%), and Camponotus (1%). Iridomyrmex chasei was the 
most abundant species, contributing to two-thirds (65%) of all cap-
tures. Across the eight functional groups, Dominant Dolichoderinae 
(Iridomyrmex spp.) were the most abundant (78%), followed by Hot 
Climate Specialists (15%). In contrast, species richness was highest 

for Hot Climate Specialists (45%), Subordinate Camponotini (19%), 
Dominant Dolichoderinae (14%), and Generalized Myrmicinae (10%). 
Four other functional groups were present in small numbers only 
and are therefore excluded from the results (Figure S3).

At the treatment level, overall species richness decreased across 
all control and treatment plots in 2019, but less so for the mulch-
treated plots and we detected a near-significant BACI effect for 
overall species richness at the mulch treatment (p  = .07). Species 
abundance also decreased across all control and treatment plots 
in 2019 and we detected no significant difference in species abun-
dance (Table S2, Figure 5). For functional groups, we found a signif-
icant BACI effect for opportunistic ant species (Rhytidoponera spp.) 
showing a two-fold increase in species richness at the log treatment 
plots (p  = .03) (Table  S2, Figure  5). Overall, Rhytidoponera species 
richness remained low on the log-treated plots (mean = 2.2, range 
from 1 to 4). Generalized Myrmicinae showed an increase in mean 
abundance and richness at the mulch-treated plots, however, as for 
the remaining functional groups, the difference was not statistically 
different (Table S2, Figure 5). We detected no distinct patterns of 
changes in ant communities between the BA and CI factors in the 
nMDS scaling plot (Figure S4). We found no BACI treatment effect 
for multivariate differences in ant species abundance (perMANOVA, 
BA:CI interaction, p = .99).

4  |  DISCUSSION

Our study showed that additional restoration actions on planted old 
fields can accelerate restoration outcomes to some extent. In par-
ticular, soil biophysical functions and effects on biodiversity showed 
promising, if few benefits of mulch and log additions. We interpret 
the limited responses to the semi-arid climate, where abiotic and bi-
otic ecosystem variables may respond only gradually over time or be 
linked to episodic climate events (e.g., Holmgren & Scheffer, 2001; 
Wainwright et al., 2012).

4.1  |  Soil biophysical function

In partial support of our first hypothesis, mulch addition to planted 
old fields increased woody debris cover and soil moisture, com-
pared to control and log-treated plots, although soil moisture was 
only higher in winter, but not in late spring. We also found increas-
ing trends for organic matter and dissolved organic carbon. Higher 
soil water content and increasing trends for soil organic matter and 
dissolved organic carbon may be a first measurable signal of the 
vegetation–soil water feedback, indicating the restoration of eco-
system functions (Prober et al., 2014).

Increased soil moisture may be attributed to mulch providing a 
protective surface layer, similar to the effect of leaf litter (Sayer, 2006) 
and soil amendments such as biochar (Prober et al., 2014), therefore 
reducing water run-off and delaying evaporation at the soil surface. 
However, soil moisture content measures in late spring did not show 
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higher moisture content on the mulch-treated plots, suggesting that 
mulch may only slow down the loss of top soil moisture content. Our 
predictions that woody debris additions would also reduce bulk den-
sity, increase soil carbon, soil microbial activity, and decomposition 
rates were not met.

Several factors may have contributed to not detecting further 
effects. Firstly, woody debris application rates were aligned with 
leaf litter and log biomass in mature reference vegetation systems. 
However, while woody debris in reference woodlands is continuously 
replenished, this is less so in young restoration sites as immature veg-
etation produces less plant litter. Furthermore, we found evidence 
that the mulch was patchy after 2 years, possibly due to redistribution 
of mulch by wind and fauna (Figure 2). Therefore, the physical barrier 
provided by the mulch may have been too shallow and patchy to pro-
vide an effective physical barrier for water retention even during the 
hotter season. A thicker mulch application may have also increased 
effects of soil organic matter and carbon, microbial biomass, and bulk 
density as shown in Biederman and Whisenant (2011).

Secondly, effects of indirect interactions following woody de-
bris additions on the vegetation–soil water feedback such as in-
creased soil organic matter and carbon, and therefore microbial 
activity and decomposition rates, may take longer time frames 
(i.e., 10+ years) to be detectable (Mao et al., 1992; Sayer, 2006). 
Furthermore, environmental conditions (temperature, soil mois-
ture, and soil pH) influence microbial activity and decomposition 

rates, and therefore nutrient release, and in dry ecosystem such as 
ours the rate of detectable change is slow (Facelli & Pickett, 1991). 
Low decomposition rates are in line with other studies (Keuskamp 
et al.,  2013; Ochoa-Hueso et al.,  2020), indicating that a 2-year 
time frame was too short to show potential treatment outcomes. 
In more mesic systems, the addition of mulch has indicated recov-
ery of several ecosystem functions such as increased soil mois-
ture and decomposition rates (Dawes, 2010), as well as labile soil 
carbon, lower soil bulk density, and softer soil surface (Prober 
et al., 2014).

4.2  |  Biodiversity

The positive effects of mulch on soil physical functions were some-
what offset by a decline in native herbaceous species cover. Mulch 
may have posed a physical barrier to the germination of native and 
exotic herbaceous species (Beggy & Fehmi, 2016; Facelli, 1994; Xiong 
& Nilsson, 1999), as found by Prober et al. (2014) for small- but not 
large-seeded native herbs. By contrast, a reduction in herbaceous 
exotic species cover and richness was not observed, consistent with 
findings by Prober et al. (2014). Although leaf litter can pose a physi-
cal barrier for plant seeds and reduce germination rate, more so for 
woody than herbaceous species (Facelli, 1994; Jiang et al., 2009), im-
proved effects on soil biophysical condition (e.g., soil moisture, but 

F I G U R E  3 Mean effect of treatment (log [green] and mulch [blue] vs. control [red]) and time (before vs. 2 years after treatment 
application) on soil volumetric water content, organic matter, dissolved organic carbon, and decomposition rate (n = 5, ±1 SE)
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also reduced bulk density, see Prober et al. (2014)) are beneficial to 
plant establishment.

The decline in native herbaceous species cover on the mulched 
plots was mainly driven by two species, each occurring at one in-
dividual plot only: Dysphania melanocarpa (J.M. Black) Mosyakin & 
Clemants and Ptilotus polystachyus (Gaudich.) F. Muell. Both spe-
cies are not diminutive. D. melanocarpa is a medium tall herb, and 
P. polystachyus can grow over 1 m tall, with a seed size of 2–3 mm 
(Western Australian Herbarium,  1997). In fact, the latter is a 

common and widespread native herb (Fensham et al.,  2011), well 
adapted to low and high soil phosphorus environments (Hammer 
et al., 2020; Ryan et al., 2009) and often found in high abundance on 
disturbed post-agricultural land. Ptilotus polystachyus has also been 
observed to grow well and outcompete Lupinus cosentinii, a grain le-
gume, following substantial summer rains, but less so during years 
with low summer rain (B. Parkhurst, pers. com.). This observation is 
in line with our recorded high cover of P. polystachyus in 2017 coin-
ciding with high summer rains, and its absence in 2019, which had 

F I G U R E  4 Mean effect of treatment (log [green] and mulch [blue] vs. control [red]) and time (before vs. 2 years after treatment 
application) on woody debris and native herbaceous species cover (n = 5, ±1 SE)
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F I G U R E  5 Mean effect of treatment (log [green] and mulch [blue] vs. control [red]) and time (before vs. 2 years after treatment 
application) on ant species richness and abundance, and species richness of opportunistic ants (n = 5, ±1 SE)
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very little summer rain (Figure S1). While this observation requires 
hypothesis-driven testing, it is important to consider idiosyncratic 
effects of climate and species-specific responses and competitive 
interactions in the study region (Dwyer et al., 2015), when interpret-
ing the effectiveness of mulch as a restoration tool.

Significant treatment effects were only observed for op-
portunistic ants. These responded positively to the addition of 
logs, and to some extend mulch, with an increase in species rich-
ness (Rhytidoponera spp.). Opportunists, especially Rhytidoponera 
spp., favor habitats that support low ant diversity and increase 
in abundance following habitat disturbance (e.g., fire and mining 
[Andersen,  2019; Hoffmann & Andersen,  2003]). However, in-
creased species richness patterns of opportunistic ants were only 
driven by a few species of Rhytidoponea spp., and this trend may 
therefore not reflect broader changes.

While we had hypothesized that mulch and log additions would 
increase abundance and diversity of functional groups that forage 
and nest in woody debris, this was not the case, possibly due to un-
suitable log habitat quality. Saproxylic invertebrate, including ants, 
respond strongly to not only macrohabitat quality surrounding the 
log (i.e., land use type) but also microhabitat features (i.e., decay 
state, humidity, leaf litter, and canopy cover) directly associated with 
logs (Gibb et al., 2006). The logs we applied were not decayed and are 
therefore less favored as nesting sites by ant species as opposed to 
rotten logs (Gibb et al., 2012). Therefore, more highly decayed logs, 
placed under tree canopy, may have been more suitable to acceler-
ate restoration outcomes for some ant species, as has been shown 
for other invertebrate groups (e.g., saproxylic beetles in Sandström 
et al., 2019). However, studies on the responses of ants to woody 
debris addition and required habitat quality are very rare, even more 
so in a restoration context, therefore require further investigation 
(Sandström et al., 2019; Seibold et al., 2015).

5  |  CONCLUSION

This MBACI experiment has indicated desirable effects of woody 
debris additions on soil moisture and ant communities, but overall 
evidence that woody debris additions are a suitable restoration ap-
proach to accelerate restoration outcomes on old fields in agricul-
tural landscapes remains inconclusive. Further research is needed to 
determine whether the type, quantity, and context of mulch and log 
additions can improve their effectiveness for old field restoration 
in semi-arid regions, in particular for soil physical and biochemical 
functions, without negative effects on biodiversity. In addition, the 
feasibility of woody debris additions as a restoration tool for res-
toration practitioners without exhausting logistical and financial re-
sources needs to be examined.
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