
Latency and Reliability Aware Edge Computation

Offloading in 5G Networks

Elie El Haber

A Thesis

In

The Concordia Institute

For

Information and Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Information and Systems Engineering)

Concordia University
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ABSTRACT

Latency and Reliability Aware Edge Computation Offloading in 5G

Networks

Elie El Haber, Ph.D.

Concordia University, 2022

Empowered by recent technological advances and driven by the ever-growing pop-

ulation density and needs, the conception of 5G has opened up the expectations of

what mobile networks are capable of to heights never seen before, promising to un-

leash a myriad of new business practices and paving the way for a surging number

of user equipments to carry out novel service operations. The advent of 5G and net-

works beyond will hence enable the vision of Internet of Things (IoT) and smart city

with its ubiquitous and heterogeneous use cases belonging to various verticals oper-

ating on a common underlying infrastructure, such as smart healthcare, autonomous

driving, and smart manufacturing, while imposing extreme unprecedented Quality

of Service (QoS) requirements in terms of latency and reliability among others. Due

to the necessity of those modern services such as traffic coordination, industrial pro-

cesses, and mission critical applications to perform heavy workload computations on

the collected input, IoT devices such as cameras, sensors, and Cyber-Physical Sys-

tems (CPSs), which have limited energy and processing capabilities are put under

an unusual strain to seamlessly carry out the required service computations. While

offloading the devices’ workload to cloud data centers with Mobile Cloud Computing

(MCC) remains a possible alternative which also brings about a high computation

reliability, the latency incurred from this approach would prevent from satisfying

the services’ QoS requirements, in addition to elevating the load in the network core

and backhaul, rendering MCC an inadequate solution for handling the 5G services’
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required computations. In light of this development, Multi-access Edge Computing

(MEC) has been proposed as a cutting edge technology for realizing a low-latency

computation offloading by bringing the cloud to the vicinity of end-user devices as

processing units co-located within base stations leveraging the virtualization tech-

nique. Although it promises to satisfy the stringent latency service requirements,

realizing the edge-cloud solution is coupled with various challenges, such as the edge

servers’ restricted capacity, their reduced processing reliability, the IoT devices’ lim-

ited offloading energy, the wireless offloading channels’ often weak quality, the diffi-

culty to adapt to dynamic environment changes and to under-served networks, and

the Network Operators (NOs)’ cost-efficiency concerns. In light of those conditions,

the NOs are consequently looking to devise efficient innovative computation offload-

ing schemes through leveraging novel technologies and architectures for guaranteeing

the seamless provisioning of modern services with their stringent latency and reliabil-

ity QoS requirements, while ensuring the effective utilization of the various network

and devices’ available resources. Leveraging a hierarchical arrangement of MEC

with second-tier edge servers co-located within aggregation nodes and macro-cells

can expand the edge network’s capability, while utilizing Unmanned Aerial Vehicles

(UAVs) to provision the MEC service via UAV-mounted cloudlets can increase the

availability, flexibility, and scalability of the computation offloading solution. More-

over, aiding the MEC system with UAVs and Intelligent Reflecting Surfaces (IRSs)

can improve the computation offloading performance by enhancing the wireless com-

munication channels’ conditions. By effectively leveraging those novel technologies

while tackling their challenges, the edge-cloud paradigm will bring about a tremen-

dous advancement to 5G networks and beyond, opening the door to enabling all sorts

of modern and futuristic services.

In this dissertation, we attempt to address key challenges linked to realizing the

vision of a low-latency and high-reliability edge computation offloading in modern

networks while exploring the aid of multiple 5G network technologies. Towards that

end, we provide novel contributions related to the allocation of network and devices’
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resources as well as the optimization of other offloading parameters, and thereby

efficiently utilizing the underlying infrastructure such as to enable energy and cost-

efficient computation offloading schemes, by leveraging several customized solutions

and optimization techniques. In particular, we first tackle the computation offload-

ing problem considering a multi-tier MEC with a deployed second-tier edge-cloud,

where we optimize its use through proposed low-complexity algorithms, such as to

achieve an energy and cost-efficient solution that guarantees the services’ latency

requirements. Due to the significant advantage of operating MEC in heterogeneous

networks, we extend the scenario to a network of small-cells with the second-tier edge

server being co-located within the macro-cell which can be reached through a wireless

backhaul, where we optimize the macro-cell server use along with the other offloading

parameters through a proposed customized algorithm based on the Successive Con-

vex Approximation (SCA) technique. Then, given the UAVs’ considerable ability in

expanding the capabilities of cellular networks and MEC systems, we study the la-

tency and reliability aware optimized positioning and use of UAV-mounted cloudlets

for computation offloading through two planning and operational problems while

considering tasks redundancy, and propose customized solutions for solving those

problems. Finally, given the IRSs’ ability to also enhance the channel conditions

through the tuning of their passive reflecting elements, we extend the latency and

reliability aware study to a scenario of an IRS-aided MEC system considering both

a single-user and multi-user OFDMA cases, where we explore the optimized IRSs’

use in order to reveal their role in reducing the UEs’ offloading consumption energy

and saving the network resources, through proposed customized solutions based on

the SCA approach and the SDR technique.
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Chapter 1

Introduction

1.1 The Advent of 5G and Networks Beyond

Since the advent of mobile communication with the first generation in the early 80s,

technological advancement has been on a constant rise, bringing quality enhance-

ments and service improvements to cellular networks within each generation. 2G in

the 90s brought enhancements to the quality of voice communication. 3G introduced

basic data transmissions and allowed users to have primitive Internet access. With

4G, data packets communication has boomed, allowing users to have seamless Inter-

net access with high data rates, enabling the streaming of HD videos, and opening

the door to countless Internet-based businesses which flourished the economy. Evi-

dently, this trend characterized by an introduction of new service requirements in one

generation and their full solidification in the next, is not coming to a stop anytime

soon.
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Figure 1.1: The vertical markets of IoT and the horizontal integration between
them [1].

In recent years, driven by the ever-growing population density around the cities

and the consumer’s need to have access to fast, safe, and smart modern services [9],

a large widespread of billions of Internet-connected devices has been underway, caus-

ing a massive increase in the service demands and data load, culminating into the

IoT paradigm [10]. In the age of IoT, various processes will be modernized and au-

tomated, and the data will be mostly produced, consumed, and communicated by

things rather than people, where things such as sensor-enabled devices, wearables,

home utilities, will become smart by exploiting their underlying technologies such as

ubiquitous computing, embedded devices, and communication technologies [1, 11].

As Fig. 1.1 shows, IoT will realize the vision of smart city and cutting-edge verticals
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such as smart healthcare, autonomous driving, and smart manufacturing with their

modern services and use cases [1]. For instance, smart healthcare will enable the op-

eration of real-time remote surgeries. On-body sensors will allow for the automatic

detection and timely treatment of health issues. Camera surveillance systems will op-

erate through the instantaneous capture and processing of images and videos. Street

cameras and sensors will enable performing seamless traffic coordination. Smart

parking will allow for the automatic detection of available parking spots. CPSs will

be able to spontaneously carry out factory operations with real-time sensing and ob-

jects identification. Enabling those services will impose extremely challenging novel

requirements with unprecedented stringency and heterogeneity, putting a huge strain

on the established networks with their provisioned resources.

To realize this full-fledged smart and connected world, the next big evolution in

cellular networks is the beyond 2020 mobile communication systems, i.e. the 5G and

6G networks [12], which is envisioned to contain the large boost in the data traffic

and to cater for the unique service requirements that established networks are not

prepared for.

1.2 The Introduction of Novel 5G Technologies

To enable the vision of 5G and 6G networks for supporting the massive load of the

devices’ requests and the unique requirements of the novel services, the research

community and industry in recent years have put huge efforts into proposing new

network architectures and technologies that are still being researched to overcome
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their challenges and to realize their full vision.

Extending the radio spectrum to include Millimeter waves was proposed to ex-

pand the available wireless spectrum for accommodating more traffic. NOMA, mas-

sive MIMO, and small-cells were introduced in cellular networks to increase the spec-

trum efficiency, support more users load, and improve communication rates in the

access network. UAVs were introduced to assist in extending the cellular networks’

capability and coverage, and enhancing the wireless channel conditions, thanks to

their numerous advantages, such as flexibility, low-cost, and LoS communication

[7, 13]. IRSs were introduced into cellular networks owing also to their ability to

enhance the wireless channel conditions and the communication rates in the access

network through the use of their passive reflecting elements.

1.3 Characterization of the Modern 5G Services

The coexistence of human-centric and machine-type services in the age of IoT will

make communication environments more diverse and complicated. While services

in LTE networks mostly required high broadband in order to provide seamless QoE

and high data rates for the end-user devices, 5G and 6G networks however must

support unique service characteristics with extremely challenging and heterogeneous

requirements, such as ultra-low end-to-end communication latency, ultra-reliability,

and high availability, required by modern services and real-time applications [14, 15].

IoT services bring special technical requirements that were not present in tradi-

tional human-centric services, which constitutes a challenge to enable their support in
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Figure 1.2: 5G service categories and key requirements for URLLC [2].

Figure 1.3: Latency and reliability service requirements in 5G networks [3].

5G networks and beyond [1]. Availability for everyone at different places simultane-

ously. Reliability of the communication network that must be resilient to failures for
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realizing reliable information distribution. Reliability in both the software and hard-

ware throughout all layers. Scalability that is designed from the ground up to enable

extensible services and operations in the presence of diverse hardware platforms and

communications protocols. Interoperability for handling many heterogeneous things

that belong to different platforms.

Fig. 1.2 presents the three basic service categories in the 5G and 6G era as defined

by the ITU, which impose requirements of an unprecedented level of heterogeneity

and strictness [2]. eMBB services such as VR/AR, 3D video streaming, and high

resolution gaming, which possess high requirements for bandwidth and data rates.

mMTC services such as sensor networks, which are characterized by a high density

of battery-limited devices that perform operations such as logging, metering, and

measuring with the inability of transmitting the data over a long distance. URLLC

services such as the ones presented in Fig. 1.3 like traffic coordination, autonomous

driving, industrial processes, remote surgery, the tactile Internet, and other mission-

critical applications, which need to carry real-time sensing and control tasks with an

ultra-high reliability (up to 99.99%) and an ultra-low latency (up to 1 ms) require-

ments, in order for their mission to proceed safely, which are conflicting requirements

since increasing reliability generally incurs a higher latency [16, 17, 18].
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1.4 Latency and Reliability Aware Tasks Compu-

tation

In order to provide the intended functionality, most of the modern URLLC-type

services such as the ones presented in Fig. 1.3, will require performing computational-

intensive tasks on the collected data [19, 14] with stringent latency and reliability

requirements. Consider for instance a scenario where a street sensor or a camera

needs to perform a real-time processing on the captured data or video in order to

detect and warn pedestrians passing on the street. However, those devices often

have limited energy and capabilities, preventing them from affording local tasks

computation. Thus, there is a need for a solution to enable latency and reliability

aware tasks computation for the low-energy user devices.

1.5 The Traditional Mobile Cloud Computing Ap-

proach

As illustrated in Fig. 1.4, MCC has traditionally been the solution for enabling

computation-intensive applications [4] such as mobile commerce, mobile learning,

mobile healthcare, and mobile gaming, through the cloud services provided by Mi-

crosoft Azure and Amazon Web Service. MCC constituted an innovative solution for

provisioning computation and storage services for energy-limited UEs, whereby the

tasks are offloaded to cloud data centers through the cellular network and Internet

backbone, leveraging the large-scale and massive available amounts of computational
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Figure 1.4: Mobile cloud computing architecture [4].

resources dedicated for tasks processing and data storage [4, 20]. MCC can extend

the UEs’ battery lifetime, where up to 45% of energy consumption can be saved,

while improving their processing power and data storage capacity [4]. Moreover,

due to the optimized cloud computing environment with the large-scale resources

availability and the applied multiplexing techniques, MCC provides high levels of

computation reliability, scalability, and flexibility.

However, MCC has several shortcomings, rendering it unable to be applied for

modern latency-sensitive 5G services. First, MCC incurs a high end-to-end com-

munication latency that would bypass the required threshold, due to the round-trip

transmission having to traverse the Internet backbone. Second, MCC incurs a high
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Figure 1.5: Architecture of Mobile edge-cloud [5].

data load in the network core and backhaul that consumes the communication band-

width, which adds to the already existing load in the access network, decreasing

the transmission rates and increasing the end-to-end latency even more. Therefore,

MCC is rendered incapable of provisioning the tasks’ computation required for op-

erating the modern 5G services, necessitating a serious rethinking of the network

architecture for enabling computation-intensive applications on the low-energy user

devices, in a way that the envisioned latency and reliability sensitive services in 5G

networks and beyond can be realized for enabling a smart and connected world.
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1.6 The Emergence of The Edge-cloud Paradigm

Seeing the limitations of applying MCC to provide tasks computation for modern

5G services with their stringent latency and reliability requirements, the concept

of edge-cloud computing was introduced. The notion of cloudlets first appeared

in [21], and MEC was later defined by the ETSI as cloud-like computation and

storage capabilities that are brought as small computation units (i.e. cloudlets)

to the network edge in the vicinity of the end-user devices co-located within BSs

and APs [19, 22]. The definition of MEC was later updated to multi-access edge

computing, in order to allow for multiple RATs to be adopted apart from the cellular

radio, such as Wi-Fi, Bluetooth, and WiMAX [23]. As it can be seen in Fig. 1.5, in

the context of MEC, UEs can offload their tasks’ workload to the edge server located

nearby at the BS, while the cloud can still be utilized for computing the tasks that

can afford a high end-to-end delay.

The efficient computation offloading of heterogeneous services on the network

edge with MEC has been made possible by leveraging the following technologies.

The virtualization technique allows for multiple independent software instances to

run on the same physical server through VMs and containers for performing differ-

ent independent computations with a guaranteed service isolation, while supporting

the UEs’ mobility through the seamless migration of the VMs and containers. By

utilizing the virtualization technique for implementing network functions as software

modules that can run on general-purpose hardware with NFV, and decoupling the

management of the control plane from the data plane with SDN, the centralized
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network configuration and management can be simplified towards achieving a low-

cost, flexible, easy, and fast deployment of software-based modules on the network

edge. Leveraging the technologies of virtualization, NFV, and SDN, which support

the flexible provisioning, isolation, and dynamic assignment of network resources, NS

extends the capability of MEC by enabling a multi-tenancy environment through the

creation and co-existence of multiple slices (i.e. virtual networks) for provisioning

heterogeneous services on the same physical infrastructure [10, 24].

The network edge computation through MEC provides the following benefits ever

needed for supporting the computation of the end-user devices with stringent latency

requirements in 5G networks and beyond. First, MEC can significantly reduce the

communication latency due to the processing capability provided in the proximity

of the end-user devices. Also, MEC allows for alleviating the traffic load and bot-

tlenecks in the core and backhaul networks [21]. Moreover, due to the edge servers

being deployed in the RAN near the UEs, context-awareness is possible with detailed

context information about the users that can be obtained, ranging from network-level

to device-level information, which allows for a more efficient allocation of the network

resources. Numerous studies have validated the performance and effectiveness of the

edge computing architecture brought by MEC for assisting the energy-limited user

devices in computing their tasks, and thus it now constitutes a building block in 5G

and 6G networks for supporting the latency-sensitive services [25, 26].
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1.7 Challenges Hindering The Edge-cloud Real-

ization

Despite the good amount of research done for enabling efficient computation on

the network edge, still multiple challenges which must be overcome through well-

designed computation offloading solutions, hinder the realization of MEC with its

full benefits for provisioning cutting-edge services with their latency and reliability

sensitive characteristics [14].

Edge servers usually suffer from a limited computing capacity as compared to

cloud data centers, creating a strife on the resources from end-user devices, making

them easily overloaded in response to a high load of offloading requests, which offsets

MEC’s latency benefits in the absence of well-designed load balancing and optimized

offloading and resources allocation solutions. Also, moving the computation to the

network edge takes out the benefits of reliability, scalability, and flexibility, typically

provisioned by the cloud with the MCC approach. Moreover, the computation of-

floading solutions must effectively accommodate the low-energy characteristics of IoT

devices. In addition, the often unfavorable conditions of the wireless access channels,

caused by blockages and deep fading, will severely impact the performance of com-

putation offloading and the achieved latency and reliability. Moreover, situations of

emergency scenarios, under-served networks, and CNs, will inhibit the availability of

the MEC infrastructure for conducting the offloading operations. Also, in a rapidly

and spontaneously changing environment, edge cloudlets can suffer from the inabil-

ity to dynamically scale and adapt their resources to respond to the environment
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changes in case no resources from other tiers are utilized. Furthermore, edge servers

need to maintain a high resources’ utilization in order to maximize the support for

the offloading requests and hence avoid resources over-provisioning and wastage,

which necessitates the design of efficient solutions for the computation and commu-

nication resources allocation. Moreover, seeing the novel business practices enabled

by modern networks such as the NOs leasing network resources from established

InPs, the designed computation offloading solutions must take into consideration the

cost-efficiency with respect to the NOs.

1.8 Exploring Novel 5G Technologies For Support-

ing The Edge-cloud

In light of the challenges hindering the full realization of the vision of MEC with its

promised benefits, the industry and academia have been recently exploring the use of

novel 5G technologies and architectures, for assisting MEC in enabling the seamless

provisioning of computation offloading for the modern services with their stringent

latency and reliability QoS requirements.

1.8.1 Multi-tier MEC and Heterogeneous Networks

The hierarchical arrangement of the edge-cloud nodes in multiple tiers has been an

appealing architecture for lessening the performance issues caused by the limited edge

cloudlets’ capacity, which prevents them from effectively provisioning the offloading

service in periods of high load. As Fig. 1.6 shows, in this architecture, lower-tier
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Figure 1.6: The hierarchical edge-cloud architecture [6].

cloudlets can migrate their workload to be computed on upper-tier counterparts,

which typically have more powerful capabilities, and are co-located within nearby

aggregation nodes and the core network, resulting in a limited number of hops as

compared to the cloud [6, 27]. Formal analysis and results in [6] demonstrate the

superiority of the hierarchical MEC system over a flat one in terms of the achieved

latency, and hence its ability to serve a larger number of UEs more effectively.

By deploying low-power SCs overlaid within an MC near the end-user devices,

the emergence of heterogeneous networks has allowed for improving the network

capacity and the UEs’ transmission rates, and thereby alleviating the bottleneck

produced in the RAN in scenarios of high network load [28]. By leveraging a cloudlet

co-located on the MC, a multi-tier MEC system can be formed, which allows energy-

limited SC UEs to migrate their computational tasks to the MC cloudlet through

the wireless backhaul, and therefore alleviating the load on the SC cloudlets, which

reduces the computation latency overhead [29]. Therefore, such multi-tier MEC

system where first-tier and second-tier cloudlets are co-located within the SCs and
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Figure 1.7: UAV-assisted terrestrial networks [7].

MC, respectively, will allow for provisioning the modern latency-sensitive 5G services

in scenarios of high network load [6].

1.8.2 UAVs as Aerial Base Stations and Cloudlets

Seeing the unique advantages that they bring, the integration of low-altitude UAVs

into cellular networks in a wide range of applications has been the subject of research

over the past few years for helping to enhance the networks’ capabilities [7, 30]. The

key advantages of UAVs are their mobility, flexibility, and adaptive altitude, allow-

ing them to swiftly move and change their position and altitude in order to enhance

the coverage and transmission rates in cellular networks in response to environment

changes, such as users’ mobility, IoT devices’ activation/deactivation, and load vari-

ations. Also, due to their high altitude, UAVs can deliver on-demand services in

locations that may be restricted to ground BSs, and are able to establish LoS com-

munication with ground devices and overcome network blockages and deep fading,

which translates into a high capacity communication, achieving higher transmission
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rates. In addition, due to their low-cost and easy planning and deployment, UAVs

can be rapidly dispatched for a limited amount of time and later retired for dynam-

ically adapting to the environment changes, which increases the levels of resiliency,

flexibility, scalability, and cost-efficiency in the network. Due to their easy on-the-fly

programmability, UAVs can also be configured to accomplish different tasks at their

operational time.

There are several prospective applications for the deployment of UAVs in cellular

networks [7]. UAVs can take the role of aerial-UEs for provisioning IoT services

from the air, such as scenarios of surveillance, remote sensing, VR applications,

traffic monitoring, and wind estimation [31]. As Fig. 1.7 shows, UAVs can also be

deployed as aerial-BSs to assist in enhancing the connectivity of the end-user devices,

and terrestrial networks such as D2D, V2V, densely deployed ground-BSs, and IoT

networks, such as to avoid short communication ranges and alleviate interference

problems between the ground devices, in addition to using air-to-air links to service

other aerial-UEs. Also, aerial-BSs can provide better communication channels for the

energy-limited IoT devices, allowing them to consume a lower communication energy.

In addition, UAV-based aerial networks can benefit scenarios of public safety and

under-served terrestrial networks, by enabling a fast, flexible, scalable, and reliable

on-demand wireless communication to user devices when ground infrastructures are

compromised or unavailable. Moreover, UAVs can be deployed in a fixed location

as a flying backhaul to relay the communication between ground-BSs and the core

network in scenarios of high load, and therefore alleviating the load in the ground

backhaul network. Furthermore, by co-locating them with cloudlets, UAVs can be
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utilized for provisioning edge computing capabilities in the air leveraging their unique

advantages, and thereby significantly expanding the capabilities of the terrestrial

MEC system in serving the offloading requests of the ground UEs [7, 32].

Although the introduction of UAVs in cellular networks brings many opportuni-

ties due to their unique advantages, multiple challenges need to be taken into con-

sideration upon their adoption as aerial BSs and UAV-mounted cloudlets in cellular

networks [7]. Unlike classical ground communication channels, the LoS and non-LoS

GtA channels used for communicating with the UAVs are highly dependent upon the

variable UAVs’ position and altitude, and can also cause interference on the other

air-to-air links. In addition, the UAVs’ optimal positioning is a challenging task as

it depends on many factors, such as the deployment environment, the locations of

ground UEs, and the GtA channel which itself is a function of the UAVs’ position.

Moreover, UAVs have a limited amount of on-board energy which is used for mo-

bility, communication, workload computation, and payloads purposes, leading to a

limited operational time. Furthermore, UAVs are susceptible to node failure which

will impact the computation reliability when they are mounted with cloudlets for

conducting the computation offloading operation, and thereby inhibiting them from

provisioning for reliability-sensitive mission-critical applications where unexpected

disturbances must be minimized or completely prevented.

Thus, while observing the great benefit in leveraging UAVs for supporting the

MEC system with UAV-mounted cloudlets in order to provide a low-latency and high-

reliability computation offloading, there is a need to carefully optimize the UAVs’
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Figure 1.8: IRS-aided multi-user communication system [8].

positioning and the allocated computation and communication resources, while tak-

ing into account their limited energy and capability.

1.8.3 IRS-assisted Cellular and MEC-based Networks

Thanks to advancements in programmable meta-materials, IRSs have been recently

introduced into cellular networks as a novel technology for passively enhancing the

RAN wireless communications quality through exploiting a large number of low-cost

low-energy reflecting elements [8]. To collaboratively enhance the signals’ propaga-

tion environment, the amplitude and/or phase shift of the IRS elements’ reflected

signals can be tuned as has been demonstrated in [33, 34], and thereby improv-

ing the RAN communication rates such as in the case of the IRS-aided multi-user

communication system illustrated in Fig. 1.7.

Since the IRSs can enhance the transmission rates and upload latencies in net-

works that have unfavorable wireless access channels, we envision the introduction of

IRSs in MEC systems to play a significant role in reducing the UEs’ offloading energy
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consumption, and in alleviating the load on the MEC resources. Therefore, an IRS-

aided MEC system would assist the UEs in accessing resources-rich MEC servers that

are normally unreachable or require a high transmission energy due to low-quality

channels, which would help in enabling modern 5G services with stringent latency

and reliability requirements in networks with unfavorable channel conditions.

1.9 Challenges and Contributions

Interesting challenges and questions come up with regard to integrating MEC with

the presented novel 5G technologies and architectures in cellular networks.

1. The allocation mechanism for the limited edge resources in a MEC system needs

to guarantee maximizing their utilization and avoiding their wastage in order

to maximize the amount of served offloading requests. Also, the allocation of

the wireless communication resources needs to be carefully considered since it

has a direct effect on the achieved latency and reliability, and thus creating

a coupling between the computation and communication resources’ allocation.

Moreover, the decision on how to associate the UEs to AP cloudlets is coupled

with the computational resources’ allocation strategy, which complicates the

offloading problem.

2. The NO leasing the second-tier cloudlet’s resources from an InP for assisting

the edge offloading service in a multi-tier MEC system, would generally incur a

higher cost due to the lease price being dependent upon economical and other

complex factors. In this case, selecting the AP that requires the least offloading
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energy for a given UE may not be cost-efficient due to the potential overload

of the residing cloudlet, requiring the utilization of the higher-cost second-

tier cloudlet. Thus, there is a necessity for cost-efficient resource allocation

strategies coupled with optimized UEs-to-AP mapping while accounting for

the UEs’ energy consumption.

3. The UEs in a MEC-based heterogeneous network would be forced to compute

their tasks locally when the limited-capacity SC cloudlets are overloaded, in-

curring a higher energy consumption which could not be afforded, in addition

to being impacted by SCs’ inter-cell interference in the RAN which would nega-

tively affect the offloading rates. Thus, there is a need for efficiently optimizing

the association between the UEs and SC cloudlets, and for the efficient utiliza-

tion of MC among all SC and MC UEs, while effectively utilizing the low-cost

wireless backhaul and accounting for the resulting RAN interference.

4. When LoS communications cannot be established in a UAV-aided MEC system

due to GtA channels fading and blockage such as in high urban environments,

the channel state (which the optimized position depends on), cannot be known

without knowing the UAVs’ position, which makes the UAVs’ positioning very

challenging, necessitating the use of predictive techniques and probabilistic

models. In addition, the allocation of UAV-mounted cloudlets’ very limited

resources must be carefully optimized such that the amount of served requests

can be maximized. Also in such system, jointly optimizing the UAVs’ position-

ing along with the UEs’ offloading decisions and the allocated resources while

accounting for the UAVs’ limited energy, is very challenging.

20



5. When catering for the stringent latency and reliability requirements in a MEC

system, increasing the computation reliability would require the redundancy of

tasks’ computation on multiple cloudlets which would in turn incur a higher

latency, making it difficult to cater for both requirements. Also when the IRS is

utilized to aid the MEC system with computation redundancy for the offloaded

tasks, the judicious sharing of the IRS elements among the limited-energy UEs

through the phase shifts’ optimization, is a challenging problem.

This thesis aims at providing a deep understanding of the aforementioned chal-

lenges and their inter-dependency while proposing several novel solution approaches

that efficiently address them under different network designs and assumptions. We

present our main contributions in the following.

1. Latency-aware Cost and Energy Efficient Computation Offloading in

Multi-tier Edge-clouds A hierarchical arrangement of the edge cloudlets has

shown to be successful in expanding the limited capabilities of the MEC system

for providing computation offloading for the energy-limited UEs [6]. However, a

cost disparity between the edge tiers leads to cost-inefficient solutions from the

NOs’ perspective, in a scenario where the NO is leasing resources of a high-tier

central cloudlet. Motivated by the lack of research in this area, we proceed to

study a multi-tier MEC system that is provisioning latency-sensitive services

with the support of a second-tier edge-cloud, where we jointly minimize the

NO’s computational cost and the UEs’ energy consumption, by optimizing the

UEs-to-AP association, the UEs’ offloading decisions, the UEs’ transmission

power, and the allocated computation and uplink communication resources.

21



We model and mathematically formulate our mixed-integer non-convex pro-

gram, and propose a BnB algorithm which uses exhaustive search to solve the

problem optimally. Due to the BnB’s complexity, we propose a low-complexity

algorithm based on the SCA method to solve and obtain a high-quality solution,

and also present an inflation-based algorithm for obtaining a polynomial-time

and efficient solution. Numerical results show the performance and scalability

of the proposed algorithms, demonstrate their efficiency, and uncover insights

for helping the NOs better manage their resources following various configura-

tions. To the best of our knowledge, this study is the first attempt at exploring

the computation offloading problem for minimizing the NOs’ costs in a multi-

tier edge-cloud system as it applies in 5G networks.

2. Latency-aware Macro-cell Assisted Edge-clouds Offloading in Het-

erogeneous Networks with Wireless Backhaul Due to the interest of

operating MEC in heterogeneous networks which have allowed network opera-

tors to enhance the spectral efficiency and support a large number of end-user

devices, we extend the scenario in the previous problem to study the energy-

efficiency of computation offloading in a network of small-cells with the second-

tier edge server being co-located within the MC which can be reached through

a wireless backhaul. Our main motivation is to explore the performance bene-

fit of leveraging the second-tier MC cloudlet for computing the computational

tasks of the small-cell users’, while optimizing the allocation of the backhaul

communication resources and accounting for the resulting RAN interference.

We proceed to minimize the UEs’ energy consumption, by optimizing the SC
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UEs’ partial offloading decision (local, SC-cloudlet, or MC-cloudlet), the MC

UEs’ offloading decision (local or MC-cloudlet), the UEs’ transmission power,

and the allocated computation and OFDMA communication resources, while

respecting the UEs’ latency deadline. We model and mathematically formulate

the problem as a non-convex MI-NLP, and due to its complexity, we propose

an iterative algorithm based on the SCA approach that provides an approxi-

mate solution to the original problem. Through numerical analysis, we perform

simulations based on varying configurations, and demonstrate the performance

and efficiency of our proposed solution. The significance of this study lies in

considering a wireless backhaul, which is adopted in most cases due to its rela-

tively low-cost and easier installation, while requiring interference management

and the optimization of the communication resources’ allocation.

3. Latency and Reliability Aware Computation Offloading via UAV-

mounted Cloudlets in IoT Networks Due to MEC’s rigidity and suscepti-

bility to infrastructure failures, in addition to often being hindered by the weak

wireless signals caused by obstacles and high network load in the RAN, which

would prevent from provisioning flexible computation offloading with strict la-

tency and reliability requirements, the usage of UAV-mounted cloudlets for

improving MEC’s performance has been studied, thanks to the UAVs’ unique

advantages in expanding the capabilities of cellular networks and enhancing

the channel conditions. However, since UAV-mounted cloudlets may have fail-

ure rates that would disrupt mission-critical applications and other latency

and reliability sensitive services in IoT networks, we proceed to investigate a
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novel study for the provisioned reliability in a UAV-aided MEC system con-

sidering the UAV-mounted cloudlets’ failure rates and tasks redundancy. We

aim at maximizing the amount of served requests, by optimizing the UAVs’

positions, the UEs-to-UAV associations, and the allocated computation and

communication resources considering both LoS and non-LoS components, while

guaranteeing the stringent latency and reliability requirements, and respecting

the UAVs’ available energy levels. The problem is divided into a planning

problem for optimizing the long-term placement of UAVs, and an operational

problem for making optimized offloading and resource allocation decisions with

constrained UAVs’ energy corresponding to the specific requests in a partic-

ular time slot. We formulate both problems associated with each phase as

non-convex MI-NLPs, and due to their non-convexity, we perform customized

conversions to transform them into approximate SOCPs, and then propose an

efficient customized algorithm for solving the overall problem based on the SCA

method. Further, we approach the problem considering the task partitioning

model which will be prevalent in 5G networks. Through numerical analysis,

we demonstrate the effectiveness of our proposed solution by comparing it to

other baseline approaches, and study the achieved gains considering various

scenarios.

4. Latency and Reliability Aware Computation Offloading in IRS-aided

Edge-clouds Seeing the IRSs’ ability to also enhance through the tuning of

their passive reflecting elements the quality of the weak wireless signals in

the RAN which often greatly impact MEC’s offloading performance, we are
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motivated to extend the latency and reliability aware study to a scenario of

an IRS-aided MEC system. We explore the optimized use of the IRSs for

enhancing the performance of the MEC system while considering the cloudlets’

failure rates and computation offloading tasks redundancy for the purpose of

minimizing the UEs’ energy consumption. We start by studying a single-user

network where we optimize the IRS elements’ phase shift, the UE’s offloading

decision, and the UE’s transmission power. Then, we extend the study to a

multi-user network considering the OFDMA communication model, where we

optimize the IRSs elements’ phase shift, the UEs’ offloading decisions, the UEs’

transmission power, and the allocated servers’ computational resources and

OFDMA RBs. For each of the presented non-convex mathematical problem, we

propose a customized sub-optimal solution based on the SCA approach and the

SDR technique, where the problem is divided into multiple sub-problems that

are solved separately in an alternating fashion. Numerical results are illustrated

for the presented solutions, which demonstrate the energy reduction and the

saving in network resources in various scenarios achieved by the optimized use of

the IRSs, especially for offloading services with higher reliability requirements.

Our work provides insights on leveraging IRS-aided APs for reducing the energy

consumption of UEs that are requesting services with low-latency and high-

reliability requirements such as mission-critical applications, for influencing

the design of the MEC network parameters, and for reducing the load on the

MEC resources.
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1.10 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 studies the problem of

the joint optimization for the NO’s computational cost and the UEs’ energy con-

sumption in the context of a multi-tier edge-cloud system. Chapter 3 extends the

energy-efficiency study to a heterogeneous network scenario with a wireless backhaul

and an MC cloudlet deployed for assisting the MEC Offloading process. Chapter 4

explores the reliability-aware optimized use of UAV-mounted cloudlets for provision-

ing the MEC computation Offloading service with stringent latency and reliability

guarantees through the use of tasks redundancy. Chapter 5 extends the latency

and reliability study to an IRS-aided MEC system for enhancing the computation

offloading performance in scenarios with unfavorable RAN channel conditions. Fi-

nally, Chapter 6 concludes the thesis and highlights potential research problems for

future consideration.

Notations which are used throughout the thesis are independent from one chapter

to another. Hence, some symbols may appear in different chapters and serve different

purpose.
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Chapter 2

Latency-aware Cost and Energy

Efficient Computation Offloading

in Multi-tier Edge-clouds
1

Observing the limited capacity that edge servers possess which offsets their benefits

in periods of high load, a hierarchical arrangement of the edge cloudlets has been

studied, and has shown to be successful in expanding their capabilities. Yet, con-

sidering the emerging business models in 5G networks, the cost disparity between

the edge tiers has been until now ignored, leading to cost-inefficient solutions from

the NOs’ perspective. In this work, we consider a NO that is leasing resources of

a high-tier central cloudlet for computation offloading, where we jointly minimize

the NO’s computational cost and the UEs’ energy consumption in a multi-tier MEC

1This chapter has been published in IEEE Transactions on Communication [35].
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system, by optimizing the UEs-to-AP association, the UEs’ offloading decisions, the

UEs’ transmission power, and the allocated computation and uplink communication

resources, while respecting the UEs’ latency requirement. We mathematically formu-

late our non-convex MI-NLP, and propose a BnB algorithm for obtaining the optimal

solution. Due to the BnB’s complexity, we propose a low-complexity algorithm based

on the SCA approach to solve and obtain a high-quality solution, and also present

an inflation-based algorithm for obtaining a polynomial-time and efficient solution.

Numerical results show the performance and scalability of the algorithms, demon-

strate their efficiency, and uncover insights for helping the NOs better manage their

resources following various configurations.

2.1 Introduction

Due to the limited capability of edge cloudlets that prevents them from effectively

provisioning the offloading service in periods of high load, recent studies have pro-

posed a hierarchical arrangement of cloudlets in multiple edge-tiers, where upper

tiers consist of more powerful cloudlets, and can receive migration requests from the

lower-tier cloudlets in case of overload [6, 27]. Formal analysis and results in [6]

demonstrate the superiority of a hierarchical MEC system over a flat one in terms of

the achieved latency, and hence its ability to serve a larger number of UEs. In reality,

the edge tiers can be provisioned on an existing network infrastructure, e.g. leverag-

ing nearby aggregation nodes and the core network for cloudlets installation. In fact,

this model brings a latency advantage due to the limited number of hops, in contrast
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to existing solutions that solely rely on the assistance of a distant cloud data center

for expanding the edge-cloud capabilities. A multi-tier MEC model can be lever-

aged by service-specific network slices, where the virtual computing resources can

be hosted by a set of multi-tier cloudlets, and hence allowing each slice to efficiently

contain the load of its users [36]. An example of a NS model on top of a hierarchical

edge-cloud architecture is illustrated in Fig. 2.1, where three first-tier cloudlets and

one second-tier cloudlet are provisioning virtual computation and communication

resources for two slices that provide self-driving and healthcare services.

Meanwhile, it will be common for NOs within the emerging 5G business models

to lease high-tier edge cloudlet and communication bandwidth resources from an

InP through multi-tenancy [37, 38]. This allows the NOs to expand the capacity

of their edge cloudlets in order to serve the offloaded requests especially in periods

of high load, while imposing fees on utilizing the cloudlet and the communication

channels. In fact, the NOs in most cases would be better off leasing cloudlet resources

from established InPs in order to reduce their capital expenditure, instead of going

through the hurdle of installing proprietary cloudlets, especially when the NOs face

high requests load only at specific periods. However, the utilization of the leased

cloudlet resources in such case will incur a higher cost on the NOs in many situations,

since the lease price is dependent upon economical and other complex factors. For

instance, due to its large capacity, the leased cloudlet has high capital and operational

expenditures that the InP is trying to offset. Moreover, the price could go higher

depending on the amount of resources leased for the NOs’ customers, where the

InP is trying to maximize their own profit [39]. However, the NOs have control

29



over optimizing the cost-efficiency and improving the multiplexing gains of its small-

scale edge cloudlets, and therefore can lower their operational costs. Meanwhile, it

is paramount for the NOs to maintain a minimal UEs’ energy consumption, which

ultimately depends on the tasks workload size and the wireless channel strength, and

the UEs in many cases may be offloading multiple tasks in order to run their service.

In such scenario, selecting the best AP in terms of channel strength that requires

the least offloading energy may not be cost-efficient due to the potential overload of

the residing cloudlet, necessitating the utilization of the higher-tier cloudlet which

incurs increased costs. Thus, a non-optimal tasks-to-cloudlet mapping will result in

an inefficient solution in terms of the NO’s computational cost and the UEs’ energy

consumption.

In this chapter, motivated by the aforementioned challenges and by the com-

putational cost being mostly ignored in the literature, we study the computation

offloading problem in a multi-tier MEC system, where we jointly minimize the NO’s

computational cost and the UEs’ energy consumption, by optimizing the offloading

decision, the UEs’ transmission power, and the allocated computation and commu-

nication resources, while guaranteeing the UEs’ latency requirement. To the best

of our knowledge, this is the first attempt at exploring the computation offloading

problem for minimizing the NOs’ cost in a multi-tier edge-cloud system as it applies

in 5G networks.

2.1.1 Novel Contributions

The contributions of this chapter can be summarized as follows:
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1. We model and mathematically formulate the problem of joint transmission

power and computation/communication resources’ allocation for computation

offloading in multi-tier edge-clouds for minimizing the computational cost and

UEs’ energy consumption while meeting their latency deadline.

2. Due to its complexity, we transform the non-convex problem into a more

tractable form and present a high-complexity BnB algorithm which uses ex-

haustive search to solve the problem optimally.

3. Due to the scalability and complexity issues of the BnB algorithm that quickly

become excessive, we first transform the problem into a SOCP that can be effi-

ciently solved via the interior point method [40], and then propose an efficient

low-complexity algorithm based on the SCA method [41] which provides an

approximate solution by iteratively solving until convergence.

4. We also propose a relax-continuous and inflation-based algorithm to solve the

problem with more efficiency, overcoming the time bottleneck caused by the

mixed-integer nature of the low-complexity SCA-based algorithm. This new

algorithm is a more appealing approach and is able to run in a polynomial

time.

5. We present numerical results that evaluate the performance of our proposed

algorithms and demonstrate their efficiency based on various system configura-

tions, and obtain new insights that will help the NOs decrease their costs and

UEs’ energy when serving the offloaded tasks.
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Figure 2.1: NS Applied in Hierarchical MEC.

The remainder of this chapter is structured as follows. Section 2.2 explores the

related literature. Section 2.3 introduces the system model. Section 2.3.6 presents

the mathematical formulation. In section 2.4, we present the BnB exhaustive search

algorithm. In section 2.5, we propose two low-complexity SCA-based algorithms for

obtaining approximate solutions on the original problem. In section 2.6, we evaluate

the numerical results and demonstrate the efficiency of our solutions based on various

parameters. Finally, section 2.7 concludes the chapter.

2.2 Literature Review

Research on problems addressing the design of a hierarchical edge-cloud that in-

spired this work has recently started. In [6], a hierarchical edge-cloud architecture

is proposed, and its latency advantage is demonstrated over flat edge-cloud using

formal analysis and simulation. [42] presents the hierarchical edge-cloud system as
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an enabler for the Industry 4.0 and smart factory paradigms, where the computation

and storage capacity highlighted are larger for upper tiers, and also describes existing

challenges such as the infrastructure energy and cost. In [43], the authors studied the

design of an edge-cloud network where the placement decision for cloudlets among

the available sites is made (edge, aggregation, or core nodes). This work is motivated

by the findings in [6], and is based on a two-tier hierarchical edge-cloud where edge

cloudlets are connected to a central cloudlet for containing the loads.

The following are papers that studied computation offloading problems in a MEC

system without considering a hierarchical edge-cloud. [44, 45, 46] considered a single-

server MEC system. [44] explored the latency minimization problem for one user with

multiple tasks connected to one MEC server subject to the mobile power consump-

tion constraint, where the stochastic optimization problem is solved using an MDP

approach. [45] studied the joint energy and latency minimization while optimizing

the transmission power and tasks scheduling of one user connected to one MEC

server. [46] used a game-theoretic approach to minimize the energy consumption

and latency while optimizing the processing rate and offloading decision of one user

(local, edge, or central cloud computation). [47, 48, 49] considered a multi-server

MEC system. In [47], a stochastic optimization technique is employed to minimize

the power consumption of multiple users that are sharing the radio spectrum, by

optimizing the transmission power and allocated local and server computation. [48]

used the theory of minority games to guarantee energy-efficient MEC servers by ac-

tivating a subset of them while also guaranteeing users’ latency requirement. [49],

optimized the task allocation and local CPU frequency decisions for minimizing the
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total latency and energy consumption of one multi-task user with a multi-channel

access.

The following are among the few papers that studied cost-efficiency for compu-

tation offloading in a MEC system without considering a hierarchical edge-cloud.

[50] studied the computation and transmission cost minimization problem for sev-

eral users over a multi-heterogeneous cloudlets framework, subject to the latency

constraint considering a fixed channel rate. [51] proposed a solution to offload MEC

server’s load to the cloud for load balancing, in order to minimize the total users’

latency, MEC fixed cost, and cloud computational cost. [52] minimized the compu-

tational cost subject to the latency constraint in a multi-edge servers system, where

servers can allocate computational resources or offload demands to other servers.

[53] jointly minimized the users’ energy, latency, and system utility cost while opti-

mizing the offloading decision (local or cloud) and the allocation of communication

resources. [54] adds improvement on [53], by considering a cloudlet-like unit at the

AP (called CAP), adding a third offloading layer, where the allocation of computa-

tional resources on the CAP is also optimized.

The following works addressed computation offloading problems in a hierarchical

edge-cloud without studying the cost efficiency. [27] aimed to maximize the NO’s

revenue using an auction-based approach, by optimizing the accepted bids and al-

location of computation and communication resources, but without considering the

difference of computational costs across tiers that results in 5G multi-tenancy sce-

narios. [55] proposed a context-aware hierarchical MEC system with cloud support,
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where the layer and service-type for each edge server is first decided, and then the al-

location of computation/content requests to one edge tier and server is optimized by

performing a lookup, but without addressing the cost aspect. [56] addresses compu-

tation offloading in a hierarchical edge-cloud connected to a cloud data center, where

the operational cost and network latency are minimized by optimizing the allocation

of tasks on the MEC servers, while assuming fixed computation and bandwidth for

all tasks, which makes the problem too simplistic.

In this work, compared to the existing studies, we go one step beyond and address

a business model that will be common in 5G multi-tenancy scenarios, where we study

the cost efficiency for a NO that is leasing resources from an InP for expanding the

edge-cloud capability with response to the network load increase. Furthermore, in

contrast to studies that either did not address the UEs’ energy or considered a fixed

transmission power and rate, we make sure to also tackle the UEs’ energy aspect

by optimizing the allocation of transmission power and the selection of APs taking

into account the uplink wireless channel state which makes the transmission rates

unknown in advance. Also, in contrast to studies that considered a cloud-assisted

MEC system which would incur a high transmission latency, we consider a higher-tier

central cloudlet as a support for the MEC system. To the best of our knowledge, this

work is the first to address the minimization problem of cost and energy by jointly

optimizing the UEs-to-AP association, UEs’ transmission power, and the allocated

cloudlets’ resources in the context of computation offloading as it applies in the 5G

multi-tenancy scenarios while utilizing a hierarchical edge-cloud.
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2.3 System Model

2.3.1 MEC Model

Without a loss of generality, as depicted in Fig. 2.2, we consider a two-tier MEC

system where the NO has a set ofM first-tier cloudlet-enabled APs indexed by M =

{1, 2, ...,M}, and is leasing resources of a more powerful second-tier cloudlet from an

InP that we call a central cloudlet. Within the considered RAN, N UEs indexed by

N = {1, 2, ..., N} are requesting to offload one task as part of the service provided

by the slice, and are assumed to have very limited capabilities, and hence cannot

afford local computation. Each task i ∈ N is represented by the tuple {di, ci, L̄i, P̄i},

concatenating the task input size di (Kb), the task computational demand ci (CPU

cycles/bit), the required latency threshold L̄i (ms), and the maximum power budget

P̄i (dBm).
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Furthermore, each AP cloudlet j ∈ M possesses some computation capability

with capacity f th
j (GHz), while the InP with its large resource-rich central cloudlet

is assumed to serve all migrated requests with no fixed capacity, noting that the

resources provisioned by the InP could be abstracted from different sources possibly

from upper tiers. Our model can be thought of as havingM field cloudlets supported

by one shallow cloudlet in accordance with the principles of LTE-advanced backhaul

network [27], noting that it can be extended for the case of multiple shallow cloudlets

and third tier deep cloudlets. Also, our choice of one cloudlet is supported by the

formal analysis in [6], showing that the employment of one cloudlet in the second-tier

of a two-tier MEC system maximizes the resources’ utilization efficiency.

2.3.2 Communication Model

We consider the uplink communication between the UEs and the APs to be ac-

commodated on the whole spectrum of B Hertz. Each UE i will be allocated a

fraction αi ≥ 0 of bandwidth B for transmitting its task to only one AP j, where∑
i∈N αi = 1. We do not consider the downlink communication since the task output

size is in general much smaller than the task input size, e.g. face recognition [57]. We

note that APs are assumed to have small separating distances, and thus operate on a

different licensed spectrum in order to avoid severe interference [47]. Since, we later

aim at determining the association between UE i to AP j, ∀{i, j} ∈ {N ,M}, let us

introduce a decision binary variable xij, where xij = 1 implies that UE i is associated

to AP j and xij = 0 otherwise. By denoting pij and hij as the transmission power

and channel gain from UE i to AP j on the allocated αiB spectrum, respectively,
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the transmission rate achieved at UE i, computed in Mbps, can be written as

Ri(pi, αi) = αiB
∑
j∈M

log2

(
1 +

pijhij
αiBN0

)
(2.1)

where we assume a perfect CSI, and pi = {pij ≥ 0, ∀j ∈ M} is the set of transmission

power from UE i, and N0 is the noise power spectral density. It is important to note

that since UE i transmits to only one AP j, we impose the following constraints

between pi and xi = {xij, ∀j ∈ M} to govern a proper relationship of the involved

variables

∑
j

xij = 1 (2.2a)

pij ≤ xijP̄i (2.2b)

While it is obvious that (2.2a) regulates that UE i is associated to only one AP,

(2.2b) restricts that when xij = 0, UE i does not transmit to AP j. We also assume

that the first-tier APs can communicate with the central cloudlet through backhaul

wired links with enough high bandwidth [43], and hence the task migration latency

is assumed to be negligible [57, 58]. We note that a wireless backhaul communication

can be utilized instead, as in [59]. However, this is out of scope of this work, and

hence we leave that to be explored in a future work.
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2.3.3 Latency Model

When task i is offloaded, an amount of resources fi ≥ 0, ∀i ∈ N (cycles/second) is

allocated for its computation, knowing that task i must be computed only on one

cloudlet, and thus fi does not indicate where task i is actually computed. Thus, the

time needed for the computation of task i on the host cloudlet, denoted as execution

latency Lex
i (fi), is:

Lex
i (fi) =

dici
fi

(2.3)

We note that allocating more resources fi will decrease the execution latency, but

this will drive the costs up, as will be later explained. The time needed for UE i to

upload its task to AP j of length di Kb, depends upon the allocated transmission

power and bandwidth, and is given by

Lu
i (pi, αi) =

di
Ri(pi, αi)

(2.4)

It can be seen that allocating higher power and more bandwidth will decrease the

transmission latency, but with a cost of an energy increase and a decrease in the

available bandwidth, respectively.

2.3.4 Energy Model

The consumed energy (Mj) resulting from offloading task i, can be computed as the

product between the total transmission power of UE i, e.g.,
∑

j∈M pij, and the time
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to complete the upload. c.f. (2.4):

Ei(pi, αi) =
di
∑

j∈M pij

Ri(pi, αi)
(2.5)

2.3.5 Cost Model

The computational cost depends on the resource unit cost µj at each AP j, and µ at

the central cloudlet. It is important to note that the considered cost model acts as

a deterrent for pushing tasks to be executed on the edge server whenever possible,

due to the higher cost incurred on the NO for central cloudlet utilization as noted

in Section 2.1, thus µj < µ. For instance, the considered central cloudlet unit cost

µ is abstracted from the imposed resource price by the InP, the price of utilizing

the communication link, and possibly other factors. The unit cost is computed in

cent/gigahertz.

Let us denote yi = {0, 1} as a binary decision variable, where yi = 1 means that

task i is executed at the central cloudlet, and yi = 0 means that task i is executed

at the cloudlet associated with AP j such that xij = 1. The computational cost of

offloading task i which is relative to the allocated resources for its execution at either

cloudlet, is:

Ci(xi, yi, fi) = yifiµ+
∑
j∈M

xij(1− yi)fiµj (2.6)

It is important to note that µ can be written as µ(a) = amax(µj, ∀j ∈ M) assuming

all µj are different, and therefore (2.6) can be rewritten as Ci(xi, yi, fi) = yifiµ(a) +∑
j∈M xij(1 − yi)fiµj where a is a scalar value. Thus, It can be seen that a and µj
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act as scalars for yifiµ(a) and
∑

j∈M xij(1 − yi)fiµj. Hence, from a mathematical

point of view, a and the ratio between µj, ∀j ∈ M are the important factors instead

of the exact values of µ and µj. We explore the effect of change in the ratio a later

on in Section 2.6.

2.3.6 Problem Formulation

Our objective is to minimize the weighted sum of energy and cost, while respecting

the UEs’ latency requirement. This is done by optimizing for each UE i: the associ-

ated AP j, the transmission power to that AP, the allocated uplink communication

resources, the assigned cloudlet, and the allocated amount of computation. We adopt

a centralized approach where a computation unit utilized by the NO, e.g. located

on the central cloudlet, is responsible for conducting the optimization program after

acquiring the CSI and the UEs configurations through the control plane [19], while

the offloading and transmission power decisions would be signaled back to the UEs

after the optimization procedure is finished. We note that the energy sensitivity for

each UE could also be signaled to the central unit, and can be then used to set the

objective weights accordingly. Our problem can be applied to address a snapshot of

the system at one time instance, where the set of UEs with offloading requests are

positioned in certain locations with corresponding channel gains, noting that another

snapshot can also be solved when the UEs’ number and state change after a given

amount of time.

By denoting p = {pi, ∀i ∈ N}, α = {αi ≥ 0, ∀i ∈ N}, x = {xi, ∀i ∈ N},
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y = {yi, ∀i ∈ N}, f = {fi ≥ 0, ∀i ∈ N}, the joint transmission power and computa-

tion/communication resources’ allocation for computation offloading problem P1 is,

formulated as

P1 : minp,α,x,
y,f

∑
i∈N

(γEi(pi, αi) + βCi(xi, yi, fi)) (2.7a)

s.t.
∑
i∈N

xij(1− yi)fi ≤ f th
j , ∀j ∈ M (2.7b)

Lex
i (fi) + Lu

i (pi, αi) ≤ L̄i, ∀i ∈ N (2.7c)∑
i∈N

αi = 1 (2.7d)

(2.2), ∀{i, j} ∈ {N ,M} (2.7e)

xij, yi,∈ {0, 1}, ∀{i, j} ∈ {N ,M},

pij, αi, fi ≥ 0, ∀{i, j} ∈ {N ,M} (2.7f)

where γ, β in (2.7a) are the weights used for signaling the significance of the energy

and cost sub-objectives, respectively. Constraint (2.7b) makes sure the resources’

capacity of each AP cloudlet is respected. Constraint (2.7c) is for respecting the

required latency for each task. Constraint (2.7d) ensures the wireless communication

resources’ capacity is respected. It is worth noting that our model is sufficiently

broad, since weights can be adjusted to emphasize a sub-objective over another, and

possibly focusing on minimizing only the energy or cost. All mathematical symbols

used thus far are summarized in Table 2.1.

It can be seen that the objective (2.7a) and constraint (2.7c) are non-convex. In

addition, constraint (2.7f) implies that (2.7) is an integer optimization problem. In
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Notation Description
N Set of UEs
M Set of APs
di Task input size (Kb)
ci Task computational demand (CPU cycles/bit)
L̄i Task required latency (ms)
P̄i UE’s maximum power budget (dBm)
γ Energy sub-objective weight
β Cost sub-objective weight
f th
j Cloudlet j computation capability (GHz)

µj Edge cloudlet j resource unit cost
µ Central cloudlet resource unit cost
B Radio spectrum bandwidth (MHz)
N0 Noise power spectral density (dBm/MHz)
hij Channel gain between UE i and AP j

xij ∈ {0, 1} Indicates if UE i is offloading using AP j
yi ∈ {0, 1} Indicates the host cloudlet for task i
pij ∈ R+ Allocated transmission power for UE i on AP j
αi ∈ R+ Allocated fraction of the bandwidth
fi ∈ R+ Allocated computational resources for task i

Table 2.1: Table of Notations

fact, the formulated problem (2.7) is a mixed-integer non-convex program, which is

generally difficult to solve.

2.4 Optimal Solution Approach via Branch-and-

Bound Method

In this section, we solve (2.7) optimally using BnB exhaustive search algorithm.

We first equivalently transform problem (2.7) into a more tractable form using the

well-known big-M technique, where A ≫ 1 is the big-M constant, to facilitate the
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difficulty of handling the binary-related objective function and constraints. Specif-

ically, we introduce the new slack variables uij ≥ 0 and vi ≥ 0 for i ∈ N , j ∈ M,

to substitute the terms xij(1 − yi)fi and yifi, respectively, in (2.6), and (2.7b). In

fact, the new slack constraints together with the slack variables uij and vi can be

presented according to the big-M method as

uij ≤ xijA (2.8a)

uij ≤ (1− yi)A (2.8b)

(xij + (1− yi)− 2)A+ fi ≤ uij ≤ fi (2.8c)

vi ≤ yiA (2.8d)

(yi − 1)A+ fi ≤ vi ≤ fi (2.8e)

We remark that each constraint in (2.8) is now linear with respect to the involved

variables. At this point, by denoting u = {uij, ∀i ∈ N , j ∈ M} and v = {vi, ∀i ∈

N}, P1 can be equivalently transformed into the following form:

P2a : minp,α,x,
y,f ,u,

v

∑
i∈N

(
γEi(pi, αi) + β(viµ+

∑
j∈M

uijµj)
)

(2.9a)

s.t.
∑
i∈N

uij ≤ f th
j (2.9b)

uij, vi ≥ 0, ∀{i, j} ∈ {N ,M} (2.9c)

(2.7c)–(2.7f), (2.8). (2.9d)

Next, by introducing slack variables t = {tij, ∀i ∈ N , j ∈ M}, ζ = {ζi ≥ 0, ∀i ∈
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N}, and η, we proceed to equivalently transform (2.9) into the following form:

P2b : maxp,α,x,y
f ,u,v,t
ζ,η

− γ
∑
i∈N

di
ζi

− 1

η
(2.10a)

s.t. ζi
∑
j∈M

pij ≤
∑
j∈M

tij (2.10b)

tij ≤ αiB log

(
1 +

pijhij
αiBN0

)
(2.10c)

dici
fi

+
di∑

j∈M tij
≤ L̄i (2.10d)

∑
i∈N

(
β(viµ+

∑
j∈M

uijµj)
)
≤ 1

η
(2.10e)

(2.7d)-(2.7f), (2.8), (2.9b), (2.9c). (2.10f)

The equivalence between (2.7) and (2.10) is proved in Appendix A.1. By observing

(2.10), we note two important properties. First, when each of the term ζi, ∀i ∈ N ,

and η increases within its feasible domain, the objective function of (2.10) achieves a

higher value. Second, when we fix the value of ζi, and η, (2.10) becomes a feasibility

checking optimization problem of finding the solution {p,α,x,y,f ,u,v, t} that sat-

isfies (2.10b)–(2.10f). Thus, we can employ the concept of monotonic optimization to

customize the BnB-based algorithm in order to optimally solve (2.7). To proceed, let

us denote Ω = [ζ, η]T as the set of variables ζ and η. By following the definitions and

facts in [60, Section III-B, pp. 5577], we define C =
{
Ω ∈ RN+1|(2.10b)− (2.10f)

}
as the normal compact set and D =

[
Ω, Ω̄

]
as the box that contains all the feasible

solutions related to Ω in (2.10). Obviously, the LB is given by Ω = [ϵ, . . . , ϵ]T , where

ϵ can be chosen arbitrarily small, e.g., ϵ = 10−5. To compute the upper bound, we
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can simply consider that

ζi ≤ ζ̄i =
B log

(
1 +

maxj∈M{hij}P̄i

ϵBN0

)
Pi

(2.11)

η ≤ η̄ =
1

β(µ+M
∑
µj)

(2.12)

Thus, the upper bound is given by Ω̄ =
[
ζ̄1, . . . , ζ̄N , η̄

]T
. Given the value of Ω ∈ D,

the problem of checking whether Ω ∈ C or not becomes the feasibility checking

problem, which is given by

find {{p,α,x,y,f ,u,v}|(2.10b)− (2.10f)} (2.13)

Problem (2.13) is indeed a mixed-integer generalized convex feasibility checking prob-

lem since all the constraints (2.10b)-(2.10f) are convex with respect to the involved

variables. Here, it is worth mentioning that (2.13) has the generalized convex charac-

teristic due to the appearance of the generalized exponential cone constraint (2.10c).

Thus, we remark that solving (2.13) in its current state is still challenging, due to the

very high computation time resulting from solving problem (2.13) using a general-

ized convex solver such as FMINCON, in contrast to other standard convex programs

such as the SOCP, which can be solved much more rapidly while achieving an accu-

racy of 99.99% [61]. Thus, we are motivated by the availability of the commercial

solver MOSEK, which is capable of solving the MI-SOCP, to employ the conic ap-

proximation with controlled accuracy in [61] to rewrite constraint (2.10c) by a set of
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second order cone inequalities as

κijm+4 ≤ αi +
pihij
BN0

αi + κij1 ≥
∥∥∥∥[αi − κij1 2αi +

tij
B2m−1

]∥∥∥∥
2

αi + κij2 ≥
∥∥∥∥[αi − κij2

5αi

3
+

tij
B2m

]∥∥∥∥
2

αi + κij3 ≥
∥∥∥∥[αi − κij3 2κij1

]∥∥∥∥
2

κij4 ≥ κij2 +
κij3
24

+
19αi

72

αi + κijl ≥
∥∥∥∥[αi − κijl 2κijl−1

]∥∥∥∥
2

∀ l ∈ {5, ...,m+ 3}

αi + κijm+4 ≥
∥∥∥∥[αi − κijm+4 2κijm+3

]∥∥∥∥
2

(2.14)

where κijm ≥ 0 is a new slack variable and m is the parameter of the conic approxi-

mation technique, which can be chosen as m = 4 to attain the 99.99% accuracy as

already noted. By replacing (2.14) into constraint (2.10c), we can rewrite (2.13) in

a standard form of MI-SOCP and employ MOSEK to solve it. Towards this end, we

conclusively state that solving for problem (2.10) can be interpreted as solving the

following problem

max

{
−γ
∑
i∈N

di
ζi

− 1

η

∣∣∣∣Ω ∈ C ⊂ D

}
(2.15)

To solve (2.15), we first check whether Ω is feasible or not. If feasible, we run the

BnB-based algorithm that recursively branches the box D into smaller boxes, checks

the feasibility of each new box, updates the new upper and lower bounds by the
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Box Reduction—Bound Computation process, and disposes the boxes that do not

contain the optimal solution. According to [62], the BnB algorithm exhaustively

searches for all possible solutions and terminates after many iterations when the

difference between the upper and lower bounds is arbitrary small and the global

optimal solution is determined. The pseudocode of the proposed BnB algorithm is

outlined in Algorithm 1, where we denote by ζn and Dn as the current best objective

and the collection of all created boxes at iteration n, respectively. In the following,

we provide brief descriptions of the protocol of Box Branching, Box Reduction, and

Pruning and Bound Computation, noting that more details are presented in [60,

Section III-B]:

� Box Branching: At each iteration, one of the boxes that achieves the maxi-

mum upper bound is selected to branch, and then is divided into two smaller

boxes using a partition rule. We adopt here the commonly used rule of bisecting

along the longest edge [62], which is proven to be exhaustive.

� Box Reduction: The purpose is to exclude certain portions of the obtained

boxes that are of no more interest without loss of optimality. As noted in [60,

Section III-B], a box B = [q, s] can be reduced only when q ∈ C and s ∈ D\C,

by using the method outlined in [62] to find a smaller box B′ = [q′, s′], noting

that if an optimal solution is contained in B ∩ C, then it is guaranteed to be

contained in B′ ∩ C when B′ is a valid reduction [62].

� Bounding and Pruning: For each of the obtained reduced boxes denoted

as B′ = [q′, s′], due to the monotonic increase of the objective, the lower
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Algorithm 1 Proposed BnB algorithm.

1: Apply box reduction to D to obtain red (D)
2: n = 1; B1 = red (D); D1 = {B1} ;ζ1 = LB (B1);
3: repeat
4: Select a box to branch: Bn = argmaxBi⊂Dn UB (Bi);

5: Branch Bn into two smaller boxes B(1)
n and B(2)

n ;
6: for j = 1 : 2 do

7: Compute LB set of B(j)
n , as X(j)

n =
{
s
(j)
n

}
;

8: if X(j)
n is feasible then

9: Apply box reduction to B(j)
n to obtain red

(
B(j)

n

)
;

10: else X(j)
n = ∅;

11: Compute LB
(
red
(
B(j)

n

))
and UB

(
red
(
B(j)

n

))
;

12: Update the current best objective: ζn+1 =

13: max
(
LB

(
red
(
B(1)

n

))
, LB

(
red
(
B(2)

n

))
, ζn

)
;

14: Update the set of boxes: Dn+1 =
{
Dn,B(1)

n ,B(2)
n

}
;

15: Delete boxes that do not contain optimal solution:
16: Dn+1 = Dn \ {Bi|ζn+1 > UB (red (Bi)) , ∀i};
17: n=n+1;
18: until |maxBi⊂Dn UB (red (Bi))− ζn| ≤ ϵ;

and upper bounds are computed by evaluating the objective at q′ and s′,

respectively. Then, after computing the bounds for all boxes, the objective ζn

is set as the maximum obtained lower bound, and finally in the pruning step,

the boxes having an upper bound smaller than ζn will be removed.
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2.5 Proposed Iterative Low-Complexity Algorithms

2.5.1 SCA-based MI-SOCP Algorithm

In the previous section, a BnB-based exhaustive search algorithm is customized to

find a global solution of the mixed-integer non-convex problem (2.7). However,

the complexity of this approach quickly becomes excessive when the problem size

grows, i.e. the number of UEs and APs, since it is well-known that the exhaus-

tive search algorithm often has an exponential computational complexity. Due to

its in-applicability in practice, in this section, we propose to approach a solution

of (2.7) with more pragmatic, efficient, and lower computational complexity algo-

rithms. To achieve this goal, let us start by reusing the equivalent transformation

based on the big-M method, c.f. (2.8), which results in an equivalent problem (2.9).

The motivation for this step can be explained similar to Section 2.4. Then, with

a slightly different introduction of the slack variables θi ≥ 0, ∀i ∈ M, τ ≥ 0, and

tij ≥ 0, ∀i ∈ M, ∀j ∈ N , we can also equivalently rewrite (2.9) into the following
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problem, denoted as P2:

P3a : min
p,α,x,
y,f ,u,v,
t,θ,τ

∑
i∈N

(γdiθi) + τ (2.16a)

s.t.
∑
j∈M

pij ≤ θi
∑
j∈M

tij (2.16b)

tij ≤ αiB log

(
1 +

pijhij
αiBN0

)
(2.16c)

dici
fi

+
di∑

j∈M tij
≤ L̄i (2.16d)

∑
i∈N

(
β(viµ+

∑
j∈M

uijµj)
)
≤ τ (2.16e)

(2.7d)-(2.7f), (2.8), (2.9b), (2.9c). (2.16f)

where we denote θ = {θi ≥ 0, ∀i ∈ M}. At this point, we observe that the un-

derlying issues which make (2.16) difficult, are due to the existence of non-convex

constraint (2.16b) and binary constraints (2.7f). Another subtle point, as analyzed

in (2.14), is that (2.16c) appears in the form of generalized exponential cone. In

the following, we will invoke the SCA-based framework to approximate (2.16) into a

series of approximated MI-SOCP problems, where a modern dedicated solver such as

MOSEK is available to solve efficiently. Then we develop an SCA-based MI-SOCP

algorithm to solve for its solution.

Let us first concentrate on the non-convex constraint (2.16b). By quickly investi-

gating (2.16b), we realize that the factor which causes the non-convexity of (2.16b) is

because of the non-convex non-concave function θi
∑

j∈M tij with respect to variables
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θi and tij. By simple algebraic manipulations, we can easily rewrite (2.16b) as

∑
j∈M

pij + 0.25

(
θi −

∑
j∈M

tij

)2

− 0.25

(
θi +

∑
j∈M

tij

)2

≤ 0 (2.17)

Here, it appears that the above inequality contains a difference of convex (D.C.)

functions with respect to all variables, which makes (2.17) non-convex. To handle this

obstacle, we are motivated by the inner-approximation method in [63] to approximate

function

gi(θ, t) = −0.25

(
θi +

∑
j∈M

tij

)2

(2.18)

by its upper-bounded convex function Gi(θ, t;θ
(n), t(n)) around the points θ(n), t(n)

as

Gi(θ, t;θ
(n), t(n)) = −0.25

(
θ
(n)
i +

∑
j∈M

t
(n)
ij

)2

− 0.5

(
θ
(n)
i +

∑
j∈M

t
(n)
ij

)(
θi − θ

(n)
i +

∑
j∈M

tij −
∑
j∈M

t
(n)
ij

)
(2.19)

By replacing gi(θ, t) with Gi(θ, t;θ
(n), t(n)), we remark that all constraints of (2.16)

except for (2.16c), can be converted into the conic form. In fact in (2.16d), we can

easily introduce some slack variables f inv
i and tinvi and equivalently rewrite (2.16d) in
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a set of conic constraints as

f inv
i + tinvi ≤ L̄i (2.20a)

∥[
√
dici (f inv

i − fi)/2]∥2 ≤ (f inv
i + fi)/2 (2.20b)

∥[
√
di (tinvi −

∑
tij)/2]∥2 ≤ (tinvi +

∑
tij)/2 (2.20c)

However, the resulting problem from this SCA-based method is a generalized convex

mixed-integer program for which dedicated solvers are very limited. Besides, (2.16c)

is indeed a convex constraint, so that applying an SCA-based method here is not

necessary, due to its preserved convexity. Towards this end, we reuse the established

derivation of conic approximation with controlled accuracy to represent (2.16c) by a

set of conic constraints as in (2.14).

While recognizing that the conic approximation with controlled accuracy, as pre-

sented in (2.14) is available, we remark that this approximation is quite complicated

due to the introduction of numerous slack variables and conic constraints in order

to obtain high accuracy. This can be a burden when the problem size grows higher.

Therefore, we propose a novel and more efficient approach to represent (2.16c) as a

conic constraint. The following proposition, which derives the lower-bound concave

approximate of the generic function αi log
(
1 +

Aijpij
αi

)
, where Aij = hij/(BN0), is in

order

Proposition 1. The function ℓ(αi, pij) = αi log
(
1 +

Aijpij
αi

)
, ∀αi, pij ∈ R+ can be

approximated by its lower-bounded quadratic function L(αi, pij;α
(n)
i , p

(n)
ij ), which is
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given by

ℓ(αi, pij) ≥ L(αi, pij;α
(n)
i , p

(n)
ij ) = α

(n)
i log

(
1 +

Aijpij
αi

)
+

[
log

(
1 +

Aijp
(n)
ij

α
(n)
i

)
−

Aijp
(n)
ij

α
(n)
i + Aij

](
αi − α

(n)
i

)
+

α
(n)
i (pij − p

(n)
ij )

1 + Aijp
(n)
ij /α

(n)
i

− L

2

(
pij − p

(n)
ij + αi − α

(n)
i

)2
(2.21)

where L is the Lipschitz constant of ∇ℓ(αi, pij).

By employing all approximations and representations from (2.14), (2.19), and

(2.20), an approximated MI-SOCP of the mixed-integer non-convex problem (2.16),

denoted by P̃ (n), can be formulated at the nth iteration as

P3b : min
p,α,x,

y,f ,f inv,u,v,
κ,t,tinv,θ,τ

∑
i∈N

(γdiθi) + τ (2.22a)

s.t.
∑
j∈M

pij + 0.25

(
θi −

∑
j∈M

tij

)2

+Gi(θ, t;θ
(n), t(n)) ≤ 0 (2.22b)

(2.7d)-(2.7f), (2.8), (2.9b), (2.9c), (2.14), (2.16e), (2.20). (2.22c)

where we denote f inv = {f inv
i ≥ 0, ∀i ∈ N}, tinv = {tinvi ≥ 0, ∀i ∈ N}. The

pseudocode to solve problem P2 is given in Algorithm 2.

Convergence Analysis : The convergence of Algorithm 2 can be guaranteed by

showing that the series of resulting objective is monotonically convergent. Let Γ(n)
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Algorithm 2 SCA-based MI-SOCP Algorithm.

1: Initialize:
2: n = 0;
3: Choose an initial point θ(n), t(n) ;
4: repeat
5: Solve P̃ (n) to obtain the optimal solution at the nth iteration Ω⋆ =

{p⋆,α⋆,x⋆,y⋆,f ⋆,f inv⋆,u⋆,v⋆,κ⋆, t⋆, tinv⋆,θ⋆, τ ⋆}
6: Update θ(n) = θ⋆, t(n) = t⋆;
7: n = n+ 1;
8: until Convergence of the objective of P̃ (n).

denote the optimal objective value and Ω(n) denote the optimal solution set at the nth

iteration of Algorithm 2. Due to the convex approximation in (2.19), the updating

rules in Algorithm 2, c.f., Step 6, ensure that the solution set Ω(n) is a feasible

solution to problem P2 at step n + 1. This subsequently leads to the results of

Γ(n+1) ≤ Γ(n), which means that Algorithm 2 generates a non-increasing sequence of

objective function values. Due to the latency constraints, the sequence of Γ(n), n =

1, 2, . . . is bounded below and therefore, Algorithm 2 guarantees that the objective

converges.

2.5.2 SCA-based SOCP Algorithm using Continuous Relax-

ation and Post-Processing Protocol

Although we can employ the modern solver MOSEK to iteratively solve a sequence

of P̃ (n) for a sub-optimal solution of (2.16), it is important to mention that when

the problem size grows larger, e.g. N ≥ 10 and M ≥ 4, the time consumed to

solve one iteration of Algorithm 2 is extremely high. This is because the solver’s

capability is also limited to handle a large number of binary variables. To develop
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a more appealing approach, we further consider the continuous relaxation of binary

variables, e.g., 0 ≤ xij ≤ 1 and 0 ≤ yi ≤ 1, ∀i, j. Consequently, the continuous

relaxed version of (2.22), denoted as P̃ (n)
r , becomes a SOCP (continuously convex)

and can be solved within a polynomial time.

The iterative SCA-based SOCP algorithm under this continuous relaxation con-

tains two steps: solving the relaxed problem and post-processing procedure. In the

first stage, we repeat similar steps in Algorithm 2, but replace P̃ (n) by P̃ (n)
r to solve

for a solution. The post-processing protocol is then employed to refine the obtained

continuous values of xij and yi into the binary state, which is feasible to (2.16). Here,

we are inspired by the Inflation Algorithm in [64] to execute the rounding task. In

particular, we consider the solution of the continuous relaxed problem P̃ (n)
r at con-

vergence as an incentive measure to sequentially decide which binary value xij and

yi should take. We denote x̃ and ỹ as the solution achieved after the first stage. In-

tuitively, the achieved value of x̃ij is higher if the channel condition hij between the

ith UE and the jth AP is better and the cost to offload through that link is smaller

than the others. Based on this observation, we propose an iterative procedure to

determine the set of binary variables based on the values of x̃ij and ỹi. Initially,

we assume there is no connection to the central cloudlet and there is no association

between UEs and APs. The UE-AP association with the largest x̃ij will be set to 1

and the corresponding 1− ỹi will be rounded to 1 accordingly. The overall algorithm

is given in Algorithm 3, where π(m) represents the obj value obtained at iteration m,

and R(m)
off is a set containing (i, j) pairs ∈ (N ,M) at iteration m.

56



Algorithm 3 Relax-continuous and inflation based algorithm

1: Set m := 0, π(m) is significantly small, and initialize the sets R(m)
off =

{(i, j) ∈ (N ,M)} ,U (m)
off = {i ∈ N}.

2: repeat
3: Set m := m+ 1;
4: Solve P̃ (n)

r until convergence with xi′,j′ = 1, ∀ {(i′, j′)} /∈ R(m−1)
off , and yi′ =

0, ∀ {i′} /∈ U (m−1)
off ;

5: Update R(m)
off = R(m−1)

off \
{
(i′, j′)× i′ = argmax

i,j∈R(m−1)
off

x̃i,j

}
,U (m)

off =

U (m−1)
off \

{
i′ = argmin

i∈U(m−1)
off

ỹi

}
;

6: Solve P̃ (n) until convergence given xi′,j′ = 1, ∀ {(i′, j′)} /∈ R(m)
off and yi′ =

0, ∀ {i′} /∈ U (m)
off and xi,j = 0, ∀ {(i, j)} ∈ R(m)

off and yi = 1, ∀ {i} ∈ U (m)
off , denoted

as (P int). If (P int) is feasible, set π(m) as the value of objective function achieved
at the convergence. If not, set π(m) = π(0).

7: until P̃ (n)
r starts to be infeasible or (P int) is feasible and π(m) > π(m−1);

8: Solve P̃ (n) given xi′,j′ = 1, ∀ {(i′, j′)} /∈ R(m−1)
off and yi′ = 0, ∀ {i′} /∈ U (m−1)

off

and xi,j = 0, ∀ {(i, j)} ∈ R(m−1)
off and yi = 1, ∀ {i} ∈ U (m−1)

off to obtain
p⋆,α⋆,x⋆,y⋆,f ⋆;

2.5.3 Complexity Analysis

In this subsection, we discuss the complexity of our proposed algorithms:

1. BnB algorithm: The complexity here is extremely high since the number of

boxes to be considered increases exponentially with the problem dimension.

In addition, an MI-SOCP feasibility problem is solved in each iteration, which

increases the complexity even more.

2. SCA-based MI-SOCP Algorithm: The overall complexity here depends

mainly on that of solving the MI-SOCP problem in (2.22) which is indeed a

combinatorial optimization problem. Specifically, there are NM binary vari-

ables xij and N binary variables yi, resulting in 2NM+N combinations for all
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the binary variables. Given fixed values for x and y, the constraints in problem

(2.22) approximately consist of a total number of (m+17)NM +38N +M +1

variables. Thus, in each iteration, the worst-case complexity of Algorithm 2

can be written as O(2NM+N(mNM)).

3. Relax-continuous and inflation based algorithm: We first note that in

the worst case, Algorithm 3 must iteratively solve and update the resulting

parameters for the SOCP problem (P̃ (n)
r ) and (P int) for (N −1) times. In each

step, the complexity of solving (P̃ (n)
r ) and (P int) is approximately O(mNM),

which is a polynomial time complexity as is the case for SOCP problems [65].

Thus, the overall complexity for Algorithm 3 is O(2(N − 1)(mNM)).

2.6 Numerical Results

In this section, we present numerical results based on simulations following different

scenarios. For the majority of our simulations, we consider a small two-tier hierar-

chical MEC system with a set of M = 3 cloudlet-enabled APs connected to a central

cloudlet and a set of N = 5 UEs with tasks to offload. Simulation parameters are

presented in Table 2.2. The cycles/bit values is chosen such as to support generic use

cases that can have an exact task computational demand around the used value, such

as in [45, 47]. Note that di is also selected to support a broad range of applications,

knowing that our solution can easily address larger tasks such as in [44]. Also, the

change in the ratio between µ and µj will be explored later in this section, since it

is the important factor as discussed in Subsection 2.3.5. Also, each channel gain hij
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Notation Description Value
N Set of UEs 5
M Set of APs 3
di Task input size 200 Kb
ci Task computational demand 600 CPU cycles/bit
P̄i UE’s maximum power budget 30 dBm [44]
µj Edge cloudlet resource unit cost 1 cent/gigahertz
µ Central cloudlet resource unit cost 5 cent/gigahertz
B Radio spectrum bandwidth 10 MHz [47]
N0 Noise power spectral density −120 dBm/MHz [44]

Table 2.2: Simulation Parameters
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Figure 2.3: Convergence behavior between the BnB and SCA-based algorithms.

is independently randomly generated according to an exponential distribution with

mean of 1, and the effect of path loss is omitted for simplicity. The objective weights

were evenly selected with γ = β = 0.5. The convergence criteria of Algorithm 2 is

established when ϵ, i.e. the difference of objective value between Γ(n) and Γ(n+1) of

the approximated problem, is ϵ ≤ 10−3.
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In Fig. 2.3, we show the convergence performance for Algorithms 1, 2, and 3,

where we consider a slightly smaller instance withM = 3 APs andN = 4 UEs, for the

purpose of meeting the low-scalability of the BnB algorithm. As it can be seen, the

SCA-based MI-SOCP algorithm (Algorithm 2) just takes a few iterations to stabilize.

However, its overall runtime is high since the problem in each SCA iteration is a MI-

SOCP. On the other hand, the SCA-based SOCP iterative algorithm (Algorithm

3) requires more iterations to converge, but with a much lower computation time

since the per-iteration problem is a relaxed SOCP, which can be solved with low

computational effort. We note the downhill and uphill effect of the SOCP iterative

algorithm in the figure, which is caused by the convergence of each SOCP SCA

iteration during the inflation process. We also observe the lower bound obtained by

the SOCP iterative algorithm, but eventually it achieves almost the same objective

as the MI-SOCP algorithm due to the small instance size used. In general, the MI-

SOCP algorithm will achieve a better objective due to its superior approximation,

while the SOCP iterative algorithm will be able to solve bigger instances, as will be

later demonstrated. On the other hand, the BnB algorithm (Algorithm 1) was the

slowest and obtained the optimal solution after few thousand iterations. The BnB

algorithm has two curves for showing the progression of the lower bound starting

from a very small value, and the upper bound starting from a very high value, until

they coincide upon convergence. As it can be seen, the BnB algorithm outperformed

the other algorithms in terms of the objective due to its non-approximate nature,

while the low-complexity SCA algorithms outperformed the BnB algorithm in terms

of the running time due to their scalability advantage.
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Figure 2.4: Convergence behavior for the SCA-based SOCP iterative algorithm.

In Fig. 2.4, we study the convergence behavior of the SCA-based SOCP iterative

algorithm apart, for a latency threshold L̄i = 100 ms. In the figure, each line

represents the convergence for a specific iteration of the algorithm. It can be seen

that every next iteration achieves a higher objective due to the post-processing phase

which rounds variables and fix them in their binary state. The first few iterations

give a lower bound on the solution achieved by the SCA-based MI-SOCP algorithm,

until ending with a solution which is an upper bound and is almost equal to the

solution obtained by that algorithm.

In Fig. 2.5, we use the SCA-based MI-SOCP algorithm to study the variation

of the objective value with respect to the UEs’ latency threshold and the cloudlets

computational capacity. Two observations can be made. First, increasing the latency

threshold always leads to a decrease in the objective value. Second, the objective

decreases even more whenever the edge cloudlets have higher resources’ capacity.
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Figure 2.5: Obj value vs UEs’ latency threshold and cloudlets’ computational capac-
ity.

This is visible through the three plots, where each one represents a given resources’

capacity. Note here that the objective value represents the sum of the energy (in Mj)

and the cost sub-objectives. The first observation can be explained by the fact that

when the latency threshold is small, UEs have to consume more server resources in

order to lower their task execution time to keep up with the new threshold, which

will incur higher costs. In addition to that, more tasks may end up using the central

cloudlet since edge cloudlets become more demanded and overloaded, which again

comes at a higher cost due to the central cloudlet’s higher computational cost. On the

other hand, increasing the latency threshold will allow users to utilize less resources

and hence lower their total cost. The second observation can be explained by the fact

that when edge cloudlets have more computational capacity, more space is created for

tasks execution with lower costs (as compared to the central cloudlet cost), which
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lowers the need to migrate tasks to the central cloudlet. On the other hand, low

resource capacities will rapidly congest the edge servers, and will force more tasks to

be further migrated to the central cloudlet, which will incur a high execution cost and

a higher objective value. It can be seen that for high latency ranges, the difference

between the curves gets smaller, and sometimes they overlap. This is because when

latency thresholds are high, adding more edge resources becomes less necessary and

effective since fewer computational resources are needed, and hence it will have a

lesser (and sometimes negligible) effect on the objective value. We conclude that

NOs should increase the capacity of the edge cloudlets when possible, especially

when users have stringent latency requirements, so that the central cloudlet is less

utilized and the costs are decreased. On the other hand, for slices with loose latency

requirements for their users, adding more edge resources may be unnecessary and

may not decrease the costs as needed.

As presented in Fig. 2.6, we compare our SCA-based MI-SOCP algorithm in

which the allocation of bandwidth is optimized (SCA-OB), with another variation

of the same algorithm (SCA-EB) where bandwidth is equally allocated among UEs.

We show this comparison for different latency threshold values L̄i. We use the

same instance after varying UEs’ data size randomly within the range of [200, 600]

Kb. It can be seen that our SCA-based MI-SOCP algorithm always achieves a

better objective regardless of the latency threshold, and that equally allocating the

bandwidth will always lead to an inferior solution. Also, the gap decreases for higher

latency thresholds. First, the reason for the superiority of SCA-OB is that each UE

has a different task size, and hence will need a specific bandwidth chunk to make sure
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Figure 2.6: Optimized vs equal bandwidth allocation with respect to latency thresh-
old.

its objective is minimized, which means that an equal allocation of the bandwidth

in this case will lead to a sub-optimal solution. For instance, allocating an average

channel bandwidth to a UE with a large task will not be enough and will achieve a

higher objective due to the resulting increase in the upload latency relative to the

large data size, which will in turn affect the energy consumption. We conclude that

optimizing the bandwidth allocation along with the users’ association and power

transmission decisions is crucial for obtaining a high quality solution with a minimal

energy, and omitting this optimization aspect will result in a sub-optimal solution.

In Fig. 2.7, we study the change in the objective value with respect to the change

in the number of UEs in the network. We take advantage to compare the performance

of the SCA-based MI-SOCP algorithm and that of the SOCP iterative algorithm in

regard to this variation while also varying the latency threshold. Four observations
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Figure 2.7: Objective vs number of UEs and their latency threshold.

can be made; first, the objective value always increases whenever the number of

users grows in the network. Second, for the same latency threshold level, the MI-

SOCP algorithm always outperforms the SOCP iterative algorithm regardless of the

number of requests. Third, the SOCP iterative algorithm can better scale with the

instance size and is able to solve the problem for instances that are beyond the MI-

SOCP algorithm’s capacity. Fourth, a lower objective is achieved for higher latency

thresholds, as has been demonstrated earlier. The first observation is caused by

the increase in the amount of consumed resources in the network in addition to the

amount of energy consumed by the UEs. This increase also means more users are

utilizing the central cloudlet, which incurs higher costs. The second observation is

because of the MI-SOCP algorithm, which by nature achieves a better objective due

to its ability of fully optimizing the solution containing binary variables. The third

observation indicates the scalability advantage of the SOCP iterative algorithm that
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Figure 2.8: Variation of the average objective per UE with respect to instance size.

is able to solve bigger instances and networks with more number of UEs due to

the continuous relaxation performed in that algorithm. Network operators should

consider increasing the capacity of the edge cloudlets especially for APs which have a

higher load. Also, adding more edge cloudlets could prove useful in order to account

for the high UEs’ requests in dense areas, which would decrease the costs by lowering

the high utilization of the central cloudlet.

In Fig. 2.8, we study the effect of change in instance size on the average objec-

tive obtained for relatively bigger instances, utilizing the SOCP iterative algorithm

exclusively, due to its superior scalability. We specifically vary the number of UEs

and APs, and show the average objective achieved as the problem size grows. As it

can be seen, the average objective achieved per UE increases whenever the number

of UEs rises in the network. This is due to the increased competition on the com-

putation and communication resources whenever new UEs enter the system, which
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2.9.b Variation of the average cost per UE with
respect to the weights change.

Figure 2.9: Trade-off between energy and cost with respect to the change in obj
weights γ and β while varying the latency threshold.

translates into a higher cost and energy since more tasks will be migrated to the cen-

tral cloudlet, in addition to the decrease in the bandwidth availability which forces

UEs to increase their transmission power in order to keep up with the required la-

tency. Few exceptions occur when the average objective decreases due to particular

devices positioned close to certain APs enter the network, requiring low transmission

energy and decreasing the overall average energy in the process. It can also be seen

that only a small difference is made when the number of APs changes, which is due

to the high number of APs and cloudlets that already offer too many options for the

existing UEs, noting that in general a significant addition of APs will offer users more

resources in the network. We note that the SOCP iterative algorithm is scalable to

support much higher numbers of UEs and APs in the network, but with the cost of

a decreased solution quality, as compared to the MI-SOCP algorithm.
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Next, we tackle the effect of the objective weights on the obtained overall solution.

So far, we have been presenting the change in the objective, which is the summation

of the normalized energy and cost multiplied by their respective weights γ = β = 0.5.

Now, as presented in Fig. 2.9, we show how the change in the weights γ and β affects

the energy and cost. Specifically, we show the average UE energy consumption and

cost as they vary with respect to the objective weights for different values of the

latency threshold. We show the results for each of the energy and cost in a separate

figure, namely 2.9.a and 2.9.b. As it can be seen, a trade-off exists between the energy

consumption and cost. We observe that when γ = 0.8 and β = 0.2, the average UE

energy consumption decreases significantly for all latency threshold values, but this

is accompanied by an increase in the average cost. On the other side, when γ = 0.2

and β = 0.8, the average costs per UE decreases, but with a cost of an increase in

the average UE energy consumption. These observations are due to the fact that

when putting a higher weight on the energy sub-objective, there will be a decrease

in the average energy consumption, since the solution will be driven to focus more

on associating UEs to APs with good channels, so that transmission energy can be

decreased. This, however, will drive the costs up since the APs with good channels

are not necessarily the best in terms of the available computational resources and

their cost. On the other hand, putting more weight on the cost sub-objective will

prioritize associating UEs to edge cloudlets with low unit costs, and hence will incur

lower overall costs, but this on the other hand will drive the UEs’ energy consumption

up since this association will not be best in terms of the wireless channel, and thus

UEs will be forced to increase their transmission power in order to keep up with the
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Figure 2.10: Objective value vs UEs’ transmission power limit and latency threshold.

required latency, incurring a higher energy consumption in the process.

In Fig. 2.10, also by utilizing the SCA-based MI-SOCP algorithm, we show the

variation of the objective value with respect to the power threshold. Here, we consider

all UEs to have the same power limit in each run. It can be seen that increasing

the power limit will decrease the objective. This is because when UEs are forced

to utilize a low transmission power, the upload latency will increase, which in turn

will increase their energy expenditure. We also observe that at one point, increasing

the threshold becomes insignificant. This is because a power increase after a specific

threshold will start to increase the energy consumption even though the upload

latency becomes lower, and that is because the energy function in non-linear. It

is important to note that for the sake of realizing an optimal energy consumption,

transmission power have to be neither too low nor too high. Also, another reason

for the higher objective is that limiting the transmission power could prevent UEs
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Figure 2.11: Comparing different approaches for distributing edge resources.

from utilizing APs with poorer channel state but which could provide more resources

with lower costs. On the other hand, we observe that a lower objective is achieved

when the latency threshold is increased, which is mainly due to the resulting decrease

in computational costs as explained in Fig. 2.5. For that reason, we conclude that

having a high transmission power threshold is always a better option and will not

affect the objective negatively due to the energy being part of that objective which

is being minimized.

We also studied a scenario where UEs are concentrated around one AP, e.g. AP

with i = 1 (all UEs have their best channel with AP i = 1). We compared three

approaches for distributing the available computational resources on the edge cloud.

In LowF, scarce resources were given to AP 1 (10%); in AvgF, resources were evenly

distributed among edge cloudlets; and in HighF, resources were concentrated mostly

in AP 1 (80%). We compared the objective values resulting from these approaches
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given by the SCA-based MI-SOCP algorithm and in three cases representing different

values for the total edge cloudlet resources. The results of this study are given in

Fig. 2.11. As it can be seen, giving scarce resources to the AP with high load will

always lead to an inferior solution, and will be superseded by the other approaches.

This is because the resources on AP i = 1 will not be enough for the surrounding

UEs, and will be forced to either utilize another AP with a worse channel incurring

more energy, or offload to the central cloudlet incurring a higher cost, where both

cases translate into an increase in the objective. On the other hand, the other two

approaches will offer more resources on AP 1 which will lower the objective value

since both energy and cost can be decreased. An important insight can be realized

here, which is that even though HighF may seem the best approach to follow, evenly

allocating the resources will be a better approach in most cases. The reason is that

most UEs prefer to utilize AP 1 which increases the demand on its resources and

thus limits its resources availability and hence causes many UEs to further migrate

their task to the central cloudlet. However, evenly distributing the resources gives

a chance to the other UEs to utilize the other edge cloudlets and avoid the central

cloudlet which would save costs. We conclude that evenly allocating resources among

edge cloudlets appears to be the best approach to follow by the NOs.

In figure 2.12, we study the performance and scalability of the SOCP iterative

algorithm while changing the number of UEs and APs using the same relatively

big instance utilized in figure 2.8. As it can be seen, intuitively, the running time

increases whenever the problem size grows, whether new UEs are introduced or new

APs are added. However, the rate of change in the running time with respect to the
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Figure 2.12: Runtime of the SOCP algorithm with respect to the instance size.

problem size is close to linear, in contrast to the exponential increase in the running

time for the MI-SOCP and BnB algorithms, demonstrating the superior scalability

of the SOCP iterative algorithm, but with a cost of a decrease in the solution quality

as compared to the other algorithms. However, our SOCP algorithm still has some

performance limitations in part due to its centralized nature, which is of utility for

solving the offline problem, noting that a much lower runtime can be achieved when

a fewer number of APs is considered by the NO. It is worth noting that this can also

serve as a benchmark for other efficient methods.

We have discussed in Subsection 2.3.5 about the ratio a between the central

cloudlet unit cost µ and the edge cloudlets unit cost µj in µ(a) = amax(µj, ∀j ∈ M)

being the important aspect. In Fig. 2.13, we analyze the effect of varying the ratio

a on the objective, where we consider µj = µj′(j ̸= j′) ∀j, j′ ∈ M for simplicity, i.e.

µ(a) = aµj. We observe an increase in the objective that is almost linear whenever
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Figure 2.13: Variation of the objective value with respect to the unit cost ratio.

Solver
N

5 7 9

FMINCON
Runtime 1.10× 103 4.15× 103 1.34× 104

Obj value 8.429085 15.432419 18.964022

MOSEK
Runtime 22.160336 39.040830 59.512224
Obj value 8.429118 15.433633 18.965948

Table 2.3: FMINCON vs MOSEK (objective value and running time).

the ratio a rises. This can be explained by the fact that when edge cloudlets are

congested, some computational tasks must be migrated in particular cases to the

central cloudlet no matter what the unit cost there is, since all UEs’ requirements

must be guaranteed. This means that, when the unit cost at the central cloudlet is

higher, the effect will be directly proportional on the objective, since the total cost

increase in this case is imminent.

In Table 2.3, we study the difference in objective and running time between

MOSEK which solves the problem while utilizing the conic approximation in (2.14),
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and FMINCON which considers the generalized convex constraint (2.16c). The pur-

pose is to validate the accuracy of the conic approximation in (2.14), and study the

running time difference between both approaches while varying the number of UEs.

As it can be seen by looking at the objective obtained, MOSEK achieves an accuracy

of 99.99% compared to running the original general convex problem through FMIN-

CON, while accomplishing a huge decrease in the running time. It can be concluded

that approximating a general exponential cone by a set of conic constraints as we

have done in (2.14), is a great technique for achieving a huge performance increase.

2.7 Conclusion

In this chapter, we studied the cost and energy efficiency of computation offloading,

and optimized the joint transmission power and computation/communication re-

sources allocation in a two-tier MEC system with multiple connected UEs. We first

solved the problem using a BnB exhaustive search approach to obtain the optimal

solution, and also proposed an SCA-based algorithm to solve the approximate MI-

SOCP of the original non-convex problem. Moreover, we presented a more scalable

low-complexity algorithm based on the continuous relaxation. Through numerical

results, we evaluated the performance of the proposed algorithms, we analyzed the

results in varying scenarios, and also discovered new insights that help NOs better

decide when and how to add resources to their network to lower their costs. To the

best of our knowledge, this work is the first to study the problem of cost and energy

efficiency in hierarchical edge-clouds as it fits with the 5G business models, and it
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can be further extended in the future to include other special cases.
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Chapter 3

Latency-aware Macro-cell Assisted

Edge-clouds Offloading in

Heterogeneous Networks with

Wireless Backhaul
1

Heterogeneous networks have allowed the NOs to enhance the spectral efficiency and

support a large number of devices by deploying nearby small-cells. In this chapter,

we study the problem of computation offloading in a MEC-enabled heterogeneous

network with a low-cost wireless backhaul, where we minimize the total devices’ en-

ergy consumption while respecting their latency deadline. We explore the benefit of

1This chapter has been published in IEEE Transactions on Network and Service Management
[66].
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leveraging the macro-cell cloudlet for computing small-cell users’ tasks, where the al-

location of backhaul wireless communication resources is optimized while accounting

for the resulting RAN interference. We jointly optimize the partial offloading deci-

sion, transmission power, and the allocation of computation and radio access com-

munication resources. We mathematically formulate our problem as a non-convex

MI-NLP, and due to its complexity, we propose an iterative algorithm based on the

SCA method that provides an approximate solution. Through numerical analysis,

we perform simulations based on varying configurations, and demonstrate the per-

formance and efficiency of our proposed solution.

3.1 Introduction

The introduction of heterogeneous networks has allowed NOs to overcome the bot-

tleneck produced in the RAN, and thus improving the network capacity and UEs’

transmission rates. This is achieved by deploying low-power SCs overlaid within

an MC close to the end-users [28]. By leveraging a cloudlet co-located on the MC,

a MEC-enabled heterogeneous network allows energy-limited UEs to offload their

computational tasks with a low-latency overhead, and therefore enabling ubiquitous

5G services. However, in such case, a large number of SC UEs (SUEs) and MC

UEs (MUEs) could overload the MC cloudlet and the backhaul links, increasing the

overall latencies. Therefore, recent studies started considering MEC servers to be

also co-located on the SCs, e.g. [29, 67, 68], allowing tasks computation in the SUEs’

local network, and hence relieving the load on the MC cloudlet and the backhaul
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links. Such model forms a multi-tier MEC system [6], where first-tier and second-tier

cloudlets are co-located within the SCs and MC, respectively.

When computation offloading is addressed in a heterogeneous network with cloudlet-

enabled SCs, the offloading decision usually includes local task computation, and of-

floading the task to a cloudlet that is co-located within the nearby SC. However, SC

cloudlets typically have very limited capabilities, and they could easily become over-

loaded in the presence of a high connectivity and computation offloading demands.

In such case, when the computation can be done only locally or offloaded to the

AP-cloudlet, many UEs will be forced to compute their tasks locally when the SC-

cloudlet’s computation would violate their SLA, e.g. latency deadline. Consequently,

more energy will be consumed due to the local device computation, which may se-

riously inhibit UEs from achieving potential energy savings, entailing a sub-optimal

solution.

In this chapter, we investigate and answer the following question: what is the

performance benefit brought by utilizing the MC cloudlet as a backup computation

unit for serving the SUEs in addition to serving the MUEs in a MEC-based heteroge-

neous network? There has been interesting studies demonstrating the advantage of

multi-tier over single-tier MEC. For instance, in [6], an upper-tier cloudlet behaves

as a backup to contain the load of lower-tier cloudlets, which improves the system

performance. In this work, we present a novel solution for realizing energy-efficient

computation offloading for MEC-enabled heterogeneous networks, where we aim at

minimizing the UEs’ energy consumption while respecting their latency deadline and

accounting for the resulting RAN interference. The significance of this study also
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lies in considering a wireless backhaul, which is adopted in most cases due to its

relatively low-cost and easier installation. This however requires interference man-

agement and the optimization of the communication resources’ allocation, where

OFDMA is considered as the resources’ multiplexing scheme.

3.1.1 Novel Contributions

The contributions of this chapter can be summarized as follows:

1. We model and mathematically formulate the problem of minimizing the UEs’

energy consumption in a MEC-based heterogeneous network, by optimizing

the SUEs’ partial offloading decision (local, SC-cloudlet, or MC-cloudlet), the

MUEs’ offloading decision (local or MC-cloudlet), the UEs’ transmission power,

and the allocated computation and communication resources in the SC RAN

and backhaul, while respecting the UEs’ latency deadline and managing the

resulting interference.

2. Due to the problem being a non-convex MI-NLP, we transform it into a SOCP

which is a more tractable form that can be solved efficiently via the interior

point method [40]. We then propose an efficient low-complexity algorithm

based on the SCA approach [41].

3. We present numerical results that evaluate the performance of our proposed al-

gorithm and demonstrate its efficiency based on various system configurations.

The remainder of this chapter is structured as follows: section 3.2 presents an

overview of the related work. In section 3.3, we present our system model and
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mathematically formulate our non-convex problem. Section 3.4 presents our solution

approach to transform the non-convex problem into a more tractable form, where the

iterative SCA-based algorithm is presented. Section 3.5 presents numerical results

for validating the efficiency of our solution where various simulations are performed.

Finally, section 3.6 concludes the chapter.

3.2 Literature Review

We first present studies that addressed computation offloading in a two-tier MEC sys-

tem. In [6], a hierarchical edge-cloud architecture is proposed, and its latency advan-

tage is demonstrated over flat edge-cloud using formal analysis and simulation. They

showed that there is a trade-off between the utilization of the central cloudlet and

the incurred communication latency between the edge-cloud tiers. [69] considered

a network with one AP where wireless communication resources and cloudlet/cloud

computational resources are jointly allocated. [70] considered a multi-AP model

with frequency reuse where the allocation of transmission power and computation

and wireless access resources are jointly optimized, and backhaul rates are partitioned

given a fixed capacity. Those works however assumed the cloud as the second-tier

which would incur a high end-to-end latency.

The following studies addressed computation offloading in a heterogeneous net-

work with one cloudlet situated on the MC where computational resources were

allocated. In [59], the UEs’ energy is minimized by optimizing the offloading deci-

sion and the OFDMA discrete RBs’ allocation, considering UEs connected to SCs
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and the MC, while assuming a fixed latency per data unit over the wireless backhaul.

[58, 57, 71, 72, 73] considered a wired backhaul with negligible latency. In [58], the

overall network revenue is maximized while optimizing the allocation of access com-

munication resources as a continuous spectrum. [57] minimized the cost in terms of

latency and energy where the allocation of RBs resources is optimized. [71] presented

a distributed scheme for minimizing the total cost, where the offloading decision and

the allocation of OFDMA RBs, UEs’ transmission power, and computational re-

sources are optimized. [72] and [73] explored the trade-off between UEs’ energy and

latency, where both metrics are jointly minimized by optimizing the UEs’ offloading

decision considering an OFDMA model. [73] in addition, considered the case of a

single SC, and optimized the local UEs’ computation and transmission power.

The following studies addressed computation offloading in a heterogeneous net-

work where cloudlets are also co-located on the SCs. However, they did not address

the option of migrating SC tasks to the MC cloudlet, and therefore did not consider

the backhaul communication for data transfer. [29] minimized the UEs’ latency

with respect to the energy constraint, by optimizing the offloading decision and

the computational resources’ allocation, but without optimizing the UEs’ transmis-

sion power and the allocation of wireless communication resources. [67] explored the

MEC-aware association of UEs to cells with heterogeneous characteristics in the con-

text of computation offloading, and its advantage is shown over communication-only

association. [68] derived a probabilistic model to study the offloading decisions con-

sidering both communication and MEC computation performances and also explored

the minimization of the mean latency. [74] considered a densely deployed small-cells
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where a genetic algorithm is proposed to minimize UEs’ energy by jointly optimizing

the offloading decision, transmission power, and the allocation of computation and

wireless communication resources. [75, 76] did not consider a cloudlet-enabled MC.

[75] studied a stochastic optimization for a network where densely deployed SCs can

offload their incoming tasks to each others in order to minimize the total offloading

latency with respect to the SCs’ energy constraint. [76] used the matching theory to

minimize the total computation overhead in terms of latency and energy in a network

of densely deployed SCs, by optimizing the UEs-to-SC association and offloading de-

cision, transmission power, and the allocation of computation and OFDMA RBs in

a distributed manner.

Related works that considered one MC cloudlet except [59] assumed a wired back-

haul with negligible latency, which is much more costly in practice. [59] on the other

hand, did not optimize the allocation of backhaul communication resources knowing

that only one SC is considered. [59] assumed a fixed backhaul transmission latency

that is proportional to the data size with a scaling factor. Moreover, works that con-

sidered SC cloudlets ignored the possibility of utilizing the MC cloudlet as a backup

for SUEs tasks through backhaul communication. This would incur a sub-optimal

solution in terms of UEs’ energy consumption, as already discussed. However, this

work is the first to explore the possibility of leveraging the MC cloudlet for migrating

SUEs tasks to the MC-cloudlet over a wireless backhaul when SC-cloudlets become

overloaded, in addition to serving the SUEs tasks through the MC cloudlet. Taking

this novel aspect into account and for obtaining a highly efficient solution, we min-

imize the energy consumption of UEs in a MEC-enabled heterogeneous network by
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Figure 3.1: System model.

jointly optimizing the offloading decision, UEs’ transmission power, and the alloca-

tion of computation and wireless communication resources in the RAN and backhaul

while managing the resulting interference.

3.3 System Model

3.3.1 Spatial Model

As depicted in Figure 3.1, we consider a MEC-enabled heterogeneous network that

consists of S single-antenna SCs indexed by S = {1, ..., S}, which coexist within the

coverage of one multi-antenna MC with index 0 where M = {0∪S}. Each SC j ∈ S

has in its coverage a set of U UEs indexed by Uj = {1, ..., U}, while the MC has in

its coverage a set of U0 UEs indexed by U0 = {1, ..., U0}. For ease of presentation,

we denote by F = S+U0 as the number of units transmitting to the MC indexed by
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F = {S;U0}. We do not consider the cloud data center in our model, since all UEs

are assumed to have low-latency requirements.

In the subsequent sections, we consider that the UEs have tasks to compute.

When they offload these tasks, they need to communicate wirelessly. The next

section elaborates the computation model.

3.3.2 Computation Model

Each UE i ∈ Uj in the range of cell j ∈ M has a computational task represented by

the tuple {dij, cij, L̄ij}, concatenating the Task input size dij (Kb), the task computa-

tional density cij (CPU cycles/bit), and the task required latency deadline L̄ij (ms).

Those parameters depend on the nature of the application, and can be estimated

through task profilers [19]. We consider the computational tasks to be recurring,

which means that the system would perform the optimization program and adapt

the resources to serve the recurring offloading requests across a given period of time.

The SCs and MC are equipped with cloudlets for supporting computation with lim-

ited capability, where we consider all SCs to have an associated cloudlet for conve-

nience, noting that our model can be easily adapted to include SCs with no cloudlets.

We consider the data-partitioning model [19], where a given task can be partitioned

into sub-tasks and partially offloaded to multiple cloudlets and computed simulta-

neously, e.g. image/video processing. We assume for simplicity that the granularity

in task partitioning has arbitrary precision, and that no overlap exists between any

two sub-tasks [77]. We denote by sijk ∀k ∈ K = {1, 2, 3} an optimization variable

indicating the percentage of task size dij that will be computed locally (k = 1), on
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the associated SC cloudlet j (k = 2), and on the MC cloudlet (k = 3). In addition,

the following constraints hold:

∑
k∈K

sijk = 1 ∀j ∈ M, i ∈ Uj (3.1a)

si02 = 0 ∀i ∈ U0 (3.1b)

where (3.1a) makes sure the whole task is computed across the three computation

layers, and (3.1b) is to ensure the second sub-task size for MUEs is zero since they

are not associated to a SC. In the next section, we elaborate the communication

model.

3.3.3 Communication Model

We consider the uplink communication used by SUEs and MUEs for computation

offloading in the SCs’ and MC’s RAN, and ignore the downlink communication, such

as in [59, 57], knowing that the task output size is in general much smaller than the

task input size. We consider a wireless backhaul for the communication between the

SCs and MBS. Also, we consider an OFDMA system with assumed perfect CSI [19],

where the wireless radio spectrum is separated into B RBs, indexed by B = {1, ..., B}.

We adopt a split-spectrum approach, i.e. B = {B1;B2}, where B1 is the set of RBs

dedicated for the communication between SUEs and their SCs, and B2 is the set of

RBs dedicated for the communication with the MC, i.e. the backhaul transmission

between the SCs and MC, and the communication between the MUEs and MC.

Next, we discuss the communication between the SUEs and SCs, and between
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the MUEs (and SCs) and the MC, separately.

3.3.3.1 SUEs–SCs Communication

We denote by x = {xijb, ∀j ∈ S, i ∈ Uj, b ∈ B1} a binary decision variable indicating

if RB b is assigned to SUE i for the communication with SC j. When task i is of-

floaded, multiple RBs can be assigned to SUE i for task transmission. We denote by

pijb ≥ 0 as the optimization variable indicating the power allocated for the transmis-

sion from SUE i ∈ U to SC j ∈ S on RB b ∈ B1 in dBm, pb = {pijb, ∀j ∈ S, i ∈ Uj},

p = {pb, ∀b ∈ B1}. hijlb is the channel gain from SUE i to SC l on RB b which

includes fading and path loss components. We assume the UEs’ mobility to be low

during the offloading duration, so hijlb is a constant. Thus, the uplink transmission

rate for SUE i in the range of SC j on RB b rijb(pb) and the achievable rate rij(p)

are defined as

rijb(pb) = log

(
1 +

pijb|hijjb|2∑
l∈S\

∑
k∈Ul

pklb|hkljb|2+N0

)
(3.2a)

rij(p) =
∑
b∈B1

rijb(pb) (3.2b)

respectively, where N0 is the white noise power level. As it can be seen, the inter-cell

interference perceived is caused by the SUEs’ transmissions in the nearby SCs on

the same RB b, knowing that frequency reuse is adopted among SCs to achieve high

spectrum efficiency.

The achievable transmission rate rij(p) for UE i in the range of cell j is used

for uploading the chunks of the task that will be computed on either the SC or
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MC or both. Thus, we denote by rue = {rueijk ≥ 0, ∀j ∈ S, i ∈ Uj, k ∈ {2, 3}}

an optimization variable indicating the fraction of the UE achievable rate that is

assigned for uploading sub-task sijk (k ̸= 1) to the SC cloudlet (k = 2) and to the

MC cloudlet (k = 3). By also denoting P̄ = {P̄ij, ∀j ∈ S, i ∈ Uj} as the maximum

power budget for all SUEs in dBm, the following constraints are imposed to govern

a proper relationship domain of the involved variables:

∑
i∈Uj

xijb ≤ 1 ∀j ∈ S, b ∈ B1 (3.3a)

pijb ≤ xijbP̄ij ∀j ∈ S, i ∈ Uj, b ∈ B1 (3.3b)∑
b∈B1

pijb ≤ P̄ij ∀j ∈ S, i ∈ Uj (3.3c)

rueij1 = 0 ∀j ∈ S, i ∈ Uj (3.3d)∑
k∈K

rueijk ≤ rij(p) ∀j ∈ S, i ∈ Uj (3.3e)

where (3.3a) ensures orthogonal radio resources’ allocation in the SCs RAN incurring

no intra-cell interference, (3.3b) assures no transmission power on an RB that was

not assigned to a given SUE, (3.3c) is for respecting the SUEs’ power threshold,

(3.3d) is to ensure the sub-task assigned for local computation does not receive an

upload rate, and (3.3e) ensures the sum of the partitioned rates on UE i in the range

of SC j respects its achievable rate.
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3.3.3.2 Communication with the MC

Communication with the MC is needed by MUEs to offload their sub-tasks, and

by SCs in case they are migrating sub-tasks from their SUEs. Without loss of

generality, we consider Zero-forcing (ZF) receiver at the multi-antenna MC [78].

Thus, we assume that the number of antennas on the MC, denoted by N , is able

to support simultaneous connections from the transmitting units F on a given RB

b as in [79], i.e. F ≤ N , incurring no interference among these units, noting that

a system with F > N can be studied in the future. By denoting ρib ≥ 0 as the

optimization variable indicating the power allocated for the transmission from MUE

(or SC) i ∈ F to the MC on RB b ∈ B2, ρi = {ρib, ∀b ∈ B2}, and ρ = {ρi, ∀i ∈ F},

the uplink transmission rate for MUE (or SC) i on RB b Rib(ρib) and the achievable

rate Ri(ρi) are defined as

Rib(ρib) = log

(
1 +

ρib
||wib||2N0

)
(3.4a)

Ri(ρi) =
∑
b∈B2

Rib(ρib) (3.4b)

where wib ∈ CN×1 is the ZF receive beamforming row vector obtained from matrix

wb ∈ CF×N , and wb = (hT
b hb)

−1hT
b is the pseudo-inverse of the channel state matrix

hb ∈ CN×F for RB b, which includes fading and path loss components.

This work is innovative for exploring the option of migrating SUE tasks to the

MC cloudlet through the backhaul for decreasing the overall UEs’ energy and latency.

Thus, we make sure to optimize the backhaul communication through: 1) optimizing

the transmission power ρ of the SCs on the RBs, and 2) optimizing the partitioning
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of the achievable rate Ri(ρi) for SC i ∈ F on the migrated tasks through that SC. To

achieve the latter goal, we denote by rsc = {rscij ≥ 0, ∀j ∈ S, i ∈ Uj} an optimization

variable indicating the fraction of the achievable rate on SC j that is assigned for

migrating the chunk of task i to the MC. By denoting ρ̄ = {ρ̄i, ∀i ∈ F} as the

maximum power budget for all MUEs (and SCs) in dBm, the following constraints

are imposed to govern a proper relationship domain of the involved variables:

∑
b∈B2

ρib ≤ ρ̄i ∀i ∈ F (3.5a)

∑
i∈Uj

rscij ≤ Rj(ρj) ∀j ∈ S (3.5b)

where (3.5a) allows respecting the MUEs (and SCs)’ power threshold, and (3.5b)

ensures that the sum of all partitioned rates on SC j does not exceed its achiev-

able rate. Next, we model the latency and energy consumption resulting from the

computation of a task i.

3.3.4 Latency Model

3.3.4.1 Local Computation Latency

We denote by f loc
ij as the local computation capability in cycles/second for UE i

in the range of cell j which can be different from other UEs. The resulting local

computation latency for task i is defined as

Lloc
ij (sij1) =

cijdijsij1
f loc
ij

(3.6)
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which directly depends on the local UE computation capability f loc
ij .

3.3.4.2 Upload Latency

The upload latency for SUE and MUE i ∈ Uj incurred from task transmission to the

associated cell j are given by

Lsue
ijk

(
sijk; r

ue
ijk

)
=
dijsijk
rueijk

∀k ∈ {2, 3} (3.7a)

Lmue
i (si03;ρi) =

di0si03
Ri(ρi)

(3.7b)

respectively, where the upload latency depends on the corresponding transmission

rate, which in turn depends on the allocated power for transmission on the assigned

RBs (and on the resulting inter-cell interference for SUEs). It can be seen in (3.7a)

that having a higher transmission rate (resulting from a higher power and more

assigned RBs) will decrease the upload latency, but this will result in interference

on SUEs located in other cells utilizing the same RBs. Therefore, these values must

be jointly optimized for achieving the best objective. Also in (3.7b), transmission

power on the assigned RBs will be optimized while respecting the power threshold.

In case a chunk of task i (i.e. sub-task sij3) is being migrated from the associated

SC j to the MC through the backhaul, the migration latency in the backhaul which

depends on the SC assigned rate rscij is considered, and is defined as

Lmig
ij

(
sij3; r

sc
ij

)
=
dijsij3
rscij

(3.8)
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We observe that optimizing the partitioned rate rscij is essential for making sure the

end-to-end latency is respected for all tasks that are migrated to the MC cloudlet.

3.3.4.3 Cloudlet Computation Latency

We denote by f sc = {f sc
ij ≥ 0, ∀j ∈ S, i ∈ Uj} and fmc = {fmc

ij ≥ 0, ∀j ∈ M, i ∈ Uj}

the optimization variables indicating the computation power allocated for executing

sub-task sij2 on the SC cloudlet and sub-task sij3 on the MC cloudlet, respectively.

The resulting latency for SC and MC cloudlet computation are given by

Lsc
ij(sij2; f

sc
ij ) =

cijdijsij2
f sc
ij

(3.9a)

Lmc
ij (sij3; f

mc
ij ) =

cijdijsij3
fmc
ij

(3.9b)

respectively. It can be seen that allocating more computational resources for a given

sub-task will decrease its computation latency, but this will limit the available re-

sources for executing other offloaded sub-tasks on the corresponding cloudlet, which

in turn will increase their computation latency. Migrating a chunk of the SUE task to

the MC cloudlet can constitute a great advantage when the SC cloudlet is overloaded.

This is because the MC cloudlet can perform the sub-task computation and further

reduce the chunk of task processed locally, which decreases the energy consumption

while also reducing the latency thanks to the parallelism.
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3.3.4.4 Latency Constraint

Since local computation and offloading are done simultaneously for the chunks of a

task i, the end-to-end latency for the whole task depends on the end-to-end latency

of the sub-task that finishes last. Thus, to respect the UE latency deadline, the

latency of each sub-task must respect the task latency deadline. To achieve this, we

impose the following constraints for task i in the range of cell j:

Lloc
ij (sij1) ≤ L̄ij ∀j ∈ M, i ∈ Uj (3.10a)

Lsue
ij2(sij2; r

ue
ij2) + Lsc

ij(sij2; f
sc
ij ) ≤ L̄ij ∀j ∈ S, i ∈ Uj (3.10b)

Lsue
ij3(sij3; r

ue
ij3) + Lmig

ij (sij3; r
sc
ij ) + Lmc

ij (sij3; f
mc
ij ) ≤ L̄ij

∀j ∈ S, i ∈ Uj (3.10c)

Lmue
i (si03;ρi) + Lmc

i0 (sij3; f
mc
i0 ) ≤ L̄i0 ∀i ∈ U0 (3.10d)

where constraints (3.10a)–(3.10d) make sure the latency deadline is respected when:

a UE sub-task is computed locally (3.10a), an SUE sub-task is offloaded to the SC

cloudlet (3.10b), an SUE sub-task is migrated to the MC cloudlet (3.10c), and an

MUE sub-task is offloaded to the MC cloudlet (3.10d).

3.3.5 Energy Model

Energy consumption for UE i in the range of cell j results from both local computa-

tion and task transmission. We next present both energy models.
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3.3.5.1 Local Computation Energy

The energy resulting from local Computation for UE i in the range of cell j is defined

as

E loc
ij (sij1) = cijdijE

cyc
ij sij1 (3.11)

where Ecyc
ij represents the consumed energy per CPU cycle, which depends on the

UE circuit architecture and can be obtained by the measurement method in [80].

3.3.5.2 Upload Energy

The energy consumption for SUE and MUE i ∈ Uj resulting from task transmission

to cell j depends on the allocated transmission power and the assigned RBs, and is

given by

Esue
ij (sij;p) =

(
∑

b∈B1
pijb)(sij2 + sij3)dij

rij(p)
(3.12a)

Emue
i (si03;ρi) =

(
∑

b∈B2
ρib)si03dij

Ri(ρi)
(3.12b)

respectively.

3.3.6 Problem Formulation

Our objective is to minimize the total energy consumption for all UEs while respect-

ing their latency deadline. This is done by optimizing the offloading decision for

each UE i. In addition, the transmission power, wireless communication resources’

allocation in the RAN and backhaul, and the computational resources’ allocation
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on the host cloudlet are all optimized. We note that another version of the prob-

lem could be to jointly minimize a weighted objective of UEs’ energy and latency.

However, we consider in our model the UEs to have a hard latency constraint that

must be respected in order to meet their required QoS. Hence, lowering the la-

tency past the required threshold would be unnecessary for the NO. By denoting

χ1 = {s,x,p,ρ, rue, rsc,f sc,fmc}, the joint transmission power and computation/-

communication resources’ allocation for computation offloading problem in MEC-

enabled heterogeneous network, denoted as P1, is formulated as

P1 : minχ1

∑
j∈M

∑
i∈Uj

E loc
ij (sij1) +

∑
j∈S

∑
i∈Uj

Esue
ij (sij;p)

+
∑
i∈U0

Emue
i (si03;ρi) (3.13a)

s.t. rueij3 ≤ rscij ∀j ∈ S, i ∈ Uj (3.13b)∑
i∈Uj

f sc
ij ≤ F̄j ∀j ∈ S (3.13c)

∑
j∈M

∑
i∈Uj

fmc
ij ≤ F̄0 (3.13d)

(3.1), (3.3), (3.5), (3.10) (3.13e)

xijb ∈ {0, 1} (3.13f)

sijk, pijb, ρib, r
ue
ijk, r

sc
ij , f

sc
ij , f

mc
ij ≥ 0 (3.13g)

The objective function (3.13a) is minimizing the total energy consumption (in Mj)

for all UEs. Constraint (3.13b) prevents the backhaul from being a bottleneck when

migrating a task to the MC, i.e. the task assigned uplink rate in the backhaul should
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be greater than or equal to its corresponding rate in the SC RAN. This constraint

adds a major significance by ensuring transmission stability in the wireless backhaul.

Constraints (3.13c) and (3.13d) are for respecting the computational resources’ ca-

pacity, denoted by F̄j, on the SCs and MC cloudlet, respectively.

It is worth noting that this problem always has a feasible solution, since all UEs

can compute their whole task locally but with a high energy consumption. Thus,

all UEs will try to offload a chunk of their task to their associated cell cloudlet,

noting that SUEs further have the possibility to migrate a chunk of the task to the

MC cloudlet. In fact, deciding on the optimal communication resources’ allocation

while managing the resulting interference and the balance between the latency and

power allocation while leveraging the MC cloudlet through backhaul communication

for minimizing the energy consumption, is a highly challenging problem that we

proceed to tackle. All mathematical symbols used thus far are summarized in Table

3.1.

It can be seen that the following terms in problem (3.13) are non-convex: the

SC rate function (3.2b) used in constraint (3.3e), the latency functions (3.7) used

in the latency constraints (3.10b)–(3.10d), and the energy functions (3.12) used in

the objective (3.13a). In addition, constraint (3.13f) implies that (3.13) is an integer

optimization problem. In fact, the formulated problem (3.13) is a non-convex MI-

NLP, which is generally difficult to solve.
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Notation Description
S Set of SCs.
M Set of both the SCs and MC.
Uj Set of UEs in the range of cell j.
F Set of units transmitting to the MC.
K Computational nodes (local, SC and MC cloudlet).
B Set of RBs.
B1 Set of RBs allocated for the communication with the SCs.
B2 Set of RBs allocated for the communication with the MC.
dij Task input size (Kb).
cij Task computational density (CPU cycles/bit).
L̄ij Task required latency deadline (ms).
f loc
ij Local computation power (GHz).

Ecyc
ij Energy consumption per computation cycle (Joule).

F̄j Computational capability (GHz).
hijlb Channel gain from SUE i in the range of SC j.
wib ZF receive beamforming vector.
N0 White noise power level.

P̄ij (ρ̄i) Maximum transmission power for SUE i (dBm).
xijb ∈ {0, 1} Indicates if RB b is assigned to SUE i in the range of SC j.
sijk ∈ R+ Percentage of task size dij computed on node k ∈ K.

pijb(ρib) ∈ R+ Transmit power for SUE i on RB m (Watts).
rueijk ∈ R+ Fraction of the UE’s rate for sub-task sijk (Mbps).

rscij ∈ R+ Fraction of the assigned SC’s achievable rate (Mbps).

f sc
ij ∈ R+ Allocated computational resources on the SC cloudlet (GHz).

fmc
ij ∈ R+ Allocated computational resources on the MC cloudlet (GHz).

Table 3.1: Table of Notations

3.4 Proposed Iterative Low-Complexity Algorithm

Due to the high complexity of the proposed non-convex MI-NLP problem, in this

section, we propose to approach a solution of (3.13) with a more pragmatic, efficient,

and low computation complexity algorithm. We first reveal the factors that make

the formulated problem P1 non-convex by separating the convex and non-convex
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constraints. Then, we invoke the framework of SCA to convexify the non-convex

constraints so that the transformed problem results in a series of approximated mixed

integer convex problems.

3.4.1 Convex Approximation

We first note that constraint (3.5b) is recognized as a convex exponential cone due

to the existence of the log function Rib(ρib), and can be easily approximated by

a system of second order cone constraints, similar to the transformation done in

([81], Sec. III). This conversion, in addition to similar conic conversions that will be

subsequently discussed, ensures the resulting problem is a standard Mixed-Integer

Second-Order Cone Program (MI-SOCP), where a modern dedicated solver such as

MOSEK [82] is available to solve the problem efficiently in each iteration.

The underlying issues which make (3.13) a non-convex MI-NLP problem and

hence difficult to solve, are due to the existence of the following non-convex terms:

function rij(p) in (3.3e) which is non-convex with respect to p, the latency functions

in (3.10b)–(3.10d) which are non-convex with respect to their input variables, and

functions Esue
ij (sij;p) and E

mue
i (si03;ρi) in (3.13a) which are non-convex with respect

to sij,p and si03,ρi, respectively.

In the following subsections, we will address the non-convex constraints, where

we invoke the SCA-based framework to approximate (3.13) into a series of approx-

imated MI-SOCP problems. Then, we develop an SCA-based MI-SOCP algorithm

to iteratively solve until convergence.
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3.4.1.1 Proposed approximation of (3.3e)

After some Algebraic manipulation, function rij(p) can be rewritten as follows:

rij(p) =
∑
b∈B1

log


γ̆ijb(pb)︷ ︸︸ ︷∑

l∈S\

∑
k∈Ul

pklb|hkljb|2+N0 + pijb|hijjb|2


︸ ︷︷ ︸

r̆ijb(pb)

− log


γ̂jb(pb)︷ ︸︸ ︷∑

l∈S\

∑
k∈Ul

pklb|hkljb|2+N0


︸ ︷︷ ︸

r̂jb(pb)

(3.14)

In order to resolve the DC form in constraint (3.3e), rij(p) should be made concave.

To handle that task, we are motivated by the inner-approximation method in [63]

to approximate function r̂jb(pb) by its upper-bounded convex function R̂jb(pb;p
(n)
b )

around the point p
(n)
b (at iteration n of the SCA algorithm) as

R̂jb(pb;p
(n)
b ) = r̂jb(p

(n)
b ) +

γ̂jb(pb)− γ̂jb(p
(n)
b )

γ̂jb(p
(n)
b )

(3.15)

By replacing function rij(p) by its approximate, constraint (3.3e) can now be written

as ∑
k∈K

rueijk ≤
∑
b∈B1

(
r̆ijb(pb)− R̂jb(pb;p

(n)
b )
)

(3.16)

which is now convex due to the existence of the log function r̆ijb(pb), and constraint

(3.16) can be easily linearized similar to constraint (3.5b).
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3.4.1.2 Proposed approximation of (3.10b)–(3.10d)

By introducing slack variables θ = {θijk ≥ 0, ∀j ∈ M, i ∈ Uj, k ∈ {2, 3}} and

η = {ηi ≥ 0, ∀i ∈ U0}, constraints (3.10b)–(3.10d) can be equivalently written as

dijθ
2
ij2

rueij2
+
cijdijθ

2
ij2

f sc
ij

≤ L̄ij ∀j ∈ S, i ∈ Uj (3.17a)

dijθ
2
ij3

rueij3
+
dijθ

2
ij3

rscij
+
cijdijθ

2
ij3

fmc
ij

≤ L̄ij

∀j ∈ S, i ∈ Uj (3.17b)

di0θ
2
i03

ηi
+
ci0di0θ

2
i03

fmc
i0

≤ L̄i0 ∀i ∈ U0 (3.17c)

ηi ≤ Ri(ρi) (3.17d)

sijk − θ2ijk ≤ 0 (3.17e)

The equivalence between (3.10b) and (3.17a), (3.17e) is proved in Appendix A.2,

noting that the equivalence between (3.10c), (3.10d) and their corresponding trans-

formations can be similarly proved. Constraints (3.17a)–(3.17d) are convex, where

constraints (3.17a)–(3.17c) can be easily converted to quadratic cones, and constraint

(3.17d) can be easily linearized similar to constraint (3.5b). However, constraint

(3.17e) is non-convex due to the existence of concave function f(θijk) = −(θijk)
2 on

the lesser side of the inequality, causing a DC form. In order to convexify (3.17e), we

apply the inner-approximation method in [63] to approximate f(θijk) by its upper-

bounded convex function f̃(θijk; θ
(n)
ijk ) around the point θ

(n)
ijk (at iteration n of the SCA
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algorithm) as

f̃(θijk; θ
(n)
ijk ) = −(θ

(n)
ijk )

2 − 2θ
(n)
ijk (θijk − θ

(n)
ijk ) (3.18)

By replacing function f(θijk) by its approximate, constraint (3.17e) can now be

written as

sijk + f̃(θijk; θ
(n)
ijk ) ≤ 0 (3.19)

where constraint (3.19) is now linear.

3.4.1.3 Proposed approximation of (3.13a)

By introducing slack variables ζ = {ζij ≥ 0, ∀j ∈ S, i ∈ Uj}, β = {βij ≥ 0, ∀j ∈

S, i ∈ Uj}, α = {αi ≥ 0, ∀i ∈ U0}, constraint (3.13a) can be equivalently written as

∑
j∈M

∑
i∈Uj

E loc
ij (sij1) +

∑
j∈S

∑
i∈Uj

dijβ
2
ij

ζij
+
∑
i∈U0

di0α
2
i

ηi
(3.20a)

ζij ≤
∑
b∈B1

(
r̆ijb(pb)− R̂jb(pb;p

(n)
b )
)

(3.20b)

sij2 + sij3 ≤
β2
ij∑

b∈B1
pijb

(3.20c)

si03 ≤
α2
i∑

b∈B2
ρib

(3.20d)

where (3.20b) is directly converted into its linear form following the approximation

done in (3.16). The equivalence between (3.13a) and (3.20) can be proved similar

to the proof in Appendix A.2. We observe that constraint (3.20a) is convex, where
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(3.20a) can be easily converted to a quadratic cone. On the other hand, constraints

(3.20c) and (3.20d) are non-convex due to the existence of the convex terms β2
ij and

α2
i on the greater-than side of the inequality, rendering the constraints as a DC form.

With a slight abuse of notation x, these functions have the same form and can be

represented by g(x) = x2

y
. To linearize constraints (3.20c) and (3.20d), we proceed to

employ the inner-approximation method to approximate function g(x) by its upper-

bounded convex function g̃(x, y;x(n), y(n)) around the points x(n) and y(n) as

g̃(x, y;x(n), y(n)) =
2x(n)x

y(n)
− (x(n))2

(y(n))2
y (3.21)

By replacing the non-convex functions by their approximates, constraints (3.20c) and

(3.20d) can now be written in their general form as

sij2 + sij3 ≤ g̃

(
βij,

∑
b∈B1

pijb; β
(n)
ij ,

∑
b∈B1

p
(n)
ijb

)
(3.22a)

si03 ≤ g̃

(
αi,
∑
b∈B2

ρib;α
(n)
i ,
∑
b∈B2

ρ
(n)
ib

)
(3.22b)

We remark that constraints (3.22) are now linear.

3.4.2 SOCP Approximation and SCA-based Algorithm

The MI-SOCP approximation of problem (3.13) will still pause scalability limitations,

preventing the SCA algorithm from being applied to big instances due to the mixed-

integer nature of the problem, which is caused by constraint (3.13f). To solve that

problem, we adopt a similar approach to [83], and relax the binary constraint for
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variable x by introducing the following constraints:

0 ≤ xijb ≤ 1 (3.23a)

0 ≤ xijb − h̃(xijb;x
(n)
ijb ) ≤ δijb (3.23b)

where δ = {δijb ≥ 0, ∀j ∈ S, i ∈ Uj, b ∈ B1} is a newly introduced slack variable.

Constraint (3.23b) will force variable x to take a binary value with a penalty term

added to the objective.

By denoting χ = {χ1;θ,η, ζ,β,α} and employing all the conic transformations

and approximations from (3.15), (3.18), and (3.21), an approximated SOCP of the

non-convex MI-NLP problem (3.13), denoted by P̃ (n), can be formulated at the nth

iteration as

P (n)
1 : min

χ1

(3.20a) + A
∑
j∈S

∑
i∈Uj

∑
b∈B1

δijb (3.24a)

s.t. rueij3 ≤ rscij ∀j ∈ S, i ∈ Uj (3.24b)∑
i∈Uj

f sc
ij ≤ F̄j ∀j ∈ S (3.24c)

∑
j∈M

∑
i∈Uj

fmc
ij ≤ F̄0 (3.24d)

(3.1), (3.3a)–(3.3d), (3.5), (3.10a), (3.16),

(3.17a)–(3.17d), (3.19), (3.20b), (3.22), (3.23) (3.24e)

sijk, pijb, ρib, r
ue
ijk, r

sc
ij , f

sc
ij , f

mc
ij ≥ 0 (3.24f)
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where A > 0 is the penalty parameter. The pseudocode for the corresponding SCA-

based algorithm is given in Algorithm 4.

Algorithm 4 SCA-based SOCP Algorithm.

1: Initialize:
2: n = 0;
3: Choose an initial point p(n),ρ(n),θ(n),β(n),α(n);
4: repeat
5: Solve P̃ (n) to obtain the optimal solution at the nth iteration Ω⋆ =

{s⋆,x⋆,p⋆,ρ⋆, r⋆,f sc⋆,fmc⋆,θ⋆,η⋆,
6: ζ⋆,β⋆,α⋆};
7: Update p(n) = p⋆,ρ(n) = ρ⋆,θ(n) = θ⋆,β(n) = β⋆,α(n) = α⋆;
8: n = n+ 1;
9: until Convergence of the objective of P̃ (n).

Our centralized solution would be conducted by a central computation unit (e.g.

located on the MC cloudlet) which would run Algorithm 4 after acquiring the CSI

and the UEs’ configurations through the control plane [19], where the offloading

and transmission power decisions would be eventually signaled back to the UEs. It

is worth noting that our solution can adapt to online scenarios by solving for the

current state of the network when a change in the offloading requests occurs after a

period of time. However, more efficient solutions can be developed to address online

scenarios, which is out of the scope of this work. Also, our results can serve as a

benchmark for other efficient methods, whether they are online or not.

Convergence Analysis : The convergence of Algorithm 4 can be guaranteed by

showing that the series of the objective resulted from Algorithm 4 is monotonically

convergent. Let Γ(n) denote the optimal objective value and Ω(n) denote the optimal

solution set at the nth iteration of Algorithm 4. Due to the convex approximations
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in (3.15), (3.18), and (3.21), the updating rules in Algorithm 4, c.f., Step 7, ensure

that the solution set Ω(n) is a feasible solution to problem P2 at step n + 1. This

subsequently leads to the results of Γ(n+1) ≤ Γ(n), which means that Algorithm 4

generates a non-increasing sequence of objective function values. Due to the la-

tency constraints, the sequence of Γ(n), n = 1, 2, . . . is bounded below and therefore,

Algorithm 4 guarantees that the objective converges.

Complexity Analysis : The overall complexity of Algorithm 4 mainly depends on

that of solving the SOCP problem in (3.24). The constraints in problem (3.24)

approximately consist of a total number of 12SU + 6U0 + 2SUB1 + U0B2 variables

and a number of 25SU+14U0+SB1+4SUB1+U0B2+3S+1 constraints of dimension

SU +U0 + S. Thus, in each iteration, the worst-case complexity of Algorithm 4 can

be written as O(S4U3U2
0B1B2). It can be seen that while providing an approximate

solution on the original problem, Algorithm 4 has a polynomial complexity, which

translates into a good scalability. We note that an overhead is added when computing

the algorithm at the central controller, which needs to happen when a new set of

offloading requests is introduced after a certain time. Those requests will be recurring

for a certain period of time as noted in Subsection 3.3.2.

It is worth noting that in spite of applying the well known SCA method for

Algorithm 4, our contribution in this aspect lies in the non-trivial approximations

and conversions performed to eventually propose the SCA-based algorithm, which

are all customized to match the specific constraints and objective of our problem.
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Parameter Value
RBs for SCs communication B1 5
RBs for MC communication B2 5
RB bandwidth 4 MHz
Task input size dij [60;100] Kb
Task computational density cij [800;1000] CPU cycles/bit
Cloudlet computational capacity F̄j [4;6] GHz
UE power threshold P̄ij 30 dBm
UE latency deadline L̄ij [30;50] ms

Table 3.2: Simulation Parameters

3.5 Numerical Results

In this section, we present numerical results based on various simulations that are

done with MATLAB software on a computer with Intel i7 processor. The default

instance represents a heterogeneous network that consists of a set of S = 3 cloudlet-

enabled SCs connected to an MC, having 2 UEs in the range of each SC and the

MC. The channel gain hijlb follows an exponential distribution with mean 1. Both

the beamforming vector norm ||w||2 and the noise power level are normalized to

1. All remaining system parameters are presented in Table 3.2, noting that we

aim to address a general class of applications without focusing on a particular one.

The convergence criteria of Algorithm 4 is established when ϵ, i.e. the difference of

objective value between Γ(n) and Γ(n+1) of the approximated problem, is ϵ ≤ 10−3.

In Fig. 3.2, we study the convergence behavior of the SCA-based iterative algo-

rithm, where the objective represents the total UEs energy consumption in Mj. It

can be seen that the algorithm starts with a very high objective value, and then the

objective rapidly decreases in a few iterations until convergence where the objective
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Figure 3.2: Convergence behavior for the SCA-based algorithm.

is equal to 114.022 Mj. This convergence behavior can be explained by the fact that

the violation sub-objective starts with a very high value due to the big margin that

exists initially between xijb and x2ijb in (3.23b). Then, the effect of the violation

sub-objective rapidly disappears when the values of xijb become closer to 1 and 0.

After that, the focus is transferred to decreasing the energy sub-objective, which

is done by updating the approximation points in each iteration until the algorithm

convergence. Note that all subsequent results follow a convergence behavior that is

similar to the one shown in Fig. 3.2.

In Fig. 3.3, we show a comparison between the proposed SCA algorithm and

SCA-NBC which is similar to SCA algorithm, but no backhaul communication is

performed for migrating SUEs’ tasks. The objective value is presented as it varies

with the SC cloudlets computational capacity for both cases. We use here the same
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Figure 3.3: Comparison between the SCA and SCA-NBC where task migration to
the MC is disabled

instance where two UEs coexist in the range of each of the three SCs. Three ob-

servations can be made here. First, the objective value decreases almost linearly

with the increase of available computational capacity at the SC cloudlets. Second,

the SCA algorithm always outperforms the SCA-NBC approach. Third, the margin

between the two approaches reduces with the increase in the cloudlets computational

capacity. The first observation is due to the increased availability of the computa-

tional resources. It allows for more task chunks to be offloaded and to be computed

within the same latency bound, and thus decreasing the local computation energy.

Also, lower computational capacity for SCs cloudlets leads to a higher computation

latency for SUEs, forcing the upload latency to be smaller in order to keep up with

the latency bound. This forces SUEs to increase their transmission power in order to

meet that latency. Second, exploiting the wireless backhaul for migrating to the MC

107



cloudlet allows more task chunks to be offloaded from the local device (leveraging

simultaneous sub-tasks transmission and computation) while respecting the latency

deadline. Therefore, the local devices’ energy will be decreased and thus affecting the

total consumed energy. On the other hand, when SUEs’ tasks cannot be migrated to

the MC cloudlet, SUEs in this case are forced to compute their task locally to ensure

the latency deadline is satisfied, but incurring more energy in the process. Third, as

the availability of computational resources on the SC increases, limiting sub-tasks

migration to the MC cloudlet becomes less detrimental, since more resources are

already available for serving the tasks load with a decreased need to leverage the

MC cloudlet. In this figure, we can see an improvement of up to 11.2% by leveraging

the MC cloudlet computation capability for SUE users. It is worth noting that the

improvement can become much more significant when 1) the local UEs’ computation

energy is of a higher magnitude, or when 2) the UEs have a more restricted latency

requirement, since leveraging tasks partitioning and simultaneous transmission to

the SC and MC would increase the chance of respecting the latency deadline while

decreasing the load on the local device.

In Fig. 3.4, we study the variation of the objective value with respect to the

SC cloudlets computation capacity and UEs’ latency bound. Here, we make two

observations. First, increasing the latency bound leads to a lower UEs’ energy con-

sumption. Second, decreasing the capacity of SC cloudlets will incur a higher UEs’

energy consumption. First, increasing the latency bound allows UEs to occupy less

computational resources and thus increasing the resources’ availability on the SC

and MC cloudlets, where more tasks chunks can then be offloaded. Also, this allows
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Figure 3.4: Variation of the objective value with respect to the cloudlets computation
capacity and the UEs latency bound.

decreasing the SUEs’ transmission power in a way that minimizes the overall con-

sumed energy. However, when the latency bound is too low, devices will be more

inclined to compute tasks chunks locally, which will incur a higher energy. On the

other hand, the second observation can be explained similar to the discussion for

Fig. 3.3.

In Fig. 3.5, we compare our SCA-based algorithm with two other approaches:

the Non-Interference (SCA-NI) and the Worst-Case Interference (SCA-WCI). The

SCA-NI considers the case where a given RB is not being used by any other SUE in

the neighboring cells, so the interference on this block will amount to 0. This means

that the obtained solution might be infeasible when considering the real interference,

since the upload latency would increase and might bypass the latency deadline for

some SUEs. On the other hand, SCA-WCI considers the highest possible interference
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Figure 3.5: Comparison between the SCA and the BCI and WCI approaches with
respect to the latency bound.

on each RB, which results from the maximum transmission power over the strongest

channel in each neighboring cell. This means that the obtained solution overestimates

the effect of interference, which would lower the resources utilization and push more

tasks chunks to be computed locally and thus increasing the objective value. Both

SCA-NI and SCA-WCI have lower complexity than the proposed algorithm, which

is due to discarding the effect of inter-cell interference in equation (3.2a) making it

a constant. As it can be seen, the BCI and WCI approaches give lower and upper

bounds, respectively, on our approximate solution with a significant gap. Adopting

the SCA-WCI approach allows the algorithm to have a better performance and scal-

ability, but with a cost of a higher objective and a decreased solution quality. As

it can also be seen, the objective value generally increases when the latency bound

decreases as previously discussed, especially for the SCA-based algorithm. For the
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Figure 3.6: Effect of users density in the SCs on the average energy and offload
strategy.

other relaxed approaches, they are less sensitive to latency bound changes. This is

mainly because the interference amount is identical in both cases, causing the trans-

mission rate to depend only on the signal strength, and hence causing it to change

slightly. On the other hand, in the SCA case the amount of interference will also be

diminished, adding more effect on the transmission rate and hence energy. Also, note

that the change in the objective value will generally be more significant for bigger

instances.

In Fig. 3.6, we study the effect that SC cloudlets capacity and SC users density

have on the average energy and offloading strategy. Fig. 3.6.a shows a significant

increase of the SUE average energy whenever increasing the number of users with the

range of an SC. This is due to the increased competition causing elevated demand

of computation and communication resources, causing SUEs to compute more task
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chunks locally which incurs more energy. Also, the limited amount of resources

increases the upload latency where SUEs have to consume more power to respect

the latency bound, which increases the upload energy. In addition, it can be seen

that limiting the availability of SC computational resources has little or no effect

on the UEs’ average energy consumption. This is because SUEs will be pushed to

utilize the MC cloudlet which by itself does not incur additional upload energy in

case resources are available. We note that limiting or prohibiting the utilization of

the MC cloudlet would incur increased energy consumption for the SUEs as observed

in 3.3. On the other hand, in Fig. 3.6.b, the corresponding offloading strategy is

illustrated for each case, which represents the average strategy among UEs. As it

can be seen, increasing the SUEs’ density withing the SCs pushes SUEs to offload

a fewer percentage of their task (e.g. from around 0.95 to 0.2 in the first case).

This is because of the mentioned increased resources demand that forces SUEs to

compute their task locally in order to respect the latency bound. In addition, it can

be seen that limiting the SC computational resources generally pushes more task

chunks to be computed on the MC cloudlet. As seen in Fig. 3.6.a, this does not have

a significant effect on the average SUE energy consumption, but the change in the

offloading strategy can be noticeable in this case, which indicates the advantage of

utilizing the MC cloudlet through the wireless backhaul when resources are available

there.

In Fig. 3.7, we study the scalability and performance of our SCA algorithm along

with the two other SCA-NI and SCA-WCI simplified approaches. As can be seen in

Fig. 3.7.a, the objective value clearly increases in the three approaches whenever the
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Figure 3.7: Variation of the objective and algorithm running time with respect to
the number of UEs.

number of UEs goes up. This is because more UEs have to compute their task and

hence will consume energy, which results from either local device execution or from

uploading the task to the associated SC through the access network. It can be seen

that the variation of the objective value with respect to the number of UEs is close to

linear. Also, the SCA-NI and SCA-WCI always give lower and upper bounds on the

SCA solution, which is explained in Fig. 3.5. On the other hand, in Fig. 3.7.b, we

study the performance of the three approaches while varying the number of UEs. It

can be seen that the running time almost increases linearly with the number of UEs,

which is due to the polynomial complexity of the SCA algorithm that is previously

explained. However, the performance advantage of both SCA-NI and SCA-WCI can

be clearly seen in that figure, where the running time is much lower than in that of

the SCA-based algorithm. This is because both approaches are simplified versions
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Figure 3.8: Comparison between the SCA algorithm and other simplified approaches.

that ignore the complexity of the interference aspect while computing the uplink

rate. However, Fig. 3.7.a shows that utilizing SCA-WCI leads to a much worse

solution. This is due to assuming the interference resulting from the highest possible

power on the RB with the strongest channel in each SC. We note that the solution

from the SCA-WCI approach can be evaluated within problem 3.24 which leads to

a closer upper bound, noting that the solution from the SCA-NI might be infeasible

for 3.24 as already discussed. We note that the NOs have to consider increasing SC

cloudlets’ capacity in order to accommodate the increased number of UEs’ requests

and help in decreasing the UEs energy.

In Fig. 3.8, we compare our SCA-based algorithm with two other approaches,

namely SCA-fixp, where the transmission power for the UEs is fixed to 23 dBm,

and SCA-eqr, where the SUEs’ uplink transmission rate is divided equally among

the tasks being offloaded to the SC cloudlet (i.e. rueij2), and the tasks being offloaded
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Figure 3.9: Variation of the algorithm running time with respect to the number of
macro-cell users.

to the MC cloudlet ((i.e. rueij3)). The comparison is done while varying the number

of UEs in the network. As it can be seen, the SCA-based algorithm, including all

the optimization parameters, leads to the best solution in all cases. On the other

hand, SCA-fixp leads to a worse solution since the transmission power is not being

optimized, and SCA-eqr also incurs an inferior solution since the UEs’ uplink rate

is not optimally partitioning for each of the data chunks being sent to the SC and

MC cloudlet. This shows the importance of optimizing the mentioned optimization

parameters in the problem, along with the allocation of computation and commu-

nication resources which must be optimized in order to obtain the best solution for

the low-complexity SCA-based algorithm.

In Fig. 3.9, we study the algorithm scalability specifically by examining the

runtime as it varies with respect to the number of MUEs. This is done while using
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another instance with parameters matching the ones in Table 3.2. As it can be

seen, there is a small difference in the running time when having a small number

of MUEs. For bigger numbers, the increase in the running time with respect to the

number of MUEs is almost linear. This means that the algorithm runtime increases

almost linearly with respect to the addition of more and more number of MUEs,

which reflects the polynomial complexity of the algorithm.

3.6 Conclusion

In this chapter, we studied the computation offloading problem in a MEC-enabled

heterogeneous network, where we optimized the computation and wireless commu-

nication resources’ allocation in the RAN and backhaul, considering SCs that can

migrate SUEs’ tasks for computation on the MC cloudlet through a wireless back-

haul. Our objective was to minimize the total UEs’ energy consumption resulting

from local computation and computational tasks’ transmission while respecting the

UEs’ latency deadline. We presented a low-complexity SCA-based algorithm for pro-

viding an approximate solution on the original non-convex problem, while achieving

a high scalability. Through numerical results, we demonstrated the efficiency and

superiority of our solution, and performed multiple simulations following different

scenarios.
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Chapter 4

Latency and Reliability Aware

Computation Offloading via

UAV-mounted Cloudlets in IoT

Networks
1

The rigidity of MEC and its susceptibility to infrastructure failure and weak wire-

less signals would prevent from effectively provisioning computation offloading with

strict latency and reliability requirements. UAVs have been proposed for providing

a flexible edge computing capability through UAV-mounted cloudlets, harnessing

their unique advantages such as mobility, low-cost, and line-of-sight communication.

1This chapter has been published in IEEE Transactions on Communications [84].
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However, UAV-mounted cloudlets may have failure rates that would impact mission-

critical applications, necessitating a novel study for the provisioned reliability consid-

ering the UAV nodes’ failure rate and tasks redundancy. In this work, we investigate

the novel problem of UAV-aided latency and reliability aware computation offload-

ing, which would enable modern IoT services with their strict requirements. We aim

at maximizing the rate of served requests, by optimizing the UAVs’ positions, the

offloading decisions, and the allocated resources, while respecting the stringent la-

tency and reliability requirements. To do so, the problem is divided into two phases;

the first being a planning problem for optimizing the long-term placement of UAVs,

and the second an operational problem to make optimized offloading and resource

allocation decisions with constrained UAVs’ energy. We formulate both problems as-

sociated with each phase as non-convex MI-NLPs, and due to their non-convexity, we

propose a two-stage approximate algorithm where the two problems are transformed

into approximate convex programs. Further, we approach the problem considering

the task partitioning model which will be prevalent in 5G networks. Through nu-

merical analysis, we demonstrate the efficiency of our solution considering various

scenarios, and compare it to other baseline approaches.

4.1 Introduction

Despite the advantages brought by MEC which has been considered excessively in

the literature for various problems seeing its efficiency in provisioning low-latency

computation offloading, MEC has limitations which makes it difficult to cater for

118



the flexibility and reliability required by emerging services and use cases in various

scenarios. Take for instance an automated factory where custom operations with

real-time sensing and objects identification need to be spontaneously carried out by

CPSs at some periods. A scenario where an unexpected increase in the number of user

devices could occur. A system of cameras/sensors in a smart city that are installed

for performing traffic coordination. A scenario with a CN characterized by network

irregularities and intermittent or no connectivity, such as in the situations of disaster

and emergency. An under-served area such as a rural or developing region where a

dense network infrastructure is not provisioned for various costs reasons [85]. Or a

network with weak wireless signals in the RAN caused by obstacles and high network

load. In those situations, a ground MEC would be rigid, over-provisioned, affected

by weak channels, and unable to scale and adapt to the dynamic and spontaneously

changing environment.

Leveraging the advantages of UAVs which have already been studied as aerial-

BSs in cellular networks, UAV-mounted cloudlets have been proposed for providing

efficient edge computing for IoT services with stringent latency and reliability re-

quirements [86, 87]. The motivation for using UAV-mounted cloudlets is their var-

ious advantages over terrestrial cloudlets in terms of low-cost, mobility, flexibility,

scalability, and adaptive altitude [7, 13]. UAVs can be deployed on-demand for a

specific duration when needed, in addition to having a higher probability of LoS

communication, which increases the transmission rates [88]. Therefore, in 5G net-

works and beyond, it will be common to dispatch a set of UAV-mounted cloudlets

for providing offloading services with stringent requirements, such as in the case of
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emergency operations [89].

However, enabling MEC via UAV-mounted cloudlets is coupled with challenges

such as the UAVs’ placement difficulty, and limited resources and battery level, al-

though several studies have addressed UAV-aided computation offloading problems

where the UAVs’ positions, offloading decisions, and resources allocation were opti-

mized [90, 91]. Still, since UAVs need to support mission-critical applications where

unexpected disturbances must be minimized or completely prevented, their suscepti-

bility to node failure which will impact the computation reliability for the provided

services must be taken into account [17]. Thus, a new measure for the reliability

taking UAVs’ failure rate must be considered, where redundancy can be exploited by

computing the offloaded tasks on multiple nodes in parallel [92, 93, 10]. In this case,

however, multiple challenges arise when it comes to the complexity of the computa-

tion and communication aspects and that of the UAVs’ positioning, while considering

the variations in the incoming requests and avoiding resources over-provisioning.

In this chapter, we investigate a novel UAV-aided latency and reliability aware

computation offloading problem considering tasks redundancy and UAV failure rates

for avoiding service disruptions and enabling services with stringent latency and reli-

ability requirements for mission-critical applications in IoT networks. Our proposed

problem is divided into two phases: a planning problem is first proposed for opti-

mizing the UAVs’ positions considering the long-term computation offloading where

the task arrival is modeled using a Poisson process. Then, a second problem is pro-

posed for the offloading and resources allocation decisions which are optimized for

responding to the specific task requests present in the particular time slot where the
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problem is being solved. Our solution aims at maximizing the rate of served IoT

incoming offloading requests, while guaranteeing the tasks’ required latency and re-

liability, and respecting the UAVs’ available energy levels, by optimizing the UAVs’

positions, the UEs-to-UAV association, and the allocated computation and commu-

nication resources considering both LoS and non-LoS components.

4.1.1 Novel Contributions

The contributions of this chapter can be summarized as follows:

1. We model the two problems and mathematically formulate them as non-convex

MI-NLPs.

2. Due to the non-convexity of the proposed problems, we perform customized

conversions to transform them into approximate SOCPs. We then propose an

efficient customized algorithm for solving the overall problem based on the SCA

method [41], which provides an approximate solution by iteratively solving until

convergence.

3. We study the offloading problem considering the task partitioning model, where

a task can be subdivided and computed in parallel on multiple nodes, which

will be a prevalent model in 5G networks [19].

4. We demonstrate the effectiveness of our proposed solution through numerical

results, and study the achieved gains for different use cases.

The remainder of this chapter is structured as follows. Section 4.2 presents the

related work. Section 4.3 presents an illustrative example for our problem. Section
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4.4 presents our system model and mathematically formulate the two non-convex

problems. In Section 4.5, we propose a simplified solution approach and transform

the non-convex problems into a more tractable form, where we present the iterative

SCA-based algorithm. Section 4.6 presents the offloading problem adapted to the

task partitioning model. Section 4.7 contains the numerical results for our proposed

solution. Finally, section 4.8 concludes the chapter.

4.2 Literature Review

The following papers studied latency and reliability problems in the MEC compu-

tation offloading context. The authors in [94] studied the reliability problem for

enabling industrial control processes through MEC, where different nodes and com-

munication failure scenarios are considered, and a low-complexity algorithm was pro-

posed for minimizing the operational costs. [47] minimized the servers’ transmission

power using a Lyapunov stochastic optimization technique, by studying the latency

and reliability efficiency in a MEC system with a set of users communicating with

ground servers. The authors in [95] studied the reliability in distributed edge clouds

where a reliability indicator is introduced for each edge node, and computational

tasks are then replicated to specific computing nodes. [77] studied the trade-off be-

tween latency and reliability in a MEC system, where the end-to-end latency and

the failure probability of computation offloading is minimized while considering the

transmission reliability resulting from the bit error rate, where task partitioning

is also considered. The heuristic search, reformulation linearization technique, and
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semi-definite relaxation approaches were used to solve the obtained non-convex prob-

lem. [92] optimized the placement of VNFs for minimizing the intra-communication

latencies between them, where redundant computation paths were used for guaran-

teeing the services’ reliability requirements. [96, 97] used a task allocation strategy

to enhance the system reliability. While the authors in [96] utilized a solution ap-

proach that combines the power of the simulated annealing, genetic algorithm, with

a fast problem specific local search heuristic algorithm, [97] addressed their difficult

problem using the hybrid particle swarm optimization algorithm.

The following are papers that tackled important problems in the context of UAV-

aided MEC computation offloading. [98] studied the deployment of one UAV for

serving the computation offloading requests for a network of ground users. There,

the UAV trajectory, the users’ transmission power, and the computational resource

allocation were optimized using an SCA-based algorithm that is used to solve the

complex problem. In [99], the authors studied the use of a UAV-mounted cloudlet for

supporting the ground MEC system in providing computation offloading service for

stationary IoT devices, where the tasks latency and UAV’s energy were minimized.

This would be useful in scenarios where ground MEC servers could be sparse or the

amount of requests could be very high. In [100], the authors studied the latency

and energy performance of a UAV-aided edge/fog computing framework in a smart

IoT community environment where a set of UAVs are used for providing augmented

reality service for a set of ground users and IoT devices. There, the 3D placement

and trajectory of two types of UAVs in addition to the devices’ transmission power
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were optimized. [101] studied the computation offloading problem to a set of UAV-

mounted cloudlets where a low-complexity algorithm is proposed for minimizing the

sum power of users and UAVs by optimizing the users’ association, the resources’

allocation, and UAVs’ positioning. [90] minimized the devices’ energy consumption

by jointly optimizing the bit allocation and the UAVs’ trajectory while guarantee-

ing the users’ QoS requirements. [91] studied the computation rate maximization

problem for a UAV-aided MEC wireless powered system while respecting the energy

harvesting and the UAVs’ speed constraints. Very few papers addressing UAV-aided

computation offloading problems have considered both latency and reliability as-

pects. Furthermore, none have taken the UAV failure as a reliability measure for

enabling services with stringent requirements where task redundancy is performed.

The authors in [98, 99, 90] utilized the SCA approach to provide an efficient solu-

tion for their non-convex problem. The authors in [101] proposed a fuzzy c-means

clustering-based algorithm to solve their 3 sub-problems iteratively. The authors in

[91] proposed a two-stage algorithm and a three-stage alternative algorithm in order

to solve their non-convex problem.

In our previous work [102], we provided a first and rather simplistic attempt to

guarantee the latency and reliability of the offloaded tasks to a UAV-aided MEC

system. Our previous work overlooked the long-term consideration of computation

offloading and considered solving for one state of the tasks’ requests. Further, we

did not account for the non-LoS scenarios which limits the scope of the problem, and

also did not consider the energy limitation of the UAVs. In this work, we extend the

previous work by considering more realistic scenarios that comply with the modern
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5G services in IoT networks. First, we propose a planning problem where the UAVs’

positions are optimized considering the long-term knowledge of the average arrival

of tasks. Then, a separate problem is solved for the offloading and resource alloca-

tion decisions with UAVs energy constraints, which targets the specific requests data

in the particular time slot. Second, we place the UAVs considering both LoS and

non-LoS components. Third, we account for multiple scenarios in which IoT devices

can opt to fully or partially offload their tasks. We also explore the trade-off be-

tween latency and reliability, and between reliability and resource utilization in the

studied system. The extension in this work would contribute towards enabling mod-

ern services with stringent latency and reliability requirements for mission-critical

applications in IoT networks with no service disruptions.

4.3 Problem Description

We describe the problem of UAV-aided latency and reliability aware computation

offloading in Fig. 4.1, with two IoT devices UE1 and UE2 that are requesting to

offload their tasks T1 and T2 to two UAV-mounted cloudlets U1 and U2. The values

for the computation capability F (GHz), reliability R, latency L (ms), are indicated

in the figure. The task-to-UAV assignments are represented by two numbers denoting

the allocated computational resources (GHz), and wireless bandwidth (MHz). The

achieved latency is equal to the sum of upload and computation latencies, while the

achieved reliability is equal to the reliability of the UAV where the task is offloaded.

In part (a), each task is assigned to the UAV having the better wireless channel
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UE1

(L:3,R:0.99)

UE2

(L:8,R:0.9998)

(10,6)(5,6)

U1

(F:5,R:0.99)

U2

(F:10,R:0.98)

✔✔ ✔ ✖

(a) Simple o�oading

UE1 UE2

(10,2)(3,8)

U1 U2

✔✔ ✔

(c) Radio bandwidth 

control

✔

(2,2)

UE1 UE2

(5,3)
(5,6)

U1 U2

✔ ✔✖

(b) Redundant o�oading

(5,3)

✔

UE1 UE2

(10,3)(3,6)

U1 U2

✔✔ ✔

(d) UAV posioning 

control

✔

(2,3)

Figure 4.1: Illustrative example.

and is consuming their available computational resources while respecting the UAVs’

energy limit, and the wireless bandwidth is equally divided among both tasks with

6 MHz each. While T2 cannot be admitted due to is reliability not being guaran-

teed with U2 (0.98 < 0.9998), T1’s reliability is met with U1 (0.99 = 0.99). In part

(b), redundancy is exploited by computing T2 on both UAVs in parallel, where the

achieved reliability for T2 becomes 1 − (1 − RU1)(1 − RU2) = 0.9998. To also meet

T2’s latency when offloading to U1, T2 has to consume 3 GHz from U1. This however

decreases the computational resources available for T1 on U1 which increases T1’s
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computation latency, preventing its admissibility. Hence, T1 is offloaded instead to

U2 which has more computational capacity that can meet its latency requirement.

However, U2’s reliability is not enough for guaranteeing the reliability of T1, and

hence T1 still cannot be admitted. In part (c), T1 is associated back to U1 where the

transmission latency for T1 is lowered by increasing the allocated wireless communi-

cation bandwidth from 6 to 8 MHz. This change would meet the latency requirement

of T1 which allows its admission. However, this decreases the available bandwidth

for T2 where we assume T2’s latency requirement is still respected. In part (d), we

exploit the UAVs’ positioning where U1’s position is adjusted to enhance the wireless

channel of T1 for decreasing its transmission latency by increasing its transmission

rate, assuming T2’s latency is still guaranteed. Thus, the tasks’ association, their al-

located resources, and the UAVs’ positioning, are decisions that influence the number

of admitted tasks, so they must be optimized to maximize the system efficiency while

preventing resource over-provisioning.

4.4 System Model

4.4.1 Spatial Model

As illustrated in Fig. 4.2, we consider a system where a set of N IoT devices de-

noted by N = {1, 2, ..., N} are provisioning their service by recurrently generating

computation offloading requests across time T to a set ofM UAV-mounted cloudlets

denoted by M = {1, 2, ...,M}. We assume that each UAV-mounted cloudlet can

be modeled as a server, where the arrival of tasks from IoT device i to this server
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...

UE 1 UE NUE 2 UE 3

Cloudlet

UAV 1 UAV 2 UAV M

...

Figure 4.2: System model.

follows a Poisson process with arrival rate λi. Each task of UE i is represented

by a tuple {di, ci, L̄i, R̄i}, concatenating the task input size di (Kb), computational

demand density ci (CPU cycles/bit), required latency L̄i (ms), and required relia-

bility R̄i. We denote by oij a binary decision variable indicating if UE i’s task is

offloaded to UAV j, where tasks of UE i can be offloaded to multiple UAVs in par-

allel for meeting their required reliability. We adopt a three-dimensional Cartesian

coordinate system measured in meters, where a UE i is located in the xy-plane at

position p̄i = (x̄i, ȳi, 0). In addition, the position of each UAV j is optimized as

pj = (xj, yj, H) where H is a constant representing the UAV height.

Ground UEs need the GtA channel for offloading their tasks to the UAV cloudlets.

Let hij(θij) denote the GtA channel power gain between UE i to UAV j. hij(θij) is
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composed of both LoS and non-LoS links [88, 103], and can be defined as:

hij(pj, θij) = PLoSij(pj)θijg0 + (1− PLoSij(pj))θijg0κ

= P̂LoSij(pj)θijg0

(4.1)

where g0 is the path loss at a reference distance of 1 meter, and κ < 1 is the

non-LoS additional attenuation factor. PLoSij(pj) denotes the LoS probability and

P̂LoSij(pj) = PLoSij(pj) + (1 − PLoSij(pj))κ can be interpreted as a regularized LoS

probability by taking into account the effect of non-LoS occurrence with the addi-

tional attenuation factor κ. θij represents the path-loss coefficient calculated as:

θij =
(√

H2 + ||pj − p̄i||2
)−2

(4.2)

Also, PLoSij(pj) depends on the environment and the elevation angle between the

UAV and the UE and is calculated as [88]:

PLoSij(pj) =
1

1 + a exp
(
−b
(
arctan

(
H

||pj−p̄i||

)
− a
)) (4.3)

where (a, b) are environment-dependent, e.g. equal to (9.61, 0.16) in urban environ-

ments [104].
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4.4.2 Communication Model

We assume the wireless radio spectrum is shared among all UAVs and GtA commu-

nications, with a bandwidth of B MHz. We do not consider the downlink commu-

nication, since the task output size is in general much smaller than the task input

size [57]. We denote by bij a decision variable indicating the portion of the bandwidth

allocated to UE i for communicating with UAV j. Thus, the achievable transmission

rate in Mbps is expressed as:

Rij(pj, θij, bij) = bijB log2

(
1 +

Pijhij(pj, θij)

bijBN0

)
(4.4)

where Pij is the transmission power from UE i to UAV j, and N0 is the noise power

spectral density.

4.4.3 Latency and Reliability Models

Thus, the upload latency from UE i to UAV cloudlet j which depends on the UAV

position pj and the assigned wireless communication resources bij, can be computed

as follows:

Lu
ij(pj, θij, bij) =

di
Rij(pj, θij, bij)

(4.5)

We consider the node reliability associated with the failure probability of each

UAV cloudlet j [94, 95], where the server node failures are mainly caused by either

software failures or hardware failures such as hard disk, memory and RAID controller

failures [105, 106]. We denote by ϕj as the reliability indicator for UAV cloudlet j,
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which can be obtained after estimating the occurrence probability of failure scenar-

ios through statistical means based on the cloudlets’ historical failure pattern and

maintenance records, such as data indicating the mean time between failures and

the mean time to repair for each node [107, 108]. This is in fact identical to how the

failure probabilities are usually computed for server nodes in cloud data centers [109].

For guaranteeing the tasks’ reliability, redundancies are performed where the task

can be computed on multiple cloudlets in parallel. The achieved reliability for task

i ∈ N is given by:

Φi(oi) = 1−
∏
j∈M

(1− oijϕj) (4.6)

Our approach to solve the proposed problem is divided into two parts. First, we

solve a planning problem for optimizing the stationary positioning of UAVs across

the offloading duration. This planning decision will be informed and guided by the

long-term knowledge of the average units for the tasks’ arrival and computation

request. Then, we solve a second problem for optimizing the offloading and resource

allocation decisions in a given time slot considering the UAVs’ energy limit, where

the optimized decisions are tailored for the specific UE requests at that particular

time slot. Thus, in the following subsection, we propose to decouple the design of

UAVs’ location p, θ from the remaining variables. Then, after determining the long-

term UAVs’ positions, another problem is solved to optimize the other variables in

a given time slot based on the accurate P̂LoSij(pj).
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4.4.4 UAV-aided MEC Planning Problem

In this subsection, we first formulate the UAV-aided MEC planning problem, where

the UAVs’ position is optimized along with the other variables.

It is observed that Rij(pj, θij, bij) in (4.5) depends on the UAV position pj not

only via the UAV-UE distance θij, but also via the regularized LoS probability

P̂LoSij(pj). This makes Rij(pj, θij, bij) intractable for optimizing the UAVs’ position.

Thus, we denote by h̃ij(θij) = θijg0 the GtA channel gain between UE i and UAV j

based on the FSPL model where PLoSij(pj) = 1. Then, the achievable transmission

rate from UE i to UAV j based on the FSPL model, is expressed as

R̃ij(θij, bij) = bijB log2

(
1 +

Pijh̃ij(θij)

bijBN0

)
(4.7)

Then, the upload latency from UE i to UAV cloudlet j is updated as follows:

L̃u
ij(θij, bij) =

di

R̃ij(θij, bij)
(4.8)

Because the UAVs’ optimized positions are static throughout the offloading du-

ration, we consider the average quantities for the tasks’ arrival and size. Thus, we

consider each UAV-mounted cloudlet carrying the computation service to be modeled

as an M/M/1 queue, where the computation latency on cloudlet j is given by:

L̃c
j(o,α) =

1
Fj

c̄
−
∑

i∈N oijαiλi
(4.9)

where the service follows an exponential distribution with service rate of
Fj

c̄
, and
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c̄ =
∑

i∈N λici
λiN

is the average task computational demand that is normalized to the

tasks’ arrival rate λi.

We aim at maximizing the rate of admitted tasks load, while respecting the tasks’

required latency and reliability, by optimizing the UAVs’ static position p,θ jointly

with the variables Õ, B̃. By denoting αi as the portion of admitted load for each

UE i ∈ N , the UAV-aided latency and reliability aware MEC planning problem P1a

is formulated as:

P1a : max
p,θ,α,

Õ,B̃

∑
i∈N

αiλi (4.10a)

s.t. θ−1
ij ≥ (xj − x̄i)

2 + (yj − ȳi)
2 +H2, ∀{i, j} ∈ {N ,M} (4.10b)

Φi(oi) ≥ R̄i, ∀i ∈ N (4.10c)

oij

(
L̃u
ij(θij, bij) + L̃c

j(o,α)
)
≤ L̄i, ∀i ∈ N (4.10d)

Fj

c̄
≥
∑
i∈N

oijαiλi, ∀j ∈ M (4.10e)

∑
j∈M

oij ≥ 1, ∀i ∈ N (4.10f)

∑
j∈M

∑
i∈N

bij ≤ 1 (4.10g)

pj, θij, bij ≥ 0, oij ∈ {0, 1} (4.10h)

where (4.10a) maximizes the admitted tasks load. (4.10b) is the relaxed version

of (4.2), knowing that (4.10b) becomes equality at optimality. Constraint (4.10c)

guarantees the tasks’ reliability requirement, and along with the objective will guar-

antee ”just enough” reliability so that resources can be allocated for other tasks.
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Constraint (4.10d) guarantees the total latency of each offloaded task replica (com-

posed of both the upload and computation latencies) must respect the task latency

deadline. Here, the task completion latency will depend on the latency of the last

completed task replica. Constraint (4.10e) is the UAV cloudlets’ queue stability

constraint. Constraint (4.10f) makes sure a task load is offloaded to at least one

cloudlet. Constraint (4.10g) makes sure the wireless radio bandwidth B is respected,

and constraint (4.10h) is for the integrality and non-negative conditions.

It is observed that solving (4.10) is very difficult due to its non-convex nature

that is caused by the existence of the non-convex non-concave terms: constraint

(4.10b) which is non-convex with respect to θij, constraint (4.10c) which is non-

convex with respect to oi, and constraint (4.10d) which is non-convex with respect

to θij, bij. Also, the binary-related constraints in (4.10h) increase the complexity of

(4.10) more. Here, the purpose of variables Õ, B̃ is to be jointly solved with p, θ.

After solving problem (4.10) and obtaining the solution p⋆,θ⋆, the UAVs will move

to the locations corresponding to p⋆, where the real associated P̂LoSij(pj) can be

obtained.

4.4.5 UAV-aided MEC Offloading and Resources Allocation

Problem

After the position of the UAVs is optimized in the planning phase, we present in this

subsection the UAV-aided MEC offloading and resources allocation problem, where

the variables o,a,f , b will be optimized for the purpose of maximizing the admission

rate of the offloading requests that are specific for the given time slots. Then, the
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problem can be solved in subsequent time slots upon a change in the state of the

corresponding computation offloading requests.

We denote by ai a binary decision variable indicating if UE i’s task is admitted

in the network. When oij = 1, a portion fij ≥ 0 of UAV cloudlet j’s computational

resources Fj (GHz) is allocated for computing UE i’s task. Thus, the computation

latency for UE i’s task on cloudlet j depends on the allocated portion fijFj of the

computational capacity, and is given by:

Lc
ij(fij) =

dici
fijFj

(4.11)

There has been advances in the UAV battery performance and the energy replen-

ishment techniques providing energy support and allowing the UAVs to fly for long

periods [110, 111, 112, 113, 114]. However, there are still situations where the UAVs’

flying and operational time is limited by their available onboard battery, which has

been considered in existing studies. For instance, the authors in [115] imposed a

limit on the traveling distance for the UAV due to the energy limitations where the

collected scores are maximized, while in [116] the requests for UAVs’ cached content

were restricted by their available battery level, where each content request reduces

the battery level by a specific amount.

Thus, in this work, we consider an energy limit of Ēj (Joule) for each UAV

j ∈ M, which is assumed for tractability purposes, and is available for the UAV to

conduct their service at the particular offloading period. Also, we note that Ēj can

be selected by the operator, such as the energy of UAV j is saved for subsequent

offloading periods in case the UEs’ request load is expected to rise. In our model, we
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consider the energy consumption of each UAV j to be primarily influenced by the

computation energy of the offloaded tasks on its cloudlet, noting that the hovering

energy is ignored for the sake of simplicity since it is considered to be constant. The

computation energy consumption of UAV j is defined as [117]:

Ej(f j) =
∑
i∈N

γjdici(Fjfij)
2 (4.12)

where γj is the effective switched capacitance of the CPU, which is determined by

the CPU hardware architecture. We note in equation (4.12) that the energy resulting

from computing each task i on UAV cloudlet j is the product of the power γj(Fjfij)
3

and the time dici/Fjfij. In addition, fij is enough in (4.12) to indicate if task i is

computed on UAV cloudlet j since otherwise zero resources fij = 0 will be allocated

by the optimizer in that case.

At this point, for every collection of tasks requests in a given time slot, we proceed
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to solve for the variables o,a,f , b through the following problem:

P1b : max
o,a,f ,b

∑
i∈N

ai (4.13a)

s.t. Φi(oi) ≥ aiR̄i, ∀i ∈ N (4.13b)

oij
(
Lu
ij(p

⋆
j , θ

⋆
ij, bij) + Lc

ij(fij)
)
≤ L̄i, ∀i ∈ N (4.13c)

oij ≤ ai, ∀{i, j} ∈ {N ,M} (4.13d)

ai ≤
∑
j∈M

oij, ∀i ∈ N (4.13e)

∑
i∈N

fij ≤ 1, ∀j ∈ M (4.13f)

∑
j∈M

∑
i∈N

bij ≤ 1 (4.13g)

Ej(f j) ≤ Ēj, ∀j ∈ M (4.13h)

fij, bij ≥ 0, oij, ai ∈ {0, 1} (4.13i)

where (4.13a) maximizes the rate of admitted tasks. Constraint (4.13b) guarantees

the tasks’ reliability requirement, where the RHS enforces the constraint only on

admitted tasks. Constraint (4.13c) guarantees the total latency of each offloaded

task replica must respect the task latency deadline. Constraint (4.13d) ensures a

non-admitted task cannot be offloaded, and constraint (4.13e) ensures admitting a

task that is offloaded to at least one UAV. Constraint (4.13f) respects the compu-

tational capacity of all UAV-mounted cloudlets. Constraint (4.13g) makes sure the

wireless radio bandwidth B is respected, constraint (4.13h) respects the UAVs’ avail-

able energy, and constraint (4.13i) is for the integrality and non-negative conditions.
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It is worth noting that assigning continuous values for fij and bij (between 0 and 1),

is considered a very safe assumption, because fijFj and bijB return the amount of

allocated cycles in Gigahertz, and the amount of allocated bandwidth in MHz, re-

spectively. Thus, the integer values for the allocated number of cycles and number of

hertz can be then obtained. All mathematical symbols used thus far are summarized

in Table 4.1.

Similar to (4.10), problem (4.13) is non-convex due to the existence of the non-

convex constraints (4.13b) and (4.13c). We note that constraint (4.13h) is convex and

can be easily converted to a quadratic cone for more tractability. Problems (4.10)

and (4.13) are non-convex and have binary constraints, which makes them general

non-convex MI-NLP and hence very difficult to solve. Finding an optimal solution

for (4.10) and (4.13) often requires a high-complexity exhaustive search algorithm,

which is impractical. Thus, we present in the next section a low-complexity algorithm

for solving (4.10) and (4.13) sequentially that attains a sub-optimal solution within

a polynomial time.

4.5 Proposed Iterative Low-Complexity Algorithm

In this section, we transform the non-convex problems (4.10) and (4.13) into more

tractable approximate forms, and propose an SCA-based iterative algorithm which

provides a low-complexity approximate solution for the overall problem.
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Notation Description
N Set of UEs
M Set of UAVs
λi Requests arrival rate for UE i (tasks/second)
di Task input size (Kb)
ci Task computational density (CPU cycles/bit)
L̄i Task latency deadline (ms)
R̄i Task reliability requirement

p̄i = (x̄i, ȳi, 0) UE i’s position
Fj UAV computational capacity (GHz)
ϕj UAV cloudlet reliability
g0 Path loss at a reference distance of 1 meter
κ Additional attenuation factor due to the non-LoS condition
Pij Transmission power from UE i to UAV j (dBm)
B Radio spectrum bandwidth (MHz)
N0 Noise power spectral density (dBm/MHz)

pj = (xj, yj, H) UAV j’s position
θij Path loss coefficient

oij ∈ {0, 1} Indicates if the task of UE i is offloaded to UAV j
ai ∈ {0, 1} Indicates if the task of UE i is admitted to the system
bij ∈ R+ Portion of the allocated wireless radio bandwidth
fij ∈ R+ Portion of UAV j’s resources assigned for the task of UE i

Table 4.1: Table of Notations

4.5.1 Convex Approximation

In this subsection, we convexify the non-convex constraints to approximate problems

(4.10) and (4.13). We use the term ”convexify” to indicate solving the non-convexity

aspect of the particular constraint. This is done by making sure all terms on the left

side of the ”≤” sign in the constraint are made convex, and the terms on the right

side of the ”≤” sign are made concave. Those conditions apply to problems having

either a maximization or a minimization objective [40].
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First, we address constraint (4.10b) which is non-convex due to the existence of

the convex function f(θij) = (θij)
−1 on the greater side of the inequality, causing

a Difference of Convex (DC) form [118]. Thus, we convexify (4.10b) by applying

the inner-approximation method to approximate f(θij) by its upper-bounded convex

function f̃(θij; θ
(n)
ij ) around the point θ

(n)
ij (at iteration n of the SCA algorithm) as:

f̃(θij; θ
(n)
ij ) =

1

θ
(n)
ij

−
(θij − θ

(n)
ij )

(θ
(n)
ij )2

(4.14)

Constraint (4.10b) can now be written in a convex form as:

f̃(θij; θ
(n)
ij ) ≥ (xj − x̄i)

2 + (yj − ȳi)
2 +H2 (4.15)

Second, constraint (4.10c) can be equivalently replaced by the following linear

constraint:

ln(1− R̄i) ≥
∑
j∈M

oij ln(1− ϕj) (4.16)

The steps detailing the convexification of (4.10c) are laid out in Appendix A.3.

Finally, we address (4.10d). By introducing slack variables β = {βij ≥ 0, ∀i ∈

N , j ∈ M}, Γ = {Γij ≥ 0, ∀i ∈ N , j ∈ M}, γ = {γij ≥ 0, ∀i ∈ N , j ∈ M},
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δ = {δij ≥ 0, ∀i ∈ N , j ∈ M}, constraint (4.10d) can be equivalently rewritten as

oij (βij + Γij) ≤ L̄i (4.17a)

di
γij

≤ βij (4.17b)

1

δij
≤ Γij (4.17c)

γij ≤ R̃ij(θij, bij) (4.17d)

δij ≤
Fj

c̄
−
∑
i∈N

oijαiλi (4.17e)

We observe that (4.17b) and (4.17c) are convex and can be easily converted to

quadratic cones, while (4.17d) is a generalized exponential cone so it is also convex.

However, constraints (4.17a) and (4.17e) along with (4.10e) are still non-linear. To

address (4.17a), (4.17e), (4.10e), we apply the well known big-M technique with the

constant A ≫ 1. By introducing slack variables u = {uij ≥ 0, ∀i ∈ N , j ∈ M} and

v = {vij ≥ 0, ∀i ∈ N , j ∈ M}, the linear slack constraints are:

uij ≤ oijA (4.18a)

(oij − 1)A+ βij + Γij ≤ uij (4.18b)

uij ≤ βij + Γij (4.18c)

vij ≤ oijA (4.18d)

(oij − 1)A+ αi ≤ vij (4.18e)

vij ≤ αi (4.18f)

141



4.5.2 MI-SOCP Problem Transformation

After linearizing the non-convex constraints for problem (4.10), the approximated

problem would obtain the generalized convex characteristic, due to the appearance of

the generalized exponential cone constraint (4.17d), which makes it very challenging

to solve. We can transform the problem into a MI-SOCP form which is a standard

convex program that can be solved very efficiently. Thus, we proceed to employ the

conic approximation with controlled accuracy in [61] to rewrite constraint (4.17d) by

a set of second order cone inequalities as:

κijm+4 ≤ bij +
Pijh̃ij(θij)

BN0

bij + κij1 ≥
∥∥∥∥[bij − κij1 2bij +

γij
B2m−1

]∥∥∥∥
2

bij + κij2 ≥
∥∥∥∥[bij − κij2

5bij
3

+
γij
B2m

]∥∥∥∥
2

bij + κij3 ≥
∥∥∥∥[bij − κij3 2κij1

]∥∥∥∥
2

κij4 ≥ κij2 +
κij3
24

+
19bij
72

bij + κijl ≥
∥∥∥∥[bij − κijl 2κijl−1

]∥∥∥∥
2

∀ l ∈ {5, ...,m+ 3}

bij + κijm+4 ≥
∥∥∥∥[bij − κijm+4 2κijm+3

]∥∥∥∥
2

(4.19)

where κm = {κij ≥ 0, ∀i ∈ N , j ∈ M} is a new slack variable, andm is the parameter

of the conic approximation technique which can be chosen as m = 4 to attain a high

accuracy.
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4.5.3 SOCP Approximation and SCA-based Algorithm

In this subsection, we develop an approximate SCA-based SOCP algorithm to iter-

atively solve problems (4.10) and (4.13) until convergence.

The mixed-integer SOCP approximation of problem P1a will still pause scalability

limitations, preventing the SCA algorithm from being applied to big instances due

to the mixed-integer nature of the problem, which is caused by the binary condition

of variable o. To solve that problem, we adopt a similar approach to [83], and relax

the binary condition for variable o by introducing the following constraint:

0 ≤ oij − o2ij ≤ ζij (4.20)

where ζ = {ζij ≥ 0, ∀i ∈ N , j ∈ M} is a newly introduced slack variable. (4.20) is

non-convex due to the concave function g(oij) = −o2ij which renders the left side of

(4.20) as a DC form. Thus, with o
(n)
ij as the input point, we employ the SCA method

to replace g(oij) by its first order Taylor approximate as:

g̃(oij; o
(n)
ij ) = −(o

(n)
ij )2 − 2o

(n)
ij (oij − o

(n)
ij ) (4.21)

Constraint (4.21) will force variable o to take a binary value with a penalty term

added to the objective. At this point, by employing the above approximations, an
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approximated SOCP problem for problem P1a is formulated at the nth iteration as:

P (n)
1 : max

p,θ,Õ,

B̃,β,Γ,γ,
δ,u,v,κ,ζ

∑
i∈N

αiλi − A
∑
i∈N

∑
j∈M

ζij (4.22a)

s.t. uij ≤ L̄i (4.22b)

δij ≤
Fj

c̄
−
∑
i∈N

vijλi (4.22c)

Fj

c̄
≥
∑
i∈N

vijλi (4.22d)

pj, θij, bij ≥ 0, oij ∈ [0, 1] (4.22e)

(4.10f)–(4.10g), (4.15), (4.16), (4.17b),

(4.17c), (4.18), (4.19), (4.21). (4.22f)

We note that constraints (4.13b) and (4.13c) of (4.13) can be transformed similar to

constraints (4.10c) and (4.10d) of problem (4.10).

The pseudocode for the algorithm is outlined in Algorithm 5. Problem (4.22) is

solved iteratively until the convergence of objective (4.22a). After finding the solution

for p⋆ and θ⋆, the UAVs will fly to the corresponding positions to obtain the accurate

P̂LoSij(pj) at the optimal locations. Then, we find the optimal values for the other

optimization variables by solving a similarly transformed SOCP form of problem

(4.13). A central computation unit is considered for conducting the optimization

program after acquiring the necessary parameters of the tasks and UAVs through

the control plane, which can be done using a high speed link. We assume a negligible

latency for transmitting the input parameters to the central controller, considering
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its negligible size compared to the actual computational tasks data.

Algorithm 5 SCA-based SOCP Algorithm.

1: Set n := 0;
2: Initialize the starting point for θ(n) ;
3: repeat
4: Solve the SOCP problem (4.22) in order to obtain objective value ω

(n)
1 , and

p⋆,θ⋆, Õ
⋆
, B̃

⋆
,β⋆,Γ⋆,γ⋆, δ⋆,u⋆,v⋆,κ⋆;

5: Set n := n+ 1;
6: Update θ(n) = θ⋆;
7: until Objective (4.22a) convergence: |ω(n+1)

1 − ω
(n)
1 |= 0.

8: Solve the transformed form of problem (4.13).

Convergence Analysis : The convergence of Algorithm 5 can be guaranteed by

showing that the series of resulting objective is monotonically convergent. Let Ω(n)

denote the optimal solution set at the nth iteration of Algorithm 5. Due to the

convex approximation in (4.14), the updating rule in Algorithm 5, c.f., Step 6, ensures

that the solution set Ω(n) is a feasible solution to problem P1a at step n + 1. This

subsequently leads to the results of ω
(n+1)
1 ≥ ω

(n)
1 , which means that Algorithm 5

generates a non-decreasing sequence of objective function values. Due to the latency

and reliability constraints, the sequence of ω
(n)
1 , n = 1, 2, . . . is bounded below and

therefore, Algorithm 5 guarantees that the objective converges.
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Figure 4.3: Task partitioning illustrative example.

4.6 Computation Offloading with Task Partition-

ing

Many services in 5G and future networks will require the offloading of tasks where

input data can be partitioned, e.g. image/video processing [19]. Thus, in this sec-

tion, we adapt our model and mathematical formulation to account for the data-

partitioning model where a task can be partially offloaded and computed on multi-

ple UAVs in parallel. The adopted task partitioning follows the partial computation

offloading model, where a task can be subdivided into sub-tasks with random size,

because no inter-dependency exists among the task parts, such as the case with im-

age and video processing. In contrast, when inter-dependency among the sub-tasks
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exists, other task modelings are usually adopted such as a task-call graph where

the nodes in the graph represent the sub-tasks, and the directed edges represent the

sub-tasks’ dependency [19]. As highlighted in Fig. 4.3, the total task latency for U1

can be decreased after T1 is split into two sub-tasks and each sub-task is assigned to

one or more UAV cloudlets. This is because a sub-task will have a smaller size which

decreases its individual upload and computation latency. This model will also allow

us to exploit the trade-off between latency and reliability, as will be later discussed.

4.6.1 Model Updates

We denote by Si = {1, 2, ..., Si} the set of equal-sized sub-tasks of UE i’s task,

and Si is the number of sub-tasks that i’s task can have. For enhancing the task

reliability, sub-task k can be offloaded to multiple UAVs. For this reason, after

specifying dimension Si, oikj indicates if sub-task k ∈ Si is offloaded to UAV j, and

fikj indicates the portion of the allocated computational resources when oikj = 1.

Thus, constraints (4.13d)-(4.13e) can be substituted by:

oikj ≤ ai, ∀{i, k, j} ∈ {N ,S,M} (4.23a)

ai ≤
∑
j∈M

oikj, ∀{i, k} ∈ {N ,S} (4.23b)

Then, the reliability constraint (4.6) can be replaced by:

Φi(oi) =
∏
k∈S

(
1−

∏
j∈M

(1− oikjϕj)

)
(4.24)
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Equation (4.24) hints that the number of sub-tasks would decrease the achieved

reliability, but this will help in decreasing the attained latency since the sub-tasks

can be offloaded in parallel.

Due to parallel offloading, the task latency will depend on the latency of the last

completed sub-task. Thus, the total latency of each offloaded sub-task must respect

the task latency. Hence, constraint (4.13c) can be replaced by:

dioikj
rikjSi

+
dicioikj
fikjFjSi

≤ L̄i (4.25a)∑
k∈S

rikj ≤ R̃ij(θij, bij) (4.25b)

where rikj is a decision variable denoting the fraction of the achievable rate Rij(θij, bij)

between UE i and UAV j that is allocated for offloading sub-task k. Constraint

(4.25b) ensures respecting the task achievable rate.

Moreover, constraint (4.13h) can be replaced by:

Ej(f j) =
∑
i∈N

∑
k∈S

(
γjdiciF

2
j f

2
ikj/Si

)
(4.26)

which captures the energy consumed by UAV cloudlet j for computing the offloaded

sub-tasks.
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Problem (4.10) can now be replaced by problem P (n)
2a as:

P (n)
2a : max

p,θ,α,

Õ,B̃

∑
i∈N

αiλi (4.27a)

s.t. (4.10b), (4.10d), (4.10e). (4.27b)

Φi(oi) ≥ R̄i (4.27c)∑
j∈M

oijk ≥ 1, ∀i ∈ N , k ∈ S (4.27d)

∑
j∈M

∑
i∈N

bij ≤ 1 (4.27e)

pj, θij, bij ≥ 0

, oij ∈ {0, 1} (4.27f)

At this point, we solve for the remaining variables o,a,f , b, r through the following
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problem:

P2b : max
o,a,f ,b

∑
i∈N

ai (4.28a)

s.t. (4.23), (4.25). (4.28b)

Φi(oi) ≥ aiR̄i (4.28c)∑
i∈N

∑
k∈S

fikj ≤ 1, ∀j ∈ M (4.28d)

∑
j∈M

∑
i∈N

bij ≤ 1 (4.28e)

Ej(f j) ≤ Ēj, ∀j ∈ M (4.28f)

fij, bij, rikj ≥ 0

oij, ai ∈ {0, 1} (4.28g)

4.6.2 Proposed Algorithm Updates

Similar to problem (4.10), (4.27) is also a general non-convex MI-NLP due to the

binary-related constraints in (4.27f), and to the existence of the non-convex non-

concave terms: constraints (4.10b), (4.10d), and (4.27c). We also proceed to trans-

form (4.27) into a more tractable form, and solve it using a low complexity SCA-based

iterative algorithm.

We address (4.27c) which can be equivalently replaced by the following convex

constraints through steps similar to those of constraint (4.10c) after introducing slack
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variable αik ≥ 0:

∑
k∈S

ln(αik) ≥ ai ln(R̄i) + (1− ai) ln(ϵ) (4.29a)

ln(1− αik) ≥
∑
j∈M

oikj ln(1− ϕj) (4.29b)

Constraints (4.25a) and (4.25b) have an identical structure to constraints (4.13c)

and (4.17d), respectively, and can be transformed similarly. By employing the above

approximations, an approximated SOCP of problem (4.27) can be formulated at the

nth iteration as:

P (n)
2 : max

p,θ,Õ,

Ã,F̃ ,B̃,R̃,
α,β,Γ,u,κ

∑
i∈N

αiλi − A
∑
i∈N

∑
j∈M

ζij (4.30a)

s.t. pj, θij, bij ≥ 0, oij ∈ [0, 1] (4.30b)

(4.15), (4.17b), (4.17c), (4.18), (4.19)

(4.21), (4.22b)-(4.22d), (4.23), (4.27d)–(4.27e), (4.29). (4.30c)

The pseudocode for the SCA-based algorithm is outlined in Algorithm 6.

4.7 Numerical Results

In this section, we study the design performance of the proposed solutions through

simulations considering various scenarios. The main instance we use consists of

N = 15 IoT devices that are randomly distributed in a 2-D area of 2x2 km2 [117],
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Algorithm 6 SOCP Algorithm for Task Partitioning.

1: Set n := 0;
2: Initialize the starting point for θ(n) ;
3: repeat
4: Solve the SOCP problem (4.30) in order to obtain objective value ω

(n)
2 , and

p⋆,θ⋆, Õ
⋆
, Ã

⋆
, F̃

⋆
, B̃

⋆
, R̃

⋆
,α⋆,β⋆,Γ⋆,γ⋆,u⋆,κ⋆;

5: Set n := n+ 1;
6: Update θ(n) = θ⋆;
7: until Objective (4.30a) convergence: |ω(n+1)

2 − ω
(n)
2 |= 0.

8: Solve the transformed form of problem (4.28).

Parameter Value
Task input size di [30 70] Kb
Task computational demand ci [150 250] CPU cycles/bit
Task latency deadline L̄i [15 20] ms
Task reliability requirement R̄i [0.99 0.9955]
UE i’s requests arrival rate λi [5 10] tasks/second
UAV cloudlet capacity Fj [1 1.5] GHz
UAV cloudlet reliability ϕj [0.9955 0.9999]
UAVs height H 100 meters [103, 104]
Path loss at 1 meter g0 −50 dB [91, 117]
Channel parameters (a, b, κ) (10, 0.6, 0.2) [103]
UE Transmission power Pij 30 dBm [117]
Radio spectrum bandwidth B 20 MHz
Noise power spectral density N0 −174 dBm/Hz x 106 [90]

Table 4.2: Simulation Parameters

and a set of M = 3 UAV-mounted cloudlets. The system parameters are those

presented in Table 4.2 unless otherwise specified.

In Fig. 4.4, we study the convergence behavior of the SCA algorithm for solving

the planning problem (lines 1 to 7 of Algorithm 5). This is done for three different

starting positions for the SCA approximation points θ(n) which reflect the UAVs’
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Figure 4.4: Convergence behavior of the SCA algorithm.

positions. When selecting the starting points using the K-means technique, we ob-

serve that the algorithm converges very quickly. When starting from the center of

the xy plane, the SCA approach takes few more iterations to converge. Lastly, when

the starting values of θ(n) are fixed such as θij is the same ∀{i, j} ∈ {N ,M} (the

UAVs’ starting points are scattered), this leads to the lowest performance as the

algorithm needs more iterations to converge. It is worth noting that the SCA algo-

rithm generally requires more iterations to converge when UEs have stricter latency

and reliability requirements.

In Fig. 4.5, we study the effect of reliability requirements and the bandwidth

capacity on the achieved admission rate for the planning problem. The objective is

to explore the bandwidth capacity required by the network in response to the UEs’

reliability requirements for achieving a certain admission rate. As is apparent in Fig.

4.7, having more stringent reliability requirements decreases the achieved admission
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Figure 4.5: Objective vs UEs’ reliability R̄i and wireless bandwidth B.

rate, because UEs will need to replicate the transmission of their tasks to more

UAVs, which utilizes more wireless radio bandwidth, and hence limits the resources

available for the other tasks. Thus, it is observed that a trade-off exists between the

ability to provision computation offloading with high reliability requirements, and

the capability of the system to admit offloaded tasks due to the utilization of more

network resources. In addition, it is shown that the NO can increase the admission

rate when more system bandwidth is available, obviously because more tasks can be

accommodated on the wireless spectrum.

In Fig. 4.6, we illustrate the optimized UAVs’ positions and the UE-to-UAV

associations within the xy plane for different classes of reliability requirements, where

the numbers in the triangles represent the average cloudlet computation latency

based on the offloaded requests. As can be seen in Fig. 4.6.a, UAVs are relatively

positioned apart to cover the UEs in such a way that their transmission latency
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4.6.a Reliability requirement: 0.9940-0.9995.
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4.6.b Reliability requirement: 0.9960-0.9999.

Figure 4.6: Illustrating the UAVs’ placement for different UE’s reliability require-
ments.

can satisfy the latency deadline, knowing that in this case, UEs need to offload to

only one UAV to satisfy their reliability requirement. In Fig. 4.6.b, the UEs have

higher reliability requirements, resulting in the need to offload to multiple UAVs,

occupying more computation and wireless resources, and hence fewer requests are

admitted in the network. Here, it is important to note that the UAVs’ positions

have higher influence on the achieved latency because bandwidth resources are more

utilized, which made UAV 1 in this case be positioned nearby UAV 3 for satisfying

the latency requirements of the served UEs.

In Fig. 4.7, we compare the SCA approach in Algorithm 5 with two other baseline

approaches: KM and EB, while studying the effect of change in the UEs’ reliability

requirement on the objective. In KM, problem (4.22) is slightly modified, such as
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Figure 4.7: Objective obtained using the SCA algorithm vs baseline approaches.

the UAVs’ positions are optimized using the K-means algorithm and provided as in-

put to the problem for solving the remaining variables. In EB, the SCA approach of

Algorithm 5 is invoked with the same decision variables except for B̃ where the wire-

less bandwidth resources are equally allocated to the IoT devices from the available

bandwidth B. The simulations are done for a task deadline L̄i in the range of [25

30] ms, ∀i ∈ N . Through Fig. 4.7, we observe that the SCA Algorithm always leads

to a better admission rate when all variables are optimized. KM leads to a lower

tasks admission rate because the UAVs’ positions optimization through the K-means

approach is not as efficient. We note that the solution gap increases and the improve-

ment becomes more significant when the reliability requirements become stricter,

which is because in the SCA approach the UAVs’ positions will be pushed further

for accommodating the latency requirements of farther UEs that are offloading to

multiple cloudlets for satisfying their reliability. In fact, the transmission latency
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Figure 4.8: Planning problem objective vs Algorithm 5 objective for particular time
slots.

here becomes more important for those UEs having to utilize more UAV resources

because of their increased reliability requirement, which increases the computation

latency. EB leads to an even lower admission rate and becomes infeasible when the

UE’s reliability requirements become stricter, which is because the transmission rate

is drastically affected. Lastly, increasing the UEs’ reliability requirements always

decreases the admission rate since more computation and bandwidth resources have

to be consumed, limiting the resources available for other tasks.

In Fig. 4.8, we study the achieved admission rate for the planning problem, versus

the average admission rate obtained for the whole problem when applied to the first

30 time slots, first 70 time slots, and first 100 time slots of the offloading process

(time slots requests are generated based on the UEs’ Poisson arrival rates). The

objective is to understand how does the admission rate obtained from the planning
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problem compares with the solution of the second problem when applied for different

offloading time spans. As it can be seen, the planning problem gives a bit more

optimistic measure for the admitted load, compared to the actual admitted load for

the requests during the offloading phase. This difference is actually due to considering

the LoS communication and to the usage of the average task computational demand

c̄ in the planning problem, and therefore leading to a more optimistic admission

rate. However, it is important to note that the corresponding admission rate (which

depends on average planning values and not on the actual requests at hand) can

be used to obtain an insight into the predicted admission rate during the actual

offloading phase. Moreover, a term can be added in the objective to account for this

difference and therefore obtain a more accurate prediction. However, it is essential to

emphasize on that fact that the primary objective of the planning problem is to obtain

the long-term optimized positioning of the UAVs based on average planning values,

so that the other decisions can be optimized in the particular time slots after the

UAVs’ positions are determined. Another observation is that the achieved admission

rate stays more or less the same when increasing the length of the offloading time-

span, noting that the difference will be more significant when using instances with a

higher number of UEs. In addition, it can be seen that a higher arrival rate for the

requests leads to a lower admission rate, which is because additional requests will

not be admitted when resources are fully utilized in the network, emphasizing the

importance of efficiently optimizing the network resources.

In Fig. 4.9, we solve Algorithm 5 for the purpose of studying how both the UEs’

latency requirements and cloudlets’ capacity influence the achieved admission rate.
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Figure 4.9: Objective obtained as it varies with the UEs’ latency deadline and
cloudlets’ capacity.

The goal is to explore the extent at which computation capabilities need to be added

for maintaining a certain admission rate considering different classes of IoT devices’

latency deadline. As it can be seen, having stricter latency deadlines decreases the

admission rate, since IoT devices have to consume more wireless and computational

resources for meeting their requirements, and hence restricting the resources available

for serving other tasks. In addition, increasing the available computational resources

allows for a higher admission rate, obviously because more resources are available for

serving the requested tasks, which reduces the computation latency and allows for

meeting the tasks’ deadline. It can be observed that at some point, for IoT devices

with high enough latency requirements, the needed admission rate in the network can

already be satisfied and adding more network resources will not be needed. Thus, it is

important to plan network resources according to the expected IoT service category
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Figure 4.10: Objective obtained as it varies with the cloudlets’ reliability and their
number.

to avoid resources over-provisioning.

In Fig. 4.10, we solve Algorithm 5 for the purpose of studying the pattern through

which the UAV cloudlets’ reliability and their number can influence the admission

rate. The goal is to provide some information into the number of utilized UAV

cloudlets which can be dependent on their reliability, and which would affect the

computation offloading efficiency. Here, we study two classes of UAV cloudlets’ reli-

ability. As it can be seen, when UAV cloudlets are more reliable, the admission rates

are increased since the tasks can then be offloaded to fewer UAVs, which offers more

computation and wireless resources for offloading other tasks. Here, it is apparent

that when UAV cloudlets have low reliability, a lot more of them are needed to main-

tain the same admission rate due to the need to occupy a higher amount of resources.

However, introducing more UAVs also requires the optimization of their positioning.
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Figure 4.11: Objective value as it varies with the number of UEs and the UAV
cloudlets.

Therefore, depending on their reliability, a certain number of UAV-mounted cloudlets

can be utilized for responding to the IoT devices’ specific requirements.

In Fig. 4.11, we study the solution of Algorithm 5 for exploring the effect of change

in the number of IoT devices and the number of UAV cloudlets on the admission rate.

Here, we consider UAV cloudlets with a reliability in the range of [0.9900 0.9944].

As it can be seen, when more UEs are added to the network, the admission rate

decreases since only a limited number of requests can be served due to the limited

amount of network resources. Here, it is shown that when more UAV cloudlets are

added to the network, more tasks can be offloaded because of the increased amount

of computational resources and the offloading options.

In Fig. 4.12, we present the performance for the offloading and resources alloca-

tion problem in terms of the admission rate as it varies with the energy limit per each

161



2 4 6 8 10 12

UAVs' energy limit (Mj)

0

10

20

30

40

50

60

70

80

A
d
m

is
s
io

n
 r

a
te

 (
%

)

R=0.9944, M=2

R=0.9944, M=3

R=0.9944, M=4

R=0.9999, M=2

R=0.9999, M=3

R=0.9999, M=4

Figure 4.12: Objective value as it varies with the UAVs’ energy level.

UAV. The results are presented for different number of UAVs as well as for different

task reliability requirements (namely, R1 = 0.9944 and R1 = 0.9999), and the relia-

bility of each UAV cloudlet is fixed at 0.9955. This implies that for tasks of reliability

R1, offloading to one UAV will be sufficient, while tasks of reliability R2 require each

two UAVs to attain the required reliability. As the figure shows, when the reliability

requirement of the tasks is lower, the admission rate is higher, and as we increase

the energy limit per UAV, the admission rate also increases. This is explained due to

the direct relationship between the computing capacity and the energy consumption

of the UAV. The higher the UAV energy budget, the more capacity can be utilized

to carry out the computation and therefore, the better the task admission rate into

the system. We also observe that more UAVs provide higher admission rate, since

the system has more resources (computing resources) which helps in meeting the

latency requirements of more tasks and hence admitting more UEs. Now, in the
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4.13.a UEs’ reliability in the range of 0.99-0.9955.
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4.13.b UEs’ reliability in the range of 0.9944-
0.9999.

Figure 4.13: Algorithm 5 vs the task partitioning approach (Algorithm 6) with Si =
2 ∀i ∈ N .

case of R2, when the task reliability requirement is higher than what one UAV can

offer, two UAVs become necessary to satisfy the constraint. Hence, more resources

are demanded for the same load; i.e., twice the resources are required to satisfy the

latency and reliability requirements of the task, which explains the lower admission

rate. However, we observe that increasing the UAVs’ energy budget beyond a certain

limit does not lead to an increase in the admission rate. The reason being that while

the provided energy is enough to utilize all the available computational resources,

the computational resources themselves are fully consumed to satisfy the latency

requirements of the already admitted tasks and hence not allowing more tasks into

the system. In other words, the system become capacity limited rather than energy

limited.

In Fig. 4.13, we study how the task partitioning in Algorithm 6 with S = 2

163



affects the obtained solution for different classes of UE’s latency deadline. We use

an instance that consists of 6 UEs and 2 UAV cloudlets where the UEs’ task size is

in the range of [70 110] Kb. As it can be seen in Fig. 4.13.a, a higher admission rate

is achieved by Algorithm 6 for all latency deadline levels. This gain is due to the

fact that with task partitioning, sub-tasks (having a smaller size) can be transmit-

ted and computed in parallel on multiple UAV cloudlets, which decreases the tasks’

computation latency, and hence less resources are needed, and more tasks can be

served. It is also shown that the difference gap becomes less significant when latency

deadlines become more loose, since the tasks here can consume less resources and

more resources can be used for admitting other tasks. In Fig. 4.13.b, where UEs

have higher reliability requirements, the admission rate obtained from Algorithm 5

decreases for most of the points, since task redundancy is utilized which decreases

the resources available for admitting other tasks. In this case, however, the reliabil-

ity achieved through equation (4.27c) in Algorithm 6 is too low with respect to the

UEs’ reliability requirement, and therefore Algorithm 6’s solution becomes infeasible.

This is due to the higher resources demand caused by the increased replication of

the sub-tasks to more cloudlets, while having a limited number of 3 UAV cloudlets

in addition to their limited resources (in this particular case, the solution will be fea-

sible when more resources are added to the network). Thus, we observe that when

splitting a task into multiple sub-tasks, more computation and wireless resources are

needed to achieve the same reliability of the original task, and hence the NOs should

consider increasing their available resources for the classes of applications where task

partitioning is used. Thus, when considering task partitioning, a trade-off can be
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observed between the offloading latency and the resources’ utilization: task parti-

tioning can achieve a lower offloading latency. On the other hand, more computation

and wireless resources are required for maintaining the same task reliability.

4.8 Conclusion

We studied in this chapter the UAV-aided latency and reliability aware computa-

tion offloading problem in IoT networks, which would enable the provisioning of

mission-critical smart services. We proposed two problems for optimizing the UAVs’

positions, the UEs-to-UAV association, and the allocated resources considering re-

dundancy of task computation for maximizing the admitted tasks’ rate. This is

done through a two-stage process where the planning problem optimizes the UAVs’

position for the long-term offloading, and the computation offloading and resource

allocation problem optimizes the other variables for the particular offloading instance

considering the UAVs’ available energy. We presented a solution approach for pro-

viding a low-complexity SCA-based algorithm for obtaining an approximate solution,

and also approached the problem while considering task partitioning, which will be

prevalent in 5G networks. Through numerical results, we demonstrated the solu-

tion efficiency and performed simulations for various scenarios, where the trade-off

between reliability and resources utilization and between latency and reliability are

explored. This work can offer valuable insights into provisioning computation offload-

ing for modern services with stringent latency and reliability requirements through

the aid of UAV-mounted cloudlets.
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Chapter 5

Latency and Reliability Aware

Computation Offloading in

IRS-aided Edge-clouds
1

Although MEC has allowed for computation offloading at the network edge, weak

wireless signals in the RAN caused by obstacles and high network load are still

preventing efficient edge computation offloading, especially for user requests with

stringent latency and reliability requirements. IRS have been recently studied as a

solution to enhance the quality of the signals in the RAN, where passive reflecting

elements can be tuned to improve the uplink or downlink signals. Harnessing the

IRS’s potential in enhancing the performance of edge computation offloading, in this

1This chapter has been published in IEEE Communications Letters and submitted to IEEE
Journal on Selected Areas in Communications - Special Issue on Multi-Tier Computing for Next
Generation Wireless Networks.[119].
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work, we study the use of an IRS-aided edge computing system for enabling 5G

services with stringent latency and reliability computation offloading requirements,

where the phase shifts of the IRS elements are optimized for the purpose of minimiz-

ing the UEs’ energy consumption considering the cloudlets’ failure rates and tasks

redundancy. First, we consider a single-user network where the IRS elements’ phase

shift, the UE’s offloading decision, and the UE’s transmission power are optimized

with the objective of minimizing the device’s energy consumption. Then, in the sec-

ond part of this chapter, we extend the study to a multi-user OFDMA network where

we optimize the IRSs elements’ phase shift, the UEs’ offloading decisions, the UEs’

transmission power, and the allocated servers’ computational resources and OFDMA

RBs. For each of the presented non-convex mathematical problems, we propose a

customized sub-optimal solution based on the SCA approach and the SDR technique,

where the problem is divided into multiple sub-problems that are solved separately in

an alternating fashion. Numerical results are illustrated for the presented solutions,

which demonstrate the energy reduction and network resources saving achieved by

the optimized use of the IRSs especially for offloading services with a higher relia-

bility requirement, and highlights on the IRSs’ influence on the design of the MEC

parameters.
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5.1 Introduction

Although MEC has proved thus far to be a worthy technology for enabling the

modern 5G services with their stringent requirements, there are still limitations con-

cerning the RAN communication quality that are still hindering the full realization

of MEC as a sustainable solution in 5G networks and beyond. Those limitations are

the product of a poor communication environment caused by blockages, deep fad-

ing, or under-served areas, which cause the access channel quality to be degraded.

Such situations cause a high latency to be incurred when conducting the offloading

operation, which either forces the limited-capacity devices to spend a high offload-

ing energy to satisfy the service requirements, or prevents the offloading procedure

from happening altogether while wasting the utilization of edge resources and keep-

ing them under-utilized. The problem is more aggravated when trying to satisfy

the stringent latency and reliability requirements of the modern URLLC-type 5G

services.

Multiple technologies have been explored so far in conjunction with MEC for

enhancing the offloading performance, such as the utilization of UAVs, small cells,

and the NOMA technology, where each have their advantages and limitations for

their use in the context of edge computing. In order to tackle the communication

channels impairments that prevent the URLLC-type applications from exploiting the

MEC servers, the emerging IRS paradigm has been recently investigated, aiming to

construct an SRE by converting the wireless propagation environment to an opti-

mization variable that can be configured and controlled [33, 34]. Specifically, the IRS

can passively and collaboratively enhance the RAN wireless communications quality
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through exploiting a large number of low-cost and low-energy reflecting elements

thanks to progress in programmable meta-materials, where the amplitude and/or

phase shift of the elements’ reflected signal can be tuned.

Now due to the observed difficulty in realizing low-energy MEC computation

offloading for low-latency and high-reliability constrained services in a network with

unfavorable wireless access channels, we envision the introduction of the IRS in

the MEC system to play a significant role in reducing the overall devices’ energy

consumption while satisfying their strict requirements. Particularly, since the IRS

can enhance the transmission rates and hence the upload latency, a load reduction

on the MEC resources can be obtained which allows the devices to consume less

offloading energy. However, in scenarios where the users need to offload to multiple

cloudlets due to their reliability requirements, the judicious sharing of the IRS among

the offloading users and the phase shifts optimization while minimizing the overall

users’ energy consumption is a challenging problem that we aim to tackle.

In this chapter, we investigate the problem of IRS-aided latency and reliability

aware MEC computation offloading for the purpose of minimizing the UEs’ energy

consumption, considering cloudlets’ failure rate and tasks redundancy where the task

can be simultaneously offloaded to multiple cloudlets for guaranteeing its reliability.

We start by studying a single-user network where we optimize the IRS elements’

phase shift, the UE’s transmission power, and the offloading decision while guaran-

teeing the task’s stringent latency and reliability requirements. Then, in the second

part of this chapter, we extend to a multi-user OFDMA network, where we jointly
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optimize the IRS elements’ phase shift, the offloading decisions, the UEs’ transmis-

sion power, and the allocated servers’ computational resources and OFDMA RBs.

The considered IRSs’ optimization would enable the UEs’ access to resources-rich

MEC servers which are normally unreachable or require a high UEs’ transmission

energy due to low-quality channels. Our work provides insights on leveraging IRS-

aided APs for reducing the energy consumption of UEs that are requesting services

with low-latency and high-reliability requirements such as mission-critical applica-

tions, for influencing the design of the MEC network parameters, and for reducing

the load on the MEC resources.

5.1.1 Novel Contributions

The contributions of this chapter can be summarized as follows:

1. For each of the studied single-user and multi-user cases, we model the problem

and mathematically formulate it as a non-convex MI-NLP program.

2. Due to the non-convexity of the proposed problem, we propose a customized

sub-optimal solution based on the SCA approach and the SDR technique, where

the problem is divided into multiple sub-problems that are solved separately

in an alternating fashion.

3. We present numerical results considering various scenarios where the solution

performance is demonstrated, and studies into the reduction in the UEs’ energy

consumption and network resources utilization through the optimized use of

the IRSs are conducted.
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5.2 Literature Review

We discuss first the main papers that explored the use of IRS for enhancing the

wireless communication in the access network. Then, we present studies that focused

on the use of IRS in the context of edge computing for enhancing the computation

offloading performance. Finally, we present related work that studied reliability and

latency problems considering a MEC system.

In [34], the authors studied the use of one IRS in one cell where multiple single-

antenna UEs are communicating with a multi-antenna AP, with the objective of

minimizing the AP’s transmission power by optimizing the transmission beamform-

ing and IRS phase shifts while respecting the users’ required quality of service. In

[33], the authors provided an overview of the use of IRS in wireless networks, and

discussed its advantages and challenges and architecture. Also, numerical results are

presented that show the performance improvement brought by the use of IRS.

In [120], the authors proposed a BCD-based algorithm for minimizing the latency

of computation offloading considering a set of users communicating with a multi-

antenna AP, where the computation and communication resources are optimized,

and the IRS’s impact on the performance improvement is demonstrated. In [121],

the authors developed a solution for optimizing the IRS phase shifts for maximizing

the operator’s earnings in terms of the devices’ payments while minimizing the users’

weighted sum of latency and energy. In [122], the authors developed a solution for

performing wireless power transfer in an OFDMA system through the use of IRS in

an edge computing setting where the operator’s energy consumption is minimized.

In [123], the authors studied an IRS-aided MEC system where the IRS phase shift
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is optimized for maximizing the number of offloaded bits from a set of users to one

AP. The authors in [124] minimized the sum energy consumption through a BCD

approach for a set of users communicating with a cloudlet-enabled AP where the IRS

phase shift along with the offloading data, transmission power, and TDMA resources’

allocation are optimized considering NOMA. The authors in [125] maximized the

computation offloading rate in an IRS-aided MEC system to explore the offloading

performance considering the TDMA and NOMA multiple access schemes.

In [47], the authors minimized the servers’ transmission power by studying the

latency and reliability efficiency in a MEC system for a set of users. The authors

in [95] studied the reliability in distributed edge clouds where a reliability indicator is

introduced for each edge node, and computational tasks are then replicated to specific

computing nodes. [77] studied the trade-off between latency and reliability in a MEC

system, where the end-to-end latency and the failure probability of computation

offloading is minimized.

In contrast to the existing studies that considered IRS-aided MEC systems, in this

work, we explore the use of multiple IRSs for helping to minimize the total energy

consumption for a set of UEs while guaranteeing the tasks’ stringent latency and

reliability requirements. Here, redundancy is performed by simultaneously offloading

the tasks to multiple servers to guarantee their computing reliability, where the

optimized use of the IRSs which need to be judiciously shared in this scenario, are

performed along with the offloading and resources allocation parameters. In this

context, the IRS elements which influence the offloading latency can be optimized

such as to reduce the load on the MEC resources and also to affect the design of the
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MEC parameters for achieving a minimal energy consumption. Hence, the use of the

IRSs is explored to cater for the limited devices’ energy and capability, which would

contribute towards enabling future mission-critical services in IoT networks.

5.3 Single-user case

In this section, we present our proposed mathematical problem for the single-user

case in Subsection 5.3.1, and due to the non-convexity of the problem, we propose

in Subsection 5.3.2 the customized solution approach discussed as follows. After

performing the offloading decision, the problem is divided into two sub-problems

that are solved iteratively. First, the transmission power initial value is used as an

input for optimizing the IRS elements’ phase shifts which is solved using a novel

SCA-based technique that provides an approximate solution by iteratively solving

until convergence after the problem is converted to a DC representation [41]. Then,

the transmission power is optimized given the input values for the IRS elements’

phase shifts through a novel SCA-based algorithm. The two sub-problems are solved

in an alternating fashion until the convergence of the objective. Finally, Subsection

5.3.3 discusses the numerical analysis.

5.3.1 System Model and Problem Formulation

5.3.1.1 Spatial Model

As illustrated in Fig. 5.1, we consider an IRS-enabled edge computing system that

consists of M APs denoted by M = {1, 2, ...,M} that are located within the reach
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Figure 5.1: Single-user system model.

of a UE that needs to offload its computational task to carry its service. Each AP

j ∈ M is equipped with a cloudlet of capacity Fj GHz for serving the UE’s offloading

request. Furthermore, each AP j ∈ M has a reliability denoted by ϕj which can

be obtained after estimating the occurrence probability of failure scenarios through

statistical means based on the cloudlets’ historical failure pattern and maintenance

records [108]. The node failures corresponding to the reliability ϕj are mainly caused

by either software failures or hardware failures such as hard disk, memory and RAID

controller failures [105]. An IRS comprised of N reflecting elements denoted by

N = {1, 2, ..., N} is deployed to assist the UE’s offloading to the APs, via generating

passive beamforming coordinated by the IRS controller. We introduce a decision

variable xj ∈ {0, 1} to indicate if the UE is offloading its task to cloudlet j ∈ M.

The UE’s task is represented by the tuple {D,C, L̄, R̄}, concatenating the task input

size D Kb, computational demand density C CPU cycles/bit, required latency L̄ ms,
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and required reliability R̄.

5.3.1.2 Communication Model

We consider the uplink communication between the UE and the APs to be accommo-

dated on the whole spectrum of B Hz, while the downlink communication is ignored

since the task output size is in general much smaller than the task input size. The

channel coefficients between the UE and AP j, the UE and the IRS, as well as

the IRS and AP j, are denoted by hj, h
I = [hI1, h

I
2, ..., h

I
N ], gj = [gj1, gj2, ..., gjN ]

T ,

respectively, which are assumed to be perfectly estimated. We note that the IRS

channels hI and gj are assumed to be of a much better quality than the direct

channel hj. We set the amplitude reflection coefficient to 1 for all IRS reflection

elements, and denote the phase shift coefficient vector by θ = [θ1, θ2, ..., θN ]
T , where

θn ∈ [0, 2π) for all n ∈ N . Then, the reflection-coefficient vector of the IRS is

denoted by v = [eiθ1 , eiθ2 , ..., eiθN ]T , where i represents the imaginary unit, and we

define Θ = diag(v). By denoting p ≥ 0 as the variable representing the UE’s allo-

cated transmission power out of the maximum power P̄ and N0 as the noise power

spectral density, the UE’s achieved rate for transmitting to AP j is:

Rj(θ, p) = B log2
(
1 +

(
p|hj + hIΘgj|2/BN0

))
(5.1)

5.3.1.3 Reliability Model

For guaranteeing the task’s reliability, redundancy is performed where the task can be

offloaded and computed on multiple cloudlets in parallel. By denoting x = {xj, ∀j ∈
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M}, the achieved task reliability is then represented by:

Φ(x) = 1−
∏
j∈M

(1− xjϕj) (5.2)

A higher reliability is achieved when the task is computed on more cloudlets, but this

increases the consumption of bandwidth and computing resources. The considered

server reliability and failure model are similar to the ones for cloud servers and were

also considered in the context of edge computing [126].

5.3.1.4 Problem Formulation

We aim at minimizing the UE’s offloading energy consumption while respecting the

required task latency and reliability, by optimizing the offloading decision x, the IRS

phase shift θ, and the transmission power p. The IRS-aided latency and reliability

aware MEC offloading problem P1, is formulated as:

P1 : min
x,θ,p,τ

p (D/τ) (5.3a)

s.t. Rj(θ, p) ≥ xjτ, ∀j ∈ M (5.3b)

xj (D/Rj(θ, p) +DC/Fj) ≤ L̄, ∀j (5.3c)

Φ(x) ≥ R̄ (5.3d)

xj ∈ {0, 1}, θn ∈ [0, 2π), p ∈ [0, P̄ ] (5.3e)
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Notation Description
M Set of APs
d Task input size (Kb)
c Task computational density (CPU cycles/bit)
L̄ Task latency deadline (ms)
R̄ Task reliability requirement
Fj Cloudlet computational capacity (GHz)
ϕj Cloudlet reliability
hj Channel coefficient between the UE and AP j

hI Channel coefficient between the UE and the IRS
gj Channel coefficient between the IRS and AP j
v IRS reflection-coefficient vector
B Radio spectrum bandwidth (MHz)
N0 Noise power spectral density (dBm/MHz)

xj ∈ {0, 1} Indicates if the UE’s task is offloaded to cloudlet j
θ Phase shift coefficient vector

p ∈ R+ UE’s transmission power (watts)

Table 5.1: Table of Notations

where (5.3a) minimizes the UE’s consumed energy, which is the product of the trans-

mission power and the highest upload latency. (5.3b) sets τ to be the minimum trans-

mission rate which is being maximized. (5.3c) makes sure the total UE’s offloading

latency on AP j respects the latency deadline. (5.3d) guarantees the required task

reliability. Finally, (5.3e) is for the integrality and variable bounding conditions. All

mathematical symbols used thus far are summarized in Table 5.1.

Problem (5.3) is non-convex due to the coupling between the phase shift θ and

transmission power p variables as well as the binary offloading indicator in (5.3c). In

general, solving problem (5.3) optimally is very difficult, and there are no standard

methods for providing such a solution.
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5.3.2 Proposed Iterative Low-Complexity Algorithm

We propose a customized sub-optimal solution to solve (5.3).

A. Offloading Decision Optimization: First, we decouple the offloading deci-

sion optimization from other variables. We construct the set S with each M̂(m) ∈ S

representing a subset of APs M that satisfies (5.3d) which can later be omitted, i.e.

Φ(x(m)) ≥ R̄ where xj ∈ x(m) is set to 1 if AP j ∈ M̂(m), and to 0 otherwise. Thus,

given M̂(m), θ and p are optimized as:

P (m) : min
θ,p,τ

p (D/τ) (5.4a)

s.t. Rj(θ, p) ≥ τ, ∀j ∈ M̂(m) (5.4b)

Rj(θ, p) ≥ DFj/(L̄Fj −DC), ∀j (5.4c)

θn ∈ [0, 2π), 0 ≤ p ≤ P̄ (5.4d)

which is still non-convex. Thus, we approach a customized solution for P (m) by

decoupling the optimization of the UE’s transmission power from that of the IRS

phase shift, which are later solved in an alternating fashion. Specifically, in each

iteration, the IRS phase shift is first optimized given p̂ which is optimized in the

previous iteration. Then, the transmission power is again optimized given the just

obtained θ̂ as input.

B. IRS Phase Shift Optimization: For the given transmission power value p̂,
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the IRS phase shift θ can be optimized as:

P (m)
a1 : max

θ,τ

τ (5.5a)

s.t. Rj(θ, p̂) ≥ τ, ∀j ∈ M̂(m) (5.5b)

Rj(θ, p̂) ≥ DFj/(L̄Fj −DC), ∀j (5.5c)

θn ∈ [0, 2π) (5.5d)

where θ is optimized such as the minimum transmission rate among the associated

APs is maximized, which is represented by τ . We remark that the obtained problem

would be a generalized convex problem due to the appearance of the generalized

exponential cone constraints (5.5b) and (5.5c), which still makes the problem chal-

lenging due to the very high computation time resulting from solving the problem

using a generalized convex solver such as FMINCON. In contrast, a standard con-

vex program such as the Second Order Cone Programming (SOCP) can be solved

much more rapidly by the commercial solver MOSEK while achieving an accuracy

of 99.99% [61]. Thus, we are motivated to employ the conic approximation with

controlled accuracy in [61], where constraints (5.5b) and (5.5c) can be rewritten by
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a set of second order cone inequalities as

κjm+4 ≤ 1 +
(
p̂|hj + hIΘgj|2/BNj

)
(5.6)

uj ≥ τ

uj ≥ DFj/(L̄Fj −DC)

1 + κj1 ≥
∥∥∥∥[1− κj1 2 + uj/B2m−1

]∥∥∥∥
2

1 + κj2 ≥
∥∥∥∥[1− κj2 5/3 + uj/B2m

]∥∥∥∥
2

1 + κj3 ≥
∥∥∥∥[1− κj3 2κj1

]∥∥∥∥
2

(5.7)

κj4 ≥ κj2 + κj3/24 + 19/72

1 + κjl ≥
∥∥∥∥[1− κjl 2κjl−1

]∥∥∥∥
2

∀ l ∈ {5, ..., s+ 3}

1 + κjm+4 ≥
∥∥∥∥[1− κjm+4 2κjm+3

]∥∥∥∥
2

where u = {uj ≥ 0, j ∈ M̂(m)}, κs = {κjs ≥ 0, j ∈ M̂(m)}, and s is the conic

approximation parameter which can be chosen as s = 4 to attain the 99.99% accuracy.

Also, by replacing the term hj +hIΘgj in (5.6) by hj +vHΦj with Φj = diag(hI)gj,

problem P (m)
a1 can be transformed to:

P (m)
a2 : max

θ,τ

τ (5.8a)

s.t. κjm+4 ≤ 1 + p̂/BNj(v
HΦjΦ

H
j v

+ vHΦjhj + hHj Φ
H
j v + |hj|2) (5.8b)

|vn|2= 1, (5.7) (5.8c)
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By introducing a slack variable t, problem P (m)
a2 can be converted to a homoge-

neous QCQP as:

P (m)
a3 : max

θ,τ

τ (5.9a)

s.t. κjm+4 ≤ 1 + p̂/BNj

(
v̄HRjv̄ + |hj|2

)
(5.9b)

|vn|2= 1, (5.7) (5.9c)

Rj =

ΦjΦ
H
j hjΦj

hjΦ
H
j 0

 ∀j, v̄ =

v
t


We note that v̄HRjv̄ = tr(Rjv̄v̄

T ). By introducing variable V = v̄v̄T , problem

P (m)
a3 can be transformed to:

P (m)
a4 : max

V ≽0,τ

τ (5.10a)

s.t. κjm+4 ≤ 1 + p̂/BNj

(
tr(RjV ) + |hj|2

)
(5.10b)

V n,n = 1, ∀n ∈ {1, 2, ..., N + 1} (5.10c)

V ≽ 0, rank(V ) = 1, (5.7) (5.10d)

which is a non-convex SDP where (5.10d) indicates that V is a semi-definite ma-

trix with a non-convex rank-one constraint, which makes solving the problem very

challenging. One widely adopted technique is the SDR [127], where the rank-one con-

straint is relaxed, making the problem a convex SDP which can be easily solved be-

fore using the Gaussian randomization to construct a rank-one solution from V [127].
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However, this technique does not guarantee obtaining a feasible or a rank-one so-

lution to (5.10) especially when the problem size grows. Thus, we propose a novel

SCA approach for solving (5.10) which is guaranteed to converge where the rank-one

constraint is written in a DC form.

With σr(V ) defined as the r-th largest singular value of V , the rank-one con-

straint for V indicates that σ1(V ) > 0 and σr(V ) = 0, ∀i ∈ {2, 3, ..., N + 1}. Thus,

by defining the trace norm and spectral norm of V as Tr(V ) =
∑N+1

n=1 σr(V ) and

||V ||= σ1(V ), respectively, the rank-one constraint can be equivalently rewritten

as the difference of these two convex norms as Tr(V ) − ||V ||= 0 with Tr(V ) > 0.

Hence, problem (5.10) can be converted into the following DC program:

P (m)
a5 : min

V ≽0,τ

− τ + (Tr(V )− ||V ||) (5.11a)

s.t. (5.7), (5.10b), (5.10c) (5.11b)

which is still non-convex due to the concave term −||V || in (5.11a). Thus, we pro-

ceed to linearize ||V || by substituting it with the term g̃(V ;V (m)) =
〈
ψ||V (m)||,V

〉
,

where V (m) is the solution obtained at the previous SCA iteration, and ψ||V (m)|| de-

notes the sub-gradient of spectral norm at point V (m). We note that one sub-gradient

of ||V || can be efficiently computed as q1q
H
1 , where q1 is the vector corresponding

to the largest singular value σ1(V ). Thus, P (m)
a5 can be replaced by:

P (n,m)
a6 : min

V ≽0,τ

− τ +
(
Tr(V )− g̃(V ;V (m))

)
(5.12a)

s.t. (5.7), (5.10b), (5.10c) (5.12b)
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which is a standard convex SDP that is solved at each SCA iteration m until con-

vergence given an initial V (0). Specifically, we design a practical stopping criterion

with Tr(V )− g̃(V ;V (m)) < ϵ, where ϵ is a sufficiently small positive constant. After

obtaining a feasible V , the phase shift matrix θ can be then easily recovered from

V .

C. Transmit Power Optimization: For the given values of θ̂, the transmission

power p can be optimized as:

P (m)
b : min

p,τ
p (D/τ) (5.13a)

s.t. κjm+4 ≤ 1 +
(
p|hj + hIΘ̂gj|2/BNj

)
(5.13b)

0 ≤ p ≤ P̄ , (5.7) (5.13c)

which is a non-convex program due to (5.13a) being neither convex nor concave in

general. Thus, we introduce slack variable δ which will equivalently replace (5.13a),

and slack variable Λ, and equivalently define the following constraints:

δτ ≥ Λ2 (5.14a)

p− Λ2 ≤ 0 (5.14b)

Here, (5.14a) is a quadratic conic convex constraint, while (5.14b) is non-convex due

to the concave function f(Λ) = −Λ2 which renders the left side of (5.14b) as a DC

form. Thus, with Λ(m) as the input point, we employ the SCA method to replace
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f(Λ) by its first order Taylor approximate as:

f̃(Λ; Λ(m)) = −(Λ(m))2 − 2Λ(m)(Λ− Λ(m)) (5.15)

Problem P (m)
b can then be replaced by:

P (n,m)
b : min

p,τ,Λ,δ
δ (5.16a)

s.t. κjm+4 ≤ 1 +
(
p|hj + hIΘ̂gj|2/BNj

)
(5.16b)

δτ ≥ Λ2 (5.16c)

p+ f̃(Λ; Λ(m)) ≤ 0 (5.16d)

0 ≤ p ≤ P̄ , (5.7) (5.16e)

which is a SOCP that is solved at each iteration m until convergence, with Λ(m)

being updated to the optimal Λ.

The pseudocode for the overall proposed algorithm is outlined in Algorithm 7,

which is solved for each set M̂(m) ∈ S, and the solution achieving the lowest objective

δ(m) is returned. The convergence of Algorithm 7 can be guaranteed by showing

that the series of resulting objective is monotonically convergent. Due to the non-

increasing sequence of objective function values in the SCA algorithms for P (n,m)
a6

and P (n,m)
b , the objective values δ

(m)
a and δ

(m)
b at step i+ 1 are guaranteed to be less

than or equal to δ
(m)
a and δ

(m)
b at step m, which means that Algorithm 7 generates

a non-increasing sequence of objective function values δ
(m)
b , which guarantees the

objective convergence.
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Algorithm 7 Overall Algorithm for solving P (m)

1: Set m = 1, p(m) = 1, construct x(m) based on M̂(m);
2: repeat
3: Obtain θ(m) and the objective δ

(m)
a through SCA for problem P (n,m)

a6 given the
input x(m) and p̂ = p(m).

4: Obtain p(m) and the objective δ
(m)
b through SCA for problem P (n,m)

b given the

input x(m) and θ̂ = θ(m).
5: Set m = m+ 1;
6: until Convergence of objective δ

(m)
b .

The overall complexity of Algorithm 7 depends mainly on that of solving the

SDP problem (5.12) and the SOCP problem (5.16). Since the complexity of (5.16) is

approximately O (sNM) which is a polynomial time complexity with s as the conic

approximation parameter [61], the complexity of solving (5.12) is the dominant one.

The order of complexity for an SDP problem with m SDP constraints which includes

an n × n PSD matrix, is given by O (
√
n log(1/ϵ)(mn3 +m2n2 +m3)) where ϵ > 0

is the solution accuracy [128, Th. 3.12]. In our case, we have n = N + 1 and

m = M + N + 1; but since N is much larger than M in general, the approximate

computation complexity for solving (5.12) (and Algorithm 7), can be reduced to

O (log(1/ϵ)N4.5).

5.3.3 Numerical Results

We study in this section the solution performance considering a UE that is positioned

in the center of a 2-D circular area with a diameter of 200 meters, an IRS positioned

within 10 meters of the UE, and M = 5 randomly distributed APs. The system

parameters are those presented in Table 5.4 unless otherwise specified.
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Parameter Value
Task input size D 50 Kb
Task computational demand C 200 cycles/bit
Task latency deadline L̄ 30 ms
Task reliability requirement R̄ [0.9955 0.9999]
UAV cloudlet capacity Fj 3 GHz
UAV cloudlet reliability ϕj [0.9955 0.9999]
Path loss at 1 meter g0 −30 dB [123]
Path loss exponents (α1, α2) (4, 2.2)
Rician Factor 2
UE Transmission power Threshold P 30 dBm [124]
Radio spectrum bandwidth B 1 MHz [124]
Noise power spectral density N0 −174 dBm/MHz [124]

Table 5.2: Simulation Parameters
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Figure 5.2: Energy gain incurred from the use of the IRS.

In Fig. 5.2, we present the UE energy saving achieved through the IRS use

that is obtained from our solution with L̄ = 30 ms, and compare it to SUM-OBJ

where the sum of transmission rates is maximized in (5.12), and RAND-IRS where
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Figure 5.3: Objective value vs reliability requirement and number of IRS elements.

the IRS phase shifts are randomly configured. The proposed solution with N = 50

outperforms the other approaches, achieving an energy saving up to 15%, compared

to a saving below 5% from a random IRS configuration. Also, the gain over SUM-

OBJ is negligible when one communication channel is utilized, and becomes higher

with the use of more APs. In addition, the energy saving becomes larger when the

UE’s reliability requirement is higher, since the IRS can better enhance the lower

quality channels when more APs are utilized which reduces the UE’s transmission

power and hence the energy.

In Fig. 5.3, we study how the UE’s energy consumption is influenced by the

IRS size for different cases of latency and reliability. When the task has more strict

latency deadline, the energy consumption is increased since a higher transmission

power is needed to respect the latency bound. Also, a higher reliability requirement

causes an increase in energy since the UE needs to compute its task on more cloudlets
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Figure 5.4: Objective value vs reliability requirement and radio bandwidth.

that have lower quality channels, forcing the UE to allocate more transmission power

to meet the latency bound. Moreover, a larger IRS can significantly counteract the

increase in UE energy consumption by selectively enhancing the channels’ quality in

response to more stringent service requirements. Here, it is observed that a higher

channel gain is allocated through the IRS for the MEC server that is incurring a

higher computation latency, while for homogeneous servers the IRS optimization is

maximizing the minimum channel gain which would be the same without MEC. Also,

we note the influence of the IRS on the offloading decision, such as allowing the use

of a larger MEC server by selectively enhancing its channel, instead of offloading to

a smaller MEC server which incurs a higher computing latency.

In Fig. 5.4, we study how a change in the allocated system bandwidth can

influence the UE’s energy consumption for different service reliability levels. As pre-

viously discussed, more energy is consumed when a more strict reliability is required
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Figure 5.5: Resources saving vs number of IRS elements.

due to a higher transmission power needed for reaching more APs. Now, allocating

more bandwidth can maintain the same levels of the needed transmission rate, which

avoids the increase in energy consumption in response to a higher reliability require-

ment. Also, the energy decrease resulting from a higher system bandwidth is more

prominent when the bandwidth is already small, and the rate of energy increase is

lower in the third reliability case because some instances might require offloading to

the same number of APs to meet their reliability.

In Fig. 5.5, we study the impact of the IRS size on the resources saving assuming

the same UE energy consumption where the IRS is tailored towards resources saving,

which can often be the operators’ focus. With a larger IRS, a higher saving in com-

puting and bandwidth resources is achieved. However, a higher saving in computing

resources is possible in that case (close to 30%) compared to bandwidth resources

(up to 10%), which can bring a great advantage to operators in saving energy and
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costs related to computational resources. Also, the saving gains are more significant

for services with higher reliability since the IRS can better improve on lower quality

channels which can require less resources to meet the latency bound.

5.4 Multi-user case in OFDMA-based Networks

In this section, we extend our study to consider a multi-user OFDMA network.

First, we present our proposed mathematical problem in Subsection 5.4.1, and due

to the non-convexity of the problem, we propose in Subsection 5.4.2 the customized

solution approach discussed as follows. First, the offloading decision is performed

using a matching game algorithm. Then, the other parameters’ design is performed

through two sub-problems that are solved iteratively. First, the IRS elements’ phase

shifts are optimized through a novel technique based on the SCA approach, which

provides an approximate solution by iteratively solving until convergence, after the

sub-problem is converted to a DC representation. Then, the optimized values are

used as inputs for the second sub-problem, where the UEs’ transmission power and

resource allocation parameters are also optimized through an SCA-based approach

after the sub-problem is converted to a SOCP. The two sub-problems are solved

in an alternating fashion until the objective convergence. Finally, Subsection 5.4.3

discusses the numerical analysis.
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Figure 5.6: Multi-user OFDMA-based system model.

5.4.1 System Model and Problem Formulation

5.4.1.1 Spatial Model

As illustrated in Fig. 5.6, we consider an IRS-enabled edge computing system that

consists of M access points (APs) denoted by M = {1, 2, ...,M} that are located

within the reach of K IoT devices (UEs) denoted by K = {1, 2, ..., K}, which need to

offload their computational tasks to carry their service. Each AP j ∈ M is equipped

with a cloudlet of computational capacity Fj (GHz) for serving the UEs’ offloading

requests. Furthermore, each cloudlet j ∈ M has a reliability denoted by ϕj which can

be obtained after estimating the occurrence probability of failure scenarios through

statistical means based on the cloudlets’ historical failure pattern and maintenance

records [108]. The node failures corresponding to the reliability ϕj are mainly caused

by either software failures or hardware failures such as hard disk, memory and RAID
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controller failures [105]. For each AP j, an IRS comprised of N reflecting elements

denoted by Nj = {1, 2, ..., N} is deployed in order to assist the UEs’ computation

offloading, via generating passive beamforming coordinated by the IRS controller.

We introduce decision variable xkj ∈ {0, 1} indicating if UE k is offloading its task

to cloudlet j ∈ M. The task of UE k is represented by a tuple {dk, ck, L̄k, R̄k},

concatenating the task input size dk (Kb), computational demand density ck (CPU

cycles/bit), required latency L̄k (ms), and required reliability R̄k.

5.4.1.2 Communication Model

We consider the uplink communication used by the UEs for computation offloading

and ignore the downlink communication, since the task output size is in general

much smaller than the task input size [57]. We consider an OFDMA system with

assumed perfect channel state information (CSI), where the wireless radio spectrum

is divided into B resource blocks (RBs), indexed by B = {1, ..., B}. We denote

by ykb a binary decision variable indicating if RB b is assigned to UE k for the

communication with the associated APs where multiple RBs can be assigned to UE

k for task transmission. The channel coefficients on RB b between UE k and AP j,

UE k and IRS j, as well as IRS j and AP j, are denoted by hkjb, h
I
kjb = [hI1, h

I
2, ..., h

I
N ],

Gjb = [Gj1, Gj2, ..., GjN ]
T , respectively, which are assumed to be perfectly estimated.

We note that the IRS channels hI
kjb and Gjb are assumed to be of a much better

quality than the direct channel hkjb. We set the amplitude reflection coefficient to 1

for all IRS reflection elements, and denote the phase shift coefficient vector for IRS

j by θj = [θj1, θj2, ..., θjN ]
T , where θjn ∈ [0, 2π) for all j ∈ M, n ∈ N . Then, the
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reflection-coefficient vector of IRS j is denoted by vj = [eiθj1 , eiθj2 , ..., eiθjN ]T , where

i represents the imaginary unit, and we define Θj = diag(vj).

By denoting yk = {ykb, ∀b ∈ B}, the achieved transmission rate from UE k to AP

j on RB b Rkjb(θj), and the achievable rate Rkj(θ), are defined as:

Rkjb(pk,θj) = W log2

(
1 +

pk|hkjb + hI
kjbΘjGjb|2

WN0

)
(5.17a)

Rkj(yk, pk,θj) =
∑
b∈B

ykbRkjb(pk,θj) (5.17b)

respectively, where pk is a decision variable denoting UE k’s transmission power on

the assigned RBs out of the maximum power P̄k, W is the RB bandwidth, and N0

is the white noise power level. We note that a large block fading is assumed, such

as the channel fading is considered constant throughout the duration of the task

transmission.

5.4.1.3 Latency and Reliability Models

The latency incurred from transmitting UE k’s task to AP j, is given by:

Lu
kj(yk, pk,θj) =

dk
Rkj(yk, pk,θj)

(5.18)

When UE k offloads its task to cloudlet j, a portion fkj ≥ 0 of cloudlet j’s

computational resources Fj is allocated for computing UE k’s task. Thus, the latency

incurred from computing task k on cloudlet j depends on the allocated portion fijFj
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of the computational capacity, and is given by:

Lc
kj(fkj) =

dkck
fkjFj

(5.19)

For guaranteeing the tasks’ reliability, redundancies are performed where the task

of each UE k can be offloaded and computed on multiple cloudlets in parallel. By

denoting xk = {xkj, ∀j ∈ M}, the achieved reliability of task k is then represented

by:

Φk(xk) = 1−
∏
j∈M

(1− xkjϕj) (5.20)

A higher reliability can be achieved when task k is computed on more cloudlets,

but this increases the consumption of network bandwidth and computing resources.

The considered server reliability and failure model are similar to how they are usually

computed for cloud servers and was also considered in the context of edge computing

[126].

5.4.1.4 Problem Formulation

We aim at minimizing the total UEs’ consumed energy while respecting the tasks’ la-

tency and reliability requirements and the network resources capacity, by optimizing

the computation offloading matrix x = {xkj, ∀k ∈ K, j ∈ M}, the RBs association

matrix y = {ykb, ∀k ∈ K, b ∈ B}, the UEs’ transmission power vector p = {pk, ∀k ∈

K}, the UEs’ computational resources’ allocation matrix f = {fkj, ∀k ∈ K, j ∈ M},

and the phase shift coefficient matrix θ = {θjn, ∀j ∈ M, n ∈ N}. The latency and

reliability aware IRS-aided edge computation offloading problem P1, is formulated
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as follows:

P1 : minx,y,p,
f ,θ,τ

∑
k∈K

pk(dk/τk) (5.21a)

s.t. Rkj(yk, pk,θj) ≥ xkjτk, ∀k, j (5.21b)

xkj
(
Lu
kj(yk, pk,θj) + Lc

kj(fkj)
)
≤ L̄k (5.21c)

Φk(xk) ≥ R̄k, ∀k ∈ K (5.21d)∑
k∈K

ykb ≤ 1, b ∈ B (5.21e)

∑
k∈K

fkj ≤ 1, ∀j ∈ M (5.21f)

xkj, ykb ∈ {0, 1}

pk ∈ [0, P̄k], fkj ≥ 0, θjn ∈ [0, 2π) (5.21g)

where (5.21a) minimizes the total UEs’ consumed energy, which is the product of

the transmission power and the highest upload latency. (5.21b) sets τk to be the

minimum transmission rate for UE k which is being maximized. (5.21c) makes

sure the total offloading latency of UE k’s task on AP j composed of both the

upload and computation latencies, respects the UE’s latency deadline. (5.21d) is to

guarantee task k’s reliability requirement. (5.21e) ensures the orthogonal allocation

of the communication resources in the APs’ RAN. (5.21f) respects the computational

capacity of all cloudlets. Finally, (5.21g) is for the integrality and variable bounding

conditions. All mathematical symbols used thus far are summarized in Table 5.3.

Problem (5.21) is non-convex due to the coupling with respect to the phase shift
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Notation Description
K Set of UEs
M Set of APs
B Set of RBs
dk Task input size (Kb)
ck Task computational density (CPU cycles/bit)
L̄k Task latency deadline (ms)
R̄k Task reliability requirement
Fj Cloudlet computational capacity (GHz)
ϕj Cloudlet reliability
hkjb Channel coefficient between UE k and AP j on RB b

hI
kjb Channel coefficient between UE k and IRS j on RB b

Gjb Channel coefficient between AP j and its IRS on RB b
vj IRS j’s reflection-coefficient vector
B Radio spectrum bandwidth (MHz)
N0 Noise power spectral density (dBm/MHz)

xkj ∈ {0, 1} Indicates if UE k’s task is offloaded to cloudlet j
ykb ∈ {0, 1} Indicates if RB b is assigned to UE k

θj Phase shift coefficient vector for IRS j
pk ∈ R+ UE k’s transmission power (watts)
fkj ∈ R+ Portion of allocated resources for UE k on cloudlet j (GHz)

Table 5.3: Table of Notations

θ and RBs’ allocation y as well as the binary computation offloading indicator x in

(5.21c). In general, solving problem (5.21) optimally is very difficult, and there are

no standard methods for providing such a solution. Thus, in the next sections, we

propose a customized sub-optimal solution for solving the problem.

5.4.2 Proposed Iterative Low-Complexity Algorithm

In this section, we propose a sub-optimal solution in order to solve problem (5.21).
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5.4.2.1 Offloading Decision Optimization

Fist, we decouple the computation offloading optimization from the other variables.

We aim to define a policy for optimizing the UEs’ offloading decision where the

maximum average offloading latency from the UEs to the APs is minimized. We

note that other policies for optimizing the offloading decisions can be followed by the

NO. For the purpose of optimizing the computation offloading decisions, we consider

the UEs to offload their requests through the average obtained rate with all RBs

(ykb = 1 ∀(k, b) ∈ (K,B)) using the maximum available power (pk = P̄k) on the

direct signal with the APs without assistance from the IRS (θ is omitted). Thus,

equations (5.17b) and (5.18) can be replaced by:

R̂kj(xj) =

∑
b∈BW log2

(
1 +

P̄k|hkjb|2
WN0

)
∑

k∈K xkj
(5.22a)

L̂u
kj(xj) =

D

R̂kj(xj)

=
D
∑

k∈K xkj

W
∑

b∈B log2

(
1 +

P̄k|hkjb|2
WN0

) (5.22b)

Then, the computation offloading matrix x is optimized through problem Pa as:

Pa : min
x

γ (5.23a)

s.t. xkj

(
L̂u
kj(xj) + Lc

kj(xj)
)
≤ γ, ∀ k, j (5.23b)

ln(1− R̄k) ≥
∑
j∈M

xkj ln(1− ϕj) (5.23c)

xkj ∈ {0, 1} (5.23d)
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where the objective (5.23a) aims to minimize the maximum incurred offloading la-

tency from each UE to each associated AP represented by γ in (5.23b). Constraint

(5.23c) is the linear form of (5.21d) where the transformation steps are detailed in

Appendix A.4. Problem Pa is a mixed-integer convex problem. One solution to make

the problem more tractable and scalable, is to relax the binary condition of x where

post-processing steps will be performed for fixing the variables into their binary form.

However, this would provide a low-quality solution compared to the binary solution.

Thus, we propose a customized many-to-many matching game algorithm for solving

the problem.

First, we convert the game to a many-to-one matching game by forming the set

S which includes all possible APs subsets, and by defining the matching function

Ω : {K,S,≻K,≻S}. The preference utility for each UE k ∈ K when it is assigned to

subset s ∈ S is set to be the maximum offloading latency incurred from offloading

to all APs j ∈ s which needs to be minimized, and is defined as:

Uk(s) = max L̂u
kj(xj) + Lc

kj(xj), ∀j ∈ s (5.24)

The pseudocode for the proposed matching game algorithm for solving the offload-

ing decision optimization sub-problem, is outlined in Algorithm 8. In each iteration,

each UE k ∈ K calculates minS(k) as the subset that provides the minimum of-

floading cost minCost(k). Then, if minCost(k) is less than the cost of offloading

previously calculated, UE k deviates to subset minS(k) which provides the minimum

utility Uk(s). The algorithm converges when no UE has deviated. Finally, the output

Ω of Algorithm 8 is mapped to the computation offloading matrix x of problem Pa.
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The Ping-pong effect is a known effect where some UEs might be assigned back and

forth together to the same subsets, preventing the matching game algorithm from

converging. In order to avoid that problem, we define the set Ex(k), ∀k ∈ K which

will include the previously assigned APs’ subset anytime UE k deviates. Then, in

future iterations, UE k cannot be assigned to any of the subsets included in Ex(k).

Algorithm 8 UE’s Assignment Matching Algorithm

1: Input: Uk ∀k ∈ K
2: Initialization: Ω = {Ω(k)}k∈K = ∅, bestCost = 100, Ex = {Ex(k)}k∈K = ∅;
3: while true do
4: for k ∈ K do
5: Compute Uk(s), ∀ {s ∈ S} /∈ Ex(k)
6: Compute (minS(k),minCost(k)) = min(Uk)
7: if minCost(k) < bestCost(k) then
8: Set bestCost(k) = minCost(k)
9: Ex(k) = Ex(k) ∪ {Ω(k)}
10: Deviate to the new subset: Ω(k) = minS(k)

11: if no UE k ∈ K has deviated then
12: Stop the execution.

13: Map Ω to x⋆ and return the solution x⋆.

Convergence Analysis : At each iteration, a UE k ∈ K can either preserve the

same matching, or be matched with a new subset that has not been assigned to

her/him before. After enough iterations, each UE k ∈ K will have either exhausted

all possible matchings, or has maintained a matching that provides her/him with

the best preference utility, and hence no more UEs deviation will occur. Thus, the

algorithm converges to a stable matching [129].
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5.4.2.2 IRS Phase Shift Optimization and Resources Allocation

After optimizing the computation offloading matrix x through Algorithm 8, the RBs

association matrix y, the UEs’ transmission power vector p, the UEs’ computational

resources’ allocation matrix f , and the IRS phase shift matrix θ, can be optimized

through problem Pb as:

Pb : min
y,p,f ,
θ,τ

∑
k∈K

pk(dk/τk) (5.25a)

s.t. Rkj(yk, pk,θj) ≥ τk, ∀k, j (5.25b)

Lu
kj(yk, pk,θj) + Lc

kj(fkj) ≤ L̄k, ∀k, j ∈ M̂k (5.25c)∑
k∈K

ykb ≤ 1, b ∈ B (5.25d)

∑
k∈K

fkj ≤ 1, ∀j ∈ M (5.25e)

ykb ∈ {0, 1}

pk ∈ [0, P̄k], fkj ≥ 0, θjn ∈ [0, 2π) (5.25f)

where M̂k represents the subset of APs that UE k is assigned to, e.g. where x̂kj = 1.

Since problem Pb is still non-convex similar to P1, we approach a sub-optimal solution

for Pb by decoupling the optimization of the IRS phase shift from that of the RBs’

allocation and the UEs’ transmission power.

IRS Phase Shift Optimization: For the given values of the computation

offloading matrix x̂, the RBs’ allocation ŷ, the UEs’ transmission power vector p̂,

and the UEs’ computational resources’ allocation matrix f̂ , the IRS phase shift θ
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can be optimized as:

Pc1 : max
θ,τ ,u

∑
k∈K

τk (5.26a)

s.t.
∑
b∈B̂k

ukjb ≥ τk, ∀(k, j) ∈ (K,M̂k) (5.26b)

Rkjb(p̂k,θj) ≥ ukjb, ∀(k, j, b) ∈ (K,M̂k, B̂k) (5.26c)

θjn ∈ [0, 2π) (5.26d)

where B̂k represents the subset of RBs that UE k is assigned to (where ŷkb = 1), and

ukjb ≥ 0 is a newly introduced slack variable to facilitate the transformation of the

problem. The objective (5.25a) of problem Pc1 is to maximize the sum of the mini-

mum transmission rates from the UEs to the associated APs, which is represented by

τk, ∀k ∈ K in (5.26c). We remark that the obtained problem would be a generalized

convex problem due to the appearance of the generalized exponential cone constraint

(5.26c), which still makes the problem challenging due to the very high computation

time resulting from solving the problem using a generalized convex solver such as

FMINCON. In contrast, a standard convex program such as the SOCP can be solved

much more rapidly by the commercial solver MOSEK while achieving an accuracy

of 99.99% [61]. Thus, we are motivated to employ the conic approximation with

controlled accuracy in [61], where constraint (5.26c) can be rewritten by a set of

201



second order cone inequalities as:

κkjbq+4 ≤ 1 +
(
p̂k|hkjb + hI

kjbΘjGjb|2/WN0

)
(5.27)

a+ κkjb1 ≥
∥∥∥∥[a− κkjb1 2 + ukjb/W2m−1

]∥∥∥∥
2

a+ κkjb2 ≥
∥∥∥∥[a− κkjb2 5/3 + ukjb/W2m

]∥∥∥∥
2

a+ κkjb3 ≥
∥∥∥∥[a− κkjb3 2κkjb1

]∥∥∥∥
2

(5.28)

κkjb4 ≥ κkjb2 + κkjb3 /24 + 19/72a

a+ κkjbl ≥
∥∥∥∥[a− κkjbl 2κkjbl−1

]∥∥∥∥
2

∀ l ∈ {5, ..., q + 3}

a+ κkjbq+4 ≥
∥∥∥∥[a− κkjbq+4 2κkjbq+3

]∥∥∥∥
2

where κl = {κkjbl ≥ 0, k ∈ K, j ∈ M̂k, b ∈ B̂k}, a is a constant with a = 1, and q is

the conic approximation parameter which can be chosen as q = 4 to attain a high

accuracy. By replacing the term hkjb + hI
kjbΘjGjb in (5.27) by hkjb + vH

j Φkjb with

Φkjb = diag(hI
kjb)Gjb, problem Pc1 can be transformed to:

Pc2 : max
θ,τ ,u

∑
k∈K

τk (5.29a)

s.t. κkjbq+4 ≤ 1 + p̂k/WN0(v
H
j ΦkjbΦ

H
kjbvj

+ vH
j Φkjbhkjb + hHkjbΦ

H
kjbvj + |hkjb|2) (5.29b)

|vjn|2= 1, (5.26b), (5.28) (5.29c)

By introducing slack variable t = {tj, ∀j ∈ M}, problem Pc2 can be converted
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to a homogeneous QCQP as:

Pc3 : max
θ,τ ,u

∑
k∈K

τk (5.30a)

s.t. κkjbq+4 ≤ 1 + p̂k/WN0

(
v̄H
j Rkjbv̄j + |hkjb|2

)
(5.30b)

|vn|2= 1, (5.26b), (5.28) (5.30c)

Rkjb =

ΦkjbΦ
H
kjb hkjbΦkjb

hkjbΦ
H
kjb 0

 ∀j, v̄j =

vj

tj


We note that v̄H

j Rkjbv̄j = tr(RkjbV j) with V j = v̄jv̄
T
j . Problem Pc3 can be

transformed to:

Pc4 : max
V ,τ ,u

∑
k∈K

τk (5.31a)

s.t. κkjbq+4 ≤ 1 + p̂k/WN0

(
v̄H
j Rkjbv̄j + |hkjb|2

)
(5.31b)

Vj,n,n = 1, ∀n ∈ {1, 2, ..., N + 1} (5.31c)

V j ≽ 0 (5.31d)

rank(V j) = 1, (5.26b), (5.28) (5.31e)

which is a non-convex SDP where (5.31d) and (5.31e) indicate that V j is a semi-

definite matrix with a non-convex rank-one constraint which makes solving the prob-

lem very challenging. One widely adopted technique is the SDR [127], where the

rank-one constraint is relaxed making the problem a convex SDP which can be eas-

ily solved, and then the Gaussian randomization is used to construct a rank-one
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solution from V j [127]. However, this technique does not guarantee obtaining a fea-

sible or a rank-one solution to (5.31) especially when the problem size grows. Thus,

we propose a novel SCA approach for solving (5.31) which is guaranteed to converge

where the rank-one constraint is written in a DC form.

With σr(V j) defined as the r-th largest singular value of V j, the rank-one con-

straint for V j indicates that σ1(V j) > 0 and σr(V j) = 0, ∀i ∈ {2, 3, ..., N+1}. Thus,

by defining the trace norm and spectral norm of V j as Tr(V j) =
∑N+1

n=1 σr(V j) and

||V j||= σ1(V j), respectively, the rank-one constraint can be equivalently rewritten

as the difference of these two convex norms as
∑

j∈M (Tr(V j)− ||V j||) = 0 with

Tr(V j) > 0. Hence, problem Pc4 can be converted into the following DC program:

Pc5 : min
V ,τ ,u

−
∑
k∈K

τk +
∑
j∈M

(Tr(V j)− ||V j||) (5.32a)

s.t. (5.26b), (5.28), (5.31b), (5.31c) (5.32b)

which is still non-convex due to the concave term −||V j|| in (5.32a). Thus, we

proceed to linearize f(V j) = ||V j|| by substituting it with the term f̃(V j;V
(m)
j ) =〈

ψ||V (m)
j ||,V j

〉
, where V

(m)
j is the solution obtained at the previous SCA iteration

n, and ψ||V (m)
j || denotes the sub-gradient of spectral norm at point V

(m)
j . We note

that one sub-gradient of ||V j|| can be efficiently computed as q1q
H
1 , where q1 is the

vector corresponding to the largest singular value σ1(V j). Thus, Pc5 can be replaced
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by:

P (m)
c6 : min

V ,τ ,u
Γc = −

∑
k∈K

τk +
∑
j∈M

(
Tr(V j)− f̃(V j;V

(m)
j )

)
(5.33a)

s.t. (5.26b), (5.28), (5.31b), (5.31c) (5.33b)

which is a standard convex SDP that is solved at each SCA iteration n until conver-

gence given an initial V
(0)
j . Specifically, we design a practical stopping criterion with∑

j∈M

(
Tr(V j)− f̃(V j;V

(m)
j )

)
< ϵ, where ϵ is a sufficiently small positive constant.

After obtaining a feasible V j, ∀j ∈ M, the phase shift matrix θj can be then easily

recovered from V j, ∀j ∈ M. The algorithm pseudocode for solving the IRS phase

shift optimization sub-problem at each iteration of the alternating optimization, is

outlined in Algorithm 9.

Algorithm 9 IRS Phase Shift Optimization

1: Initialize:
2: x̂, ŷ, p̂, f̂ , and n = 0;
3: Choose an initial point V (m);
4: repeat
5: Solve P (m)

c6 to obtain the optimal solution ω
(m)
c = {V ⋆, τ ⋆,u⋆} and objective

Γ
(m)
c at the nth iteration.

6: Update V (m) = V ⋆;
7: n = n+ 1;
8: until Convergence of the objective of P (m)

c6 .
9: Recover the phase shift matrix θ⋆ from V ⋆.
10: Return the solution θ⋆ and the objective Γ⋆

c = Γ
(m)
c .

Convergence Analysis : The convergence of Algorithm 9 can be guaranteed by

showing that the series of resulting objective is monotonically convergent. Due to

the convex approximation for f̃(V j;V
(m)
j ), the updating rules in Algorithm 9, c.f.,
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Step 6, ensure that the solution set ω
(m)
c is a feasible solution to problem Pc5 at

step n + 1. This subsequently leads to the results of Γ
(n+1)
c ≤ Γ

(m)
c , which means

that Algorithm 9 generates a non-increasing sequence of objective function values.

Due to constraint (5.31b), the sequence of Γ
(m)
c , n = 1, 2, . . . is bounded below and

therefore, Algorithm 9 guarantees that the objective converges.

Resources Allocation Optimization: For the given values of the phase shift

θ̂, the RBs’ allocation y, the UEs’ transmission power p and the UEs’ computational

resources’ allocation f , can be optimized as:

Pd1 : miny,p,
f ,u

∑
k∈K

pk(dk/τk) (5.34a)

s.t.
∑
b∈B

ukjb ≥ τk, ∀(k, j) ∈ (K,M̂k) (5.34b)

ykbRkjb(pk, θ̂j) ≥ ukjb, ∀(k, j, b) ∈ (K,M̂k,B) (5.34c)

Lu
kj(yk, pk, θ̂j) + Lc

kj(fkj) ≤ L̄k, ∀j ∈ M̂k (5.34d)

(5.25d), (5.25e) (5.34e)

ykb ∈ {0, 1}, pk ∈ [0, P̄k], fkj ≥ 0 (5.34f)

Problem Pc is a mixed-integer non-convex program due to the binary condition of

variable y in (5.34f), and to (5.34a) being neither convex nor concave in general.

We note that the generalized exponential cone constraint (5.34c) can be rewritten

into a set of second order cone inequalities similar to (5.26c) with a = ykb, and

the generalized convex constraint (5.34d) can be easily transformed into a second-

order cone constraint. In order to convexify problem Pc, we introduce slack variable
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δk, ∀k ∈ K which will equivalently replace (5.34a), and slack variable Λk, ∀k ∈ K,

and equivalently define the following constraints:

δkτk ≥ Λ2
k (5.35a)

pk − Λ2
k ≤ 0 (5.35b)

Here, (5.35a) is a quadratic conic convex constraint, while (5.35b) is non-convex due

to the concave function g(Λk) = −Λ2
k which renders the left side of (5.35b) as a DC

form. Thus, with Λ(m) as the input point, we employ the SCA method to replace

g(Λ) by its first order Taylor approximate as:

g̃(Λk; Λ
(m)
k ) = −(Λ

(m)
k )2 − 2Λ

(m)
k (Λk − Λ

(m)
k ) (5.36)

The mixed-integer SOCP approximation of problem Pd1 will still pause scalability

limitations, preventing the SCA algorithm from being applied to big instances due

to the mixed-integer nature of the problem, which is caused by the binary condition

of variable y in (5.38g). To solve that problem, we adopt a similar approach to [83],

and relax the binary condition for variable y by introducing the following constraint:

0 ≤ ykb − g̃(ykb; y
(m)
kb ) ≤ ζkb (5.37)

which is the approximated form of the original non-convex constraint, where ζ =

{ζkb ≥ 0, ∀k ∈ K, b ∈ B} is a newly introduced slack variable. Constraint (5.37) will

force variable y to take a binary value with a penalty term added to the objective. At
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this point, by employing the above approximations, an approximated SOCP problem

for problem Pd1 is formulated at the mth iteration as:

P (m)
d2 : min

y,p,f ,
u,Λ,ζ

Γd =
∑
k∈K

dkδk + A
∑
k∈K

∑
b∈B

ζkb (5.38a)

s.t.
∑
b∈B

ukjb ≥ τk, ∀(k, j) ∈ (K,M̂k) (5.38b)

κkjbq+4 ≤ y(k, b) +
(
pk|hkjb + hI

kjbΘ̂jGjb|2/WN0

)
(5.38c)

Lu
kj(yk, pk, θ̂j) + Lc

kj(fkj) ≤ L̄k, ∀j ∈ M̂k (5.38d)

pk + g̃(Λk; Λ
(m)
k ) ≤ 0 (5.38e)

(5.25d), (5.25e), (5.28), (5.35a), (5.37) (5.38f)

ykb ∈ [0, 1], pk ∈ [0, P̄k], fkj ≥ 0 (5.38g)

where A > 0 is the penalty parameter for reinforcing the binary condition on variable

y. Here, Λ(m) and y(m) are being updated to the optimal Λ and y, respectively, at

each iteration of the SCA-based algorithm. The algorithm pseudocode for solving the

resources’ allocation optimization sub-problem at each iteration of the alternating

optimization, is outlined in Algorithm 10.

Convergence Analysis : The convergence of Algorithm 10 can be guaranteed by

showing that the series of resulting objective is monotonically convergent. Due to

the convex approximation in (5.36), the updating rules in Algorithm 10, c.f., Step

6, ensure that the solution set ω
(m)
d is a feasible solution to problem Pd1 at step

n + 1. This subsequently leads to the results of Γ
(m+1)
d ≤ Γ

(m)
d , which means that

Algorithm 10 generates a non-increasing sequence of objective function values. Due
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Algorithm 10 Resources Allocation Optimization

1: Initialize:
2: x̂, θ̂, and m = 0;
3: Choose an initial point Λ(m);
4: repeat
5: Solve P (m)

d2 to obtain the optimal solution ω
(m)
d = {y⋆,p⋆,f ⋆,u⋆,Λ⋆} and

objective Γ
(m)
d at the mth iteration.

6: Update Λ(m) = Λ⋆;
7: m = m+ 1;
8: until Convergence of the objective of P (m)

d2 .

9: Return the solution {y⋆,p⋆,f ⋆} and the objective Γ⋆
d = Γ

(m)
d .

to the latency constraints in (5.38d), the sequence of Γ
(m)
d ,m = 1, 2, . . . is bounded

below and therefore, Algorithm 10 guarantees that the objective converges.

The overall algorithm pseudocode for providing an efficient sub-optimal solution

for problem P1, is outlined in Algorithm 11.

Algorithm 11 Sub-optimal Solution for Solving P1

1: Obtain x⋆ through Algorithm 8.
2: Start with initial values: y⋆ = 1, p⋆ = P̄ , and f ⋆ = 1;
3: Set i = 1
4: repeat
5: Obtain θ(i) and the objective Γ

(i)
c through Algorithm 9 given the inputs ŷ =

y(i), p̂ = p(i), and f̂ = f (i).
6: Obtain {y(i),p(i),f (i)} and the objective Γ

(i)
d through Algorithm 10 given the

input θ̂ = θ(i).
7: Set i = i+ 1;
8: until convergence of objective Γ

(i)
d .

9: Return the optimized solution ω⋆ = {x(i),y(i),p(i),f (i),θ(i)} and objective Γ
(i)
d .

Convergence Analysis : The convergence of Algorithm 11 can be guaranteed by

showing that the series of resulting objective is monotonically convergent. Due to the

non-increasing sequence of objective function values in Algorithm 9 and Algorithm
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10, the objective values Γ
(m)
c and Γ

(m)
d at step i+1 are guaranteed to be less than or

equal to Γ
(m)
c and Γ

(m)
d at step m, which means that Algorithm 11 generates a non-

increasing sequence of objective function values Γ
(m)
d , which guarantees the objective

convergence.

Complexity Analysis : The overall complexity of Algorithm 11 depends mainly

on that of solving the SDP problem (5.33) in Algorithm 9, and the SOCP problem

(5.38) in Algorithm 10. Since the complexity of (5.38) is approximately O (qKMB)

which is a polynomial time complexity with q as the conic approximation parame-

ter [61], the complexity of solving (5.33) is the dominant one. The order of com-

plexity for an SDP problem with m SDP constraints which includes an n × n

PSD matrix, is given by O (
√
n log(1/ϵ)(mn3 +m2n2 +m3)) where ϵ > 0 is the

solution accuracy [128, Th. 3.12]. In our case, we have n = N + 1 and m =

KM + qKMB + N + 1; but since qKMB is the dominant term, the approximate

computation complexity for solving (5.33) (and Algorithm 11), can be defined as

O (log(1/ϵ)(qKMBN3 + (qKMB)2N2 + (qKMB)3)).

5.4.3 Numerical Results

In this section, we study the design performance of the proposed solution through

simulations. The main instance consists of UEs that are positioned in the center of

a 2-D area of 400 meters2. Instance A consists of K = 20 UEs that are positioned

within the range of M = 5 randomly distributed APs each having a nearby IRS

with N = 20 elements, and instance B consists of K = 10 UEs that are positioned

within the range of M = 3 randomly distributed APs each having a nearby IRS with
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Table 5.4: Instance Parameters

Parameter Value

Task input size Dk 50 kilobits

Task computational demand Ck 200 cycles/bit

UEs’ transmission power threshold P̄k P = 30 dBm [124]

Cloudlet capacity Fj 10 GHz

Cloudlet reliability ϕj 0.9955

Rician Factor 2

Path loss (PL) at 1 meter g0 −30 dB[123]

PL exponents for the UE-AP link (IRS link) 4 (2.2)

RB Radio spectrum bandwidth W 1 MHz [124]

Noise power spectral density N0 −174 dBm/Hz [124]

N = 30 elements. The system parameters are presented in Table 5.4.

In Fig. 5.7, we show the results obtained from Algorithm 8 for instance A with

UEs’ reliability requirement R̄k = 0.9955, where each UE needs to offload its task to

one AP that achieves its minimum offloading latency. In Fig. 5.7.a, the assignment

results for the UEs is shown where the servers have identical resources’ capacity.

However, in Fig. 5.7.b, the capacity of servers 4 and 5 has been reduced by half,

which reflects the deviation of UEs 1 and 15 to AP 2. This change is due to the

fact that with lower capacity, servers 4 and 5 become quickly congested achieving

a higher computation latency, which prompts some UEs to deviate to other servers

that are able to achieve a lower offloading latency.

In Fig. 5.8, we use instance A for comparing the sum offloading latencies obtained
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5.7.a Servers with identical resources capacity
(Fj = 10 GHz).
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5.7.b Servers 4 and 5 have resources capacity F4 =
F5 = 5 GHz.

Figure 5.7: Matching game UEs’ offloading decisions results.
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Figure 5.8: Matching game compared to other approaches.

from the matching game algorithm with that of Game2, where the cost of each UE

is computed only using the channel gain. Also, we compare our algorithm to the
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Figure 5.9: Energy gain incurred from the use of the IRSs.

mixed-integer convex problem Pa. As it can be seen, the matching game algorithm

achieves a relatively small gap when compared to the optimal solution, where the gap

grows a little bigger when more UEs are added to the network. However, it is worth

noting that the matching game algorithm has a much lower complexity and is able

to execute large instances very quickly. Also, it can be seen that our matching game

approach outperforms the other variation where the cost is calculated only using the

UEs’ channel gain.

In Fig. 5.9, we present the UEs’ energy saving achieved through the IRS use that

is obtained from our solution for instance A, and compare it to SUM-OBJ where

the sum of transmission rates is maximized in (5.33), and RAND-IRS where the

IRS phase shifts are randomly configured. As it can be seen, the proposed solution

with N = 40 outperforms the other approaches, where the gain over SUM-OBJ is

negligible when one communication channel is utilized, and becomes higher with the
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Figure 5.10: Objective value vs reliability requirement and number of IRS elements.

use of more APs. It is also observed that the energy saving becomes larger when the

UEs’ reliability requirement is higher. This is because when more APs are utilized,

the IRSs can better enhance the lower quality channels, which reduces the UEs’

transmission power and therefore their consumed energy.

In Fig. 5.10, we study how the IRS size influences the achieved total energy

consumption for different classes of latency and reliability requirements, for instance

A. It is observed that a higher energy consumption is incurred when the UEs have a

more strict latency deadline, since the UEs in this case need to use a higher transmis-

sion power in order to satisfy their latency requirement. In addition, an increase in

the energy consumption is caused by a higher reliability requirement, since the UEs

need to offload their task on more cloudlets that have lower quality channels, which

forces the UEs to allocate more transmission power to meet their latency bound.

Moreover, it can be seen that when the operator uses a larger IRS, the increase in
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Figure 5.11: Objective value vs reliability requirement and number of resource blocks.

the UEs’ transmission power and energy consumption can be significantly counter-

acted by selectively enhancing the channels’ quality in response to more stringent

service requirements.

In Fig. 5.11, we study using instance B how the UEs’ energy consumption is

affected by the available system bandwidth for the UEs for different service reliability

levels. As can be seen, more energy is consumed when a more strict reliability is

required, which is because the UEs’ need to use a higher transmission power for

reaching more APs. However, the availability of more RBs can help in maintaining

the same levels of the needed transmission rate, which avoids the increase in energy

consumption in response to a higher reliability requirement.
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5.5 Conclusion

In this chapter, we studied an IRS-aided MEC system for enabling low-energy compu-

tation offloading for IoT services with stringent latency and reliability requirements,

considering redundancy of tasks computation for minimizing the UEs’ offloading

energy consumption. First, we considered the single-user case where we proposed

our non-convex problem for optimizing the IRS elements’ phase shifts, the offload-

ing decision, and the UE’s transmission power. Then, we extended our study to

the multi-user OFDMA network, where we presented our non-convex problem for

optimizing the IRS elements’ phase shifts, the offloading decisions, the UEs’ trans-

mission power, and the allocated servers’ computational resources and OFDMA RBs.

For each of the studied problems, we proposed our customized sub-optimal algorithm

where the decisions are separately optimized in an alternating fashion using the SCA

technique and the DC representation. Through numerical analysis, we demonstrated

the energy reduction and saving in network resources that are possible through the

optimized use of the IRSs especially for offloading services with higher reliability

requirements, and we highlighted on the IRSs’ influence on the design of the MEC

parameters. Our work offers valuable insights into provisioning computation offload-

ing for services with stringent latency and reliability requirements with the aid of

deployed IRSs.
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Chapter 6

Conclusion and Future Research

Directions

This chapter concludes the presented thesis and highlights future research directions.

6.1 Conclusion

The concept of smart living in the age of IoT and smart city has recently emerged,

and continues to gain significant interest towards modernizing all traditional opera-

tions and improving the quality of life through enabling innovative services leveraged

by advanced information and communication technologies. A myriad of new business

practices has been unleashed, paving the way for a surging number of UEs to carry

out novel ubiquitous and heterogeneous use cases belonging to various verticals, such

as smart healthcare, autonomous driving, and smart manufacturing, while imposing

extreme unprecedented QoS such as stringent latency and reliability requirements.
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Within the advancing 5G network technologies that aim to enable this smart and

connected world, MEC has been proposed as a cutting edge solution for realizing com-

putation offloading within the vicinity of end-user devices through the deployment of

edge cloudlets, and therefore realizing the ever-needed low-latency computation for

the low-energy end-user devices that is required to operate the modern 5G services.

However, the realization of the latency and reliability aware computation offloading

in the context of MEC, is coupled with various challenges, prompting the NOs to

seek the assistance of novel technologies and architectures, in order to ensure the

provisioning of the modern latency and reliability sensitive services. However, the

integration of those technologies in the MEC system introduces new challenges and

difficulties that must be addressed through novel techniques and solutions that are

efficiently designed to fully leverage the available resources and infrastructure for the

purpose of maximizing the efficiency of MEC computation offloading.

Throughout this thesis, we addressed several challenges linked to the realization

of a latency and reliability aware edge computation offloading in 5G networks and

beyond, with the aid of novel technologies and architectures while tackling their

challenges. We first highlighted on the shortcomings of MEC that are preventing it

from fully realizing its intended vision in light of various scenarios and network condi-

tions. Then, we explored novel 5G technologies and techniques that can be integrated

with the MEC system for assisting in overcoming its limitations and enhancing the

computation offloading performance, namely, the multi-tier MEC architecture, UAV-

mounted cloudlets, and the IRS-aided MEC system, which have incredible potentials

to realize the ever-needed low-latency and high-reliability computation offloading in
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light of various network conditions in the age of 5G and beyond. Then, we presented

the challenges that we aim to tackle in order to fully leverage those technologies

for aiding the MEC system in provisioning the computation offloading service, while

minimizing the UEs’ energy consumption and maximizing the network resources’

utilization. Towards that end, we provided novel contributions related to the alloca-

tion of network and devices’ resources as well as the optimization of other offloading

parameters, and thereby efficiently utilizing the underlying infrastructure such as

to enable energy and cost-efficient computation offloading schemes, by leveraging

several customized solutions and optimization techniques.

In Chapter 2, we studied the problem of the joint optimization for the NO’s

computational cost and the UEs’ energy consumption in the context of a multi-tier

edge-cloud system with a deployed second-tier edge-cloud, where we optimized its

use through proposed low-complexity algorithms, such as to achieve an energy and

cost-efficient solution that guarantees the services’ latency requirements. Due to the

significant advantage of operating MEC in heterogeneous networks, we extended in

Chapter 3 the energy-efficiency study to a network of small-cells with the second-tier

edge server being co-located within the MC which can be reached through a wireless

backhaul, where we optimized the macro-cell server use along with the other offload-

ing parameters through a proposed customized algorithm based on the Successive

Convex Approximation (SCA) technique.

Given the UAVs’ considerable ability in expanding the capabilities of cellular net-

works and MEC systems, we explored in Chapter 4 the reliability-aware optimized

use of UAV-mounted cloudlets for provisioning the MEC computation Offloading
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service with stringent latency and reliability guarantees through the use of tasks

redundancy. Towards that end, we studied the optimized positioning and use of

UAV-mounted cloudlets for computation offloading through two planning and op-

erational problems while considering tasks redundancy, and proposed customized

solutions for solving those problems. Finally, given the IRSs’ ability to also enhance

the channel conditions through the tuning of their passive reflecting elements, we ex-

tended in Chapter 5 the latency and reliability study to an IRS-aided MEC system

for enhancing the computation offloading performance in scenarios with unfavorable

RAN channel conditions. We addressed both a single-user and multi-user OFDMA

cases, where we explored the optimized IRSs’ use in order to reveal their role in

reducing the UEs’ offloading energy consumption and saving the network resources,

through proposed customized solutions based on the SCA approach and the SDR

technique.

6.2 Future Research Directions

While we addressed several research challenges related to MEC in conjunction with

the leveraged novel 5G network technologies, there still exists many future research

directions that need to be tackled.
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6.2.1 UAV-aided MEC Systems With The Aid of Second-

tier High-altitude Platforms

After we leveraged UAV-mounted cloudlets to conduct the MEC operation for ser-

vices with stringent latency and reliability requirements in Chapter 4, we envision to

extend this aerial MEC system with HAPs that are co-located with cloudlets which

can be utilized as second-tier computational units for supporting the LAP cloudlets

with the offloading operations. In such case, the MEC system would greatly ben-

efit from the air-to-air communication links between the cloudlet tiers for enabling

low-latency migration of the UEs’ tasks to be computed on the HAP cloudlets which

would typically be of higher capacity. In this way, the MEC system would possess

more capabilities that would allow for more UEs’ request to be accommodated, where

the optimized UEs’ offloading decisions between the LAP and the HAP cloudlets, as

well as the allocation of computation and wireless resources would be conducted in

order to maximize the system efficiency.

6.2.2 Leveraging Machine Learning For Optimized IRS-aided

MEC Networks with Load Variability

After we addressed the IRS-aided MEC computation offloading problem in Chapter

5, an interesting scenario that comes to light and is worth tackling is to consider the

variability in the offloading requests across a time duration, where there is uncertainty

in the arrival of UEs and their computation offloading pattern. Here, we observe

that a DRL approach to solve the problem would form an effective solution for
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accounting for the randomness in the offloading pattern, whereby the DRL agent

learns to identify the request patterns and then take optimized decisions for the IRS

elements’ phase shifts and resources allocation, such as to minimize the total UEs’

energy consumption in light of the existing network conditions.

6.2.3 Minimizing AoI For Computation Offloading in Edge-

clouds

Seeing the concept of AoI that has recently emerged as a novel metric that measures

the freshness of information for real-time applications which need to transmit status

update packets to the destination node as timely as possible, there are modern ser-

vices and applications which require performing intensive tasks’ computations on the

collected input before the real-time status information can be sent. In such case, see-

ing the limited capabilities of end-user devices, we observe the potential of a MEC

system for minimizing the AoI by efficiently devising computation offloading and

resources allocation strategies such as to accommodate the computation-intensive

needs of the requesting services, and therefore guaranteeing the information fresh-

ness. In this case, it is also promising to explore a hierarchical MEC system and

study its benefits in decreasing the AoI by leveraging the computation capacity of

an upper tier cloudlet, and thereby accommodating a larger number of UEs’ offload-

ing requests for operating real-time applications.
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Appendix A

Proofs

A.1 Proof of Equivalence between (2.7) and (2.10)

To prove that (2.7) and (2.10) are equivalent, we must prove that at optimality, all

the constraints (2.10b), (2.10c), and (2.10e) are active, e.g., all constraints occurs

at equality. We prove this by contradiction. Assuming that at the optimal solution

p⋆,α⋆,x⋆,y⋆,f ⋆,u⋆,v⋆, t⋆, ζ⋆, η⋆, some of the constraints in (2.10b), (2.10c), and

(2.10e) achieves at strict inequality. Let us assume that the strict inequality occurs

at constraint (2.10b) at index i1 (or (2.10e)). At this point, we remark that when

we can easily find another value ζ̃i1 > ζ⋆i1 (or η̃ > η⋆) so that (2.10b) at index i1

(or (2.10e)) becomes equality and result in a higher objective function of problem

(2.10). This contradicts our assumption of optimality. On the other hand, assuming

that the strict inequality occurs at constraint (2.10c) at some index i1, j1. Similarly,

we can easily find an upper-scaled value t̃i1ji > t⋆i1ji to make (2.10c) become equality.
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However, this subsequently makes (2.10b) at index i1 become strict inequality, and

again we can find a value ζ̃i1 > ζ⋆i1 to make this constraint equality to result higher

objective function. This also contradicts our assumption. Thus, at optimality, all

the constraints (2.10b), (2.10c), and (2.10e) are active. This completes the proof.

A.2 Proof of Equivalence between (3.10b) and (3.17a),

(3.17e)

The equivalence between (3.10b) and (3.17a), (3.17e) is proved if there exists a

feasible solution taken from constraint (3.10b), it must also satisfy (3.17a), (3.17e).

In addition, if there exists a feasible solution taken from constraints (3.17a), (3.17e),

it must also satisfy (3.10b). Let us take first the case when a feasible solution to

(3.17a), (3.17e) are s◦i,j,2, r
ue,◦
i,j,2, f

sc,◦
i,j , θ

◦
i,j,2. In this case, since s◦i,j,2 is not greater than

(θ◦i,j,2)
2 in (3.17e), this means that we can find (θ◦i,j,2)

2 to replace into (3.17a) and

hence (3.10b) is satisfied.

Now let us take the case when (3.10b) is satisfied and the feasible solution for

(3.10b) is s◦i,j,2, r
ue,◦
i,j,2, f

sc,◦
i,j . In this case, we can easily choose a value θ◦i,j,2 =

√
s◦i,j,2 so

that (3.17a), (3.17e) are satisfied. This completes the proof.
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A.3 Convexification Steps of (4.16)

First, we re-arrange the terms of (4.10c) as follows:

1− R̄i ≥
∏
j∈M

(1− oijϕj) (A.1)

Then, after taking the natural logarithm of both sides and using its properties,

constraint (A.1) can be equivalently rewritten as:

ln(1− R̄i) ≥
∑
j∈M

ln(1− oijϕj) (A.2)

The RHS of (A.2) ∀ j ∈ M is equals to ln(1 − ϕj) if oij = 1, and to 0 if oij = 0.

Thus, (A.2) can be replaced by the linear constraint (4.16).

A.4 Convexification Steps of (5.23c)

First, we re-arrange the terms of (5.21d) as:

1− R̄k ≥
∏
j∈M

(1− xkjϕj) (A.3)

Then, after taking the natural logarithm of both sides and using its properties,

constraint (A.3) can be equivalently rewritten as:

ln(1− R̄k) ≥
∑
j∈M

ln(1− xkjϕj) (A.4)
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The RHS of (A.4) ∀ j ∈ M is equal to ln(1 − ϕj) if xkj = 1, and to 0 if xkj = 0.

Thus, (A.4) can be replaced by the following linear constraint:

ln(1− R̄k) ≥
∑
j∈M

xkj ln(1− ϕj) (A.5)
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