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Osteolysis is one of the most prominent reasons of revision surgeries in total joint arthroplasty. (is biological phenomenon is
induced by wear particles and corrosion products that stimulate inflammatory biological response of surrounding tissues. (e
eventual responses of osteolysis are the activation of macrophages leading to bone resorption and prosthesis failure. Various
factors are involved in the initiation of osteolysis from biological issues, design, material specifications, andmodel of the prosthesis
to the health condition of the patient. Nevertheless, the factors leading to osteolysis are sometimes preventable. Changes in
implant design and polyethylenemanufacturing are striving to improve overall wear. Osteolysis is clinically asymptomatic and can
be diagnosed and analyzed during follow-up sessions through various imaging modalities and methods, such as serial radio-
graphic, CTscan, MRI, and image processing-based methods, especially with the use of artificial neural network algorithms. Deep
learning algorithms with a variety of neural network structures such as CNN, U-Net, and Seg-UNet have proved to be efficient
algorithms for medical image processing specifically in the field of orthopedics for the detection and segmentation of tumors.
(ese deep learning algorithms can effectively detect and analyze osteolytic lesions well in advance during follow-up sessions in
order to administer proper treatments before reaching a critical point. Osteolysis can be treated surgically or nonsurgically with
medications. However, revision surgeries are the only solution for the progressive osteolysis. In this literature review, the
underlying causes, mechanisms, and treatments of osteolysis are discussed with the main focus on the possible computer-based
methods and algorithms that can be effectively employed for the detection of osteolysis.

1. Background

Basically, osteolysis is a biological process initiated by in-
duced particles at the interface of bonemetal or bone cement
of prosthetic implants which is radiographically manifested
as linear endosteal radiolucencies or scalloped focal. (is
phenomenon in long-term results in bone loss, periprostatic

fractures, and finally loosening of implants. From early
observations, it was generally believed that, in cemented
implants, osteolysis is due to acrylic cement and the term
“cement disease” was introduced because of this belief.
Nevertheless, osteolysis is now defined as “particle disease”
with the demonstration of lytic lesions in implants without
cement in the interface [1–3].
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Osteolysis is one of the main causes for late reoperation
in patients with total joint arthroplasty (TJA).(is operation
is the most effective therapeutic solution for patients en-
during end-stage degenerative arthritis. It is believed that the
demands for TJAs will gradually increase worldwide in
subsequent years where total hip arthroplasty (THA) and
total knee arthroplasty (TKA) are the most frequents types.
Although the lifetime of THA has improved, such that
approximately 90% of the implants function appropriately at
15 years [4], osteolysis is the main cause of at least 50% of all
THA revision surgeries based on the majority of national
registries. Despite the fact that the effectiveness of surgery
may depend on various variables including the level of
physical activity of patients, type of implant material, time of
THA in service, model of the implant and placement [5],
more than 100,000 patients for each million THA proce-
dures might experience a revision surgery within a 15-year
period of service. Osteolysis has been noted in both
cemented and cementless implants, with 0% to 16% for
cemented and 6% to 30% for cementless TJA.

It is indicated by clinical experience that there is a strong
correlation between the likelihood of osteolysis and the
magnitude of polyethylene [6]. (e majority of the wear
particles are ultrahigh molecular weight polyethylene (UH-
MWPE) which is mainly implicated in the development of
lesions [7–9].(e appearance of osteolysis at shorter times of
follow-up will become more apparent as the higher wear
rates cause higher rates of osteolysis [10] (Figure 1). Con-
sidering a uniform distribution of wear particles through the
periprosthetic tissue, the wear volume can be directly related
to the number of particles per unit volume of tissue [11].
Nevertheless, it is improbable that the distribution of wear
particles is uniform as the permeability of tissues varies, and
there are also a small number of pathways for particle access.
Local osteolysis can be produced as a result of local accu-
mulation of wear debris even if the general density of
particles is low. (is makes it difficult to determine the
relationship of appearance of osteolysis to wear.

Osteolysis is a progressive medical condition. (us,
regular follow-up sessions are advised. During these ses-
sions, orthopedists check the progress of the condition with
the use of different imaging modalities depending on the
severity of the condition. Nevertheless, regardless of imaging
techniques, detection and analysis of osteolysis are difficult
tasks to perform as osteolytic lesions are not easy to be
distinguished especially at the first years after implantation.
(is is the main reason that researchers and biomedical
engineers in the field of medical image processing are
making a great effort to devise new methods and algorithms
to overcome these barriers.

In recent years, artificial intelligence (AI) has become
highly popular and is developing into every aspect of the
modern life by its advances in large-data retrieval and ex-
plicit evaluation of features that are ideal for medical image
processing [12–15]. In comparison to traditional image
processing methods, deep learning is more efficient and
reliable, as it can automatically extract features of the images
instead of hand-crafted features [16, 17]. (anks to the deep
neural networks (DNNs), the methods of computation can

allow an algorithm to self-programme through learning
from a large set of examples that show the desired behavior,
eliminating the need for specifying the rules explicitly
[18,19]. Deep learning (DL) techniques have developed fast
and have been shown to exceed the performance of human
beings. Deep convolutional neural networks (DCNNs)
demonstrate a great benefit in image processing. CNN is a
subclass of deep, feedforward neural networks, in which
image data moves in a forward direction from the input to
the output nodes. (e advantageous feature of CNNs is that
they can learn directly useful image features and other
structured data, whereas the task of feature extraction has
been carried out by machine learning models or by hand
before CNNs. (ese types of neural network architecture
proved to be powerful deep learning models in the field of
image analysis, judging from the existence of specific fea-
tures in their structure [20–22]. A typical CNN is composed
of one or several filters that are called filters, kernels, or
convolutional layers, accompanied by several layers (an
aggregation and pooling layer) that are employed for clas-
sification purposes. As the characteristics of CNN are similar
to those of the standard artificial neural network (ANN),
backpropagation and gradient descent are used for training
tasks, while it is comprised of additional pooling layers along
with kernels. (e final results are derived from the vector
that is sited at the end of the network architecture. CNNs can
have various structures and methods. In medical image
analysis, the most popular structures are U-Net [23], SegNet
[24], and V-Net [25] as well as the conventional CNN
structures. Additionally, the most common CNNs methods
are the following: ZFNet (2013) [26], VGGNet-16 (2014)
[27], AlexNet (2012) [28], GoogLeNet [29], DenseNet (2017)
[30], and ResNet (2015) [31]. (ere are several studies that
prove the effectiveness of CNN algorithms in medical image
processing, such as breast cancer detection [30], diagnosis of
breast ultrasonography images [32], liver cancer detection
and segmentation [33], differentiation of liver masses [34],
lung infection segmentation [35,36], and classification of
interstitial lung disease [37]. However, one key drawback of
most deep learning approaches is that they need a lot of
training data to learn features properly.

(e intent of this study was not to investigate com-
prehensively the biological and medical aspect of osteolysis.
An attempt was made, however, to give a guideline for the
main factors and issues involved in this medical phenom-
enon and to introduce computer-based methods and al-
gorithms especially in the field of artificial neural networks
used successfully for similar purposes.

2. Discussion

2.1.6eBiologicalMechanisms ofOsteolysis. Osteolysis is an
active biological response to particulate wear debris [38],
primary bone tumors [39], and metastatic diseases [40]. In
fact, this phenomenon is a cell-mediated biological pro-
cess leading to bone loss as a direct reaction of stimulation
of macrophages by biologically active particles. It is noted
that the mechanical wear of the articulating surface that
releases wear debris begins this process. (is key debris is
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phagocytosed, which activates osteoclasts and macro-
phages and results in resorption of the bones [3]
(Figure 2).

(e cells which are mainly involved in creating a re-
sponse to the particles are fibroblasts, lymphocytes, mac-
rophages, osteoclasts, osteoblasts, and foreign body giant
cells. (e main cellular mediator of osteolysis is macro-
phages that take part individually in the resorption of bones
by transforming into osteoclasts leading to much faster
resorption. (ese cells secrete a variety of cytokines and are
present in the pseudomembrane. Among them, the most
important cells are interleukin 6, interleukin 1α, interleukin
1β, TNF-α, prostaglandin E2, RANKL, gelatinase, and
collagenases [1, 41–43].

Generally, we can distinguish between nonwear-related
and wear-related byproducts. At each stage, wear particles
are released from the surface of the softer material by
abrasion and adhesion of bearing surface [44]. During the
time of service, it is recognized that all lower-limb arthro-
plasties generate wear particles [45]. Based on the bio-
tribological experiments, materials which are hard similar to
ceramics that create nanosized wear particles can cause
inflammation [46]. Bone cement debris and metallic debris
were also noted to have relation to hypersensitivity and
inflammation [47–49]. Nevertheless, there is limited evi-
dence on the influence of the prosthetic particle dimension,
surface charge, shape, and osteoclast capacity. (e experi-
mental evidence also demonstrates that erosive bone re-
sorption can cause prosthetic joint infection if not diagnosed
and treated early [50–52].

It has also been recognized that local hydrodynamics
factors can contribute to osteolysis. Local fluid pressure
gradients around implants are considered to create a
mechanism for the particle to transport and force fluid and
to surround the bone. Very high intra-articular pressures,
caused by fluid pressure, changes during motion can mount
osteocyte death and subsequently induce osteoclast bone
resorption [53].

Finally, it is also noted that the type of metal debris has a
profound consequence for the extent of osteolysis. Titanium
has a greater destructive stimulatory impact than cobalt-
chromium (CoCr). Early death of the macrophages caused
by CoCr particles reduces the inflammatory mediators,
leading to osteolysis. On the other hand, titanium debris is
less toxic to the macrophage, thus triggering upper levels of
the inflammatory mediation [54]. In addition, experiments
have demonstrated that the mean particle dimension of less
than 1.7± 0.7 um of wear particulate debris will increase the
rate of osteolysis after THA [55].

2.2. Types of Osteolysis. Generally, there is no agreement on
the classification of osteolysis as different methods of
measurements are used in experiments and analysis. Al-
though many studies have been conducted on this phe-
nomenon, normally the incidence is reported. In fact, for the
classification of osteolysis, lesion volume is measured.(is is
carried out bymeasuring the area of the osteolytic regions on
lateral and anteroposterior radiographs. In some cases, only
one view is used. On plain radiographs, normally femoral
lesions can be easily viewed, whereas this is not the case for
acetabulum lesions. Revision surgeries have shown that the
lesions behind the acetabulum are larger than the dimension
expected from preoperative radiographs [56, 57].

Not all osteolytic lesions (softened section of a patient’s
bone) lead to failure although they are considered as an
unfavourable medical issue and are a predictive factor for
later adverse consequences.(ere are some osteolytic lesions
that are stable and do not expand, whereas there are others
which have a balloon-like features and can expand and
propagate [58, 59]. Osteolytic lesions can diffuse or be lo-
calized. (e diffuse lesion can progress along the interface or
be stable. Depending on the location, the prognosis for a
lesion can vary. Although the lesions behind the acetabular
component may not progress, they are naturally expansive at
this location [60].

Figure 1: Periprosthetic femoral osteolysis caused by wear of an extended-chain crystallite polyethylene [10].
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Furthermore, it seems also that cemented and cementless
implants give rise to different biological processes [61]. In
cemented acetabular components, there is a tendency to
show a pattern of osteolysis leading to losing the implant,
whereas cementless components tend more to exhibit
expansile, localized lesions with the cup of the implant
remaining stable (Figure 3) [62]. Additionally, although
loosening of the component of the implant may precede the
progress of an expansile lesion, it is less often (Figure 4).

2.3. Diagnosis. (emost popular method of detection of the
extent of osteolytic lesions is computed tomography whereas
the most sensitive method is magnetic resonance imaging
(MRI). (e studies have demonstrated that the sensitivity of
CT and plain radiography in the detection of osteolysis is
74.7% and 51.7%, respectively, while the corresponding
figure for MRI is 95.4% [63]. Furthermore, thanks to MRI
images, it is not only possible to detect intracapsular synovial
disease well before discernible loss of bone, but also to detect
the granulomatous tissues caused by the wear debris, which
are actually the merits of this tomographic modality [64].

Conversely, it is a difficult task to identify osteolytic
lesions on plain radiographic images because of two reasons.
First, the visualization of the cancellous bone adjacent to the

prosthesis can be blocked by the tibial and femoral com-
ponents. Second, before detecting any changes on the
quantity of the skeletal calcium on the radiographic images,
50% of them are normally lost [65].

2.4. Methods of Diagnosis. Currently, various methods are
employed for the detection and analysis of the osteolytic
lesions. However, the application of these methods is highly
dependent on the knowledge of the medical profession,
available facilities, and severity of the condition. Diagnosis of
the osteolysis can be implemented manually using radio-
graphic, CT, and MRI images or can be carried out with
semiautomatic or automatic computer-based techniques,
algorithms, toolkits, and software. Recently, thanks to the
advances in the artificial neural networks, deep learning
algorithms are widely used by orthopedists and medical
profession with the assistance of biomedical research for the
detection of a variety of bone tumors and fractures, analysis
of prosthetic movements, etc. Although fewer computer-
based studies have been carried out specifically on the topic
of osteolysis as there are very limited public datasets for this
topic, because of strict resemblance between anatomical
regions of interest, tissue properties, biological behaviors,
detection, and analytic modalities, the majority of these
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Figure 2: Amplification and translation of biological signals start with the interaction of prosthetic bearing wears with the human innate
immune system cells resulting in bone resorption in bone multicellular units at the interface of the bone implant [1].
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methods are applicable for the analysis and detection of
osteolysis.

Following the most recent and state-of-the-art potential
computer-based methods from semiautomatic to automatic
methods, software and algorithms that can be employed to
assist medical profession in the analysis of osteolytic lesions
are briefly discussed.

2.4.1. Deep Learning Methods.

(1) Method 1: AnoGAN. It is important to detect osteolytic
lesions in advance during the follow-up sessions before they
reach to a level leading to surgical treatments. Since osteolytic
lesions are very small and have abnormal shape from un-
predictable adjacent areas in the bone, the image collection
with osteolytic lesions is challenging compared to major
cancers. In this case, it can be determined that abnormality
recognition is a proper idea. In the anomaly detection, the
network is trained with a large number of images without
lesions and then judges whether images show lesions or not
based on a determined abnormality score [66]. As the number
of images with lesions is limited in comparison to the number
of images without lesions, the anomaly technique could be an
efficient solution. Although labeled images are used for training
the network, it is a heavy burden for clinicians to annotate the
images. In order to reduce the labor for medical professionals,
unsupervised learning methods are normally considered. (is
is due to the fact that all CAD systems can be more helpful in
detecting a target more accurately in the image.Watanabe et al.
[67] carried out a study using a similar modality and called it
AnoGAN, which can be useful in detecting osteolytic lesions.
(ey designed a classification method that functions based on
adversarial learning but used bone tumor datasets to detect the
metastatic bone tumors. Tumors lesions are distinguished

based on computed abnormality scores. (ese scores are de-
fined by comparing a generated image with a test image in the
image level and the future level. (e suggested strategy takes
only nonmetastatic bone tumor images and learns the normal
image distributions based on a generative adversarial network
(GAN). Although using unsupervised learning method is quite
challenging in medical image processing, it is a significant task
for clinical applications. Figure 5 demonstrates the anomaly
detection framework proposed by Watanabe et al. [67].

As can be seen from Figure 5, the proposed method is
composed of two steps: training step and test step. During the
training phase, the generative G and discriminator D net-
works compete to gain ability. After adversarial training, the
generator network is able to produce nonmetastatic bone
image from a latent noise vector z. (is trained generator and
the noise vector z are then used for the evaluation of the test
samples in the next phase. (e test phase employs the latent
space to evaluate test samples. When a test image is imported,
the method finds the finest z corresponding to the image G(z)
generated by the generator network. (e z value should be
visually similar toX in iterative backpropagation stages. In the
latent space, the best noise vector z can be found.(e anomaly
score is obtained with the following formula:

A(X) � (1 − λ).R(X) + λ.D(X), (1)

whereD(X) represents the discrimination loss that calculates
the distinction of extracted features using the trained dis-
criminator D in the features level. R(X) denotes the residual
loss that computes the visual dissimilarity between G(z) and
X in the image level. λ represents a weighted coefficient. (e
larger the value for the anomaly score, the greater the
probability of anomaly detection. Figure 6 shows the ex-
perimental results using this method.

(2) Method 2: SG-CNN. CNNs are very popular for classi-
fication tasks. (ere are various classic models of CNN such
as VGGNet [27] and AlexNet [68] that can be selected for
categorization tasks. Although these networks demonstrate
good performance for classification of natural images, they
are not very efficient for classification of medical images
especially when the goal is to detect tumor lesions like
osteolysis. (e reason is that, in natural images, most objects
are normally at the center of image and the variation be-
tween objects is apparent, whereas medical image catego-
rization demands fine-grained visual classification that
cannot be done with classic CNNs with high classification
accuracy. Although several methods are proposed to over-
come the fine-grained labeling problem such as a mask-
CNN structure based on annotations of part of images by
Wei et al. [69] and part-based R-CNN structure for fine-
grained labeling by Zhang et al. [70], these methods are time
consuming on making datasets. To solve this problem, a
novel CNN is proposed by Li et al. [71]; it can produce ROI
areas automatically by network independently without
employing annotated images (Figure 7).

(is model is a superlabel-guided convolutional neural
network (SG-CNN) that classifies CT images of bone tumor.
SG-CNN is composed of two subnetworks that are

Figure 3: Osteolytic lesion superior to the well-fixed modular
acetabular component [62].
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A. Training phase

A GAN model is trained with only
non-metastatic bone tumor images.

Non-metastatic
bone tumor images

Latent
noise vector z

z

Generator G

Discriminator D

B. Test phase

Optimal latent vector zr that can generate an image
similar to a test image is explored by backpropagation steps.

A test image X A generated image G(z)

Residual loss R(x)

Discrimination loss D(x)

Calculation of anomaly score A(x)
A (x)=(1-λ) . R(x) + λ . D(x)

Latent space

Searching optimal
latent vector

G

DD

Figure 5: An overview of the generative adversarial network with anomaly detection of the bone tumor [67]. (a) Training phase. (b) Test
phase.

Metastatic bone tumor

(a) (b)

Figure 6: Image samples of true positive (a) with metastatic bone tumor and true negative without tumor (b) detected by the AnoGAN
method [67].

Figure 4: Osteolytic lesion superior to the loose press-fit modular acetabular component [62].
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responsible for learning the whole image and focus on bone
tumor lesions to learnmore detailed data.(e inputs of these
networks are CT images with two labels in hierarchical
relationship, and the outputs are fine-grained labels and
superlabels that both are used for training the SG-CNN to
gain classification accuracy. AlexNet CNN model was used
as the network architecture. During training phase, images
are fed into the superlabel subnetwork. When all the feature
maps of the guide convolution layer of the subnetwork are
added together, a heatmap is generated (Figure 8). (e
heatmap generated during this phase, superimposed on the
points corresponding to the image parts, is used as the input
of the fine-grained label subnetwork. As the image is
cropped, most of the background parts of the image are
removed. (us, the model emphasizes the potential tumor
areas. Finally, the output of the network predicts fine-
grained label whose classification accuracy is considered by
two structure branches simultaneously.

Employing this artificial neural network model could
effectively be used for the classification of osteolytic lesions,
as the same obstacles are involved in the detection and
classification of bone tumors, and the appearance of
osteolytic lesions in CT images is very similar to that of bone
tumors. Considering the successful results obtained using a
bone tumor dataset on the SG-CNN by Li et al. [71], this
method could be highly reliable.

(3) Method 3: U-Net. Convolutional CNNs used for the
classification are composed of convolutional layers followed
by several fully connected layers that map the feature image
produced by kernels into a fixed-size feature vector [72].
Nevertheless, one of the defects of CNN is that each time a
convolutional operation is accomplished for the classification,
feature map resolution is diminished by half. (is can reduce
the accuracy of the classification if the feature map achieved

by the final classification is utilized. (erefore, if convolu-
tional neural networks are used for the classification of
osteolysis, CNN may cause transition during the convolution
operation. Although the performance of the model is rarely
affected, the position of osteolytic lesions may simply be
affected in the recognition step. Considering the fact that
osteolytic lesions have abnormal shape and low contrast, this
defect can visually affect the images by metallic artifacts and
image noise [12, 25, 73, 74].

In comparison to the CNN, the fully convolutional layers in
the fully convolutional networks (FCN), which accept input
data (images) at any dimension, replace all the convolutional
layers. In this network, a deconvolution layer is applied in order
to perform upsampling for the feature map of the last con-
volutional layer to be at the same dimension of the input 2D
data (image). (us, while preserving the spatial information in
the original input image, a prediction can be made for each
pixel. Finally, the pixel-by-pixel classification can be performed
on the upsampled featuremap (Figure 9). Based on the residual
network strategy, the FCN can solve the contradiction between
the translation invariance in the target detection step and the
translation invariance in the classification network. (us, a
semantic segmentation structure U-Net based on fully con-
volutional neural network can be an efficient method for the
detection and classification of osteolytic legions.

In a study carried out by Jian et al. [75], a U-Net neural
network consisting of a contraction path and an expanding
path (Figure 10) was used for the diagnosis of osteoporosis,
which is the most common bone disease [76, 77]. For the
detection of osteoporosis of the femoral neck, if a con-
ventional CNN is employed, it could cause translation
during the convolution operation.(is could easily affect the
position of the osteoporosis boundary box in the detection
step that directly leads to a reduction in the segmentation
accuracy of the femoral neck.

Part Image

Heat map

Input Image
Super label Sub-network

AlexNet
conv 1-x

AlexNet
conv x-5 fc6 fc7 fc8

fc6 fc7 fc8

Fine-grained label Sub-network

AlexNet
conv 1-5

Fine-grained
label

Super
label

Figure 7: (e superlabel-guided convolutional neural network (SG-CNN) structure. A raw CT image with two labels without any an-
notations is fed into the model. (e input image is cropped under the guide of the heatmap generated by the first convolutional layer of the
superlabel subnetwork and then inserted into the other network branch. (e network output provides two labels [71].
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Osteoporosis is normally specified by a reduction in the
bone density, thinning of cortical bone, and thinning of
trabecular bone. (e U-Net network proposed by Jian et al.
[75] was implemented on an image dataset of patients
having undergone pelvic X-ray imaging. Among the pa-
tients, 30 had normal bone mass, 28 had lower bone mass,
and 31 had osteoporosis. Normal bone mass X-ray images
demonstrate thick cortical bone and high bone density
(Figure 11).

(e recognition results and classification of the U-Net
network proposed by Liu et al. are as follows: the total
recognition rate of lower bone mass images from normal
bone mass is 83.88%, the corresponding figure for the os-
teoporosis from normal bone mass is 86.74%, and the one
for osteoporosis from lower bone mass is 79.55%. (e ex-
perimental results of the network demonstrate that it can
successfully solve the influence of image interference for the
bone density analysis.(e proposed U-Net network with the
recognition rate of above 81% for the detection of osteo-
porosis could be a highly functional solution to solve a
similar problem for the detection of osteolysis.

(4) Method 4: Seg-UNet. Do et al. [78] proposed a novel
method for the detection of knee bone tumors from X-ray
images using a multilevel Seg-UNet model with global- and
patch-based techniques. (is network is used as a computer-
based assistive tool for the segmentation and classification of

tumor regions into three labels: normal, benign, and malig-
nant. Although this network is designed only for bone tumor
detection around knee regions, as the anatomical region is at
the same place where osteolysis will occur after TKA and there
are similar visual characteristics in X-ray images, developing
this network can effectively solve the problem of segmentation
and classification of osteolytic lesion.

(e proposed Seg-UNet architecture is illustrated in
Figure 12. (is multilevel network uses a combined global-
and patch-based approach in order to not only detect small
tumor regions but also achieve a high improvement in
malignant tumor detection.

(is model has an encoder-decoder architecture to ex-
ploit the mutual advantage of segmentation and classifica-
tion branches to learn the local texture features and global
geometric context at every pixel. (e encoding block E
(Xenc) with the global encoding features Xenc from the input
image X is located at the left side of the model. (e input of
the model can be either a down scale image XG or an image
patch Xp from the original image Xo with high-resolution.
(e classification branch in the middle of the model employs
the global average pooling for the extraction of the encoding
features, followed by dense and soft max layers for the
classification of the input image.(e network is composed of
three outputs: Ŷclas denotes the classification result, Ŷseg
presents the tumor segmentation result, and finally Ŷdist is
the multilevel high-risk tumor result. (e Ŷclas determines

Conv+
ReLu

Conv+B
N+ReLu

4 ConvBlock 4 Up-ConvBlock Conv+B
N+ReLu Conv+Sigmoid

Cancatenation

Figure 9: End-to-end network structure [75].

(a) (b) (c) (d)

Figure 8: (e presentation of raw data and heatmap. (a) A typical input image. (b) (e heatmap generated by conv1. (c) (e heatmap
produced by conv2. (d) (e heatmap generated as the output of conv3. It is determined by the images that the more we go deeper into the
network, the more the abstract and semantic meanings contained in the heatmap [71].
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whether the input belongs to the normal, benign, or ma-
lignant labels. Because of the complexity and challenging
conditions of the X-ray images of the knee bone, this sep-
arate classification branch at the global-context level was
designed. (e decoding block D (Xenc) on the right side of
the model is the expanding path that maps the encoding
feature into decoding feature Xmap at the pixel level. For
outputting tumor segmentation mask Ŷseg and multilevel
distance features Ŷdist, the 2D extracted features are im-
proved by multitask learning at the pixel level between the
high-risk tumor segmentation Hdis and the pixel-tumor
segmentation Hseg. Ŷseg with the vector size of W×H×2 is
used for the classification of pixels of the input image into
normal or tumor groups. Ŷdist with the vector size of
W×H×5 decides the level of attention, i.e., normal, tumor, or
high-risk, based on the distance to tumor in three levels of 1
to 3.

As, in many cases, tumors are very small in com-
parison to the background regions, this model made an
attempt to detect small tumors by learning mutual in-
formation from adjacent feature maps around tumors.
(e size of the high-resolution image compared to the
very small size of the tumors is one of the challenges in
knee bone tumor detection. Due to the memory limits, the
input image is normally resized to be suitable for the

global-based patch, leading to a loss of some image texture
important for tumor recognition, especially for small
tumors. (e patch-based model that learns image texture
detailed from image patches can solve this problem. (e
global- and patch-based models’ data used to train the
network are demonstrated in Figures 13 and 14. (e ef-
fectiveness and the ability of each model (global-based
model and patch-based model) in the detection of bone
tumors are illustrated in Figures 15 and 16. Noise in small
tumors, nontumor detection in variant pose, and noise in
larger tumors are the failures of the patch-based model
(Figure 15), whereas it assists global-based model for the
detection of small, long, and large tumors (Figure 16). (e
Seg-UNet network proposed by Do et al. [78] demon-
strated that the fusion model of the patch- and global-
based models could provide mean classification accuracy
of 99.05% and segmentation mean IoU of 84.84% for bone
tumor segmentation and classification when both global-
and patch-based models are used.

2.4.2. Temporal Radiographic Texture Analysis (tRTA).
tRTA was developed as an alternative to the conventional
method of diagnosis of osteolysis, in which the condition of
patients is postsurgically monitored by several X-ray images

(a) (b) (c)

Figure 11: Some examples of pelvis acquired by X-Ray imaging: (a) normal bone mass, (b) lower bone mass, and (c) osteoporosis [75].
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Input
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Conv
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N+ReLu Conv+B
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Conv+B
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OUTPUT

Figure 10:(e U-Net network architecture.(e contracting path is composed of two 3× 3 convolution layers for repetitive processing, each
accompanied with a modified linear unit (ReLU). (e downsampling is composed of a single 2× 2 maximum pooling operation [75].
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(bottom). In the block diagram, E represents the encoding block; D depicts the decoding block; the three branch blocks Hseg, Hdist, and Hclas
denote multitask learning [78].
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Figure 13: (e augmented data in the global-based model underwent transform operations such as rotating, center cropping, resizing, and
random flipping [78].
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[79]. As osteolysis is a biological process that evolves and
appears slowly, early follow-up and diagnosis of osteolysis in
the radiographic images are cumbersome and in some cases
impossible tasks. Furthermore, the symptoms of trabecular
texture changes caused by osteolysis are difficult to observe
normally until the lesions progress. Although CT images
could ameliorate the detection process of osteolysis, the cost
and exposure issues make them impractical for regular
follow-up. tRTA is a computerized radiographic texture
analysis method used as an alternative to RTA previously
used for the measurement of the patterns of trabecular bone
to assist the detection of osteolytic lesions [79–81]. In the
tRTA method, ROIs including the potential osteolytic le-
sions are selected from the image database, taken during
follow-up, and visually compared with the images of the
previous sessions. (en, texture features are computed from
the selected ROIs to perform trend analysis with simple
linear regression technique, BANN temporal analysis
technique, and a LDA merging features technique. (is
method has the advantage of incorporating the absolute
texture measures, as well as how these measures alter over
time.

2.4.3. Morphometry. In this method, the area of osteolytic
lesions is measured based on the idea of cross intersect
counting [82]. A morphometric grid is superimposed over
the region of interest on the radiographic images, and then
the number of test points overlapping the area of interest is
counted (Figure 17).

Based on the study carried out by Smith et al. [82], the
application results of morphometric method are compared
with the estimations of professional orthopedists and proved
to be reliable for the measurement of the area of osteolytic
lesions if applied by trained orthopedic observers (non-
medical or medical health professionals).

2.4.4. Software and Toolkits. Various software packages and
toolkits have been developed for the purpose of medical
image processing. Although they are not specifically de-
veloped for a single medical purpose, a variety of them are
used by the medical profession and researchers for tumor
detection and analysis using a variety of imaging modalities.
(e most popular and commonly used software and toolkits
are mentioned as follows.

(1) ImageJ.(is is an open-source image processing program
developed in Java language inspired by NIH Image [83].(is
program is currently available on all the current computer
platforms and can be used with variety of plugins and
macros. Although ImageJ is not specialized software, it is
sometimes used by professionals and researchers for medical
purposes. It performs its tasks in eight steps: dataset resizing,
component hollowing, volume rendering, model slicing,
image slicing, image cropping, standardization of the image
size, and analysis. Nevertheless, ImageJ suffers from a variety
of limitations such as a lake of 3D data analysis and requiring
heavy interuser variability.

Benign

Benign

Benign BenignMask

Mask

Malignant

Malignant

Mask

Mask Mask

Mask

Mask

Mask

Normal Normal

Figure 14: (e augmented data in the patch-based model underwent transform operations such as rotating, center cropping, resizing, and
random flipping [78].

Global Patch Fusion

(a)

Global Patch Fusion

(b)

Global Patch Fusion

(c)

Figure 15: (e successful ability of the global-based model to enhance the fusion results for the detection of (a) small tumors, (b) variant
poses, and (c) large tumors. (e red lines and the blue regions demonstrate the ground truth and tumor detection, respectively [78].
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(2) Osteolytica. It is image processing software specifically
designed for the measurement of lytic bone lesions [84]. It
employs novel graphic card acceleration, and it is capable of
3D rendering to make a rapid analysis and reconstruction of
osteolysis. It is designed to be faster, more user-friendly, and
less biased compared to manual osteolytic lesion measuring
methods or ImageJ 2D analysis. (e principal goal of
Osteolytica is to measure the dimension and areas affected
by osteolysis in a 3D bone analysis. It is composed of four
operating processes: dataset resizing, dataset loading,
selecting the maximum lesion size, and finally lesion anal-
ysis. Osteolytica employs the process of reconstructing the
surface of a volume sample and then subtracting the
reconstructed volume from the original surface through
volumetric diffusion method (Figure 18) [85].

(3) 3D Slicer. 3D Slicer is an open-source, free, and multi-
platform software package that can be widely used for
various medical applications such as virtual reality, real-time
3D ultrasound reconstruction, adaptive radiation therapy,
tracked ultrasound for needle guidance, robot assistance
intervention, surgical navigation, and image segmentation
(Figure 19) [85, 87]. Furthermore, this software provides
multiorgan analysis from head to toe and supports various
imaging modalities including ultrasound, computed

tomography, magnetic resonance imaging, microscopy, and
nuclear medicine imaging. It also provides real-time anal-
ysis, which is highly useful during surgical navigation.
Nevertheless, 3D Slicer is not approved for clinical use, and
the distribution is intended for research use although there is
no restriction on its employment.

(4) ITK. (e Insight Toolkit (ITK) is an open-source, cross-
platform library developed by the he US National Library of
Medicine of the National Institutes of Health to provide
developers with an extensive suite of software tools for the
segmentation and registration of medical images (Figure 20)
[89, 90]. ITK with its extreme programming methodologies
and spatially oriented architecture allows processing medical
images in two, three, or more dimensions.

(5) MITK. (e Medical Imaging Interaction Toolkit (MITK)
is free, open-source software for the development of in-
teractive medical image processing software [91, 92]. MITK
is a class library based on ITK that provides leading edge
segmentation and registration techniques and forms the
basis of algorithms. It executes the visualization commands
with the Visualization Toolkit (VTK) [93]. MITK work-
bench has a highly customizable and extensible end-user
application providing all steps of a clinical workflow such as

Global Patch Fusion

(a)

Global Patch Fusion

(b)

Global Patch Fusion

(c)

Figure 16: (e successful ability of the patch-based model to enhance the fusion results for the detection of (a) small tumors, (b) long
tumors, and (c) large tumors. (e red lines and the blue regions demonstrate the ground truth and tumor detection, respectively [78].

Figure 17: (e superimposition of the morphometric grid onto the morphometry grid on a radiographic image for the measurement of
osteolytic lesion areas [82].
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(a) (b) (c)

Figure 18: (e method of calculation of osteolytic lesions in Osteolytica. (a) Original volume of the sample. (b) Reconstruction of the
surface of the sample and filling lesions, diffusing the volumetric surface outwards. (c) (e volume of the osteolytic lesions measured
through the subtraction of the original surface from the reconstructed one. (e expanded volume will diffuse inwards through a variable
over the surface [84].

a b

c d

Figure 19:(e top figure illustrates the workbench of the 3D Slicer with a variety of toolkits and tools that can be used for different purposes.
(e bottom figure demonstrates a typical tumor segmentation capability of the 3D Slicer [86].

Computational Intelligence and Neuroscience 13



data retrieval, image analysis, image-guided therapy, diffu-
sion imaging treatment planning, tool tracking, diagnosis,
intervention support, and treatment control (Figure 21).

2.5. Overview of the Image Processing Diagnosis Methods.
Various techniques and methods that can be automatic,
semiautomatic, or manual can be employed for the detection
and segmentation of bone tumors, to be more specific
osteolytic lesions. Depending on the objective of the re-
search, they can provide different accuracies. In the previous

section, the state-of-the-art automatic and semiautomatic
computer-based methods, as well as manual methods with
the use of software and toolkits, were mentioned for this
purpose. However, the methods and techniques are not
limited to this. An overview of the mentioned methods with
their key points, in order to provide a well comparison for
selection and application, is presented in Table 1.

2.6. Bone Tumor Datasets. Datasets play a prominent role in
the performance of neural networks. Comprehensive

Figure 20: (e workbench of ITK software and its segmentation ability (in this typical case, brain bone and tumor segmentation) [88].
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Figure 21: Workbench of MITK for medical image processing purposes [91].

Table 1: A brief overview of the computer-based methods mentioned in this study for the purpose of analysis of medical images with
osteolytic lesions.

Method name Technique Purpose of the application Mechanism of the application

AnoGAN
Adversarial learning
(generative adversarial
neural network (GAN))

(is unsupervised learning method is
suitable when the dataset is limited

(is method performs anomaly detection by
generating a large number of nonlesion

images by GAN to detect images with lesions.

SG-CNN Convolutional neural
network (CNN)

(is method can automatically produce ROI
areas independently through a superlabel-

guided CNN

(is method can improve classification
accuracy by generating fine-grained labels and
superlabels of the region of interest in medical
images whose lesions of interest are not well

apparent.

U-Net U-Net structure deep neural
network

(is method is suitable for the segmentation
of lesions when they have abnormal shape
and low contrast and are susceptible to

transition during classification

(e U-Net structure performs semantic
segmentation of the osteolytic lesions on the

input image by concatenating the
convolutional layers in the encoder path with
the deconvolutional layers in the decoder

path.

Seg-UNet Multilevel Seg-UNet

(is method is suitable for segmentation of
lesions of interest on the input image when
the lesion has abnormal shape and low
contrast and the size of the lesion is very
small compared to the input image size

(e Seg-UNet exploits U-Net structure as well
as the global- and patch-based approach in
order to improve the classification accuracy.

tRTA Mathematical computation

(is method is a manual image processing
method for the segmentation of the lesions
of interest from dataset that requires trained

medical practitioners

(e tRTA is a computerized radiographic
texture analysis method for the evaluation of

ROI through linear regression, BANN
temporal analysis technique, and a LDA

merging features technique.

Morphometry Manual computation (e method employs the cross-intersect
counting approach

In this method, with the use of a
morphometric grid that is superimposed onto
the region of interest on the radiographic

images, computation is performed.

ImageJ Manual image processing General-purpose image processing software
ImageJ can take the advantage of different
plugins and macros for various image

processing goals.

Osteolytica Manual image processing Specifically designed for the measurement of
lytic bone lesions

(is image processing software is designed for
3D analysis of lesions and requires trained

staff.
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datasets can well train the networks during the training
phase. Subsequently, they can have a great impact on the
effectiveness and accuracy of the proposed computer-based
methods for the detection and segmentation of bone tumors.
(e larger and the more comprehensive the datasets are, the
more valuable the provided data will be. It is important to
note that not all the datasets are publicly available for use.
Some datasets are private and require formal requests and
legal permission for use. Furthermore, the images could be
acquired through different imaging modalities such as MRI,
CT, PET, SPECT, or conventional X-rays and with different
anatomical positions that should be implemented for the
evaluation of the networks based on the objective’s simi-
larities. Table 2 presents a brief overview of the private and

public datasets that can provide highly valuable data re-
garding bone tumors that can be used for training and
evaluation of the proposed deep learning networks for the
detection of osteolytic lesions.

2.7. Treatments for Osteolysis. Osteolytic lesions can be
treated though two ways: surgical and nonsurgical
treatment.

2.7.1. Surgical Treatments. Operative treatments are rec-
ommended to address prior or ongoing osteolytic lesions
and to correct failing articulation. Surgical treatments of
osteolytic regions of THA, TJA, and shoulder arthroplasties

Table 1: Continued.

Method name Technique Purpose of the application Mechanism of the application

3D Slicer Medical image processing
software Manual image processing

3D Slicer is medical software designed only
for research purposes that can perform
various image analyses using variety of

packages on different anatomical positions.

ITK Open-source medical
library Manual image processing (is medical library is suitable for developers

for medical image processing purposes.

MITK Open-source medical
library Manual image processing

(is class medical library is based on the ITK
library and provides segmentation and

registration techniques. It also has a highly
customizable workbench.

Table 2: (e names and properties of the potential datasets that can be used for training deep learning neural networks for bone tumor
detection and segmentation. Each dataset is also labeled as either public or private.

Name of the dataset Description Type of the data Number of images

CNUH [78] (private) Provided by the Chonnam National
University Hospital (CNUH)

CT datasets focusing on benign and
malignant tumors in two regions of knee
bone of distal femur and proximal tibia

Benign tumor: 1061,
malignant tumor: 134,

normal: 381
Shenzhen No. 2 People’s
Hospital [71] (private)

Derived from patients diagnosed with
bone tumors in the years 2014–2017 CT images stored in DICOM 6422 images

Hokkaido University
[67] (private)

Provided by the Hokkaido University in
Japan

CT images of metastatic and
nonmetastatic tumor images 8790 images

Sichuan University [94]
(private)

Provided by the Institutional Ethics
Committee of West China Hospital in

Sichuan University

Bone scintigraphy (BS) images using
SPECT/CT taken from patients

diagnosed with bone metastasis and
having undergone whole-body BS

13477 images

Public datasets [95]
(public)

CT images corresponding to different
body parts CT images manually segmented 270 images

In-house dataset [96]
(private)

Containing bone images of different
body parts: head, chest, abdomen, neck CT images 16218 images

Bone tumor [97]
(private)

Containing benign and malignant bone
tumors Plain radiography 2899 images

CNUH [98] (private)

Provided by the Chonnam National
University Hospital initially for bone
segmentation on a deep learning

approach containing bothmalignant and
benign tumors

Plain radiography
963 total images, benign
tumor: 329, malignant

tumor: 134

DIAGNOSTIKO
IATRIKI A.E. [63]
(private)

Collected from prostate cancer patients
with suspected bone metastatic disease,

who underwent whole-body
scintigraphy

Scintigraphy images (SPECT)

908 total images, 778 bone
scan, 328 bone metastasis,

271 benign scan, 179
normal

Chittagong University
[99] (private)

Consisting of 60 MRI images of patients
diagnosed with bone cancer and their

grand truth images
MRI images

60 total images, benign
tumor: 30, malignant

tumor: 30
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follow a similar philosophy [100]. Nevertheless, the methods
are varying depending on the structure, anatomical location,
function, design, and materials employed.

If the prosthetic components are aligned, well-fixed,
functional, and proper modular replacement parts can be
obtained, the operative surgical treatment is then focused on
the revision of the bearing surfaces and potential grafting of
bone.

(e osteolytic lesions caused by metal corrosion and
byproducts frommetal-on-metal implants are debrided, and
modular metal-on-metal bearings are replaced with other
ones, normally with ceramic on polyethylene [101].

2.7.2. Nonsurgical Treatments. Nonoperative treatment of
osteolysis is a possible option for patients who are either not
able to tolerate reoperation immediately or under low loads
of prosthetic byproducts and susceptible to osteolysis. (e
main goal of nonoperative treatment is merely to postpone
the need for reoperation and also to keep the size of bone
defects limited. (e common nonsurgical treatment
methods are mentioned as follows.

(1) Bisphosphonates. Bisphosphonates are the drugs that
should be consumed orally or parenterally to treat metabolic
disease, osteolysis associated with metastatic and osteopo-
rosis. (is medication is a synthetic analogue of pyro-
phosphate and is advised for osteolysis treatment in a
physician-directed or off-label manner [102]. (e action
mechanism of bisphosphonates is mainly on the osteoclast
that undergoes apoptosis leading to the inhibition of bone
resorption [103, 104].

(2) Cell 6erapy. Delivery of cells as a local therapeutic
platform can indirectly or directly affect osteolysis. (is can
heal the bone and provide paracrine and autocrine factors
[105]. Autologous bone grafting is one type of local cell
therapy. Crosstalk between MSCs and macrophages is also
an ongoing process in all the inflammatory bone disorders
and bone healing process [106, 107].

3. Conclusion

Osteolysis is a progressive and biological reaction to par-
ticulate wear debris. It is the most common indication for
revision surgeries after total joint arthroplasty in long-term
reviews. (e biological mechanisms leading to osteolytic
lesions are only now beginning to be understood. Although
many research studies have been carried out to characterize
the complex cellular interactions that result in the bone loss,
it is still not apparent why some patients undergo early
osteolysis and in others this phenomenon is postponed for
many years or even never occurs. It is more probable that the
observed differences between the conditions of patients
indicate the differential sensitivity or differences in ability to
mount a wear response and generate wear particles. To
expand our knowledge about the process of osteolysis, the
basic science studies must be translated into clinical studies
and eventually clinical practice. Although in general there is

no specific classification for osteolysis, it is categorized based
on the measurement of volume of the affected lesions.
Studies on the genetic profile may help to explain the
variability in the rate of development and the extent of
osteolysis in different patients.

To detect this asymptomatic process, regular radio-
graphic follow-up is necessary. Imaging modalities like MRI
and CT scans are utilized where the extent of bone loss is
uncertain. Nevertheless, it is important to note that each
imaging modality has its pros and cons. In addition, various
computer-based image processing methods have been de-
veloped as clinically assisted tools to facilitate this process.
Among them, artificial neural networks have proved to be
highly efficient for tumor detection and segmentation. (e
research results of the popular deep learning networks used
for tumor detection such as CNN, U-Net, and Seg-UNet
proved that these deep learning algorithms could assist early
detection and analysis of osteolytic lesions. Further devel-
opments and studies in this field are highly crucial for the
development of a solid and specialized network for the
detection and segmentation of osteolysis.

(ere are numerous nonsurgical therapeutic inter-
ventions for the treatment of the osteolytic lesion, but they
still require clinical approval to be verified. Some of them
have already passed limited clinical evaluations. Never-
theless, it must be determined that progressive osteolysis
resulting from wear debris is not only a biological process,
but also related to modular interfaces, material issues, or
failure of the bearing surface. In this respect, currently,
there is no evidence to prove that nonsurgical treatment
methods can clinically treat osteolysis except for delaying
the process. Although it is hoped that changes in the design
of implants can positively affect the reduction of wear
particles and osteolysis development, only time will prove
this. Fortunately, there are some strong research results
supporting this issue. Nevertheless, long-term clinical
follow-up is desperately required to make any new
benchmarks.
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