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Abstract

Enabling Millimeter Wave Communications for Use Cases of 5G

and Beyond Networks

Mohamed Ibrahim, Ph.D.

Concordia University, 2022

The wide bandwidth requirements of the fifth generation (5G) and beyond networks

are driving the move to millimeter wave (mmWave) bands where it can provide a huge

increase in the available bandwidth. Increasing the bandwidth is an effective way to

improve the channel capacity with limited power. Moreover, the short wavelengths of

such bands enable massive number of antennas to be integrated together in small areas.

With such massive number of antennas, narrow beamwidth beams can be obtained which

in turn can improve the security. Furthermore, the massive number of antennas can

help in mitigating the severe path-loss at mmWave frequencies, and realize high data

rate communication at reasonable distances. Nevertheless, one of the main bottlenecks of

mmWave communications is the signal blockage. This is due to weak diffraction ability

and severe penetration losses by many common building materials such as brick, and

mortar as well as the losses due to human bodies. Thus, user mobility and/or small

movements of obstacles and reflectors cause rapid channel gain variations which leads to

unreliable communication links.

The harsh propagation environment at such high frequencies makes it hard to provide

a reliable service, hence, maintaining connectivity is one key design challenge in mmWave

networks. Relays represent a promising approach to improve mmWave connectivity where

they can redirect the signal to avoid the obstacles existing in the propagation environment.

However, routing in mmWave networks is known to be a very challenging problem due to

the inherent propagation characteristics of mmWave frequencies. Furthermore, inflexible

routing technique may worsen network performance and increase scheduling overhead.

As such, designing an appropriate transmission routing technique for each service is a

crucial issue in mmWave networks. Indeed, multiple factors must be taken into account

in the routing process, such as guaranteeing the robustness of network connectivity and

providing high data rates.
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In this thesis, we propose an analytical framework to investigate the network reliabil-

ity of mmWave relaying systems for multi-hop transmissions. We also propose a flexible

routing technique for mmWave networks, namely the nth best routing technique. The

performance of the proposed routing technique is investigated using tools from stochas-

tic geometry. The obtained results provide useful insights on adjusting the signal noise

ratio (SNR) threshold for decode and forward (DF) relay according to the order of the

best relay, blockage and relay densities in order to improve spectral efficiency. We also

propose a novel mathematical framework to investigate the performance of two appropri-

ate routing techniques for mmWave networks, namely minimum hop count (MHC) and

nearest LoS relay to the destination with MHC (NLR-MHC) to support wide range of

use cases for 5G and beyond networks. Analytical models are provided to evaluate the

performance of the proposed techniques using tools from stochastic geometry. In doing

so, we model the distribution of hop count using phase-type distribution, and then we

use this distribution to derive analytical results for the coverage probability and spectral

efficiency. Capitalizing on the derived results, we introduce a comprehensive study of the

effects of different system parameters on the performance of multi-hop mmWave systems.

These findings provide important insights for designing multi-hop mmWave networks with

better performance.

Furthermore, we adapt the proposed relay selection technique for IoT devices in

mmWave relaying systems to prolong the IoT device’s battery life. The obtained results

reveal the trade-off between the network connectivity and the energy consumption of

IoT devices. Lastly, we have exploited the enormous bandwidth available in the mmWave

band to support reliable fronthaul links for cell-free (CF) massive multiple-input multiple-

output (MIMO). We provide a comprehensive investigation of different system parameters

on the uplink (UL) performance of mmWave fronthaul-based CF mMIMO systems. Re-

sults reveal that increasing the access point (AP) density beyond a certain limit would not

achieve further improvement in the UL data rates. Also, the higher number of antennas

per AP may even cause UL data rates degradation.
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Chapter 1

Introduction

5G and beyond networks experience a new era of intelligence with connected people and

things towards a fully connected intelligent digital world. This new era will lead to

true device connectivity through the IoT where billions of devices, such as sensors, are

connected among them and with the Internet [3]. In fact, the IoT technology is about

the communication and interaction between devices from diverse environments to collect

data, process it, and leverage resulting information and knowledge to make the world

around us better via smarter and/or automated decision-making. In this spirit, 5G and

beyond networks will lay the foundation of a more connected, sustainable society using new

technologies such as smart factories, telehealth, augmented/virtual reality applications,

smart homes, intelligent security guards, and intelligent transportation systems [4]. These

application will shape the performance targets of the 5G and beyond networks. Cellular

operators are therefore faced with the challenge of preparing their infrastructure to handle

the performance targets of these future applications.

To enable the 5G and beyond networks applications and guarantee their performance

requirements, new technologies must be integrated into 5G and beyond networks. In

that, new network architectures are being introduced along with emerging technologies to

provide powerful services and significant improvements on data rates as well as minimal

latency [5]. All of this must be aligned with constrains regarding the specific environment

characteristics and spectrum limitations. Use cases of 5G and beyond network applica-

tions set different requirement criteria and standards, such as an enormous number of

connections, multi-fold increase in data rate, and stringent reliability and latency require-

ments [6]. For instance, virtual reality has a potential to allow geographically-separated

people to communicate effectively in groups. They can make eye contact and can ma-

nipulate common virtual objects. It will require the real-time movement of extremely

high resolution electro-magentic signals to geographically-distant places to relay various

thoughts and emotions. As such, virtual reality will require data rates above 1 terabits-
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per-second (Tbps). Additionally, real-time user interaction is bound to require minimum

latency and ultra-high reliability [7]. On the other hand, smart transportation, smart

grid, and telemedicine need to support massive connectivity for a very large number of

devices. These future technologies are facing spectrum shortage challenges mainly due

to the massive number of connections and the emerging bandwidth-hungry applications.

Millimeter wave (mmWave) communication represents one of the most effective solutions

to this spectrum scarcity challenge motivated by the immense amount of bandwidth at

mmWave bands [8, 9].

MmWave spectrum naturally emerged as a potential solution for 5G and beyond net-

works. Although these bands were earlier thought to be unsuitable for the mobile opera-

tions due to their unfavorable propagation characteristics, the modern device and antenna

technologies made it feasible to use them for commercial wireless applications [10]. In fact,

the amount of available spectrum at mmWave frequencies is very large when compared

to sub-6 GHz frequencies [11, 12]. As the bandwidth appears in the pre-log factor of

the achievable data-rate, mmWave communication can potentially achieve an order of

magnitude higher data rate, which made it attractive for inclusion in the 5G standards.

Operating 5G and beyond networks at the mmWave band imposes technological chal-

lenges while offering great opportunities. In fact, mmWave signals can propagate only a

few miles or less due to a severe path-loss and may be completely blocked by static or

dynamic physical blockages [13]. Therefore, small movements of obstacles combined with

user mobility can cause the channel to rapidly appear or disappear. The high sensitivity

of mmWave signal propagation to blockages greatly affects the link reliability, hence, a

line-of-sight (LoS) link is highly desirable for mmWave networks to achieve high relia-

bility. To overcome the aforementioned challenges of mmWave communications, relays

will play a more important role to achieve high coverage performance and robustness in

communication [14]. In this case, relays redirect the signal to avoid the obstacles existing

in the propagation environment. Also, multi-hop transmission is an essential strategy for

enabling long-distance mmWave communications and significantly improve the network

reliability compared to single-hop mmWave transmissions [15].

1.1 Motivations

The key objectives of this thesis are to:
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1. Study the network reliability for mmWave communications and provide efficient

solutions based on relaying systems to improve network performance in different

perspectives;

2. provide a practical solution to enable the design of the mmWave relaying systems

to support IoT devices.

3. Address the potential of mmWave communications to support fronthaul networks

for the future wireless networks.

4. Develop analytical and simulation frameworks for the proposed techniques.

The work in this thesis is important as it certainly addresses a vital and timely topic,

which is expected to play a major role in mmWave relaying systems. In particular, our

proposed work is related to providing efficiency and flexible routing techniques to improve

network performance to enable mmWave relaying systems to serve use cases of 5G and be-

yond networks. In fact, mmWave communication is considered as an appealing technology

for the use cases of 5G and beyond networks, such as smart cities, smart manufactures, in-

telligent transportation systems, autonomous and flying vehicles. Hence, researchers from

both academia and industry are exploring new frequency spectrum (mmWave spectrum)

to enable the use cases of 5G and beyond networks and guarantee their performance.

MmWave bands have been recognized as a promising technology candidate to support

high data rates while maintaining service reliability poses significant challenges for system

design. Indeed, the mmWave wireless links are considered highly unreliable because of

their unfavorable propagation characteristics, which cause their transmitting beams to

be exposed to blockage very easily. This in turn negatively impact the mmWave perfor-

mance in term of network reliability and latency. As such, multi-hop transmission is an

essential strategy for enabling long-distance mmWave transmissions as well as improv-

ing the network reliability compared to single-hop mmWave transmissions. Indeed, the

multi-hop architecture has certain advantages. By using the multi-hop transmission to

split a long transmissions link into multiple shorter communication links, the achievable

data rate over the mmWave link could be further increased because of the improved path

loss. Moreover, the shorter links reduce the interference range, thus creating the possibil-

ity of higher frequency reuse factor. However, multi-hop routing in mmWave networks is

known to be a very challenging problem due to the inherent propagation characteristics of

mmWave frequencies. In that, designing an appropriate transmission routing techniques
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for each service is a crucial issue in mmWave networks. Indeed, multiple factors must

be taken into account in the routing process, such as reducing the total latency, guaran-

teeing the robustness of network reliability, and providing high quality of service. Also,

inflexible routing techniques may decrease network performance and increase scheduling

overhead due to the inherent characteristics of mmWave signal. In light of this, we believe

that novel and flexible routing techniques are required to meet the requirement for each

application of 5G and beyond networks.

IoT is widely considered as an important service to be offered by the 5G and beyond

networks. Since the traditional cellular networks were designed for services with high data

rate and low latency, they experience technical challenges to meet the requirements of IoT

devices, such as long device battery life and massive connectivity. Long battery life for

sensor nodes is one of the important characteristics for IoT devices, which transmit data

by a wireless communication scheme. In fact, IoT devices with intermittent operations

sometimes consume a significant amount of power when communication conditions are

not favourable, resulting in a battery life that is shorter than expected [16]. As such, it

is important to prolong the IoT device’s battery life by reducing power consumption due

to communication.

Another direction towards meeting the requirements of 5G and beyond networks is to

develop reliable network architecture. One of the major technological breakthroughs to

cope with these requirements is the cell-free (CF) massive multiple-input multiple-output

(mMIMO) systems. In cell-free (CF) massive multiple-input multiple-output (mMIMO)

systems, all access point (AP)s are connected to a central processing unit (CPU) which

operates all APs as a mMIMO network with no cell boundaries to serve all users by coher-

ent transmission and reception [17]. In doing so, the CPU allows all APs to communicate

with all users over the same time-frequency resources by means of spatial multiplexing,

provided by the excessive number of APs over the number of users [18]. However, the

capacity of the fronthaul network dramatically influences its performance. While wired

fronthaul links can be seen as the optimal choice, they may not be practically feasible.

Exploiting the enormous bandwidth available in the mmWave band to support the fron-

thaul links paves the way to achieve the full potential of CF mMIMO systems. Despite

the potential of mmWave communications in improving the performance of CF mMIMO

systems, the current literature lacks this essential investigation.
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1.2 Thesis Contributions

Given the motivating points in the last section, the contributions of this thesis can be

summarized as follows.

Network Connectivity for MmWave Networks. In Chapter 3, we evaluate the

network reliability of mmWave relaying systems , while taking into account the mmWave

signal propagation characteristics. To this end, we introduce a novel analytical framework

to analyze the impact of limiting the hop count on the network reliability of mmWave

communications using tools from stochastic geometry. We use the discrete phase-type

distribution based on stochastic dependence between the states that are spatially depen-

dent. In literature, it is assumed that the density of relays tends to infinity which results

in an upper bound for the network connectivity. We differently consider relay density and

investigate its impact on the network connectivity. Results obtained via both simulations

and analyses reveal the trade-off between the network connectivity and the delay as a

function of the hop count.

Spectral Efficiency of Multi-hop Millimeter Wave Networks using N th Best

Relay Routing Technique. In Chapter 4, we present the major challenge related to

supporting the 5G and beyond network applications with reliable mmWave communica-

tion. Motivated by this, we propose a flexible routing technique for mmWave networks

to achieves the maximum spectral efficiency compared to other techniques in the liter-

ature, while maintaining the network reliability. The performance of the proposed nth

best relay routing technique is investigated using tools from stochastic geometry. First,

we derive the probability density function (PDF) of the distance between the nth best

relay and destination. Capitalizing on this result, we derive a closed-form expression of

the coverage probability over the log-normal fading channels. Monte Carlo simulations

show an accurate match with the analytical results. We further demonstrate that the

coverage probability varies according to specific system parameters, such as density of

relays, blockage density and the signal-to-noise ratio (SNR) threshold. Furthermore, we

show that the adaptive SNR threshold plays an important role in improving the spec-

tral efficiency for different relay density, blockage density and the order of best relay (n).

These findings provide insights for designing multi-hop mmWave networks with better

performance.
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Performance Analysis of Minimum Hop Count-Based Routing Techniques

in Millimeter Wave Networks. In Chapter 5, we mainly address one important as-

pect of the routing process is the hop count which has a significant effect on network

performance. In light of this, we propose two different routing techniques based on the

minimum hop count for the path between the source and destination, namely minimum

hop count (MHC) and nearest LoS relay to destination with MHC nearest LoS relay

to destination with MHC (NLR-MHC) routing techniques. The MHC routing technique

targets delay-sensitive applications such as medical and manufacturing, whereas the NLR-

MHC provides a higher data rate compared to MHC technique by relaxing the minimum

hop count. Different from existing research, we propose a suitable methodology to derive

the hop count distribution of both the MHC and NLR-MHC routing techniques based on

phase-type distribution. Given the hop count distribution of the two underlying routing

techniques, we derive analytical expressions for the coverage and connectivity probabili-

ties as well as spectral efficiency for multi-hop mmWave networks. We verify the accuracy

of our analytical results for the two routing techniques through Monte Carlo simulations.

Capitalizing on the derived results, we introduce a comprehensive study of the effects

of different system parameters on the spectral efficiency, connectivity probability, and

average hop count. This investigation provides accurate and insightful expressions for de-

signing multi-hop mmWave networks to improve data rates and latency while maintaining

the network reliability.

Reliable Millimeter Wave Communication for IoT Devices. In Chapter 6, we

adapt the proposed NLR-MHC technique for IoT devices in mmWave relaying systems to

prolong the IoT device’s battery life. We investigate the impact of the relay-selected region

and the distance between the base station and IoT device on the network connectivity

of mmWave relaying systems. The analytical results unveil a high degree of accuracy

which is confirmed by extensive simulations at different relay densities, blockage densities,

andSNR thresholds. Results obtained via both simulations and analyses reveal the trade-

off between the network connectivity and the energy consumption of IoT devices.

Uplink Performance of MmWave-Fronthaul Cell-free Massive MIMO Sys-

tems. In Chapter 7, we investigate the uplink (UL) performance of CF mMIMO systems

supported by mmWave-fronthaul networks. We considered that the system consists of

multiple CPUs to which APs are associated in a distance-based association approach.
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Using tools from stochastic geometry, we derive analytical expressions for both the distri-

bution of the provided fronthaul capacity and the average UL data rates. We show that

although increasing the density of blockages degrades the average UL data rates, increas-

ing the density of CPUs can limit such effect. Moreover, the obtained results reveal that

the network deployment should be adjusted according to the available fronthaul band-

width and the density of blockages. In particular, increasing the density of APs beyond

a certain limit would not achieve further improvement in the UL data rates for a given

fronthaul bandwidth.

1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we provide a relevant back-

ground for the topics of this thesis. We evaluate the network connectivity for mmWave

relaying systems in Chapter 3. In Chapter 4, we introduce the N th Best Relay Routing

Technique for multi-hop mmWave networks, and the performance analysis of minimum

hop count-based routing techniques in mmWave networks is derived in Chapter 5. In

Chapter 6, we present the nearest line-of-sight relay (NLR) selection technique for IoT

devices. The uplink performance of CF mMIMO supported by mmWave-fronthaul net-

works systems is investigated in Chapter 7. Finally, we present a brief summery of our

investigation and some important conclusions, and we suggest some potential topics for

future research in Chapter 8.



Chapter 2

Background

In this Chapter, a background for the main topics of this thesis is given. First, we pre-

sented an overview of mmWave networks as a promising technology enabling use cases of

5G and beyond networks and discuss the main channel characteristics of mmWave bands.

Then, we highlight the concept of relay transmission systems for mmWave networks. Fi-

nally, we review some of the tools from stochastic geometry that are utilized in the work

proposed in this thesis.

2.1 MmWave Networks

Recently, wireless communication technologies in high frequency bands such as mmWave

communication are currently considered as key enabling technologies to meet the unprece-

dented data rate requirements 5G and beyond networks. This is in fact due to the immense

amount of available bandwidth in such frequency bands compared to the available ones

in the microwave band, i.e., sub-6 GHz frequency band [9]. Indeed, mmWave signals suf-

fer from a sever path-loss because of the short wavelengths, hence, mmWave signals can

propagate only a few miles or less. However, the short wavelengths of mmWave signals

enable the integration of massive number of antennas in small areas [19]. For instance, the

antenna element spacing could easily fit into an area smaller than 20 mm2 [20]. Having

such massive number of antennas facilitate the generation of fine-grained narrow beams

that can significantly improve the communication links [8].

Motivated by the above discussion, the first 5G system based on Release 15 version of

the specifications developed by third generation partnership project (3GPP) is currently

being deployed commercially throughout the world both at sub-6 GHz and at mmWave

frequencies. Lastly, the second version of 5G have been standardized by 3GPP in the

Release 16 of the specifications including enhancements for mmWave operation [21]. In

particular, the integrated access and backhaul (IAB) feature in Release 16 have addressed

8
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multi-hop backhauling for flexible range extension for mmWave communication [22]. In

that, IAB allows base stations to provide both wireless access for devices and wireless

backhaul connectivity, which eliminates the need for wired backhauls. While Release 15

and 16 support operation in spectrum up to 52.6 GHz, spectrum support in Release 17

will be extended to 71 GHz. Release 17 will extend means for topology adaptation to

enable enhanced backhaul robustness as well as more general topology, and routing for

improved efficiency of deployments utilizing IAB.

In what follows, we discuss the main channel characteristics of mmWave communica-

tions including the available mmWave bands and propagation characteristics. Also, we

introduce adapted blockage modelings in mmWave network.

2.1.1 MmWave Bands

The mmWave spectrum ranges from 3 GHz to 300 GHz with corresponding wavelengths

that vary between 1 and 100 mm. In that, the frequency band from 30 GHz to 300 GHz

refers to extremely high frequencies, while the one from 3 GHz to 30 GHz is generally

indicating the super high frequency band. In the following, we introduce the candidate

mmWave bands for 5G and beyond network according to the US Federal Communica-

tions Commission regulations [23] and other regions are in the process of making high

frequencies available to support fixed and mobile services.

• 28 GHz band (27.5–29.5 GHz)

The 27.5–28.35 GHz (850 MHz) band operates for local multipoint distribution

service, while the portion of 150 MHz, that is 29.1-29.25 GHz is shared on

the services such as fixed satellite service, mobile satellite service, and non-

local television transmission service, etc. Hence, there is approximately 1 GHz

available for mobile broadband.

• 70 GHz and 80 GHz bands (71–76 GHz, 81-86 GHz)

These bands, known by E-band, consist of 10 GHz and permit the use of smaller

antennas for backhauling applications. The International Telecommunication

Union (ITU) has allocated these bands for fixed and mobile services. The

two contiguous bandwidths of 5 GHz make these bands promising for mobile

broadband.

• 90 GHz band (92-100 GHz)
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This band, known by W-band, is provisioned for licensed and unlicensed op-

erations for outdoor and indoor applications, respectively. The ITU Radio

regulations body has assigned 92-94 GHz and 94.1-100 GHz bands for fixed and

mobile services.

Therefore, the 28 GHz, 71–76 GHz, 81–86 GHz, 92-94 GHz and 94.1-100 GHz bands are

excellent candidates for fixed and mobile services due to 24 GHz of available bandwidth.

2.1.2 Propagation Characteristics

MmWave communications suffer from serious deterioration due to the propagation losses.

In particular, the rain attenuation and atmospheric and molecular absorption character-

istics reduce the range of mmWave communications [24]. Fig. 2.1 depicts the rain at-

tenuation and atmospheric absorption characteristics of mmWave propagation [25]. The

frequency bands with extremely high-attenuation properties (i.e., 60, 120, 183, 325, and

380 GHz) are allocated for short-range applications, such as wireless personal area net-

work and imaging. On the other hand, the 28, 77, and 240 GHz frequency bands with

relatively low space attenuation would be suitable for long-range applications, such as

cellular, fronthaul, and vehicular radar. Recently, with new 5G and beyond network tech-

nologies such as multi-hop transmission with shorter communication links, mmWave can

overcome the aforementioned issues of atmospheric absorption. More specifically, only

7 dB/km of attenuation is expected due to heavy rainfall rates of 1 inch/hr for cellular

propagation at 28 GHz [26].

On the other hand, static and dynamic obstacles may completely block the mmWave

signals due to its weak ability to penetrate obstacles [27]. For static blockages due to

buildings and permanent structures, the authors in [28] conducted propagation measure-

ments at 28 GHz. Results show that indoor clear glass and outdoor brick pillars have

penetration losses of 3.6 and 28.3 dB, respectively. For measurements at 73 GHz [29], the

penetration losses for many common indoor materials are nearly 25 dB. Hence, a study of

network performance for mmWave networks should incorporate the impact of blockages.

Mobile blockers represent the second type of blockage due to pedestrians and vehicles

which may cause frequent interruptions to the line-of-sight (LoS) links. Indeed, the 3GPP

has identified humans as one of the major factors affecting the mmWave propagation and

has incorporated a blockage model into TR 38.901 of Release 14 [30]. For instance, the
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Figure 2.1: Atmospheric and molecular absorption at microwave and mmWave frequency
bands.

measurement campaigns in [31] were conducted in a realistic indoor environment in the

presence of human activity. Results showed that blockage by a human penalizes the link

budget by 20-30 dB, and the channel is blocked for about 1% or 2% of the time. Hence,

the non-static environments and the user mobility will lead to large dynamic variances in

channel powers. As such, static and dynamic objects in the environment around the user

may completely block the mmWave signals. In addition, small movements of the user can

cause its channel to rabidly appear or disappear. Hence, an unblocked LoS link is highly

desirable for mmWave networks, and every single mmWave signal reception should ensure

the LoS between its transmitter-receiver pair.

The commonly adopted path loss models in mmWave networks are free space path-loss

(FSPL) and the alpha plus beta. The first path-loss model, denoted as FSPL, represents

the attenuation of signal strength between two isotropic antennas in free space. The FSPL

between two nodes separated with a radius d can be expressed in dB scale as [32]

PL(d) = 20 log10
(4πd0

λ

)
+ 10 n log10(

d

d0
) + χs, (2.1)

where λ is wavelength, and d0 is the reference distance (1 m). Moreover, the path-loss

exponent n equals 2 for free-space, and χs is the shadow fading term which is a zero-mean

Gaussian variable with a given standard deviation, σ in dB. Note that, (2.1) can be also

used to account for the signal losses in non line-of-sight (NLoS) propagation as well, by

making channel measurements and then finding a suitable value of n that approximately

describes the path-loss measurements as depicted in Table 2.1. The second path-loss
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model is the alpha plus beta model which is widely used in industry [33–35]. Its path-loss

expression of alpha plus beta model is as follows

PL(d) = 𝒜+ 10ℬ log10(d) + χs, (2.2)

where 𝒜 is the best fit floating intercept point over the measured distances, and ℬ is

the slope of the best fit. The parameter values for 𝒜 , ℬ, and χs are determined with a

least squares fit to the measured data. Table 2.1 shows the different values for path-loss,

and shadowing for different environments in the mmWave bands based on measurements

campaigns in New York City in both 28 and 73 GHz bands [24,33, 36].

Model Frequency Scenario
LoS NLoS

𝒜 [dB] n / ℬ σ [dB] 𝒜 [dB] n / ℬ σ [dB]
Free Space Path Loss 28 GHz indoor office - 2.9 13.3 - 4.8 11.9

alpha plus betaPath Loss 28 GHz indoor office 83.4 0.8 12.2 87.5 2.4 10.1
Free Space Path Loss 73 GHz indoor office - 3.1 16.8 - 5.7 16.7

alpha plus beta Path Loss 73 GHz indoor office 94.5 0.7 15.8 117.8 1.3 11.7
Free Space Path-Loss 28 GHz outdoor cellular - 1.1 1.7 - 2.7 9.6

alpha plus beta Path Loss 28 GHz outdoor cellular 61.4 2 5.8 72 2.92 8.7
Free Space Path-Loss 73 GHz outdoor cellular - 4.17 9 - 6.4 15.8

alpha plus beta Path Loss 73 GHz outdoor cellular 69.8 2 5.8 86.6 2.45 8

Table 2.1: The parameters for the free space path-loss and alpha plus beta path loss
models at 28 GHz and 73 GHz.

2.1.3 Blockage Modeling

The impact of blockages on the performance of mmWave networks is a limiting factor

where different approaches are introduced to model such blockages [37]. One approach is to

model the blockages explicitly in-terms of their sizes, locations, and shapes using data from

a geographic information system. This approach is well suited for site-specific simulations

using electromagnetic simulation tools such as ray tracing [38–40]. An alternative is to

employ a stochastic blockage model where the blockage parameters are drawn randomly

according to some distribution. The stochastic approach can be applied to study system

deployments under a variety of blockage parameters such as size and density [41, 42]. A

simplified model for blockage effect, known as LoS ball model, is developed in [43] for

tractable models. In that, a link between two nodes is assumed to have a LoS connection

if and only if the separation distance is shorter than a given threshold. However, the

randomness in the distance based path-loss is ignored which has a significant impact in

empirical studies [44]. As such, the proposed model in [45] assumed each link to be LoS

with constant probability if the link length is less than certain threshold D and zero
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otherwise. This constant probability represents the average fraction of LoS area in a

circular ball of radius D around the point under consideration.

In [46], a model was depicted using a stochastic blockage model where the centers of

buildings model as a Poisson Point Process (PPP) where buildings are modeled as rect-

angle shape with density λB. The orientation of the blockages is uniformly distributed in

[0, 2π], and the lengths and widths of the buildings are independent uniformly distributed

with [Lmin, Lmax] and [Wmin,Wmax], respectively. The number of blockages (Nb) on link

follows a Poisson distribution with an average length link. This allows computing the LoS

probability of the link which has no blockage using a Poisson distribution with Nb = 0.

The LoS probability is represented as [46]

pLoS = e−β r. (2.3)

The LoS probability is negative exponential function with a length of the link r and β

β =
2λB

π
× (E(W ) + E(L)), (2.4)

where E(.) denotes statistical expectation.

2.2 Relay Communication Systems

The high sensitivity of mmWave signal propagation to blockages greatly affects the link

reliability, hence, a line-of-sight (LoS) link is highly desirable for mmWave networks to

achieve high reliability. To overcome the aforementioned challenges of mmWave commu-

nications, relays will play a more important role to achieve high coverage performance and

robustness in communication [14]. In this case, relays redirect the source signal to avoid

the blockages existing in the propagation environment and are essential if the system tar-

gets to extend mmWave outdoor coverage to indoor users [47]. To improve the network

connectivity of mmWave communications, relays will play a more important role in im-

proving the robustness in communication between BS and user in the case of direct link

blocking [9] as shown in Fig. 2.2. Instead of switching from mmWave to microwave band,

which can significantly reduce the available bandwidth, relays can assist mmWave signals

to turn around the blockages and increase the chance to forward the received signals to

the destination [15, 48]. Multi-hop relaying communications are effective in maintaining

the network connectivity in scenarios where single-hop communication would suffer from

unacceptable outage [49].
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• Definition 1 (Poisson point process): the PPP is the point process which has the

number of point in any set follows a Poisson distribution and the number of points

in disjoint sets are independent.

• Definition 2 (homogeneous PPP): the homogeneous PPPs have constant density λ

which represents the number of points per unit distance, area or volume.

• Definition 3 (non-homogeneous PPP): the non-homogeneous PPPs have density

λ(x) that depends on locations according to distance, area or volume.

• Operation 1 (Thinning): thinning operation is applied to PPP with density λ and

produces two independent PPP of removed and remaining points with λRemoved and

λkept, respectively.

• Operation 2 (displacement): the random independent displacement of PPP with

density λ(x), produces another PPP with λD(y), given by

λD(y) =

∫
λ(x)ρ(x, y). (2.5)

where ρ(x, y) is displacement kernel function which represents the probability den-

sity function of y as a function of x and y .

• Operation 3 (Mapping): If the locations of PPP are mapped according to a function

f(x), then produce point process is also a PPP but with a different density λm(x),

defined as.

λm(x) = λ(f−1(x)). (2.6)

2.4 Summary

In this chapter, we gave the necessary background information related to topics studied in

this thesis. First, an overview of mmWave networks as a promising technology enabling

use cases of 5G and beyond networks was given. In this regards, we discussed the main

channel characteristics of mmWave bands with an emphasis on the adopted blockage

models in the literature for mmWave networks. We also shed light on the potential of

relaying systems to solve the blockage problems for the mmWave communication. Finally,

we presented some mathematical definitions and operations that will be frequently used

throughout this thesis.



Chapter 3

Network Connectivity for MmWave

Networks

3.1 Introduction

Motivated by the immense amount of bandwidth available at mmWave bands, mmWave

communication is expected to play a key role in meeting the requirements of the differ-

ent use cases of the fifth-generation (5G) and beyond [56]. However, to exploit the full

potential of mmWave communications, several challenges need to be addressed such as

a severe path-loss and sensitivity to blockages. To extend the range of communications

and deal with blockages, the utilization of relays for mmWave communications is recom-

mended and transmission over multiple hops is preferred [49]. Indeed, these relays route

the mmWave signals to turn around blockages and forward the traffic generated in the

transmitters to their intended receivers. In other words, a blocked link will be replaced

by multiple LoS links yielding improved coverage and reliability [34].

The lack of direct links between sources and destinations in mmWave networks is

mitigated by using the multi-hop relay system. Indeed, recent studies have demonstrated

that multi-hop relaying can significantly improve mmWave connectivity. For instance,

the authors in [15] showed that multi-hop relaying can greatly improve the connectivity

compared to single-hop mmWave transmissions. However, a larger hop count increases

the signaling overhead as well as the scheduling delay is directly proportional to the hop

count [57]. In addition, the communication links in mmWave networks are vulnerable due

to both blockages and mobility of users. This will significantly increase the delay. Hence,

reducing the hop count is essential to yield a smaller delay.

In this chapter, we propose an analytical framework to characterize the network con-

nectivity of mmWave communication. In doing so, we use the discrete phase-type distri-

bution based on stochastic dependence between the states that are spatially dependent.

16
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quency bands, hence, the interference among relays is strongly mitigated which will permit

high-level frequency reuse. This will facilitate efficient spectrum utilization and support

design of mmWave multi-hop networks. However, each relay on the path may suffer from

an inter-beam interference due to transmitted and received beams (self-interference) [59].

To eliminate such self-interference, we consider the frequency reuse of order 2 for the

links on the path as it renders transmitted and received beams at each relay orthogonal

in bandwidth.

For mmWave networks, the NLoS channel suffers from higher attenuation than the

LoS channel as shown in the channel characterization in [60]. Hence, we consider the

LoS link only in communication among nodes. For the path-loss model, we assume the

reference distance is 1 m, and propagation distance r is attenuated as rα where α is the

path-loss exponent [61]. The corresponding signal-to-noise ratio (SNR) received at the

destination is defined as γ = PGt

ArαN0
, where N0 is the thermal noise power, and A is path-

loss intercept. In DF strategy, relays decode a noisy version of the signal transmitted

from the source and retransmit it to the destination if the received SNR is greater than

a threshold γth. Hence, the maximum distance between the source/relay and relay to

receive a signal with SNR ≥ γth is given by

Rth =
( PG2

A N0γth

) 1
α . (3.1)

All transmitting nodes (relays/source) have a visible region defined by a sector as shown

in Fig. 3.1. This sector is limited by angle θ and Rth. θ is the deviation angle from

the direct link between the current node (source/relay) and destination. The connectivity

probability pcon is a metric to measure the network connectivity, defined as the probability

that the user is connected to the network through LoS link(s).

The algorithm in Fig. 3.2 represents the flowchart for finding the path between the

source and destination with hop count constraint. It starts with scanning the connections

between transmitting nodes (source/relays) and the receiving nodes (relays/destination)

where NR is the number of relays. The active connection between nodes depends on

the blockage-free link. It also depends on the location of receiving node which has to

exist on the sector of the any transmitting node. The connectivity matrix C includes

the connection status of the links between transmitting nodes and the receiving nodes.

Each Ci,j in matrix C equals 1 if transmitted node i has an active connection with

receiving nodes j; otherwise Ci,j = 0. Using the connectivity matrix, we build the graph
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for = 1 to + 1    (scan transmitting nodes)

Start 

Compute number of blockages 
between node and 

for = 1 to + 1     (scan receiving nodes)

End 

Use Dijkstra Algorithm to find the path

Construct graph G

Check in the 
sector of 

Figure 3.2: Flow diagram of finding the path between the source and destination with
hop count constraint.

between nodes connected by active connections. Then we use the Dijkstra’s shortest path

algorithm [62] to select the relays between source and destination. We do a standard

run of the Dijkstra algorithm with equal cost for each link. Finally, when the path hop

count does not exceed the maximum hop count Kmax, this path is valid; otherwise, the

destination will be in an outage case.

3.3 Network Connectivity Analysis

Our proposed framework comprises of modeling routing process as Markov stochastic

processes with the phase-type distribution. A phase-type distribution describes a random

variable generated by one or more Markov stochastic process(es), and it possesses some

transient states and a single absorbing state. Each transient state can be characterized for

our model by three parameters: transition probabilities to the next state, the absorbing

state, and the outage state. Our representation of a phase-type distribution is shown in

Fig. 3.3. In the context of the routing process in mmWave networks, transitions through

the transient states could correspond to transmit data through relays. The number of

states from the commencement of the process (source) until moving into the absorbing

state (destination) is referred to as the hop count of the path.
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Source (S)
(Initial state)

      

Destination (D)
(Absorbing state)

Relay 

Figure 3.3: Representation of Kmax-state Markov process for routing technique with hop
count constraint.

To find the connectivity probability pcon, we derive the three parameters of the phase-

type distribution. These parameters represent the transition probability from the current

state to the next state. We firstly focus on the transition probability to outage state, pout

which is represented by the dotted red line in Fig. 3.3. The outage probability at each

state depends on the density of active relays that receive the signal with SNR ≥ γth.

We start characterizing the density of active relays as a function of blockage and relay

densities as well as γth. Indeed, blockages divide a set of relays into two subsets for

each relay node, where the first subset contains relays that have LoS connection with the

current state, and the others have NLoS connection. Active relays form non-homogeneous

PPPs, and we use the properties of PPPs to compute the density of active relays. Using

dependent thinning for relays [53], the density of LoS relays is derived as follows

λ(r) =

θ/2∫

−θ/2

e−βr λRr dl = θλR r e−β r. (3.2)

Then, the SNR point process can be defined by mapping the relays distances to SNR as

shown in [53]. By defining SNR as q = PG2

N0A
r−α = Cr−α and using the LoS relay density,

the density of SNR points is derived by substituting distance r to SNR q in (3.2), to give

λ(q) =
θ

α
λRC

2
α e−β (C/q)

1
α q

−2
α

−1. (3.3)

The active relays have LoS connection with the destination and achieve SNR ≥ γth.

Hence, the active relay intensity is derived as follows

Λ(γth) =

∞∫

γth

λ(q) dq =

∞∫

γth

− θ

α
λRC

2
α e−β (C/q)

1
α q

−2
α

−1d q

(t=β(C
q
)1/α)

=⇒ θλR

β2

β( C
γth

)∫

0

t e−t d t =
θλR

β2
Γ(2, β(

C

γth
)1/α) ,

(3.4)

where Γ(. , .) is defined as the lower incomplete gamma function. The current node (relay
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Destination

Source

Relay

Figure 3.4: A graphical representation for distance from the current state to destination.

or source) transits to the outage state when all relays on the sector are blocked or have

SNR less than γth. Hence, using the active relay intensity and the void probability of a

PPP [53], the outage probability at the current state is given by

pout = e−Λ(γth) = e
− θλR

β2
Γ(2, β( C

γth
)1/α)

. (3.5)

Next, we find the transition probability to the absorption state. The absorption occurs

in each state k depends on the distance between state k and destination as shown in Fig.

3.4. For the direct link between source and destination, the absorption probability is

equivalent to the probability of LoS between source and destination.

PLoS,1 = pLoS = e−β dS,D , (3.6)

where dS,D is the distance between the source and destination. To find the absorption

probability PLoS,k at each state (relay) k, one has to find the average distance between

the destination and relay k. Here, the location of relays are distributed uniformly in the

any given area, and the relay k has LoS connection with relay k − 1. Hence, the number

of blockages between two relays k and k − 1, NB(k, k − 1) = 0. Based on this, we derive

the distribution of the distance from relay k − 1 to relay k as follows

fRk
(r) = P (Rk = r|NB(k, k − 1) = 0) =

2r
R2

th
e−βr

Rth∫
0

2x
R2

th
e−βxd x

=
β2re−βr

1− e−βRth(1 + βRth)
.

(3.7)

Then, integrating over the obtained distribution within the sector of relay k − 1, the

average distance dk between relay k and destination can be expressed by

dk =
1

θ

θ/2∫

−θ/2

Rth∫

0

(r2 + d2k−1 − 2 r dk−1 cos(ϕ))0.5 × fRk
(r) d r d ϕ. (3.8)

Note that the relay k may be located on any position on the sector of relay k − 1.



22

Hence, we firstly derive the probability that there is a LoS relay with destination on the

sector Sk−1 of relay k − 1 as follows

℧ = P (NB(k,D) = 0|k ∈ Sk−1) =
1

θ

θ/2∫

−θ/2

Rth∫

0

e−β(r2+ d2k−2rdk cos(φ))0.5fRk
(r) dr dϕ.

=
1

θ

θ/2∫

−θ/2

Rth∫

0

e−β(r2+ d2k−2rdk cos(φ))0.5 β2re−βr

1− e−βRth(1 + βRth)
dr dϕ.

(3.9)

Note that the relay intensity in the sector is derived as follows

ΛA(r) =

θ/2∫

−θ/2

r∫

0

e−βx λRx dx dϕ =
θλR

β2

(
1− βre−βr − e−βr

)
. (3.10)

Let us define the absorption probability PLoS,k as the probability of at least one relay on

the sector has LoS connection with the destination. For given m relays in the sector, we

calculate the absorption probability PLoS,k as follows

PLoS,k = 1−
∞∑

m=0

(1− ℧)mP (M = m) = 1−
∞∑

m=0

(1− ℧)m
(ΛA(r))

m

m!
× e−ΛA(r)

= 1− exp(−℧ ΛA(r)).

(3.11)

The distributions of hop count can be now represented in matrix notation. The ab-

sorption vector T which includes the absorption probability PLoS,k is expressed as follows:

T = [PLoS,1, PLoS,2, . . . , PLoS,Kmax ] , (3.12)

where Kmax indicates the hop count constraint. The transition probability matrix PKmax

for the routing process represents the probabilities of transit between states and has the

form

PKmax
=




0 p1 0 . . . 0

0 0 p2 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . pKmax

0 0 0 . . . 0




, (3.13)

where pk denotes the transition probability, given by

pk = (1− PLoS,k)(1− phout). (3.14)

Let ρ denotes a vector of probabilities defining the initial transient state, given by

ρ = [1, 0, . . . , 0] . (3.15)

Here, we find the hop count distribution given that there is a path between source and

destination (number of available paths Npath > 0). Therefore, the hop count distribution
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is defined as follows

fK(k) = P (K = k|Npath > 0) =
PDPH(k)∑Kmax

k=1 PDPH(k)
, (3.16)

where PDPH is the probability of discrete phase-type distribution with parameters PKmax , ρ

and T , and it can be formulated as

fDPH(k) = ρ P k−1
Kmax

T. (3.17)

According to (3.17) and (3.16), the hop count distribution is given by

fK(k) =
ρP k−1

Kmax
T

∑Kmax

k=1 ρP k
Kmax

T
for k ≥ 1. (3.18)

Therefore, the connectivity probability with limiting the hop count to Kmax can be cal-

culated using the hop count distribution as follows

PCon =
Kmax∑

k=1

ρP k−1
Kmax

T. (3.19)

3.4 Simulation Results

Here, we show and discuss simulation results and numerical examples to give insights on

the impact of the hop count constraint on the multi-hop mmWave network performance.

All simulation results are averaged over 500×103 realizations, and the simulations consider

a square area fixed to [1000 m × 1000 m]. We assume that buildings have length and

width range of [10 m, 25 m], and [10 m, 20 m], respectively. Similar to [36], the path-

loss exponent α = 2 and path-loss intercept A = 69.8 dB for LoS links. The network is

assumed to be operated at 73 GHz with a system bandwidth BW = 2 GHz. The transmit

power P = 30 dBm, the thermal noise is given by −174+10 log10(BW ) dBm, noise figure

= 10 dB, and antenna gain for relays and source G = 10 dB.

Fig. 3.5 depicts the hop count distribution with minimum hop count constrain as a

function of SNR threshold γth and dSD for Kmax = 15 and θ = 120◦. As shown in Fig.

3.5, the theoretical results are consistent with the simulated ones. The system parameters

of the scenario in Fig. 3.5.a are λR = λB = 4 × 10−4m−2, and dSD = 500 m. Analyzing

the results presented in Fig. 3.5.a, we observe that the mean and variance of hop count

distribution increase as γth becomes higher. This is due to the fact that higher value

of γth leads to shrinkage in the sector area, hence, the required hop count to reach the

destination rises. It can also be noted that the probability that the source reaches the

destination with 3 hops or less is 90 % and 25 % for γth = 10 and 15 dB, respectively.

Fig. 3.5.b illustrates the hop count distribution for two different distances from source
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(a) Varying γth (b) Varying dSD

Figure 3.5: The hop count distribution as a function of dSD, and γth.

to destination, dSD = 200 m and 500 m. The system parameters of the scenario in Fig.

3.5.b are λR = 4 × 10−4m−2, λB = 1 × 10−4m−2, and γth = 15 dB. Note that the mean

and variance of hop count distribution increase as the distance from source to destination

increases. This is because the probabilities of LoS between source/relays and destination

depend mainly on the corresponding distances. The effect of blockage and relay densities

on the hop count distribution is illustrated in Fig. 3.6 for dSD = 500 m and γth = 10 dB.

As one may notice that increasing the relay density from 1 × 10−4m−2 to 2 × 10−4m−2

leads to increase in the required hop count from source to destination. The reason is

that an increase in relay density renders larger number of relays in the sectors, and this

improves the connectivity by increasing the hop count between source and destination.

It can also be noted that the required hop count decreases as the density of blockages

becomes smaller. This is a direct implication of the blockage phenomenon, where small

values of blockage density lead to higher probabilities of LoS between source/relays and

destination.

In Fig. 3.7, the connectivity probability is depicted as a function of Kmax, and λB

with λR = 4 × 10−4m−2, θ = 120◦, dSD = 300 m, and γth = 15 dB. The results indicate

that, with a fixed hop count constraint, the connectivity probability significantly decreases

as the density of blockages increases. The reason is that increasing the blockage density

decreases the availability of LoS relays in the sector, hence, the possible paths from source

to destination lessens. As one may observe the connectivity probability starts to increase

with Kmax but finally saturates regardless of the increase of Kmax. Indeed, the results
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Figure 3.6: The hop count distribution as a function of blockage and relay densities.

reveal that the saturation limit has a strong relation with λB.

Figure 3.7: The connectivity probability as a function of λB and Kmax.

To understand the impact of relay density on the connectivity probability, Fig. 3.8

plots the connectivity probability versus λR for λB = 4× 10−4m−2 with the same system

parameters as in the scenario of Fig. 3.7. Increasing the density of relays has a dramatic

improvement on the connectivity probability, and the rate of improvement depends on

Kmax. This is because an increase in relay density rises the number of relays in the sector,

and the possibility to have a LoS relay with the destination in the sector increases. Con-

sidering higher hop count constraint and higher relay density, this dramatically increases

the number of possible paths between source and destination which in turn improves the

connectivity probability. We notice that the connectivity probability increases with Kmax,

however, it saturates and reaches a maximum at a given density of relays.
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Figure 3.8: The connectivity probability as a function of λR and Kmax.

3.5 Summary

In this chapter, we introduced an analytical framework to characterize the hop count

distribution with minimum hop count constrain for mmWave networks. The hop count

distribution is modelled as a phase-type distribution, and its parameters are derived

using tools from stochastic geometry. Capitalizing on the hop count distribution, we

investigate the impact of limiting the hop count on the connectivity of mmWave networks.

We further demonstrate that the network connectivity varies according to specific system

parameters, such as the densities of relays and blockages. Monte Carlo simulations showed

an accurate match with the analytical results. The results showed the significant impact of

the relay and blockage densities on the hop count distribution as well as the connectivity

probability. Our results revealed that limiting the hop count has significant effects on

connectivity probability. Results obtained via both simulations and analyses reveal the

trade-off between the network connectivity and the delay as a function of the hop count.



Chapter 4

Performance of the N th Best Routing

Technique for MmWave Networks

4.1 Introduction

Smart manufacturing, intelligent transportation, smart homes, and intelligent security

guards drive our lives into a higher level of convenience and efficiency. These future tech-

nologies are facing spectrum shortage challenges mainly due to the emerging bandwidth-

hungry applications. MmWave communication represents one of the most effective solu-

tions to this spectrum scarcity challenge motivated by the immense amount of bandwidth

at mmWave bands [9]. In fact, mmWave networks are susceptible to blockages due to

high penetration losses and severe diffraction loss [43]. To maintain connectivity between

a transmitter and receiver pair in mmWave networks, two approaches are proposed when

a direct link is blocked. The first approach is to switch from mmWave to microwave band,

which can significantly reduce the available bandwidth. The second approach is to use

multi-hop communications by relaying data. In that, relays can assist mmWave signals

to turn around the blockages and increase the chance to forward the received signals to

the destination as shown in the previous chapter.

Relay selection is a well-investigated topic in microwave spectrum range. However,

there are few studies for mmWave band. One of the most common relay selection tech-

niques is the best relay selection scheme, which selects the relay that minimizes the

path-loss with the destination [2]. For instance, the authors in [1] analyzed three different

relay selection techniques for a dual-hop relay mmWave network. It is shown that the best

relay selection outperforms other selection schemes in-terms of coverage probability and

spectral efficiency. Results in [1] showed that there is a gap between the simulation and

analytical results that is caused by using fixed probability of LoS to model the blockage.

However, the blockage process represents dependent thinning process [63] that depends on

27
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distances among the destination and its relays. Hence, the exponential modelling of block-

ages accurately describe a real deployment scenario. Furthermore, this model provides

more tractability in multi-hop performance analysis than fixed probability of LoS [64].

The best relay selection technique, discussed in [1,2] considers only the impact of the

static blockage. However, the mobility of users in the environment makes wireless channels

alternate between blocked and unblocked LoS states. Indeed, even when the active user

is static, the movements of other nearby objects, such as humans and vehicles, may cause

LoS blockage [65]. Also, the best relay selection technique selects a single relay from a set

of potential relays. However, two users or more may select the same best relay. Hence,

one needs to study the performance of the second, third, or more generally the nth best

relay. The selection of the nth best relay in traditional microwave systems is addressed in

several research works, such as in [66,67]. For instance, the authors in [66] derived closed-

form expression for the outage probability of the nth best DF relay networks. Moreover,

the work in [67] derived closed-form expressions for the end-to-end bit error rate and

outage probability for the nth best relay in cooperative network. In fact, the performance

of nth best relay in mmWave networks is challenging due to the inherent characteristics

of mmWave signals such as blockages that distinguish this network from other wireless

networks. Furthermore, in applications that demand high reliability in mmWave networks,

users need to remain connected to the base station (BS) through different relay links as

well as switch between them in case of its active connection drops [68].

In this chapter, we propose a relay selection technique that aims at reducing the

transmission distance between user and relay. In this technique, the user selects the

nearest LoS relay that minimizes the link length between relay and user which is vulnerable

to blockages. In addition, the proposed relay selection technique uses multiple hops by

applying the minimum number of hops routing technique between the nearest LoS relay

and the source. Moreover, we analyze the performance of mmWave networks at different

orders of the best selected relay, up to the nth best relay. More specifically, we derive

closed-form expressions for the coverage probability and the spectral efficiency for the

general case of the nth best relay. Furthermore, we propose an adaptive SNR threshold

technique based on the density of relays and buildings as well as the order of the best

relay to maximize spectral efficiency.



29

4.2 System Model

We consider a multi-hop system, which consists of a single source, a destination and a

set of relays as shown in Fig. 4.1. The positions of the relays are distributed as points

of uniform PPP with density λR. The destination is assumed to be located at the origin,

the distance between source and destination is fixed, and all relays and source have equal

transmit power P . The small wavelength of mmWave signals makes it convenient to pack

a large number of antennas into a small space. These antennas provide high directivity

gain which compensates for high path-loss. Therefore, transmitting nodes in our model

are equipped with a large number of antennas that provide a narrow beam with a high

directivity gain, and a perfect beam alignment is considered [58].

Since NLoS transmission links suffer from higher attenuation than LoS links [36],

we consider the LoS link only. In mmWave networks, measurement results indicated

that small-scale fading is less severe than that in conventional systems when narrow

beam antennas are used. Also, shadowing is more significant in such systems, hence,

small scale fading can be ignored compared to blockage and shadowing [1, 36]. Note

that mmWave communications have a severe path-loss in the higher frequency bands.

Therefore, the interference among relays is strongly mitigated which will permit high-

level frequency reuse. This will facilitate efficient spectrum utilization and support design

of mmWave multi-hop networks. Nevertheless, each relay on the path may suffer from an

inter-beam interference due to transmitted and received beams (self-interference) [59]. To

eliminate such self-interference, we consider the frequency reuse of order two as it renders

transmitted and received beams at each relay orthogonal in bandwidth.

MmWave networks are more noise-limited compared to conventional networks which

are strongly interference-limited [45]. Hence, the SNR for the link provides a good approxi-

mation to signal-to-interference plus noise ratio (SINR) for directional mmWave networks.

The SNR of the link between source and relay and among relays are formulated in [36] as

γS,R =
P G2 χ−1

N0 A rαS,R
, (4.1)

γR,R =
P G2 χ−1

N0 A rαR,R

, (4.2)

where rS,R and rR,R are the link distances between source and relay and between two
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4.3 N th Best Relay Routing Technique

The harsh propagation environment at high frequencies makes it hard to provide a reli-

able service. Using the multi-hop transmission, it is possible to route the signal in such

environments over many hops from source to destination and improves the reliability by

combating the blockage effect. Indeed, the mmWave links are considered as highly un-

reliable due to its unfavorable propagation characteristics as its transmitting beam can

be obstructed very easily [69]. Furthermore, an inflexible relay routing technique signif-

icantly degrades network performance and increases scheduling overhead. For instance,

the first best relay is not always available due to dynamic blockage. In such scenario, the

selection criterion should be relaxed to select the best available relay, i.e., 2nd, 3rd, or more

generally the nth best relay. Hence, we propose a flexible relay routing technique, which

selects the nth nearest LoS relay to the destination. Then, the path from the nth best

relay to the source is obtained by applying the minimum number of hops technique. For

instance, the solid lines and the dashed lines in Fig. 4.1 depict the first and the second

best relay paths from the source to the destination, respectively.

Indeed, relays are able to participate in transmitting the signal if the relay decodes the

signal correctly. Hence, there are many paths from source to destination for multi-hop

relays. In our model, we select the nth best relay to the destination which has the nth

lowest path-loss and LoS connection. Relays on the path between source and the nth best

relay are selected according to the minimum number of hops. Hence, the proposed relay

selection technique for multi-hop is a combination of the minimum number of hops and the

nth best relay selection technique. The proposed routing technique can be summarized by

Algorithms 4.1 and 4.2. Algorithm 4.1 gives out the pseudocode to create the connections

between source and relays as well as among relays. In Algorithm 4.1, we start by defining

the attributes of buildings and the position of source and relays and then find the LoS

connections between source and relays or among relays. Based on the SNR threshold, we

build the connectivity matrix between nodes C.

Using the connectivity matrix for the network, one can determine the path from source

to destination as shown in algorithm 4.2. Firstly, we find the LoS relays, and sort them

according to the distance with the destination. Then, we translate the connectivity matrix

to a graph of nodes G, and the shortest path between the nth best relay node and source is
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Algorithm 4.1: Algorithm for Setting Relays Connections

Input: (NR,PosR, PosS, NB,AB, γth)
Output: (C);
NR = number of relays;
PosR = matrix of relays positions;
PosS = vector of source position
NB = number of buildings;
AB = matrix of attributes of buildings;
for u = 1 to NR + 1 do

for v = 1 to NR and v ̸= u do
Create line L between relays of u and v or source and relay v;
Intersection check between L and all buildings;
NP = number of intersection points;
if (NP = 0) then

Compute SNR γu,v using (4.2)
C(u, v) = (γu,v ≥ γth)

Algorithm 4.2: Algorithm for Selecting the Path with nth Best Relay

Input: (PosU , NR,PosR, NB,AB,C, NR);

Output: ( ⃗Path);
PosU = vector of attributes of user position;
for u = 1 to NR do

Create line L between relay of u and destination;
Intersection check between L and all buildings;
NP = number of intersection points;
if (NP = 0) then

Compute distance D(u) between relay u and destination

else
D(u) = ∞

Sort relays according to distance and select the nearest nth relay;
Construct the graph G using connectivity matrix C;
Find path nodes ⃗Path between source and the nth best relay using Dijkstra
algorithm;
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obtained using the Dijkstra algorithm. We use the Dijkstra’s shortest path algorithm [62]

to select the relays between the source and the nth best relay. We do a standard run of

the Dijkstra algorithm with an equal cost for each link, and the shortest path is defined

as the path with the least cost.

4.4 Coverage Probability Evaluation

In this section, we analyze the coverage probability of the nth best relay to find the

spectral efficiency. Firstly, we derive a closed-form expression for the distance of the link

between destination and the nth best relay. Then, we derive a closed-form expression

for the coverage probability of the nth best relay. In the nth best relay technique, each

destination can be served by the nth nearest relay. Relays seen from destination form

independent and non-homogeneous PPP with density functions ΛO(r). The intensity

measure of non-homogeneous PPPs for a given area O is derived as

ΛO(r) =

r∫

0

e−βx 2πλ x dx =
2πλR

β2

(
1− βre−βr − e−βr

)
. (4.7)

According to Poisson law [70], the probability that a circle contains exactly n relays

is P (n,O) = [ΛO(r)]n

n!
e−ΛO(r). Then, the PDF of the distance between destination and the

nth nearest node is given as

fRn(r) =
[ΛO(r)]

(n−1)

(n− 1)!
e−ΛO(r)dΛO(r)

dr
. (4.8)

Note that for n = 1 which represents the selection of the nearest LoS relay (the 1st best

relay), we can find the distribution of distance from the best relay to the destination as

fRn(r) = 2π λR r e

(
−βr− 2πλR

β2
(1−βre−βr−e−βr)

)

. (4.9)

We now evaluate the coverage probability for the nth best relay technique. Let Qn =

(P G)/(N0 Arn
α) be the SNR without shadowing. We use mapping from distance (rn) to

Qn as in [63], and find the PDF of Qn as follows

FQn(qn) = P

(
P G

N0 A rnα
< qn

)
= 1 − FRn

([
P G

N0 A qn

]1/α)
, (4.10)

fQn(qn) =
(P G)1/α

α qn(N0 A qn)1/α
fRn

([
P G

N0 A qn

]1/α)
. (4.11)

The shadowing χ and Qn are independent random variables, hence, the joint PDF is given

by

fQn,X(qn, χ) = fX(χ) × fQn(qn). (4.12)

Log-normal distribution X with zero mean has the same distribution of Log-normal
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distribution 1/X. Hence, we can use the transformation of variables method [63] to

transfer joint PDF of shadowing and SNR without shadowing to joint PDF of the SNR

with shadowing by defining S1 = Qn/X and S2 = Qn × X. After some mathematical

manipulations, the Jacobian J(q, χ) = 2S1, S1 and S2 have the same distribution, Qn =
√
S1 S2, and X =

√
S2/S1. For n = 1, we can find the joint PDF of SNR of the best

relay which is calculated as follows

fS1,S2(s1, s2) =
fQn,X(qn, χ)

J(qn, χ)

=
K1

s2s1
(γs1,s2)

1/α exp

[−(10log(
√

s2
s1
))

2

2σ2
− β

(
γs1,s2

)1/α − 2πλR

β2

×
(
1− e−β

(
γs1,s2

)1/α(
β
(
γs1,s2

)1/α
+ 1
))
]
.

(4.13)

where γs1,s2 = (P G)/(
√
s1s2 ×N A), and K1 = (10 log(e) π λR)/(

√
2π α σ). Then, the

coverage probability is given by

PΓbest
(γth) = P (γS,D > γth) =

∞∫

γth

∞∫

0

fS1,S2(s1, s2) ds1 ds2. (4.14)

4.5 Simulation Results

Here, we present numerical examples to validate the system model and verify the accuracy

of the analytical results presented in the previous section. We evaluate the distance dis-

tribution and the coverage probability for different scenarios via Monte Carlo simulations.

All simulation results are averaged over 500× 103 realizations. The simulations consider

a square area fixed to [1000 m × 1000 m]. We assume that buildings have length and

width range of [10 m, 25 m], and [10 m, 20 m], respectively. Similar to [36] and [45], the

standard deviation σ of the log-normal channel is 5.2 dB, A = 69.8 dB and the path-loss

exponent α = 2 for LoS links. The network is assumed to be operated at 73 GHz with a

system bandwidth BW = 2 GHz. The transmit power Pt = 30 dBm, the thermal noise is

given by −174 + 10 log10(BW ) dBm, noise figure = 10 dB, and antenna gain for relays

and source G = 15 dB.

In Fig. 4.2, we verify the accuracy of the derived distribution of distance from the nth

best relay to the destination given in (4.8) with λR = 5× 10−4 m−2, and β = 0.0103 m−1.

In each realization, the nodes are randomly and uniformly distributed over the square

area. As noted, the analytical results are consistent with simulations. As one note that
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the distance distribution of the nth best relay has a maximum value that changes according

to order n. This is because the distance distribution of nth best relay is a function of two

terms as shown in (4.8). The first term is [ΛO(r)]
n−1 increases with increasing r, however,

the second term is a negative exponential of r and independent of n. We can note that the

gap in the mean and variance between the 1st and 2nd is greater than the one between 2nd

and 3rd. The reason is that the first term, which increases with r, is less than 1. Hence,

the rate of increase in the first term decreases as the order of the best relay (n) increases.

Figure 4.2: The probability distribution functions of distance from the best three relays
to the destination.

The coverage probability for the nth best relay is illustrated in Fig. 4.3. The system

parameters are the density of relays λR = 5×10−4 m−2, and β = 0.0103 m−1. Overall, the

simulation results are in perfect agreement with the theoretical ones. It can be seen from

the figure that the gap in coverage probability between the first best relay and the second

is larger than the one between the second and the third best relay. This is explained

by the fact that coverage probability of the nth best relay depends on the distribution

of the distance between the nth best relay and destination, and the gap in the distance

distribution decreases as the orders of the best relays increase.
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Figure 4.3: Comparison of SNR distribution for the best three relays.

In Fig. 4.4, we investigate the coverage probability of the best relay for different

densities of relays and buildings at SNR threshold γth = 5 and 10 dB. It is noticed that

the coverage probability has a significant increase with increasing the density of relays.

For instance, the coverage probability rises from 0.65 to 0.9, when density of relays λR

goes from 1× 10−4 to 5× 10−4m−2 at γth = 10 dB. This is due to the fact that increasing

the relay density renders the best relay (nearest LoS relay) to be near the destination

which significantly improves the coverage probability. The blockage density β decreases

from 0.0103 to 0.00103, while the coverage probability has considerable improvement, but

this improvement diminishes as the density of relays increases.

Figure 4.4: Comparison of coverage probability for different density of relays and different
density of buildings.

Fig. 4.5 shows the spectral efficiency versus SNR threshold γth for three best relays
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when λB = 5 × 10−4 m−2 and λR = 5 × 10−4m−2. This relation is convex since the

spectral efficiency is due to a product of two functions where the coverage probability is

a decreasing function, and the log function is an increasing function. Hence, it is quite

obvious for the spectral efficiency to reach an optimal point at a certain SNR threshold for

the nth best relay. Note that the optimal points for spectral efficiency are at 10 dB, 12 dB,

and 15 dB for the three best relays, obtained numerically from (4.6) due to the convexity

property for the spectral efficiency. It is clear from this figure that the maximum spectral

efficiency is achieved at different values of SNR threshold γth depending on the order of

best relay (n). Furthermore, the gap in the spectral efficiency between the first and the

second best relay is larger than between the second and third best relay.

Figure 4.5: Spectral efficiency for the best three relays as function of SNR threshold.

We compare our relay selection technique with the best relay technique, studied in

[1, 2] in-terms of the coverage probability and spectral efficiency. Fig. 4.6 shows the

coverage probability and spectral efficiency at different distances between the source and

the destination. We use the same channel propagation model, and densities of blockages

and relays λB = λR = 5× 10−4m−2. It is observed that the performance of our proposed

relay selection technique outperforms the relay selection in [1,2] in-terms of the coverage

probability and spectral efficiency. As shown in Fig. 4.6.a, the coverage probability curves

for our proposed selection technique are the same for different distances, while the best

relay in [1, 2] significantly decreases as the distance between the source and destination

increases. We can note from Fig. 4.6.b that the maximum spectral efficiency for 1st and

2nd best relay is more than 1.5 and 2.5 times, respectively that achieved for the best relay
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in [1,2]. The reason is that the relay routing technique in [1,2] selects the best relay based

on minimizing the path-loss between relay and destination. Also, the best relay has to

connect directly to the source with SNR ≥ γth. However, in the nth best relay selection

technique, the multi-hop transmission allows us to select the LoS relay that achieves the

lowest path-loss. This leads to maximizing the spectral efficiency.

(a) Coverage probability (b) Spectral efficiency

Figure 4.6: Performance of the proposed relay selection technique and the best relay
routing technique in [1, 2] for different distance between source and destination

To show the impact of selecting the SNR threshold, we consider multi-user in the

network, and the users form PPP with density λU = 5×10−5 m−2. Moreover, we consider

the dynamic blockage on the link between the nth best relay and each user as Bernoulli

random variable with equal probability to be blocked or not. Here, we consider a scenario

where each user can select one from the first k best relays according to availability of

LoS link, and we discuss the impact of SNR threshold selection on the average spectral

efficiency in the network. Under these assumptions, we show the effect of adapting the

SNR threshold on spectral efficiency with k = 3 in Fig. 4.7. The impact of adjusting the

SNR threshold according to the order of the best relay for different relay densities is shown

in Fig. 4.7.a. As shown, increasing the density of relays improves the average spectral

efficiency, and where the gain of adjusting the SNR threshold increases with the density

of relays. For example, the average spectral efficiency for λR = 2 × 10−4 m−2 are 1.531

and 1.689 bps/Hz for adaptive and constant SNR threshold, respectively. The impact of

building density on the average spectral efficiency is addressed for λR = 5 × 10−4 m−2

in Fig.4.7.b. It is noticed that the proposed adaptive SNR threshold technique achieves
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gain on the average spectral efficiency of approximately 10 %. For instance, the average

spectral efficiency rises from 2.719 to 2.967 bps/Hz for λR = 2 × 10−4 m−2. Moreover,

the average spectral efficiency reduces with increasing the density of buildings. The key

insight from these results is that the SNR threshold should be adjusted according to the

order of the selected relay. Besides, the increase in the relay density improves the average

spectral efficiency, and the growth of building density has a significant impact on the

average spectral efficiency.

(a) Varying λR (b) Varying λB

Figure 4.7: Average spectral efficiency for two techniques as a function of densities of
relays and blockages.

4.6 Summary

In this chapter, we proposed a novel routing technique for mmWave networks to improve

the spectral efficiency. The performance of the proposed nth best relay routing technique

is investigated using tools from stochastic geometry. First, we derived the distribution of

the distance between the nth best relay and destination. Capitalizing on this result, we

derived closed-form expressions of the coverage probability and spectral efficiency over the

log-normal fading channels. Monte Carlo simulations show an accurate match with the

analytical results. We further demonstrated that the coverage probability varies according

to specific system parameters, such as density of relays, blockage density and the SNR

threshold. Furthermore, we show that the adaptive SNR threshold plays an important role

in improving the spectral efficiency for different relay density, blockage density and the

order of best relay (n). These findings provide insights for designing multi-hop mmWave

networks with better performance.



Chapter 5

Performance Analysis of Minimum Hop

Count-Based Routing Techniques in

MmWave Networks

5.1 Introduction

In the previous chapters, we showed that multi-hop relaying can significantly improve

the network connectivity compared to single-hop mmWave transmissions. Moreover, de-

ploying relays can achieve a significant improvement in-terms of coverage probability and

spectral efficiency. Routing in mmWave networks is known to be a very challenging prob-

lem due to the inherent propagation characteristics of mmWave frequencies. In that,

designing an appropriate transmission routing technique for each service is a crucial issue

in mmWave networks. Indeed, multiple factors must be taken into account in the rout-

ing process, such as reducing the total latency, guaranteeing the robustness of network

connectivity, and providing high quality of service. Due to these limitations relative to

traditional networks, some new algorithms have been proposed for the routing problem

in mmWave networks. For instance, the authors in [48] proposed a path selection scheme

using a heuristic algorithm to solve the blockage problem and achieve the quality of ser-

vice requirements of flows. Also, the work in [71] presented a heuristic multi-path routing

technique in a dense multi-hop mmWave network. In [72], the authors addressed the

problem of traffic allocation for multi-hop scheduling in mmWave networks. However, the

impact of blockages was not accounted for in [71, 72].

Despite the significant impact of the employed routing technique on the performance

of routing techniques on the mmWave networks, only few works considered the stochastic

geometry-based analysis. Unlike a deterministic approach in which analysis is carried

for given specific system parameters, stochastic geometry offers a statistical approach

40
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to develop a tractable and accurate modeling framework to characterize the multi-hop

transmissions for mmWave networks. For instance, the authors in [73] derived the outage

performance of the multi-hop mmWave network in the presence of blockage effects. Also,

the authors in [64] derived closed-form expressions for coverage probability, rate coverage,

and symbol error rates for multi-hop mmWave networks. In [74], the authors studied

the hop distance characteristics and their impact on the outage probability of multi-hop

mmWave networks for two different routing techniques, namely, the furthest neighbor

routing and the nearest neighbor routing technique. However, the dependence between the

links on the path from source to destination was not considered. Indeed, most of previous

works in multi-hop mmWave networks (e.g., [64, 73]) assumed that the relays on the

multi-hop path are equidistant. However, in practical scenarios, the density of available

relays is always limited, especially for mmWave networks due to blockages. Therefore, the

positions of the relays are randomly allocated, and in some cases no available relay can

be found between the source and destination. In addition, the authors in [75] proposed a

quasi-equal-distance routing protocol considering random relay distribution and compared

with the ideal equidistant routing. Results showed that the random relay deployment

suffers from a significant performance loss compared to the ideal equidistant relays case.

Therefore, unlike former studies, we consider the distribution of relays and blockages.

One important aspect of the routing process is the hop count which has a significant

effect on network performance. As such, minimum hop count (MHC) is a widely used

technique in wireless sensor networks [76], where sensors send their data to the source

with the path that is comprised of the minimum number of relays. For mmWave networks,

communication links are vulnerable due to blockages which bring the accumulative effect

on the packet loss rate. With the increase of hop count, the end-to-end packet loss rate gets

higher, which has vital importance on the end-to-end delay [57,77]. The significant impact

of hop count has been investigated on conventional microwave networks [78,79]. However,

in multi-hop mmWave networks, the existence of blockages definitely weakens the ability of

routing techniques and brings the limitation of hop count [42]. Indeed, many users require

paths that can guarantee the availability of LoS links and achieve the minimum hop count

[76]. Hence, we analyze the performance of two different routing techniques based on the

minimum hop count for the path between the source and destination, namely MHC and

nearest LoS relay to destination with MHC (NLR-MHC) routing techniques. The MHC
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routing technique targets delay-sensitive applications such as medical and manufacturing,

whereas the NLR-MHC provides a higher data rate compared to MHC technique by

relaxing the minimum hop count.

In this chapter, we propose a suitable methodology to derive the hop count distribution

of both the MHC and NLR-MHC routing techniques based on phase-type distribution

[80]. The MHC routing technique selects the path with the minimum number of links

between source and destination. In the second routing technique, referred to as NLR-

MHC, the destination selects the nearest LoS relay that should exist within a sector

deviated from the direct link to the source with angle θ. Then, the path between the

source and NLR is obtained by minimizing the number of links between the source and

the NLR. The distribution of hop count for mmWave networks has not been derived

in the literature. Hence, we model the hop count distributions using discrete phase-

type (DPH) distribution based on stochastic dependence between the spatially dependent

states. Given the hop count distribution of the two underlying routing techniques, we

derive analytical expressions for the coverage and connectivity probabilities for multi-

hop mmWave networks. We verify the accuracy of our analytical results for the two

routing techniques through Monte Carlo simulations. Capitalizing on the derived results,

we introduce a comprehensive study of the effects of different system parameters on the

spectral efficiency, connectivity probability, and average hop count.

5.2 System Model

We consider the transmission of a multi-hop network which consists of a single source,

a destination, and a set of relays. The relay locations are modeled as points of uniform

PPP with density λR. The destination and source are located at the origin and (xs, ys),

respectively. We assume both source and relays are equipped with a large number of

antennas that provide a narrow beam with a high directivity gain G, and a perfect beam

alignment is considered [58]. Hence, the total gain Gt for the link between source and

relay and among different relays are G2. Without loss of generality, the destination is as-

sumed to have an omni-directional antenna. Also, we assume source and relays have equal

transmit power P , and all relays perform DF protocol. Similar to the previous chapters,

we consider frequency reuse of order two as it renders transmitted and received beams

at each relay orthogonal. Also, we consider the LoS link only in communication between
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transmitting and receiving nodes. In fact, many operations such as discovering neighbors

and exchanging routing information rely on a control channel. Since microwave com-

munications provide higher link stability compared to mmWave counterpart, the control

channel should be transmitted over an omni-directional transmission at microwave fre-

quencies [81]. It is well known that small scale fading can be ignored compared to blockage

and shadowing due to the adoption of highly directional antennas and the weak capability

of reflection and diffraction of the mmWave signals [36]. Furthermore, mmWave networks

in an urban setting are more noise-limited compared to conventional cellular networks

which are interference limited as shown in [45, 82].

5.3 Routing Selection Technique

5.3.1 MHC Technique

A multi-hop transmission significantly improves the connectivity of mmWave networks,

while it leads to an increase in the delay as well as signaling overhead. To reduce such

delay and signaling overhead, a routing technique that minimizes the hop count and

improves the network connectivity is desired. As such, we introduce an MHC routing

technique for mmWave networks considering the impact of blockages. In fact, identifying

static blockages, including buildings and other static obstructions, has become an impor-

tant design aspect of mmWave networks where the need for highly detailed data, known

as clutter data, becomes crucial. Algorithm 5.1 describes the pseudo-code for the MHC

technique that starts with scanning the connections between source and relays as trans-

mitting nodes, and the receiving nodes which represent relays and destination. Similar

to [74, 83], relay/source selects the next relay which exists in a sector defined by radius

Rth and deviation angle θ as shown in Fig. 5.1.a. The radius Rth depends on the SNR

threshold γth of the DF relaying, and θ represents the deviation angle from the direct link

between the current node (source/relay) and destination.

For an active connection, the receiving node (relay) should exist on the sector of the

transmitting node and has a LoS connection with the transmitting node, while the active

connection with the destination is based on a blockage-free link. The connectivity matrix

C includes the connection status of the links among transmitting and the receiving nodes.

The entries C(nt, nr) = 1 if transmitting node nt has an active connection with receiving
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Algorithm 5.1: Pseudo-code for MHC Routing technique.

Input: (NR, NL,MR,ML,MS,MD, γth, θ),
Output: (PMHC);
NR and NL → Number of relays and blockages.
MR,ML, MS and MD → Positions of relays, blockages, source, and destination.

Sector radius Rth = ( P (G)2

A N0γth
)

1
α .

for Each transmitting node (relay/source) nt = 1 to NR + 1 do
for Each receiving node (relay/destination) nr = 1 to NR + 1 and nt ̸= nr do

Create line L between transmitting node nt and receiving node nr

Find the number of intersection points NB between L and all blockages;
if (NB = 0) & (nr ̸= NR + 1) then

Compute distance dnt,nr between transmitting node and receiving node.
Compute angle φ between the two vectors which represent the link
from source/relay nt to relay nr and the link from source/relay nt to
destination.
if (φ ≤ θ/2) & (dnt,nr ≤ Rth) then
C(nt, nr) = 1

else
C(nt, nr) = 0

else
if (NB = 0) & (nr = NR + 1) then
C(nt, nr) = 1

else
C(nt, nr) = 0

Construct the graph G using connectivity matrix C
Find relays on the path (PMHC) using Dijkstra algorithm.

node nr; otherwise C(nt, nr) = 0. Using the connectivity matrix, we build the graph

between nodes. We do a standard run of the Dijkstra algorithm with the equal cost for

each link, and the shortest path is defined as the path with the least cost.

(a)

�✁✂✄☎✆✝✞

(b)

Figure 5.1: An illustration of selecting the path between the source and destination.
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5.3.2 NLR-MHC Technique

Here, we propose a flexible relay routing technique by relaxing the minimum hop count.

The proposed technique selects the nearest LoS relay (NLR) to the destination on the

sector directed at the source. In the DF protocol, a relay can retransmit the signal if

its received SNR is greater than or equal to γth. Hence, the coverage probability of the

last link between the NLR and destination represents the coverage probability of the link

between source and destination as will be discussed in section 5.5. As such, the idea of

controlling the sector size through the deviation angle θ is to manage the distance between

the NLR with both the source and destination. For instance, decreasing θ renders the

NLR closer to the source, hence, the hop count decreases. On the other hand, limiting

the sector size is equivalent to decreasing the density of relays. As a result, the NLR will

become farther away from the destination. Hence, the coverage probability lessens due

to the increase in the distance between the NLR and destination. The proposed routing

technique can be summarized as in Algorithm 5.2.

Algorithm 5.2: Pseudo-code for NLR-MHC Routing technique.

Input: (NR, NL,MR,ML,MS,MD, γth, θ),
Output: (PNLR);
NR and NL → Number of relays and blockages.
MR,ML, MS and MD → Positions of relays, blockages, source, and destination.

Sector radius Rth = ( P (G)2

A N0γth
)

1
α .

Find the NLR to the destination on the sector directed at source.
for Each transmitting node (relay/source) nt = 1 to NR + 1 do

for Each receiving node (relay) nr = 1 to NR and nt ̸= nr do
Create line L between transmitting node nt and receiving node nr

Find the number of intersection points NB between L and all blockages;
if (NB = 0) then

Compute distance dnt,nr between transmitting node and receiving node.
Compute angle φ between the two vectors which represent the link
from source/relay nt to relay nr and the link from source/relay nt to
the NLR.
if (φ ≤ θ/2)&(dnt,nr ≤ Rth) then
C(nt, nr) = 1

else
C(nt, nr) = 0

Construct the graph G using connectivity matrix C.
Find the path (PNLR) using Dijkstra algorithm between source and NLR.

In Fig. 5.1.b, the solid and the dashed lines depict the NLR-MHC and the MHC paths
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from the source to destination, respectively. Fig. 5.1.b shows one realization of network

setting scenario where the fifth NLR is selected for the MHC routing technique for a path

with three hops, whereas the NLR-MHC technique selects the first NLR which results in

a path with total of six hops, hence higher number of hops.

5.4 Modeling Hop Count Distribution

In this section, we propose a mathematical framework for the performance evaluation of

the two underlying routing techniques. The proposed framework comprises modeling the

routing process as a Markov stochastic process with the phase-type distribution. This dis-

tribution was introduced in [84], described by a random variable generated by one or more

Markov stochastic process(es). It is known that the phase-type distribution is a family of

discrete and continuous probability distributions. The continuous distribution describes

the time until reaching the absorbing state while the discrete distribution characterizes

the number of states until reaching the absorbing state [80]. The phase-type distribution

has favorable characteristics and can approximate any positive distribution which can

reduce the difficulty of analysis and modeling [85]. Our representation of a phase-type

distribution for the two routing techniques is shown in Fig. 5.2. Recall in chapter 3, each

transient state can be characterized by three parameters: transition probabilities to the

next state, the absorbing state, and the outage state. In the context of the routing process

in mmWave networks, transitions through the ordered transient states could correspond

to transmit data through relays. The number of states from the commencement (source)

of the process until moving into the absorbing state (destination) is referred to as the hop

count of the path.

5.4.1 Phase-type Distribution Parameters

We derive the parameters of the phase-type distribution which represent the transition

probability from the current state to the next state. Firstly, we have obtained the tran-

sition probabilities from the current state to the next state, the absorbing state, and the

outage state in Section 3.3 for the MHC routing technique. In that, pout and PMHC
LoS,k are

defined as

pout = exp
(
−θλR

β2
Γ(2, β(

C

γth
)1/α)

)
, (5.1)
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�✁✂✄☎✆ ✝�✞

✝✟✠✡☛✡☞✌ ✍☛☞☛✆✞

✎✏ ✑✎ ✏ ✒ ✎ ✏ ✓✎ ✏ ✔

✕✆✍☛✡✠☞☛✡✁✠ ✝✕✞

✝✖✗✍✁✄✗✡✠✘ ✍☛☞☛✆✞

✙✚✛✜✢

✣✂☛☞✘✆ ✍☛☞☛✆

(a) MHC technique

�✁✂✄☎✆ ✝�✞

✝✟✠✡☛✡☞✌ ✍☛☞☛✆✞

✎✏ ✑

✎ ✏ ✒ ✎ ✏ ✓✎ ✏ ✔
✕✆✍☛✡✠☞☛✡✁✠ ✝✕✞

✖✗✘✙✚

✛✜✢

✝✣✤✍✁✄✤✡✠✥ ✍☛☞☛✆✞

✦✂☛☞✥✆ ✍☛☞☛✆

(b) NLR-MHC technique

Figure 5.2: Representation of (K)-state Markov process with a phase-type distribution
for two routing techniques.

PMHC
LoS,k =





e−β dSD if k = 1

1− e−℧ ΛA(r), if k > 1

. (5.2)

For the NLR-MHC technique, the absorption probability PLoS,k is defined as the prob-

ability of NLR being on the sector of the current source/relay. To obtain this probability,

we exploit the distance distribution between the NLR and destination which is derived

based on the density of LoS relays with the destination,

ΛA(rRD) =

θ/2∫

−θ/2

rRD∫

0

e−βx λRx dx dϕ =
θλR

β2

(
1− β rRD e−βrRD − e−βrRD

)
. (5.3)

Using the density of LoS relays and void probability [53], the CDF of the distance between

the NLR and the destination is given by

FNLR(rRD) = 1− e−ΛA(rRD). (5.4)

Then, the PDF of the distance between the destination and NLR can be formulated as

fNLR(rRD) = θ λR rRD × exp
[
− β rRD − θ λR

β2
(1− β rRD e−β rRD − e−β rRD)

]
. (5.5)

One should notice that the absorption probability depends on the distance rRD from the

NLR to the destination where the relation between rRD and rk,k−1 for a given dk−1 is

expressed by

rk,k−1 =
√

r2RD + dk−1
2 − 2 dk−1 rRD cos(ϕ). (5.6)
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For given angle ϕ and distance between the NLR and current source/relay, the absorption

probability for the NLR-MHC PLoS,k = e−β rk,k−1 . For all possible locations of relays with

SNR ≥ γth in the sector area As, the absorption probability using the distance distribution

of the NLR is given by

PNLR
LoS,k =

1

θ

∫∫

As

e−βrk,k−1fNLR(rRD) drRD dϕ. (5.7)

5.4.2 Probability Distribution of Hop Count

The parameters of two routing techniques in Fig. 5.2 are obtained in (5.1), (5.2) and (5.7).

Therefore, the hop count distributions for the two routing techniques can be represented

in matrix notation using three parameters; absorption vector, intermediate probability

matrix, and initial transient vector. First, the absorption vector T l which includes the

absorption probability P l
LoS,k is expressed as follows:

T l =
[
P l
LoS,1, P

l
LoS,2, . . . , P

l
LoS,Kmax

]
, (5.8)

where l ∈ {MHC,NLR}, and Kmax indicates the number of states which can be used as

hop count constraint. The intermediate probability matrix Ql
Kmax

for the routing process

represents the probabilities of transition between relays, given by

Ql
Kmax

=




0 pl1 0 . . . 0

0 0 pl2 . . . 0
. . .

. . .
. . .

. . .
. . .

0 0 0 . . . plKmax

0 0 0 . . . 0




, (5.9)

where plk denotes the transition probability from relay k − 1 to relay k, given by

plk = (1− P l
LoS,k+1)(1− pout). (5.10)

Let ρ denotes a vector of probabilities defining the initial transient state, given by

ρ = [1, 0, . . . , 0] . (5.11)

For the MHC technique, we find the hop count distribution conditioned on the exis-

tence of a path between the source and destination (number of available paths Npath > 0).

The hop count distribution is defined as follows

fMHC
K (k) = P (K = k|Npath > 0) =

fDPH(k)∑Kmax

k=0 fDPH(k)
, (5.12)

where fDPH is the PDF of discrete phase-type variable with parameters QKmax , ρ and T ,

and it can be formulated as

fDPH(k) = ρ (QKmax)
k−1 T. (5.13)



49

According to (5.12) and (5.13), the hop count distribution can be expressed by

fMHC
K (k) =

ρ (QMHC
Kmax

)k−1 TMHC

∑Kmax

k=1 ρ (QMHC
Kmax

)k−1 TMHC
for k ≥ 1. (5.14)

For the NLR-MHC technique, as shown in Fig. 5.2.b, the NLR is considered as an

absorption state, where it should decode the data correctly i.e., γNLR ≥ γth. As such, the

hop count distribution of the NLR-MHC technique is calculated as

fNLR
K (k) = P (K = k|Npath > 0) =

ρ (QNLR
Kmax

)k−2 TNLR

∑Kmax

k=2 ρ (QNLR
Kmax

)k−2 TNLR
for k ≥ 2. (5.15)

In the following, we investigate the asymptotic behavior of increasing the relay density

for the hop count distribution. In that, the hop count distribution mainly depends on

the outage probability at each state pout and the absorption probability P l
LoS,k. At high

relay density, the outage probability in (5.1) converges to zero. Furthermore, for large

deviation angle, the absorption probability between relays and the destination defined in

(5.2) converges to one for the MHC technique. Given the representation of the phase-type

distribution depicted in Fig. 5.2.a, the asymptotic hop count distribution for the MHC

technique in (5.14) can be expressed as

fMHC
K (k) =





e−β dSD if k = 1

(1− e−β dSD) if k = 2

. (5.16)

Thus, the asymptotic value for the average hop count becomes 2 − e−β dSD . Similarly,

for the NLR-MHC technique, the asymptotic hop count distribution in (5.15) can be

computed as

fNLR
K (k) = PNLR

LoS,k−1 ×
k−2∑

u=1

(1− PNLR
LoS,u) for k ≥ 2. (5.17)

5.4.3 Connectivity Probability

The connectivity probability pcon is a metric used to measure the network connectivity.

In particular, it is defined as the probability that the destination connects to the source

through LoS link(s) [15, 61]. From the representation of the phase-type distribution de-

picted in Fig. 5.2, one can determine the connectivity probability for the MHC and

NLR-MHC techniques respectively, as

pMHC
con =

Kmax∑

k=1

ρ (QMHC
Kmax

)k−1TMHC for k ≥ 1. (5.18)

pNLR
con =

Kmax∑

k=2

ρ (QNLR
Kmax

)k−2TNLR for k ≥ 2. (5.19)
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5.5 Coverage Probability and Spectral Efficiency

Here, we assess the network performance of the two routing techniques in-terms of the

coverage probability and spectral efficiency. First, the coverage probability is defined as

the probability of the destination to receive the signal with SNR ≥ γth. The multi-hop

DF channel is modeled as a single hop whose output SNR γs,d is approximated as [86]

γs,d = min
j=1,...k

γj, (5.20)

where k is the number of links in the path, and γj is the SNR for each link. For the DF

protocol, relays can re-transmit the signal if the received SNR ≥ γth. Hence, all received

SNR values at the relays of the selected path should satisfy the condition γj ≥ γth except

for the final link between the relay and destination. As a result, the coverage probability

of the path from the destination to source is equivalent to the coverage probability for

the link between the last relay and destination, given by

PCov = P (γs,d ≥ γth) = P (γ1 ≥ γth, γ2 ≥ γth, .., γk ≥ γth) = P (γk ≥ γth) (5.21)

In our analysis, we investigate the performance of the two underlying routing techniques

in-terms of their achieved spectral efficiency defined for the selected path between the

destination to source. In that, we adopt a fixed rate transmission scheme that works as

follows: If the SNR of a link is equal or above the SNR threshold γth, the link can be

successfully used for information transmission at spectral efficiency log2(1 + γth) bps/Hz.

As such, the spectral efficiency can be expressed similar to [1, 2, 87] as

τ(γth) = 0.5× log2(1 + γth)P (γs,d ≥ γth) = 0.5× log2(1 + γth)P (γk ≥ γth). (5.22)

where the factor of 0.5 is due to frequency reuse of order two.

5.5.1 MHC Routing Technique

In what follows, we derive the coverage probability for the MHC routing technique based

on hop count distribution. We firstly study the connection between the destination to

source through relays, and then we consider the direct link (K = 1).

Lemma 5.1. The distance distribution of the final link between the destination and the

last relay on the path for the MHC routing technique is given by

fR(r|K > 1) =

√
λRr∑Kmax

k=1 ρ (QMHC
Kmax

)k TMHC
×

Kmax∑

k=2

ρ (QMHC
Kmax

)k−1 TMHC e−πλR(dk−r)2

√
dk

.

(5.23)

Proof. According to Poisson law, the probability that a circle with radius dk contains
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exactly n relays is defined as

P (N = n) =
(πλR d2k)

n

n!
e−πλR d2k . (5.24)

Let rn be the distance between the destination and the nth nearest relay given hop count

k, hence, the PDF of the distance rn is given by [53]

frn(r|K = k ̸= 1, N = n) = 2πλR r
(πλR r2)(n−1)

(n− 1)!
e−πλR r2 . (5.25)

Given the average distance dk between the destination and relay k in (3.8), one can

find the probability of having n relays in a circle centered at destination with radius dk.

Therefore, the final link distance distribution for the MHC technique can be derived as

fR(r|K > 1) =
Kmax∑

k=2

fMHC
K (k)

∞∑

n=1

fR(r|K = k,N = n) P (N = n)

=
Kmax∑

k=2

fMHC
K (k)

∞∑

n=1

2πλRr(πλRr
2)n−1

(n− 1)!
e−πλRr2 × (πλR(dk)

2)n−1

(n− 1)!
e−πλRd2k

=
Kmax∑

k=2

fMHC
K (k) 2πλR r e−πλR(r2+d2k) ×

∞∑

n=1

(π λR dkr)
2(n−1)

((n− 1)!)2
.

(5.26)

Note that the inner summation over n is a Riemann sum derived in [88], and given by
∞∑

n=1

(πλRdkr)
2(n−1)

((n− 1)!)2
=

1

2π
√
λRdkr

e(2πλRdkr). (5.27)

Therefore, according to (5.26) and (5.27), the distance distribution of the final link is

given by

fR(r|K > 1) =
Kmax∑

k=2

fMHC
K (k) λRr

e−πλR(dk−r)2

√
λRrdk

. (5.28)

Substituting (5.14) in (5.28) leads to the final expression in Lemma 5.1.

For the direct connection (K = 1), the source directly connects to the destination

with distance dSD. Therefore, the distance distribution of the last link on the path for

the MHC technique accounting for both cases (K = 1) and (K > 1) is determined as

fR(r) = fR(r|K > 1) + fMHC
K (1)× δ(r − dSD), (5.29)

where δ(r − dSD) is the Dirac delta function. Using the distance distribution of the last

link, we derive the coverage probability for the MHC technique. Let W = (P G)/(N0Arα)

denotes the SNR in the absence of shadowing effect. For the case (K > 1), the CDF of

W is obtained by substituting the last link distance r with W to give

FW (w|K > 1) = P
( P G

N0 A rα
< w|K > 1

)
= 1 − FR

([ P G

N0 A w

]1/α∣∣∣K > 1
)
, (5.30)

and hence,

fW (w|K > 1) =
(P G)1/α

α w(N0 A w)1/α
fR

([ P G

N0 A w

]1/α|K > 1
)
. (5.31)

Given that the shadowing (χ) and the SNR in the absence of shadowing effect (W ) are
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independent random variables, hence,

fW,χ(w, χ) = fχ(χ) × fW (w). (5.32)

Note that the log-normal distribution χ with zero mean has the same distribution of log-

normal distribution 1/χ. Hence, the PDF of the SNR with shadowing can now be obtained

by substituting W,χ with ζ1, ζ2 using ζ1 = W × χ and ζ2 = W/χ. Hence, the random

variables ζ1 and ζ2 have the same distribution. After mathematical manipulations, the

joint PDF of the SNR for K > 1 is defined as

fζ1,ζ2(ζ1, ζ2) =
fW,χ(

√
ζ1 × ζ2,

√
ζ1
ζ2
)

2ζ1
=

Mkh

ζ1
3
4α

+0.5ζ2
3
4α

+1

Kmax∑

k=2

ρ (QMHC
Kmax

)
k−1

TMHC

√
dk

× exp
(
−πλR

(
dk − (

J√
ζ1ζ2

)
1
α

)2 −
(10log(

√
ζ1
ζ2
))2

2σ2

)
,

(5.33)

whereJ = (P G)/(N0 A) and Mkh is given by

Mkh =
10 log(e)J

3
2α

√
λR√

2π σ × 2 α
∑Kmax

k=1 ρ (PMHC
Kmax

)k−1 TMHC
. (5.34)

Then, the coverage probability for the direct link between the source and destination

(k = 1) is derived as follows

PCov(k = 1) = P
(
SNR > γth

)
= P

( P G χ

N0 A dαsd
> γth

)

= P
(
χ >

γth dαsd
J

)
= Q

(10 log(
γthd

α
sd

J
)

σ

)
,

(5.35)

where Q(.) is the cumulative distribution function of the standard normal distribution.

Finally, the coverage probability of the MHC technique is expressed as

PMHC
Cov (γth) = P (γS,D ≥ γth) = PCov(k = 1)× P (K = 1) + PCov(k > 1)× P (K > 1)

= ρTMHC Q
(10 log(

γthd
α
sd

J
)

σ

)
+

∞∫

γth

∞∫

0

fζ1,ζ2(ζ1, ζ2) dζ1 dζ2.

(5.36)

5.5.2 NLR-MHC Routing Technique

The coverage probability of the NLR-MHC technique depends on the density of LoS relays

available with the destination, and these LoS relays form non-homogeneous PPP. In the

following theorem, we derive the coverage probability for the NLR-MHC technique.

Theorem 5.1. The probability that the SNR at the destination for the NLR-MHC routing

technique is greater than or equal to a predefined threshold γth is given by

pNLR
cov (γth) = 1− e−ΛNLR(γth), (5.37)
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with

ΛNLR(γth) =
θλR

β2

[
1− L

(
β (

J

γth
)

1
α ,

1√
2αeg

)
− β e(2αeg)

−2
(J

γth

) 1
α

× L
(
β (

J

γth
)

1
α e

1

2(αeg)
2 ,

1√
2αeg

)]
,

(5.38)

where L(., .) is the Laplace transform of the log-normal distribution, and eg =
10log10(e)√

2σ
.

Proof. We transform the two dimensional PPP of the distances between relays and desti-

nation into one dimensional PPP of corresponding SNR without shadowing using the

Mapping theorem [53]. In doing so, we define the SNR without shadowing as w =

(PG)/(N0Ar
α) =J r−α, and hence, its density is given by

λA(w) =
θλR

α
J

2
α e−β (J/w)

1
αw

−2
α

−1. (5.39)

It is to be noted that to consider the shadowing effect χ in the SNR for the link between

the destination and LoS relays, γ = w × χ, LoS relay points are displaced independently

according to log-normal distribution in one dimensional PPP. The displaced points form a

PPP by applying the displacement theorem [53]. The resulting density after displacement

can be obtained as

λ(γ) =

∞∫

0

λA(w) ρ(w, γ) dw, (5.40)

where the displacement kernel ρ(w, γ), which represents the probability density function

of γ as a function of w and γ, derived as

ρ(w, γ) =
d

dγ
P
(
w × χ < γ

)
=

d

dγ

(
Fχ(

γ

w
)
)
=

1

w
fχ(

γ

w
). (5.41)

Therefore, the intensity of LoS relays which achieve SNR ≥ γth can be derived as follows

ΛNLR(γth) =

∞∫

γth

λ(γ) dγ =
θλR

α
J

2
α

∞∫

γth

∞∫

0

e−β (
J
w
)
1
αw

−2
α

−2fχ(
γ

w
) dw dγ

=
θλR 10log(e)J

2
α

√
2πσα

∞∫

γth

∞∫

0

w
−2
α

−1

γ
e

(
−β (

J
w
)
1
α− (10log(γ/w))2

2σ2

)
dw dγ

=
θ

2α
λR J

2
α

∞∫

0

e−β (
J
w
)
1
αw

−2
α

−1 erfc
(10log(γth/w)√

2σ

)
dw

v=
(

10log(γth/w)√
2σ

)
=⇒ θ

2α eg
λR

(J

γth

) 2
α

∞∫

−∞

e
−β (

J
γth

ev/eg )
1
α
e

2v
αeg erfc

(
v
)
dv,

(5.42)

ΛNLR(γth)
(a)
=

θ

2β
λR

(J

γth

) 1
α

∞∫

−∞

e
−β (

J
γth

ev/eg )
1
α
e

v
αeg

[−2√
π
e−v2 +

1

αeg
erfc

(
v
)]

dv

(a)
=

θ

2β
λR

(J

γth

) 1
α

[ ∞∫

−∞

e
−β (

J
γth

ev/eg )
1
α
e

v
αeg

−2√
π
e−v2 dv +

2

β (
J

γth
)

1
α

− 2/
√
π

β (
J

γth
)

1
α

∞∫

−∞

e
−β (

J
γth

ev/eg )
1
α
ev

2

dv

]

(5.43)
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=
θλR

β2

[
1− L

(
β (

J

γth
)

1
α ,

1√
2αeg

)
− β e(2αeg)

−2
(J

γth

) 1
α

L
(
β (

J

γth
)

1
α e

1

2(αeg)
2 ,

1√
2αeg

)]
,

where erfc(.) is the complementary error function, and (a) is obtained using integration

by parts, and L(., .) is the Laplace transform of the log-normal distribution. Since a

closed-form expression of the Laplace transform of the log-normal distribution does not

exist, we use the approximation in [89]

L(s, q) =

∞∫

−∞

1√
2πq

exp
[
−sey− 1

2q2
y2
]
dy ≈ 1√

1 + W(sq2)
exp
[−1

2q2
W(sq2)2− 1

q2
W(sq2)

]
,

(5.44)

where W(.) is the Lambert-W function. Using the active relay intensity in (5.43) and the

void probability [53], the proof of Theorem 5.1 is completed.

5.6 Simulation Results

In this section, we present simulation results and numerical examples to shed light on

the performance of the multi-hop mmWave networks for the two underlying routing tech-

niques. We evaluate the performance in-terms of average hop count, connectivity proba-

bility, and spectral efficiency. Similar to [45] and [36], we consider the path-loss exponent

α = 2, A = 69.8 dB, and σ = 5.2 dB for the log-normal channel. We assume that

buildings have length and width range of [10 m, 25 m], and [10 m, 20 m], respectively.

The network is assumed to be operated at 73 GHz with a system bandwidth BW = 2

GHz. The transmit power of relays and sources P = 30 dBm, the thermal noise is given

by −174 + 10 log(B) dBm, and noise figure = 10 dB. The antenna gain for relays and

sources G = 15 dB, and Kmax = 20. All simulation results are averaged over 500 × 103

realizations, and the simulations consider a square area fixed to [1000 m×1000 m].

Fig. 5.3 depicts the outage probability per hop given in (5.1) for different relay den-

sities, θ = {80◦, 180◦, 360◦}, γth = {25, 30} dB, and blockage density λB = 5× 10−5m−2.

It is shown that increasing the density of relays λR and deviation angle θ significantly

decreases the outage probability at each state whereas the outage probability rises with

increasing γth. An interesting observation from the results is that the current source/relay

can search backward, (i.e., θ ≥ 180◦), to avoid the blockages between the current state

and destination.

In Fig. 5.4, we compare between the MHC and NLR-MHC routing techniques in-

terms of the hop count distributions for different SNR thresholds and blockage densities.
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Figure 5.3: Outage probability at current state for different densities of relays, γth =
{25, 30} dB, θ = {80◦, 180◦, 360◦}, and λB = 5× 10−5m−2. Lines (solid and broken) and
markers represent analytical and simulation results, respectively.

The system parameters are λR = 2 × 10−4m−2, dSD = 300 m, and θ = 120◦. One can

notice that accuracy of our theoretical results when compared with simulations. It is

observed that the hop count distribution of the MHC technique offers higher probability

for small number of hops compared to the NLR-MHC technique. These results show how

the selection of the NLR increases the mean and variance of the hop count distribution

for the NLR-MHC technique. One can notice that increasing the blockage density from

λB = 1× 10−4m−2 to 2× 10−4m−2 significantly increases the required hop count between

the destination and its source, especially for higher γth. Also, it is noted that the mean

and variance of the hop count distribution reduce as γth decreases. This is due to the fact

that reducing γth extends the sector radius, hence, the probability to find a path with

lower hop count increases.

Fig. 5.5 shows the accuracy of analytical expressions in (5.36) and (5.37) for the

coverage probability of the MHC and NLR-MHC routing techniques, respectively with

λB = {1, 4} × 10−4m−2, λR = 2 × 10−4m−2, dSD = 300 m, γth = 20 dB, and θ = 120◦.

Results reveal the significant improvement in the coverage probability for the NLR-MHC

compared to the MHC technique. Note that the impact of the blockage density on the two

routing techniques are different. This can be interpreted as increasing the blockage density

renders the NLR away from the destination for the NLR-MHC technique, hence, the

coverage probability lessens. On the other hand, for the MHC routing technique, the hop

count rises with increasing the blockage density to mitigate the impact of blockages which

renders the last relay closer to the destination, leading to improved coverage probability.
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(a) λB = 1× 10−4m−2, γth = 15 dB (b) λB = 1× 10−4m−2, γth = 20 dB

(c) λB = 2× 10−4m−2, γth = 15 dB (d) λB = 2× 10−4m−2, γth = 20 dB

Figure 5.4: The hop count distribution of MHC and NLR-MHC techniques for different
SNR thresholds and blockage densities with λR = 2 × 10−4m−2, dSD = 300 m, and
θ = 120◦.

Fig. 5.6 shows the spectral efficiency results for the underlying routing techniques

versus SNR thresholds using (5.22) for dSD = 300 m, θ = 120◦, and different densities of

blockages and relays. Indeed, the spectral efficiency is due to a product of two functions

where the coverage probability is a decreasing function with SNR threshold, while the log

function is an increasing function. Hence, it is quite obvious that the spectral efficiency

is convex and reaches an optimal point at a certain SNR threshold. We can note that the

spectral efficiency increases significantly in the MHC technique as the density of blockages

rises. It is noticed that the spectral efficiency of the NLR-MHC technique improves as

the density of relays gets higher, while it deteriorates for MHC technique. This can be

interpreted as the higher the density of the relays, the shorter the distance between NLR

and destination, hence, the spectral efficiency improves. On the contrary, increasing the

relay density for the MHC technique rises the probability to reach relay which is near
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Figure 5.5: The coverage probability of the MHC and NLR-MHC techniques for different
densities of blockages with λR = 2 × 10−4m−2, γth = 20 dB, dSD = 300 m, and θ =
120◦. Lines (solid and broken) and markers represent analytical and simulation results,
respectively.

to the source and has LoS connection with the destination. This leads to an increase in

the distance between the last relay on the path and destination, hence, spectral efficiency

deteriorates.

(a) λR = 2× 10−4m−2

3 4 5 6

0.14

0.16

0.18

0.2

0.22

(b) λB = 4× 10−4m−2

Figure 5.6: The spectral efficiency of the MHC and NLR-MHC techniques versus SNR
threshold for different densities of (a) blockages and (b) relays with dSD = 300 m, and
θ = 120◦.

For the sake of comparison, Fig. 5.7 plots the performance in-terms of spectral effi-

ciency, connectivity probability, and average hop count for both the MHC and NLR-MHC

routing techniques with θ = {80◦, 120◦, 360◦} and different direct distances between the

source and destination. The system parameters are λR = 2×10−4m−2, λB = 4×10−4m−2,

and γth = 20 dB. Fig. 5.7.a shows that the NLR-MHC technique achieves high spectral ef-
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ficiency compared to the MHC technique, and the difference in spectral efficiency increases

as θ becomes higher. The reason is that higher values of θ reflects a shorter distance be-

tween NLR and destination for the NLR-MHC technique. For the MHC technique, as the

deviation angle θ gets larger, the probability to find a LoS relay far from the destination

increases, hence, the spectral efficiency decreases. Also, it is noticed that the spectral

efficiency decreases as the direct distance becomes larger for the MHC technique, while

it remains constant for the NLR-MHC technique. This is because the spectral efficiency

for the NLR is independent of the direct link. The effect of the direct distance between

the source and destination on the connectivity probability is illustrated in Fig. 5.7.b. As

seen, the connectivity probability of the MHC technique outperforms the one of the NLR-

MHC. This is due to the fact that the relay selection in the NLR-MHC technique reduces

the number of available paths between the source and destination. It is noted that in-

creasing the deviation angle significantly improves the connectivity probability, especially

for the MHC technique. Also, the connectivity probability gap between the two routing

techniques increases as the deviation angle gets higher. In Fig. 5.7.c, the average hop

count is depicted versus the direct distance between the source and destination. As seen,

the average hop count for the MHC technique outperforms the one for the NLR-MHC

technique. It is also noteworthy that, a trade-off exists between the spectral efficiency,

connectivity probability, and average hop count with a variation of θ in both underlying

routing techniques.

(a) Spectral efficiency (b) Connectivity probability (c) Average hop Count

Figure 5.7: Comparison between the MHC and NLR-MHC techniques with λR = 2 ×
10−4m−2, and λB = 4×10−4m−2 for different distances between the source and destination.

In Fig. 5.8, we show the performance in-terms of spectral efficiency, connectivity

probability, and average hop count for the MHC and NLR-MHC routing techniques with

γth = {10, 20} dB and different relay densities. The system parameters are dSD = 300
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m, λB = 4 × 10−4m−2, and θ = 120◦. Fig. 5.8.a demonstrates that the spectral effi-

ciency significantly increases as the relay density gets higher in the NLR-MHC technique.

However, increasing relay density reduces the spectral efficiency of the MHC technique.

It is noticed that the spectral efficiency of the MHC technique is very small compared

to the NLR-MHC, and the difference increases as relay density rises. The effect of λR

on the connectivity probability for different SNR thresholds is shown in Fig. 5.8.b. As

seen from the results, the connectivity probability for the two routing techniques have

similar behavior with increasing the relay density. Also, as γth increases, the connectivity

probability significantly decreases. In Fig. 5.8.c, it is noticed that increasing the relay

density decreases/increases the average hop count for the MHC/NLR-MHC techniques.

The reason is that increasing relay density renders the NLR closer to the destination

which leads to an increase in the number of hops. We illustrate as well the results for the

asymptotic average hop count for high relay density. The obtained numerical results for

the MHC technique show the tightness of the asymptotic expression for γth = 10 dB.

(a) Spectral efficiency (b) Connectivity probability (c) Average hop Count

Figure 5.8: Comparison between the MHC and NLR-MHC techniques with dSD = 300
m, λB = 4× 10−4m−2, θ = 120◦, γth = {10, 20} dB, and different relay densities.

Fig. 5.9 depicts the spectral efficiency and average hop count for the MHC and NLR-

MHC techniques as a function of γth and θ for λR = λB = 4×10−4m−2. It is noticeable in

Fig. 5.9.a that increasing θ results in improving the spectral efficiency of the NLR-MHC

technique for different γth, and a reverse behavior is encountered for the MHC technique.

It is also noticed that the MHC technique outperforms the NLR-MHC for small values of

θ, and as θ increases, the NLR-MHC achieves a superior performance. Fig. 5.9.b shows

a similar behavior of the average hop count for the MHC and NLR-MHC since both

techniques aim at minimizing the number of hops between the destination and source and

between source and the NLR, respectively. It is also shown that the average hop count of
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the NLR-MHC technique increases with the deviation angle θ as the NLR becomes closer

to the destination, but farther away from the source. Furthermore, the average hop count

decreases as γth gets smaller due to the increased sector radius at smaller values of γth.

(a) Spectral efficiency (b) Average hop Count

Figure 5.9: Spectral efficiency and average hop count of MHC and NLR-MHC techniques
versus γth and θ with λR = λB = 4× 10−4m−2.

Fig. 5.10 compares the MHC and NLR-MHC techniques in-terms of spectral efficiency

and average hop count under various densities of relays and blockages. In each figure, we

consider γth = 15 dB, and θ = 120◦. As one can observe, the relation between blockage

density and spectral efficiency of the MHC follows the inverse trend for the NLR-MHC

technique. As the blockage density increases, the spectral efficiency improves for the

MHC technique, while it deteriorates with increasing the blockage density in the NLR-

MHC technique. An interesting observation from the results is that the impact of relay

density on the spectral efficiency is more significant compared to the blockage density

for the NLR-MHC technique. It can be noticed that the average hop count rises as the

blockage density increases for both routing techniques. As one can notice, the maximum

hop count, on average, occurs at low relay densities when considering the MHC technique.

However, this holds at a high density of relays for the NLR-MHC technique. It is noted

from the figure that the NLR-MHC technique achieves higher spectral efficiency, while

the MHC technique achieves lower average hop count.
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(a) Spectral efficiency (b) Average hop Count

Figure 5.10: Spectral efficiency and average hop count of MHC and NLR-MHC routing
techniques versus λR and λB with γth = 15 dB, and θ = 120◦.

5.7 Summary

In this chapter, we presented a novel mathematical framework for MHC and NLR-MHC

routing techniques in multi-hop mmWave networks. Capitalizing on the proposed frame-

work, analytical expressions for the hop count distribution, connectivity probability, and

spectral efficiency have been obtained. Results have shown that NLR-MHC achieves a

superior coverage probability and spectral efficiency compared to MHC. However, MHC

provides better performance in-terms of connectivity probability and average hop count.

It is shown that increasing the density of blockages deteriorates the spectral efficiency

of the NLR-MHC technique. However, this leads to an unexpected improvement in the

spectral efficiency of the MHC technique at the cost of increasing the hop count. It has

been also shown that the deviation angle of the routing technique as well as the required

signal-to-noise ratio threshold for decode and forward relays have a substantial impact on

the performance of both routing techniques.



Chapter 6

Reliable Millimeter Wave Communi-

cation for IoT Devices

6.1 Introduction

5G and beyond networks experience a new era that will boost the efficiency of our lives and

our business. This new era will lead to true device connectivity through the IoT where

billions of devices, such as sensors, are connected among them and with the Internet

[90]. According to Ericsson’s mobility report, the 10.8 billion IoT devices of 2019 are

expected to reach 24.9 billion by the end of 2025 [91]. This connectivity will be the

foundation for increasingly intelligent mobility systems for new technologies such as smart

manufacturing, telehealth, intelligent transportation, and smart homes. These future

technologies are facing spectrum shortage challenges mainly due to the massive number of

connections and the emerging bandwidth-hungry applications. MmWave communication

represents one of the most effective solutions to this spectrum scarcity challenge motivated

by the immense amount of bandwidth at mmWave bands.

To improve link reliability and extend the range of communications for IoT devices, the

utilization of relays for mmWave communications is highly recommended. For network

reliability, a relay selection algorithm is proposed in [92] according to the dependency

between the source-destination and source-relay-destination links using geometric analy-

sis. However, achieving high link reliability in mmWave relaying systems have not been

compromised to support IoT applications. These applications depend mainly on battery-

powered devices that will operate at low powers with a battery life of up to ten years in

some applications. In [93], the authors showed that energy cost has critical importance

in IoT devices because of the limited battery capacity. Indeed, radio communication at

IoT devices significantly consumes higher than other components such as processor and

memory as shown in [94]. As such, it is important to prolong the IoT device’s battery life
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between nodes. In DF strategy, relays decode a noisy version of the signal transmitted

from the BS and retransmit it to the IoT device if the received SNR is greater than a

threshold γth. We consider the uplink transmission of IoT applications because the uplink

traffic load is much higher than the downlink traffic. Given the path-loss model in the

chapter 3, the maximum distance between the BS and relay to receive a signal with SNR

≥ γth is given by

Rth =
( PG2

A N0γth

) 1
α . (6.1)

Note that, the relay will be activated if the SNR at the relay γS,R ≥ γth; otherwise, the

relay will be inactive. As shown in Fig. 6.1, we refer to the area containing all active

relays as a visible region.

6.3 Relay Selection Technique

Communications at mmWave bands are considered as highly unreliable due to unfavorable

propagation characteristics where the transmitting beam can be obstructed very easily

[69]. Relays will play a more important role in improving the robustness in communication

between BSs and IoT devices. However, applying an inflexible relay selection technique

will significantly degrade the network performance and increase the scheduling overhead.

Hence, a promising solution to provide high-reliable communication is to have standby

communication links to the kth NLRs. Thus, we adapt the proposed routing technique in

previous chapter for dual-hop transmissions.

The adapted technique selects the NLR which has the nearest LoS distance with the

IoT device to reduce the distance between the selected relay and IoT devices. Also, the

adapted technique controls the relay-selected region to manage the distance between a

selected relay with the IoT device and select the second NLR or more generally up to the

kth NLR. For instance, limiting the relay-selected region is equivalent to decreasing the

density of relays. As a result, the nearest relay will become farther away from the IoT

device. We limit the relay-selected region deviation by an angle Ψ from the BS to IoT

device link as shown in Fig. 6.2. It is noticed that we have two cases depending on the

location of the IoT device. The first case, in Fig.6.2.a, represents the scenario when the

IoT device does not exist in the visible region. The second case represents the case when

IoT device exists in the visible region as shown in Fig.6.2.b.
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For the NLR (k = 1), one can derive the distance distribution from the NLR to the IoT

device for an angle Ψ as

fNLR(r,Ψ) = ΨλRre

(
−βr−ΨλR

β2
(1−βre−βr−e−βr)

)

. (6.5)

Figure 6.3: A graphical representation of mmWave network connectivity model for (a)
Rth < dSD and (b) Rth ≥ dSD.

6.4.2 Connectivity Probability Analysis

The connectivity probability defined as the probability that the IoT device is connected

to the network through LoS link(s). Therefore, the connectivity probability of dual-hop

communication is the probability that there exists a LoS connection for the BS-relay link

and relay-IoT device link. The connectivity probability for the kth NLR, defined as the

probability that the BS and IoT device are connected through the kth NLR with LoS

links. Without loss of generality, we develop the analysis of the connectivity probability

considering a typical IoT device located at the origin with the associated BS. The concept

of a typical IoT device in stochastic geometry refers to an IoT device residing at the origin

where the properties of the point process can be computed. In other words, the typical

IoT device is assumed to be a representative to all IoT devices. As shown in Fig. 6.3, we

assume the IoT device located at (0, 0), BS at (dSD, 0) and selected relay at (xRk
, yRk

).

The connectivity probability of the path that includes the kth NLR is given by

PCon = PS,Rk
× PRk,D, (6.6)

where PRk,D denotes the probability that at least k relays have LoS connection to the

typical IoT device, given by

PRk,D = 1−
k−1∑

i=0

(ΛA(rsd,Ψ))i

i!
e−ΛA(rsd,Ψ). (6.7)

Regarding the link between the kth NLR and BS, PS,Rk
represents the LoS probability

between the kth NLR and BS. This probability depends on the distribution of the distance
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rSR from the BS to kth NLR. Note that, the distance distributions for rSR and rRD are

dependent, and the relation between them for a given dSD can be obtained by

rSR =
√

r2RD + dSD
2 − 2 dSD rRD cos(θ). (6.8)

For given coverage angle θ and distance between the IoT device and relay rRD, the con-

nectivity probability for the kth NLR PS,Rk
= e−β rSR . As shown in Fig. 6.3, the visible

region (dotted circle area) represents all possible locations of the relay which have SNR

≥ γth. Hence, we integrate the connectivity probability over the visible region using the

distance distribution of rRD for the kth NLR. It is noted that there are two cases based

on Rth. The first case represents the scenario when Rth < dSD shown in Fig.6.3.a given

by

Pcon(Ψ) =
PRk,D

Ψ
×

Ψ/2∫

−Ψ/2

Rmax∫

Rmin

e−β
√

r2+dSD
2−2dSD r cos(θ) × fNLRk

(r,Ψ) dr dθ, (6.9)

where the parameters Rmin , Rmax and ϕ are given by

Rmin =
2 dSD −

√
4 dSD

2 − 4 sec2(θ)(dSD
2 −R2

th)

2 sec(θ)
. (6.10)

Rmax =
2 dSD +

√
4 dSD

2 − 4 sec2(θ)(dSD
2 −R2

th)

2 sec(θ)
. (6.11)

ϕ = arcsin

(
Rth

dSD

)
. (6.12)

The connectivity probability in the second case as shown in Fig.6.3.b given the deviation

angle Ψ is expressed as

Pcon(Ψ) =





PRk,D

2π

[ π/2∫
−π/2

Rmax∫
0

e−βrSRfNLRk
(r,Ψ)drdθ + 2

Ψ/2∫
π/2

Rmin∫
0

e−βrSRfNLRk
(r,Ψ)drdθ

]
Ψ > π

2

PRk,D

2π

Ψ/2∫
−Ψ/2

Rmax∫
0

e−βrSRfNLRk
(r,Ψ)drdθ Ψ ≤ π

2

.

(6.13)

6.4.3 Energy Consumption Analysis

We adopt the energy consumption model for the IoT device in [95], where the energy

consumption at the IoT device consists of data processing and transmission energy con-

sumption. The energy consumption at IoT device for transmitting and receiving Nbits is

given by, respectively [93]

ηtx = (ϵp + ϵtx)Nbits, (6.14)
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ηrx = ϵp Nbits, (6.15)

where ϵp and ϵtx is the energy dissipation per bit for data processing and transmission at

IoT device, respectively. The energy dissipation per bit for data transmission is modeled

as

ϵtx = ρ r2RD, (6.16)

where ρ is a constant of power amplification in the link budget. The average energy

consumption at IoT device associated with kth NLR for transmitting and receiving Nbits

can be expressed by

ηav = (2ϵp + ρ E(r2RD)) Nbits, (6.17)

where E(r2RD) is the expected value of squared distance between IoT device and kth NLR,

given by

E(r2RD) =

Ψ/2∫

−Ψ/2

∞∫

0

r2RD fNLRk
(r,Ψ) dr dθ. (6.18)

6.5 Simulation Results

In this section, we assess the accuracy of the analytical results by simulating the NLR

selection technique in mmWave relaying systems. All simulation results are averaged over

500 × 103 realizations, and the simulations consider a square area fixed to [1000 m ×
1000 m]. We assume that buildings have length and width range of [10 m, 25 m], and

[10 m, 20 m], respectively. Similar to [36], the path-loss exponent α = 2 and path-loss

intercept A = 69.8 dB for LoS links. The network is assumed to be operated at 73

GHz with a system bandwidth BW = 2 GHz. The transmit power of relays and BSs

P = 30 dBm, the thermal noise is given by −174+ 10 log10(BW ) dBm, noise figure = 10

dB, and antenna gain for relays and source G = 10 dB. The energy dissipation per bit of

processing is set to ϵp =50 nJ/bit for IoT device, the power amplification constant is set

to ρ =1 pJ/m2/bit, and IoT device generates 1000 bits [93].

In Fig. 6.4, we verify the accuracy of the analytical expressions for the connectivity

probability and derived distribution for the distance from the IoT devices to the kth NLR

given in (6.4). The system parameters are λR = 4 × 10−4m−2, λB = 2 × 10−4m−2, and

dSD = 100 m. In each realization, the relays and blockages are randomly and uniformly

distributed over the square area. The theoretical results are consistent with the simulated
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ones. Analyzing the results presented in Fig. 6.4.a for deviation angle Ψ = 120◦, we

observe that the mean and variance of distance distribution between NLR and IoT device

increase as the order of the NLR becomes higher. The effect of relay-selected region for

NLR on the distance distribution is illustrated in Fig. 6.4.b for Ψ = {90◦, 120◦, 180◦}.
As one may notice that increasing angle Ψ from 120◦ to 180◦ leads to an increase in the

mean and variance for distance distribution between IoT device and NLR. This is due to

the fact that limiting the region of selected-relay is equivalent to decreasing the density

of relays. As a result, the nearest relay will become farther away from the IoT device.

(a) Varying k (b) Varying Ψ

Figure 6.4: The distance distribution as a function of order of NLR (k) and the deviation
angle (Ψ).

Fig. 6.5 illustrates the connectivity probability of the first three NLRs versus the

distance between the IoT device and BS (dSD) for Ψ = {90◦, 120◦} and SNR threshold

γth = 20 dB. The figure shows that the impact of the relay-selected region on the con-

nectivity probability based on the distance between the IoT device and BS. As one may

observe, the effect of Ψ on the connectivity probability depends on the location of the

IoT device. For the first NLR (k = 1), the case dSD ≥ 100 m = Rth represents case (a)

in Fig. 6.2 where the connectivity probability decreases as Ψ increases. This is because

the increase in Ψ results in more (nearest) relays near to the IoT device and reduces the

probability of the NLR to be located in the visible region. On the contrary, increasing

Ψ improves the connectivity probability for dSD < 100 m which represents case (b) in

Fig. 6.2. Also, the impact of the order of NLR on the connectivity probability depends

on the location of the IoT device. For Ψ = 120◦, the connectivity probability for the first

NLR outperforms the second and the third NLR for dSD < 100 m. This represents case
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(a) in Fig. 6.2 where the IoT device exists on the visible region, and the NLR has the

minimum average distance to the IoT device. For dSD ≥ 100, this region represents case

(b) in Fig. 6.2, and the higher-order NLR surpasses the lower-order of the NLR in the

connectivity probability. The reason is that the connectivity probability depends on the

distance between the BS and selected relay, and increasing the order of NLR decreases

the distance between the BS and IoT device.

Figure 6.5: The connectivity probability as a function of order of NLR (k) and the
deviation angle (Ψ).

Fig. 6.6.a presents the connectivity probability of IoT device for the first two NLRs

versus different deviation angle Ψ where λR = {2, 5}×10−4 m−2, λB = 5×10−5 m−2, γth =

20 dB, and dS,D = 250 m. It is shown that increasing the density of relays λR decreases

the connectivity probability when the IoT device does not exist in the visible region

which represents case (a) in Fig. 6.2. Also, the connectivity probability deteriorates as Ψ

extends. An interesting observation from the results is that the connectivity probability

of the second NLR outperforms the one for the first NLR. This is due to the second NLR

being close to IoT device compared to the first one.

In Fig. 6.6.b, the energy consumption is depicted as a function of k, and λR. The

results indicate that the energy consumption significantly decreases as the deviation angle

Ψ extends. As shown in the figure, increasing Ψ from 60◦ to 180◦ reduces the consumption

energy by 50% for λR = 2×10−4 and k = 2. This is because the average distance between

the NLR and IoT device increases as Ψ extends as shown in Fig. 6.4.b. Also, as the relay

density increases, energy consumption reduces significantly. From Fig. 6.6, we note the

trade-off between the connectivity probability and the energy consumption when limiting

the relay-selected region and changing the relay density are applied to the NLR selection
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technique. For instance, decreasing Ψ significantly improves the connectivity probability,

however, the average energy consumption increases.

(a) The connectivity probability (b) The energy consumption

Figure 6.6: The connectivity probability and the energy consumption at IoT device as a
function of order of NLR (k), the deviation angle (Ψ), and density of relays λR.

Fig. 6.7 depicts the impact of the density of blockages on the connectivity probabil-

ity for different deviation angles Ψ with λR = 2 × 10−4m−2, dSD = 250 m, k = 1, and

γth = {10, 15} dB. The results indicate that, with a fixed Ψ, the connectivity probability

significantly deteriorates as the density of blockages increases for different SNR thresh-

olds. The figure also shows that the impact of relay-selected region on the connectivity

probability depends on γth. It is noticeable that the connectivity probability significantly

reduces as Ψ extends for γth = 15 dB. This decline in connectivity probability rises as γth

increases. We notice that decreasing γth and Ψ can achieve a significant improvement in

the connectivity probability.
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Figure 6.7: Connectivity probability of NLR versus different deviation angle Ψ and density
of blockages λb for λR = 2× 10−4m−2, dSD = 250 m, and γth = {10, 15} dB

6.6 Summary

In this chapter, we proposed a NLR selection technique for IoT devices in mmWave relay-

ing systems. We presented a tractable analytical framework to characterize the network

connectivity for the proposed technique using tools from stochastic geometry. Moreover,

we investigated the impact of the relay-selected region and the distance between the base

station and IoT device on the network connectivity of mmWave relaying systems. The

analytical results unveil a high degree of accuracy which is confirmed by extensive simula-

tions at different relay densities, blockage densities, and SNR thresholds. Results obtained

via simulations and analyses reveal the trade-off between the network connectivity and the

energy consumption of IoT devices. Results also reveal a significant impact of blockage

density and controlling the relay-selected region on the network connectivity and energy

consumption.



Chapter 7

Uplink Performance of MmWave Fron-

thaul Cell-free Massive MIMO Sys-

tems

7.1 Introduction

Fifth-generation (5G) and beyond networks are currently witnessing a wide range of new

users services and an unprecedented increase in data rates [56, 96, 97]. A promising tech-

nology to support the requirements of these networks is the CF mMIMO [12, 98]. In CF

mMIMO systems, a large number of distributed APs are deployed and connected to a

CPU via a fronthaul network to communicate with a smaller number of users. In that,

the CPU operates all APs in a cooperative manner to serve all users simultaneously over

the same time-frequency resources. It has been revealed that the performance of CF

mMIMO systems outperforms the counterpart performance of fully distributed small-cell

systems in-terms of the 95%-likely per-user throughput. Besides, the system can provide a

uniformly reliable service to all users within the coverage area through applying max-min

power control [98–100].

It is noteworthy that the capacity of the fronthaul network dramatically influences

the CF mMIMO system performance. This is due to its vital role in handling the data

exchange between the CPU and APs. More specifically, the higher amount of data to

be transferred in the fronthaul network, the higher capacity requirement for fronthaul

links. The performance of the limited-fronthaul CF mMIMO systems has been extensively

analyzed in [101–107] and references therein. The works in [101–103] investigated the

limited-fronthaul capacity effect on the downlink (DL) performance, whereas the authors

in [101,104,106,107] analyzed the limited-fronthaul capacity effect on the UL performance.

Results showed that the limited capacity of fronthaul links degrades the achievable UL

73
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and DL data rates.

The limited-fronthaul capacity effect on the DL performance has been investigated

under two different system operations, namely, fully-distributed and fully-centralized sys-

tems. In the fully-distributed system operation, the channel estimation and DL precoding

processes are performed at APs while the CPU is the responsible entity for the channel

estimation and DL precoding processes in the fully-centralized system operation. The DL

performance of CF mMIMO systems has been analyzed under both system operations

in [101, 102]. The work in [101] compared both system operations when normalized con-

jugate beamforming (CB) is applied for DL transmission. On the other hand, the work

in [102] considered different precoding techniques for both system operations. In particu-

lar, local CB precoding along with beamforming training are applied for the distributed

system operation due to the low-processing capabilities at APs. However, zero-forcing

(ZF) precoding is applied for the centralized system operation due to the high processing

capabilities of the CPU. Besides, the authors in [103] analyzed the DL performance of

CF mMIMO under limited-fronthaul capacity assuming fully-distributed operation with

local CB precoding. Results in [101–103] revealed that the limited-fronthaul effect is more

prominent on the centralized system operation with ZF precoding. Also, the achievable

DL data rates of the distributed operation using local CB precoding and beamforming

training approaches the counterpart performance of the centralized operation with ZF

precoding as the capacity of the fronthaul links decreases. In addition, the number of

served users per AP should be adapted with the available fronthaul capacity to alleviate

the limited capacity effect.

The impact of limited capacity fronthaul links on the UL performance of CF mMIMO

systems has been investigated in-terms of the spectral efficiency in [104,106] and the energy

efficiency in [104,107]. The UL transmission schemes between AP and CPU in these works

can be categorized into three different approaches, namely, Estimate-Detect-Compress-

Forward (EDCF), Estimate-Compress-Forward (ECF), and Compress-Forward-Estimate

(CFE). In ECF, all APs firstly estimate the users’ channels. Then, the estimated channels

as well as the received data signals are compressed and transmitted to the CPU where the

detection process is carried out. On the other hand, in EDCF, both channel estimation

and UL data detection processes are performed locally at the APs. The APs, then,

compress the local detected signals and send them to the CPU. Contrary to EDCF, in
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CFE, the received data and pilot signals at APs are compressed and transmitted to the

CPU where both channel estimation and users’ data detection processes are carried out.

The authors in [104] investigated the UL performance of limited-fronthaul CF mMIMO

under the aforementioned UL transmission schemes when applying maximum ratio com-

bining (MRC) detection technique. In doing so, the authors proposed a low-complexity

fronthaul rate allocation among users, followed by one-dimensional line search for capacity

allocation between pilot and data transmission. Results revealed that there is an optimal

portion of the fronthaul capacity to be assigned for the data transmission to maximize the

sum UL data rates under ECF and CFE. In [106], the UL max-min problem of limited-

fronthaul CF mMIMO has been analyzed under the EDCF approach assuming a two-stage

UL data detection technique. Results showed that there is an optimal number of users

to be served by each AP to lessen the impact of limited-fronthaul capacity. Furthermore,

the work in [107] addressed the UL energy efficiency of limited-fronthaul CF mMIMO for

the EDCF approach when applying a two-stage UL data detection technique. It has been

shown that there is a trade-off between the number of APs and the number of antennas

per AP to maximize the UL energy efficiency.

In fact, the fronthaul network can be deployed in different manners, namely, wired and

wireless. Deploying a wired fronthaul network can provide high capacity fronthaul links,

especially using high-speed optical fiber cables. However, this will significantly increase

the deployment cost due to the large number of links to be established between APs and

CPU [108]. As such, a wireless fronthaul link is more preferable for the system operation.

For instance, microwave communication can provide the fronthaul network with low de-

ployment cost, easy upgrade, and high-flexibility [109]. Nevertheless, the limited available

bandwidth in microwave bands leads to a degradation in the system performance. Many

potential technologies have been designed to overcome such limitation in bandwidth, in-

cluding non-orthogonal multiple access [110, 111], cognitive radio [112], free space optics

(FSO) [113] and mmWave [9,34,45]. For instance, FSO communication can provide high

bandwidth comparable to those in microwave bands with more cost-efficient in implemen-

tation and maintenance. In that, aiming at deploying a cost-efficient fronthaul network,

the authors in [113] proposed a FSO-based fronthaul network for CF mMIMO operation.

However, FSO transmission suffers from the non-ideal conditions arising from atmospheric

turbulence and unstable weather conditions, such as rain, fog, haze and dust [114]. On
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the other hand, mmWave communication can preserve link connectivity in a more reliable

manner than FSO [115]. Also, motivated by the high available bandwidth as well as the

high beamforming gain of mmWave bands, a mmWave fronthaul network may play an

important role in handling the information exchange between the CPU and APs [27,116].

Despite recent works have investigated the access link performance of CF mMIMO

systems in the mmWave band [117, 118], the reported results in these works may be

unreliable. This is due to the short wavelength of mmWave communications which poses

a crucial threat to the link stability, especially under non LoS communications [42, 119].

As such and since the environment around users includes static and dynamic objects that

may completely block the LoS links between users and APs [119, 120], mmWave is not a

reliable candidate for the access link operation. On the other hand, since both CPUs and

APs are deployed at fixed locations, this boosts the possibility of having reliable fronthaul

links for CF mMIMO systems. Therefore, in this chapter, we analyze the performance

of CF mMIMO systems when adopting mmWave bands for the fronthaul communication

while carrying out the access link operation over the microwave band. In that, tools from

stochastic geometry are exploited to derive an analytical expression for the UL achievable

data rates under the considered system operation.

This chapter investigates the UL performance of CF mMIMO under mmWave-assisted

fronthaul network. Unlike a deterministic approach in which the analysis is performed

under specific system parameters, stochastic geometry offers a statistical approach to

develop a tractable and accurate modeling framework to characterize the performance of

CF mMIMO systems. The analysis is conducted assuming the system operation under

the CFE transmission approach due to its potential in improving the achievable UL data

rates since the estimated channels will be available while performing the data detection

process at the CPU. Also, we consider that the network consists of multiple CPUs to

which APs are associated in a distance-based association criterion. In what follows we

summarize the contributions of this investigation as compared to previous work in the

literature:

• Analyzing the performance of CF mMIMO systems under the deployment of a

practical and cost-efficient mmWave-based fronthaul network, taking into account

the inevitable effect of blockages on the fronthaul communication in the mmWave

band.
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• Exploiting stochastic geometry tools to derive the distribution of the achievable

capacity of mmWave fronthaul links, taking into account the density of blockages

and CPUs as well as the available bandwidth for fronthaul communications.

• Deriving an analytical expression for the average UL data rates of CF mMIMO

systems while considering the effects of both the blockages and the distribution of

the provided capacity for the fronthaul links.

• Providing a comprehensive investigation of different system parameters on the aver-

age achievable UL data rates, namely, the density of CPUs and APs under different

environments (dense urban, suburban and rural).

7.2 System Model

7.2.1 Network Architecture

We consider a CF mMIMO system in which APs and users are distributed according to a

homogeneous PPP with densities λa and λu, respectively. All APs are equipped with Nap

antennas, whereas user equipments (UEs) are assumed to be single-antenna terminals.

In addition, we assume that the signal processing tasks are distributed among different

physical CPUs that are connected together and distributed according to a homogeneous

PPP with density λc [121]. In that, we consider that APs are divided into disjunct sets

where the APs in each set are connected to the nearest CPU via fronthaul links. We

also consider the presence of static blockages such as buildings as shown in Fig. 7.1.

In particular, we model the centers of blockages as a PPP with density λb, and each

blockage is modelled as a rectangle shape with random sizes and orientations. In that,

the length and width parameters of blockages are independent and uniformly distributed

with [Lmin, Lmax] and [Wmin,Wmax], respectively.

7.2.2 Fronthaul Communication

MmWave frequency band is adopted for the fronthaul network operation due to the large

available bandwidth and the high beamforming gains. For instance, one can operate

the fronthaul network at 73 GHz where the available contiguous bandwidth is up to 5

GHz [23]. Such high bandwidth can handle the immense amount of data transfer in the

fronthaul network of CF mMIMO systems. Nevertheless, a prerequisite for a reliable
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user is given by

gmk =
√

lmkhmk, (7.2)

where hmk ∈ CNap×1 denotes a vector of the small-scale fading coefficients whose en-

tries are independent and identically distributed (i.i.d.) CN(0, 1). Also, lmk denotes the

large-scale fading coefficient which accounts for the geometric attenuation (path-loss).

Furthermore, we consider the three-slope path-loss model for the large-scale fading calcu-

lations as follows [122]:

lmk = d−3.5
mk 1(dmk > d1) + d−1.5

1 d−2
mk 1(d0 ≤ dmk ≤ d1) + d−1.5

1 d−2
0 1(dmk < d0), (7.3)

where 1(·) denotes the indicator function and dmk represents the distance between the

m-th AP and the k-th user. Also, d0 and d1 are two constants whose values are set to 10

m and 50 m, respectively.

7.3 Fronthaul Operation

In this section, we analyze the UL performance of CF mMIMO in the presence of mmWave

fronthaul network. Firstly, using tools from stochastic geometry, we derive the density

of activated APs for fronthaul communications (APs with LoS fronthaul links with their

associated CPUs). Then, we derive the distribution of the achievable fronthaul capacity

between APs and CPU as a function of the densities of blockages and CPUs.

7.3.1 Active APs Density

Due to the impact of blockages on the mmWave fronthaul links between APs and CPUs,

some APs may not be capable of exchanging data with their associated CPUs. As such,

we firstly analyze the impact of blockages on the density of activated APs. Note that,

the activation of a particular AP depends mainly on the blockage density and its distance

with its associated CPU. Hence, the activated APs can be released as being generated

from an independent thinning operation over the entire existing APs PPP [53]. In that,

the corresponding density of activated APs can be calculated as

λ̃a = pa × λa, (7.4)

where pa is the probability of AP activation. We assume that APs are associated with

the nearest CPU where the distance distribution between the AP and the nearest CPU
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is given by

fR(r) = 2πλc re
−πλcr2 . (7.5)

Then, the distance distribution is applied to evaluate the activation probability pa as

follows:

pa = P (NB(CPU,AP ) = 0) =

∞∫

0

e−βr2πλc re
−πλcr2 dr = 1− β

∞∫

0

e−βre−πλcr2 dr

= 1− βe
β2

4πλc

2
√
λc

erfc
[ β

2
√
πλc

]
,

(7.6)

where NB(AP,CPU) represents the number of blockages on the link between the CPU

and AP , and erfc is the complementary error function.

7.3.2 Achievable Fronthaul Capacity

After determining the set of activated APs for fronthaul communication, one needs to

determine the provided fronthaul capacity to APs which in turn affects the amount of

data to be transferred over the fronthaul network. To this end, we firstly derive the

distribution of the provided capacity to APs as a function of the available mmWave

bandwidth as well as the densities of CPUs, APs, and blockages. In doing so, we assume

the available fronthaul bandwidth is divided equally among these APs and reused with a

factor one between CPUs. As such, the assigned bandwidth to each active AP is given

by

Bf,m =
Bf

Mu

, (7.7)

where Mu denotes the number of APs, associated to CPU u. Based on that, and consid-

ering the noise-limited system for mmWave communications [123], the fronthaul capacity

in bps for link between m-th AP and its associated CPU u is defined as

Rm = Bf,m × log2(1 + γ) =
Bf

Mu

× log2(1 +
PfGt

ArαN0
Bf

Mu

). (7.8)

To consider the impact of the mmWave fronthaul links’ capacities on the system

performance, one has to normalize the provided capacity of fronthaul links to access link

bandwidth. Since all users are served over the whole available access bandwidth, the

normalized mmWave fronthaul capacity of the m-th AP Cm in bps/Hz is given by

Cm =
Rm

BA

=
Bf

Mu ∗ BA

× log2(1 +
PfGt

ArαN0
Bf

Mu

) =
Bf

Mu ∗ BA

× log2(1 +
ρ Mu

rαBf

), (7.9)

where ρ =
PfGt

AN0
. Since, we consider that each AP is served by its closest CPU, this results

in a non-overlapping and irregular coverage area that form a Voronoi tessellation of the
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space [124]. Hence, the probability mass function (PMF) of the number of active APs per

CPU will be [125]

fMu(mu) =
( 3.5
λh+3.5

)3.5

Γ(3.5)

( λh

λh + 3.5

)mu Γ(mu) + 3.5

Γ(mu) + 1
, (7.10)

where λh = λ̃a/λc represents the average number of active APs, associated to CPU.

Depending on the PMF of the number of active APs per CPU, the cumulative distri-

bution function of the achievable fronthaul capacity for the m-th AP Cm can be derived

as follows:

FCm(cm) =
∞∑

mu=0

F(Cm|Mu=mu)(cm)× P (Mu = mu)

=
∞∑

mu=0

P (Cm ≤ cm|Mu = mu)× fMu(mu)

=
∞∑

mu=0

P
( Bf

mu ∗ BA

log2(1 +
ρ mu

rαBf

) ≤ cm

)
× fMu(mu)

=
∞∑

mu=0

P
(
r ≥

√
ρ mu/Bf

2
( mu

Bf /BA
cm) − 1

)
× fMu(mu).

(7.11)

Then, PDF of the achievable capacity Cm between the APs and the CPU is given by

fCm(cm) =
dFCm(cm)

d cm
=

∞∑

mu=0

log(2)BA

2

√
ρ
m3

u

B3
f

2
( mu

BfBA
cm)

√
(2

( mu
Bf /BA

cm) − 1)3

× fR

(√ ρ mu

Bf (2
( mu

Bf /BA
cm) − 1)

)
fMu(mu),

(7.12)

where fR(.) is the PDF of the distance between CPU and APs. This distance distribution

depends mainly on the availability of link between APs and CPU where the AP should

have a LoS connection with its associated CPU to be active. Since the location of APs

are uniformly distributed, the PDF of the distance from the CPU to APs can be obtained

as follows

fR(r) = P (R = r|NB(CPU,AP ) = 0) =

2r
R2

o
e−βr

Ro∫
0

2x
R2

o
e−βxd x

=
β2re−βr

1− e−β Ro(1 + β Ro)
, (7.13)

where Ro =
√
λ−1
c is the average coverage radius of the CPU.

By substituting (7.10) and (7.13) in (7.12) and after some mathematical manipulations,

the PDF of the achievable capacity between APs and CPU can be given by

fCm(cm) = QB

∞∑

mu=0

m2
u

2
( mu

BfBA
cm)

(2
( mu

Bf /BA
cm) − 1)2

× exp
[
− β

( ρ mu

Bf (2
( mu

Bf /BA
cm) − 1)

)0.5]

×
( λh

λh + 3.5

)mu Γ(mu) + 3.5

Γ(mu) + 1
.

(7.14)
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with

QB =

log(2)
2 Γ(3.5)

(BA/B
2
f )β

2ρ

(1− e−β Ro(1 + β Ro))
(

3.5

λh + 3.5
)3.5. (7.15)

This PDF of the achievable capacity is defined in the interval [cmin,∞] where cmin is given

by

cmin =
Bf

Mu ∗ BA

× log2(1 +
ρ Mu

Rα
o Bf

). (7.16)

7.4 Uplink Performance Analysis

Capitalizing on the derived expressions for the density of activated APs and the distribu-

tion of the provided fronthaul capacity, we provide a mathematical framework to calculate

the average achievable UL data rates of CF mMIMO systems in this section.

7.4.1 Data Compression

Due to the limited capacity of fronthaul links, one cannot perfectly represent the trans-

mitted signals from APs to CPUs. This urges the need of signal compression before signal

transmission through the fronthaul links. This in turn leads to a distortion that can be

precisely analyzed in the rate-distortion theory [126]. Such distortion can be modeled as

a quantization noise as in [103, 104]. In particular, to compress a signal X ∼ fX(x) with

zero mean and variance P to a compressed version X̂, subject to a distortion measure

d(X, X̂) with E{d(X, X̂)} ≤ Q, the rate distortion function can be defined by

R(Q) = min
f(x̂|x):E{|X̂−X|2}≤Q

I(X̂;X), (7.17)

where I(.; .) is the information content, and X̂ can be defined as X̂ = X + q, with q ∼
CN(0, Q) be the additive quantization noise which is independent of X [103,104]. Thus,

the amount of information to be transmitted between the m-th AP and its associated

CPU can be expressed as a function of the differential entropy by

Cm = I(X̂;X) = h(X̂)− h(X̂|X) ≤ log2(1 +P/Qm). (7.18)

As such, the compression quantization noise accompanying the data transmission over

this link can be expressed by [104]

Qm =
P

2Cm − 1
. (7.19)
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7.4.2 Uplink Channel Estimation

We adopt time-division duplexing (TDD) mode for the system operation. Depending on

the channel reciprocity property under TDD operation, the APs exploit the UL estimated

channels to perform the DL data precoding. Also, no DL pilots are transmitted, however,

users detect the DL transmitted data symbols depending on the channel statistics. In

that, users send pilot sequences in the first phase for the sake of channel estimation where

the channel estimation process is performed between users and activated APs for fronthaul

communication. After activated APs receive the transmitted pilot sequences from users,

they compress them and send the compressed vectors through the fronthaul links to the

CPU. We assume that the received training vector at each antenna element is compressed

separately. Therefore, the compressed vector at the r-th antenna element in the m-th AP

will be

ŷp,m,r = yp,m,r + qp,m,r, (7.20)

where qp,m,r denotes the quantization noise vector whose entries are i.i.d. CN(0, Qp,m,r).

We assume that the training vectors at different antenna elements are assigned equal

fronthaul capacities. Also, the different pilot symbols within the same training vector

are assigned equal fronthaul capacities. Let us consider Cp,m as the assigned capacity for

pilot symbols transmission from the r-th antenna element in the m-th AP to its associated

CPU such that

Cp,m =
α Cm

Nap

=
τp
τc

log2

(
1 +

Pp

K∑
k′=1

lmk′ + σ2
w

Qp,m,r

)
, (7.21)

where the term Pp

K∑
k′=1

lmk′ + σ2
w represents the composite received power of each training

symbol, and 0 < α < 1 denotes the portion of allocated fronthaul capacity for pilot

transmission. In addition, τc and τp represent the coherence interval length and the pilot

sequence length, respectively. Also, σ2
w denotes the noise variance, and Pp represents the

transmission power of pilot sequence. Based on this, the received training sequence matrix

from the m-th AP at the CPU will be

Ŷ p,m =
√

Ppτp

K∑

k′=1

gmk′ψ
T
k′ +Ωp,m +W p,m, (7.22)

where Ωp,m ∈ CNap×τp denotes the matrix of pilot compression quantization noise. Also,

ψk′ ∈ Cτu×1 denotes the assigned pilot sequence to user k′, and W p,m ∈ CNap×τp , repre-

sents the additive noise matrix at the mth AP whose vectors follow CN(0, σ2
wIN). After
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the signals are received at the CPU, the CPU estimates the channel coefficients of all

users. In particular, to estimate the k-th user channel with the r-th antenna element

in the m-th AP, the CPU applies minimum mean-square error (MMSE)-based channel

estimation technique as follows:

ğmk,r = ϵ̆mkŷp,m,rψ
∗
k, (7.23)

with
ϵ̆mk =

√
Ppτplmk

Ppτp
K∑

k′=1

lmk′
∣∣ψT

k′ψ
∗
k

∣∣2+Qp,m,r + σ2
w

. (7.24)

According to the MMSE estimation, the estimated channel at the CPU ğmk,r and the

corresponding channel estimation error g̀mk,r are independent and distributed as

ğmk,r ∼ CN(0, ηmk),

g̀mk,r ∼ CN(0, lmk − ηmk),
(7.25)

with ηmk =
√
Ppτplmk ϵ̆mk.

7.4.3 Uplink Data Transmission

In what follows, we discuss the UL data transmission where we derive an analytical

expression for the achievable UL data rates. In doing so, we apply MRC for UL data

detection during the UL transmission phase. Without loss of generality, we develop the

analysis considering a typical user located at the origin. During the UL data transmission

phase, all users simultaneously transmit their UL data symbols to APs over the same

time-frequency resources. Assuming equal power allocation for UL data transmission, the

received UL signal at the m-th AP is given by

zm =
√

Pu

K∑

k=1

gmksk +wm, (7.26)

where sk ∼ CN(0, 1) is the transmitted UL signal from user k while Pu is the UL

transmission power. Also, wm ∈ C1×Nap is the additive noise vector at the m-th AP

whose entries are i.i.d. ∼ CN(0, 1). Then, each AP compresses the received UL data

signals and sends them through the mmWave fronthaul links to the CPU. In particular,

the compressed transmitted signal from the m-th AP to the CPU is given by

ẑm = zm + qd,m, (7.27)

where qd,m represents the quantization noise vector whose entries are i.i.d. CN(0, Qd,m,r).

Let us consider Cd,m as the assigned fronthaul capacity for UL data transmission from
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the r-th antenna element of the m-th AP such that

Cd,m =
(1− α)Cm

Nap

=
τc − τp

τc
log2

(
1 +

Pu

K∑
k′=1

lmk′ + σ2
w

Qd,m,r

)
, (7.28)

where Pu

K∑
k′=1

lmk′ +σ2
w represents the total received power of UL data symbols at different

antenna elements of the m-th AP. After the CPU receives the compressed UL signals from

all APs, it exploits the estimated users channels during the channel estimation phase to

detect the data symbols of each user. In particular, we consider that the CPU applies

MRC to detect different users’ data symbols. Thus, the UL detected signal of user o is

given by

yo =
√
Pu

M∑

m=1

ĝHmor̂m +
M∑

m=1

ĝHmowm,u, (7.29)

which can be rewritten as follows:

yo =
√

Pu

M∑

m=1

ĝHmoĝmoso

︸ ︷︷ ︸
desired signal for user o

+
√
Pu

M∑

m=1

K∑

k=1

ĝHmkg̃mksk

︸ ︷︷ ︸
estimation error effect

+
M∑

m=1

ĝHmoqd,mso

︸ ︷︷ ︸
quantization noise effect

+
√

Pu

∑

k ̸=o

M∑

m=1

ĝHmoĝmksk

︸ ︷︷ ︸
interference from other users

+
M∑

m=1

ĝHmowm,u︸ ︷︷ ︸
noise

,

(7.30)

where the first term represents the desired signal, and the remaining terms represent the

interference due to channel estimation error, quantization noise effect, interference from

other users’ transmission, and thermal noise effect. Accordingly, the achievable UL data

rate for user o can be determined using (7.31) on top of next page.

Ro = E

[
log2

(
1 +

Pu

∣∣∣ M∑

m=1

ĝ
H
moĝmo

∣∣∣
2

Pu

K∑

k=1

M∑

m=1

(lmk−ηmk)
∥∥
ĝmo

∥∥2

+
M∑

m=1

Qd,m,r

∥∥
ĝmo

∥∥2

+Pu

∑

k ̸=o

∣∣ M∑

m=1

ĝ
H
moĝmk

∣∣2+σ2
w

M∑

m=1

∥∥
ĝmo

∥∥2

)]
.

(7.31)

However, (7.31) is not in a closed-form, thus, we follow the same procedure as [127] to

obtain a closed-from expression of the achievable DL data rate by applying the following

approximation

E

{
log2

(
1 +

X1

X2

)}
≈ log2

(
1 +

E{X1}
E{X2}

)
, (7.32)

where X1 and X2 are both sums of non-negative random variables. Applying (7.32) in

(7.31), a closed-form approximation of the achievable DL is given by (7.33) where different

terms in (7.33) can be calculated as follows.

R̆o = log2

(
1 +

PuE

[∣∣∣ M∑
m=1

ĝH
moĝmo

∣∣∣
2]

Pu

K∑
k=1

M∑
m=1

(lmk−ηmk)E

[∥∥ĝmo

∥∥2
]
+

M∑
m=1

Qd,m,rE

[∥∥ĝmo

∥∥2
]
+Pu

∑
k ̸=o

E

[∣∣ M∑
m=1

ĝH
moĝmk

∣∣2
]
+σ2

w

M∑
m=1

E

[∥∥ĝmo

∥∥2
]
)
,

(7.33)
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Firstly, the desired power Pd is given by

Pd = PuE

[∣∣∣
M∑

m=1

ĝHmoĝmo

∣∣∣
2]

=Pu

M∑

m=1

E
[∣∣ĝHmoĝmo

∣∣2]+ Pu

M∑

m=1

∑

n ̸=m

E
[∣∣ĝHmoĝmo

∣∣]E
[∣∣ĝHnoĝno

∣∣]

=Pu

M∑

m=1

(N2
ap +Nap)η

2
mo + Pu

M∑

m=1

∑

n ̸=m

N2
apηmoηmk

=Pu

( M∑

m=1

Napηmo

)2
+ Pu

M∑

m=1

Napη
2
mo.

(7.34)

Also, the interference power due to channel estimation errors will be

EE =
K∑

k=1

M∑

m=1

(lmk − ηmk)E
[∥∥ĝmo

∥∥2
]
=

K∑

k=1

M∑

m=1

Nap(lmk − ηmk)ηmo. (7.35)

The quantization noise power is calculated by

QNo =
M∑

m=1

Qd,m,rE

[∥∥ĝmo

∥∥2
]
=

M∑

m=1

NapQd,m,rηmo. (7.36)

In addition, the interference due to received data from other users is given by

UIo =
∑

k ̸=o

E

[∣∣
M∑

m=1

ĝHmoĝmk

∣∣2
]

= Pu

∑

k ̸=o

M∑

m=1

Napηmoηmk + Pu

∑

k ̸=o

( M∑

m=1

Napηmo
lmk

lmo

)2
|ψoψ

H
k |2.

(7.37)

Finally, the noise power is given by

No = σ2
w

M∑

m=1

E

[∥∥ĝmo

∥∥2
]
= σ2

w

M∑

m=1

Napηmo. (7.38)

Applying some mathematical manipulations, the achievable UL data rate is given by

Ro = log2

(
1 +

Au

Bu + Cu −Du + Eu + Fu

)
, (7.39)

where

Au = Pu

( M∑

m=1

Napηmo

)2
+ Pu

M∑

m=1

Napη
2
mo, Bu = Pu

K∑

k=1

M∑

m=1

Napηmolmk,

Cu = Pu

∑

k ̸=o

( M∑

m=1

Napηmo
lmk

lmo

)2
|ψoψ

H
k |2, Du = Pu

M∑

m=1

Napη
2
mo,

Eu = Pu

M∑

m=1

NapQd,m,rηmo, Fu = σ2
w

M∑

m=1

Napηmo.

7.4.4 Average UL Data Rate

In this section, we derive a tight approximation for the average achievable UL data rates

under the quantization noise effect using tools of stochastic geometry. Note that, according
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to (7.39), the effect of non-orthogonal pilot sequences depends mainly on the number and

locations of users, assigned the same pilot sequence. Due to the randomness in the

number and locations of users assigned the same pilot sequences, accounting for these

effects renders the analysis more complicated. As such and for ease of analysis and

tractability, we do not consider the pilot contamination effect while carrying out the

stochastic geometry analysis. Therefore, the achievable DL data rate can be rewritten as

Ro = log2(1 + γo), (7.40)

with

γo =

Pu

[( M∑
m=1

Nap ηmo

)2
+

M∑
m=1

Napη
2
mo

]

Pu

K∑
k=1

M∑
m=1

Napηmolmk − Pu

M∑
m=1

Napη2mo + Pu

M∑
m=1

NapQd,m,rηmo + σ2
w

M∑
m=1

Nap ηmo

.

(7.41)

Consequently, the average achievable UL data rate over different realizations is given by

R̄o = E
[
log2(1 + γo)

]
. (7.42)

One can note that the calculations of R̄o are challenging since it requires averaging over all

APs and users’ locations. To circumvent this issue, one needs to simplify the expression of

γo in (7.41). Since ηmo, lmo, and lmk are monotonically decreasing with distance, we apply

the mean plus nearest approximation [103] to simplify each individual term in (7.41).

Accordingly, the term
M∑

m=1

ηmo in the numerator can be approximated by

M∑

m=1

ηmo ≈ η(r1) + E

[ M∑

m′=2

ηm′o

∣∣r1
]
≈ η(r1) +

M∑

m′=2

∞∫

r1

η(r) fR1m′

(
r
∣∣r1
)
dr, (7.43)

where m′ represents the order of the active APs according to their distances with the

typical user. Also, the first term represents the contribution of the nearest AP as a

function of its distance from the typical user r1. In addition, the second term denotes the

average contribution of all other APs from the second nearest AP to the mth nearest AP

conditioned on the distance with the first nearest AP r1. Also, the distance distribution

of the m′-th nearest AP given the distance r1 can be expressed by [128]

fRm′

(
r
∣∣r1
)
= 2πλ̃a r

[
πλ̃a(r

2 − r21)
]m′−2

(m′ − 2)!
e−πλ̃a(r2−r21), (7.44)
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Hence, (7.43) can be calculated by
M∑

m=1

ηmo = η(r1) +
M∑

m′=2

∞∫

r1

η(r) 2πλ̃a r

[
πλ̃a(r

2 − r21)
]m′−2

(m′ − 2)!
× e−πλ̃a(r2−r21)dr

= η(r1) +

∞∫

r1

η(r) 2πλ̃a r e−πλ̃a(r2−r21) ×
M∑

m′=2

[
πλ̃a(r

2 − r21)
]m′−2

(m′ − 2)!
dr,

(7.45)

where
K∑

k′=2

[
πλ̃a(r

2 − r21)
]k′−2

(k′ − 2)!
=

K−2∑

k′=0

[
πλ̃a(r

2 − r21)
]k′

k′!
,

(a)
= eπλ̃a(r2−r21)

Γ(K − 1, πλ̃a(r
2 − r21))

Γ(K − 1)

(b)
≈ eπλ̃a(r2−r21),

(7.46)

with Γ(· , ·) denotes the lower incomplete gamma function. To simplify
(a)
= in (7.46) , we

consider an asymptotic approach assuming K → ∞ which results in a simpler form as

shown in
(b)
≈. Hence, the first term of the numerator in (7.41) can be given by

M∑

m=1

ηmo ≈ η(r1) +

∞∫

r1

η(r) 2πλ̃ar dr. (7.47)

Similarly, the second term
M∑

m=1

η2mo in the numerator can also be approximated by

M∑

m=1

η2mo ≈ η2(r1) +

∞∫

r1

η2(r) 2πλ̃ar dr. (7.48)

Regarding the denominator in (7.41), we firstly neglect the effect of noise. Then, the first

term in denominator can be expressed by
M∑

m=1

ηmo

K∑

k=1

lmk =
M∑

m=1

ηmolmo +
M∑

m=1

ηmo

K∑

k ̸=o

lmk

≈ η(r1) l(r1) + E

[ M∑

m′=2

ηm′olm′o

∣∣r1
]
+

M∑

m=1

ηmo

K∑

k ̸=o

lmk,

(7.49)

where following the same procedure as (7.45) and (7.46), the second term in (7.49) can

be calculated by

E

[ M∑

m′=2

ηm′olm′o

∣∣r1
]
=

M∑

m′=2

∞∫

r1

η(r) l(r) fRm′

(
r
∣∣r1
)
dr =

∞∫

r1

η(r) l(r) 2πλ̃a r dr. (7.50)

In addition, the third term in (7.49) can be approximated by
M∑

m=1

ηmo

K∑

k ̸=o

lmk

(a)
≈ E

[ K∑

k ̸=o

lmk

] M∑

m=1

ηmo,

≈
∞∫

0

l(r) 2πλur dr ×
(
η(r1) + E

[ M∑

m′=2

ηm′o

∣∣r1
])

,

≈
∞∫

0

l(r) 2πλur dr ×
(
η(r1) +

∞∫

r1

η(r) 2πλ̃ar dr
)

(7.51)
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where in
(a)
≈, we assume that the summation of large-scale fading coefficients of users on

each active AP is independent of the AP index. Then, we apply the mean plus nearest

approximation on the summation over the channel estimation variances for the typical

user.

Note that, the second term in the denominator of (7.41) is similar to the term in

(7.48). The Qd,m,r in (7.41) can be calculated using (7.28) as follows:

Qd,m,r = WcPu

K∑

k′=1

lmk′ , (7.52)

with
Wc =

1

2

(
(1−α)τc

(τc−τp)Nap
cm

)
− 1

. (7.53)

Thus,
M∑

m=1

Qd,m,rηmo =
M∑

m=1

Wc ηmo

K∑

k=1

lmk

(a)
≈ Wc η(r1) l(r1) +

∞∫

r1

Wc η(r) l(r) 2πλ̃a r dr

+

∞∫

0

Wc l(r) 2πλur dr ×
(
η(r1) +

∞∫

r1

η(r) 2πλ̃ar dr
)

(7.54)

where
(a)
≈ follows the same procedure as in approximating the term in (7.49) where Wc is

independent of the order of the active APs according to their distances with the typical

user.

By substituting (7.47)-(7.49), and (7.54) in (7.41), γo can be defined by

γo(r1, cm) =
Napη(r1) + η2(r1) + I1(r1)

(Wc + 1)η(r1) l(r1)− η2(r1) + I2(r1, cm) + I3(r1, cm)
. (7.55)

I1(r1) =

∞∫

r1

(Napη(r) + η2(r)) 2πλ̃ar dr,

I2(r1, cm) =

∞∫

r1

((Wc + 1)η(r) l(r)− η2(r)) 2πλ̃a r dr,

I3(r1, cm) = (Wc + 1)

∞∫

0

l(r) 2πλur dr ×
(
η(r1) +

∞∫

r1

η(r) 2πλ̃ar dr
)
.

Note that the approximation of γo in (7.55) is only a function of the distance of the

nearest AP to the typical user r1 and the achievable capacity of fronthaul link. As such,

the average UL data rate in (7.42) can be calculated by averaging over the distance r1

and the provided capacity cm as follows:

R̄o = ER1,Cm

[
log2(1 + γo(r1, cm))

]
= ECm

[
ER1

[
log2(1 + γo(r1, cm))

∣∣(Cm = cm)]
]

=

∞∫

cmin

∞∫

0

log2
(
1 + γo(r1, cm)

)
× 2πλ̃ar1e

−πλ̃ar21 × fCm(cm) d r1d cm,
(7.56)
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where ER1,Cm [.] denotes expectation over the random variables R1 and Cm.

7.5 Simulation Results

We consider a CF mMIMO system where CPUs, APs and users are uniformly distributed

in a square area of [1000 m× 1000 m]. All simulation results are averaged over 500× 103

realizations. Results are generated assuming a microwave carrier frequency fc = 2 GHz.

Also, the UL pilot and data transmission powers are equal with Pp = Pu = 100 mW [122].

The noise variance σ2
w = 290 × κ × BA × NF where κ is the Boltzman constant, the

system bandwidth BA = 20 MHz, and NF = 9 dB is the noise figure [101]. On

the other hand, regarding the fronthaul network communication under mmWave band,

we consider a path-loss exponent of α = 2 and A = 69.8 dB with available contiguous

bandwidth up to 5 GHz as in [23, 45]. The total antenna gain for fronthaul link is set to

Gt = 10 dB, and the transmit power Pf = 1 W [27, 42]. Also, we assume that buildings

have length and width range of [10 m, 25 m], and [10 m, 20 m], respectively [46]. All

APs are equipped with Nap = 4 antennas, and the densities of APs, users, and CPUs are

λa = 500/km2, λu = 50/km2, and λc = 6/km2, respectively, unless otherwise specified.

Considering different target APs activation probabilities, Fig. 7.2 depicts the required

density of CPUs to achieve such APs activation probabilities under different blockage

densities. It is noted that the required density of CPUs significantly increases with the

density of blockages. This can be interpreted from (7.6) where doubling the blockage

density increases the required density of CPUs by four-fold to maintain the same activation

probability. Also, it can be noted from (7.6) that, at a certain blockage density, the

activation probability is a logarithmically increasing function of λc. Hence, the required

CPUs density exponentially increases with the activation probability. This reflects the

significant increase in the required CPUs density as the activation probability increases

from pa = 0.8 to pa = 0.9 under different blockage densities. This in turn leads to an

extremely high density of required CPUs at higher blockage densities. However, since such

high number of CPUs is practically not feasible, it is required to evaluate the performance

loss at low activation probabilities compared to higher ones.

In Fig. 7.3, we verify the accuracy of the derived distribution of the achievable capac-

ity of mmWave fronthaul links between CPUs and activated APs given in (7.14). This

has been carried out under different densities of APs (Fig. 7.3.a) and different CPU
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Figure 7.2: Required density of CPUs for certain APs activation probability under differ-
ent densities of blockages.

densities as well as fronthaul bandwidths (Fig. 7.3.b) assuming a density of blockages

λb = 400/km2. As one can notice, the derived analytical results are consistent with the

simulated ones under various simulation parameters. Analyzing the presented results in

Fig. 7.3.a for λc = 2/km2 and fronthaul bandwidth Bf = 2 GHz, one can observe that

the mean and variance of the fronthaul capacity distribution decreases as the density of

APs increases. The effect of CPU density and fronthaul bandwidth on the capacity dis-

tribution is illustrated in Fig. 7.3.b for λa = 600/km2. As seen, increasing CPU density

from 1 /km2 to 2 /km2 leads to an increase in the mean and variance of the achievable

fronthaul capacity distribution between APs and CPUs. Also, increasing the fronthaul

bandwidth from 2 GHz to 3 GHz improves the achievable fronthaul capacity.

Fig. 7.4 shows the average UL data rates under different densities of blockages and

CPUs. The mmWave fronthaul bandwidth is considered to be 1.5 GHz, and λa =

400/km2. As noted, the simulation results are in perfect agreement with the derived

analytical results in (7.56) at different system settings. It is clear that the average UL

data rates decrease as the density of blockages increases. This is a consequence of the

smaller number of activated APs at higher densities of blockages. However, increasing the

density of CPUs remarkably improves the average UL data rates as a result of limiting

the number of deactivated APs due to blockages. Besides, the increase in the average UL

data rates declines as the density of CPUs gets higher since a reasonable number of APs

has been already activated.

Fig. 7.5 depicts the average achievable UL data rates as a function of density of block-
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(a) Varying λa (b) Varying λc and Bf

Figure 7.3: The probability distribution functions of the achievable fronthaul capacity
distribution for different densities of APs and CPUs as well as assigned bandwidths to
fronthaul networks.

Figure 7.4: Average uplink data rates at different densities of blockages and CPUs.

ages and mmWave fronthaul bandwidth. As noted, increasing the density of blockages

degrades the average achievable UL data rates. This is a consequence of decreasing the

density of activated APs for the system operation. Furthermore, increasing the available

mmWave bandwidth for fronthaul network operation significantly increases the average

achievable UL data rates, especially under low-density of blockages, i.e., λb = 100/km2.

However, as the blockage density increases, the improvement in the achievable UL data

rates with the mmWave fronthaul bandwidth becomes less prominent.

Fig. 7.6 shows how the average UL data rates are influenced by increasing the density

of APs, the number of antennas per AP, and fronthaul bandwidth under a density of

blockages λb = 200/km2. In Fig. 7.6.a, it is noticed that increasing the density of APs
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Figure 7.5: Average uplink data rates at different density of blockages and fronthaul
bandwidths.

significantly improves the average UL data rates under high bandwidth of the fronthaul

network Bf = 5 GHz. This is due to the fact that increasing the density of APs brings

more APs closer to CPUs. This, in turns, leads to a corresponding increase in the number

of activated APs which improves the provided diversity gains to users. It is shown that

the improvement in the average UL data rates due to higher AP density decreases as the

fronthaul bandwidth gets smaller. For low bandwidth of the fronthaul network (Bf = 0.5

GHz), the average UL data rates starts to increase with density of APs but finally saturates

regardless of the increase of density of APs.

The impact of increasing the number of antennas per AP on the average UL data

rates under different fronthaul bandwidths is illustrated in Fig. 7.6.b. One can note

that increasing the number of antennas per AP significantly improves the achievable UL

data rates under high bandwidth of the fronthaul network Bf = 5 GHz. Nevertheless,

decreasing the available bandwidth for fronthaul communication limits this increase in

the achievable UL rates. In addition, increasing the number of antennas per AP under

small bandwidth for fronthaul communication may lead to a corresponding degradation

in the achievable UL data rates. The reason is that the number of transmitted pilot and

data signals between APs and their associated CPUs increases linearly with the number of

antennas per AP. This in turn increases the compression quantization noise accompanying

data transmission over the fronthaul links and significantly affects the achievable UL data

rates.

In Fig. 7.7, the average UL data rates are shown at different blockage densities under
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(a) Varying density of APs (b) Varying number of antenna per AP

Figure 7.6: Average uplink data rates at different fronthaul bandwidths.

different network configurations. In particular, we consider different combinations of

AP densities and number of antennas per APs in each configuration. Also, for a fair

comparison, we consider that the total number of antennas in the system is the same

for different configurations. The mmWave fronthaul bandwidth is considered to be 2

GHz, and λc = 2/km2. One can observe that increasing the density of APs (λa =

1000/km2, Nap = 2) attains superior average UL data rates. This is due to improving the

provided spatial diversity gains through deploying a larger number of APs with a small

number of antennas.

Figure 7.7: Average uplink data rates versus density of blockages for different densities of
APs and number of antennas at AP.
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7.6 Summary

In this chapter, we investigated the UL performance of CF mMIMO under mmWave-

supported fronthaul network. We considered that the system consists of multiple CPUs

to which APs are associated in a distance-based association approach. Based on this and

using tools from stochastic geometry, we derived the density of activated APs as a function

of the blockage and CPU densities. Furthermore, we derived the distribution of achievable

fronthaul capacity assuming equal fronthaul bandwidth allocation is obtained at APs. The

average UL data rates as a function of the density of active APs. We showed that although

increasing the density of blockages degrades the average UL data rates, increasing the

density of CPUs can limit such effect. Moreover, the obtained results reveal that the

network deployment should be adjusted according to the available fronthaul bandwidth

and the density of blockages. In particular, for a given fronthaul bandwidth, increasing

the density of APs beyond a certain limit would not achieve further improvement in the

UL data rates. Besides, increasing the number of antennas per AP may even cause a

degradation in the system performance.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

5G and beyond networks experience a new era of internet of intelligence with connected

people and things. This connectivity will be the foundation for increasingly intelligent

mobility systems for new technologies, such as smart manufacturing, telehealth, and smart

homes which drive our lives into a higher level of convenience and efficiency. These future

technologies are facing spectrum shortage challenges mainly due to the massive numbers of

connections and the emerging bandwidth-hungry applications. MmWave communication

represents one of the most effective solutions to this spectrum scarcity challenge motivated

by the immense amount of bandwidth at mmWave bands. Operating at mmWave band

imposes technological challenges while offering great opportunities. To overcome these

challenges, This thesis considered the development and enhancement of mmWave com-

munications to meet the requirement of 5G and beyond networks. Indeed, the nature of

millimeter waves renders the communication quality susceptible due to blockage caused

by obstacles. To deal with blockages, we exploited the relaying systems for mmWave

networks to guarantee the robustness of network reliability and provide high quality of

service. In addition, we investigated the potential of mmWave bands to support the

fronthaul network of CF mMIMO systems. Significant contributions have been made in

this thesis, which is evident from the track record of publications that resulted from this

research work. We briefly summarize these achievements:

1. We have introduced an analytical framework to analyze the network reliability

for mmWave relaying system. Capitalizing on this framework, we have investi-

gated the impact of limiting the hop count on the network reliability of mmWave

communications. Results obtained via both simulations and analyses revealed the

trade-off between the network connectivity and the delay as a function of the hop

count.

96
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2. we have proposed a novel routing technique for mmWave networks to improve the

spectral efficiency. It is shown that the proposed routing technique outperforms

other selection schemes in literature in-terms of spectral efficiency. Results showed

that the maximum spectral efficiency is achieved at certain SNR threshold and vary

according to the order of selected best relay. Hence, we proposed the adaptive SNR

threshold approach based on the order of the best relay. It is observed that the

proposed adaptive SNR threshold approach has a significant impact on the spectral

efficiency.

3. We have proposed novel routing techniques in the mmWave relaying system to

support wide range of use cases for 5G and beyond networks, namely MHC and

NLR-MHC routing techniques. We have modeled the distribution of hop count for

the aforementioned routing techniques using phase-type distribution, and then we

have used this distribution to derive analytical results for the coverage probability

and spectral efficiency. This investigation provides accurate and insightful expres-

sions for designing multi-hop mmWave networks to improve data rates and latency

while maintaining the network reliability.

4. We have investigated the power consumption and network reliability of IoT de-

vices. Also, we have adapted the proposed relay selection technique for IoT de-

vices in mmWave relaying systems to prolong the IoT device’s battery life. Results

obtained via both simulations and analyses revealed the trade-off between the net-

work connectivity and the energy consumption of IoT devices. Results also showed

a significant impact of blockage density and controlling the relay-selected region

on the network connectivity and energy consumption.

5. We have proposed the mmWave communication to support the fronthaul links of

CF mMIMO systems. We have provided a comprehensive investigation of differ-

ent system parameters on the UL performance of mmWave fronthaul-based CF

mMIMO systems. It is shown that the UL data rates are significantly affected by

the density of blockages in the network. However, increasing the density of CPUs

can alleviate the performance degradation at high blockage densities. It has been

also shown that increasing the AP density beyond a certain limit would not achieve

further improvement in the UL data rates. Also, the higher number of antennas

per AP may even cause UL data rates degradation.
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8.2 Future Works

In this section, we shed light on some interesting directions of research to further extend

the results contributed in this thesis:

1. Supporting Massive Connectivity for IoT Networks in Millimeter Wave

Relaying Systems

Many advanced applications in 5G and beyond network, such as smart cities, smart

factories, smart agriculture, and smart healthcare lead to IoT revolution. Such

huge ranges of smart applications are expected to be supported with massive con-

nectivity. This requires a more efficient, flexible, and agile wireless communication

systems. Therefore, an interesting direction for future works is to investigate the

problem of supporting reliable connections for massive IoT devices using mmWave

relaying systems.

2. Towards Secure Communications for IoT Networks in Millimeter Wave

Relaying Systems

Security remains important issue for IoT devices where these devices not only col-

lect personal information but can also monitor user activities. Due to decentralized

existence of IoT devices, the confidential messages in IoT architecture are easy to

be intercepted and decoded by eavesdroppers. As such, investigating the potential

of incorporating physical layer security and mmWave relaying systems to provide

data security for IoT devices is highly recommended.

3. Towards Reliable Communications using Reconfigurable Intelligent Sur-

faces (RIS) in Millimeter Wave Systems

RIS has captured a huge attention from the research community as a key enabling

technology to realize a smart control over the radio propagation environment. This

stems from the fact the RIS is capable of boosting the received signals quality, ex-

tending the communication range, and improving the network security, while main-

taining high energy and spectral efficiencies and low computational complexity. In

fact, multiple RISs can be used to overcome severe signal blockage between the

BS and users to achieve better service coverage. In light of this, the integration of

the multi-hop RIS and mmWave networks is although beneficial, but still an open

problem.
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