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Abstract: Ischemic heart disease is the highest cause of mortality globally each year. This puts a
massive strain not only on the lives of those affected, but also on the public healthcare systems.
To understand the dynamics of the healthy and unhealthy heart, doctors commonly use an elec-
trocardiogram (ECG) and blood pressure (BP) readings. These methods are often quite invasive,
particularly when continuous arterial blood pressure (ABP) readings are taken, and not to mention
very costly. Using machine learning methods, we develop a framework capable of inferring ABP
from a single optical photoplethysmogram (PPG) sensor alone. We train our framework across dis-
tributed models and data sources to mimic a large-scale distributed collaborative learning experiment
that could be implemented across low-cost wearables. Our time-series-to-time-series generative
adversarial network (T2TGAN) is capable of high-quality continuous ABP generation from a PPG
signal with a mean error of 2.95 mmHg and a standard deviation of 19.33 mmHg when estimating
mean arterial pressure on a previously unseen, noisy, independent dataset. To our knowledge, this
framework is the first example of a GAN capable of continuous ABP generation from an input PPG
signal that also uses a federated learning methodology.

Keywords: GAN; blood pressure; photoplethysmogram; time series

1. Introduction

Chronic heart disease was the number one cause of death from 2000 to 2019, according
to the World Health Organisation (WHO), and was responsible for 16% of the total world-
wide deaths in 2019 [1]. Heart disease has also shown the most significant increase in deaths
during this period. Obtaining unobtrusive, continuous measurements of the cardiac state
has proven very difficult. The most commonly used indicator for measuring the state of
the heart is blood pressure (BP), which is often gathered using a sphygmomanometer cuff,
a finapres, or an arterial catheter. Sphygmomanometers provide spot measurements for BP
over a very short time interval, and arterial catheters are an extremely invasive method of
continuous BP measurement. The finapres is an alternative for continuous and unobtrusive
BP measurement. However, these devices’ size, shape, and price mean that they have not
been commoditised for individuals seeking continuous home BP measurement devices.
Regular monitoring of BP can prove vital for people suffering from cardiovascular diseases
(CVDs) who are already vulnerable to BP fluctuations.

Methods for non-invasively measuring continuous arterial blood pressure (ABP) have
been explored, using other physiological signals to infer ABP. One example uses the pulse
transit time (PTT), the time interval taken for a pulse wave to travel between two arterial
sites. PTT varies inversely to BP changes and has been demonstrated to be a valid and
accepted measure of BP [2,3]. PTT is formally defined as the time interval between the
Q wave of the electrocardiogram (ECG) signal and the pulse’s arrival at a peripheral
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site. As such, this information should also be available from a photoplethysmography
(PPG) signal.

PPG is an optical technique that requires a single sensor and has become commoditised
in the past number of years such that it is included in most wearables and other medical
devices. It works by shining a light-emitting diode (LED) into the microvascular tissue,
measuring the amount of light reflected/transmitted/absorbed via a photo-sensor, and
detecting blood volume changes over the cardiac cycle. The output from this sensor is then
conditioned so a valid heart rate can be determined. Furthermore, having a continuous
heart rate measurement means we can extract a PTT measurement, which means that
providing further analysis, we can extract meaningful ABP measurements using a PPG
sensor alone.

Our work described here is part of a larger-scoped effort to develop readily deployable
artificial intelligence (AI) systems that non-expert consumers and downstream end-users
can easily interpret. Capitalising on recent advancements in machine learning has the
potential to simplify wearable devices, allowing for a reduction in power requirements
and, subsequently, lower-cost devices, as our previous work also aims to achieve [4].

This paper presents our novel framework for implementing continuous ABP measure-
ment using a PPG sensor alone. Our methods use proven cutting-edge machine-learning
techniques to capture the characteristics that correlate and link continuous PPG to con-
tinuous ABP measurements. For the first time, we demonstrate a decentralised learning
approach to continuous ABP measurement that is capable of real-world implementation on
a large scale and does not compromise patient privacy. This novel approach yields a more
power-efficient learning framework, thus advancing the development of simpler, more
cost-effective wearables without compromising the accuracy of ABP measurements and
patient privacy.

2. Related Works

Many works in the past have focused on estimating BP from correlating features
available in ECG, and PPG [2,3,5,6]. These works have demonstrated high-quality results in
ABP estimation but require domain expertise to process the available PPG signal to acquire
the blood pressure estimation. Many machine-learning methods are being developed to
remove the dependency on signal processing experts, allowing for readily deployable AI
systems. Our framework follows suit in automating the signal extraction process, making
handcrafted feature selection obsolete.

Slapničar et al. implemented a spectro-temporal deep neural network (DNN) to
model the dependencies that exist between PPG and BP waveforms. The authors used a
PPG signal along with its first and second derivatives and determined the network that
is successful at modelling the dependent characteristics of BP [7]. El Hajj and Kyriacou
implemented recurrent neural networks (RNNs) for the estimation of BP from PPG only [8].
Other works develop a statistical feature extraction and selection process followed by
a regression-based predictive model, all of which achieve high-quality BP estimation
results from PPG data only [9]. Feature-free methods of BP estimation have also been
completed previously through the use of deep-learning-based prediction techniques with
good results [10,11]. However, these methods discussed thus far deal with BP prediction in
discrete intervals, and we build on this through the generation of continuous BP waveforms
and BP prediction.

Ibtehaz and Rahman introduced another feature-free deep-learning method of non-
invasive continuous blood pressure modelling [12]. The authors presented their PPG2ABP
method that utilises a deep-supervised U-Net model that consists of an encoder and
decoder network adopted for regression. In this configuration, their model can predict a
complete continuous BP waveform from a PPG waveform. To build on these works, our
framework implements a long short-term memory (LSTM) convolutional neural network
(CNN) (LSTM-CNN) GAN model that is capable of generating continuous BP from a given
PPG signal. Not only is our model capable of PPG2ABP, but also ABP2PPG; this enables



Sensors 2021, 21, 6311 3 of 12

our model to infer one physiological time-series waveform from another. Our model can
map any given time series signal to another, but for the transform to make sense, the signals
should be correlated somehow.

Smartwatches have become pervasive in recent years, but are still technically lacking
in terms of sensors available to the end-users. Ion et al. presents a wearable pressure sensor
for blood pressure monitoring [13]. Their proposed pressure sensor has the potential for
low production costs and integration into wearable devices, yet this technology needs
time to mature until it reaches a pervasive computing status. Mena et al. developed a
mobile system for non-invasive, continuous BP monitoring [14]. Their system actively
collected and transmitted PPG readings from a wrist-mounted sensor to a smartphone,
where BP estimation is computed with machine-learning algorithms. Our framework com-
plements and builds on these approaches in employing a decentralised multi-user learning
framework enabling more accurate predictive models and, in turn, faster patient diagnoses.

PPG has become a staple sensor in wearables and the primary means of measuring
the heart rate of end-users. Yet, from a medical perspective, ECG is the proven and more
information-rich signal to measure the cardiac state. In addressing this issue, Sarkar
and Etemad [15] present their model CardioGAN that employs an adversarial training
method to map PPG to ECG signals. CardioGAN utilises both time- and frequency-domain
features of the PPG to generate reliable 4-s long ECG signals. Our approach implements a
time-domain-only discriminator to reduce an individual model’s overhead and is capable
of generating 10-s long PPG and ABP waveforms from one another. We also take into
account the personal data-preserving methods and demonstrate real-world applications of
such models.

Addressing data sharing and privacy issues, we adopt a federated learning approach
that was initially introduced by Google’s AI Blog [16] as a means to collaborate machine
learning across mobile devices without the need to store data in a centralised repository.
It enables remote devices to learn collaboratively with a shared global model while keeping
their training data on individual devices. The individual client models train locally and
send their weights to be aggregated on the global model, which can then be passed back as
updated training weights for the client models where training can continue. This entire
process is known as a communication round. Rasouli et al. [17] presented one of the first
examples of implementing this training process as part of a GAN on image and energy data.
We implement a similar training strategy for our framework to serve as proof of concept
for distributed training across smartwatches to build a model such as the one presented in
our paper.

3. Materials and Methods

We designed a time-series-to-time-series generative adversarial network (T2T-GAN)
(Figure 1) based on the popular CycleGAN that is capable of unpaired image-to-image
translation [18]. The T2T-GAN can translate from one time-series modality to another using
cycle-consistency losses. More specifically, we implemented the T2T-GAN for capturing
the complex characteristic relationship between ABP and PPG and trained this model to
translate a PPG measurement into an accurate continuous ABP measurement. We opted for
a decentralised learning approach here and implement federated learning in the interest of
data privacy and protection and real-world implementation. With one central aggregate
model and many decentralised models, we can implement our framework without han-
dling individuals’ personal sensitive data. Comprehensive details of our method can be
found in the section that follows.
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Figure 1. Architecture of the T2T-GAN. P2A represents the generator transform function from PPG
to ABP. Conversely, A2P represents ABP to PPG.

3.1. Computing Platform

The experiments for this project were run on an Nvidia Titan Xp with PyTorch and
Google Colaboratory in the interests of making the project readily deployable. The code
for these experiments is available online (GitHub Repository: https://github.com/Brophy-
E/T2TGAN. Date last accessed: 13 September 2021).

3.2. Datasets

Two open-source datasets were used in this experiment. The first dataset, “Cuff-Less
Blood Pressure Estimation”, is freely available on Kaggle and UCI Machine Learning
Repository. It contains preprocessed and validated ECG (electrocardiograms from channel
II), PPG (fingertip) and ABP (invasive arterial blood pressure (mmHg)) signals all sampled
at 125 Hz [19,20]. The raw ECG, PPG, and ABP signals were originally collected from
PhysioNet [21]. This dataset is split into multiple parts and consists of several records;
for our work, we used the first 5 (part1.mat–part5.mat) records and segmented them into
8-s intervals, which yielded 144,000 training samples (320 h), and the last 2 (part11.mat–
part12.mat) records into 55,000 validation samples (122 h). However, as there might be more
than one record per patient (which is not possible to distinguish), we use a second unrelated
dataset to test our framework and observe its generalisability. Therefore, we used a [144,000,
2, 1000] dimensional vector that constituted the training dataset for our framework.

The test dataset “University of Queensland vital signs dataset: development of an
accessible repository of anaesthesia patient monitoring data for research” [22] provides
a multitude of vital sign waveform data recorded from patients undergoing anaesthesia
at the Royal Adelaide Hospital. The physical state of patients under anaesthesia contains
marked changes to cardiovascular variables compared to ICU patients, presenting a further
challenge to our framework. We are only concerned with the ABP and PPG measurements
from this dataset; these are sampled at 100 Hz. We selected only one patient, namely Case 5,
and segmented the data into 10-s intervals, which yields a [900, 2, 1000] dimensional vector
(150 min) that constitutes the test dataset for our framework. We are only concerned with
the PPG and ABP signals from these datasets; see Figure 2 for an example of the real data
used in this work.

https://github.com/Brophy-E/T2TGAN
https://github.com/Brophy-E/T2TGAN
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Figure 2. Example of Real PPG (top, blue) and ABP (bottom, orange). The signals are both normalised
between 0 and 1 with an artificial offset on the ABP signal for visualisation purposes

3.3. Model

As previously mentioned, we adopted the learning framework of CycleGAN for time-
series data to translate from one time-series modality to another. Here, we will explicitly
define the Discriminator and Generator architecture of our T2T-GAN. The Generators
GPA and GAP are two-layer stacked LSTMs with 50 hidden units in each layer and a fully
connected layer at the output, with an input size of 1000; see Figure 3. The Discriminators
DA and DP are 4-layer 1-dimensional CNN with a fully connected layer and sigmoid
activation function at the output; see Figure 3.
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Figure 3. Architecture of Generators GPA and GAP (left) which are two-layer stacked LSTMs with
50 hidden units in each layer and a fully connected layer at the output, with an input size of 1000.
Architecture of Discriminators DA and DP (right) which are 4-layer 1-dimensional CNNs (ReLU
activation and max pooling functions) with a fully connected layer and sigmoid activation function
at the output.

3.4. Federated Learning

To make the model perform closer to a real-world setting and to prevent data sharing
to third parties, we implement the decentralised learning approach of Federated Learning.
Our approach is limited to using one central server. To realise this learning method, we split
our dataset into N (where N = 20) equally sized random smaller data subsets and train
N client-GANs on their own data with no cross-over from their respective subsets. The
client-GANs are trained until convergence for e (where e = 5) epochs, and their weights
are then sent to a global-GAN that aggregates the received weights from the N clients-
GANs. This global-GAN can then operate on unseen data or update the client-GANs with
the aggregated global weights, which eliminate the need for any data centralisation; see
Figure 4 for a visual example of our method. Of course, in a real-world training and testing
environment, the training data will not come from a centralised repository. The end-users
will instead generate the data. Consumers will generate their own PPG data from their
smartwatch, in this case, that will be used to train a local model and communicate weights
to and from a global model, see Figure 5 for a conceptual example.
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Figure 4. Federated Learning methodology employed in this paper. Each GAN is represented by the
model shown previously in Figure 1.
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Figure 5. Federated Learning methodology that is implemented in the real world. Each GAN is
represented by the model shown previously in Figure 1.

3.5. Training

We chose a total of 20 client models for training as demonstrated in Figure 4. Each
used an equal proportion of the dataset. Six random clients were selected from the total
client models in each communication round to be trained. There were ten communication
rounds. Following each round of training on the client device, the aggregation of weights
is computed on the global model. The total number of training rounds on each client was 5,
with a batch size of 32. The total loss function of our T2T-GAN framework is calculated as
in Equation (1).

L(P2A, A2P, DP, DA) = LT2T−GAN(P2A, DA, PPG, ABP)

+ LT2T−GAN(A2P, DP, ABP, PPG)

+ λcLcyc(P2A, A2P) + λiLidentity(P2A, A2P) (1)

where Lcyc and Lidentity are the cycle consistency loss and identity loss, respectively, and
are defined by the L1-norm. LT2T−GAN is defined as the mean squared error loss (MSE). λ
controls the relative importance of the two objectives, λc and λi were chosen as 10 and 5,
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respectively, as we want to emphasise the importance of cycling between the time series
modalities (PPG to ABP). See Algorithm 1 for a full description of the training procedure.

Algorithm 1 FedT2TGAN Training Procedure.

Input: Training sample pairs of ABP and PPG Sn = (XABP1,PPG1 + . . . + XABPn,PPGn)
Output: GAN Model T2TGAN
Initialise global-model
Synchronise client-models with global-model
for num clients do

# Communication Round
Select 6 random client-models to train
for each client-model do

# client-model training
for num epochs do

# Calculate identity, cycle and adversarial losses
L = GetGANLosses(XABP,PPG, X̂ ˆABP, ˆPPG)
# Update weights of client-model
W = UpdateClientWeights(L)

end for
Aggregate client-model’s weights with global-model

end for
end for
Generate ABP waveforms from unseen PPG using trained global-model

3.6. Evaluation

To successfully evaluate our model, we examine the mean arterial pressure (MAP)
of generated samples. Using a completely independent test dataset from the training
dataset grants us the freedom to implement a leave-one-out strategy and see how well our
model generalises to other ABP-PPG datasets. We take the PPG measurements from the
test dataset and pass them through our trained global deterministic function, P2A. This
function converts our PPG signal to a corresponding ABP signal, and we then calculate the
MAP from the generated signal and compare it with the true MAP measurements from
the real ABP signal. MAP is considered a better indicator of perfusion to vital organs than
systolic blood pressure (SBP) [23]. It is important to note that we can retrieve the systolic
and diastolic blood pressure (DBP) from the P2A signal, which we use to calculate the
MAP (2) rather than simply returning the mean of the continuous signal segment. We also
present the Bland–Altman (BA) plots of the MAP error [24] that allow us to determine to
what degree the generated ABP is a good substitute for the real ABP. The Association for
the Advancement of Medical Instrumentation (AAMI) standard requires BP measuring
methods to have a mean error (µ) and standard deviation (σ) of less than 5 mmHg and
8 mmHg, respectively, [25]. Following this, we then select the entire 150-min period of
the test data and perform calibration on these data for the first one-minute period only.
This calibration is designed to remove user bias and provide more accurate results while
mimicking a continuous BP measurement test that can be performed clinically. Bland–
Altman plots are provided for the calibrated and uncalibrated measurements.

MAP = [SBP + (2 ∗ DBP)]/3 (2)

In the interest of providing a comprehensive evaluation of our T2TGAN, we imple-
ment the dynamic time warping (DTW), root-mean-squared error (RMSE) and Pearson
Correlation Coefficient (PCC) algorithms as distance and similarity measures between
the real and generated time series BP sequences for both the federated and un-federated
approaches. These metrics allow us to quantify the similarities in the structure of the blood
pressure waveforms. This is implemented for the entire test dataset (150 min, 900 samples
at 10 s/sample) and a random sample of the validation dataset of equal size.
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4. Results

As stated previously in Section 3.6, we evaluate our framework based on a qualitative
and quantitative perspective. Visually, and therefore from a subjective qualitative perspec-
tive, we determine that our federated T2TGAN framework has successfully modelled ABP
from a single optical PPG signal alone. An example of real and generated data can be seen
in Figure 6 below.
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Figure 6. Example of Real PPG (top, blue) and the corresponding real ABP (bottom, dashed-orange)
along with the fake ABP (bottom, orange) generated using the respective PPG. The signals are both
normalised between 0 and 1 with an artificial offset on the ABP signals for visualisation purposes

Observing the Bland–Altman plot in Figure 7 our framework achieved a mean MAP
error of −4.02 mmHg and a standard deviation of 22.6 mmHg. We also present the Bland–
Altman plots over the 149-min period with a 1-min calibration period that achieved a
mean MAP error of 2.95 mmHg and a standard deviation of 19.33 mmHg. This calibration
period can prove useful in bringing the mean error to within the AAMI standards. The BA
plots show the 95% range from µ− 1.96σ to µ + 1.96σ. The MAP range of [25.16 mmHg,
−20.08 mmHg] in Figure 8 demonstrates that the one-minute calibration period was suc-
cessful in reducing the overall bias in the mean error.
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Figure 7. Bland–Altman plots of Mean Arterial Pressure on the unseen, unprocessed test data with a
mean error of −4.02 mmHg standard deviation of 22.6 mmHg.
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Figure 8. Bland–Altman plots of Mean Arterial Pressure on the unseen, unprocessed test data
following a one-minute calibration period with a mean error of 2.95 mmHg standard deviation of
19.33 mmHg.

However, a qualitative evaluation cannot be considered a successful framework
justification due to the lack of a suitable objective measure. Therefore, we compute DTW,
RMSE error, and PCC of the real vs. generated continuous ABP signals from a quantitative
perspective. The time-series similarity results on the validation and test datasets for both
the federated and un-federated frameworks are displayed in Table 1 below. It can be seen
that, as expected, the federated results are degraded slightly compared to the non-federated
results. However, in both cases, the models perform seemly equal on the validation dataset
as they do on the test dataset.

Table 1. Time series similarity metrics.

Federated Learning Dataset DTW RMSE PCC

No Test Dataset 56.73 0.19 −0.11

No Validation Dataset 55.18 0.23 −0.33

Yes Test Dataset 62.55 0.24 −0.22

Yes Validation Dataset 62.15 0.25 −0.34

We have implemented an explainable AI (XAI) approach known as t-Distributed
Stochastic Neighbor Embedding (t-SNE) [26] in the interest of trustworthy AI. This is a
well-known technique of dimensionality reduction that is suited well to the visualisation of
high-dimensional datasets. We implement t-SNE on our real ABP and PPG test datasets, as
well as the generated ABP data. Figure 9 (left) illustrates a clustering effect between the real
and synthetically generated ABP that is distinctly different from the t-SNE embedding on
the PPG data. This demonstrates that we can now effectively cycle the time series PPG data
from its own modality (Figure 9 (right)) to a distribution that is much more representative
of the ABP data.
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Real ABP
Fake ABP

Real PPG

Figure 9. (left) t-SNE visualisation of real ABP (blue) and generated ABP (orange) dataset. (right)
t-SNE visualisation of the real PPG dataset.

5. Discussion and Conclusions

Here, we have presented a novel decentralised learning framework for generating
continuous ABP data and MAP estimates using a single optical sensor alone. Although
our results of a mean error of 2.95 mmHg and a standard deviation of 19.33 mmHg do
not meet the AAMI criterion, it must be stated that for our test dataset, we obtained a
completely separate dataset and carried out no further processing on the retrieved data
other than segmentation. Our framework performs deceptively well due to the real-world
nature of the test dataset and the fact that, as stated before, the physical state of patients
under anaesthesia contains marked changes in their cardiovascular variables (ABP and
PPG in this case) in comparison to patients in the ICU (training dataset). With further
work on cleaning and preprocessing the datasets, we might observe improved results,
such as the results observed in [12]. However, we did not implement this as part of this
work in keeping with noisy real-world data. In the case of using denoising methods
for PPG signals to obtain clean training data, we can seek to apply the techniques listed
in [27]. Furthermore, with the increasing environmental costs of machine-learning practises
worldwide, we are concerned with model complexity and training time. Our model takes
a total time of 5 h to train compared to the 11–12 days to train the models in [12]. We also
add a layer of interpretability to our results through the use of t-SNE, which demonstrates
that the T2TGAN can successfully cycle one time-series modality to another. Although
this work did not achieve the competitive performance of fully connected networks, it
should be noted that this work is conceptually quite different from more conventional
approaches and opens up new opportunities for consideration, particularly regarding
federated learning and privacy.

Sustainable AI is an essential practice in the research community to continuously
build quality machine learning systems while consuming smaller amounts of power.
Furthermore, explainable AI is crucial to bridge the gap between human and computer
understanding and build human trust in these AI systems. Overall our framework lays
the foundation for continuous ABP measurements on a large scale for the first time by
providing a sustainable, explainable, and private real-world example of how our models
learn from small subsets of personal data and generalise well to previously unseen data.
Achieving all this while using a sole PPG sensor will subsequently lead to lower-cost
devices and the commoditisation of such. This may be one such solution for clinicians to
remotely and accurately monitor patients’ cardiovascular states in their fight against CVDs.

Author Contributions: Conceptualization, methodology, software and validation E.B.; writing—
original draft preparation, E.B. and T.W.; writing—review and editing, E.B., M.D.V., G.B. and T.W.;
supervision, M.D.V., G.B. and T.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is funded by Science Foundation Ireland under grant numbers 17/RC-PhD/3482
and SFI/12/RC/2289_P2.

Informed Consent Statement: Not applicable.



Sensors 2021, 21, 6311 11 of 12

Data Availability Statement: Two open-source datasets were used in this experiment. The first
dataset “Cuff-Less Blood Pressure Estimation” is freely available on both Kaggle and UCI Machine
Learning Repository https://www.kaggle.com/mkachuee/BloodPressureDataset. Date last accessed:
1 September 2021. The second dataset “University of Queensland vital signs dataset: development
of an accessible repository of anesthesia patient monitoring data for research” is available at http:
//journals.lww.com/00000539-201203000-00015. Date last accessed: 1 September 2021.

Acknowledgments: We gratefully acknowledge the support of NVIDIA Corporation with the dona-
tion of the Titan Xp used for this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organisation. The Top 10 Causes of Death. 2020. Available online: https://www.who.int/news-room/fact-sheets/

detail/the-top-10-causes-of-death (accessed on 1 September 2021).
2. Padilla, J.M.; Berjano, E.J.; Saiz, J.; Facila, L.; Diaz, P.; Merce, S. Assessment of relationships between blood pressure, pulse wave

velocity and digital volume pulse. In Proceedings of the 2006 Computers in Cardiology, Valencia, Spain, 17–20 September 2006;
pp. 893–896.

3. Wong, M.Y.M.; Poon, C.C.Y.; Zhang, Y.T. An Evaluation of the Cuffless Blood Pressure Estimation Based on Pulse Transit Time
Technique: A Half Year Study on Normotensive Subjects. Cardiovasc. Eng. 2009, 9, 32–38. [CrossRef] [PubMed]

4. Brophy, E.; Muehlhausen, W.; Smeaton, A.F.; Ward, T.E. Optimised Convolutional Neural Networks for Heart Rate Estimation
and Human Activity Recognition in Wrist Worn Sensing Applications. arXiv 2020, arXiv:eess.SP/2004.00505.

5. Teng, X.; Zhang, Y. Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach.
In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat.
No.03CH37439), Cancun, Mexico, 17–21 September 2003; pp. 3153–3156. [CrossRef]

6. Lin, W.H.; Chen, F.; Geng, Y.; Ji, N.; Fang, P.; Li, G. Towards accurate estimation of cuffless and continuous blood pressure
using multi-order derivative and multivariate photoplethysmogram features. Biomed. Signal Process. Control 2021, 63, 102198,
doi:10.1016/j.bspc.2020.102198. [CrossRef]
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