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Abstract
The increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to
serious health problems. The assessment of ultrasound images is commonly conducted by skilled experts which is a time-
consuming approach, but advanced computer-aided diagnosis (CAD) systems can assist the physician to decrease the time
of ICP diagnosis. The accurate detection of the nerve optic regions, with drawing a precise slope line behind the eyeball
and calculating the diameter of nerve optic, are the main aims of this research. First, the Fuzzy C-mean (FCM) clustering is
employed for segmenting the input CT screening images into the different parts. Second, a histogram equalization approach is
used for region-based image quality enhancement. Then, the Local Directional Numbermethod (LDN) is used for representing
some key information in a new image. Finally, a cascade Convolutional Neural Network (CNN) is employed for nerve optic
segmentation by two distinct input images. Comprehensive experiments on the CT screening dataset [The Cancer Imaging
Archive (TCIA)] consisting of 1600 images show the competitive results of inaccurate extraction of the brain features.
Also, the indexes such as Dice, Specificity, and Precision for the proposed approach are reported 87.7%, 91.3%, and 90.1%,
respectively. The final classification results show that the proposed approach effectively and accurately detects the nerve optic
and its diameter in comparison with the other methods. Therefore, this method can be used for early diagnose of ICP and
preventing the occurrence of serious health problems in patients.
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Introduction

Increased intracranial pressure (ICP) is considered a sub-
stantial neurological issue that may lead to permanent
neurological sequelae by growing pressure inside the skull
[1]. Themain reasons for ICP occurrence include blood pool-
ing in some parts of the brain, brain tumor, cerebrospinal
fluid, aneurysm, swelling in the brain, head injury, and infec-
tions such as meningitis, stroke, hydrocephalus, high blood
pressure, or encephalitis [2, 3]. Themost common symptoms
of an ICP are vomiting, a headache, weakness or problems
with moving or talking, blurred vision, and lack of energy or
sleepiness [4].

A person with a high ICP may require immediate med-
ical treatment, to bring down the pressure on brain tissue
which helps to diminish the risk of brain damage. Therefore,
a robust, accurate, and reliable non-invasive strategy formea-
suring elevated ICP is a core building block in this field [5–7].
To diagnose ICP, the expert may review the medical history
and physical exam to test senses, balance, and mental status
measures the pressure of the cerebrospinal fluid through a
spinal tap, use of computed tomography (CT), magnetic res-
onance imaging (MRI), and series of cross-sectional X-ray
to detect subtle changes in brain tissue.

One of the most reliable and cost-effective approaches to
diagnose ICP is the measurement of optic nerve sheath diam-
eter (ONSD) [8–10]. The ONSD has a significant role in the
assessment of papilledema in cases of elevated intracranial
pressure. The ONSD alterations in thickness with cere-
brospinal fluid (CSF) pressure alterations as there is a layer
of subarachnoid space among the nerve and its sheath, which
inflates due to increased intracranial pressure [11, 12]. The
ONSD is commonlymeasured 3mmfrom the posterior globe
boundary, as this is thought to be the point of maximal pres-
sure changes along the long axis of the optic nerve; however,
the results of measuring in this location are not accepted
universally. These measurements can be accomplished on
ultrasound utilizing a linear array probe on a CT image or a
T2-weighted sequence on anMRI image [9]. The intramodal-
ity measurement difference is modest and correlates well
with variations in CSF pressure.

The assessment of ONSD manually is time-consuming
and subject to human errors. Consequently, a measurement
approach based on automatic machine learning techniques
can eliminate some potential errors [13–15]. Labeling similar
regions in an input image are considered image segmenta-
tion and is a key step in the field of medical image analysis.
Image segmentation is the process of partitioning an image
into multiple segments and it is a typical approach is used
to locate objects and boundaries in images based on simi-
lar attributes such as orientation, dimension, and color [16].
Image segmentation is generally considered an intermediate
step of some pattern-recognition applications [17, 18]. Also,

the segmentation procedure is utilized either as an initial or
last processing step [19, 20].

Based on recent studies, machine learning, deep learning,
and artificial intelligence techniques have found a consider-
able application to improving diagnosis and decision-making
in brain injury disorders like ICP [21]. In the following, some
papers that applied computer-based methods for better pre-
diction, diagnosis, and estimation of ICP are mentioned.

Ojeda et al. [22] confirmed the promising result of using
the deep learning model which is developed via Aidoc (Tel
Aviv, Israel) to accelerate the diagnosis of ICP in patients. Raj
et al. [23] proposed an algorithm based on machine learning
to predict mortality after traumatic brain injury. The logis-
tic regression modeling is utilized for this purpose and a
cross-validation method is employed to evaluate the results.
However, the main limitation is that the proposed logistic
regression cannot include more sophisticated features and
it does not provide estimates of errors for the individual
predictions. Naraei et al. [24] suggested the statistical and
machine learning methods to find a correlation between ICP
and routinely monitored physiological signals in Traumatic
Brain Injuries (TBI) patients and the main drawback of the
proposed approach is its inability to analyze principal com-
ponents and define components of the features. This inability
causes to estimate the diameter of nerve optic inaccurately.
Moreover, their method suffers from a small rate of accuracy
when deal with a sample with fuzzy borders. Chen et al. [25]
presented a technique to estimate the ICP level. After feature
extraction, the super vector machine is used for building a
prediction model. However, due to the problem of the imbal-
anced datasets, the efficiency of the suggestedmethod for the
large dataset is not decisive. Moreover, their method is not
able to recognize the diameter of sheath in both eyes appro-
priately. In Lee et al. [5] paper, deep learning techniques
were used to remove signal artifacts from continuous ICP
control and to determine improvements in clinical parame-
ter prognostic capacities after artifact removal. The stacked
convolutional auto-encoder (SCAE) and CNN with tenfold
cross-validation tests are utilized for this purpose. Although
this method is capable of extracting more unique features
in comparison of hand-crafted feature extraction methods,
it still needs a powerful pre-processing step to enhance the
quality of image before any further process. Hu et al. [26]
optimized an algorithm that can effectively find the optimal
subset of metrics for better classification performance via
a morphological clustering approach. Quachtran et al. [27]
investigated the use of Deep Learning to model the rela-
tionship between hypertension and waveform morphology
with the aim of detecting hypertension presence with high
accuracy. However, the proposed method applied to a small
number of data and it should be tested on a dataset with a
large amount of data.
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In this paper to overcome the mentioned problems, a Con-
volutional Neural Network model (CNN) is proposed for
nerve optic segmentation in the accurate distance behind
the eyeball. We employed two distinct images (a CT scan
image and an encoded image) as the input of the model.
Also, the Fuzzy C-Mean (FCM) is used for segmenting the
CT image into different parts. Then, a region-based image
quality enhancement strategy is employed to improve the
contrast and quality of the CT image. Moreover, to represent
key features of the input image, a texture descriptor approach,
namely Local Directional Number Pattern (LDN), is utilized
to increase the capability of the feature extraction procedure.

Methodology

In the proposed method, to detect the nerve optic in accurate
slope and distance from the back of the eyeball, a comprehen-
sive approach is followed. Firstly, the pre-processing method
was employed on the 1600 CT screening images obtained
from a public dataset [28]. Each of the CT images is clus-
tered through theFuzzyC-mean (FCM) tofivedifferent parts.
Next, the desired region of images in the chosen cluster is
improved via a histogram equalization approach. Next, Local
Directional Number (LDN) as a texture descriptor technique
is employed to create a new image from the improved images
in the previous steps. To obtain resultswith high accuracy, the
two images are utilized as the input images of the proposed
convolution neural network (CNN) for feature extraction and
classification of nerve optic from other parts of the brain. In
the following, the proposed approach is explained compre-
hensively.

Fuzzy c-means

Fuzzy c-means (FCM) is a strategy of dividing data or pixels
into distinct parts which allow one piece of data to belong to
two or more clusters. This strategy was developed by Dunn
in 1973 [29] and improved by Bezdek in 1981 [30]. FCM
is a variant of the soft c-means clustering technique. In non-
fuzzy clustering, data are divided into distinct clusters, where
each data point can only belong to exactly one cluster. In
fuzzy clustering, data points can potentially belong to mul-
tiple clusters. In the FCM approach, by iteratively updating
the membership level of each pixel, the cluster center of each
segment is searched [31–34]. Themain objective of the fuzzy
c-means strategy is to diminish the following objective func-
tion:

F �
n∑

i�1

m∑

j�1

γi j ||Pi − C j ||2, (1)

γi j � 1/

(
n∑

k�1

(
Pi − Ci

Pi − Ck

))t

, (2)

n∑

k�1

γi j � 1, γi j ∈ [0, 1]. (3)

In these equations, P and C are the abbreviations of pixel
and center, respectively. The γi j is the membership value of
the j th sample in i th cluster and n indicates some clusters
and, m represents some pixels [19, 35, 36].

Histogram equalization

Enhancing the quality of input data before processing is an
important step for obtaining promising results [37]. Image
enhancement aims to improve the perception or interpretabil-
ity of information in an image and bring out the hidden image
details to increase the image contrast with a new dynamic
range. Conventional histogram equalization is one of the
most popular approaches due to its effectiveness and sim-
plicity [38, 39]. Conventional histogram equalization adjusts
the contrast of an image by modifying the intensity distribu-
tion of the histogram. This strategy usually rises the global
contrast of many images, especially when the usable data
of the image is represented by close contrast values [40].
Through this adjustment, the intensities can be better dis-
tributed on the histogram. This allows for regions of lower
local contrast to achieve a higher contrast [41]. Histogram
equalization accomplishes this by effectively spreading out
the most frequent intensity values [42, 43]. The implemen-
tation of this approach is as follows:

Step 1: Calculating the probability of i th pixel-level occur-
rence in {x} as a grayscale image

px (i) � p(x � i) � ni/n, 0 ≤ i ≤ m, (4)

where ni is the number of i th gray-level occurrences, n rep-
resents the total number of pixels in the image and m is the
image’s total number of gray levels [44]. Also, px (i) is the
image’s histogram for pixel value i .

Step 2: Defining the normalized accumulative distribution
function corresponding to px

cdf x (i) �
i∑

j�0

px (x � j). (5)

Step 3: Produce a new image {y}, with a flat histogram

cdf x (i) � i R, (6)
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where R is a constant value. The cumulative distribution
function of such an imagewill be linearized through the value
range.

Step 4: Transforming cdf x (i) based on the y � T (x) feature
of the cumulative distribution function

y � T (r) � cdf x (r), (7)

where r is in the range [0, m] and T maps the levels into the
range [0, 1].

Step 5: In order to map the values back into their original
range, the following transformation needs to be applied

y
′ � y.(max{x} − min{x}) + min{x}. (8)

However, the conventional histogram equalization has
some drawbacks. This technique frequently over-enhances
the image’s background, resulting in level saturation effects
in small but visually significant areas. Image areas with
higher intensity value occurrences are often highlighted in
conventional histogram equalization, and these sections of
the image are frequently over-enhanced [45]. Conversely, the
sections of the picture with relatively small intensity values
occurrence may eliminate an equalization process. To deal
with the problem mentioned above, in this paper, effective
region-based histogram equalization is proposed which is
applied on the brain CT images.

Proposed image quality enhancement

In the proposed approach, the quality enhancement of the
images in the eyeball region for better detection of the nerve
optic is the initial step of this technique. For this purpose,
the input images are clustered via the FCM approach to
the 5 parts. Figures 1 and 2 are two examples among 1600
CT images that demonstrate the region-based enhancement
approach specifically.

In Fig. 1, ‘a’ is the input image and ‘b’ is the result of
clustering in five different parts based on the FCM method.
In this approach, instead of total image enhancement, the
main and important region of the image is improved through
the histogram equalization method. Therefore, to improve a
specific region of the image, amongfive different clusters, the
clusters are chosen for image enhancement that meets some
morphological criteria including (1) As the region around the
eyeballs indicated minimally the 30% of the image, the area
of all objects inside the image needs to be bigger than the
30% of all pixels inside the image (Fig. 1, images 1 and 4
meet this condition), (2) As eyeballs are presented next to
the center of the brain, the center of the biggest object needs
to be close to the center of the image (Fig. 1, images 1, 2,
and 4 meet this condition), (3) the solidity of the biggest

object need to be bigger than 0.6 (Fig. 1, image 1 meets this
condition). The output image in the third row (section ‘c’) is
the contrast adjusted form of the image which is modified by
the intensity distribution of the histogram.

Figure 2 is another example; the input image is clus-
tered based on the color intensities of the five different parts.
Section ‘c’ shows the output image with enhanced quality
which is the result of employing the histogram equalization
approach. Overall, the region-based approach can save time
and accelerate the histogram enhancement approach. Due to
the textural difference in the brain tissue between individ-
uals, there are some differences between the order and the
shape of the five obtained images using the fuzzy method
in the image quality enhancement step. However, as we ana-
lyze these images based on somemorphological features, this
problem can be solved easily.

The optic nerve starts at the optic disk (cannot be rec-
ognized in the original image), a structure that is 0.06 inch
(1.5 mm) in diameter and is localized at the back of the eye-
ball. So, before extracting features to calculate the diameter
of the nerve, it is essential to improve the quality of the image,
especially in these regions. In the following, Fig. 3 shows fur-
ther examples of input image quality enhancement through
the region-based histogram equalization. As clearly demon-
strated, the nerve optics behind the eyes and regions next to
them are now recognizable. So, in this step, we can work
on finding the nerve optic inside the image. In the next step,
a texture descriptor strategy is employed to provide a new
representation of the image obtained from the previous step
[46].

Proposed image quality enhancement

A texture descriptor is a feature vector containing various
information about an image. In this paper, the Local Direc-
tional Number (LDN)method encodes the structure of a local
neighborhood by analyzing its directional information. LDN
as a descriptor creates an image from components of the
same type, measuring, algebraic, geometric, statistical, dif-
ferential, or spatial properties of an image [47, 48].

The LDN equation can be defined as followed:

LDN(cx , cy) � Eight
(
pcx , cy

)
+ ncx , cy , (9)

where (cx , cy) represents the mid pixel of the neighborhood
and pcx , cy is the maximum positive. Moreover, the ncx , cy
is the minimum value of the negative response. Figure 4
demonstrates some improved CT images based on histogram
equalization and the related images produced by the LDN. It
should be mentioned that in the CT images, the head and the
brain are not always located in the center. There is a possi-
bility that the direction of the brain is inclined up, down, left,
or right of the image.

123



Complex & Intelligent Systems (2022) 8:3543–3557 3547

Fig. 1 An example of brain CT images. a The original image, b Five different clusters, c The enhanced image

Proposed convolutional neural network architecture

Convolutional neural networks (CNNs),were first introduced
in the 1980s byYannLeCun [49]. TheCNNs are composed of
multiple layers of artificial neurons. CNN is a type of deep
learning structure that has a grid pattern and is employed
for processing data, such as images. CNN is employed for
adaptively and automatically learning spatial hierarchies of
features via a backpropagation process usingvarious building
blocks [50–53]. This neuron-based network that has a grid-
like topology, automatically extracts high-level features from
raw input data whereas, their corresponding spatial informa-
tion can be preserved. This structure includes some weights
and biases and is applied for feature extraction, prediction,
and classification. The core building block or essential part
of anyCNN is defined as the convolutional layer which trans-
forms an input into a stack of feature mappings of that input.
Regularly, this layer is located at the initial part of the CNN
pipeline and considered as the prior layer for extracting fea-
tures from an input image [54, 55].

CNNs can describe a mathematical construct that is typi-
cally composed of three kinds of building blocks (or layers):
convolution, pooling, and fully connected layers [56]. The
first two layers, convolution and pooling layers, act as feature
extraction layers, whereas the third layer, a fully connected
layer, maps the extracted feature matrixes into the final out-
put, such as classification. A convolution layer is a vital part
of a CNNmodel, which is composed of a stack of mathemat-
ical operations, such as convolution, a specialized type of
linear operation [57]. The innovation of convolutional neu-
ral networks is the capacity of learning a large number of
patterns in parallel automatically. This learning procedure is
specified to a training dataset under the constraints of a spe-
cific predictive modeling issue, such as image segmentation,
regression, or classification [58].

A convolution layer using some masks (kernels) extracts
some crucial features of the texture. The kernel is a set of
numbers with a smaller size than the input image. A larger
kernel leads to a larger receptive field. It means it takes more
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Fig. 2 An example of a brain CT image, a The original image, b Five different clusters, and c The enhanced image

Fig. 3 Further example of enhancing via the proposed histogram equalization approach, a Input image, b Output images
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Fig. 4 Example of enhanced
input images (a) and the LDN
form of the improved image (b)

time to compute the dot product procedure. The convolu-
tional layer can detect changes over a larger area with a broad
receptive field, but the perception is less precise. The small
receptive fields which lead to an accurate distinction between
distinct regions are utilized in this study for detecting key
features. The convolutional layer can detect stimuli over a
specific region with a small receptive field, resulting in more

accurate detection of small changes in the tumor boundary
[59, 60].

To reduce the spatial dimension in the CNN architecture,
the pooling layer is used. The pooling layers can decrease the
spatial information, increase the computation performance,
and reduce the possibility of the overfitting problem as the
number of parameters decreases.Moreover, the pooling layer
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Fig. 5 The proposed CNN architecture

summarizes the features present in an area of the featuremaps
generated by some kernels in a convolution layer [61, 62].
On the other hand, selecting only suitable features from a
tremendous number of generated features for object identifi-
cation is done by the CNN architecture via activation layers.
Activation layers are a critical part of designing aCNNmodel
and the choice of activation function in the hidden layer will
control how well the structure learns the training samples.
The choice of activation function has a large impact on the
capability and performance of the CNN model, and dissim-
ilar activation functions may be employed in various parts
of the structure [63, 64]. In this paper, we used MaxPooling
andReLUactivation layers. This activation layer combats the
vanishing gradient problemoccurring in the sigmoid function
[65]. Equation (10) demonstrates the ReLU function.

f (x) � max(0, x). (10)

Figure 5 shows the proposed CNN structure. By using the
proposed shallow CNN model, the dot product of the input
images and the obtained binary mask are applied in both the
input LDN image and the original image. Then, vital infor-
mation is extracted for the effective distinction of the nerve
optic and other tissues. As it is clearly shown in Fig. 5, there
are two routes for extracting features of the LDN image and
improved original image. At the end of routes, all features
are merged to create a 1D vector. In this study, for all pixels
inside the images, a patch with the size of 35× 35 is selected
for each input image. The center of the patch is located in
each pixel for classifying images into never optic and other

tissue classes. This process is repeated for all pixels inside
the images. Convolutional layers capture spatial and tempo-
ral dependencies, and the output of a convolution is known
as a feature map. The convolutional operation is the multi-
plying operation that computes the dot product between the
filter with any receptive field and related pixels in the picture
[66–68]. After each convolutional layer, a MaxPooling layer
has been applied. This spatial pooling layer (downsampling
layer) by selecting the maximum illumination value inside a
2 × 2 window is responsible for dimension reduction of the
previous feature matrix obtained in the former layer (convo-
lutional layer).

After extracting features and creating feature maps from
each image, these 2D feature maps from each route are
changed to a 1D feature map and put together to form a
new 1D feature vector. A key layer for obtaining more high-
level features is the Fully-Connected layer (FC) that is placed
before the classification output of aCNN.The last layer of the
cascade CNN architecture that produces outputs with a prob-
abilistic meaning is the Softmax regression layer. This layer
is a form of logistic regression. The parameters employed for
training the suggested pipeline are demonstrated in Table 1.
The time of the features learning increases if small values
are applied. Various values for the learning rate were applied
to achieve the best classification performance while training
the structures. As our model woks on the obtained patches
rather than the whole image, it takes longer time for both
training (72 h) and testing (around 5 s for each slice) process
in compared to the applying whole image to A CNN model.
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Table 1 Parameters utilized for training the proposed pipeline

Parameters Value

Patch size 35 × 35

Activation function Softmax

Output classes 2

Batch size 10,000

Learning rate drop factor 0.35

Max epochs 120

Learning rate 0.001

Optimizer Adam

Experimental results and discussion

In this study, Dice, Precision, and Specificity are the scores
used to assess the accuracy and efficiency of the proposed
model. The Dice score is a validated reproducibility metric
and a spatial overlap index that measures howwell our model
matched the hand-annotated ground truth training dataset
segmentation to the expected labels [69, 70] and its formula
is as follows:

Dice �
(
2 ×

(
TP

2TP + FP + FN

))
× 100%. (11)

The next index, Specificity means the proportion of cor-
rectly predicted other tissues concerning the total number of
predicted other tissues.

Specificity �
(

TN

TN + FP

)
. (12)

The Precision index illustrates the proportion of correctly
predicted nerve optic to total predicted nerve optic.

Precision �
(

TP

TP + FP

)
, (13)

where the FN, TN, FP, and TP imply False Negative, True
Negative, False Positive, and True Positive, respectively.

In this paper, a public dataset was used from The Can-
cer Imaging Archive (TCIA) [28, 71]. TCIA is a service that
hosts a large archive of medical images of cancer accessible
for public download. We used 1600 CT screening images
and each volume dimension of these images is 512 × 512
× 35. The annotation and interpretation of the dataset were
done by two neuro-radiologists and the needed information
was extracted from the CT screening images for ICP recog-
nition. The experimental results were obtained by employing
MATLAB 2019b over CUDA 9.0 and CuDNN 5.1 on Intel
Core I7-3.2 GHz, 16 GB RAM, 8 MB Cache, and GPU
1050Ti NVIDIA computer under a 64-bit operating system.

Table 2 Comparative outcomes of the proposed strategy and recently
published studies

Article name Dice
(%)

Specificity (%) Precision (%)

FWHM [73] 39.8 65.3 70.1

AUTONoMA
[75]

52.4 75.3 71.5

Clustering [74] 56.6 73.3 84.8

Deep learning
[72]

70.4 81.4 82.1

label-free 3D
segmentation
[76]

75.9 79.4 85.7

Proposed
approach

87.7 91.3 90.1

In this section, the performance of the proposed approach
is compared with the other similar studies. The techniques
employed in other studies for ICP includeDeep learning [72],
FWHM [73], Clustering [74], AUTONoMA [75], and label-
free 3D segmentation [76].

In this study, the efficiency of different methods is evalu-
ated based on the threemain values.We randomly divided our
data samples into training data (80%), test data (10%), and
validation data (10%). Table 2 shows the quantitative value of
Dice, Specificity, and Precision in each technique applied on
the test samples. As highlighted, the proposed approach has
the highest Specificity, Precision, andDice values in compar-
ison to other techniques which are reported 91.3%, 90.1%,
and 87.7%, respectively. Next, the label-free 3D segmenta-
tion [76] has the highest value ofDice andPrecision andDeep
learning [72] has the highest value of specificity among five
other approaches.

The FWHM[73] technique has the lowest Dice and Speci-
ficity value which makes it an inefficient technique to use
for segmentation. The second method, AUTONoMA [75],
has higher Dice and Specificity in comparison with FWHM;
however, the value of Precision still is unacceptable. Based
on the Clustering method, it is obvious that values of Dice
and Precision have a considerable difference from the two
previous methods. However, the Specificity reported 72.8%
in which is more than FWHM and less than AUTONoMA
approaches. In the Deep learning method, the value of Dice
and Specificity increased considerably. However, the Preci-
sion value is two points lower than the clustering. Overall,
the structures focused onClustering andDeep learningmeth-
ods have performed well but the networks’ drawback is the
need for a large dataset. Given the greater variability in the
input images, these models may or may not work accurately.
The next approach, label-free 3D is an efficient approach
among the five previous segmentation techniques [76]. Even

123



3552 Complex & Intelligent Systems (2022) 8:3543–3557

though the Dice and the Precision values have a consider-
able difference in comparison with the other methods, still is
not efficient enough because of low Specificity. In the pro-
posed approach, all criteria are improved and the value of the
three-parameter shows the efficiency of this method which
can substitute the other methods because of high yields and
reliable results in segmentation. In the proposed approach,
due to the fact of ICP early detection and accurate classifi-
cation of pixels in nerve optic objects with high precision,
the proposed technique is the most suitable approach for this
purpose.

In the following, Figs. 6, 7, and 8 show the boxplot ofDice,
Specificity, and Precision in different methods. In Fig. 6, the
comparison of the dice value is presented in six different
approaches. In the proposed method, the variance is about
0.87 and the median (red line) is close to the maximum value
of the box plot (0.9 value) which is the indication of the
robustness of the algorithm and the highest dice value. The
next method with a higher dice value is a label-free method,
the median is close to 0.75 and the variance value is close to
0.1. Therefore, the Label-free robustness and dice value are
lower than the proposed approach but higher in comparison
with the other four algorithms. On contrary, the FWHMhas a
lower variance and the median is close to 0.38. So, this algo-
rithm possesses the lowest reliability and robustness among
the sixmethods. In the deep learning andAUTONoMAmeth-
ods, the median values are less than our obtained value but
still are higher than other methods. The difference in the
median value of AUTONoMA and cluster has approximately
the same value and is about 0.05.

Based on Fig. 7, the specificity value in six different meth-
ods is compared. In the proposed approach the median value
is close to 0.92 which is an indication of the high reliability
of this algorithm. Also, the variance value in this approach is
about 0.05. Therefore, the proposed approach has the highest
value of specificity among the five other methods. In the deep
learning method, the median value is close to the label-free
approach and is about 0.81 and 0.79, respectively. However,
the variance value in the label-free technique is lower than the
deep learning. So, the robustness of the algorithm is higher in
the label-free approach. In two other methods, AUTONoMA
and clustering, the median is about 0.75 and has an adja-
cent value of specificity. Among six different approaches,
the FWHM possesses the lowest value of specificity. The
median value is close to 0.04 and the variance is more than
0.01.

Figure 8, shows the box plot of precision in differentmeth-
ods. In the proposed approach, the value of the median is
close to 0.91 and possesses the highest value of precision and
robustness. Next, label-free, clustering, and deep learning
have a similarmedian valuewhich is close to 0.85. Therefore,
these methods have similar robustness based on the precision
index. However, the variance value in the clustering method

is less than label-free and deep learning approaches. On the
other hand, the FWHM and AUTONoMA have lower values
and themedian is about 0.7. So, based on the precision index,
it can be concluded that the reliability of thesemethods is low
and cannot yield a robust result.

In the following, Fig. 9 demonstrates the CT screening
images of three different patients. The results of detecting
nerve optics using various techniques and the accuracy of
detection are presented in this figure. As mentioned before,
the recognition accuracy is highly depending on the quality
of the image. So, the final results influence by both image
enhancement and feature extraction techniques. In Fig. 9,
each slice of CT images in three different columns is belong-
ing to three different patients and the results of nerve optic
detection with various methods are shown. The optic nerve
starts at the optic disk, a structure that is 0.06 inch (1.5mm) in
diameter and is localized at the back of the eyeball. The goal
in these slices of CT images is to detect the nerve optic behind
the eyeball the different methods. Moreover, it is essential to
define the angle of these detected nerves behind the eyeballs.
It should be mentioned that, in much of the slices, only one
nerve is demonstrated and can be recognized. As shown in
Fig. 9, in column one, the left nerve optic is supposed to be
detected correctly and right nerve is not represented clearly
to be recognized. In the first column, as the left nerve is rep-
resented clearly, all approaches are able to detect the nerve
optic appropriately. But, this is not true when we are dealing
with an unclear border of the nerve optic (see third column).

In the proposed approach, the high dice, precision, and
specificity were obtained and the never optics were recog-
nized in the right direction. However, in the other methods,
the straight line is detected on nerve optic, but the correct
angle and distance are not detected. For instance, in the
‘FWHM’method, the angle is not detected and the red line is
near to the retina. The same problem does exist in the other
models include ‘AUTONoMA’, ‘Clustering’, ‘Deep learn-
ing’, and ‘Label-Free’.

In the second column, the left nerve optic is not detectable
since it is not represented in this slice. However, in the
right eye, the models try to detect the vertical lines beneath
the retina. Therefore, other vertical nerves and muscles are
detected in this area via ‘FWHM’, ‘AUTONoMA’, ‘Cluster-
ing’, ‘Deep learning’, and ‘Label-Free’ methods wrongly.
However, in the proposed approach, the nerve optic is
detected with high specificity and precision. Finally, in the
third column, the methods that could identify left and right
nerve optic correctly is the proposed method, ‘Clustering’,
‘Deep learning’, and ‘Label-Free’ approach. Nevertheless,
the distance from the retina and the angle are not precise in
the other methods. Overall, it can be concluded that the pro-
posed approach is the best methodology to detect the nerve
optic in comparison to the other method. Then, label-free,
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Fig. 6 Box plot showing the Dice
in different methods

Fig. 7 Box plot showing the
Specificity in different methods

Fig. 8 Box plot showing the precision in different methods
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Fig. 9 The results of nerve optic segmentation using a The proposed approach, b FWHM, c AUTONoMA, d Clustering, e Deep learning, f Label
free

deep learning, and clusteringmethods, respectively, provided
better detection of nerve optic.

As it is clearly demonstrated, the Deep learning method
[72] seems to perform better than the Clustering method [74]
in detecting vertical objects (like Nerve Optic), whereas the
proposed method is much better not only in detecting such
areas but also can eliminate unrelated vertical objects more
accurately. Also, the proposed approach, Label-Free 3D seg-
mentation, and the deep learning methods gain promising
results in detecting the optic nerve between two dark areas.

Conclusion

This study presents an approach based on the CNN tech-
nique for the nerve optic accurate segmentation in the brain
CT screening images. The slope of the nerve optic line and
its distance behind the eyeball is the main issue for correct
detection of the nerve optic. A new region-based strategywas
used for improving the quality of the input image. This tech-
nique is applied only in some important parts of the image
and insignificant parts of the image declined by the CNN
model.
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By utilizing a textural descriptor method, LDN, a new
image was produces based on the improved images and rep-
resents more detail about the eyeball and nerve optic. Next,
in any stage of CNN, two obtained images are utilized for
feature extraction and classification steps. Due to using the
LDN approach and extracting some other vital information,
the training process of the network does not require a large
amount of data.

Based on the results, the output classification of the
proposedCNNis close to humanobservation and the compar-
ison of the different techniques such as Clustering, FWHM,
AUTONoMA,deep learning, and label-free 3D segmentation
shows that the proposed approach outperforms and yields
results with high value of dice, specificity, and precision in
which the values reported 87.7%, 91.3%, and 90.1%, respec-
tively. As compared to recently published frameworks, an
extensive investigation has demonstrated the efficacy of the
proposed method.

The suggestion for future studies is to use a powerful
pre-processing method that can be able to remove the major-
ity of insignificant parts of an image before applying it to
a CNN model. This is due to the fact that without repre-
senting the nerve optic in an appropriate way, extracting
informative features is not possible. Also, to overcome the
problem of insufficient training samples, some augmentation
approached can be applied to increase the training data.
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