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Classification of sheep behaviour from a sequence of tri-axial accelerometer data has the

potential to enhance sheep management. Sheep behaviour is inherently imbalanced

(e.g., more ruminating than walking) resulting in underperforming classification for the

minority activities which hold importance. Existing works have not addressed class imbal-

ance and use traditional machine learning techniques, e.g., Random Forest (RF). We inves-

tigated Deep Learning (DL) models, namely, Long Short Term Memory (LSTM) and

Bidirectional LSTM (BLSTM), appropriate for sequential data, from imbalanced data. Two

data sets were collected in normal grazing conditions using jaw-mounted and ear-

mounted sensors. Novel to this study, alongside typical single classes, e.g.,walking, depend-

ing on the behaviours, data samples were labelled with compound classes, e.g., walking_-

grazing. The number of steps a sheep performed in the observed 10 s time window was

also recorded and incorporated in the models. We designed several multi-class classifica-

tion studies with imbalance being addressed using synthetic data. DL models achieved

superior performance to traditional ML models, especially with augmented data (e.g., 4-

Class + Steps: LSTM 88.0%, RF 82.5%). DL methods showed superior generalisability on

unseen sheep (i.e., F1-score: BLSTM 0.84, LSTM 0.83, RF 0.65). LSTM, BLSTM and RF achieved

sub-millisecond average inference time, making them suitable for real-time applications.

The results demonstrate the effectiveness of DL models for sheep behaviour classification

in grazing conditions. The results also demonstrate the DL techniques can generalise

across different sheep. The study presents a strong foundation of the development of such

models for real-time animal monitoring.

� 2022 China Agricultural University. Production and hosting by Elsevier B.V. on behalf of

KeAi. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
1. Introduction

Monitoring the behaviour patterns of individual sheep has the

potential to inform multiple areas of animal production, from

profiling physiological state, to grazing management prac-

tices [1,2]. However, monitoring sheep behaviour has chal-
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lenges due to the vast spatial area and the substantial number

of animals involved. The classification of sheep behaviour

through observation is not a highly technical skill, but it is a

labour intensive one, and cannot be practically performed at

scale. The use of sensor technology can overcome this gap

to provide real-time information about the productivity,

health, and well-being of the animals. Monitoring sheep

behaviour through tri-axial accelerometers provides a cost

and power-efficient method for performing the monitoring,

aided by the recent miniaturisation of the technology. Taking

advantage of these recent advances, the sheep industry is

looking to apply this to ‘‘optimise production, reduce costs

and enhance sustainability” [3].

Accelerometers measure gravitational and inertial acceler-

ation due to movement. They collect data across three axes

and each dimension is recorded simultaneously, representing

three-dimensional movement in the sampled data [4]. One

method taking advantage of the data generated from

accelerometers is the use of machine learning to classify

the behaviours of the sheep based upon the accelerometer

data. However, the balance of the data influences the classifi-

cation process as the imbalances in the data are learned

through the training process. Recent studies have shown

the class imbalance issues when evaluating sheep behaviour

classification using accelerometer data. Fogarty et al. reported

low recall (the proportion of correctly predicted classifica-

tions) for walking behaviours (65.6% for walking versus 90.3%

for grazing) [3], while Barwick et al. reported poor recall for ly-

ing behaviours (6% for lying versus 88% for grazing) [5]. While

there are other contributing factors, such as similarity

between behaviours, in both Fogarty et al. and Barwick

et al., the authors attribute the results to data set imbalance

[3,5]. Importantly, often the under-represented behaviours

hold significance. Grazing and ruminating are considered the

most important behaviours for ruminants [6]. However, in

our study ruminating only made up 8.6% of the samples. Ide-

ally, the imbalance could be addressed at the data acquisition

stage. However, as alluded to in Fogarty et al. [3], the large

areas, difficult terrain and the limited time spent expressing

certain behaviours (e.g., walking), compared to grazing and

resting, leads to natural imbalance in the data. Therefore,

alternative methods are needed to overcome the class imbal-

ance present in the data.

A mix of statistical [7] and machine learning models have

been used for classification of sheep behaviours. Themachine

learning models include ensemble learning methods [8-10],

decision tree algorithms [2,3,11], instance-based algorithms

[3,9-11], as well as dimensionality reduction algorithms

[3,5,9,12,13]. Although Deep Learning (DL) techniques have

been successfully applied in other applications, there is a lack

of studies making use of DL. Studies have shown that DL can

produce better results given the correct models and data sets

for time series data (which includes accelerometer data)

[14,15]. In contrast to classification of sheep behaviour stud-

ies, DL is more prevalent in the human activity recognition

(HAR) field, which also makes extensive use of accelerometer

data. There is significant research making use of Long Short

Term Memory (LSTM), a Recurrent Neural Network (RNN)

implementation, shown to work well with time series data

[16]. Additionally, similar, or related classes are predicted with
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higher accuracy when a bidirectional LSTM is used [17]. Sheep

classification have similar behaviours that are harder to dis-

tinguish (e.g., lying and other behaviours [5]). Additionally,

transitions between states occur within the same time win-

dow, resulting in mixed signals within the same sample.

The transition directions are not specified in the data. There-

fore, the bidirectional nature will aid in the correct classifica-

tion of the behaviours displaying transitions. Feature

selection in the sheep behaviour studies has been a mixture

of statistical [8-12] techniques, but limited to Random Forest

(RF) in terms of Machine Learning methods [2,3,13]. DL has

not featured among the methods, but studies have shown

successful application of Convolutional Neural Networks

(CNN) in the context of LSTM classification models [18-20].

There are various forms of class imbalance, either in the

number of instances, or the density of the instances, but

these differences result in the machine learning techniques

overfitting the majority classes and densities [21]. The class

imbalance issue can be addressed at the separate phases of

the classification pipeline: feature selection, classification

and in the data preparation phases. In this study, the aim

was to compare classifiers in the context of the class imbal-

ance, and the influence of synthetic data on the classifiers.

Therefore, the focus is on addressing the class imbalance in

the data preparation phase. One form of oversampling (creat-

ing new samples) is the generation of synthetic data. Rather

than reusing the existing data in duplicate, the feature space

of the data is used to generate data samples that match the

space. There are multiple mechanisms for performing the

generation of the synthetic data, but one of the most popular

is Synthetic Minority Oversampling Techniques (SMOTE)

[22,23].

SMOTE, drawing inspiration from techniques applied to

handwritten character recognition, applies changes to the

feature space rather than the data space. Examples are gener-

ated by interpolating between several minority class exam-

ples that are nearest neighbours [22,24]. There are over 100

variants of SMOTE, with differences in how the new samples

are distributed [23]. Polynom-fit-SMOTE [25] is based on curve

fitting methods that find the coefficients of a polynomial that

fit the minority instances with different topology options,

such as ‘star’, ‘polynomial’, ‘bus’ and ‘mesh’. These generate

samples that are relatively far apart and therefore the syn-

thetic data is more scattered within the decision boundaries

of the minority class [21]. Kova´cs [21] performed an empirical

comparison of 85 different variants against 104 imbalanced

data sets, concluding that the polynom-fit-SMOTE was the

best performer for an unseen set of data showing imbalance

issues. Baseline SMOTE has been used to address class imbal-

ance issues for many instances of accelerometer data [26-29],

but as noted by Kova´cs [21] many comparisons for data syn-

thesis are performed against baseline SMOTE where advances

have been made with other variants. Therefore, our compar-

ison will focus on polynom-fit-SMOTE.

The objectives of this study were to evaluate (i) the addi-

tion of synthetic data and (ii) DL techniques to the classifica-

tion of sheep behaviour. Automating sheep behaviour

classification is the first step in improving productivity

through physiological state profiling. However, class imbal-

ance, inherent from natural behaviour bias and sampling
p learning based classification of sheep behaviour from accelerometer
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Fig. 2 – Schematic drawing of halter mounted ActiGraph

sensor under the jaw and the ear mounted Axivity sensor.

The three axes (x, y, z) are simultaneously sampled,

representing three-dimensional movement.
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techniques, reduces the accuracy of behaviour classification

as the machine learning algorithms inherit the bias from

the data set. An evaluation of the literature shows only rudi-

mentary techniques of addressing the class imbalance have

been applied to the sheep behaviour classification task, and

DL techniques have not been thoroughly investigated. There-

fore, our study contributes to the understanding of the classi-

fication of sheep behaviour, providing a foundation for the

development of real-time monitoring systems.

The rest of the paper is organised as follows: Section 2

describes the research methodology while Section 3 presents

the results and analysis. Discussions are given in Section 4

with conclusions in Section 5.

2. Materials and methods

2.1. Animals and research site

All procedures described were performed according to the

guidelines of the Australian Code of Practice for the Use of

Animals for Scientific Purposes 2013 and received approval

from the Murdoch University Animal Ethics Committee

(R3039/18). Two experiments were completed at the Muresk

Institute Farm, near Northam in Western Australia (31�
4405900S, 116�4001300E). The two experiments represented differ-

ent grazing scenarios; (i) Muresk Dry Pasture - Merino ewes

(18 months of age) grazed a 3-hectare field of dry annual pas-

ture for 7 days from 7th to 13th December 2018; (ii) Muresk

Stubble - Merino ewes grazed a 3-hectare field of barley crop

residues for 7 days from 1st to 8th February 2019. In both

cases the total amount of plant biomass grazed exceeded 2

000 kg dry matter/ha.

Both experiments involved a total of 30 ewes. A subset of

the ewes (Muresk Dry Pasture: 9 sheep and Muresk Stubble:

10 sheep, disjoint from Muresk Dry Pasture) were fitted with

jaw mounted ActiGraph sensors (ActiGraph, Pensacola, Flor-

ida, USA) and ear mounted Axivity sensors (Axivity Ltd, New-

castle, UK) for the seven days (Fig. 1, Fig. 2).
Fig. 1 – Sheep in a pen at Muresk Institute Farm, wearing the

full set of sensors.
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Each of the ewes was also branded on each side with a

unique paint brand to enable the ewes to be identified in

the video recordings.

2.2. Data set description

The ActiGraph and Axivity sensors recorded tri-axial

accelerometer data. The ActiGraph sensors were sampled at

30 Hz and the Axivity sensors at 25Hz. The sensors ran for four

days after a 3-day adaptation period,while the sheepwere also

observed during daylight hours through video recordings. A

subset of the videos was subdivided into ten second blocks,

and observations were made to allocate behaviours to the

activities in the ten second blocks. The behaviours recorded

were sitting, standing, walking, grazing and ruminating. These

can be subdivided into two categories: Movement (sitting, s-

tanding, walking), and Feeding (grazing, ruminating). A sheep

could undertake multiple activities within the ten second

block, such as sitting and grazing, or be a single behaviour, such

as standing. However, the Feeding categories were always

recorded in connection with a movement behaviour.

The combining of observations resulted in thirteen sepa-

rate categories. The breakdown of observation combinations

is shown in Table 1. The overall class imbalance can be seen

in the ‘Muresk Dry Pasture’ column, with significant differ-

ences between the highest (9 757 for sitting) and lowest (1

for walking_grazing_ruminating) observations.

The classification pipeline is shown in Fig. 3. It has four

key modules: data preparation, data augmentation, classifica-

tion and evaluation. Detailed descriptions of the modules are

given below.

2.3. Data preparation

The raw data was provided as a series of comma separated

values (CSV) files: two for each sheep. One containing the

ActiGraph jaw mounted data, and the other containing the

Axivity ear tag data. Each row contained a sheep identifier,
p learning based classification of sheep behaviour from accelerometer
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Fig. 3 – The classification pipeline showing the four phases of the classification process. The annotated data was augmented

with SMOTE synthetic data, and input into four classifiers. For LSTM and BLSTM, the raw accelerometer data was passed

through a CNN.

Table 1 – Breakdown of observation combinations. Sheep could undertake multiple activities within a 10 s window, forming
compound classifications. Data for two sample sheep (from Muresk Dry Pasture) are provided, as well as the totals for the
Muresk Dry Pasture (9 sheep) and Muresk Stubble (10 sheep).

Behaviours Sheep #7 Sheep #9 Muresk Dry Pasture Muresk Stubble

sitting 1 024 2 068 9 757 2 469
standing_grazing 815 426 6 652 5 253
standing 858 526 6 295 6 392
standing_ruminating 237 197 2 088 1 684
sitting_ruminating 73 197 1 498 836
walking 151 72 907 1 715
standing_walking_grazing 68 63 888 5 253
walking_grazing 56 34 653 218
standing_walking 63 34 380 1 470
standing_walking_ruminating 7 1 39 89
walking_ruminating 11 2 14 14
sitting_walking 0 0 4 11
standing_walking_grazing_ruminating 0 0 3 3
walking_grazing_ruminating 0 0 1 1

4 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e x x x ( x x x x ) x x x
timestamp, the observed behaviours, the additional observa-

tions and finally the accelerometer data for the time window.

Using Pandas and Numpy Python libraries the two files for

each sheep were loaded and merged as follows:
Please cite this article as: K. E. Turner, A. Thompson, I. Harris et al., Dee
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� The data sets were merged by the timestamps to pro-

duce one large set of columnar data. While merging

the files, the observations were validated to ensure they

matched between the two sources.
p learning based classification of sheep behaviour from accelerometer
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� The observed behaviours were encoded into discrete

labels, matching the grouped behaviours. For example,

if standing and grazing were observed, they were given

the label standing_grazing.

� The data with labels that had fewer than 30 samples

were removed from the data set. These represented

classifications that had too few data points to be useful

to classify.

� The unused columns (study name, sheep identifier,

timestamp, observed behaviours and additional obser-

vations, including the number of steps except for the

4-Class + Steps data set) were not included in the final

data set for analysis.

Seven data sets were created from the observed beha-

viours, using both Muresk Dry Pasture (MDP) and Muresk

Stubble (MS) experiments as detailed below:

(i) 9-Class for MDP: The unique, combined 13 classes with

distinct classes for each combination, with the extreme

minority classes removed. This resulted in 9 classes.

(ii) 3-Class for MDP: A data set with 3 distinct classes: graz-

ing, ruminating and other, where other was all the other

behaviours that did not have ruminating or grazing.

The 4 samples that were labelled as ruminating and

grazing were dropped.

(iii) 4-Class for MDP: A data set with 4 distinct classes: graz-

ing, ruminating, walking, and other, where the combina-

tion of ruminating and grazing with walking were

allocated to the feeding category.

(iv) 4-Class + Step for MDP: A second data set with the 4 dis-

tinct classes grazing, ruminating, walking, and other as

above. In addition to the accelerometer data, the num-

ber of steps taken by the sheep, as observed from the

video footage, was also included in the data for

classification.

(v) 4-Class + Steps for MS: The 4-Class + Steps test for MDP

was replicated with the accelerometer data from Mur-

esk Stubble.

(vi) 4-Class + Steps Leave one class out for MDP: The 4-

Class + Steps test was replicated with 9-fold cross vali-

dation by training on 8 sheep, and testing on the 1 left

out.

(vii) 4-Class + Steps generalisation for both MDP and MS: The

generalisation of the classification methods for the best

performing classifiers were performed by training on

one experiment, and tested with the second. This was

replicated in both directions training on MDP and test-

ing on MS, and then training on MS, and testing on

MDP.

The prepared data was split into 5-fold cross-validation

sets, ensuring all samples had an opportunity to be excluded

from the training set. These sets were marked as the baseline

sets, and were saved to CSV files for use with each classifier.

Likewise, after the addition of SMOTE synthetic data, the aug-

mented data sets were saved to CSV files, and served as the

input for each classifier.
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2.4. Data augmentation

Polynom-fit-SMOTE, as implemented by the smote-variants

Python library, was used to generate synthetic samples that

match the data distribution. Two different topologies were

tested in preliminary tests, ‘star’ and ‘mesh’, with the results

for ‘mesh’ being slightly better.

2.5. Classification

The baseline and SMOTE augmented data sets were used to

train the classification models. The trained models were then

evaluated against the test sets of each fold. There were four

different classification methods defined as follows:

2.5.1. Long Short Term Memory (LSTM)
LSTM is a form of RNN that is more robust, overcoming

problems RNNs have with long term dependencies [30].

Accelerometer data is sequential. Without the memory

capabilities of the LSTM, the sequential nature would be

lost, losing information important for classification of the

behaviours [16]. A combination of a CNN and LSTM was

implemented using TensorFlow in Python using the Keras

libraries to implement the models. The CNN was used for

feature selection, configured based upon the research of

Deep and Zheng [19], where they had a similar CNN and

LSTM hybrid model for HAR data. The data was collated

as an array of the accelerometer data: 900 data points for

the ActiGraph data, and 750 for the Axivity data. This data,

when combined, produced an array of 1 650 columns. The

array was input into two 1D convolution layers, with a ker-

nel size of 6, a filter size of 128, and using ReLU activation.

The output of the convolutions was then passed through a

dropout layer, to prevent over-fitting. Next, to reduce the

complexity, the data was passed through a maxpooling

layer with a pool size of 2. Finally, the feature selection

was performed by passing the output of the maxpooling

layer, through a dense layer, selecting 115 features. The

number of features was determined through testing with

different values to find the optimal value with the training

data. The output of the feature selection was then fed into

a LSTM layer to perform the classification. The results of

the LSTM layer were then passed to a dense layer using

softmax activation, to select for the number of classes in

the training set.

2.5.2. Bidirectional Long Short Term Memory (BLSTM)
BLSTM introduces a bidirectional pass over the data, forwards

and backwards. Given the 10 s epoch, a sheep may undertake

multiple behaviours within the same epoch. There are transi-

tions in both directions within the same epoch, e.g., stand-

ing_walking records both standing to walking and walking to

standing transitions. Given the bidirectional nature of the

transitions, applying the bidirectional LSTM may improve

the classification results. The implementation for this classi-

fication method followed the same design as the CNN LSTM

form, however a bidirectional LSTMwas used instead of a sin-

gle direction LSTM.
p learning based classification of sheep behaviour from accelerometer
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2.5.3. Support vector Machines (SVM)
SVM is a machine learning technique based on statistical

learning theory [31], which classifies by minimizing real error,

developing a hyperplane that separates the samples into two

categories. The aim is to separate the two points as much as

possible to minimise the inaccuracies in predictions [32]. SVM

is a binary classifier, but can be applied to multiclass prob-

lems by applying the one-versus-one technique [33]. SVM

classification was performed using Scikit-learn’s [34] imple-

mentation. A radial basis function (RBF) kernel was used with

a regularisation parameter of 1.0, and gamma to set scale.

2.5.4. Random Forest (RF)
RF is a type of ensemble learning where the feature set is ran-

domly split for use in decision trees. The results of the indi-

vidual trees are then combined into a classification

decision. The random nature of the feature selection splits,

leads to a more robust model that is resistant to overfitting

[35]. RF classification was performed using Scikit-learn’s

implementation [34], with 100 trees.

2.6. Evaluation metrics

The evaluation of the results was performed using a confu-

sion matrix which maps the actual values and the predicted

values to determine the True Positive (TP), True Negative

(TN), False Positive (FP) and False Negative (FN) results of

the classification. From these values the following were

calculated:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

� 100% ð1Þ

Precision ¼ TP
TPþ FP

ð2Þ

Recall ¼ TP
TPþ FN

ð3Þ

F1� Score ¼ 2� Precision� Recall

Precisionþ Recall
ð4Þ

Accuracy by Eq. (1), the percentage of samples correctly

classified, gives an overall performance indication of the clas-

sification. Precision by Eq. (2) measures what fraction of pre-

dictions that gave a positive class, were actually positive.

Recall by Eq. (3) (also referred to as sensitivity) indicates what

fraction, of all positive samples, were correctly predicted as

positive by the classifier. F1-Score by Eq. (4) combines the pre-

cision and recall into one value for comparison, in the form of

the harmonic mean.

The following metrics were used to aggregate the results:

(i) Weighted Average takes the metric and calculates the

average weighted by the support (the number of occur-

rences of each class in the test set).

(ii) Macro Average is the unweighted mean. Support is not

taken into account.

(iii) Minor Average takes the metric and calculates the aver-

age weighted by the inverse of the support. This pro-

motes the minority classes.
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3. Results

3.1. Test environment

All tests were performed on an AMD Ryzen 5 3600 6-Core with

32 GB RAM, with an NVIDIA GeForce RTX 2060 with 6 GB RAM,

running Linux Mint 20 with kernel version 5.4.0–60.

3.2. Classification

The overall accuracy results show that LSTM, augmented

with SMOTE data, produced the highest accuracy for the

small class sets (3-Class: 88.5%, 4-Class: 87.3%;Table 2). How-

ever, for the entire 9 classes, RF with SMOTE data was the

highest (72.4%).

The addition of classes resulted in a reduction in accuracy.

Attempting to distinguish walking from the other categories

from the 3-Class to 4-Class studies resulted in a drop from

88.5% to 87.3%. Examining the confusion matrix, the accuracy

of walking was much lower, showing considerable confusion

with grazing as well as the other (sitting and standing) classes

(Fig. 4 (a)). Walking had the smallest number of samples for

the data set, with 1 291 samples, versus 3 639 for ruminating,

8 193 for grazing and 16 052 for other. Examining the raw

accelerometer data for the failures, the mixture of inactivity

and activity within the recorded data can result in failures

to detect the walking activity. Fig. 5 shows the raw accelerom-

eter data of a false negative result where a similar walking

activity is seen for the first 5 to 7.5 s of the epoch before still-

ing into inactivity. Even with a majority of the time showing

activity it resulted in an incorrect prediction. However, once

the number of steps was added to the classification process,

the accuracy of the walking improved from 0.43 to 0.69

(Fig. 4 (b)). There is still some confusion with grazing, but dis-

tinguishing walking from other activities drops from 0.31 to

0.09.

Comparing the DL methods, BLSTM accuracy was close to

LSTM. Examining the details of the individual metrics for the

9-Class study, BLSTM was ahead of LSTM for precision, while

having equivalent recall and F1-Score (Table 3). With the

greater number of classes, and class imbalance present,

BLSTM resulted in slightly better results for the minority

classes. The use of BLSTM does introduce a training cost with

the training and evaluation time for BLSTM taking 61% longer

to complete than LSTM (for the 9-Class study). RF was the

most efficient to train and evaluate, while SVM was the worst

(Table 4). However, given the total time of testing for LSTM

was 14.5 s for 28 988 samples, the average inference time is

0.5 ms, supporting real-time inferences.

The 4-Class + Steps tests on the Muresk Dry Pasture exper-

iment were replicated with a second flock, Muresk Stubble, to

validate the results. The overall F1-Score decreased for the

second set of sheep, but maintained the performance order,

with BLSTM and LSTM outperforming RF and SVM (Table 5).

However, RF was closer to BLSTM and LSTM than in the first

experiment (LSTM = 0.83, RF = 0.82). Combining the data sets,

LSTM maintained the performance from the Muresk Dry Pas-

ture results, with an F1-Score of 0.88. The performance for

detecting walking and ruminating dropped for the second
p learning based classification of sheep behaviour from accelerometer
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Table 2 – Classification accuracy (%) for Muresk Dry Pasture. The results are shown for each classifier, taking the average of the
5 � Cross validation folds for the baseline, and SMOTE augmented data sets.

3-Class 4-Class 4-Class + Steps 9-Class
Baseline SMOTE Baseline SMOTE Baseline SMOTE Baseline SMOTE

BLSTM 78.7 87.7 73.9 85.8 82.9 87.4 61.7 70.4
LSTM 83.3 88.5 75.9 87.3 81.8 88.0 61.5 70.5
SVM 77.6 76.8 74.7 74.1 77.0 76.0 59.6 58.4
RF 83.9 83.0 81.2 81.2 81.7 82.5 71.3 72.4

(a) Accelerometer only (b)Accelerometer + Steps

Fig. 4 – The normalised confusion matrix for LSTM with SMOTE data for Muresk Dry Pasture. In both cases a 4-class study

was undertaken, with only accelerometer data present in (a), and the steps observations, in addition to the accelerometer

data, shown in (b). The addition of the steps improved the results for walking, reducing the confusion with the other

movement behaviours.
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experiment, having difficulty distinguishing grazing and walk-

ing behaviours (Fig. 6).

3.3. Generalisation across data

To demonstrate the generalisability performance of the DL

methods, we performed two sets of tests: i) Leave one class

out cross validation on the Muresk Dry Pasture data set and

ii) Train and test across data sets, i.e., train the techniques

on one data set and test on the other one. The results of the

Leave one class out cross validation approach are shown in

Table 6, while the results of the second study are shown in

Table 7. The results in Table 6 show that BLSTM was best able

to generalise the results when training within the same set,

the additional pass over the data resulting in a slight improve-

ment over LSTM. However, the DL methods outperformed RF

and SVM by a larger margin, RF and SVM showing a larger loss

of performance (SMOTE Weighted Average F1-Score reduc-

tion; BLSTM: 0.04, LSTM: 0.05, SVM: 0.12, RF: 0.17). The results

in Table 7 show that the DL methods can be generalised

between the experiments. There was some loss in perfor-

mance for DL, but the loss is much smaller than compared

to SVM and RF. Additionally, the performance is improved
Please cite this article as: K. E. Turner, A. Thompson, I. Harris et al., Dee
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when the training sample size is larger, as is seen when train-

ing on Muresk Stubble, and testing on Muresk Dry Pasture, as

Muresk Stubble has the larger data set.

3.4. Data synthesis

Data synthesis improved the classification results. For the 4-

Class + Steps classification, the improvements with the addi-

tion of the SMOTE synthetic data can be seen with improve-

ments across three of the four classes (Fig. 7, note Fig. 4 (b),

Fig. 6 (a) and Fig. 7 (b) are the same confusion matrix). The

improvements for walking were dramatic, improving from

just 0.20 to 0.69. However, this was not a universal improve-

ment. Considering the accuracy results for the 3-class study

for the individual sheep, SMOTE improved the results for

LSTM for Sheep #7 by 9.8%, whereas the results decreased

for Sheep #9 by 11.1% (Table 8). Similarly, for SVM and RF in

the 3-Class study the addition of synthetic data results in a

drop in accuracy. However, looking at the breakdown of the

changes with the 9-Class study for Sheep #9, the synthetic

data does improve the results for the minority classes (minor

average), at the cost of the majority classes (Table 9). Addi-

tionally, the use of SMOTE does result in improved precision
p learning based classification of sheep behaviour from accelerometer
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Fig. 5 – Sample raw accelerometer accelerometer data for walking observations for Muresk Dry Pasture. The left column

represents the accelerometer data captured by the halter sensor. The right column represents the data from the ear sensor. (a)

was incorrectly identified as grazing rather than walking. (b) and (c) are samples of correctly identified walking activities.

Table 3 – 9-Class results summary for Muresk Dry Pasture (9 sheep). The best results for each category are highlighted in bold.
The results are split into summary statistics with the weighted average showing the results focused on the majority class,
the macro average showing the balanced results and the minor average showing the results highlighting the minority
classes.

BLSTM LSTM SVM RF
Baseline SMOTE Baseline SMOTE Baseline SMOTE Baseline SMOTE Support

Weighted avg
Precision 0.56 0.70 0.56 0.69 0.51 0.52 0.67 0.69 28 988
Recall 0.62 0.70 0.61 0.70 0.60 0.58 0.71 0.72 28 988
F1-score 0.58 0.69 0.58 0.69 0.52 0.53 0.66 0.70 28 988
Macro avg
Precision 0.32 0.45 0.33 0.45 0.27 0.29 0.44 0.44 28 988
Recall 0.30 0.46 0.31 0.45 0.23 0.26 0.33 0.39 28 988
F1-score 0.29 0.43 0.31 0.42 0.21 0.25 0.33 0.39 28 988
Minor avg
Precision 0.25 0.35 0.26 0.35 0.21 0.23 0.34 0.34 28 988
Recall 0.23 0.35 0.24 0.35 0.18 0.20 0.25 0.30 28 988
F1-score 0.23 0.33 0.24 0.32 0.17 0.20 0.26 0.30 28 988
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Table 4 – 9-Class full study running times (seconds) for Muresk Dry Pasture. Training for all 5 folds. Testing was the time to
evaluate all 28 988 samples.

Training Testing
Baseline SMOTE Baseline SMOTE

BLSTM 1731.5 8 314.6 24.7 24.5
LSTM 1200.1 5 157.2 14.4 14.5
SVM 1716.0 11102.5 472.2 1 384.3
RF 272.5 1 371.8 1.0 1.2

Table 5 – A comparison of the weighted average F1-Scores for 4-Class + Steps augmented with SMOTE synthetic data for
Muresk Dry Pasture and Muresk Stubble.

Muresk Dry Pasture Muresk Stubble Combined
Sheep #7 Sheep #9 9 Sheep Sheep #5 Sheep #8 10 Sheep

BLSTM 0.80 0.78 0.88 0.81 0.85 0.83 0.87
LSTM 0.73 0.77 0.88 0.58 0.76 0.83 0.88
SVM 0.77 0.82 0.72 0.79 0.80 0.70 0.69
RF 0.84 0.88 0.82 0.84 0.90 0.82 0.83

(a) Muresk Dry Pasture (b) Muresk Stubble

Fig. 6 – The normalised confusion matrix for the SMOTE augmented LSTM classification of the 4-Class + Steps studies.

Muresk Dry Pasture (a) shows a stronger performance with the ruminating and walking classes, compared to Muresk Stubble

(b).
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with the single sheep tests. In the case of walking for RF, the

use of SMOTE improved the precision from 0.00 to 0.62

(Table 10).

4. Discussion

4.1. Classification

One focus of this study was to compare DL classification to

alternative machine learning techniques. With the smaller

number of classes, LSTM and BLSTM outperformed both RF

and SVM for the full 9 sheep study. Additionally, the DL meth-

ods showed to generalise better between the two flocks of
Please cite this article as: K. E. Turner, A. Thompson, I. Harris et al., Dee
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sheep, maintaining a higher performance over RF and SVM,

when training on one experiment and testing on the other.

However, the success of DL appears to be a factor of the data

set size, with the LSTM and BLSTM showing inferior perfor-

mance to both RF and SVM with the single sheep tests and

performing better in the generalisation tests when there

was more data. This is also reflected in the results for the 9-

Class test. Creating unique classes by combining the beha-

viours, reduced the number of samples with which to train

each class. This resulted in poorer performance overall in

the 9-Class test. RF was the top performer in this case, but

DL with the assistance of the synthetic data is approaching

the results of RF. Further investigation with a larger study
p learning based classification of sheep behaviour from accelerometer
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Table 6 – Muresk Dry Pasture 9 � Cross validation Leave one class out 4-Class + Steps test. The methods were trained on 8
sheep and tested on 1 sheep that was excluded from the training data.

BLSTM LSTM SVM RF
Baseline SMOTE Baseline SMOTE Baseline SMOTE Baseline SMOTE Support

Weighted avg
Precision 0.76 0.85 0.83 0.84 0.58 0.60 0.58 0.66 29 175
Recall 0.77 0.84 0.82 0.83 0.64 0.64 0.60 0.64 29 175
F1-score 0.76 0.84 0.82 0.83 0.58 0.60 0.55 0.65 29 175
Macro avg
Precision 0.74 0.78 0.74 0.74 0.54 0.55 0.58 0.54 29 175
Recall 0.63 0.77 0.68 0.75 0.44 0.47 0.35 0.58 29 175
F1-score 0.67 0.77 0.68 0.74 0.45 0.48 0.35 0.55 29 175
Minor avg
Precision 0.42 0.44 0.42 0.42 0.32 0.32 0.33 0.30 29 175
Recall 0.36 0.44 0.39 0.43 0.25 0.27 0.20 0.33 29 175
F1-score 0.38 0.44 0.39 0.42 0.27 0.28 0.21 0.31 29 175

Table 7 – The generalisation tests between the two experiments, Muresk Dry Pasture (MDP) and Muresk Stubble (MS). The 4-
Class + Steps model was trained on one experiment and tested on the second experiment. There were 19 distinct sheep, 9 for
MDP, and 10 for MS. This was performed both ways for each classifier.

Classifier Train Test Precision Recall F1-Score Support

BLSTM MDP MS 0.75 0.63 0.61 24 402
BLSTM MS MDP 0.81 0.67 0.67 29 175
LSTM MDP MS 0.78 0.69 0.71 24 402
LSTM MS MDP 0.85 0.71 0.74 29 175
SVM MDP MS 0.30 0.35 0.30 24 402
SVM MS MDP 0.50 0.29 0.32 29 175
RF MDP MS 0.31 0.35 0.33 24 402
RF MS MDP 0.50 0.33 0.37 29 175

(a) Baseline (b) SMOTE augmented

Fig. 7 – The normalised confusion matrix for the LSTM classification of the Muresk Dry Pasture 4-Class + Steps study. The

baseline result (a) was performedwith the raw accelerometer data. The addition of SMOTE synthetic data (b) shows improved

classification and less confusion for the minority classes.
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would be useful to determine if DL can show superior perfor-

mance over RF with more data.

Breaking down the individual components in the 9-Class

test, the DL methods showed to be more beneficial to the
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minority classes, providing some successful classification

results where there were none for RF. Given the different

advantages of RF and the DL methods, RF performing better

for the majority classes, and DL for the minority classes,
p learning based classification of sheep behaviour from accelerometer
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Table 8 – Muresk Dry Pasture 3-Class accuracy results by data set size (%). Sheep #7 contained 3 356 samples, Sheep #9 3 590
samples, and the full study 29 175 samples. Sheep #7 and Sheep #9 have similar sizes, but different class distributions.

Sheep #7 Sheep #9 Full Study
Baseline SMOTE Baseline SMOTE Baseline SMOTE

BLSTM 75.3 77.9 72.0 78.3 78.7 87.7
LSTM 65.8 75.6 85.9 74.8 83.3 88.5
SVM 82.2 78.0 86.1 84.9 77.6 76.8
RF 86.7 84.5 92.5 89.3 83.9 83.0

Table 9 – Muresk Dry Pasture 9-Class results summary for Sheep #9. The best results for each category are highlighted in bold.
The results are split into summary statistics with the weighted average showing the results focused on the majority class,
the macro average showing the balanced results and the minor average showing the results highlighting the minority
classes.

BLSTM LSTM SVM RF
Baseline SMOTE Baseline SMOTE Baseline SMOTE Baseline SMOTE Support

Weighted avg
Precision 0.74 0.79 0.61 0.74 0.71 0.77 0.82 0.83 3 588
Recall 0.78 0.72 0.64 0.67 0.78 0.75 0.86 0.84 3 588
F1-score 0.74 0.74 0.55 0.69 0.72 0.75 0.84 0.83 3 588
Macro avg
Precision 0.39 0.45 0.37 0.43 0.37 0.39 0.45 0.49 3 588
Recall 0.38 0.44 0.19 0.42 0.29 0.42 0.46 0.50 3 588
F1-score 0.36 0.42 0.20 0.38 0.28 0.37 0.45 0.48 3 588
Minor avg
Precision 0.30 0.33 0.28 0.32 0.28 0.29 0.34 0.37 3 588
Recall 0.28 0.33 0.14 0.31 0.22 0.32 0.34 0.37 3 588
F1-score 0.27 0.31 0.16 0.28 0.21 0.28 0.34 0.36 3 588

Table 10 – 9-Class precision for Muresk Dry Pasture Sheep #9. The precision results for the individual classes are shown for
each of the classifiers, with SMOTE synthetic data (S) and the baseline (B) without synthetic data.

BLSTM LSTM SVM RF
B S B S B S B S Support

sitting 0.91 0.97 0.64 0.90 0.83 0.93 0.94 0.97 2 068
sitting, ruminating 0.40 0.49 0.84 0.46 0.33 0.33 0.85 0.60 168
standing 0.63 0.49 0.61 0.40 0.65 0.70 0.77 0.73 526
standing, grazing 0.62 0.79 0.70 0.81 0.68 0.65 0.69 0.71 426
standing, ruminating 0.34 0.50 0.41 0.47 0.75 0.60 0.77 0.74 197
standing, walking 0.00 0.04 0.00 0.05 0.00 0.00 0.00 0.03 34
standing, walking, grazing 0.00 0.04 0.00 0.19 0.00 0.00 0.00 0.00 63
walking 0.61 0.71 0.10 0.57 0.07 0.28 0.00 0.62 72
walking, grazing 0.00 0.02 0.00 0.06 0.00 0.00 0.00 0.00 34
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one potential optimisation for the classification implementa-

tion would be to employ both methods in the training pro-

cess. RF could be used to detect the majority behaviours,

and LSTM to identify the minority behaviours. This way the

training process will work to the strengths of the classifica-

tion models, resulting in an overall higher performance. At

inference time, both models can be evaluated with a confi-

dence factor to determine the appropriate classification

where the model inferences are in conflict. The combination

would lead to better overall accuracy for both majority and

minority classes.

While a greater number of classes may result in better pre-

dictions for subsequent analysis, the inferior performance,
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with the 9-Class classification, degrades confidence in the

outcomes. The importance of detecting behaviours for speci-

fic purposes, for example accurately predicting ruminating and

grazing behaviours in order to predict food intake, may prove

both more practical and more valuable. As seen by the 3-Class

test, a much higher accuracy for the ruminating and grazing

behaviours can be achieved. The introduction of walking in

the 4-Class test resulting in a reduction of accuracy, shows

that there is a cost in introducing more classes.

Walking is harder to classify than the other movement

behaviours. Even as part of the labelling task this can be chal-

lenging. For example, determining the difference between

steps taken while grazing, as distinct from steps taken while
p learning based classification of sheep behaviour from accelerometer
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walking, is hard. This may require specifying a threshold on

the number of steps, or distance travelled. The tests in this

study also showed that the models have difficulty predicting

the walking behaviour from accelerometer data only, confus-

ing it with grazing and other behaviours. However, the addi-

tion of the steps to the classification improved the success

in correctly identifying the walking behaviour. The data col-

lected here is not representative of a real world usage scenar-

io, as the number of steps were obtained via manual

observation. However, it demonstrates that additional data

to the accelerometer data would be beneficial in identifying

the walking behaviour. For example, studies have shown that

gyroscope-based sensors assist in identifying behaviours [10],

while inclusion of tri-axial magnetism data helped behaviour

detection in goats, particularly for the minority classes [11].

Therefore, future research should examine the use of inte-

grated sensors, such as 6-axis sensors that incorporate more

forms of data.

The validation test of the 4-Class + Steps on Muresk Stub-

ble showed a drop in performance in Muresk Stubble, when

compared to Muresk Dry Pasture. This is presenting as a con-

fusion between the grazing and walking behaviours. Looking

at the distribution of the classes, Muresk Dry Pasture has less

overlap of grazing and ruminating behaviours with the walking

behaviour, with Muresk Dry Pasture overlapping in just 5% of

cases, and Muresk Stubble overlapping in 19% of cases

(Table 1). This shows that the overlapping of the classes does

present a challenge in terms of accurately identifying the

behaviours, and that further research needs to be performed

to optimise the process of detecting walking. In addition to

adding additional data sources, there may be benefits to split-

ting the classification process into two, one for determining

the Feeding behaviours (ruminating and grazing), and one for

determining the movement behaviours. As there is the poten-

tial overlap for these behaviours, producing separate results

may give a better indication of the sheep’s health, or physio-

logical state. The movement behaviours could be broken

down into an activity/inactivity classification, depending on

the purpose [3]. Additionally, this study used a fixed window

size of 10 s. Using a smaller time window (5 s) [2], a mix of

time window sizes [9], or a sliding window [5] may result in

better classification of walking behaviour.

Comparing the DL methods, BLSTM and LSTM showed

similar results, with LSTM providing generally better overall

performance, and BLSTM being slightly ahead of LSTM for

the minority class classification. However, given the compu-

tation costs involved with BLSTM, LSTM is likely the better

candidate. Given the slight improvement in BLSTM for the 9

class tests, it may prove the better option where there is a

small differentiation between the class feature spaces. The

forward and reverse traversal of the data may prove more

beneficial in this case in detecting the smaller differences.

4.2. Data synthesis

Examining the results in the context of the SMOTE data aug-

mentation, the addition of synthetic data generally helped

improve the performance for the DL methods. However, for

RF and SVM, the addition of the synthetic data resulted in
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either a reduction in accuracy or a very small improvement.

This was demonstrated in the 9-Class test for Sheep #9. With

the limited data in the single sheep data set and a highly

dominant majority class, the additional synthetic data leads

to greater confusion with the majority class, reducing the

overall success of the classification. With Sheep #9, the major-

ity class (sitting) is so dominant (57.6% of samples), the influ-

ence on the weighted average by a reduction on the recall for

that class, results in an overall performance loss. With the

addition of the SMOTE data, the model learns from more

examples of the minority cases which led to confusion over

similar samples to the majority class. This results in a drop

in the majority class recall, which, because of the dominant

position of the majority class results in a quick degradation

of the weighted average recall.

Therefore, the level of class imbalance needs to be consid-

ered before applying the synthetic data. Further study needs

to be performed to see if a reduction of the synthetic data,

with the aim of maintaining some, but not extreme, imbal-

ance, improves performance over balancing out the entire

data set to equal proportions.

5. Conclusion and future work

In this study, we performed a study of DL based sheep

behaviour analysis on accelerometer data collected under

grazing conditions. In particular, we considered the chal-

lenges of class imbalance in the data set. Additionally, this

is a first study of classification where multiple behaviours

are present in the observation time window, represented

as compound behaviours. Previous works have examined

other machine learning methods, but have not explored

DL. For comparative purposes we also used two alternative

machine learning techniques. Altogether, four classification

techniques, LSTM, BLSTM, SVM and RF, were analysed in

this study. The comparison was made by adjusting the data

set with synthetic data generated using polynom-fit-SMOTE

and performing classification training with the augmented

data set. These tests were performed on four behaviour

sets, a three class test, a four class test, a four class test

with additional steps data, and a nine class test. The tests

were carried out on individual sheep, as well as the full

nine sheep study.

The use of synthetic data showed benefits for the DL

methods. For RF, benefits were seen for the minority classes,

but reduced performance in classifying strongly dominant

majority classes. For the three and four class tests, the DL

methods were the best performers, regardless of data set size,

with the addition of the step data making noticeable improve-

ments to the walking classification. From the improvement

with step data, we can infer that the models will benefit from

diverse sensor data sources. For the nine class test, RF was the

best performing classifier, but this was largely due to its suc-

cess in classifying the majority classes. The DL methods, with

more data, showed comparable performance to RF, and

showed better performance when classifying the minority

classes. Generalisability tests, i.e., train on one set of sheep

and test on a different set, demonstrated the DL techniques

can generalise effectively.
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5.1. Future work

Further research is required explore the possibilities of utilis-

ing a combination of the DL and RF classification techniques

to provide a more accurate prediction on imbalanced sheep

behaviour data. Further study is also required to correctly pre-

dict walking behaviour, adding alternative data sources, sim-

plifying the categories, or separating the feeding and

movement behaviours into separate models. Additionally,

examining effects of modifying the time window size for

detecting walking behaviour should be undertaken.

Finally, the average inference times suggest that real-time

classification should be possible. However, future research is

required to validate this conclusion, particularly on a micro-

controller. The CNN-LSTM used in this study cannot currently

be deployed on TensorFlow Lite for Microcontrollers as it does

not support all required operations for the LSTM layers.

Therefore, future research will need to look at alternative

implementations of LSTM that can be deployed in such an

environment.
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