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translocation of invasive marine species 

Executive summary
Whether intentional or not, humans have been responsible for the 
translocation of invasive marine species. The indicative representations 
of association suggest that biofouling has been the most prevalent 
mechanism contributing to such invasions across the globe. 

Biofouling is one of the oldest mechanisms of human-mediated 
transport of marine species, beginning with early human movements 
on small scales and eventually leading to world explorations with the 
European Expansion from 1500 AD onwards. 

The most common means of biofouling is marine species attaching 
themselves to any part of a vessel, or any equipment attached to or 
onboard the vessel, aquaculture equipment and mooring devices. 

In contrast, ballast water is a relatively new vector of transport, 
with the earliest ballast water use recorded in the late 19th century. 
Ballast water – water (including sediment that has been contained in 
water) held in tanks and cargo holds of ships to increase stability and 
manoeuvrability during transit – represents an expansion of transport 
opportunity to the vast majority of the benthic species associated with 
biofouling.

This project assessed the relative contributions of known marine 
pest vectors in terms of the introduction and translocation of marine 
invasive species on a national basis (in Australia) through a review of 
the National Port Survey Database (NPSD) and on a worldwide basis 
through a literature review.

The information represented by the global dataset and the NPSD provide 
a useful tool for identification of species associations with modern 
vectors of transport, and the opportunity to identify likely relationships 
for future entry. 

Analysis of the global dataset indicated that more species have life 
history characteristics associated with biofouling (55 per cent) than any 
other vector. The second highest association was with ballast water  
(31 per cent).

A similar relative contribution was found in the Australian context 
through analysis of the NPSD, with biofouling contributing 60 per cent of 
species association and ballast water 24 per cent. 
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1. Introduction
Humans have undoubtedly transported species, intentionally and 
accidentally, for several thousand years (diCastri 1989). However, these 
movements are likely to have been spatially restricted and of relatively 
low frequency. The modern era of European expansion (post-1500 
AD) has resulted in the massive transport and inoculation of species 
between non-contiguous biotic provinces (Crosby 1986; diCastri 1989). 
The transport of species by human vectors was recognised by early 
workers (Ostenfeld 1908; Elton 1958; Williams et al. 1988), but it is only 
in the last few decades that significant progress on identifying patterns 
and processes has been made (e.g. Carlton 1985, 1996, 2001; Ruiz et al. 
2000; Hewitt 2002; Hewitt et al. 2004; Castilla et al. 2005; Minchin 2006). 

Transport mechanisms in the marine environment have largely been 
associated with commerce and exploration. These include:

wooden-hulled vessel boring• 
biofouling • 
dry and semidry ballast• 
steel-hulled vessel biofouling and the transport of planktonic • 
organisms and fragments in ballast water 
the intentional transfer of aquaculture and mariculture organisms • 
(specifically oyster introductions) including the unintentional 
movement of associated organisms (e.g. Elton 1958; Carlton 1989, 
1996; Ribera and Boudouresque 1995) 
the transfer of live, frozen and dried food products and aquarium • 
trade (e.g. Weigle et al. 2005) 
the use of biological material for packing (e.g., Ribera Siguan 2002, • 
2003; Miller et al. 2004) 
the explicit transport of species for scientific research. • 

Many of these vectors have not been limited to single species 
movements but have often resulted in entire assemblages or 
communities of tens to hundreds of species being transported between 
disparate bioregions. These vectors of transport typically result in the 
unidirectional movements of species over long periods, inoculating new 
individuals or propagules for multiple generations (e.g. Carlton and 
Geller 1993; Ruiz et al. 2000; Hewitt et al. 2004).
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Most efforts have focused on the ship as a transport vector, which is 
comprised of several sub-vectors, such as:

biofouling on the hull, seachests, propeller, rudder, exposed • 
surfaces of water piping, thruster tunnels and other ‘niche’ areas 
the boring of organisms into the structure of the vessel (primarily • 
limited to wooden-hulled vessels) 
the uptake of organisms in association with wet or dry ballast  • 
(e.g. Carlton 1989, 1996; Ruiz et al. 2000). 

Several of these ship sub-vectors are believed to have ceased to exist 
as significant mechanisms of transport (e.g. wooden hull boring, dry 
and semidry ballast, accidental acquaculture introductions). Hull 
boring, for example, virtually ceased to exist with the use of steel as 
the primary ship-building material in merchant and naval vessels. 
However, many pleasure boats and fishing craft are still constructed 
of wood (Nagabhushanam and Sarojini 1997) and therefore present 
an opportunity for this mechanism to continue. Similarly, dry-ballast 
made up of sand, gravel and rock taken from littoral environments was 
replaced with water ballast beginning in the late 1800s and was phased 
out by 1950. While it is believed that these transport mechanisms have 
ceased, others have become more apparent (e.g. ballast water).

None of the various transport mechanisms are species specific, with the 
exceptions of intentional introductions of target species for aquaculture, 
fisheries enhancement, or biocontrol. Several mechanisms are likely to 
transport entire assemblages of species. These transport mechanisms 
have unique sets of constraints that act as selection criteria influencing 
a species’ ability to successfully enter and survive the invasion process 
(Table 1). This suggests that suites of species with physiological and 
ecological characteristics may be recognised in association with specific 
transport vectors. For example, biofouling primarily transports species 
that have attached sedentary or sessile, benthic habits, or species 
associated with these communities (e.g. living in, between or on other 
organisms) (Minchin and Gollasch 2002). In contrast, ballast water 
transports species associated with the plankton either as holo-plankton 
(species that have their whole life-cycle in the water column), mero-
plankton (species with a portion of their life-cycle in the water column), 
or tycho-plankton (species accidentally swept into the water column), 
and often includes pelagic species. 
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It is difficult to establish a firm link between an already-established 
introduced species and the vector (or sub-vector) by which it arrived  
in the new location. Nevertheless, linkages to sub-vectors based 
on life history modes, timing of invasions, and association between 
location of incursion and sub-vectors have been deduced by reasoned 
argument (e.g. Hewitt et al. 1999, 2004, 2007, in press; Ruiz et al. 2000). 
It has become apparent that assigning a species to a single vector 
is problematic, and perhaps inappropriate, given the opportunity for 
species to be inoculated multiple times through transport by a number 
of different vectors.

Hewitt et al. (1999, 2004) evaluated known introductions to Port Phillip 
Bay and identified the most probable vector(s) of transport for individual 
species. This was based on the biology of each life history phase  
(e.g. planktonic larvae for ballast water, attached benthic phase for hull 
fouling) and the timing of invasions (e.g. before or after the advent of 
ballast water use). Species assignments to vectors were not exclusive; 
any vector by which a life history phase could be transported (see expert 
author chapters in Hewitt et al. 1999), and that was operating at the time 
of first collection, was given equal weighting (the total for an individual 
species summing to 1) and a percentage of all species calculated for 
each vector. This evaluation resulted in a simple comparison of the five 
categories of transport vector used in the study (see Figure 1).
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Figure 1. An evaluation of historic marine bioinvasions according to 
five primary transport mechanisms
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Blue – Port Phillip Bay (Hewitt et al. 1999, 2004)
Grey – San Francisco Bay (Cohen and Carlton 1995)
Stippled areas represent species that could have been introduced both by hull fouling and ballast water. (Figure 
adapted from Hewitt et al. 2009).



14

the relative contribution of vectors to the introduction and 

translocation of invasive marine species 

2. Objectives 

2.1 Overall objective
This project assesses the relative contributions of known marine pest 
vectors in terms of the introduction and translocation of marine invasive 
species on a national basis (in Australia) through review of the NPSD 
and on a worldwide basis through a literature review. 

2.2 Specific objectives
1.  A global assessment of recognised introduced marine species with 

assignation to broad vector categories (Table 2). Data to be derived 
from pre-existing materials such as published literature.

2.  An analysis of the NPSD to determine association of recognised 
Australian introductions with broad vector categories (Table 2). 

3.  A matrix assessment of the estimated proportion that each broad 
vector category (Table 2) and each vector contributes to marine pest 
translocation.

4.  Development of a bibliography of the literature reviewed during the 
project (delivered previously).

Table 2. National Introduced Marine Pest Coordination Group broad 
vector categories

bROAD vECTOR CATEGORy 

bAllAST wATER bIOFOUlING OThER

Specific 
vector

Commercial vessels• 
Defence vessels• 
Miscellaneous vessels • 
(i.e. super-yachts,  
cruise liners)

Commercial fishing vessels• 
Non-trading vessels• 
Commercial vessels• 
Recreational vessels• 
Petroleum production and • 
exploration industry
Aquaculture operations • 

Aquaculture  • 
(non-biofouling 
transfers)
Aquarium • 



15

3. Global assessment
Currently no single source of information provides an up-to-date 
repository of recognised marine invasions around the globe. Attempts 
to generate such a comprehensive list are fraught with difficulty, as 
the source information is often difficult to access or the identifications 
are called into question by taxonomic experts in other regions. Several 
regional assessments of species recognised by local experts have  
been undertaken, providing an opportunity to pull together these  
various pieces of information into a consistently represented dataset  
(Table 3; see also Campbell et al. 2007). 

Table 3. Examples of regional assessments of non-indigenous  
species

lOCATION

NO. OF  
INTRODUCED AND 

CRyPTOGENIC SPECIES REFERENCE

United States 298a,e Ruiz et al. 2000

Baltic Sea 96a Gollasch and Leppäkoski 1999; 
Leppäkoski and Olenin 2000

New Zealand 167a Cranfield et al. 1998

United Kingdom 50b Eno et al. 1997

Black Sea 35a,b Zaitsev and Mamaev 1997

Mediterranean Sea (1997) 240a,c,d Por 1978; Ruiz et al. 1997

Mediterranean Sea (2002) 467 CIESM Atlases: Golani et al. 2002;  
Galil et al. 2002; Zenetos et al. 2003

Azores 52 Cardigos et al. 2006

South Africa 58a,c de Moor and Burton 1988

South Atlantic (Patagonia) 114 Orensanz et al. 2002; this study

Southeast Pacific (Chile) 40 Castilla et al. 2005

Australia (1990) 62 Pollard and Hutchings 1990a,b

Australia (2001) >215 Hewitt et al. 1999, 2004; Hewitt 2002

Australia (2005) 338 Hayes et al. 2005

Australia (2008) 429 This study

Note.
a  Includes marine, brackish, freshwater and salt marsh species. 
b  Partial evaluation of species. 
c  Includes all species records, not limited to establishment. 
d  Includes Lessepsian migration as well as human mediated introductions. 
e  Limited to continental United States (including Alaska). 
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Hayes et al. (2005) provided an assessment that reported 1582 marine 
and estuarine species that have been transported by human mediated 
activities worldwide. More recently, The Nature Conservancy published 
a global assessment (Molnar et al. 2008) compiling information from 
over 350 data sources and recording data spatially using the (Spalding 
et al. 2007; <www.nature.org/MEOW>) ecoregions. The dataset 
generated by their assessment (Spalding et al. 2007; <www.nature.org/
marineinvasions>) was evaluated against the dataset generated in this 
assessment and was found to have numerous gaps. For example,  
the Bassian ecoregion in southeast Australia, which includes  
Port Phillip Bay, is reported to have only 42 introduced species  
(of which Molnar et al. deem 22 as pests), whereas the Port Phillip Bay 
assessment (Hewitt et al. 1999, 2004) alone has identified 99 introduced 
and 67 cryptogenic species. 

The information presented here expands upon the work of Hewitt et al. 
(unpub dataset, 1999, 2004) and others (Hayes et al. 2002, 2005; Hayes 
and Sliwa 2003; Molnar et al. 2008). A note of caution must be made 
concerning the use of international datasets. Much of the overseas data 
was collected for other purposes than evaluation of non-native species, 
presence or distribution, resulting in differential sampling efforts 
across habitats and regions. For example, much of the biodiversity 
assessments used to harvest non-indigenous species (NIS) information 
explicitly sample in ‘pristine’ regions, thus avoiding port and marina 
areas that experience high NIS inoculation pressure. As a result, these 
assessments will likely underestimate the number of NIS. 

An assessment of the primary and secondary (grey) literature, including 
websites and online databases, was performed to identify the known 
marine introduced and cryptogenic species to generate a global dataset. 
In addition, a number of researchers (Appendix) were approached 
directly to add additional information in generating the complete 
dataset. Wherever possible, primary literature was sought as the source 
information. We have compiled information from over 700 data sources. 

In this evaluation, data for species presence was recorded using 
the 18 large-scale International Union for Conservation of Nature  
(IUCN) marine bioregions (Kelleher et al. 1995), as these are close 
representatives of widely accepted biological provinces, rather than 
the finer scale ecoregions. The designation and use of biogeographic 
boundaries has caused significant debate in the literature; however, the 
use of provinces with recognition of overlapping boundaries provides 
the basis for the Kelleher et al. (1993) designation. This system creates a 
sequence of ‘core’ and ‘transitional’ areas which are roughly equivalent 
to the Spalding et al. (2007) ecoregions by Molnar et al. (2008).
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The database now includes 1781 species (see Figure 2), 43 of which are 
species restricted to lower salinities (< 5 ppt). The dominant groups of 
species in our database are: 

arthropods (444 species)• 
molluscs (350) • 
fish (166)• 
red algae (153)• 
annelids (104)• 
cnidarians (101)• 
brown algae (73)• 
bryozoans (73)• 
green algae (51).• 

Over 98 per cent of the 1781 species have been allocated to possible 
transport vectors, based on examination of life history characteristics 
(at the species level where available), morphological characteristics 
and habitat associations following the criteria and methods proposed 
by Hewitt and Campbell (Table 1) and similar to the evaluation of Port 
Phillip Bay in Hewitt et al. (1999, 2004). Where species-level information 
was not readily available, genus-level characteristics were used to 
classify morphological characteristics and habitat associations.

We followed the broad vector categories provided in Table 2; however, 
finer scale evaluation of association with specific vectors was not 
feasible for differentiating within the broad categories of ballast water 
or biofouling as specified in Table 2. In addition, we were able to analyse 
association with historic vectors (semidry ballast and wooden hull 
boring), intentional aquaculture and fisheries transfers, and others  
(e.g. canals, biocontrol, intentional plantings). 
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Figure 2. Number of recognised introduced and cryptogenic marine 
species on a global scale in the top 15 high-level (Phylum) taxonomic 
groups 
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Note. Representing 98.5 per cent of the total recognised global introduced diversity. 

Mollusca is divided into gastropods, bivalves and chitons (represented in blue, orange and black, respectively). 
Chordata is divided into fishes (blue) and ascidians (orange).
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4. National Port Survey Database
Between 1995 and the present, 34 Australian locations have been 
surveyed using a consistent suite of standardised methods for the 
design and sampling of biodiversity across a range of habitats (Hewitt 
and Martin 1996, 2001; see also review by Campbell et al. 2007; 
Figure 3). The Hewitt and Martin (1996, 2001) protocols aim to detect 
introduced, cryptogenic and native species and determine species 
distributions to identify introduced species, pathways and vectors. 
They are designed to maximise the likelihood that introduced marine 
species are detected. To achieve this, sampling strategies concentrate 
on habitats and sites that are most likely to have been inoculated and 
colonised by species associated with recognised transport vectors (e.g. 
vessel biofouling, ballast water, aquaculture operations, recreational 
vessels etc) (Table 4). 

Figure 3. Australian ports and facilities (surveyed locations  
noted in orange)

WA

NT

SA

QLD

NSW

ACT

VIC

VIC

Campbell et al. (2007) evaluated methodologies used in the majority of 
global efforts to detect and identify introduced and cryptogenic species in 
marine environments. They identified five suites of survey methodologies: 

the Hewitt and Martin (1996, 2001) protocols (also known as the CRIMP • 
protocols)
the Rapid Assessment Survey (RAS) protocols (e.g. Cohen et al. • 
2001; Pedersen et al. 2003; Cohen et al. 2005) 
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the Bernice P. Bishop Museum (BPBM) protocols (Coles and • 
Eldredge 2002)
the Chile aquaculture surveys (Hewitt et al. 2006)• 
the Passive Sampling protocols (e.g. Ruiz and Hewitt 2002;  • 
Wyatt et al. 2005; deRivera et al. 2006). 

The comparison of survey types was restricted to understanding  
the survey constraints and benefits, specifically in relation to:

detection efficiencies (as determined by species  • 
accumulation curves)
the total and per-sample costs• 
the cost efficiencies (Table 5). • 

The Bishop Museum and Hewitt and Martin protocols were determined 
to be most effective in detecting species.

Table 4. Priority sites as identified in Hewitt and Martin (2001), based 
on inoculation pressure and detection of introduced and cryptogenic 
species in port surveys

1 COMMERCIAl ShIPPING FACIlITIES IN PORT

Active  berths

Inactive/disused wharves

Channel markers

Tug and pilot vessel berths

Slipways

Breakwaters, groynes etc.

Spoil ground

2 NON-COMMERCIAl FACIlITIES/AREAS IN PORT

Fishing vessel berths/moorings

Recreational vessel berths/moorings

Beaches

Rock jetties, breakwaters, groynes

Mariculture facilities

Marinas and boat ramps

Estuarine/brackish/lagoonal areas

Wrecks and hulks

3 ADjACENT AREAS OUTSIDE PORT

Non-commercial shipping facilities

Estuarine/brackish/lagoonal areas

Offshore exposed areas

Beaches
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the relative contribution of vectors to the introduction and 

translocation of invasive marine species 

These surveys were initially undertaken to provide baseline information 
(providing information on the spatial aspect of invasions) with the intention, if 
funds existed, of subsequently resurveying sites using the same methods and 
intensity (providing both spatial and temporal invasion data). The frequency 
of resurveys should be dependent on the baseline data and the introduced 
species detected. In practice, resurveys have occurred infrequently, and, 
where they have occurred, at six-month intervals (e.g. Darwin wet and dry 
season surveys), three-year intervals (e.g. New Zealand port surveys) and 
five-year intervals (e.g. Bunbury, Western Australia, resurvey). To date, the 
Hewitt and Martin protocols have been used in more than 73 surveys in 12 
countries and represent 66 per cent of the formal evaluations for marine 
invasions across the globe (Campbell et al. 2007).

The NPSD represents the formal collation of data from 33 of the baseline 
evaluations from ports around Australia. The database specifically excludes 
the Port Phillip Bay analysis undertaken by CSIRO (Hewitt et al. 1999, 2004), 
as this was not formally part of the NPSD and relied on a combination of port 
survey methods as well as museum and literature evaluations. Here we have 
incorporated the Port Phillip Bay data into the representative analyses to 
allow for comparisons with the previous information.

Australian port locations vary significantly in size (e.g. number of berths) 
and primary activities (commercial berths, recreational and fishing vessel 
marinas, defence berths or areas, aquaculture). We have analysed the 
recognised introduced and cryptogenic species in each of the surveys 
to determine the detection association with the various types of sites 
(commercial, recreational, fisheries, defence, historic, aquaculture and 
other; Table 6). Each port survey represents the accumulation of successful 
introductions throughout the life of the location’s (port, marine) activity. 

Here, we assume that the presence of species at a site represents an 
indication of transport association between the primary activity of a site (e.g. 
commercial shipping, recreational vessels, fisheries vessels, defence estate, 
historic, aquaculture and other) and the species through correlation. It should 
be noted that sites within Australian ports are rarely exclusive. With the 
exception of defence and aquaculture locations which have restricted access, 
all other locations have a designated primary activity but are frequented by 
other vessel types; for example, commercial berths are frequently used by 
other types of vessels, including fishing vessels, recreational vessels, slow-
moving barges, oil and gas platforms and exploratory rigs, in addition to 
commercial ships. Similarly, recreational and fishing vessels are frequently 
found in the same marinas or mooring locations (e.g. Francis Bay Marina 
in Darwin, Challenger Harbour in Fremantle and Trinity Inlet in Cairns). 
Consequently, the assumption of association between the primary activity and 
the species may be incorrect.
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Results

The NPSD indicates that the surveys detected a total of 10 847 taxa, with 
identification of 122 introduced and 80 cryptogenic species representing 
more than 7300 specimens. When added to the identifications from 
the evaluation of Port Phillip Bay (Hewitt et al. 1999, 2004), the total 
number of introduced and cryptogenic species detected in Australian 
port surveys is 248, approximately 58 per cent of the 429 species in the 
Australia and New Zealand bioregion recognised from the literature, 
museum collections and port surveys (Table 3). Several patterns are 
evident from the NPSD data. 

The vast majority of taxa were not identified to species level  
(7113 taxa; 65.6 per cent of total), with tropical locations having a higher 
number of unknown species (Figure 4; for raw species numbers:  
t[30] = 45.08, p < 0.05) and a higher proportion of the total taxa collected 
remaining unidentified (arcsine*square root transformed: t[30] = 1.57,  
p < 0.05). 

Figure 4. Numbers of unidentified species (species without binomials) 
detected in the 33 surveys
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In contrast, virtually all surveys detected introduced and cryptogenic 
species (Figure 5), with a significant reduction in the number of 
introduced (t[30] = 15.91, p < 0.05) and cryptogenic (t[30] = 3.37, p < 0.05) 
species detected as latitude of surveys decreased towards the equator  
(Figure 5). Multivariate analyses comparing the similarity of introduced 
and cryptogenic assemblages between ports demonstrate a clear 
separation of tropical and temperate environments (Figure 6; stress 
0.15). This is further illustrated by a port-by-port hierarchical cluster 
analysis, where assemblages of introduced and cryptogenic species 
form two distinct groups (tropical and temperate) at approximately 
18 per cent similarity (Figure 7). Furthermore, multivariate analyses 
indicate that no similarity exists between site (environmental) types 
(Figure 8; stress 0). 

Figure 5. Numbers of introduced and cryptogenic species detected  
in the 33 surveys and in Port Phillip Bay for comparison 
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Figure 6. Nonparametric Multi-Dimensional Scaling plot of introduced 
and cryptogenic species similarity between ports, highlighting the 
separation between tropical and temperate port systems
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Figure 7. Dendrogram of the hierarchical clustering of introduced 
and cryptogenic species in highlighting an Australian port-by-port 
separation of tropical and temperate ports

100806040200

WA Esperance

WA Fremantle

VIC Melbourne

VIC Geelong

SA Adelaide

VIC Portland

VIC Hastings

NSW Newcastle

TAS Lady Barron

NSW Port Kembla

NSW Botany Bay

WA Albany

WA Bunbury

NSW Eden

SA Port Lincoln

TAS Launceston

TAS Devonport

TAS Hobart

TAS Burnie

WA Geraldton

Port Phillip Bay

WA Port Hedland

QLD Mourilyan

QLD Hay Point

QLD Townsville

QLD Mackay

NT Darwin

QLD Weipa

OLD Lucinda

QLD Abbot Point

NT Gove

QLD Karumba

QLD Cairns

QLD Gladstone

Similarity

Note. Temperate ports: <22 degrees latitude 
Tropical ports: >22 degrees latitude



37

Figure 8. Nonparametric Multi-Dimensional Scaling plot of introduced 
and cryptogenic species similarity between environmental types, 
highlighting the dissimilarity between all types
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Of the 248 introduced and cryptogenic species detected in the port 
surveys, 59.8 per cent of introduced and cryptogenic species are 
associated with biofouling based on life history characteristics; 
24.0 per cent of introduced and cryptogenic species are associated with 
ballast water (Figure 9).

Figure 9. Introduced and cryptogenic species association with vectors 
based on life history characteristics (following Table 1)
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Species are most commonly associated with commercial sites, with 
additional representation at recreational and fisheries sites across 
all 33 ports (Figure 10). Introduced and cryptogenic species have a 
greater percentage representation at all site types than expected by 
site representation (Figure 10); however, the mean species association 
with site types is not significant except for historic sites, which are 
significantly higher than expected by chance alone (t[31 ]= 2.79,  
p < 0.05; Table 8). Species associations with site type clearly separate 
sites through National Minimum Data Set analysis (Figure 8, Stress = 0)

Figure 10. Comparison of the average percentage species association 
with sites compared with average frequency of site representation  
in the 33 surveys
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Table 8. Species X site association 

SITE TyPE

SITE REPRESENTATION SPECIES ASSOCIATION

t[31]MEAN % STD DEv MEAN% STD DEv

Commercial 85.6 13.7 78.0 19.1 0.58

Recreational 19.3 25.5 14.8 15.4 0.06

Aquaculture 0.7 3.2 0.3 1.5 0.10

Fisheries 9.8 19.3 4.9 10.1 0.40

Defence 2.7 10.7 1.0 3.1 0.16

Historic 4.1 11.3 0.9 2.6 -2.79

Site types as a percentage representation in port surveys (standard deviation) and mean species association (standard 
deviation). Studentised t statistic is presented for pairwise comparisons of arcsine* square root transformed 
percentages



39

5. Evaluation of broad vector 
categories
Using the information recorded from the global evaluation of introduced 
and cryptogenic species identified or reported from the 18 IUCN large-
scale bioregions, patterns of species association with broad vector 
categories according to life history characteristics was carried out. 
Invasions within the large-scale IUCN marine bioregions have large 
differences in the strength of the broad vector categories (Figures 11 
and 12) with high standard errors (Figure 12). Clearly the numbers of 
species recognised within the various regions differ, with some regions 
having significantly more introductions (e.g. Australia, North East 
Pacific, South Pacific, including Hawaii, and the Mediterranean). These 
regions have a longer history of marine study and investment in marine  
invasion ecology and have literature that is more readily accessible. 

The relative importance of the vectors is more clearly observed in 
the per cent contribution to total (Figures 11 and 12). More species 
(averaged across the 18 bioregions) have life history characteristics 
or associations which indicate a biofouling association (55.5 per cent) 
than any other category, with a larger association with vessels (of all 
types). The high variability across bioregions for biofouling association 
(standard deviation 9.38 per cent) can readily be observed in Figure 13. 
Ballast water represents the second largest category (30.8 per cent), 
with a standard deviation of 7.2 per cent. A significant overlap of species 
associations between these two categories exists, as has been identified 
and discussed previously (Ruiz et al. 1997, 2000; Hewitt et al. 1999, 2004, 
in press; Minchin and Gollasch 2002; Minchin 2006; Figure 12). 



40

the relative contribution of vectors to the introduction and 

translocation of invasive marine species 

Figure 11. Number of marine bioinvasions (introduced and cryptogenic 
species) in the 18 large-scale IUCN marine bioregions, according to 
contribution of specified transport mechanisms
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Figure 12. Percentage of marine bioinvasions (introduced and 
cryptogenic species) in the 18 large-scale IUCN marine bioregions, 
according to contribution of specified transport mechanisms
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Figure 13. Potential association for species to be transported by major  
vector categories (average across the 18 large-scale IUCN marine 
bioregions) 
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Figure 14. Re-evaluation of Figure 1 – evaluation of historic marine 
bioinvasions 
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6. Discussion and conclusions
This analysis has expanded upon previous attempts to collate 
information from the global literature, with a current representation of 
more than 1700 introduced and cryptogenic species from the 18 global 
IUCN bioregions. The list has been generated from over 700 sources 
and relies heavily on the accuracy of those individual assessments. 
While some judgements were made, these were based on subsequent 
literature or expert assessments from the regions. As has been 
discussed by others, invasion history alone is insufficient to determine 
future invasion potential. However, for the purposes of this retrospective 
assessment, the dataset provides a valuable tool in exploring species-
level characteristics that provide clues to the mechanisms of species 
transport and establishment in new regions.

The information from the global dataset has a number of restrictions. 
The information extracted from the literature rarely has useful temporal 
information, and even where reported this is likely to represent a 
detection many years after the initial inoculation. As a consequence, it 
is not possible here to undertake a temporal reconstruction of vector 
associations. 

While the global dataset cannot aid in identification of the specific sub-
vector association, the indicative representations of association suggest 
that biofouling has been the most prevalent vector contributing to 
invasions across the globe. Biofouling is one of the oldest mechanisms 
of human-mediated transport of marine species, with early human 
movements on small scales leading to the eventual world explorations 
of the European Expansion (Crosby 1986). It is therefore unsurprising 
that the global dataset, representing the sum total of recognisable 
human-mediated introductions over the past millennium, has a heavy 
weighting towards biofouling-associated species. 

Numerous examples of biofouling-related invasions have been 
documented in the literature (e.g. Skerman 1960; Gollasch 2002), including:

commercial vessels (e.g. Coutts 1999; Lewis et al. 2003, 2004; • 
Coutts and Taylor 2004)
recreational vessels (Bax 1999; Floerl et al. 2004)• 
replica sailing vessels (Lewis et al. 2006a; pers obs)• 
slow moving barges (Lewis et al. 2006b; Coutts 2002)• 
dredges (Clapin and Evans 1995)• 
oil platforms (Carlton 1987; Page et al. 2006). • 
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In several instances, these detections identified significant biofouling 
(e.g. 25 tons on the barge Steel Mariner, Coutts 2002; 90 tons on the 
fishing vessel Yefim Gorbenko in New Zealand, Hay and Dodgshun 1997) 
and/or identification of NIS in the biofouling (Page et al. 2006).

Clapin and Evans (1995) reported that the dredge Kingfisher, which 
had been frequently towed between Cockburn Sound and Bunbury, 
Western Australia, was moored in the Inner Harbour of Bunbury in 
1993 and reported to have ‘many worms matching the description of 
S. spallanzanii on its hull’. Sabella was not officially detected in Bunbury 
until Clapin and Evans’ report. Hutchings et al. (1994) did not detect  
S. spallanzanii in their evaluation of the port.

Page et al. (2006) detected NIS on two of seven platforms they 
evaluated off the California coast. Species detected include Watersipora 
subtorquata, Diadumene sp. and Caprella mutica. They hypothesise  
that the association between platforms and small vessels and barges 
may have resulted in the transfer of species from onshore facilities to 
these platforms.

Ballast water in contrast is a relatively new vector of transport, with 
the earliest ballast water use recorded in the late 19th century. Ballast 
water represents an expansion of transport opportunity to the vast 
majority of the benthic species associated with biofouling. Many of these 
species have life histories with planktonic, larval dispersal, making 
them mero-planktonic. As a consequence, ballast water represents 
a significant expansion of the transport pathways. In contrast, ballast 
water is the first significant opportunity for the transfer of holo-
planktonic species – that is, those species whose entire life history is 
associated with the water column. Globally there is a significant under-
representation of holo-planktonic species as recognised invaders, 
despite the fact that one of the earliest recognised marine invasions was 
holo-planktonic (Ostenfeld 1908).

Several species have life history characteristics that enable transport by 
both biofouling and ballast water (Figure 1). This overlap suggests that 
many species may be inoculated through multiple means associated 
with vessel traffic, resulting in a stronger propagule pressure as well 
as greater likelihood of establishment success by creating a more 
genetically diverse population.

Other vectors have operated historically; however, the advent of new 
mechanisms of transport and trade have limited the extent to which they 
operate in the modern era. Semidry ballast – that is, the use of sand, 
cobble and rock as ballast for trim and stability of ships – was typically 
used in wooden vessels. With the advent of steel hulled vessels and 
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efficient pumps, ballast water replaced semidry ballast. However, this 
material may have contributed to the transfer of untold species in the 
intertidal and near-shore rock, cobble and sand fauna and flora.

Wooden hull boring also provided significant opportunity for transport 
of boring and associated nestling fauna. With the development of steel-
hulled vessels, this means of transport ceased to exist as a global 
mechanism of transfer, though it remains a local mechanism in many 
parts of the world today.

The inadvertent transfer of species by association with aquaculture and 
fisheries organisms or gear has contributed to a number of invasions 
globally. In most instances these have been due to the biofouling of the 
species or gear. The aquaculture and fisheries industries have adopted 
best practice guidelines that restrict or limit the likelihood of biofouling 
transfers in modern practice. These industries, along with the live 
seafood trade and the aquarium trade, do remain a risk of inadvertent 
transfer of parasites and pathogens.

The NPSD has provided an opportunity to assess the relationship 
between inoculation points within ports associated with specific target 
vectors (e.g. recreational vessel biofouling, commercial vessel biofouling 
and ballast water, defence vessel biofouling, aquaculture). As discussed 
above, the detection of 202 introduced and cryptogenic species in the 33 
ports represented in the NPSD is largely associated with commercial 
wharves; however, this is not more than expected by chance alone (Table 
8). This outcome suggests that the increased likelihood of delivery of 
species through both biofouling and ballast water provides an increased 
opportunity for species establishment. 

Several examples of species found in a single site type across one 
or multiple ports are represented in the introduced and cryptogenic 
fauna (bold species in Table 7). The majority of these (> 90 per cent) are 
associated with commercial sites, and all are restricted to commercial, 
recreational or ‘other’ site categories.

Interestingly, the ‘other’ category represents a significant number of 
species detections. In most instances these represent site tags that 
have been lost, or designations that cannot be deciphered and may 
represent commercial wharves. In addition, this category explicitly 
includes areas identified as non-commercial, including ‘pristine’ areas 
(Table 4), and therefore may represent historic invasions. Further 
analysis is necessary to tease apart the details of this category.
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The NPSD has not incorporated some of the additional identifications 
subsequent to the individual surveys. For example, Hewitt and Campbell 
(2001) evaluated the port survey specimen collection and museum 
collections from each of the state museums in Australia to determine 
the detection and representation of the isopod Paracerceis sculpta. This 
species had previously been detected only in Queensland; however, this 
species was identified in the Port Phillip Bay sampling by CRIMP and 
in the survey of Eden, NSW. Subsequent analysis of survey materials 
identified a broad distribution across Australia. Within sites, the 
information suggested that P. sculpta was transported in association 
with biofouling, based on the fact that eight of 11 sites where it is located 
were primarily associated with recreational vessels (Port Jackson, 
NSW; New Haven Marina, SA; and Peel Inlet, WA), fishing vessels 
(Wollongong Harbour and Eden, NSW; and Port Denison, WA) or slow-
moving vessels such as tugs (Hay Point Tug Harbour, Qld), ferries 
(Hayles Wharf, Townsville, Qld) and barges (Hewitt and Campbell 2001). 
Indeed in Fremantle, the species was primarily detected in recreational 
and fishing areas (Figure 15). In addition, the NPSD is lacking much 
of the identified bryozoan fauna that was taxonomically verified by 
Dennis Gordon and others. While this material could potentially alter 
the analysis of the port survey information, it is out of the scope of this 
analysis; we have restricted our analysis to the official record for the 
purpose of this evaluation.
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Figure 15. Distribution and prevalence of Paracerceis sculpta in the 
Port of Fremantle and Cockburn Sound, Western Australia 
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In conclusion, the information represented by the global dataset and the 
NPSD provides a useful tool for identification of species associations 
with modern vectors of transport and the opportunity to identify likely 
relationships for future entry. The global dataset indicates that more 
species have life history characteristics associated with hull fouling than 
any other vector (Figures 12 and 13), with vessel biofouling representing 
42.6 per cent (±2.2 per cent standard deviation) and total biofouling 
(vessel, aquaculture and fisheries) 55.5 per cent (±9.4 per cent standard 
deviation). In contrast, the second highest association was with ballast 
water, representing 30.8 per cent (±7.2 per cent standard deviation). 
The majority of species in the global invasion literature have life history 
characteristics that associate with biofouling; however, many are also 

Note. Orange symbols denote presence; black symbols denote absence. Percentage representation of samples 
within site – represented by size of circles 

(reprinted from Hewitt and Campbell 2001)
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capable of transport by ballast water, meaning that there is potential for 
multiple inoculations. The high association with commercial sites would 
fit this premise. 

In the Australian context, 429 species have been identified in the global 
dataset from the literature, specimen collections and port surveys as 
being introduced or cryptogenic. Using life history characteristics to 
determine vector associations, 58.1 per cent were associated with vessel 
biofouling (69.2 per cent for all biofouling; Figure 11) and 21.6 per cent 
were associated with ballast water.

Based on the NPSD, more than 248 introduced and cryptogenic 
species were detected, which is approximately 58 per cent of the 429 
species identified for Australia and New Zealand. Based on life history 
characteristics, these detected species were 59.8 per cent of the 
introduced and cryptogenic species associated with biofouling, based 
on life history characteristics, as opposed to 24.0 per cent of introduced 
and cryptogenic species associated with ballast water (Table 9). 

The three datasets demonstrate congruity in relative contribution to  
the various vectors, with a high contribution of biofouling (ranging  
from 55 per cent to 69 per cent) and ballast water (21 per cent to  
31 per cent) (Table 9).

Table 9. Summary of species associations with vectors, based on life 
history characteristics for the various datasets 

DATA-
SET

SPECIES 
NUMbER

bIO-
FOUlING

bAllAST 
wATER

AqUACUlTURE 
AND FIShERIES 

ASSOCIATES

INTENTIONAl 
AqUACUlTURE 
AND FIShERIES

SEMIDRy 
bAllAST

Global 
(ALL) 1781 55.5% 30.8% 6.7% 6.0% 1.5%

Global 
(AUS) 429 69.2% 21.6% 11.0% 4.5% 2.0%

NPSD 248 59.8% 24.0% 11.9% 0.4% 3.9%

The greater detection of species at commercial sites overall, coupled 
with the detection of rare species (those found in only one site) and 
species detected in only one site type across single or multiple ports, 
are primarily associated with commercial sites. In this instance the 
association is much more than would be expected by chance alone.  
We note, however, that species association with commercial sites is not 
statistically significant relative to the effort expended in these regions. 
These outcomes suggest that the current management focus on 
commercial vectors, and specifically the move to redress biofouling,  
is appropriate and commensurate with demonstrated invasions. 
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