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Abstract 

Identification of the Most Important Factors Driving Watermain Failure 

Sadaf Gharaati 

As essential infrastructure, water distribution systems provide water to the vital needs of 

individuals, businesses, and industries. Watermain failure jeopardizes water systems' ability to 

deliver clean water safely. The main target of this study was to identify the most influential factors 

on watermain failure across Canada. Dimensionality reduction approaches were applied to 

watermain data from thirteen Canadian cities, Barrie, Calgary, Region of Durham, Halifax, 

Kitchener, Region of Markham, Region of Waterloo, Saskatoon, St. John’s, Vancouver, Victoria, 

Waterloo, and Winnipeg. While previous studies have focused on small datasets of a few cities at 

a time, the present study compares various factors in different networks with different 

characteristics. Multiple physical, historical, protection, operational, and environmental factors 

were compared. Two target attributes were defined, current rate of failure and break status. A 

correlation analysis was applied to each city to identify the relationships between different 

attributes and the targets. Four dimensionality reduction approaches were employed to evaluate 

the impacts of different factors on the targets and identify the most important factors The four 

approaches are Factor Analysis of Mixed Data (FAMD), Categorical PCA (CATPCA), Random 

Forest Recursive Feature Elimination (RF-RFECV), and Extreme Gradient Boosting Recursive 

Feature Elimination (XGBOOST-RFECV). Results indicate CATPCA is more reliable than other 

approaches. Furthermore, protection activities were found to be more important than physical and 

historical attributes in most utilities. Thus, the collection of protection data should be prioritized 

for utilities with higher rates of protection activities, especially if they have already collected data 

on fundamental physical and historical attributes. While few utilities collect data on environmental, 

operational, and certain physical factors such as roughness, dead-end, restrained, and pipe depth, 

these were also found to be important and should be further investigated. These findings create the 

foundation for a new data collection framework for predicting main breaks.   
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1 Introduction 
Water main deterioration is a global challenge that can jeopardize water systems' ability to deliver 

clean water safely. The failure of water mains can affect individuals, businesses, industries, and 

institutions. In order to realize the importance of clean water, imagine a day without it. Water main 

breaks can directly disrupt the service provided by pipes. According to the United States 

Environmental Protection Agency (U. S. Environmental Protection Agency, 2012), failure costs 

can considerably be higher than maintenance costs based on transmission size. According to the 

Canadian Infrastructure Report Card (2012), the cost of upgrade and replacement of water and 

wastewater network in Canada is estimated to be more than CAD$ 80 billion. The total cost of 

water loss resulting from watermain breaks is expected to be 3.8 USD billion per year (U. S. 

Environmental Protection Agency, 2010). Hence, it is essential for water utilities to seek cost-

effective rehabilitation and renewal strategies (Kleiner & Rajani, 2001).  These strategies should 

reduce failure costs while ensuring an adequate level of service. 

1.1 The components of a water distribution system 

Water supply systems consist of transmission, distribution, and service phases. In the first phase, 

water from the source, i.e. river, lake, or groundwater, is transmitted to a treatment plant to provide 

clean water for customers. Once water is treated and leaves the plant, the distribution phase begins. 

Clean water is transferred to storage and delivered to customers in different areas. The distribution 

network consists of three major parts of pipes, valves, and flush hydrants.  

  

Figure 1-1 Water distribution system (Adapted from EPA, 2006) 



2 

 

 

2 

1.1.1 Pipes 

Pipes convey clean water within the water distribution network. The amount of carried water and 

the required pressure for the end-user determine the size of the pipes. 

Transmission pipes usually carry water from considerable distances, such as the treatment planet, 

to storage tanks. These pipes are generally the largest in the system (>350 mm diameter) and, 

accordingly, are the most expensive ones (Karimian, 2016). 

Distribution pipes provide water services to all potential users and usually are laid in the city street. 

Compared with transmission pipes, they are smaller in diameter (<350 mm diameter) (Karimian, 

2016). Service pipes transfer water from distribution mains to the end-users ‘buildings or property. 

Although these pipes are usually small in diameter, Saskatchewan Environment determines the 

minimum acceptable size of 25 mm (Saskatchewan Water Security Agency, 2004) . 

1.1.2 Valves 

Valves in the distribution network are used to control flow and isolate a particular part of the 

system during repair and maintenance.  

1.1.3 Hydrants 

Flush hydrants in water distribution systems are responsible for removing silt, sediment, rust, etc., 

from the waterline. These hydrants are usually located at the end of dead-end lines. The flush 

hydrants also check closed valves and weak flows in the system. Although fire hydrants are larger 

and more expensive than flush hydrants, some municipalities use fire hydrants instead of a flush 

hydrant. 

1.2 Overall condition of pipes 

According to the Water Research Foundation (WaterRF, 2017), 75% of water utilities consider 

pipe breaks the key pipe replacement measure. The Canadian Infrastructure Report Card (CIRC, 

2019) indicates that about 30% of potable water infrastructure in Canada is in very good condition, 

40% in good condition, and 25% in fair, poor, or very poor condition. Canadian Infrastructure 

Report Card (CIRC, 2019) briefly summarizes these conditions as Table 1-1. 
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Table 1-1 Condition rating definition adapted from CIRC (2019) 

Condition Description 

Very 

good 

The asset is suitable for the future. It is maintained well, is in good condition, and 

might be new or recently rehabilitated 

Good The asset is in adequate condition and generally is at the middle stage of its expected 

service of life. The condition of this asset is acceptable 

Fair Signs of deterioration and deficiencies in some elements have appeared. These 

assets require attention.  

Poor The condition can highly affect the provided service by the asset. The majority parts 

of assets have deteriorated significantly, the expected service of life is approached, 

and the condition is below the standard.  

Very poor The expected service of life is near or passed and demonstrates the sign of advanced 

deterioration. The asset is not suitable for sustained service. Some of the assets 

might be unusable.   

 

Approximately 30-40% of these assets are aged 20 years. A water pipe's typical expected service 

life is between 70 and 100 years, depending on the material and local characteristics. Pipes can be 

categorized into three major material groups: plastic, concrete, and steel. Plastics generally have a 

higher ESL and are currently used more frequently. 

According to a survey of 308 utilities in the USA and Canada, the break rate grew by 27% from 

2012 to 2018 from 11 to 14 breaks in 100 miles each year in which significant increase in break 

rate of asbestos cement and cast iron pipes is a cause of concern for water utilities (Folkman, 2018). 

In general, PVC pipes have the lowest break rate. Respondents also indicated the average length 

of pipe replaced is 0.8% of the total length each year. Moreover, the length requiring replacement 

doubled from 2012 to 2018 (Folkman, 2018).  

1.3 Problem statement 

Various factors are contributing to watermain failure and previous studies have focused on a 

different subset of data. The studies also have focused on one or two cities at a time and results 

have not been broadly implemented. Developing a reliable prediction model requires comparing a 

comprehensive range of factors that affect pipe failure. Also, the contributing factors might be 
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highly correlated and including them, all in the analysis can lead to incorrect results. Additionally, 

collecting all the factors for utilities is usually costly and time-consuming. A comprehensive study 

comparing various factors in different area is required to develop a reliable data collection 

framework.  

1.4  Objectives 

The main objective of this study is to identify the most important factors in predicting watermain 

failure. In order to achieve this target, the following sub-objectives are taken into consideration: 

1. Compare the applicability of the different dimensionality reduction approaches across 13 

cities in Canada; 

2. Identify the most important factors affecting watermain current rate of failure in each of 

the cities based on the results of dimensionality reduction approaches;  

3. Identify the most important factors in predicting if a pipe will experience a failure in each 

of the cities based on the results of dimensionality reduction approaches; and 

4. Develop a data collection framework based on the final results. 
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2 Literature Review 

2.1 Factors contributing to water main failures 

Pipes usually follow a typical life cycle represented by a “bathtub curve”. The curve represents 

three life cycle stages: burn-in, in-usage, and wear-out. These stages describe the period after 

installation with failures due to defective pipes or installation problems, a trouble-free period, and 

a period of increasing breakage rate due to aging and deterioration, respectively (Kleiner & Rajani, 

2001). 

Factors contributing to water main failures can be categorized into general physical factors, 

historical information, protection activities, environmental factors, manufacturing defects, and 

operational factors. Barton et.al., (2019) reviewed different factors in previous watermain 

deterioration studies and discussed the following typical factors influencing breakage:  

- Material 

- Pipe joint system 

- Coating and lining 

- Manufacturing process 

- Handling, storing, and third-party damages 

- Age 

- Diameter 

- Environmental factors such as cold/warm temperature, seasonality, and soil movements 

- Operational factors such as internal water pressure  

- Previous failures 

These factors determine the material's applicability to different pressure conditions and soil types. 
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2.1.1 Physical factors 

2.1.1.1 Material  

Pipe material can be categorized into four general groups: Metallic, Plastic, Concrete, and 

Asbestos cement. Among them, Cast Iron (CI), Ductile iron (DI), Steel, Asbestos Cement, 

polyvinyl chloride (PVC), and polyethylene (PE) are most common. Different materials have 

unique break patterns and expected service lives (Snider & McBean, 2020). Results of a survey 

for 308 utilities in Canada and the USA indicate that circumferential breaks and corrosion are the 

two most common types of break in DI and CI pipes (Folkman, 2018). For PVC pipes, scratches, 

void, and inclusion are most common (USEPA, 2012). A study of Regina’s water distribution 

system indicated that more than 90% of the AC pipes that failed between 1994 – 2003 had a 

circumferential break (Hu & Hubble, 2005).  

The expected service life (ESL) of an asset defines the years during which adequate service is 

provided (Hudson & Haas, 2013). Although the true ESL depends on various factors, such as 

design and construction methods, usage and environmental condition, maintenance, and operation 

practices (Hudson & Haas, 2013), high-level ESLs have been defined by pipe material type.  

For example, the USACE (1998) recorded ESL of concrete pipes between 70-100 years and around 

50 years for steel and plastic pipes. A study of the City of Cobalt, ON (2014) considered 100 years 

for ESL of all pipes, including PVC, Copper, and DI., while according to the Municipal 

Association of South Carolina (MASC), metallic pipes, including DI and CI, have an ESL between 

100-120 years and plastic pipes such as PVC and HDPE are expected to last 70 years (2016).  

Over the years, improvements in pipe manufacturing processes of different materials have led to 

changing trends in material use. A study by Kirmeyer (1994) estimated in 1992 that DI and CI 

covered two-third of watermains in the USA, AC pipes around 15%, and the remaining either 

plastic or concrete. However, during recent years this pattern is changed. According to a survey 

result of 308 utilities in the US and Canada, DI and PVC are currently the most common pipe 

materials. (Folkman, 2018). According to the same study, in USA and Canada, no breaks were 

recorded for AC and CI pipes after the 1980s, which indicates these pipes were not been widely 
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used since then. Also, DI and PVC pipes failures had not appeared before 1960, meaning that these 

materials began to be applied later. A study by Snider and McBean (2020) on five large utilities 

across Canada also confirmed this pattern. 

Plastic pipes, in general, are the only type of material resilient to corrosion. Although AC is more 

corrosion resistant than metallic materials, it is rigid, and signs of corrosion can be observed in AC 

pipes buried in sulfate soils or close to acidic ground water. Previous studies indicate that the 

vulnerability of metallic material against corrosion is different. For instance, Ductile iron is the 

least vulnerable metallic material to corrosion, followed by steel and Cast iron, respectively (Hou 

et.al., 2016) (Barton et.al., 2019). Since steel is cheaper than DI and is suitable for higher pressure, 

it is recommended for large diameter pipes (>800 mm). At the same time, DI, which is more 

resilient to corrosion and has higher tensile strength, is suggested for pipes with a diameter between 

300 and 800 mm (Barton et.al., 2019). A study of large diameters pipes (>300mm) in five 

Australian utilities by Rajeev et.al. (2015) indicated that among cast iron, ductile iron, steel, and 

AC, the lowest break rate is for Ductile iron. In contrast, the highest break rate belongs to unlined 

and cement-lined Cast iron. The failure rate of DI pipes is considerably more than CI pipes (Snider 

& McBean, 2020). According to the same study, this can be rooted in the younger age of these 

pipes and more flexibility of them due to the existence of graphic nodules which can protect the 

pipe against ground movements. 

2.1.1.2 Diameter 

While pipes with smaller diameters (<200mm) are frequently used in water systems, their failure 

rate is the highest, as compared to larger diameters (Barton et.al, 2019). Around 67% of installed 

pipes in US and Canada have a diameter of 200 mm or less (Folkman, 2018). Results of a study 

by Hu and Hubble in Calgary (2007) indicate that more than 93% of AC pipe breaks in the city 

were of 150-200 mm pipes. This can be related to factors such as the low resilience of these pipes 

against ground movements, their thickness, corrosion, and poor joint reliability. Diameter can also 

affect failure mode. For instance, the Circumferential break type is common in small diameter 

pipes (<200mm) (Bruaset & Sægrov, 2018) while, longitudinal and hole breaks are primarily 
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observed in large diameter pipes (>300mm) where water pressure is generally higher (Rajeev et.al., 

2015).  

2.1.1.3 Length 

Pipe length is identified as an important factor by many authors. However, there isn’t a consensus 

about whether breakage is positively or negatively correlated with breaks. For instance, results of 

a study by Berardi et.al. (2008) on deterioration of a UK water distribution system suggested pipe 

length as one of the three most important factors in explaining deterioration. It also confirmed 

length linearly and positively affects pipes burst. On the other hand, a negative correlation between 

pipe length and the number of breaks is concluded from other studies. A study of watermains in 

Quebec City, QC, by Wang et.al., (2009) indicates a lower annual break rate was recorded for 

longer pipes with the same age and diameter. Nishiyama and Filion (2014) also reached this same 

conclusion, who found breaks to be highly negatively correlated with length in a study of cast iron 

pipes in Kingstone.  

2.1.1.4 Depth 

Pipe depth refers to the depth where a pipe is buried, measured from the top of the pipe. Previous 

studies have indicated that increasing buried depth results in higher soil temperatures during the 

winter (Rajani et.al., 1996), thereby reducing the probability of failure at higher depths. A frost 

line is defined as the maximum depth in which ground water in the soil is expected to freeze. 

Increasing the depth after this point may no longer reduce breaks. Environmental factors such as 

weather conditions, soil characteristics such as soil type and heat transfer properties, and nearby 

heating sources are considered by cities to determine freezing depth. For instance, while in 

Vancouver’s mild climate, pipes are buried at a depth of 0.6m for frost protection (Brown, 2006), 

in Toronto, they are buried at 1.8m depth where they are believed to be just below the frost line 

(City of Toronto, 2020). This depth is even greater for Winnipeg, with harsher winters, around 

2.4m (Manitoba Soils and Screw Piles, 2018). 
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2.1.1.5 Thickness 

Pipe wall-thickness negatively correlates with failure rate, i.e., thinner pipes have higher break 

frequency. This is observed in a study of ductile iron pipes in Sanandaj, Iran (Asnaashari, McBean, 

Shahrour, & Gharabaghi, 2009). Another study by Bruaset and Sægrov (2018) related lower 

corrosion resilience of small diameter pipes to their thinner wall thickness. In general, increasing 

pipe wall thickness increases pipe resilience to circumferential loads and prevents pipe wall 

reduction due to corrosion and other degradation (Rezaei et.al., 2015). Also, pipe failure due to 

high pressure is more likely when the pipe wall thickness is reduced. A study by Snider and 

McBean (2020) indicates that increasing wall thickness of the pit cast manufacturing process 

installed before 1920 can increase ESL of CI pipes compared with thin wall spun cast iron installed 

between 1920-1940. 

2.1.1.6 Joint type 

Joint failure is a typical pipe failure mode (Barton et al., 2019). Results of studies by Dingus, et 

al.,  (2002) and Burn, et al.,  (2005) reported joint failure was the cause in average, 15% and 16% 

of all PVC pipes failure. Joints connect pipe segments and are either built as a part of the pipe, i.e., 

integral, or installed separately at two pipe ends. According to Rahman and Farrell (2007), integral 

joints are cheaper to be installed, less prone to corrosion, and less prone to hum-related errors, 

which leads to a lower probability of leakage. Joints can also be categorized as rigid or flexible 

according to their ability of residency against rotation and displacement. Examples of rigid joints 

include mechanical bolted joints and flanged, whereas flexible joints include socket joints and 

spigots. Since rigid joints are sensitive to rotation, they are more prone to leak and fracture failure 

due to ground movement (Barton et.al., 2019). In general, corrosion and leakage are the most 

common cause of rigid joint failure, while gasket failure is the main cause of flexible joints (Barton 

et.al., 2019). 
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2.1.2  Historical information  

2.1.2.1 Age 

Age is one of the most important breaks predicting factors (Berardi et.al, 2008) since it can indicate 

many other factors such as corrosion, external loads, deterioration, etc. Also, age is used in various 

statistical models such as time exponential and time powered to describe the time dependency of 

breakage and to estimate an optimal time for pipe replacement. It can be said that the failure rate 

increases as the pipe age increases. However, age alone cannot be a reliable factor in predicting 

watermain (Kahn et.al., 2020). According to the bathtub curve, the failure rate can be high 

immediately after pipe installation. However, this rate drops for a certain period and then increases 

as the age increases (Kleiner & Rajani, 2001).  

Various studies observe increasing break rates for older pipes. Physical damages, environmental 

and operational conditions which a pipe might experience during its life are all factors which 

contribute to the growth of break rates over time.  

2.1.2.2 Previous break  

It is also observed that, pipes are more likely to break once they have broken before (Kleiner & 

Rajani, 2001). This fact is addressed by several researchers such as Walski and Pelliccia (1982) , 

Mark et.al, (1985), Andreou et.al., (1987a) (1987b)  related data are reflected in many prediction 

models. Previous breaks can provide a proxy for local conditions such as area soil type, weather 

condition, usual traffic load, etc. Accordingly, previous break information can be a more 

informative factor than age. Snider and McBean (2020) analyzed five Canadian utilities that 

showed varying break year trends depending on various factors, notably weather. Accordingly, it 

is essential to analyze break rates over many years to find a general pattern. The same study results 

indicate a generally constant or decreasing long-term break rate.  
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2.1.3 Protection activities 

2.1.3.1 Lining and Coating 

Lining and coating are pipe protection methods performed inside and outside of the pipes, 

respectively, in order to delay the corrosion process. For instance, lining a pipe that is in reasonably 

good structural condition can extend ESL by 30-50 years ( USEPA, 2002). The structural lining is 

expected to last long-term, around 50 years ( U. S. Environmental Protection Agency, 2002). 

According to the same study, these linings improve pipe strength against dynamic loads and can 

act as a pipe for a short period when the pipe has failed.  

The most common types of coating used are resin, PE sleeve, and yellow jacket, whereas 

bituminous, cement mortar, and resin are more applied as linings. According to Guan (2001), the 

most common type of lining in North America is bituminous.  

Resin corrosion protection consists of adding a layer of resin to a pipe. This layer hardens over 

time and creates a non-penetrable layer that prevents pipes from being exposed to surrounding 

water (Wiley, 2018).  

Yellow jacket coating consists of two layers of polyethylene which enable long-lasting and 

resistance against corrosion, and most biological, chemical, and environmental contaminants find 

in the soil. 

PE sleeve isolates pipe from soil and creates a uniform layer of passive water which prevents 

corrosion (Malizio, 1986). It is believed that although initial rusting might occur, oxygen in trapped 

water will be consumed gradually by cathodic reactions and prevent further corrosion (Rajani & 

Kleiner, 2003).  

Cement mortar creates a layer of passive iron oxide. This layer is then kept in an alkaline 

environment of hydrated Portland cement (Bardakjian, McReynolds, & Hausmann, 2007). This 

lining material is economical and capable of withstanding various operational conditions.  
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Bituminous hydrophobic property repels water and moisture from vulnerable parts. This product's 

durability, flexibility, and chemical attack resistibility enable it to be widely used in harsh 

environments (Nanan, 2019).  

2.1.4 Environmental factors 

2.1.4.1 Soil and ground characteristics  

Soil characteristics such as PH, humidity, and soil type can also affect pipe failure. The influence 

of soil on pipe failure can be direct, i.e., soil movement, or indirect, i.e., corrosion. In the following 

paragraphs, soil-related factors are discussed. 

2.1.4.1.1 Corrosion 

Soil is an essential factor affecting corrosion. Risk of corrosion by soil is defined as the risk of 

soil-related electrochemical attack or chemical actions which result in corrosion in un- protected 

pipe material. Lower PH and resistivity and a higher level of moisture in the soil are factors that 

facilitate corrosion. A corrosion index can measure soil corrosivity. This metric indicates corrosion 

potential and can either relate to soil corrosivity or water corrosivity. Various factors are included 

in different studies for calculating the soil corrosion index. Among them, the American Water 

Works Association (AWWA) defines a numerical scale for corrosion index and rates soil 

corrosivity based on soil characteristics, including resistivity, Redox Potential, sulfide content, and 

moisture. These scores range between 0 and 10, with higher indicating higher corrosivity.  

The effects of corrosion can be observed in terms of wall- thickness reduction and functionality 

interruptions in pipes. Numerous failure modes are also corrosion-related (Folkman, 2018). 

Folkman (2018) reported 75% of 308 surveyed utilities in the USA and Canada are experiencing 

at least one area with corrosive soil condition and indicates corrosion is responsible for 28% of 

watermain failure in the area which after circumferential breaks is the highest.  A study by Hu and 

Hubble (2007) suggests that chemical attacks in Calgary dramatically affected AC pipe's structural 

integrity. The most common corrosion protection approaches are anode installation, cathodic 

protection, lining, and coating. A study by Snider and McBean (2020) confirms plateauing and 

decreasing of cast iron pipes break rate in the 1990s when the city began a cathodic protection 



13 

 

 

13 

rehabilitation program. Before that, the failure rate of cast iron pipes was increasing. This pattern 

is also valid for other metallic material pipes such as Ductile Iron.  

2.1.4.2 Weather 

Weather conditions are mainly related to sudden seasonal changes, temperature, frost, and 

precipitation. It is believed that weather condition plays a vital role in pipe failure. The increasing 

failure rate of AC and PVC pipes during dry summer and metallic pipes in winter have confirmed 

this. Frost heave, i.e., ground swelling due to freezing temperatures, results in additional 

distribution network loads and damages (Bruaset & Sægrov, 2018). Multiple freezes and thaw 

cycles further increase pipe failures (Bruaset & Sægrov, 2018). Colder temperatures, in particular, 

increase circumferential breaks, and the effects of extreme temperatures on smaller diameter pipes 

are greater (Rajani et.al., 1996). These factors affect soil and stability and can lead to pipe 

breakage. According to previous observations, a lower failure rate is observed during the spring 

when soil is wet, and ground movement is unlikely (Barton et.al, 2019).  

Increasing water consumption and lowering ground water levels impose additional internal and 

external loads on pipes during dry and hot summers. The internal loads occur due to increasing 

pressure and velocity in and the pipes, whereas the additional external loads result from soil 

shrinkage (Wols & Thienen, 2014). Moreover, when soil temperature increases, pipes expand 

longitudinally during hot weather. However, soil and pipe water temperature differences result in 

further thermal pipe stress. Finally, higher temperatures can also accelerate corrosion (Wols & 

Thienen, 2014).  

2.1.5 Manufacturing defects 

Some early breaks can be rooted in manufacturing defects. The type of defect varies depending on 

material type. For instance, for metallic pipes, the most common are non-uniform wall thickness, 

cold shots, and micro cracks. For AC pipes, uneven distribution of asbestos fibers is the primary 

type of defect. Inclusions and porosity lead to early failure in both metallic and Plastic pipes.  

 Inclusion is the addition of unwanted material to the pipe, leading to inconsistencies in the material 

texture and weak points. These defections affect the structure of pipes and can lead to eventual 
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failure. Porosity defection is caused by trapped air in the solidified melted iron mold, leading to 

cracks in pipes. 

 Other damages on pipes can be related to storage, specifically for PVC pipes, since long exposure 

of this material to ultraviolet light embrittles it (Barton et.al., 2019).  

According to Snider and McBean (2020), Canadian cities without historical pipe information 

should predict breaks for CI pipes installed after 1941. On average, 50% of pipe length exceeds 

AWWA’s break rate threshold of 0.125 brks/km/yr. 

2.1.6 Operational factors 

2.1.6.1 Pressure and External Load 

Sudden changes in internal pressure can add additional stress on pipes and increase the risk of 

failure. Pressure-related failures are more common in large diameter pipes since smaller diameters 

are generally used in lower pressure areas.  

External loads result from external factors such as traffic, frost, and soil. The ability of pipes to 

handle these loads depends partly on the support from surrounding soil, so-called bedding.  For 

instance, for a flexible pipe material, i.e., PVC, lack of proper bedding will result in vertical 

deflection, leading to joint leakage. However, in rigid pipes, improper bedding will directly lead 

to pipe breakage since lack of flexibility in these pipes limits pipe reaction to loads. 

2.2 Break Type 

Break type refers to the form of failure. Different factors can lead to different kinds of breaks. 

Thus, other models can be developed depending on the type of failure. Since maximum pressure 

on pipes depends on pipe size and material, these two factors usually determine break type.  Breaks 

can be categorized into circumferential, longitudinal, split bell, and hole groups. Circumferential 

breaks rooted in longitudinal stress on pipes. Either temperature-related contraction on pipes 

causes the longitudinal stresses, or soil movements and improper bedding such as insufficient 

bedding practices and large voids in the bedding near pipes related. 
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Longitudinal breaks stem from excessive pipe pressure or external loadings such as traffic and 

frost. The frost penetration leads to the expansion of frozen moisture in the ground and greater 

loads. The mentioned factors result in transverse stress and contribute to longitudinal break. If this 

break occurs at the joint, then it is Also the transverse stress affecting the pipe joints that causes 

split bell breakages.  

The other failure mode is related to holes caused by corrosion. Corrosion explained in detail in 

section 2.1.4.1.1. 

As mentioned earlier, Circumferential breaks are the most common failure mode of small diameter 

pipes while longitudinal and hole are widely observed in larger diameter pipes.  

2.3 Pipe deterioration models 

In order to prioritize water main replacement and rehabilitation, prediction models are essential 

(Kleiner & Rajani, 2001). Previous studies have predicted water main breaks through various 

physical and statistical models. These predictions can reduce operating costs, service level impacts, 

and health risks of customers. Either approach can provide deterministic or probabilistic results. 

2.3.1 Physical models 

Physical-based methods focus on the structural performance of water mains and consider internal 

and external loads. External loads can be defined as the loads transmitted to a pipe from the 

external surroundings; frost, traffic, and soil overburden are perfect demonstrations of such loads. 

On the other hand, internal loads in water networks are systems of forces caused by operational 

pressure and affect the inner side of pipes. 

The following are some examples of physical-based methods. 

Rajani and Zhan (1996) and Zhan and Rajani (1997) introduced methods for calculating frost load 

on buried pipes in trenches and under roadways, respectively. Results suggested that using a 

material with an equal or lower frost susceptibility than the side wall can reduce the development 

of frost load. 
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Kuraoka et.al., (1996) provided information on the effects of changes in internal and external 

pressures and temperature changes on jointed water main. Their analysis showed that the reduction 

of pipe size might increase maximum axial stress in ductile iron and PVC water main. 

The need to measure internal and external loads generally means physical methods are complex 

and require long data collection and analysis periods and higher costs. These models are usually 

applied for significant projects where failure costs are high. The present study mainly focuses on 

statistical methods applied to various types and levels of data. 

2.3.2 Statistical models 

Statistical-based approaches use historical data on pipe breakage for identifying breakage patterns 

and assume these patterns continue in the future. 

Various statistical models include time-linear, time-exponential, proportional hazard, Poisson, 

Markov chain, artificial neural network, rate of failure, and other regressions such as logistic 

regression, evolutionary polynomial regression, etc., introduced. A brief description of some 

statistical models are provided in the following paragraphs.  

2.3.2.1  Poisson regressions  

Poisson regressions are generalized linear models which show what independent variables have 

the most significant impact on the target variable. Generalized linear models are linear regressions 

applicable to variables with error distributions other than normal. A Poisson regression assumes a 

Poisson distribution for the target variable. This regression works only with numerical, continuous 

variables (Zeileis, 2008). 

2.3.2.2 Markov Chains  

Markov Chain is a probability theory assumes one can make future predictions based on current 

states (Karsten, 2010). The Markov Chain process consists of a number of states which represent 

possible scenarios of the system (Grinstead & Snell, 2012). In the case of water mains, these states 

may represent the number of breaks (Gustafson & Clancy 1999), pipe condition (Hong, 1998), etc.  
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The process starts in one of the states and proceeds from one state to another successively. Each 

of these transitions is known as a step. The probability of moving from one state to another is only 

dependent upon the system's current state. 

2.3.2.3 Artificial Neural Networks (ANN)  

Artificial Neural Networks mimic the human brain and seek to find patterns between inputs and 

outputs. Input, hidden, and output layers are three essential parts of this model. Data enters the 

process through input layers, hidden layers are responsible for information processing, and finally, 

results are produced in the output layer (Najjar & Basheer, 1996). The most challenging part of 

the process is finding the number of hidden nodes and layers (Asnaashari et.al., 2013). 

2.3.2.4 Proportional hazard models  

Proportional hazard models are regression models which are commonly used for finding the 

relationship between survival time and different predictors. These models apply a vector of 

hazards, i.e. a combination of factors that affect pipe survival. In other words, the goal of this 

model is to examine the effect of various factors on the rate of failure, the hazard rate. In the case 

of reference, a model developed by Andreou et al. (1987a) and (1987b) and Marks et al. (1985) 

can predict watermain failures. 

2.3.2.5  Time exponential models 

Time exponential models, according to Belk (2015), are well-known methods for dynamic systems 

in which the target variable is a function of time. A function is said to have exponential growth 

when its derivative with respect to time is a constant number multiplied by the function itself. This 

expression can be shown as equation (1): 

 𝑑𝑦

𝑑𝑡
= 𝑘𝑦 

(1) 

   

The solution for this equation for a positive constant value k has the form as function below: 
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 𝑦 = 𝑦0𝑒
𝑘𝑡 (2) 

Where: 

𝑦, is a time exponential function; 

𝑦0, the initial value of y; 

𝑡, time; and 

𝑘, growth constant; 

2.3.2.6  Time linear models 

Time linear models assume the function varies linearly with time. This means the function 

derivative with respect to time is a constant number, called growth rate. Time linear models for 

water main break prediction define a number of breaks as a linear function of time and other 

variables. The simplest form was proposed by Kettler and Goulter, where the total number of 

breaks per year in a pipe is a linear function of its age. 

2.3.2.7 Logistic regression models  

Logistic regression models predict the probability of a binary dependent variable. Imagine a binary 

target variable Y is modeled as a conditional probability with respect to the function of X, 

Pr(Y=1|X=x). To do so, rather than defining P as a linear function of X, the logistic regression 

considers log (
𝑝

1−𝑝
) as a linear function of X. In the case of main breaks, it can be applied to predict 

whether or not a specific pipe will break during a certain time frame. According to Yamijala et.al., 

(2009), many utilities would rather have information on the probability of a pipe experiencing at 

least one break as opposed to the number of breaks since one break is often enough to trigger costly 

repairs. 
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2.3.2.8 Evolutionary polynomial regression (EPR)  

Evolutionary polynomial regression combines genetic algorithms (GA) and least squares (LS) to 

provide a pseudo-polynomial regression model. GAs mimic the process of natural selection. The 

first step of the algorithm includes the selection of the fittest individuals from a population. These 

individuals then produce offspring, which can transfer the characteristics of their parents to the 

next generation. The fitter the selected individual, the better the child will be and the higher their 

survival chances. This iterative process continues until a generation with the fittest individual is 

found (Mallawaarachchi, 2017). The least-squares method is applied to evaluate the fit by 

minimizing squared errors. Improving the EPR method led to introducing a new concept, multi-

objective EPR, in which single objective genetic algorithms are replaced with multi-objective 

genetic algorithms. This approach increases the accuracy of models by reducing the number of 

polynomial coefficients and reducing the number of data (Keramati et al., 2014).   In a multi-

objective EPR, the aim is to provide multiple objectives to control different aspects of the model 

such as fit, complexity, and physical logic (Romanova et.al., 2014). 

Table 2-1 compares different watermain prediction models.  As presented in the table, previous 

studies have employed multiple statistical and machine learning algorithms in watermain 

prediction models. These models have focused on a few cities at a time and have studied a different 

subset of data.  In the provided table, the machine learning methods are a general group 

representing various machine learning algorithms such as decision tree, random forest, support 

vector machine (SVM), naïve bias, gradient boosting, etc. Each study employed a different subset 

of data and compared different machine learning algorithms. For instance, while, Giraldo-

González and Rodríguez (2020) compared four machine learning algorithms, including ANN,   

naïve bias,  gradient boosting, and SVM using multiple physical, historical, and operational factors 

to predict probability failure in Bogota, Colombia; another study by Aslani et al., (2021) have 

applied random forest, boosted regression tree, Multivariate adaptive regression splines,  and ANN 

and employed diameter, material, length,  age, and the number of failures to predict watermain 

rate of failure in Tampa, Florida.
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Table 2-1 Comparing different watermain prediction models and the considered factors 
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2.4 Dimensionality reduction 

Since various factors can affect pipe breakage and previous research has focused on different 

subsets of data, finding the most effective available factors is essential. 

Reducing the number of variables is formally referred to as dimensionality reduction. There are 

two main approaches for dimensionality reduction, feature elimination, and feature extraction. The 

first reduces the number of variables by eliminating some, whereas the latter creates new 

independent variables from combinations of previous independent variables. In feature extraction, 

since new variables are combinations of old variables, none of the original data is eliminated. 

2.4.1 Principal Component Analysis 

One well-known method of feature extraction is Principal Component Analysis (PCA). PCA is 

considered as the heart of dimensionality reduction methods. In it, a set of p original variables can 

be replaced by an optimal q number of derived variables which may provide the ability to represent 

the full data set. The quality of a PC can be evaluated based on the proportion of the variance that 

the PC carries (Jolliffe & Cadima, 2016). PCA seeks to find patterns in the data by identifying 

differences and similarities through eigenvectors and eigenvalues of covariance matrices. The 

following paragraphs describe the definitions of covariance matrices, eigenvectors, and 

eigenvalues, which are crucial to PCA. 

2.4.1.1 The covariance matrix 

A covariance matrix is a symmetric square matrix in which each element on its principal diagonal 

represents the variance and off-diagonal elements, covariance. Since the correlation matrix is the 

covariance matrix divided by standard deviation, it can be said that a covariance matrix is a non-

normalized form of the correlation matrix. 
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2.4.1.2 Covariance 

Covariance is a measure of the joint variability of two random variables. It shows how changes in 

one random variable correspond to another changing variable. The covariance of a population is 

calculated based on equation (3). 

 
𝐶𝑜𝑣(𝑥, 𝑦) =

∑ (𝑥𝑖 − �̅�) ∗ (𝑦𝑖 − �̅�)𝑛
𝑖=1

𝑛
 

(3) 

 

 

Where: 

𝑥𝑖, the ith value of x; 

𝑥, the mean of all x values; 

𝑦𝑖, the yth value; 

�̅�, the mean of all y values; and 

𝑛, the total number of data. 

2.4.1.3 Variance  

The variance shows the distance of each variable in the data set from the mean. It can be defined 

as a measure of the spread among the data. It is calculated based on equation (4) :  

 

 
𝜎2 = ∑

(𝑥𝑖 − �̅�)2

𝑛

𝑛

𝑖=1

 
(4) 
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Where: 

𝜎, standard deviation; 

𝜎2, variance; 

𝑥𝑖, the ith value of x; 

𝑥, the mean of all x values; and 

𝑛, the number of data point. 

Instead of calculating the covariance and variance separately and assembling the covariance matrix 

based on these values, the covariance matrix can be calculated through matrix operations. There 

are three steps to calculate the covariance matrix based on the original data matrix, as follows: 

1. Center the data matrix X by calculating the mean of each column and subtracting the mean 

from the elements of each column; 

2. Multiply the centered matrix by its transpose; and 

3. Divide the results by n-1 where n is the number of rows; 

The three aforementioned steps for calculating the covariance matrix, C, can be formulated as 

equation (5): 

 
𝐶 =

𝑋𝑋𝑇

𝑛 − 1
 

(5) 

Where: 

X, centered data matrix; 

𝑋𝑇, transpose of centered s data matrix; and 

n, number of rows of matrix X. 
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2.4.1.4 Correlation matrix 

The correlation matrix is equivalent to dividing each covariance matrix element by its standard 

deviation. It shows the relation among sets of given variables. One well-known form of the 

correlation matrix applies the Pearson correlation. The Pearson product-moment correlation can 

be calculated as equation ((6)). In this correlation, elements of the matrix ranged between -1, 1. 

Greater absolute values indicate a stronger relationship between the two variables. The sign 

represents their direct or inverse relationship. Accordingly, values close to zero show no 

correlation. 

  
𝑟𝑥𝑦 =

𝐶𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
 

(6) 

Where: 

𝑟𝑥𝑦, Pearson correlation coefficient between variable x and y; 

2.4.1.5 Eigenvalue and Eigenvector 

For any given matrix A, there exists a vector B and value λ, which satisfy the following equation: 

  𝐴𝐵 =  𝜆𝐵 (7) 

In this equation, λ is the eigenvalue, and the vector B, the eigenvector. In other words, for any n*n 

matrix A, the vectors B, and scalar values λ, which provide a solution to (7) are named eigenvectors 

and eigenvalues, respectively. 

The eigenvectors, B, of the covariance matrix A, are the principal components, which show the 

direction in which most information is available. That is the direction in which most variance can 

be explained. The related eigenvalues represent the variance carried by each principal component. 

A key limitation of PCA is that PCs are not easily interpretable.  
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2.4.1.6 Singular Value Decomposition 

The Singular Value Decomposition is based on the fact that a matrix can be decomposed into two 

orthogonal matrices and a diagonal matrix. This has a direct mathematical relation to the PCA 

calculated using the covariance matrix. The SVD can indeed provide more information than the 

PCA calculated through the covariance matrix due to rounding. This extra information can be 

useful in applications where the structure of columns is as important as rows. In fact, the additional 

information provided through one of the decompositions of the data matrix, U. It can also detect 

and extract small signals from noisy data and handle sparse matrices. Moreover, achieving PCs 

through SVD is more efficient than calculating the eigenvalue and eigenvector of the covariance 

matrix (Jolliffe, 2002). 

Singular Value Decomposition (SVD) states that any given matrix can be factorized as in equation 

(8)  

 𝑋 = 𝑈𝑆𝑉𝑇 (8) 

Where: 

X, given m×n data matrix; 

U, orthogonal m×m matrix; 

S, diagonal m×n matrix; and 

V, orthogonal n×n matrix; 

Columns of U are called left singular vectors of X, and columns of V are right singular vectors of 

X. The matrix S is the scaling matrix, in which the diagonal entries are known as the singular value 

of X. For each singular vector, there is a corresponding unique singular value. These values are 

generally sorted in descending order within the scaling matrix.  

According to Jolliffe (2002), it can be shown that when the data matrix is column centered, the 

right singular vectors are similar to the eigenvectors of the covariance matrix A, containing 
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principal components. However, when the data matrix is row-centered, the left singular vectors 

are principal components (Wall et.al., 2003). The singular values can also be used to derive the 

eigenvalues of the covariance matrix. If the singular value S is divided by n-1, it will be equivalent 

to the square root of eigenvalues of the covariance matrix. The mentioned factors can provide 

information on PCs' loading and standard deviation. 

It is worth mentioning that for SVD or PCA, normalizing the data matrix is essential. There is no 

guaranty that all the features have the same scale, and considering these various scales is not the 

responsibility of these approaches. Avoiding normalization before SVD/PCA might provide unreal 

results by unduly assigning greater importance to variables with a larger scale.   

The number of non-zero singular values is equal to the rank of matrix X. Matrix rank is defined as 

the maximum number of the independent linear subset of rows, or the maximum number of 

independent linear subsets of columns (Roughgarden & Valiant, 2015). Accordingly, if the data 

matrix has fewer observations than variables, then the rank of the matrix would be based on the 

number of observed entries rather than variables. This, in turn, would lead to a reduction in the 

number of acceptable eigenvectors and PCs. 

2.4.1.7  Variable Loading 

Loading, as related to PCA, describes the contribution of each variable in a particular PC. More 

significant loadings indicate the greater correlation between a specific PC and a specific variable. 

Loading is calculated by multiplying the related eigenvector and eigenvalue of the covariance 

matrix and can easily be related to singular value decompositions through equation (9) 

𝐿 = 𝑉
𝑠

√𝑛 − 1
 (9) 

Where: 

L, loading matrix 

V, right singular vector; and 
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S, singular value;  

2.4.1.8 Score of samples 

The score of samples indicates the location of the observed data in the new coordinates defined by 

PCs. These scores are the product of loadings and centered observations.  

2.4.1.9 General Assumptions and Limitations of PCA 

Principal components are ordered according to decreasing variance. The first PC contains the most 

information (Jolliffe & Cadima, 2016). 

There are three general assumptions in applying PCA (Shlens, 2014): 

1. Since PCA works with Pearson correlation coefficient and covariance matrix, which are valid 

in the context of linear algebra, linear relationships between target variable and predictors is 

essential; 

2. Large variances have important structure, meaning those with lower variance can be considered 

noise. Since not all the PCs are equally important, and the idea behind this method is 

dimensionality reduction with finding the least number of PCs, the variance carried by each PCs 

is defined as a measure of importance. The more variation along with each PCs, the more 

interesting and important PCs are; and 

3. Principal components are independent. This assumption ensures that loading vectors of PCs are 

orthogonal, which facilitates finding the direction of PCs. 

Since PCA is based on variance, which changes according to the magnitude of the variable, 

different units of measurement can change the covariance matrix. Accordingly, data 

standardization before conducting a PCA is an important point recommended by different authors 

to ensure all the data are on the same scale. Jolliffe and Cadima (2016), suggest that data should 

be centered, i.e., the mean should be subtracted from each attribute, particularly if SVD will be 

applied. Also, in the cases of non-linear relationship among data set that might contain all types of 

variable such as categorical, numerical, etc. standard PCA is not applicable, and an alternative 
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approach or some modification of the standard PCA should be applied instead Jolliffe and Cadima 

(2016)  and Jolliffe  (2002). Non-linear principal component analysis is a modified PCA which is 

recommended for mixed data type that are not linearly dependent. This approach is explained in 

more detail in the following paragraphs. 

2.4.2 Non-Linear PCA 

Non-Linear PCA, also known as categorical PCA, is a dimensionality reduction method that, 

unlike PCA, can handle a non-linear relationship among variables. This method applies to datasets 

with different variable types such as nominal, ordinal, and numerical. Although the method follows 

the same objective as PCA, the detail of computing the outcomes are different. Results of the 

technique include eigenvalues, component loading, component score, and communality which 

describes Variance Accounted For (VAF) by each component, correlation among variables and 

components, the contribution of selected variables in total VAF, and the score of components 

associated with each case in dataset respectively (Linting & van der Kooij, 2012). In non-linear 

PCA, categories of variables are replaced with numerical values through a process called optimal 

scaling. In fact, the assigned numerical values indicate category quantifications. In non-linear 

PCA, the correlation among quantified variables is computed rather than that of the observed 

variables. Accordingly, the correlation matrix may change according to the type of assigned 

quantification (Mitsuhiro & Yadohisa, 2018).  

2.4.2.1 Optimal scaling  

The optimal scaling method deals with variables in three different ways called analysis level. These 

levels are nominal, ordinal and numerical analysis levels and determine how category values can 

be transformed to category quantification (Linting & van der Kooij, 2012). The analysis levels can 

be promoted by the target of analysis and are regardless of variables properties. Optimal scaling 

follows the target of optimizing the correlation matrix of quantified variables.  

The three mentioned analysis levels are explained briefly in the following paragraphs. 

The Nominal analysis level applies to nominal categories such as pipe material or pipe ID in which 

their value and order do not convey specific meaning. In this analysis level, for variable j, if two 
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separate observations i and j belong to the same category, i.e. 𝑦𝑗𝑖 = 𝑦𝑗ℎ, their category 

quantification will be the same. 

The ordinal analysis level applies to categorical variables in which values follow a specific order. 

Pipes condition, level of corrosion, etc., are some examples of ordinal data. In this analysis level, 

quantifications order needs to follow the same order of original categories, i.e., for 𝑦𝑗𝑖 >𝑦𝑗ℎ, 𝑦𝑗𝑖
∗ ≥

𝑦𝑗ℎ
∗ . 

Numeric analysis level indicates groups of numerical values which are measurable. In fact, 

mathematical operations on these values are meaningful. Age of pipes, number of breaks, etc., are 

some examples of this group.  In this analysis level, the vector of 𝑦𝑗 is standardized and replaced 

with 𝑦𝑗
∗ with zero mean and unit variance.  

In order to understand the optimal scaling process better, let us define a data matrix Y with two 

categorical variables, pipe material, and coating status. Each variable 𝑦𝑗  contains 𝐾𝑗 categories. Y 

can be written as below: 

  

𝑌 = (𝑦1, 𝑦2) =

(

 
 

𝑃𝑙𝑎𝑠𝑡𝑖𝑐
𝑃𝑙𝑎𝑠𝑡𝑖𝑐
𝑀𝑒𝑡𝑎𝑙

𝑁𝑜
𝑁𝑜
𝑌𝑒𝑠

𝐴𝑠𝑏𝑒𝑠𝑡𝑜𝑠𝐶𝑒𝑚𝑒𝑛𝑡 𝑁𝑜
𝑀𝑒𝑡𝑎𝑙 𝑌𝑒𝑠)

 
 

 

 

The first variable has three categories in this example matrix, and the second variable has two 

categories. Accordingly, 𝐾𝑗 for each is three and two, respectively. 

For each variable an indicator matrix, 𝐺𝑗, is defined. 𝐺𝑗 is a 𝑁 × 𝑘𝑗 matrix of dummy variables. 

Elements of this matrix, i.e. 𝑔𝑗𝑖𝑘, are zero when a certain object is not of the given category k, or 

one when it is of that category. This relation is defined as below (Yuichi et.al.,  2016):  

  
𝑔𝑗𝑖𝑘 = {

1, 𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜  𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘
0, 𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘
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Each categorical variable 𝑦𝑗 Y is the inner product of a category vector and an indicator matrix in 

the data matrix. 

For the given data matrix Y, the indicator matrix for each variable would be defined as below: 

𝐺1 =

[
 
 
 
 
1
1
0

0
0
1

0
0
0

0 0 1
0 1 0]

 
 
 
 

 , 𝐺2 =

[
 
 
 
 
1
1
0

0
0
1

1 0
0 1]

 
 
 
 

  

Accordingly, 

𝑦1 = 𝐺1 (
𝑃𝑙𝑎𝑠𝑡𝑖𝑐
𝑀𝑒𝑡𝑎𝑙

𝐴𝑠𝑏𝑒𝑠𝑡𝑜𝑠𝐶𝑒𝑚𝑒𝑛𝑡
) , 𝑦1 = 𝐺2 (

𝑁𝑜
𝑌𝑒𝑠

) 

 

The target of optimal scaling is to transform variable categories into numerical values called 

quantifications, i.e. 𝑞𝑗, thereby defining a new numerical variable. 

The new transformed variable 𝑦𝑗
∗ is defined as (1010101010).  

  𝑦𝑗
∗ = 𝐺𝑗 × 𝑞𝑗 (10) 

Where: 

𝐺𝑗, binary indicator matrix for jth categorical variable; and 

𝑞𝑗, vector of category quantification. 

To do so, homogeneity analysis with some restrictions is introduced as a loss function. Minimizing 

the loss function is a solution for finding 𝑞𝑗 . Homogeneity analysis finds quantification of 

categories for each variable to maximize homogeneity (Yuichi et.al., 2016). The loss function 

indicating deviation from homogeneity is defined as (11) (Yuichi et.al., 2016): 
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𝜎𝐻(𝑍,𝑊) = ∑𝑡𝑟(𝑍 − 𝐺𝑗𝑊𝑗)
𝑇𝑡𝑟(𝑍 − 𝐺𝑗𝑊𝑗)

𝑃

𝐽=1

= ∑𝜎𝐻𝑗(𝑍,𝑊𝑗)

𝑝

𝑗=1

 

(11) 

Where: 

𝜎𝐻 , Loss function indicating homogeneity deviation; 

tr, the trace of a matrix defines as the summation of main diagonal elements; 

r, number of components; 

p, number of categorical variables; 

T, transpose of a matrix 

Z, N×r matrix of component scores; and  

𝑊𝑗, 𝑘𝑗 × 𝑟 matrix of category quantifications for variable j;  

To find the solution, the equation must be minimized over Z and W considering restrictions (12) 

(Yuichi et.al., 2016): 

  𝑍𝑇1𝑛 = 0𝑟 and 𝑍𝑇𝑍 = 𝑛𝐼𝑟 

 

(12) 

1𝑛, 𝑁 × 1 vector of ones; 

0𝑟, 𝑟 × 1 vector of zeros; and 

𝐼𝑟, the identity matrix. 

Using homogeneity in the concept of non-linear PCA add additional constraints on 𝑊𝑗 as (13) 

(Yuichi et.al., 2016): 
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𝑊𝑗 = 𝑎𝑗 × 𝑞𝑗 (13) 

 

 

Where: 

𝑎𝑗, is 1 × 𝑟 matrix of component loading. 

To solve the minimization problem mentioned in eq (11), the loss function must be minimized for 

each categorical variable separately. To do so, an iterative process called Alternating Least Squares 

Algorithm is performed. Yuichi et.al., (2016) defined this process as well as the initial estimation 

for starting the process as follows. 

Before starting the iterative process, initial values of Z and  𝑊𝑗  need to be determined for each 

variable separately. The first estimation of Z, i.e., 𝑍0, is selected randomly considering restrictions 

mentioned in eq.12. According to this value, the first estimation of 𝑊𝑗
0 is calculated based on 

equation (14) (Yuichi et.al., 2016): 

 

 

 𝑊𝑗
(0)

= (𝐺𝑗
𝑇𝐺𝑗)

−1𝐺𝑗
𝑇𝑍(0) (14) 

Accordingly, 𝑞𝑗
0 determines as 𝑘𝑗 successive integer variable based on analysis level. Then, the 

first estimation of the loading vector of 𝑎𝑗 is calculated as (15) (Yuichi et.al., 2016): 

 

 

𝑎𝑗
(0)

= 𝑍(0)𝑇𝐺𝑗𝑞𝑗
0 (15) 

After computing the initial values, an iterative process consisting of four steps is performed as 

below: 

1. Estimating the category quantification (𝑊𝑗) for each variable according to equation (16) 

(Yuichi et.al., 2016): 
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𝑊𝑗
(𝑡+1)

= (𝐺𝑗
𝑇𝐺𝑗)

−1𝐺𝑗
𝑇𝑍(𝑡) (16) 

Where: 

t, is the number of iterations. 

2. Updating loading vector 𝑎𝑗 as equation (17) (Yuichi et.al., 2016): 

 

 

𝑎𝑗
(𝑡+1)

= 𝑊𝑗
(𝑡+1)

(𝐺𝑗
𝑇𝐺𝑗)𝑞𝑗

𝑡/𝑎𝑗
(𝑡)𝑇

(𝐺𝑗
𝑇𝐺𝑗)𝑞𝑗

𝑡 (17) 

3. Computing 𝑞𝑗 for nominal variables as equation (18) (Yuichi et.al., 2016):(17) 

 

 

𝑞𝑗
(𝑡+1)

= 𝑊𝑗
(𝑡+1)

𝑎𝑗
(𝑡+1)𝑇/𝑎𝑗

(𝑡+1)
𝑎𝑗

(𝑡+1)𝑇
 (18) 

4. Updating object score Z according to equation (19) (Yuichi et.al., 2016): 

 

 

𝑍(𝑡+1) =
1

𝑝
 ∑𝐺𝑗𝑊𝑗

𝑡+1

𝑃

1

 

(19) 

The values then are checked in the concept of minimizing the loss function mentioned in (11).  

This iterative process continues until the results of the loss function converge.   

2.4.3 Factor analysis of mixed data (FAMD) 

Factor Analysis of Mixed Data is a dimensionality reduction approach which is employed to 

explore data with both continuous and categorical variables. This method is the combination of 

PCA and Multiple Correspondence Analysis (MCA). Accordingly, numerical variables are scaled 

to unit variance and handled in the same way as PCA.  Also, Categorical variables are transferred 
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into a Complete Disjunctive Matrix (CDM) and scaled according to the MCA-specific scaling.  

PCA is explained in-depth in 2.4.1 and MCA will be explained in 2.4.3.1.  

To better understand the FAMD analysis let’s assume we have I individual with 𝐾1 = {1, 𝐾1} 

numerical variables and Q categorical variables {𝑞 = 1, 𝑄}  in which each variable q has 𝐾𝑞 

categories, and the total number of categories is 𝐾2 = ∑ 𝐾𝑞𝑞  .  

In FAMD, the original data with I individual and 𝐾1 + 𝑄 variables are defined in the form of a 

data matrix, X, with I individual and  𝐾 = 𝐾1 + 𝐾2 columns. The elements of matrix X are 

standardized based on PCA and MCA rules for numerical and categorical variables respectively. 

Accordingly, in FAMD analysis data matrix X tries to project these data in direction, 𝜈,  which 

maximizes the variance. Therefore, the target of FAMD can be formulated as maximizing the 

following (Pagès, 2014): 

∑ 𝑟2

𝑘∈𝐾1

(𝑘, 𝜈) + ∑ 𝜂2(𝑞, 𝜈)

𝑞∈𝑄

 
(20) 

Where: 

𝑟, the correlation coefficient between variable k and vector 𝜈; and 

𝜂, correlation ratio between variable q and vector 𝜈. 

The first element of equation (20) is PCA optimization problem and the second is related to MCA. 

2.4.3.1 Multiple Correspondence Analysis 

Multiple Correspondence Analysis (MCA) is a principal component method that analysis the 

patterns and relationships between categorical variables. This method is a special case of PCA 

(Pagès, 2014), in which a set of Q qualitative variables are replaced with some quantitative 

variables through assigning a coefficient to each category. In MCA, a dataset with I individual and 

Q set of the qualitative variable with 𝐾𝑞 categories can be represented in form of a data table called 
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Complete Disjunctive Matrix (CDM). As mentioned earlier the total number of categories is 𝐾2 =

∑ 𝐾𝑞𝑞  

CDM is a data matrix with I individuals in the rows and categories of variables in the columns as 

such elements in the intersection of row i and column 𝐾𝑞 of variable q, i.e. 𝑦𝑖𝑘, are zero when a 

certain object is not of the given category, or one when it is of that category. As in PCA, to 

implement MCA, the elements of CDM should be standardized Jérôme Pagès  (2014). The 

standardization of CDM elements in MCA analysis can be formulated as equation (21) (Pagès, 

2014): 

𝑥𝑖𝑘 =
𝑦𝑖𝑘

𝑝𝑘
⁄ − 1 

 

(21) 

Where: 

𝑦𝑖𝑘, elements of CDM in the intersection of row i and column 𝐾𝑞 of variable q; and 

𝑝𝑘, is the proportion of individuals in category 𝐾𝑞. 

According to data matrix X, each column 𝐾𝑞 takes one value per individual. Meaning that, in 

column 𝐾𝑞, the 𝑥𝑖𝑘 have I dimension which each dimension corresponds to an individual. The 

variance of a category 𝐾𝑞 is defined as the square distance of that category from the origin and can 

be formulated as (22) (Pagès, 2014): 

𝑉𝑎𝑟(𝑘) =
1

𝑝𝑘
− 1 

(22) 

The mentioned formula indicates that the rare categories have a higher variance. The rare 

categories are located far from the origin. Since in principal component methods, inertia is more 

important than the distance, the total inertia of a variable q can be formulated as (23) (Pagès, 2014): 
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𝐼𝑛𝑒𝑟𝑡𝑖𝑎(𝑞) =
𝐾𝑞 − 1

𝑄
 

 

(23) 

The mentioned formula reveals that inertia of variable q is proportional to the number of categories 

it has minus 1. Accordingly, the inertia of a variable with, let’s say, 21 categories is 20 times more 

than a variable with 2 categories. Therefore, the variables with fewer categories represent fewer 

dimensions and vice versa.  

The target of MCA, similar to PCA, is to project the point clouds of into smaller dimensional space 

while maximizing inertia. To do so, the clouds should be projected into a set of orthogonal axes 

with maximal inertia (variance). When projecting all categories of variable q, denoting by 𝐾𝑞, on 

a unit vector 𝜈, the inertia of 𝜈 is one. Hence, the between-class inertia, i.e., the inertia explained 

by each category of variable q, can be defined as a percentage of inertia of 𝜈 explained by 

qualitative variable q. This percentage is equal to the squared correlation ratio between qualitative 

variable q and quantitative variable 𝜈 and can be formulated as equation (24) (Pagès, 2014): 

𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 =
1

𝐽
𝜑2 

 

(24) 

Where: 

𝜑, is correlation ratio between variable q and component 𝜈 

The percentage of inertia indicates the quality of representing variables by a given axes (Pagès, 

2014). The percentage of inertia in MCA is smaller compared with PCA, and the maximum 

percentage of variance for categories of variable j, cannot exceed 
1

𝐾𝑗−1
 (Pagès, 2014). A squared 

correlation ratio is employed to measure how the components are related to the variables.  
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2.4.3.2 MCA and PCA relationship 

 MCA looks for the principal components that are related to the variables as much as possible. 

Defining eigen value 𝜆𝑠 as an intensity measurement of relationship between variables the 

following equation (25) can be proved (Pagès, 2014): 

𝑋𝑀�́�𝐷𝜈𝑠 = 𝜆𝑠𝜈𝑠 

 

(25) 

Where: 

𝑋, transformed CDT matrix 

𝑀, Diagonal matrix of with 
𝑃𝑘

𝑄
 in the diagonal elements; 

D, Diagonal matrix with 𝑃𝑖 in diagonal elements; 

𝜆𝑠, eigen value of 𝑋𝑀�́�𝐷 corresponds to the projected inertia; and 

𝜈𝑠, Eigenvector of 𝑋𝑀�́�𝐷 corresponds to the direction in which variance is maximized.  

Comparing MCA with PCA indicates that the process of MCA is similar to PCA with additional 

categories weight, M.  

2.4.4 Automatic variable selection 

Automatic variable selection can be considered a dimensionality reduction approach. However, 

unlike the other methods previously mentioned, it requires choosing a model before variable 

selection. The following paragraphs explain some popular methods of this approach.  

2.4.4.1 Stepwise regression 

Stepwise regression is one of the well-known methods of automatic variable selection. This 

method works with regression models such as logistic and linear regression. After choosing a 

regression model, a precision criterion is used for evaluating the significance of independent 
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variables. Accordingly, predictive variables are added or removed from the analysis according to 

their level of statistical significance (Frost, 2020). At the end of the stepwise process a single 

regression model is produced. Potential precision criteria include 𝑅2, Residual sum of squares 

(RSS) and Akaike Information Criterion (AIC). Due to the large space of possible models that 

stepwise regression searches within, the possibility of overfitting increases. Accordingly, using 

criteria such as AIC to detect overfitting is recommended. The measurement criteria in section 

2.4.4.4 provides a brief explanation of the mentioned criteria. 

The stepwise regression algorithm is a combination of Forward selection and Backward 

elimination, meaning that in each step, a variable is added, and all the selected variables in previous 

steps are checked whether their significance level is changed and reduced below the tolerated level. 

In case of finding nonsignificant variable, it will remove from the analysis (Stepwise regression). 

2.4.4.1.1 Forward selection 

Forward selection is an iterative process that starts by considering no variables and evaluating the 

results of adding additional variables, one at a time, according to a specific model fit criterion. The 

process continues until the remaining variables do not significantly improve results. Selected 

variables are those with remarkable impacts on the fit of the model.  

2.4.4.1.2 Backward elimination 

Unlike forward selection, in backward elimination, all available variables are considered first. In 

the following steps, variables are iteratively removed, as long as they do not highly affect the 

model's fit. 

2.4.4.2 Best subset regression 

Best subset regression considers all possible regression models based on independent variables. 

Thus, with p independent variables, 2𝑝models are created. Each set of with the same number of 

variables are compared according to fit criteria such as R-squared or 𝐶𝑝. Therefore, the results 

represent the best models of different variable subsets ranging from 1 to p. The best of the best is 

then chosen as the best subset regression model (Karimian, 2016)  
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Although best subset regression analyses more combinations of regression models and can lead to 

better results, stepwise regression is more straightforward (Frost, 2020). 

2.4.4.3 Recursive Feature Elimination (RFE) 

Recursive feature elimination (RFE) is a feature elimination method in which the most important 

factors are determined through a backward elimination process. RFE initially introduced by Guyon 

et.al. (2002). This method represents the ranking of features and subset of data with the 

corresponding accuracy. The selected candidates are the predefined number of predictors or are a 

subset of the variables corresponding to the highest resulting accuracy (Chen et.al., 2018). RFE 

method is basically employed along with classification algorithms such as random forest and 

support vector machine (SVM) (Chen et.al., 2018) as well as regression algorithms including but 

not limited to linear regression, logistic regression, etc. as an estimator (Kuhn & Johnson, 2019). 

When the number of required variables is defined in advance for RFE, the top N variables will be 

selected according to the criteria specified by the estimator through a backward elimination 

process. The chosen subset corresponds to the highest accuracy. Selection of data solely based on 

the highest pre-defined number of variables might lead to selecting a large subset of data. Also, 

the pre-selection number of predictors without prior knowledge might lead to biased results (Chen 

et.al., 2018). To overcome this issue, RFE methods are usually combined with some other 

“decision variant” approaches to determine the optimal number of variables from the selected 

subset of variables based on the accuracy (Chen et.al., 2018). Imagine a dataset with a P number 

of features. Recursive Feature Elimination with Cross Validation is a well-known RFE approach 

with a decision variant in which the best subsets of features are selected through specified estimator 

by removing 0 to P features through the RFE process. The optimal best subset is then chosen 

according to the model’s cross-validation score. The cross-validation process is briefly explained 

in section 2.4.4.3.2.1. In general, the effectiveness of the RFE approach depends on two factors: 

the estimator combined with this method and the performance evaluation criteria. Hence, selecting 

a proper estimator according to the type of attributes and the number of data is one of the key steps 

of the RFE approach. As mentioned earlier, RFE selects the most important features through an 

estimator. An estimator is a supervised algorithm with a fit method that is employed to identify 

important features. Depending on the attribute target, various algorithms can be used for this 
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purpose. A study by Granito et.al., (2006) on identifying the most important features in the 

producing spectra through Proton transfer compared random forest and logistic regression as two 

estimators for the RFE process. The analysis results indicate that the random forest recursive 

feature elimination (RF-RFE) outperforms logistic regression recursive feature elimination (LR-

RFE). The higher performance of RF-RFE compared with other estimators such as linear Support 

Vector Classification (linear-SVC), Extra-Tree Classifier, AdaBoost, and naïve bias is also 

confirmed in the results of other studies such as Fang et.al.,  (2020), and Wang and Chen  (2019). 

Besides random forest, Extreme Gradient Boosting (XGBOOST) approach has been performed 

well as an estimator of RFECV and as a prediction model. 

Results of a study by Chang et.al., (2019), employed four different supervised algorithms, i.e., 

Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Extreme Gradient 

Boosting (XGBOOST), as an estimator of RFECV approach to identify the most relevant features 

in predicting the outcome of hypertension. In the same study, the same supervised algorithms were 

employed to predict hypertension based on the selected features. The study results indicate that 

RF, DT, and XGBOOST outperformed SVM in selecting the important features and in the next 

step, among all the four prediction models, XGBOOST has performed more accurately than the 

others. Based on the mentioned literature, for this study, random forest and XGBOOST are 

selected as an estimator of the RFECV approach for finding the most important features. Also, to 

ensure the effectiveness of these approaches, the performance of the approaches on predicting the 

two target attributes with the selected features will be evaluated. More detail of random forest and 

XGBOOST is provided in 2.4.4.3.1 and 2.4.4.3.2, respectively.  

2.4.4.3.1 Random Forest 

Random forest is a supervised learning approach used for classification and regression analysis 

and consists of multiple classification trees. This method creates uncorrelated forests from decision 

trees, classifying the target variable more accurately than an individual tree. Each decision tree 

consists of multiple nodes. Features in the nodes decide how a dataset should be divided into two 

sub-classes. In this method, internal features are selected to decrease the impurity of the selected 

classes based on specific criteria. For classification, impurity is generally based on Gini impurity 
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or entropy, whereas regression is based on variance reduction. Each of the mentioned criteria is 

briefly explained in the following paragraphs. Attributes with the most significant impurity 

decrease are selected as internal nodes and are assigned the highest weights. In this approach, the 

final prediction is based on the average of all trees or majority votes for classification and 

regression. Since this method is built from multiple trees, with random predictors, it can assign 

weights to each feature and determine the important features while making the prediction (Cooper 

et.al., 2012). Multicollinearity does not affect Random Forest results. The graphical explanation 

of this approach is provided in Figure 2-1.  

 

Figure 2-1 Random Forest structure (Nain et.al., 2018) 

2.4.4.3.1.1 Gini impurity  

Gini impurity measures how likely the incorrect classification of a new instance of a random 

variable is when randomly classified (Ambielli, 2017). This criterion for a target variable with C 

classes can be formulated as equation (26). 

  𝐺𝑖𝑛𝑖 = 1 − ∑(𝑝𝑖)
2 

(26) 

Where: 
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C, Number of classes; and 

p(i), probability of picking a datapoint with class i. 

2.4.4.3.1.2 Entropy impurity 

Entropy impurity measures how much variance is in data. This measurement can be formulated as 

equation (27): 

  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝑝𝑖 .   𝑙𝑜𝑔2𝑝𝑖 
(27) 

 

2.4.4.3.2 Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting (XGBoost) is a supervised machine learning algorithm suitable for 

regression and classification problems, and similar to RF can identify the most relevant attributes 

to the target. In XGBoost, the main focus is on combining simpler and weaker models' estimates 

to predict a classification or regression target accurately. More specifically, several trees are 

combined and trained the model (Chen & Guestrin, 2016). The weak learners in gradient boosting 

for regression are regression trees. Each regression tree maps an input data point to one of its leaves 

containing a continuous score. XGBoost combines a convex loss function with a penalty term for 

model complexity to minimize an objective function (in other words, to minimize the regression 

tree functions). The convex loss function is the difference between the predicted and target outputs. 

The training process is repeated iteratively, with new trees being added that forecast the residuals 

or errors of previous trees, which are then integrated with previous trees to provide the final 

prediction. In other words, XGBoost is an iterative process in which the residuals are calculated 

during each iteration, and proceeding predictors are adjusted to optimize a particular loss function. 

According to Snider and McBean (2020), XGBoost has a shorter training process and is robust 

against noise and outliers. In addition, as mentioned in the literature, this approach has a high 

prediction performance compared with other machine learning algorithms.  
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2.4.4.3.2.1 Cross-validation 

Cross-validation is a sampling approach employed to evaluate machine learning models. The main 

parameters of this technique are the number of groups required for splitting data, i.e., k, and 

evaluation metric. The data is divided into k subsets in this approach, and the process iterates k 

times. One subset is considered a test set in each trial and the other k-1 subsets as the training set. 

The model is learned from the k-1 subsets and then is tested out on the test set. In each trial, the 

analysis score on the test set is evaluated. The overall performance of the model is the average of 

the k scores. For this study, k-fold cross-validation is employed along with randomized search and 

RFE methods for tunning the RFE estimator and optimally finding the most important features, 

respectively. Also, cross-validation is used alone to ensure the tuned estimator of the RFECV 

method is not overfitted.   

2.4.4.4 The goodness of fit measurement criteria 

2.4.4.4.1 R-Squared 

𝑅2 is a statistical measurement for evaluating the fit of regression models. This evaluation criterion 

indicates the amounts of variance related to the dependent target variable that independent 

variables can explain. Higher values of 𝑅2 indicate a better fit of the model. In order to calculate 

𝑅2, first, the line of best fit should be found based on the data points of dependent and independent 

variables. Next, predicted values should be subtracted from actual values and squared. The result 

is a list of squared errors summed to indicate unexplained variance. The average of actual values 

should be subtracted from each actual value, squared, and summed to calculate total variance. 𝑅2 

is then calculated by dividing unexplained variance by total variance and subtracting results from 

one. The expression can be formulated as (28): 

  
𝑅2 = 1 −

𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 

(28) 

𝑅2 can also lead to overfitting as a high value of it can be erroneously interpreted as better. In fact, 

𝑅2 does not provide information on whether data and predictions are biased or model goodness 

(Hayes, 2020).  Additionally, if more predictors are added to the analysis, 𝑅2 naturally becomes 
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higher, skewing results. Accordingly, this criterion is more useful when comparing models of the 

same size. 

2.4.4.4.2 Residual Sum of Squares (RSS) 

RSS is a statistical technique for evaluating the precision of regression models. In a dataset, the 

amount of variance that regression models do not explain can be measured by RSS (Barone, 2019). 

This criterion is the sum of the squared differences between actual and predicted values. 

Accordingly, smaller values of RSS are preferred. However, as in  𝑅2, considering more variables 

in the analysis can improve the results of RSS. Hence, this method criterion is prone to overfitting 

and is also recommended for comparing models with the same number of predictors. It is important 

to note that RSS values depend on the unit of measure because it is not normalized. 

2.4.4.4.3 Mallows 𝐶𝑝 

Mallows 𝐶𝑝 is a measurement criterion for evaluating the fit of multiple regression models. This 

measurement compares the precision of full models with smaller predictors and determines the 

amount of unexplained error by model. The smaller values of 𝐶𝑝 is desirable (Stephanie, 2020). It 

is noticeable that this criterion can address the issue of overfitting and can be formulated as 

equation (29): 

  
𝐶𝑝 =

𝑅𝑆𝑆

𝑠2
+ 2𝑝 − 𝑛 

(29) 

Where: 

RSS, Residual sum square explained in section 2.4.4.4.2 for the model with p-1 variable; 

𝑠2, Residual mean square for the model with all available variables; 

p, number of the variable used for model plus one; and 

n, number of observations. 
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2.4.4.4.4 Akaike information criterion 

AIC is a measure of evaluating the fit of a statistical model and indicates the amount of information 

lost by the model. Accordingly, lower values of AIC indicate that the model is well fit to the data 

and not overfit (Date, 2019). This criterion can also detect overfitting. This measurement is 

formulated as (30): 

 

  𝐴𝐼𝐶 = 2𝑃 − 2 ln �̂� (30) 

Where: 

P, number of variables considered in the model; and 

�̂�, the maximum value of the likelihood function of the model. 

2.4.4.4.5 Likelihood function 

The likelihood function indicates the possibility of observing different observations according to 

the dataset. Finding an optimal way to fit a distribution in a dataset is the target of the maximum 

likelihood function. In other words, for the distribution of the observation, we are looking for the 

optimal value of mean or standard deviation. 

2.4.4.4.6 F1-score 

F1 score is an evaluation metric for categorical targets. This measurement is the harmonic mean 

of precision and recall and can be calculated based on equation (31): 

  
𝐹1 =

2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(31) 

Precision (Pr) indicates the percentage of the positive identifications that were positive originally, 

and Recall (Re) represents the proportion of the actual positives identified correctly. The two 

mentioned criteria can be formulated as (32) and (33), respectively. 
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𝑃𝑟 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(32) 

Where: 

TP, indicates the number of values that are actually positive and are predicted as positive; and 

FP, indicates the number of values that are actually negative and incorrectly are predicted as 

positive. 

  
𝑅𝑒 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(33) 

Where: 

FN, indicates the number of values that are actually positive and incorrectly are predicted as 

negative 

Comparing the mentioned criteria indicates, AIC criterion performs well for stepwise regression, 

and Mallows 𝐶𝑝 is recommended for best subset regression. 

Since in this study the data set is a combination of numerical and categorical variables and also 

depending on the mentioned literature, this study has been focused on four main models: Factor 

analysis of mixed data (FAMD), categorical PCA (CATPCA), random forest recursive feature 

elimination with cross-validation (RF-RFECV), and extreme gradient boosting forest recursive 

feature elimination with cross-validation (XGBOOST-RFECV).  
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3 Methodology 

The analysis of important factors driving watermain failure was divided into five key steps, data 

understanding, data cleaning, data preparation, correlation analysis, and applying different 

dimensionality reduction approaches. Each is explained in more detail in the following paragraphs. 

3.1 Data understanding 

Understanding the data is a key preprocessing step that helps identify the required data cleaning 

process and select appropriate analysis methods.  

This process began with the creation of metadata tables to characterize the available raw data and 

ensure that all information from primary datasets would be accurately interpreted in the subsequent 

steps. These metadata tables reflect the following information: 

Title: Actual name of the attribute provided in the original data set.  

Description: A brief explanation of the attribute to better understand the information provided by 

the attribute. 

Type: represents information on the kind of a specific attribute. Overall, the variables in this study 

are categorized into groups of numerical, categorical, and polynomial. 

Name: A defined unique name for each attribute that is the same along with all utilities. Since 

different utilities recorded the same information into a different name, defining this unique name 

for better identifying similar attributes is essential. 

Unit: Related unit of the numerical variables. For instance, for diameter, the unit is mm.  

Category: Revels different categories of categorical variables. 

Range: Domain of the numerical variables.  
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With the provided metadata tables, the inconsistencies and problems in the data, unique IDs for 

further matching break and inventory data, and the most appropriate dimensionality reduction 

methods were identified. A sample of the mentioned metadata table is provided in Table 3-1. 

Table 3-1 Sample of metadata table for the city of Calgary 

Title Description Type Name Unit Range Category 

 

    

BREAK_APPA 

Cause of 

break 

Categorical BreakCause - - Age 

Corrosion 

Frozen 

soil 

REL_WATMAI 

Related pipe 

ID 

Categorical PipeID - - 1-991853 

INCIDENT_D Break date Date BreakDate year 1986-2018 - 

PIPE_SIZE 

Nominal pipe 

diameter 

Numerical Diameter mm 25-1200 - 

 

3.2 Data cleaning 

The data cleaning process includes two key steps: 1. Defining unique values among the 13 utilities 

and removing outliers, and 2.  filling the gaps in data. The majority of the attributes required 

cleaning. Each of the mentioned steps is briefly explained in the following paragraphs: 

3.2.1 Defining unique values and removing outliers 

The collected data by each utility was recorded in various formats. Depending on the type of 

attribute, a different cleaning process was required. For categorical variables in general, unique 

names were defined for different variable categories.  For instance, the pipe material for one utility 

was coded or abbreviated, while in the other utilities, it was the full name of that material. A full 

name of material was defined for each category of material. The cleaning process of numerical 

variables includes keeping values of a variable in the same units and removing outliers such as 

zero diameters or negative years from the data. Accordingly, the unique values were defined within 

the utilities to achieve an array of consistent datasets for further efficient data analysis. The cleaned 
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values and the original dataset were imported to PowerBI to replace the cleaned values with the 

original ones. The defined structure of the different attributes is provided in Appendix E 

3.2.2 Filling the gaps 

Consistency in a dataset and lack of missing values are key terms in developing reliable 

deterioration and prediction models. Missing values commonly observed in various research 

usually arise from a lack of proper technological and financial resources. This incomplete 

information limits the applicability and interpretation of data, leading to information loss, false, 

and biased results. Hence, handling them in the initial and preprocessing steps of the analysis is 

essential. This study employed four main approaches to fill the gaps and missing values in the data 

set. The methods were: 1. Assuming a value, 2. Mirroring attributes, 3. Homogeneity analysis, and 

4. Adjacent assets. The applicability of the proposed methods depends on the type of attributes, 

logical patterns in data, and available information.  While the homogenous groups' method is 

applicable in various cases, the mirroring attribute and assuming a value depend on the type of 

attribute and available information. Also, and adjacent assets required the availability of GIS 

information. Each of the mentioned approach are briefly explained in the following paragraphs.  

3.2.2.1 Assumed value  

Assuming a value for filling the gaps in a dataset assigns a value to the missing values based on 

some logical assumption and expert rules. This approach is recommended for binary attributes 

where a logical pattern is observed in the data. Assume value might not be advanced but can be 

the starting point for quickly filling the gaps. For instance, since the anode status of pipes with 

anode protection is “Yes”, it can be assumed that the missing values are related to pipes without 

anode protection. 

3.2.2.2 Mirroring attribute  

In a dataset, some attributes might reflect the same information but in a different level of detail. 

Mirroring attribute is a method in which information from similar attributes is used for replacing 

the missing values.  
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3.2.2.3 Homogeneous groups (Statistical measure)  

Homogeneity analysis groups data based on similar characteristics. Assets within the same group are 

expected to have similar specifications. Missing values can be replaced based on the statistical 

characteristics of the group. For instance, Over the years, improvements in pipe manufacturing processes 

of different materials have led to changing trends in material use; A study by Kirmeyer (1994) estimated in 

1992 that DI and CI covered two-third of watermains in the USA, AC pipes around 15% and the remaining 

either plastic or concrete. However, during recent years this pattern is changed. Accordingly, one can 

assume a value for material based on the material mode in the same installation year.  

3.2.2.4 Adjacent assets  

Adjacent assets mainly focus on replacing missing values based on information of near assets. 

Some nearby assets are expected to have similar characteristics such as install year, diameter, etc. 

The adjacent assets can be identified through tools such as GIS. 

The Table 3-2 indicates the techniques employed for filling the missing values in each attribute. It 

is noticeable that in the cases these methods were not applicable, the missing values were removed 

from the analysis.  

Table 3-2 Methods for filling the gaps in each attribute 

Missing 

value 

Method Explanation 

Lining 

Status 

Assume a value When there is lining on a pipe, usually it is shown as Yes. 

It can be concluded that the missing values are related to 

the pipes without lining protection. This is employed when 

no information on mirroring attribute was available to fill 

the gaps.  

Mirroring Attribute Missing lining status values replaced based on values of 

lining material. In cases that the lining material contains 

"UnLined" value, the lining status is replaced with No and 

Yes otherwise.  



51 

 

 

51 

Missing 

value 

Method Explanation 

Anode 

Status 

Assume a value When there is anode protection, usually it is shown as Yes. 

It can be concluded that the missing values are related to 

the pipes without Anode protection. This is employed 

when no information on mirroring attribute was available 

to fill the gaps.  

Homogenous groups Pipes with the same material are expected to have the same 

Anode Status. Accordingly, for a missing anode status, 

material checked, and based on the mode of Anode Status 

for that material, the missing value replaced. 

Material Homogenous groups The pipes categorized based on their install year to check 

the installation year of that pipe for missing material. 

Accordingly, the mode of material for that year picked as 

a predicted value for that pipe.  

Adjacent assets Information from near pipes material used for replacing 

missing material for cities with available GIS. 

Diameter Homogenous groups Missing diameter replaced by the median of diameter. 

Adjacent assets Information from near pipes material used for replacing 

missing diameter for cities with available GIS. 

Lining 

Material 

Mirroring attribute Information on lining status was employed for this 

purpose. Status of No indicates "Unlined" pipes. 

Coating 

material 

Mirroring attribute Information on coating status was employed for this 

purpose. Uncoated pipes are related. 

Install year Homogenous groups Mode the installation years for that specific material 

employed to replace the missing install year. 

Depth Homogenous groups Median of depth values used for this purpose. 
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Missing 

value 

Method Explanation 

Protection 

status 

Assume a value When there is protection on a pipe, usually it is shown as 

Yes. It can be concluded that the missing values are related 

to the pipes without protection. 

Coating 

status 

Assume a value When there is coating on a pipe, usually it is shown as Yes. 

It can be concluded that the missing values are related to 

the pipes without protection. 

Mirroring attribute Missing coating status values replaced based on values of 

coating material. In cases that the coating material contains 

an "Uncoated" value, the lining status is replaced with No 

and Yes otherwise. This is employed when no information 

on mirroring attribute was available to fill the gaps.  

 

3.3 Data preparation 

Four workshops were organized with National Water and Wastewater Benchmarking Initiative 

(NWWBI) to identify the current watermain challenges and the available repair and replacement 

strategies in utilities. During these meetings, two prediction targets were found to be preferable by 

the utilities: estimating the rate of failure and predicting the probability of failure. These targets 

can help utilities in risk management associated with asset management plans and estimating the 

periodical repair and maintenance requirements.  Hence, the main focus of this study was defined 

to identify the factors affecting these targets. Accordingly, two target attributes have been defined 

Break status (categorical target) and current rate of failure (numerical target). While the first 

requires records of both broken and non-broken pipes, the second requires records of broken pipes 

only. The data preparation steps are explained in more detail in the following paragraphs:  

3.3.1 Break status 

The break status, determining whether a pipe will break or not, require information on both broken 

and non-broken pipes. Hence, the available inventory and break dataset were merged for each 
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utility separately. The unique ID for each utility identified through metadata tables was employed 

to combine the two files in PowerBI. In the cases without a pipe ID in one of the files or low 

matching percentages, datasets were matched in GIS. The information related to the matching 

percentage of the two datasets is provided in Table 3-3. Comparison of the unique IDs in break 

and inventory indicates if a pipe has been failed or not. The broken pipes have similar IDs in the 

break and inventory file, while the ID of the non-broken pipe in the broken file is blank. For this 

target attribute age of the pipe is the difference between failure year and install year for the broken 

pipes, and for the non-broken pipes, the age is the difference between the most recent available 

failure year and install year. Finally, the break status target attribute and the list of attributes 

mentioned in Table 4-2 were analyzed to identify the most important factors leading to pipe failure.  

Table 3-3 Matching percentage of break and inventory pipe based on Pipe ID 

Utility % matching Comment 

  

Barrie 98 - 

Calgary 94 - 

Durham 99 - 

Halifax 99 - 

Kitchener 86 - 

Markham 88 - 

Region of Waterloo 94 - 

Saskatoon 100 Match in QGIS 

St.John’s 100 Match in QGIS 

Vancouver 100 Match in QGIS 

Victoria 95 Match in QGIS 

Waterloo 87 - 

Winnipeg 100 Match in QGIS 

3.3.2 Current rate of failure 

For the current rate of failure target, the current number of failures indicates the number of failures 

that occurred in the latest year per length. This attribute is calculated by counting recurrent pipe 

IDs in the latest break year divided by the length of the pipes. Also, to identify the impacts of 

previous failures on the current rate of failure, the previous rate of failure was calculated as the 

proportion of all previous failures that occurred per length at each age. The age of the pipes for 
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this target attribute is the difference between the current failure year and pipe installation year. 

Finally, the current rate of failure target attribute and the list of attributes mentioned in Table 4-1 

were analyzed to identify the most important factors leading to pipe failure.  

3.3.3 Converting categorical variables to numerical 

Converting categorical variables to numerical ones is a crucial preprocessing step for some 

analyses, such as Recursive Feature Elimination (RFE) and correlation analysis. For the current 

study, the categorical variables converted to numerical ones through optimal scaling explained in 

the literature. Optimal scaling is known as opscale function available in optiscale library of Gifi 

package in R. General setups of opscale includes specifying the data frame of categorical variables 

(x.qual), the length of the data frame(x.quant), the measurement level of the variables (level), and 

measurement process (process). Measurement level can be nominal (1) or ordinal (2). For the 

ordinal values the measurement process can be either discrete (1) or continuous (2), and for the 

nominal values, there is no need to specify this option. For the current study, x.qual is the data 

frame of a categorical variable, and since the categorical data were all nominal, level 1 was selected 

as the analysis level.  

3.4 Correlation analysis  

In order to realize the relationship between the attributes and the targets, correlation analysis has 

been performed on data. Since correlation analysis reveals the relationship between numerical 

attributes, the converted categories were used in the analysis for categorical variables. A separate 

analysis has been performed on each target with common attributes and all other attributes 

recorded by utilities for each target.  

Common attributes include diameter, age, length, and material available for all utilities. Initially, 

the common attributes of each target in all utilities were appended in Power BI. Then, the 

correlation analysis was performed on the appended dataset using python.  

A separate correlation analysis has been performed for all other attributes in each utility. Then the 

list of correlation coefficients between each attribute and the target was recorded in a CSV file.  

Each column in the CSV file indicates the correlation coefficients between that attribute and the 
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target in each utility. The number of correlation coefficient values for each attribute depends on 

the number of utilities that record that variable. The CSV file was then imported to python, and 

the range of correlation coefficients for each attribute was presented in a boxplot.  

3.5 Dimensionality reduction approaches 

As mentioned earlier, there are two types of dimensionality reduction approaches feature 

extraction and feature elimination. The present study applied two feature extraction methods and 

one feature elimination approach to identify the most important factors driving watermain failure. 

Based on the provided literature, type of data, as well as trial and error, FAMD and CATPCA were 

employed as feature extraction approaches, and Random Forest-RFECV and XGBoost – RFECV 

as feature elimination approaches for each of the target attributes. It is noticeable that the best 

subset regression and stepwise regression were tried on the data for one city for the regression 

problem. However, the resulting negative 𝑅2 indicated these models are not a suitable feature 

selection for the data of this study.  

The following paragraphs briefly explain the steps that have been taken for building each 

mentioned method: 

3.5.1 Factor Analysis of Mixed Data (FAMD) 

The FAMD was conducted in R programming language. This function is available in the 

FactoMineR library and requires setting the number of PCs as well as specifying the index of the 

target attribute. For this study, the number of PCs was set to equal the number of available 

predictors for each utility. In this analysis, the overall contribution of each variable in the PCs 

represents the significance of the variables. The contribution of variables in each PC and variance 

explained by each PC are the two key outputs of FAMD available in the Factoextra library. The 

overall contribution of each variable is the inner product of variables contribution in each PC and 

variance divided by total explained variance. The larger percentage of contribution indicates the 

more important factors.  
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3.5.2 Categorical Principal Component Analysis (CATPCA) 

The CATPCA analysis was conducted in R. This function is known as princals and is available in 

the Gifi library. Princals mainly requires specifying the number of components (ndim), type of 

data (ordinal), location of knots for spline transformation, and degree of spline transformation. 

Initially, the number of required PCs was set to equal the total number of available predictors for 

each utility. Later, a proper number of components were selected depending on the amount of the 

explained variance. The selected PCs accounted for around 78-85% of the variance. Also, since 

the dataset includes numerical and categorical predictors, a degree vector was defined to properly 

transform categorical and numerical variables. Linear transformation of the numerical variables 

requires specifying the number of interior knots and degree of transformation 0 and 1, respectively 

(Linting et.al.,2007), and for the nominal transformation of the categorical variables, the degree 

was set to -1. Accordingly, categorical variables were handled at the nominal level, and numerical 

variables were linearly transformed. The key outputs of princals are the loadings of variables as 

well as the eigenvalues. Accordingly, the contribution of each variable in a specific principal 

component is the square of the variable loading associated with that PC divided by the sum square 

of all loadings of that component. The overall contribution of each variable is the inner product of 

variables contribution in each PC and the associated eigenvalue divided by the total eigenvalue. 

3.5.3 Recursive feature elimination with cross-validation (RFECV) 

The RFECV approach was conducted in a python Jupiter notebook. This function is available in 

the Scikit-Learn library. Since there was no prior knowledge about a proper number of desired 

features, RFE alone could not provide reliable results. Hence, the Recursive feature elimination 

with cross-validation (RFECV) approach was conducted instead. Initially, datasets were divided 

into training and test set using train_test_split available in sklearn.model_selection. The split ratio 

was selected between 0.09 – 0.3 depending on the number of data points as well as the fit of the 

model. Before the RFECV process started, a correlation analysis was performed on the training 

datasets for each city, and highly correlated predictors, i.e., correlation coefficient>0.8, were 

excluded from the analysis. The RFECV approach requires specifying several parameters in which 

the most important ones are briefly explained in Appendix A section A 1. 
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As mentioned earlier in 2.4.4.3, in this analysis, the most important features are selected by a 

supervised learning algorithm called “estimator”.  For this study, two estimators, i.e., random 

forest and XGBOOST, were identified to provide the best fit in the data. The best hyperparameters 

of the estimators were first tuned using RandomizedSearchCV available in Scikit-learn. 

Hyperparameters are parameters of a model set in advance to control the learning process of a 

machine learning algorithm. Since these parameters have a key role in fitting the model, optimizing 

them in advance provides more accurate and reliable results. These hyperparameters are different 

for each model. The most important hyperparameters for each estimator are described in Appendix 

A sections A 1 and A 2. 

RandomizedSearchCV is a function that randomly picks values from the defined range of a 

model’s hyperparameters and creates a combination of hyperparameters. The best combination is 

then selected through the cross-validation process explained in section 2.4.4.3.2.1. The possible 

number of hyperparameter combinations is determined by n_iter. A careful selection of n_iter is 

key to avoid missing the best parameters. 3-fold cross-validation with 50 iterations is selected for 

finding the best hyperparameters of the estimator and the model with selected features.  

Following tuning the estimator, the overfitting of the selected estimator was checked using 5-fold 

cross-validation. Then, to identify the most important factors, the RFECV approach with tunned 

estimator was employed along with a standard scaler using pipe function for simultaneous scaling 

data and finding important features. Lastly, to determine the effectiveness of the dimensionality 

reduction, the model with selected features was compared with the full model using R-squared for 

the regression analysis and F1 score and Recall goodness of fit criteria for the classification 

analysis. The imbalanced datasets was the main challenge of classification analysis. In this study, 

since there are fewer broken pipes than non-broken, the model might not be able to learn from the 

training set and predict the broken pipes correctly. In these cases, although the model might 

perform excellent in general and have a high F1 score, it cannot predict the broken pipes accurately. 

Hence, to ensure the dimensionality reduction loses no information, the performance of the full 

model and selected model was compared in terms of recall score in addition to F1 score. Recall 

indicates the percentage of the actual positives (broken pipes) identified correctly. 
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For a more accurate comparison, prior to this step, the tuned hyperparameters of the model with 

selected features were determined, and the overfitting of the model was checked. It is noticeable 

that the RFECV analysis requires numerical targets and predictors. Hence, prior to the analysis, in 

addition to the categorical predictors, the values of the break status target attribute were converted 

to numerical using optimal scaling. The assigned values to the non-broken and broken pipe were 

1 and 2, respectively. However, due to the nature of the XGBOOST classifier estimator, the target 

attribute should be binary. Hence, the converted values of 1 and 2 in the target attribute were 

replaced by 0 and 1, respectively.  
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4 Available dataset 

This study is part of the project “Best Practices for Predicting WaterMain Breaks,” a collaboration 

between the National Water and Wastewater Benchmarking Initiative (NWWBI) and the 

Concordia University research group “UrbanLinks”. Thirteen utilities across Canada, including 

Barrie, Calgary, Region of Durham, Halifax, Kitchener, Region of Markham, Region of Waterloo, 

Saskatoon, St. John’s, Vancouver, Victoria, Waterloo, and Winnipeg, has shared their water main 

inventories and historical records of main breaks as separate spreadsheets or GIS shapefiles. The 

inventory file contains information on the characteristics of existing pipes in the system, and the 

break file lists the failure records of broken pipes. The list of available attributes for the two target 

attributes, the current rate of failure and break status, is provided in  Table 4-1 and Table 4-2, 

respectively.  

As the tables illustrate, overall, the provided data for this study can be categorized into five general 

groups of pipe physical characteristics, historical information, protection activities, environmental, 

and operational factors. Due to the lack of proper data collection framework, the available 

attributes were varied between each utility, yet some characteristics such as diameter, material, 

length, installation year, and failure year were consistently collected by all utilities. Also, the 

majority of the utilities record information such as lining status and lining material. Given that, a 

few information such as soil type, pressure, and casing material is recorded by a few utilities only.  
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Table 4-1 Available attributes provided by each utility for the current rate of failure 
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Table 4-2 Available attributes provided by each utility for break status target attribute 
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It is noticeable that while the utilities directly recorded the majority of the attributes, some others, 

including age, failure month, install month, the previous rate of failure, protection age, and lining 

age, were extracted from the available information to evaluate their impacts on failures. For 

instance, lining age for the lined pipes is the difference between pipe failure year, current available 

failure year for non-broken pipes, and lining installation year. For pipes without lining, the lining 

age is considered as 0. Not all utilities have collected lining installation year. Figure 4-1compares 

the average lining age for broken and inventory pipes for the utilities whose recorded this attribute.   

 

Figure 4-1 Average lining age of broken and inventory pipes for the utilities with available lining age 

Figure 4-1 indicates the average age of lining for the broken pipes in the system is around 14 years 

and for inventory pipes is approximately 32 years. Meaning that majority of the lined pipes in the 

system last more than 14 years after lining.  

As mentioned earlier in the literature, age, as an indicator of many other factors such as external 

load, corrosion, etc., plays a vital role in various deterioration models. The average age of the 

broken and inventory pipes in the analyzed utilities in this study is around 46 years and 36 years, 

respectively. Figure 4-2 presents information on the average age of each utility's broken pipes and 

inventory pipes. Evaluating the distribution of breaks during different months of the year indicates, 

majority of the pipe failure has occurred during cold winter months, i.e., January and February as 

presented in Figure 4-3. 
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Figure 4-2 Average age of pipes for each utility 

 

Figure 4-3 Total percentage of the failed pipes in each month 

 

The general characteristics of the available pipes in the inventory and broken pipes for all utilities 

are provided in Table 4-3. It is noticeable the mentioned values are related to the clean datasets 

prepared for targets of the rate of failure and break status. According to the Table 4-3,  this study 

analyzed around 24835 km of inventory pipes and 3167 km of broken pipes with an average of 

4771 breaks. The available break year data varies between different utilities, indicating utilities 

started collecting data on broken pipes in different time frames. More specifically, Calgary, 
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Saskatoon, and Winnipeg have the most historic break data, while break information i Vancouver 

and Waterloo is the most recent.  

Table 4-3 General characteristics of pipes in each utility 

Attribute 

Length 

(Inventory) 

KM 

Length 

(Break)

KM 

Break Decades Available Number 

of breaks 

per KM 
 

50 60 70 80 90 00 10 

Barrie 897 61        15.1  

Calgary 6811 1048        15.1  

Durham 3183 440        13.3  

Halifax 2710 384        14.9  

Kitchener 12 2        956  

Markham 1501 147        15.7  

Region of 

Waterloo 

392 18        10.2  

Saskatoon 1363 238        27.4  

St.John’s 694 96        15.4 

Vancouver 1577 29        25.5 

Victoria 351 74        9.3 

Waterloo 481 53        13.4 

Winnipeg 4862 576        33.2 

 

 Overall, the initial analysis of the data for all utilities indicates that by improving the 

manufacturing process of different materials over the years, the percentage of pipe material has 

changed, as demonstrated in Figure 4-4. According to the mentioned figure, the cast iron pipes 

were commonly used during 1900-1960. However, this pattern shifted in 1970 when the ductile 

iron pipes were widely used in the system and PVC afterward in 1980.  
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Figure 4-4 Total lengths of the pipes installed in each decade 

Since cast iron pipes are the oldest pipes in the system in this study, they accounted for most of 

the failures in all utilities. The information related to the material of the failed pipes and inventory 

pipes of all utilities is summarized in Figure 4-5Figure 4-5 and Figure 4-6 respectively.  

Overall, in this analysis, more than half of the failed pipes were cast-iron pipes according to Figure 

4-5. Also, around 40% of the inventory pipes were made from PVC material followed by cast iron 

and Ductile iron as presented in Figure 4-6. As presented in Figure 4-4, cast-iron pipes are the 

oldest pipes in the system, and their higher failures compared with other materials can be explained 

accordingly. 

 

Figure 4-5 Total lengths of the failed material 
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Figure 4-6 Total percentage of the inventory pipes material 

It is noticeable that the given Figure 4-5 and Figure 4-6 are related to all utilities, and the detail of 

material in each utility might be different depending on the available break year. The more detailed 

material for each utility and protection properties for each utility are provided in Table 4-4 and 

Table 4-5 for break and inventory files, respectively.  

As presented in Table 4-4, cast iron is the predominant broken pipe material in all utilities except 

Markham and the Region of Waterloo, where ductile iron is the primary failed material. Also, cast-

iron pipes that were failed on average at 55 years are the oldest failed pipes in all utilities, and 

PVC pipes with an average age of 16 years are the youngest failed pipes. According to the same 

table, Markham is the only utility widely employed corrosion protection activities in their water 

network.   

Table 4-4 Broken pipes detailed material and protection characteristics 

Utility 

% CI 

pipes 

% DI 

pipes 

%PVC  

Pipes 

Average 

age of CI  

Average 

age of DI  

Average 

age of 

PVC  

% 

Lined 

pipes 

% 

Protected 

pipes 

Barrie 58 30 7 48 31 13 - 3 

Calgary 49 36 9 45 25 3 - 1 

Durham 38 33 18 51 33 33 21 32 

Halifax 74 20 3 55 26 18 33 - 

Kitchener 70 27 2 55 37 12. 1 - 

8%

27%

21%

2%

39%

1%

Asbestos Cement Cast Iron Ductile Iron Other PVC Steel



67 

 

 

67 

Utility 

% CI 

pipes 

% DI 

pipes 

%PVC  

Pipes 

Average 

age of CI  

Average 

age of DI  

Average 

age of 

PVC  

% 

Lined 

pipes 

% 

Protected 

pipes 

Markham 32 53 11 37 26 13 52 72 

RoW 36 40 8 62 34 16 12 - 

Saskatoon 37 0.2 10 61 37 5 2 - 

St.John’s 82 15 1 56 27 3 - - 

Vancouver 88 4 0.1 64 33 45 28 - 

Victoria 72 23 3 64 27 18 5 - 

Waterloo 81 14 5 54 42 22 23 - 

Winnipeg 65 2 4 67 32 10 - - 

 

While PVC is the current primary material in most cities in this analysis, the existing pipes in 

Halifax, St. John’s, Vancouver, and Victoria are either ductile iron or cast iron, as illustrated in 

Table 4-5. According to the same table, the average age of the PVC pipes in the system is around 

18 years, indicating the utilities recently employed this material. Also, the average of the current 

cast-iron pipes in the system is 60 years, given that this material still constitutes a large portion of 

the existing pipes in the system. These very old CI pipes are the main cause of the problem in 

different utilities as presented in Figure 4-5. The more detailed data summery is provided in () 

Table 4-5 Inventory pipes detailed material and protection characteristics 

Utility 

% CI 

pipes 

% DI 

pipes 

%PVC  

Pipes 

Average 

age of CI  

Average 

age of DI  

Average 

age of 

PVC  

% 

Lined 

pipes 

% 

Protected 

pipes 

Barrie 16 25 52 51 32 17 - 4.3 

Calgary 21 23 47 48 34 18 - - 

Durham 17 20 54 55 37 21 13 13 

Halifax 44 48 2 56 24 21 44 - 

Kitchener 24 35 36 61 38 13 0.3 - 

Markham 9 14 71 32 39 19 11.2 27 

RoW 10 32 69 69 36 17 25 - 

Saskatoon 19 0.2 68 68 46 17 0.9 - 

St.John’s 43 44 12 64 27 6.2 - - 

Vancouver 43 54 0.09 68 24 22 47 - 

Victoria 49 37 7 78 35 28.2 5 - 

Waterloo 31 15 53 59 43 21 11 - 

Winnipeg 25 1 55 70 35 22 - - 
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5 Results 
This section provides a general description of correlation analysis results, and a detailed 

explanation of dimensionality reduction approaches results for the two target attributes. This 

section in the first part describes the results of correlation analysis for both targets. Then in the 

following sections, the results of each dimensionality reduction approach and a general comparison 

of each within different cities are provided. 

Overall, four dimensionality reduction approaches have been employed to identify the most 

important factors affecting the current watermain failures across thirteen Canadian utilities. These 

approaches are FAMD, CATPCA, RF-RFECV, and XGBOOST-RFECV.  

A more detailed explanation of the results of each analysis for each target attribute is provided in 

the following sections. 

5.1 Correlation analysis 

This section provides an overview of the results of correlation analysis. As mentioned earlier, 

although the utilities collected different subsets of data, a few attributes were consistently collected 

by all of them. The correlation coefficients are the values ranging between -1 and 1 which the 

absolute values indicate the significance of relations between two attributes. The larger absolute 

values indicate the stronger relationships. In this analysis, the negative values indicate the inverse 

relationship between variables, and the positive values represent a direct relationship.  

The common attributes for the current rate of failure target are material, diameter, length, age, and 

previous rate of failure. As presented in Figure 5-1, these attributes are neither correlated with each 

other nor with the target for the current rate of failure. Among these attributes, the previous rate of 

failure has the most significant correlation with the target, and still, it is not highly correlated with 

it.    
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Figure 5-1 Correlation analysis - Common attributes & Current rate of failure 

In the break status analysis, the material, diameter, length, and age are common factors. The results 

of correlation analysis between these attributes and the target are provided in Figure 5-2. Similar 

to the previous one, the attributes are neither highly correlated with each other nor with the target 

in this analysis as well. Among these common attributes, material and the length of the pipes has 

the strongest association with the target. However, this relationship is not strong enough so that 

the attributes cannot be considered highly correlated.   

 

Figure 5-2 Correlation analysis - Common attributes & Break status 
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Also, in order to realize the relationship between different attributes and the targets, a separate 

correlation analysis was performed on data of each utility. The correlation coefficients for each 

attribute are then employed to create boxplots presented in Figure 5-3 and Figure 5-4 for the current 

rate of failure and break status, respectively. The boxplots indicate the range of correlation 

coefficients between each attribute and the target. The number of values in each box plot depends 

on how many utilities record that information. Accordingly, for the attributes collected by one 

utility only, the values are represented as a line instead of a box.  

As presented in Figure 5-3, in the current rate of failure analysis, except for pipe length that is 

highly correlated with the target, the remaining attributes are not correlated with the target. As 

mentioned earlier, the current rate of failure indicates the total number of failures each meter of 

pipe has experienced in its latest available failure year. Hence, the strong correlation between 

length and current rate of failure is expected. Beside length, the previous rate of failure is somehow 

correlated with the target.  

 Given that, in the next section, results of CATPCA indicate although these attributes are not highly 

correlated with the target, some of them are significantly important in predicting the current rate 

of failure. 

 

Figure 5-3 Correlation coefficients - Current rate of failure 
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The results of correlation analysis for the break status target are provided in Figure 5-4. According 

to the results, in this analysis, the correlation coefficients are higher than the current failure rate 

analysis and the previous number of failures is the only highly correlated factor with the target. 

Many factors can prevent the failure, however, from the literature, we know once a pipe breaks, it 

tends to fail in other locations. This confirms the dependency of previous rate of failure to broken 

pipes and explains why in general the correlation coefficients in break status analysis are higher 

than the current failure rate. 

In Figure 5-4 besides the previous number of failures, comparing the correlation coefficients 

indicates a higher correlation coefficient between pipe material and the target than other attributes 

in this analysis. As mentioned in the literature, different materials have different expected life 

services, confirming the stronger correlation between break status and material. Also, while 

previous studies had commonly used the age of the pipes in watermain failure predictions, this 

analysis's results indicate that protection information, i.e., protection age and protection status, are 

more associated with the target than age. This highlights that the deterioration of pipes can be 

highly affected by protection activities. More specifically, the corrosion protection information 

such as the material used for it and the year it performed on the pipe are more important than age 

in predicting watermain failure.  
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Figure 5-4 Correlation coefficients - Break status 

5.2 Current rate of failure analysis 

The current rate of failure is a numerical target attribute which indicates the number of failures 

that occurred in the latest available failure year per length. In order to identify the most important 

factors affecting this target, three types of analysis were performed: FAMD, CATPCA, and 

RFECV. Results of each method are explained in more detail in the following sections. 

5.2.1 Factor Analysis of Mixed Data (FAMD) 

FAMD estimates the contribution of each attribute to the target. Figure 5-5 represents the results 

of the FAMD analysis for the city of Winnipeg, as an example. The red line in the figure represents 

the average contribution. For each utility, the most important factors are the ones with the 

contribution greater than the average. The average contribution is the uniform contribution of 

variables and is equivalent to 1 over the total number of variables. 
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Figure 5-5 Overall contribution of variables in principal components - city of Winnipeg – Current rate of failure 

The results of FAMD analysis for the current failure rate are provided in Table 5-1. In the provided 

table, the available attributes and the most important attributes are highlighted in yellow and 

orange, respectively. Also, the last line of the table indicates the cut-off level for selecting the 

important features. Comparing the results over different cities indicates that FAMD rates 

categorical data more important than numerical ones. More specifically, the results consistently 

identified material (4-10 categories), failure month (12 categories), and where available soil type 

(33 categories), joint type (7 categories), and casing material (5 categories) as the most important 

factors affecting the pipes' failure rate in all utilities. The remaining categorical variables were also 

selected among the key factors occasionally depending on their number of categories compared 

with the other categorical variables. For instance, install month in Barrie has only two categories 

that are negligible compared with the other categorical variables in the city.  Also, the lining 

material is among the most important factors for a few utilities recording it. Given that, none of 

the numerical variables were selected as key factors in predicting the current failure rate according 

to FAMD. 

As mentioned earlier in the literature, a linear relationship between the target and the predictors is 

a key assumption in FAMD, whereas the results of correlation analysis indicate no linear 

relationship in this study.  
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Table 5-1 FAMD results – Current RoF (Orange - important, yellow – not important, blank – not available) 

 

5.2.2 Categorical Principal Component Analysis (CATPCA) 

CATPCA estimates the contribution of numerical and categorical variables to predicting the target. 

Similar to the FAMD method, the cut-off level for identifying the most important factors is 

determined according to the number of attributes for each utility. The overall results of the 

CATPCA analysis are presented in Table 5-2. In the table the available attributes and the most 

important attributes are highlighted in yellow and orange, respectively. Also, the last line of the 

table indicates the cut-off level for selecting the important features. 
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Joint type 32 34

Diameter 3 6 4 5 4 4 5 6 8 6 5 4 4

Material 18 51 15 20 25 24 23 35 35 26 32 13 29

Length 2 3 3 3 4 3 5 3 6 3 3 4 3

Restrained 1

Roughness 7

Dead-end 4

Pipe Depth 2 4 4

Failure Month 17 21 21 29 23 27 30 28 27 42 16

Install Month 4 22 27 20

Status 2 6 2 3 4 4 1

Age 3 6 5 5 5 4 5 6 7 5 6 4 6

PreviousRoF 3 3 3 5 4 3 4 2 6 3 4 3
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Table 5-2 CATPCA results - Current RoF (Orange - important, yellow – not important, blank – not available) 

 

In general, the results of the CATPCA analysis indicate the importance of protection activities in 

predicting the current rate of failure. More specifically, the results indicate lining information is 

consistently important in all utilities except Kitchener. According to the results, it is recommended 

that utilities with more than 30% of protected pipes, i.e., Durham and Markham, track information 

related to protection properties such as when the protection is performed on the pipes. Other 

protection activities include coating, casing, and anodic protection. These attributes were collected 

for a few utilities, and although the analysis results have rated coating properties and anode 

information among the essential factors, their actual impact requires further investigation. The 

results highlight the importance of the historical information and physical characteristics for 

utilities without broad records of protection activities, e.g., Barrie, in predicting the current failure 

rate. In this analysis, status and where available soil type were also consistently identified as 

important factors affecting the current failure rate. Comparing the results of CATPCA and FAMD 
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indicates while in FAMD, the important factors were selected from the categorical variables, a 

combination of categorical and numerical variables are important herein. As mentioned earlier, 

although the CATPCA can handle the linear and non-linear relationship between the variables and 

the target, FAMD, which is based on PCA, and MCA is capable of linear relationships only. Hence, 

the differences between the two approaches in selecting the most important features sound logical. 

5.2.3 Recursive Feature Elimination with Cross-Validation (RFECV) 

RFECV identifies the most contributing factors in predicting the target through a recursive process 

using a supervised learning algorithm as an estimator. In this method, initially, the highly 

correlated attributes were removed from the analysis.  The significant level of 0.8 was considered 

for determining the highly correlated attribute as suggested by Jun et.al. (2020) on studying the 

different factors affecting steel water-transmission main rate of failure in Korea. The lining 

information and protection information was the only highly correlated attributes. Hence, where 

available, lining age and protection age were kept as representers of lining and protection. For the 

cities without lining age, lining material was kept only. The correlation matrices for each city are 

provided in Appendix B. 

For this study, Random Forest and XGBOOST were selected as estimators of RFECV analysis. 

The overall results of the RF-RFECV and the XGBOOST-RFECV are provided in Table 5-3 and 

Table 5-5, respectively. The total number of predictors for each utility is also provided in the same 

table. In this analysis for both estimators, the length of the pipes was revealed as a vital factor 

affecting the current rate of failure. In order to evaluate the impacts of length on this target, 

intentionally, the length of the pipes was removed from the data, and a separate analysis was 

performed accordingly. Since the performance of the models without length was highly reduced 

compared with the initial models, the length of the pipes was kept as a predictor in the analysis.  

The more detailed results of each analysis will be explained in  5.2.3.1 and 5.2.3.2 for random 

forest and XGBOOST, respectively. It can also be shown how the number of predictors can affect 

a model’s performance. For instance, Figure 5-6 indicates how the number of attributes affects the 

performance of the Random Forest model in predicting the current rate of failure in Calgary.  
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Figure 5-6 Number of attributes vs. performance of model - city of Calgary 

5.2.3.1 RF-RFECV  

The overall results of RF-RFECV analysis are provided in Table 5-3. In the table, the most 

important features are highlighted in orange and are assigned a weight by the random forest 

estimator. These weights sum one and indicate the contribution of each variable in predicting the 

targets. Accordingly, the higher weights, the more contributing factors. Comparing the selected 

features with the available predictors for each city indicates this approach significantly reduces the 

number of features, and still, the models with the selected features perform equally or better than 

the full models. Overall, the analysis results identified physical, historical, and, where available 

environmental factors as the most important factors affecting pipes' current rate of failure. In this 

analysis, unlike CATPCA, protection activities do not play an essential role in predicting the 

current failure rate. In the majority of the cities, the estimator selected the pipe's length alone or 

along with a few other common physical or historical factors to predict the current failure rate 

more precisely. It is noticeable that in the cities the estimator did not select the length of the pipe 

as an important factor, age and previous rate of failure are the two critical elements that were 

chosen instead. According to the results, length, age, and previous rate of failure are the most 

contributing factors in predicting the current rate of failure.   
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Table 5-3 RF- RFECV weights and results - Current RoF (Orange - important, yellow – not important, blank – not 

available) 

 

Since the current rate of failures was calculated using age and due to the large contribution of this 

attribute in prediction the current rate of failure as well as the poor performance of the model 

without it, using random forest, the available attributes were employed to predict the number of 

failures, i.e., an independent target, instead. The performance of the model is provided in Table 

5-4. According to the results, the performance of models for predicting the current number of 

breaks is poor in all utilities. Hence, prediction of number of breaks alone are not accurate.  
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Table 5-4 Performance of current number of breaks vs current rate of failure random forest prediction models 

Utilities Full model Number of breaks r2 Full model rate of failure r2 

Barrie -16 87.9 

Calgary 10.6 97.5 

Durham 1.7 98 

Halifax 3.1 96.3 

Kitchener -6.9 90.9 

Markham -2.5 96.2 

RoW 7.4 96.2 

Saskatoon 5.1 96.7 

St. John’s -4.2 99.4 

Vancouver -3.6 98.7 

Victoria -1.8 96.9 

Waterloo -2 99.53 

Winnipeg 2.9 99.15 

 

5.2.3.2 XGBOOST-RFECV 

The overall results of the XGBOOST-RFECV analysis are provided in Table 5-5. Similar to RF-

RFECV, this approach significantly reduces the number of predictors, and the models with selected 

features perform better or equally compared with the full model.  The pattern of the final result in 

this approach is almost similar to RF – RFECV. The overall results of the analysis indicate this 

method widely selects physical factors and historical information as the two groups of important 

factors and do not consider the remaining categories as influential factors for predicting the current 

rate of failure. More specifically, the length of the pipes was consistently identified as an important 

factor in all utilities except Victoria where previous rate of failure is the only contributing factor. 

Overall, in this analysis, in most of the utilities, the length of the pipe alone or with a few other 

attributes, including diameter, material, age, and previous rate of failure, are the essential factors 

in predicting the current rate of failure. In this analysis, among the selected factors, length and the 

previous rate of failure are the most contributing factors in all utilities. 

Comparing the results of RF and XGBOOST models based on the resulting 𝑅2 indicates that the 

random forest approach generally predicts the current failure rate more accurately.  
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Table 5-5 XGBOOST – RFECV weights and results – Current RoF (Orange - important, yellow – not important, blank 

– not available) 

 

5.3 Break status 

5.3.1 Factor Analysis of Mixed Data (FAMD) 

The overall results of the analysis for the break status target are provided in Table 5-6Table 5-1. 

In the table, the last line indicates the cut-off level for selecting the important features. The 

available and most important attributes are highlighted in yellow and orange in the table, 

respectively. As mentioned earlier, the results of this approach are biased since this approach is 

mainly rated categorical attributes more important than numerical ones, and usually, categorical 

variables with more categories are more important. Hence, only the categorical predictors are 
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among the most important attributes. More specifically, in this analysis, material (7-12 categories) 

and where available joint type (7 categories), install month (12 categories), casing material (7 

categories), and coating material (6-9 categories) were consistently selected as the most important 

factors affecting the deterioration of pipes. 

Table 5-6 FAMD results- Break Status (Orange - important, yellow – not important, blank – not available) 

 

5.3.2 Categorical Principal Component Analysis (CATPCA) 

The overall results of the CATPCA analysis for break status are provided in Table 5-7. The last 

row of the table indicates the cut-off level for identifying the most important factors. Attributes 

with the contribution of greater or equal than that cut-off are the important factors that are 

highlighted in orange in the table.  

The overall results of CATPCA analysis for break status target highlight the significant impacts 

of protection activities on pipes’ probability of failure. Interestingly, in this analysis, not only the 
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status of protection was important, but also the material used for protection, i.e., lining material 

and age of that protection, did impact the probability of failure. Hence, besides corrosion protection 

status, how and when that protection is being put in place impacts deterioration. Among all 

protection activities information, coating material and casing status are only available for a few 

cities, and their actual impact on deterioration requires further investigation. The results also 

consistently identified the most common physical factors, i.e., material, diameter, and length, for 

the utilities without comprehensive protection activities data as presented for Barrie and Calgary. 

A few attributes were collected by one or two cities in this analysis. Although some of these 

attributes, including install month and pressure were identified as important factors, their actual 

impacts require further investigation.  

Table 5-7 CATPCA results - Break Status (Orange - important, yellow – not important, blank – not available) 
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5.3.3 Recursive Feature Elimination with Cross-Validation (RFECV) 

This target consists of Yes and No values corresponding to the failed and non-failed pipes, 

respectively. These values were converted to numerical ones using optimal scaling. Accordingly, 

for the random forest estimator, the assigned values to the non-broken and broken pipe were 1 and 

2, respectively. For the XGBOOST estimator however, these values were replaced by 0 and 1 

instead as explained in the methodology. The overall results of RF-RFECV and XGBOOST-

RFECV are presented in Table 5-8 and Table 5-10, respectively. In the tables, to ensure the 

dimensionality reduction loses no information, the performance of the full model and selected 

model was compared in terms of recall score in addition to F1 score.  The following paragraphs 

describe the results of the RFECV approach with Random Forest and XGBOOST estimators.  

5.3.3.1 RF-RFECV  

The overall results of RF-RFECV analysis are provided in Table 5-8. Comparing the selected 

features with the available predictors for each city indicates this approach significantly reduces the 

number of features, and still, the models with the selected features perform equally or slightly 

better than the full models in terms of F1 and recall scores. The high values of F1 and recall scores 

indicate the model's ability with selected features to accurately predict broken and non-broken 

pipes.  Compared with the current rate of failure analysis, more features are selected by the random 

forest estimator in this analysis. As mentioned earlier, many factors can prevent failure, i.e. can 

affect pipe break status. Hence, selection of more factors for this target compared with the current 

rate of failure analysis was expected. Overall, the analysis has rated the physical and historical 

factors as the most important factors affecting deterioration. More specifically, the estimator 

consistently identified material, length, and age as the most important attributes affecting the 

deterioration. Out of the selected features, the mentioned three attributes are the most contributing 

factor in this analysis. Unlike CATPCA, the protection activity predictors do not affect the 

deterioration as high as physical and historical variables. According to the results, in the protection 

activities group, cathodic protection age and where available casing material were consistently 

highlighted as the important factors. The results also have rated joint type, pressure, roughness, 

and deadend among the most important features. However, as mentioned earlier, these attributes 



84 

 

 

84 

are available for a few cities only, and their actual impact on deterioration requires further 

investigation.  

Table 5-8 RF-RFECV weights and results - Break Status (Orange - important, yellow – not important, blank – not 

available) 

 

Due to the significant impacts of the common attributes, i.e., material, diameter, length, and age, 

according to the results of this analysis as well as their availability in all utilities, these attributes 

were employed in a separate random forest model to predict the break status. The results are 

provided in Table 5-9.  Comparing the performance of the model with common attributes and the 

final model indicates the additional attributes in the final model can slightly improve the model’s 

performance. However, the differences are negligible, and using random forest, the common 

attributes can predict the break status accurately. Hence, according to the results of random forest 

analysis, utilities that are just beginning to apply predictive models, can develop accurate 

prediction models by collecting information on common attributes only. In this prediction, material 

and length are the most contributing factors, and diameter has the lowest contribution in all utilities 
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except the Region of Waterloo. It is noticeable that, unlike other utilities, the Region of Waterloo 

is the only utility with only 20% of small diameter pipes as presented in data summery table 

provided in Appendix D.  

Table 5-9 Random Forest model results with common attributes 

  Common attributes weights Common Model Final-Model 

  Diameter Material Length Age F1 Score Recall F1 Score Recall 

Barrie 0.10 0.40 0.29 0.21 96.8 97.7 97.5 98.6 

Calgary 0.10 0.40 0.29 0.21 97.4 98.3 97.5 98.3 

Durham 0.05 0.44 0.28 0.23 96.3 98 97.5 98.6 

Halifax 0.06 0.43 0.35 0.15 95.2 96.3 95.3 96.4 

Kitchener 0.08 0.24 0.43 0.25 97.1 98.7 97.2 98.8 

Markham 0.03 0.55 0.24 0.17 98 99.2 98.9 99.4 

RoW 0.14 0.13 0.47 0.26 98 99.7 98.6 99.9 

Saskatoon 0.07 0.26 0.30 0.37 97.1 98.5 97.4 98.6 

St.John's 0.08 0.16 0.41 0.35 94.4 96.8 95.2 97.6 

Vancouver 0.08 0.16 0.41 0.35 99.4 100 99.4 99.9 

Victoria 0.08 0.13 0.40 0.38 92.3 96.2 92.9 96.8 

Waterloo 0.08 0.13 0.40 0.38 96.8 97.3 97.2 98.5 

Winnipeg 0.08 0.13 0.40 0.38 96.7 97.2 96.7 97.2 

 

5.3.3.2 XGBOOST-RFECV 

The overall results of the XGBOOST-RFECV analysis are provided in Table 5-10. Comparing the 

selected features with the available predictors for each city indicates similar to RF-RFECV, this 

approach significantly reduces the number of features in the majority of the utilities, and still, the 

models with the selected features perform equally or slightly better than the full models in terms 

of F1 and recall scores. Durham and Kitchener are the only utilities with a lower recall score in 

the selected model than the full model. However, the difference is negligible compared with the 

high recall score in the full and final model. 

 According to the results, while in CATPCA analysis, the protection activities' information is the 

main factor affecting deterioration, this analysis highlights the significant importance of physical 
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and historical predictors. More specifically, the analysis has consistently rated material, diameter, 

length, age, and failure month as the most important factors. Similar to RF-RFECV, in this analysis 

material is the most contributing factors among the selected features. In this analysis, information 

on protection age is consistently important in all utilities except Kitchener, where only less than 

1% of the pipes are lined. Also, according to the results of this analysis, the lining material is 

essential for the utilities with broad lining practices only, i.e., more than 40% of the lined pipes. 

The analysis has also indicated the significant impacts of some attributes such as restrained, install 

month, casing material, roughness, and deadend on the pipes’ deterioration. As mentioned earlier, 

these attributes are collected by one utility only, and their actual impacts require further studies.  

Table 5-10 XGBOOST-RFECV weights and results - Break Status (Orange - important, yellow – not important, blank 

– not available) 
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Similar to previous section, the common attributes were employed in a separate XGBoost model 

to predict the break status. The results are provided in Table 5-11. As presented in the results, 

similar to random forest model, the model with selected features slightly outperforms the model 

with common attributes. As mentioned earlier, utilities at lower level of maturity, who are just 

beginning to apply predictive models, can develop accurate prediction models information on 

common attributes only. In this analysis, material and length are the most contributing factors and 

diameter is the least contributing one in majority of the utilities.  

Table 5-11 XGBoost model results with common attributes 

  

Common attributes weights Common Model Final-Model 

Diameter Material Length Age F1 Score Recall F1 Score Recall 

Barrie 0.08 0.78 0.06 0.08 85.9 84.8 86.5 84.8 

Calgary 0.079 0.78 0.06 0.08 85.9 84.8 91.8 89.3 

Durham 0.033 0.83 0.049 0.09 88 84 89.7 85.6 

Halifax 0.030 0.86 0.064 0.05 91 89 90.9 89.1 

Kitchener 0.12 0.65 0.14 0.09 78 71 73 72 

Markham 0.032 0.82 0.06 0.09 90 87.5 90.3 86.6 

RoW 0.08 0.16 0.66 0.09 58.8 52.6 61.3 60 

Saskatoon 0.08 0.64 0.088 0.19 86.2 81.8 88 84 

St.John's 0.09 0.65 0.1 0.16 72.5 66 77 71.5 

Vancouver 0.14 0.39 0.21 0.26 24 17.5 27 24 

Victoria 0.14 0.45 0.19 0.22 68.5 61.6 69 62 

Waterloo 0.11 0.62 0.15 0.13 66.5 62.6 74 69 

Winnipeg 0.016 0.86 0.047 0.08 85.6 83.5 86 84 

 

Comparing results of this analysis with random forest indicates in general, random forest models 

are performed better than XGBOOST models for this target. 
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6 Discussion  

The results of the study will be discussed in three levels: applicability of the applicability of the 

approaches, the important features, and limitation and future recommendation. Each level is 

explained in detail in the following paragraphs: 

6.1 Applicability of the dimensionality reduction approaches 

Although the mentioned approaches follow the same goal of dimensionality reduction, they are 

different in nature. When data are all numerical and linearly related to the target, correlation 

coefficients and the approaches based on correlation are good indicators representing the most 

significant factors influencing the target. Besides correlation analysis, Factor Analysis of Mixed 

Data (FAMD) that applies to mixed types of data is recommended when there are linear 

relationships between target variables and predictors and categorical variables with an equal level 

of categories.  In contrast, Categorical Principal Component Analysis (CATPCA), also known as 

non-linear PCA, can handle a linear and non-linear relationship among variables and is 

recommended when mixed types of data in the analysis are not linearly related to the target. 

Recursive Feature Elimination Approach with Cross-Validation (RFECV) is another feature 

selection approach that can handle different relations between the predictors and targets through a 

proper estimator selection. In this analysis, selecting an estimator that best fits the data and tunning 

its hyperparameters determines the reliability of the results. In practice, the number of available 

estimators is significant and choosing an appropriate estimator based on data structure, and the 

predictors' relations with the target is critical. For instance, the simple linear and regularized linear 

regressors such as elastic net regressors were initially selected as the estimator in this study. 

However, the resulting negative R-squared indicated the inability of these estimators to fit in the 

data and select the most important features accordingly. Hence, later on, XGBOOST and Random 

Forest were tested out. With resulting high performance, the two algorithms were employed 

instead. Compared with XGBOOST, the Random Forest estimator was fitted better in the data and 

resulted in more accurate models. Accordingly, although the selected features by the two 

approaches were almost similar, the results of RF-RFECV seem to be more reliable.   
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The identified important factors and the most contributing factors vary between different models 

based on the mentioned differences in the current study. More specifically, while physical and 

historical information were the most contributing factors in RFECV approach, in CATPCA 

analysis the protection activities were contributing the most. Comparing different approaches of 

this study indicates, while CATPCA is a flexible approach in which implementation is 

straightforward, in RFECV, selecting a proper estimator and tuning its hyperparameters is critical 

and time-consuming. Also, since the categorical variables have a different number of category 

levels herein, and due to the lack of linear relationship between the predictors and targets, the 

results of FAMD analysis might be biased. Comparing the approaches based on the mentioned 

differences and similarities, it seems that CATPCA is the most reliable approach for the current 

study.  

6.2 Important attributes 

The findings of this study highlight the impacts of physical characteristics such as diameter, 

material, and length on pipes' current rate of failure and break status. All utilities consistently 

collected these variables. As mentioned earlier in the literature, these factors were commonly used 

in previous watermain prediction models. Hence, their level of significance in the results of this 

study is aligned with previous findings and was expected.  

The results also rated dead-end as another important physical factor affecting deterioration. Dead-

end pipes are referred to the segments that are closed on one side. Jim Angres (2002), in a study 

on best practices for pipes installation, warned about the dead-end installation of the pipes. 

According to the study, decreasing flow results in stagnation in dead-end lines, affecting water 

quality and leading to corrosion. To the best of our knowledge, this attribute was not available in 

the previous watermain deterioration studies. However, according to this study's results, this 

attribute's importance confirms the suggested best pipe installation practices by Jim Angres (2002). 

Also, as mentioned in the literature, joint failure is a common failure type in water networks (Burn, 

et al., 2005) (Dingus, et al., 2002) which are promoted by the pipe joint type. For instance, since 

rigid joints cannot handle ground movement, they are highly prone to leak and fracture failures. In 

this study, different types of rigid, e.g., mechanical joints and flexible joints, e.g., rubber, were 
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available in the analysis. Hence, although this approach has not been employed in previous pipe 

deterioration models, identifying joint type as an influential factor in this analysis was expected.  

Restrained pipes refer to the additional structural supports on the pipes controlling movements and 

preventing axial displacement or flexure at bends. Hence, restraining the pipes exposed to water 

hammers or thrust forces will strengthen pipes and prevent failures. Restraining is considered a 

physical factor in watermain data, and pipes can be restrained through mechanical joints, adding a 

concrete block, also known as thrust blocks, at the end of line or beside a joint, and grip pipes 

using coupling restraints. To the best of our knowledge, previous studies have not employed this 

factor as a predictor of watermain deterioration models. This attribute is available for one utility, 

and the results of this study also indicate its importance in the XGBOOST-RFECV model only. It 

is important to focus on the results of a more reliable approach, i.e., CATPCA. Hence, the actual 

impact of this attribute requires further investigation.  

Roughness as another physical factor measures the irregularities in the inner surface of the pipes. 

Pipe inner surface irregularities depend on the pipe material and can change over time. This 

attribute is also recorded by a few cities only, and its impacts on deterioration were not revealed 

in previous studies. Hence, although the current study highlights the impacts of roughness on pipe 

failures, further research is required to support this.  

The literature discussed the impact of pressure on the pipe, and the importance of this attribute in 

the analysis can be explained accordingly. However, this attribute was recorded by a few utilities 

only, and generalization of the impacts requires further data and supports from future research.  

As the only environmental factor, the soil type was available for broken pipes only. This analysis 

highlights the impacts of this attribute on the pipe failure rate. As mentioned in the literature, soil 

type can reflect different soil characteristics such as PH and humidity and can affect pipe failure 

directly, i.e., soil movement, or indirectly, i.e., corrosion. For the current study, the soil type 

classified soils as either one type, i.e., clay, sand, gravel, etc., or a mix of different soil types. 

Although this study indicates the importance of soil type in pipes' current failure rate, it cannot 

answer how failure rates change in different soil types.   
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As a historical factor, the age of the pipes was commonly employed in previous pipe prediction 

models to describe the time dependency of breakage and estimate an optimal time for pipe 

replacement. Also, based on the results of the previous studies, once a pipe is failed for the first 

time, it continues to be failed in the other location. Changes in rate and probability of failure 

throughout the age and significant dependency of pipe failure status on the previous failure were 

also observed in this study's results which support the literature. Also, as mentioned earlier in the 

literature, pipes usually follow a typical life cycle represented by a “bathtub curve”. The bathtub 

curve describes the period right after installation with failures due to defective pipes or installation 

problems, a trouble-free period, and a period of increasing breakage rate due to aging and 

deterioration around the pipe material expected service life. The early failures were also observed 

in the results of this study, and to explain them according to the bathtub curve, records of day and 

month of installation and failure are required. Besides, failure month itself was identified as a key 

factor affecting pipe deterioration in this analysis. In this study, installation month, extracting from 

installation date, indicates at which month of the year the pipe was installed.  

This study also pointed out significant impacts of protection activities on pipe deterioration. 

According to the results, not only the protection status is important, and the protected pipes are 

less prone to failure, but also other characteristics of protection, including the material used for 

that and its age, are important factors affecting failures. These results confirm the literature about 

the impacts of lining on increasing pipes' expected service life. Surprisingly, the results of 

correlation analysis and consistently identifying lining age for all utilities compared with age in 

different analyses. While previous studies have mainly focused on pipe age for predicting 

watermain failure, lining and protection age are more influential factors.  Although the study 

highlights the significant impacts of protection activities on deterioration, it is unclear how 

different protection materials and age of protection can affect failures. 

6.3 Limitations, recommendations, and potential future research  

A wide range of input variables was available in this study. Some of the collected variables consist 

of more than 20% missing values. Replacing a large percentage of missing values based on the 

mentioned approaches in methodology can lead to unrealistic results. Hence, those attributes were 
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removed from the analysis, and their impacts of deterioration remained ambiguous. The provided 

attributes were varied by the utilities. Thus, although the same dimensionality reduction 

approaches were applied to each city, the results were not easily comparable.  

Besides, some recorded information was not consistently collected for both broken and non-broken 

pipes. It limits the applicability of those attributes on break status analysis, where records of both 

broken and non-broken pipes are required. In particular, information on soil type was recorded for 

broken pipes only, and the impacts of this attribute on break status analysis remained unspecified.  

One of the main challenges in this study was related to the replaced pipes. In some utilities, records 

of the broken pipes that were replaced during the maintenance were removed from the inventory, 

and the new pipe was assigned the same pipe ID as the replaced broken pipe. Accordingly, it led 

to negative ages for broken pipes and, in some cases, miss-matches of material and/ or diameter in 

break and inventory files. The miss-matches and negative ages were discussed with the cities and 

addressed accordingly.  

Another challenge in the analysis was related to the small number of broken pipes, resulting in the 

small training size for the RFECV approach and the unbalanced dataset in break status analysis. 

Training models with small training sizes is challenging and might lead to under-fitted models and 

poor approximation. However, this is related to the nature of this study and cannot be avoided.  

For the current study, more than 70% of the time was on the data cleaning process. This process 

was related to identifying gaps and inconsistencies in data and addressing them. Inconsistency in 

data mainly was related to different formats of collecting categorical variables and different units 

of measurement for numerical predictors. For instance, the material was recorded by its full name, 

abbreviation, or code in and within utilities, and diameter was recorded in a different unit of 

measurement, i.e., mm, in, etc.  

Also, as mentioned earlier, information on adjacent assets that can be extracted from GIS is the 

most reliable approach for replacing the missing values. However, GIS files were available only 

for a few utilities, and the approach could not be applied broadly to replace the missing values.  
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Therefore, to address the mentioned limitation, improve the current practice, and shorten future 

data cleaning processes, the following points can be taken into consideration: 

- When recording the variables, a unique name and appropriate level of measurement should 

be defined for categorical and numerical variables.  

- To avoid miss-matches and negative ages, the replaced pipes should assign a new pipe ID, 

and the record of the broken pipes should be preserved in the data.  

- Consistently recording data enhances future studies to evaluate the impacts of different 

factors in broken and non-broken pies. In particular, as mentioned earlier, soil type, which 

was also identified as an important factor in the current rate of failure analysis, was not 

available for break status.  

- As mentioned earlier, GIS is a reliable source for replacing missing data. It is recommended 

that utilities record all the data and update the GIS file regularly. So that future studies can 

compute the missing information more accurately. 

- Future studies can also focus on identifying impacts of protection activities on durability 

and costs and identifying effects of operational activities on durability  

- Since soil type was an important factor in this study, it is worth future studies to integrate 

and incorporate other soil characteristics such as soil PH, resistivity, corrosivity, etc., and 

other environmental factors, including weather, in records of data and evaluate their 

impacts on watermain deterioration.  

- Lastly, the pipe wall thickness and manufacturing defects are other mentioned factors in 

the literature that the current study did not have reliable data about them. Future studies 

should also leverage them in watermain prediction models and evaluate their impacts 

accordingly.  
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7 Summary and Conclusion  

Aging water infrastructure is a worldwide concern that can jeopardize water systems' ability to 

deliver clean water safely. Better understanding the factors that lead to water infrastructure failure 

is key to better managing these critical assets. The present thesis focused on applying different 

dimensionality reduction approaches to evaluate the impacts of a broad range of factors on 

deterioration and identify the most important factors affecting deterioration. Data was collected 

from thirteen Canadian utilities, including Barrie, Calgary, Durham, Halifax, Kitchener, Markham, 

Region of Waterloo, Saskatoon, St. John’s, Vancouver, Victoria, Waterloo, and Winnipeg.   

As discussed earlier, out of the selected dimensionality reduction approaches, CATPCA is the 

most reliable and straight forward approach. Accordingly, a data collection framework can be 

organized into three different levels based on the results of CATPCA and a few findings from 

RFECV approaches. The first level represents the minimum level of the required data for reliable 

prediction models. These data include the most common physical and historical data such as 

material, diameter, length, age, and number of failures. In the second level, utilities that already 

have the minimum required data can focus on collecting data on protection activities on pipes. 

More specifically, data on type and date of protection. Lastly, the third level could be one step 

further on collecting the factors that were available for a few utilities only. The factors include 

environmental, operational, and some of the physical factors such as joint type, roughness, dead-

end, restrained, and pipe depth. The final important factors at each level are listed in Table 7-1. 

The attributes at each level are highlighted in yellow, green, and red respectively.  

The data in the first level were available for all utilities and identified as the topmost important 

factors in utilities without data on protection activities based on the results of CATPCA. Also, as 

demonstrated in Table 5-9. The second level data is related to information on type and date of 

protection. Where available, these factors were consistently identified as the most important 

factors affecting the failures. A few of the data in the third level, i.e., roughness and restrained, 

were identified as important by RFECV approaches for break status target, not the CATPCA. 

However, the others were suffering from either availability for one target, i.e., soil type, or were 

not consistently identified as important by CATPCA. Hence, as one step further, it is worth it for 
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utilities to start recording information on them so that future research can evaluate their actual 

impacts on failures. 

In general, utilities that are just beginning to apply predictive models can develop accurate 

prediction models by collecting information on common attributes only. However, the second level 

can help more advanced utilities improve their current predictions and maintenance plans. For the 

third level data, the results of this study could not reveal their impacts on degradation models. 

Hence, it is worth it for more advanced utilities to collect that information and evaluate their 

impacts on their prediction models and maintenance practices. 

Also, as a part of the suggested data collection framework, these data should be collected in a 

correct structure to avoid the long future data cleaning process. More specifically, a consistent 

format of recording categorical and date variables and a unique unit of measurement for the 

numerical should be defined in advance. The specified format after the data cleaning process for 

the available variables in this study is provided in Appendix E. 

Table 7-1 List of important factors (First level is highlighted in yellow, second level in green, and third level in red) 

Physical Historical Protection activities Operational Environmental 

Material Full installation 

date 

Cathodic protection 

year 

Pressure Soil type 

Diameter Full failure date Lining Material Service Type - 

Length Status Lining Year - - 

Join type - Coating Material - - 

Roughness - Anode type - - 

Dead-end - - - - 

Restrained - - - - 

Pipe Depth - - - - 
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Appendix A  

 

A 1 Required parameters in RFECV approach  

Estimator: A supervised algorithm with a fit method employed to identify important features. This 

study selected two estimators for each target attribute to determine the most important features, 

random forest and extreme gradient boosting. These estimators were tuned prior to RFECV.  

Step: specifies the number of features to remove in each step. For this study, the default value of 

1 was kept. 

Min_feature_to_select: Specifies the minimum number of features selected by the estimator. The 

default value of 1 was kept for this study.  

Cv: An integer value that specifies the strategy of cross-validation strategy. The default value of 

None equivalent to 5-fold cross-validation was employed for this study.  

A 2 Random forest hyperparameters (Classification and 
regression) 

The complete list of random forest hyperparameters is provided in Figure A - 1 for categorical 

target variables. The list is the same for random forest regression as well. While the main 

parameters are optimized to avoid overfitting, the default values are used for the remaining. The 

optimized parameters are listed below: 

 

Figure A - 1 Hyperparameters of random forest classifier adapted from (https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html) 
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N_estimators (default=100): The number of estimators indicates the number of employed trees for 

learning the base model. Since the most important features are selected depending on the majority 

of the tree’s votes, finding an optimal number of estimators is essential. An array of numbers 

between 10 to 200 for the numerical target attribute and 100 to 200 for categorical was defined for 

this parameter. 

Max_depth (default=none): The max depth specifies how deep or to what level each tree of the 

forest should be split. The value of this parameter significantly affects the fit of the model. The 

default value of max_depth split the trees up to a depth where all nodes achieved maximum purity 

or until samples in each node was fewer than what was defined for min_sample_split.  Also, a 

large value of the depth results in overfitting of the model. For this study, an array of integer 

numbers between 4 to 22 was defined to find the optimum number.  

Max_features (default=”auto”): This parameter specifies the number of variables for the splitting 

process. The possible values for this parameter are auto, sqrt, and log2. Auto is equivalent sqrt, 

and when max_fetures is set as sqrt, the number of variables is the square root of the total number 

of variables during the splitting process. For this study, a list of the three mentioned values is 

specified for finding the optimal value through RandomizedSearchCV. 

Creation: Creation measures the quality of the splits and how pure the splits are. For break status, 

the default value is ‘Gini,’ and for regression, it is ‘squared_error.’ While for the regression, the 

default value was kept, for the categorical target variables, two possible values of ‘Gini’ and 

‘entropy’ were specified for using in RandomizedSearchCV.  

Bootstrap (default=True): Bootstrap specifies if a full data set should be used for building each 

tree or a bootstrap sample of the dataset. Due to a large amount of data for the break status target 

attribute, the default value was kept for the analysis. A two-dimension array of True and False was 

specified for the numerical target to avoid overfitting.  
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Table A - 1 Random Forest classifier hyperparameters (Full model) 

Utility 
Random forest classifier hyperparameters (full model) 

 N_estimators Max_depth Max_features Creation 

Barrie 180 19 Log2 entropy 

Calgary 140 17 auto entropy 

Durham 105 22 auto gini 

Halifax 150 13 auto gini 

Kitchener 135 11 Log2 gini 

Markham 130 17 sqrt gini 

Region of 

Waterloo 

155 16 auto gini 

Saskatoon 100 16 auto entropy 

St.John’s 155 16 auto gini 

Vancouver 150 13 auto gini 

Victoria 180 18 sqrt entropy 

Waterloo 135 11 Log2 gini 

Winnipeg 180 19 Log2 entropy 

 

Table A - 2 Random Forest classifier hyperparameters (model with selected features) 

Utility 
Random forest classifier hyperparameters (model with selected features) 

 N_estimators Max_depth Max_features Creation 

Barrie 100 18 Log2 gini 

Calgary 100 16 auto entropy 

Durham 160 18 sqrt entropy 

Halifax 150 13 auto gini 

Kitchener 135 11 Log2 gini 

Markham 130 17 sqrt gini 

Region of 

Waterloo 

195 18 sqrt entropy 

Saskatoon 115 17 auto entropy 

St.John’s 145 11 auto entropy 

Vancouver 140 17 auto entropy 

Victoria 130 19 auto entropy 

Waterloo 145 11 auto entropy 

Winnipeg 180 19 Log2 entropy 
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Table A - 3 Random Forest regressor hyperparameters (full model) 

Utility 
Random forest regressor hyperparameters (full model) 

 N_estimators Max_depth Max_features Bootstrap 

Barrie 30 16 auto False 

Calgary 60 15 auto True 

Durham 200 9 auto True 

Halifax 180 9 auto False 

Kitchener 70 14 log2 True 

Markham 40 10 auto True 

Region of 

Waterloo 

180 9 auto False 

Saskatoon 50 6 auto False 

St.John’s 80 5 auto True 

Vancouver 50 19 auto True 

Victoria 200 9 auto True 

Waterloo 60 15 auto True 

Winnipeg 60 15 auto True 

 

Table A - 4 Random Forest regressor hyperparameters (model with selected features) 

Utility 
Random forest regressor hyperparameters (model with selected features) 

 N_estimators Max_depth Max_features Bootstrap 

Barrie 180 180 180 180 

Calgary 60 60 60 60 

Durham 200 200 200 200 

Halifax 128 128 128 128 

Kitchener 60 60 60 60 

Markham 80 80 80 80 

Region of 

Waterloo 

80 80 80 80 

Saskatoon 50 50 50 50 

St.John’s 50 50 50 50 

Vancouver 140 140 140 140 

Victoria 200 200 200 200 

Waterloo 200 200 200 200 

Winnipeg 200 200 200 200 
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A 3 Extreme gradient boosting hyperparameters 
(Classification and regression) 

The most important hyperparameter of the XGBOOST method are listed below: 

Min_child_weight (default=1): This parameter specifies the minimum weights of the required 

samples in a child. Specifying this value avoids further partitioning when the sum of the instances' 

weights in a leaf is reduced to less than min_child_weight. The range of this parameter is between 

0 to infinity. For the current study, an array of numbers between 0.001 to 0.1 was defined.  

Booster (default=gbtree): This parameter determines the type of learner for the partitioning 

process. It can be a tree-based function or a linear one. In tree-based, the model consists of groups 

of trees, while in linear booster, it is a weighted sum of linear functions. The default parameter 

was kept for this study. 

Eta (default=0.3): Eta is a learning rate and indicates the shrinkage of each step one makes. This 

value can range between 0 to 1. For instance, 1 step at a learning rate of 0.25 makes the weight of 

the step 0.25. For this study an array of [0.001,0.01,0.02,0.1,0.25,0.5,1] shape was selected for  

tunning by RandomizedSearchCV. 

Lambda (default=1): Lambda is L1 linear parameter on weights ranging between 0 to 1. For this 

study, an array of [0.001,0.01,0.02,0.1] shape was selected for tunning by RandomizedSearchCV.  

Alpha (default=0): Alpha is the L2 linear parameter on weights ranging between 0 to 1. Similar to 

lambda for this study, an array of [0.001,0.01,0.02,0.1] shape was selected for tunning by 

RandomizedSearchCV. 

Gamma (default=0): This parameter determines the minimum of the loss reduction for a 

subsequent partitioning leaf node. This parameter can range between 0 to 1, and for this study, an 

array of shapes [0.001,0.01,0.02,0.1,0.25,0.5,1] was selected for tunning by the 

RandomizedSearchCV. 
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It is noticeable that increasing lambda, alpha, and gamma results in more conservative models. 

Max_depth (default=3): Maximum depth determines the maximum number of allowable nodes 

from the root to the farthest leaf of a tree. Although the deeper trees by adding more nodes can 

reveal more complex relationships, they can cause overfitting of the model. This parameter was 

set for regression problem only, and a range of integer numbers between 1 to 20 was specified for 

tunning by the RandomizedSearchCV.  

 

Table A - 5 XGBOOST regressor hyperparameters (full model) 

Utility 
XGBOOST regressor hyperparameters (full model) 

 Learning rate alpha Min_child_weight lambda Max_Depth Gamma 

Barrie 0.1 0.02 0.02 0.001 3 0.1 

Calgary 0.5 0.02 0.001 0.02 15 0.001 

Durham 0.5 0.02 0.001 0.02 15 0.001 

Halifax 0.5 0.02 0.001 0.02 15 0.001 

Kitchener 0.01 0.1 0.001 0.01 11 0.001 

Markham 0.5 0.02 0.001 0.02 15 0.001 

Region of 

Waterloo 

0.3 0.01 0.01 0.1 5 0.01 

Saskatoon 0.1 0.001 0.02 0.02 6 0.001 

St.John’s 0.5 0.1 0.001 0.1 3 0.001 

Vancouver 0.5 0.001 0.001 0.01 10 0.01 

Victoria 0.5 0.01 0.1 0.01 7 0.001 

Waterloo 0.5 0.02 0.001 0.02 15 0.001 

Winnipeg 0.25 0.01 0.1 0.01 2 0.001 

 

 

Table A - 6 XGBOOST regressor hyperparameters (model with selected features) 

Utility 
XGBOOST regressor hyperparameters (model with selected features) 

 Learning rate alpha Min_child_weight lambda Max_Depth Gamma 

Barrie 1 0.01 0.1 0.01 8 0.001 

Calgary 0.5 0.02 0.001 0.02 15 0.001 

Durham 0.5 0.02 0.001 0.02 15 0.001 

Halifax 0.1 0.01 0.01 0.01 10 0.001 

Kitchener 0.01 0.001 0.02 0.02 15 1 
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Markham 0.5 0.02 0.001 0.02 15 0.001 

Region of 

Waterloo 

0.3 0.01 0.01 0.1 5 0.01 

Saskatoon 0.1 0.001 0.02 0.02 6 0.001 

St.John’s 0.5 0.1 0.001 0.1 3 0.001 

Vancouver 0.5 0.02 0.001 0.02 15 0.001 

Victoria 0.5 0.01 0.1 0.01 7 0.001 

Waterloo 0.5 0.02 0.001 0.02 15 0.001 

Winnipeg 0.25 0.01 0.1 0.01 2 0.001 

 

Table A - 7 XGBOOST classifier hyperparameters (Full model) 

Utility 
XGBOOST classifier hyperparameters (full model) 

 eta alpha Min_child_weight lambda Gamma 

Barrie 0.5 0.02 0.1 0.001 0.01 

Calgary 0.1 0.1 0.02 0.001 0.02 

Durham 0.1 0.1 0.02 0.001 0.02 

Halifax 0.1 0.1 0.02 0.001 0.02 

Kitchener 0.001 0.1 0.1 0.1 0.5 

Markham 0.01 0.1 0.001 0.12 0.5 

Region of 

Waterloo 

0.001 0.1 0.1 0.1 0.5 

Saskatoon 0.25 0.1 0.01 0.1 0.001 

St.John’s 0.25 0.1 0.01 0.01 0.01 

Vancouver 0.3 0.01 0.1 0.001 0.35 

Victoria 0.1 0.1 0.001 0.01 0.95 

Waterloo 0.1 0.1 0.02 0.001 0.02 

Winnipeg 0.1 0.1 0.02 0.001 0.02 

 

 

Table A - 8XGBOOST classifier hyperparameters (model with selected features) 

Utility 
XGBOOST classifier hyperparameters (model with selected features) 

 eta alpha Min_child_weight lambda Gamma 

Barrie 0.25 0.01 0.1 0.001 0.01 

Calgary 0.1 0.01 0.02 0.02 0.001 

Durham 1 0.01 0.1 0.001 0.1 

Halifax 1 0.02 0.02 0.001 0.02 

Kitchener 0.5 0.001 0.02 0.1 0.1 
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Markham 0.001 0.001 0.001 0.02 0.25 

Region of 

Waterloo 

0.5 0.001 0.02 0.1 0.1 

Saskatoon 0.25 0.02 0.1 0.001 0.02 

St.John’s 0.25 0.01 0.1 0.001 0.01 

Vancouver 0.95 0.001 0.1 0.1 0.45 

Victoria 0.1 0.01 0.1 0.01 0.3 

Waterloo 0.02 0.001 0.01 0.001 0.25 

Winnipeg 0.25 0.02 0.1 0.001 0.02 
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Appendix B  

B 1 Correlation analysis – Break Status 

 

Figure B -  1 Correlation analysis - Break Status - Barrie 

 

Figure B -  2 Correlation analysis - Break Status – Calgary 
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Figure B -  3 Correlation analysis - Break Status – Durham 

 

Figure B -  4 Correlation analysis - Break Status – Halifax 
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Figure B -  5 Correlation analysis - Break Status – Kitchener 

 

Figure B -  6 Correlation analysis - Break Status – Markham 
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Figure B -  7 Correlation analysis - Break Status – RoW 

 

Figure B -  8 Correlation analysis - Break Status – Saskatoon 
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Figure B -  9 Correlation analysis - Break Status – St. Johns 

 

Figure B -  10 Correlation analysis - Break Status – Vancouver 
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Figure B -  11 Correlation analysis - Break Status – Victoria 

 

Figure B -  12 Correlation analysis - Break Status – Waterloo 
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Figure B -  13 Correlation analysis - Break Status – Winnipeg 

B 2 Correlation analysis – Current Rate of Failure 

 

Figure B -  14 Correlation analysis - RoF – Barrie 
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Figure B -  15 Correlation analysis - RoF – Calgary 

 

Figure B -  16 Correlation analysis - RoF – Durham 
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Figure B -  17 Correlation analysis - RoF – Halifax 

 

Figure B -  18 Correlation analysis - RoF – Kitchener 
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Figure B -  19 Correlation analysis - RoF – Markham 

 

Figure B -  20 Correlation analysis - RoF – RoW 
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Figure B -  21 Correlation analysis - RoF – Saskatoon 

 

Figure B -  22 Correlation analysis - RoF – St.Johns 
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Figure B -  23 Correlation analysis - RoF – Vancouver 

 

Figure B -  24 Correlation analysis - RoF – Victoria 
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Figure B -  25 Correlation analysis - RoF – Waterloo 

 

Figure B -  26 Correlation analysis - RoF – Winnipeg 
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Appendix C  

C 1 R code for FAMD  

library(readr) 

data<-read.csv("C:\\Users\\SADAF2021\\Desktop\\Data-

RoF\\Barrie\\Barrie-RoF-All.csv") 

# Convert all columns to factor 

df <- as.data.frame(unclass(data),stringsAsFactors = TRUE) 

str(df) 

library(FactoMineR) 

res.famd <- FAMD(df,ncp=15, sup.var=16, graph = FALSE) 

print(res.famd) 

library("factoextra") 

eig.val <- get_eigenvalue(res.famd) 

eig.val 

fviz_screeplot(res.famd) 

var <- get_famd_var(res.famd) 

var 

coordinate <-data.frame(var$coord) 

coordinate 

library(writexl) 

write_xlsx(coordinate,"C:\\Users\\SADAF2021\\Desktop\\CurrentRat

e-of-Failure\\Barrie\\FAMD\\Barrie-Coordinate.xlsx") 

library("factoextra") 

eig.val <- get_eigenvalue(res.famd) 

eig.val 
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variance <-data.frame(eig.val) 

library(writexl) 

write_xlsx(variance,"C:\\Users\\SADAF2021\\Desktop\\CurrentRate-

of-Failure\\Barrie\\FAMD\\Barrie-variance.xlsx") 

var$cos2 

var$contrib 

contribution <- data.frame(var$contrib) 

contribution 

library(writexl) 

write_xlsx(contribution,"C:\\Users\\SADAF2021\\Desktop\\CurrentR

ate-of-Failure\\Barrie\\FAMD\\Barrie-contribution.xlsx") 

fviz_contrib(res.famd,"var", axes=1:15) 

fviz_contrib(res.famd,"var", axes=2) 

fviz_cos2(res.famd,"var",axes=1:15) 

C 1 R code for CATPCA  

install.packages("Gifi", repos="http://R-Forge.R-project.org") 

library("Gifi") 

library(factoextra) 

data<- read.csv("C:\\Users\\SADAF2021\\Desktop\\Data-

RoF\\Barrie\\Barrie-RoF-All.csv") 

# Convert all columns to factor 

data3<-as.data.frame(unclass(data),                     

stringsAsFactors = TRUE) 

str(data3) 

ActiveVariables<-

c(TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TR

UE,TRUE,TRUE,FALSE) 
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DegreeVec <-c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1) 

CATPCA <- princals(data3, ndim = 15, ordinal = FALSE, ties = "s", 

knots = knotsGifi(data3, "E"),degrees = DegreeVec, copies = 1, 

missing = "m", normobj.z = TRUE, active = ActiveVariables,itmax = 

1000, eps = 1e-06, verbose = FALSE) 

summary(CATPCA) 

EigenVector <-CATPCA$loadings 

EigenVector 

EigenValue <-CATPCA$evals 

Eigenvector<-data.frame(EigenVector) 

Eigenvalue <- data.frame(EigenValue) 

CATPCA$scoremat 

library(writexl) 

write_xlsx(Eigenvector,"C:\\Users\\SADAF2021\\Desktop\\CurrentRa

te-of-Failure\\Barrie\\CATPCA\\Barrie-Eigenvector.xlsx") 

write_xlsx(Eigenvalue, 

"C:\\Users\\SADAF2021\\Desktop\\CurrentRate-of-

Failure\\Barrie\\CATPCA\\Barrie-Eigenvalue.xlsx") 

CATPCA$evals 

CATPCA$dmeasures 

plot(CATPCA,"screeplot") 

C 2 R code for Optimal scaling 

install.packages("Gifi", repos="http://R-Forge.R-project.org") 

library(optiscale) 

library(tidyverse) 

library(caret) 

library(leaps) 
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library(MASS) 

library(writexl) 

data<- read.csv("C:\\Users\\SADAF2021\\Desktop\\BreakStatus-

FinalCSV\\BreakStatus-Transformed\\Barrie\\Barrie - 

BreakStatus.csv") 

data3 <- as.data.frame(unclass(data),                     # Convert 

all columns to factor 

                       stringsAsFactors = TRUE) 

str(data3) 

for (i in 1:8 ) { 

   

  Qualitive <-data3[,i] 

  op.scaled<-

opscale(x.qual=Qualitive,x.quant=seq(1:length(Qualitive)),level=

1, process=1) 

data3 <- data.frame(data3,op.scaled$os)} 

data3 

data3 <- data3[ -c(1,1:8) ] 

data3 

write_xlsx(data3,"C:\\Users\\SADAF2021\\Desktop\\BreakStatus-

FinalCSV\\BreakStatus-Transformed\\Barrie-Transformed-BS.xlsx") 

C 3 Python code for RF-RFECV (Current rate of failure) 
# In this note book the following steps are taken: 

1. Remove highly correlated attributes 

2. Find the best hyper parameters for estimator(RF) 

3. Check fitting of the full model 

4. Calculate r2 of the full model 

5. Find the most important features by tunned XGBOOST 

6. Find the best hyper parameter of the model with selected features 

7. Comapring r2 of the tuuned full model and model with selected features 

 

import numpy as np 
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import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.feature_selection import RFECV 

from sklearn.model_selection import train_test_split, GridSearchCV, KFold, 

RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn import metrics 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.metrics import accuracy_score,r2_score 

import xgboost  

from xgboost import XGBRFRegressor, XGBRegressor 

from sklearn.metrics import make_scorer 

r2_score = make_scorer(r2_score) 

 

## Barrie  

 

#import data 

Data=pd.read_csv("Barrie-Transfomed-Data.csv") 

 

X = Data.iloc[:,:-1] 

y = Data.iloc[:,-1] 

 

#split test and training set. total number of data is 330 so the test size 

cannot be large 

np.random.seed(60) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.09, 

                                                    random_state = 1000) 

 

np.random.seed(60) 

regressors = {} 

regressors.update({"Random Forest": 

RandomForestRegressor(random_state=1000)}) 

 

#Define range of hyperparameters for estimator 

np.random.seed(60) 

parameters = {} 

parameters.update({"Random Forest": {  

                                    "regressor__n_estimators": 

[10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200], 

                                    "regressor__max_features": ["auto", 

"sqrt", "log2"], 

                                    "regressor__max_depth" : 

[5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20], 

                                    #"regressor__min_samples_split": [2, 5, 

10,15], 

                                    #"regressor__min_samples_leaf": 

[1,2,4,6], 

                                    "regressor__bootstrap":[True,False] 



130 

 

 

130 

}}) 

 

# Make correlation matrix 

corr_matrix = X_train.corr(method = "spearman").abs() 

 

# Draw the heatmap 

sns.set(font_scale = 1.0) 

f, ax = plt.subplots(figsize=(11, 9)) 

sns.heatmap(corr_matrix, cmap= "YlGnBu", square=True, ax = ax) 

f.tight_layout() 

plt.savefig("Barrie-RoF-correlation_matrix.png", dpi = 1080) 

 

# Select upper triangle of matrix 

upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k = 

1).astype(np.bool)) 

 

# Find index of feature columns with correlation greater than 0.8 

to_drop = [column for column in upper.columns if any(upper[column] > 0.8)] 

 

# Drop features 

X_train = X_train.drop(to_drop, axis = 1) 

X_test = X_test.drop(to_drop, axis = 1) 

 

X_train 

 

FEATURE_IMPORTANCE = {"Random Forest"} 

 

np.random.seed(60) 

selected_regressor = "Random Forest" 

regressor = regressors[selected_regressor] 

 

np.random.seed(60) 

scaler = StandardScaler() 

steps = [("scaler", scaler), ("regressor", regressor)] 

pipeline = Pipeline(steps = steps) 

 

#Define parameters that we want to use in gridsearch cv 

param_grid = parameters[selected_regressor] 

 

# Initialize GridSearch object for estimator 

gscv = RandomizedSearchCV(pipeline, param_grid, cv = 3,  n_jobs= -1, verbose 

= 1, scoring = r2_score, n_iter=30) 

 

np.random.seed(60) 

results = {} 

for regressor_label, regressor in regressors.items(): 

    # Print message to user 

    print(f"Now tuning {regressor_label}.") 

 

# Fit gscv (Tunes estimator) 
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print(f"Now tuning {selected_regressor}. Go grab a beer or something.") 

gscv.fit(X_train, np.ravel(y_train))   

 

#Getting the best hyperparameters 

best_params = gscv.best_params_ 

best_params 

 

#Getting the best score of model 

best_score = gscv.best_score_ 

best_score 

 

#Check overfitting of the estimator 

from sklearn.model_selection import cross_val_score 

mod = RandomForestRegressor( 

 max_depth= 16, 

 max_features= 'auto', 

    bootstrap=False, 

 n_estimators= 30 ,random_state=10000) 

 

scores_test = cross_val_score(mod, X_test, y_test, scoring='r2', cv=5) 

 

scores_test 

 

tuned_params = {item[11:]: best_params[item] for item in best_params} 

regressor.set_params(**tuned_params) 

 

#Find r2 score of the model with all features (Model is tuned for all 

features) 

results={} 

model=regressor.set_params( max_depth= 16, 

 max_features= 'auto', 

    bootstrap=False, 

 n_estimators= 30 ,random_state=10000) 

model.fit(X_train,y_train) 

y_pred = model.predict(X_test) 

R2 = metrics.r2_score(y_test, y_pred) 

results = {"regressor": model, 

              "Best Parameters": best_params, 

              "Training r2": best_score*100, 

              "Test r2": R2*100} 

results 

 

 

# Select Features using RFECV 

class PipelineRFE(Pipeline): 

    # Source: https://ramhiser.com/post/2018-03-25-feature-selection-with-

scikit-learn-pipeline/ 

    def fit(self, X, y=None, **fit_params): 

        super(PipelineRFE, self).fit(X, y, **fit_params) 

        self.feature_importances_ = self.steps[-1][-1].feature_importances_ 
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        return self 

 

steps = [("scaler", scaler), ("regressor", regressor)] 

pipe = PipelineRFE(steps = steps) 

np.random.seed(60) 

 

# Initialize RFECV object 

feature_selector = RFECV(pipe, cv = 5, step = 1, verbose = 1) 

 

# Fit RFECV 

feature_selector.fit(X_train, np.ravel(y_train)) 

 

# Get selected features 

feature_names = X_train.columns 

selected_features = feature_names[feature_selector.support_].tolist() 

 

performance_curve = {"Number of Features": list(range(1, len(feature_names) + 

1)), 

                    "R2": feature_selector.grid_scores_} 

performance_curve = pd.DataFrame(performance_curve) 

 

# Performance vs Number of Features 

# Set graph style 

sns.set(font_scale = 1.75) 

sns.set_style({"axes.facecolor": "1.0", "axes.edgecolor": "0.85", 

"grid.color": "0.85", 

               "grid.linestyle": "-", 'axes.labelcolor': '0.4', 

"xtick.color": "0.4", 

               'ytick.color': '0.4'}) 

colors = sns.color_palette("RdYlGn", 20) 

line_color = colors[3] 

marker_colors = colors[-1] 

 

# Plot 

f, ax = plt.subplots(figsize=(13, 6.5)) 

sns.lineplot(x = "Number of Features", y = "R2", data = performance_curve, 

             color = line_color, lw = 4, ax = ax) 

sns.regplot(x = performance_curve["Number of Features"], y = 

performance_curve["R2"], 

            color = marker_colors, fit_reg = False, scatter_kws = {"s": 200}, 

ax = ax) 

 

# Axes limits 

plt.xlim(0.5, len(feature_names)+0.5) 

plt.ylim(0.60, 1) 

 

# Generate a bolded horizontal line at y = 0 

ax.axhline(y = 0.625, color = 'black', linewidth = 1.3, alpha = .7) 

 

# Turn frame off 
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ax.set_frame_on(False) 

 

# Tight layout 

plt.tight_layout() 

 

#Define new training and test set based based on selected features by RFECV 

X_train_rfecv = X_train[selected_features] 

X_test_rfecv= X_test[selected_features] 

 

np.random.seed(60) 

regressor.fit(X_train_rfecv, np.ravel(y_train)) 

 

#Finding important features 

np.random.seed(60) 

feature_importance = pd.DataFrame(selected_features, columns = ["Feature 

Label"]) 

feature_importance["Feature Importance"] = regressor.feature_importances_ 

feature_importance = feature_importance.sort_values(by="Feature Importance", 

ascending=False) 

feature_importance 

 

# Initialize GridSearch object for model with selected features 

np.random.seed(60) 

gscv = RandomizedSearchCV(pipeline, param_grid, cv = 3,  n_jobs= -1, verbose 

= 1, scoring = r2_score, n_iter=30) 

 

#Tuning random forest REGRESSOR with selected features  

np.random.seed(60) 

gscv.fit(X_train_rfecv,y_train)  

 

#Getting the best parameters of model with selected features 

best_params = gscv.best_params_ 

best_params 

 

#Getting the score of model with selected features 

best_score = gscv.best_score_ 

best_score 

 

#Check overfitting of the  tuned model with selected features  

from sklearn.model_selection import cross_val_score 

mod = RandomForestRegressor(max_depth= 9, 

 max_features='auto' , 

bootstrap=False, 

 n_estimators= 180 ,random_state=10000) 

 

scores_test = cross_val_score(mod, X_test_rfecv, y_test, scoring='r2', cv=5) 

 

scores_test 

 

results={} 
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model=regressor.set_params(max_depth= 9, 

 max_features='auto' , 

bootstrap=False, 

 n_estimators= 180 ,random_state=10000) 

model.fit(X_train_rfecv,y_train) 

y_pred = model.predict(X_test_rfecv) 

R2 = metrics.r2_score(y_test, y_pred) 

results = {"regressorr": model, 

              "Best Parameters": best_params, 

              "Training r2": best_score*100, 

              "Test r2": R2*100} 

results 

 

C 4 Python codes for XGBOOST-RFECV (Current rate of 
failure) 

# In this note book the following steps are taken: 

1. Find the best hyper parameters for estimator(XGBOOST) 

2. Check fitting of the full model 

3. Calculate r2 of the full model 

4. Find the most important features by tunned XGBOOST 

5. Find the best hyper parameter of the model with selected features  

6. Comapring r2 of the tuuned full model and model with selected features 

 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.feature_selection import RFECV 

from sklearn.model_selection import train_test_split, GridSearchCV, KFold, 

RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn import metrics 

from sklearn.metrics import accuracy_score,r2_score 

import xgboost  

from xgboost import XGBRegressor 

from sklearn.metrics import make_scorer 

r2_score = make_scorer(r2_score) 

 

## Barrie  

 

#import data 

Data=pd.read_csv("Barrie-Transfomed-Data.csv") 

 

X = Data.iloc[:,:-1] 

y = Data.iloc[:,-1] 
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#split test and training set. total number of data is 330 so the test size 

cannot be large 

np.random.seed(60) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, 

                                                    random_state = 1000) 

 

np.random.seed(60) 

regressors = {} 

regressors.update({"XGBoost": XGBRegressor(random_state=1000)}) 

 

#Define range of hyperparameters for estimator 

np.random.seed(60) 

parameters = {} 

parameters.update({"XGBoost": {  

                                    

"regressor__learning_rate":[0.001,0.01,0.02,0.1,0.25,0.5,1], 

                                    

"regressor__gamma":[0.001,0.01,0.02,0.1,0.25,0.5,1], 

                                    "regressor__max_depth" : 

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20], 

                                    

"regressor__reg_alpha":[0.001,0.01,0.02,0.1], 

                                    

"regressor__reg_lambda":[0.001,0.01,0.02,0.1], 

                                    

"regressor__min_child_weight":[0.001,0.01,0.02,0.1] 

}}) 

 

# Make correlation matrix 

corr_matrix = X_train.corr(method = "spearman").abs() 

 

# Draw the heatmap 

sns.set(font_scale = 1.0) 

f, ax = plt.subplots(figsize=(11, 9)) 

sns.heatmap(corr_matrix, cmap= "YlGnBu", square=True, ax = ax) 

f.tight_layout() 

plt.savefig("correlation_matrix.png", dpi = 1080) 

 

# Select upper triangle of matrix 

upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k = 

1).astype(np.bool)) 

 

# Find index of feature columns with correlation greater than 0.8 

to_drop = [column for column in upper.columns if any(upper[column] > 0.8)] 

 

# Drop features 

X_train = X_train.drop(to_drop, axis = 1) 

X_test = X_test.drop(to_drop, axis = 1) 
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X_train 

 

FEATURE_IMPORTANCE = {"XGBoost"} 

 

np.random.seed(60) 

selected_regressor = "XGBoost" 

regressor = regressors[selected_regressor] 

 

np.random.seed(60) 

scaler = StandardScaler() 

steps = [("scaler", scaler), ("regressor", regressor)] 

pipeline = Pipeline(steps = steps) 

 

#Define parameters that we want to use in gridsearch cv 

param_grid = parameters[selected_regressor] 

 

# Initialize GridSearch object for estimator 

gscv = RandomizedSearchCV(pipeline, param_grid, cv = 3,  n_jobs= -1, verbose 

= 1, scoring = r2_score, n_iter=40) 

 

np.random.seed(60) 

results = {} 

for regressor_label, regressor in regressors.items(): 

    # Print message to user 

    print(f"Now tuning {regressor_label}.") 

 

# Fit gscv (Tunes estimator) 

print(f"Now tuning {selected_regressor}. Go grab a beer or something.") 

gscv.fit(X_train, np.ravel(y_train))   

 

#Getting the best hyperparameters 

best_params = gscv.best_params_ 

best_params 

 

#Getting the best score of model 

best_score = gscv.best_score_ 

best_score 

 

#Check overfitting of the estimator 

from sklearn.model_selection import cross_val_score 

mod = XGBRegressor(reg_lambda=0.02, 

                            reg_alpha=0.02, 

                            min_child_weight=0.1, 

                            max_depth=10, 

                            learning_rate=0.25, 

                            gamma=0.001 

 ,random_state=10000) 

 

scores_test = cross_val_score(mod, X_test, y_test, scoring='r2', cv=5) 
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scores_test 

 

tuned_params = {item[11:]: best_params[item] for item in best_params} 

regressor.set_params(**tuned_params) 

 

#Find r2 score of the model with all features (Model is tuned for all 

features) 

results={} 

model=regressor.set_params(reg_lambda=0.01, 

                            reg_alpha=0.01, 

                            min_child_weight=0.01, 

                            max_depth=8, 

                            learning_rate=1, 

                            gamma=0.001 

 ,random_state=10000) 

model.fit(X_train,y_train) 

y_pred = model.predict(X_test) 

R2 = metrics.r2_score(y_test, y_pred) 

results = {"regressor": model, 

              "Best Parameters": best_params, 

              "Training r2": best_score*100, 

              "Test r2": R2*100} 

results 

 

 

# Select Features using RFECV 

class PipelineRFE(Pipeline): 

    # Source: https://ramhiser.com/post/2018-03-25-feature-selection-with-

scikit-learn-pipeline/ 

    def fit(self, X, y=None, **fit_params): 

        super(PipelineRFE, self).fit(X, y, **fit_params) 

        self.feature_importances_ = self.steps[-1][-1].feature_importances_ 

        return self 

 

steps = [("scaler", scaler), ("regressor", regressor)] 

pipe = PipelineRFE(steps = steps) 

np.random.seed(60) 

 

# Initialize RFECV object 

feature_selector = RFECV(pipe, cv = 5, step = 1, verbose = 1) 

 

# Fit RFECV 

feature_selector.fit(X_train, np.ravel(y_train)) 

 

# Get selected features 

feature_names = X_train.columns 

selected_features = feature_names[feature_selector.support_].tolist() 

 

performance_curve = {"Number of Features": list(range(1, len(feature_names) + 

1)), 
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                    "R2": feature_selector.grid_scores_} 

performance_curve = pd.DataFrame(performance_curve) 

 

# Performance vs Number of Features 

# Set graph style 

sns.set(font_scale = 1.75) 

sns.set_style({"axes.facecolor": "1.0", "axes.edgecolor": "0.85", 

"grid.color": "0.85", 

               "grid.linestyle": "-", 'axes.labelcolor': '0.4', 

"xtick.color": "0.4", 

               'ytick.color': '0.4'}) 

colors = sns.color_palette("RdYlGn", 20) 

line_color = colors[3] 

marker_colors = colors[-1] 

 

# Plot 

f, ax = plt.subplots(figsize=(13, 6.5)) 

sns.lineplot(x = "Number of Features", y = "R2", data = performance_curve, 

             color = line_color, lw = 4, ax = ax) 

sns.regplot(x = performance_curve["Number of Features"], y = 

performance_curve["R2"], 

            color = marker_colors, fit_reg = False, scatter_kws = {"s": 200}, 

ax = ax) 

 

# Axes limits 

plt.xlim(0.5, len(feature_names)+0.5) 

plt.ylim(0.60, 1) 

 

# Generate a bolded horizontal line at y = 0 

ax.axhline(y = 0.625, color = 'black', linewidth = 1.3, alpha = .7) 

 

# Turn frame off 

ax.set_frame_on(False) 

 

# Tight layout 

plt.tight_layout() 

 

#Define new training and test set based based on selected features by RFECV 

X_train_rfecv = X_train[selected_features] 

X_test_rfecv= X_test[selected_features] 

 

np.random.seed(60) 

regressor.fit(X_train_rfecv, np.ravel(y_train)) 

 

#Finding important features 

np.random.seed(60) 

feature_importance = pd.DataFrame(selected_features, columns = ["Feature 

Label"]) 

feature_importance["Feature Importance"] = regressor.feature_importances_ 
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feature_importance = feature_importance.sort_values(by="Feature Importance", 

ascending=False) 

feature_importance 

 

# Initialize GridSearch object for model with selected features 

np.random.seed(60) 

gscv = RandomizedSearchCV(pipeline, param_grid, cv = 3,  n_jobs= -1, verbose 

= 1, scoring = r2_score, n_iter=30) 

 

#Tuning random forest REGRESSOR with selected features  

np.random.seed(60) 

gscv.fit(X_train_rfecv,y_train)  

 

#Getting the best parameters of model with selected features 

best_params = gscv.best_params_ 

best_params 

 

#Getting the score of model with selected features 

best_score = gscv.best_score_ 

best_score 

 

#Check overfitting of the  tuned model with selected features  

from sklearn.model_selection import cross_val_score 

mod = XGBRegressor(reg_lambda=0.01, 

                            reg_alpha=0.01, 

                            min_child_weight=0.1, 

                            max_depth=8, 

                            learning_rate=1, 

                            gamma=0.001 

 ,random_state=10000) 

 

scores_test = cross_val_score(mod, X_test_rfecv, y_test, scoring='r2', cv=5) 

 

scores_test 

 

results={} 

model=regressor.set_params(reg_lambda=0.01, 

                            reg_alpha=0.01, 

                            min_child_weight=0.1, 

                            max_depth=8, 

                            learning_rate=1, 

                            gamma=0.001 

 ,random_state=10000) 

model.fit(X_train_rfecv,y_train) 

y_pred = model.predict(X_test_rfecv) 

R2 = metrics.r2_score(y_test, y_pred) 

results = {"regressorr": model, 

              "Best Parameters": best_params, 

              "Training r2": best_score*100, 

              "Test r2": R2*100} 
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results 

C 5 Python code for RF-RFECV (Break Status) 

# In this note book the following steps are taken: 

1. Remove highly correlated attributes 

2. Find the best hyper parameters for estimator 

3. Find the most important features by tunned random forest 

4. Find f1 score of the tunned full model 

5. Find best hyper parameter of model with selected features 

6. Find f1 score of the tuned seleccted model 

7. Compare the two f1 scores 

 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.feature_selection import RFECV,RFE 

from sklearn.model_selection import train_test_split, GridSearchCV, 

KFold,RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn import metrics 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score,f1_score,recall_score 

import numpy as np 

from sklearn.metrics import make_scorer 

f1_score = make_scorer(f1_score) 
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Recall=make_scorer(recall_score) 

 

#import data 

Data=pd.read_csv("RandomForest-Data/Barrie-Transformed-BS.csv") 

 

X = Data.iloc[:,:-1] 

y = Data.iloc[:,-1] 

 

#split test and training set.  

np.random.seed(60) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, 

                                                    random_state = 1000) 

 

#Define estimator and model 

classifiers = {} 

classifiers.update({"Random Forest": 

RandomForestClassifier(random_state=1000)}) 

 

#Define range of hyperparameters for estimator 

np.random.seed(60) 

parameters = {} 

parameters.update({"Random Forest": { "classifier__n_estimators": 

[100,105,110,115,120,125,130,135,140,145,150,155,160,170,180,190,200], 

                                   # "classifier__n_estimators": 

[2,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180

,190,200], 

                                    #"classifier__class_weight": [None, 

"balanced"], 
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                                    "classifier__max_features": ["auto", 

"sqrt", "log2"], 

                                     "classifier__max_depth" : 

[4,6,8,10,11,12,13,14,15,16,17,18,19,20,22], 

                                    #"classifier__max_depth" : 

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20], 

                                    "classifier__criterion" :["gini", 

"entropy"] 

                                     

}}) 

 

# Make correlation matrix 

corr_matrix = X_train.corr(method = "spearman").abs() 

 

# Draw the heatmap 

sns.set(font_scale = 1.0) 

f, ax = plt.subplots(figsize=(11, 9)) 

sns.heatmap(corr_matrix, cmap= "YlGnBu", square=True, ax = ax) 

f.tight_layout() 

plt.savefig("Barrie_Rf_correlation_matrix.png", dpi = 1080) 

 

# Select upper triangle of matrix 

upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k = 

1).astype(np.bool)) 

 

# Find index of feature columns with correlation greater than 0.8 

to_drop = [column for column in upper.columns if any(upper[column] > 0.8)] 
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# Drop features 

X_train = X_train.drop(to_drop, axis = 1) 

X_test = X_test.drop(to_drop, axis = 1) 

 

X_train 

 

FEATURE_IMPORTANCE = {"Random Forest"} 

selected_classifier = "Random Forest" 

classifier = classifiers[selected_classifier] 

 

scaler = StandardScaler() 

steps = [("scaler", scaler), ("classifier", classifier)] 

pipeline = Pipeline(steps = steps) 

 

#Define parameters that we want to use in gridsearch cv 

param_grid = parameters[selected_classifier] 

 

# Initialize GridSearch object for estimator 

gscv = RandomizedSearchCV(pipeline, param_grid, cv = 3,  n_jobs= -1, verbose = 

1, scoring = f1_score, n_iter=50) 

 

# Fit gscv (Tunes estimator) 

print(f"Now tuning {selected_classifier}. Go grab a beer or something.") 

gscv.fit(X_train, np.ravel(y_train))   

 

#Getting the best hyperparameters 
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best_params = gscv.best_params_ 

best_params 

 

#Getting the best score of model 

best_score = gscv.best_score_ 

best_score 

 

#Check overfitting of the estimator 

from sklearn.model_selection import cross_val_score 

mod = RandomForestClassifier(criterion= 'entropy', 

 max_depth= 19, 

 max_features= 'log2', 

 n_estimators= 180 ,random_state=10000) 

 

scores_test = cross_val_score(mod, X_test, y_test, scoring='f1', cv=5) 

 

scores_test 

 

tuned_params = {item[12:]: best_params[item] for item in best_params} 

classifier.set_params(**tuned_params) 

 

#Find f1 score of the model with all features (Model is tuned for all features) 

results={} 

model=classifier.set_params(criterion= 'entropy', 

 max_depth= 19, 

 max_features= 'log2', 
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 n_estimators= 180 ,random_state=10000) 

model.fit(X_train,y_train) 

y_pred = model.predict(X_test) 

F1 = metrics.f1_score(y_test, y_pred) 

Recall=recall_score(y_test, y_pred) 

results = {"classifier": model, 

              "Best Parameters": best_params, 

              "Training f1": best_score*100, 

              "Test f1": F1*100, "Test recall": Recall*100} 

results 

 

 

# Select Features using RFECV 

class PipelineRFE(Pipeline): 

    # Source: https://ramhiser.com/post/2018-03-25-feature-selection-with-

scikit-learn-pipeline/ 

    def fit(self, X, y=None, **fit_params): 

        super(PipelineRFE, self).fit(X, y, **fit_params) 

        self.feature_importances_ = self.steps[-1][-1].feature_importances_ 

        return self 

 

steps = [("scaler", scaler), ("classifier", classifier)] 

pipe = PipelineRFE(steps = steps) 

np.random.seed(60) 

 

# Initialize RFECV object 
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feature_selector = RFECV(pipe, cv = 5, step = 1, verbose = 1) 

 

# Fit RFECV 

feature_selector.fit(X_train, np.ravel(y_train)) 

 

# Get selected features 

feature_names = X_train.columns 

selected_features = feature_names[feature_selector.support_].tolist() 

 

selected_features 

 

performance_curve = {"Number of Features": list(range(1, len(feature_names) + 

1)), 

                    "F1": feature_selector.grid_scores_} 

performance_curve = pd.DataFrame(performance_curve) 

 

# Performance vs Number of Features 

# Set graph style 

sns.set(font_scale = 1.75) 

sns.set_style({"axes.facecolor": "1.0", "axes.edgecolor": "0.85", 

"grid.color": "0.85", 

               "grid.linestyle": "-", 'axes.labelcolor': '0.4', "xtick.color": 

"0.4", 

               'ytick.color': '0.4'}) 

colors = sns.color_palette("RdYlGn", 20) 

line_color = colors[3] 

marker_colors = colors[-1] 
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# Plot 

f, ax = plt.subplots(figsize=(13, 6.5)) 

sns.lineplot(x = "Number of Features", y = "F1", data = performance_curve, 

             color = line_color, lw = 4, ax = ax) 

sns.regplot(x = performance_curve["Number of Features"], y = 

performance_curve["F1"], 

            color = marker_colors, fit_reg = False, scatter_kws = {"s": 200}, 

ax = ax) 

 

# Axes limits 

plt.xlim(0.5, len(feature_names)+0.5) 

plt.ylim(0.60, 1) 

 

# Generate a bolded horizontal line at y = 0 

ax.axhline(y = 0.625, color = 'black', linewidth = 1.3, alpha = .7) 

 

# Turn frame off 

ax.set_frame_on(False) 

 

# Tight layout 

plt.tight_layout() 

 

#Define new training and test set based based on selected features by RFECV 

X_train_rfecv = X_train[selected_features] 

X_test_rfecv= X_test[selected_features] 
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np.random.seed(60) 

classifier.fit(X_train_rfecv, np.ravel(y_train)) 

 

#Finding important features 

np.random.seed(60) 

feature_importance = pd.DataFrame(selected_features, columns = ["Feature 

Label"]) 

feature_importance["Feature Importance"] = classifier.feature_importances_ 

feature_importance = feature_importance.sort_values(by="Feature Importance", 

ascending=False) 

feature_importance 

 

# Initialize GridSearch object for model with selected features 

np.random.seed(60) 

gscv = RandomizedSearchCV(pipeline, param_grid, cv = 3,  n_jobs= -1, verbose = 

1, scoring = f1_score, n_iter=30) 

 

#Tuning random forest classifier with selected features  

np.random.seed(60) 

gscv.fit(X_train_rfecv,y_train)  

 

#Getting the best parameters of model with selected features 

best_params = gscv.best_params_ 

best_params 

 

#Getting the score of model with selected features 

best_score = gscv.best_score_ 
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best_score 

 

#Check overfitting of the  tuned model with selected features  

from sklearn.model_selection import cross_val_score 

mod = RandomForestClassifier(#class_weight= None, 

 criterion= 'gini', 

 max_depth= 18, 

 max_features= 'log2', 

 n_estimators= 100 ,random_state=10000) 

 

scores_test = cross_val_score(mod, X_test_rfecv, y_test, scoring='f1', cv=5) 

 

scores_test 

 

results={} 

model=classifier.set_params(criterion= 'gini', 

 max_depth= 18, 

 max_features= 'log2', 

 n_estimators= 100 ,random_state=10000) 

model.fit(X_train_rfecv,y_train) 

y_pred = model.predict(X_test_rfecv) 

F1 = metrics.f1_score(y_test, y_pred) 

Recall=recall_score(y_test, y_pred) 

results = {"classifier": model, 

              "Best Parameters": best_params, 

              "Training f1": best_score*100, 
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              "Test f1": F1*100, 

          "Test recall": Recall*100} 

results 

C 6 Python Code for XGBOOST-RFECV (Break Status) 
 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.feature_selection import RFECV,RFE 

from sklearn.model_selection import train_test_split, GridSearchCV, 

KFold,RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn import metrics 

from xgboost import XGBClassifier 

from sklearn.metrics import accuracy_score,f1_score 

import numpy as np 

from sklearn.metrics import make_scorer 

f1_score = make_scorer(f1_score) 

Recall=make_scorer(recall_score) 

 

#import data 

Data=pd.read_csv("XGBOOST-Data/Barrie-Transformed-BS-XG.csv") 

 

X = Data.iloc[:,:-1] 

y = Data.iloc[:,-1] 

 

#split test and training set.  

np.random.seed(60) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, 

                                                    random_state = 1000) 

 

#Define estimator and model 

classifiers = {} 

classifiers.update({"XGBoost": 

XGBClassifier(random_state=1000,eval_metric=f1_score,use_label_encoder=False)

}) 

 

#Define range of hyperparameters for estimator 

np.random.seed(60) 

parameters = {} 

parameters.update({"XGBoost": 

{"classifier__eta":[0.001,0.01,0.02,0.1,0.25,0.5,1], 

                                    

"classifier__alpha":[0.001,0.01,0.02,0.1], 
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                                     "classifier__min_child_weight" : 

[0.001,0.01,0.02,0.1], 

                                    "classifier__lambda" 

:[0.001,0.01,0.02,0.1], 

                                     "classifier__gamma" 

:[0.001,0.01,0.02,0.1,0.25,0.5,1], 

                                     #"classifier__max_depth": 

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1920] 

                                     

}}) 

 

 

# Make correlation matrix 

corr_matrix = X_train.corr(method = "spearman").abs() 

 

# Draw the heatmap 

sns.set(font_scale = 1.0) 

f, ax = plt.subplots(figsize=(11, 9)) 

sns.heatmap(corr_matrix, cmap= "YlGnBu", square=True, ax = ax) 

f.tight_layout() 

plt.savefig("Barrie_XG_correlation_matrix.png", dpi = 1080) 

 

# Select upper triangle of matrix 

upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k = 

1).astype(np.bool)) 

 

# Find index of feature columns with correlation greater than 0.8 

to_drop = [column for column in upper.columns if any(upper[column] > 0.8)] 

 

# Drop features 

X_train = X_train.drop(to_drop, axis = 1) 

X_test = X_test.drop(to_drop, axis = 1) 

 

X_train 

 

FEATURE_IMPORTANCE = {"XGBoost"} 

selected_classifier = "XGBoost" 

classifier = classifiers[selected_classifier] 

 

scaler = StandardScaler() 

steps = [("scaler", scaler), ("classifier", classifier)] 

pipeline = Pipeline(steps = steps) 

 

#Define parameters that we want to use in gridsearch cv 

param_grid = parameters[selected_classifier] 

 

# Initialize gridsearchCV object for estimator 

gscv =RandomizedSearchCV(pipeline, param_grid, cv = 3, n_jobs=-1, verbose = 

3, scoring = f1_score, n_iter =10) 

 



152 

 

 

152 

# Fit gscv (Tunes estimator) 

print(f"Now tuning {selected_classifier}. Go grab a beer or something.") 

gscv.fit(X_train, np.ravel(y_train))   

 

#Getting the best hyperparameters 

best_params = gscv.best_params_ 

best_params 

 

#Getting the best score of model 

best_score = gscv.best_score_ 

best_score 

 

#Check overfitting of the estimator 

from sklearn.model_selection import cross_val_score 

mod = XGBClassifier(alpha=0.02, 

                    eta= 0.5, 

                    gamma= 0.01, 

                    reg_lambda=0.001, 

                     #max_Depth=7, 

                    min_child_weight=0.1, 

                    eval_metric='mlogloss', 

                    random_state=10000) 

 

scores_test = cross_val_score(mod, X_test, y_test, scoring='f1', cv=5) 

 

scores_test 

 

tuned_params = {item[12:]: best_params[item] for item in best_params} 

classifier.set_params(**tuned_params) 

 

#Find f1 score of the model with all features (Model is tuned for all 

features) 

results={} 

model=classifier.set_params(alpha=0.02, 

                    eta= 0.5, 

                    gamma= 0.01, 

                    reg_lambda=0.001, 

                     #max_Depth=7, 

                    min_child_weight=0.1, 

                    eval_metric='mlogloss', 

                    random_state=10000) 

 

model.fit(X_train,y_train) 

y_pred = model.predict(X_test) 

F1 = metrics.f1_score(y_test, y_pred) 

Recal=recall_score(y_test, y_pred) 

results = {"classifier": model, 

              "Best Parameters": best_params, 

              "Training f1": best_score*100, 

              "Test f1": F1*100, "Test recall":Recal*100} 
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results 

 

# Select Features using RFECV 

class PipelineRFE(Pipeline): 

    # Source: https://ramhiser.com/post/2018-03-25-feature-selection-with-

scikit-learn-pipeline/ 

    def fit(self, X, y=None, **fit_params): 

        super(PipelineRFE, self).fit(X, y, **fit_params) 

        self.feature_importances_ = self.steps[-1][-1].feature_importances_ 

        return self 

 

steps = [("scaler", scaler), ("classifier", classifier)] 

pipe = PipelineRFE(steps = steps) 

np.random.seed(60) 

 

# Initialize RFECV object 

feature_selector = RFECV(pipe, cv = 5, step = 1, verbose = 3) 

 

# Fit RFECV 

feature_selector.fit(X_train, np.ravel(y_train)) 

 

# Get selected features 

feature_names = X_train.columns 

selected_features = feature_names[feature_selector.support_].tolist() 

 

performance_curve = {"Number of Features": list(range(1, len(feature_names) + 

1)), 

                    "F1": feature_selector.grid_scores_} 

performance_curve = pd.DataFrame(performance_curve) 

 

# Performance vs Number of Features 

# Set graph style 

sns.set(font_scale = 1.75) 

sns.set_style({"axes.facecolor": "1.0", "axes.edgecolor": "0.85", 

"grid.color": "0.85", 

               "grid.linestyle": "-", 'axes.labelcolor': '0.4', 

"xtick.color": "0.4", 

               'ytick.color': '0.4'}) 

colors = sns.color_palette("RdYlGn", 20) 

line_color = colors[3] 

marker_colors = colors[-1] 

 

# Plot 

f, ax = plt.subplots(figsize=(13, 6.5)) 

sns.lineplot(x = "Number of Features", y = "F1", data = performance_curve, 

             color = line_color, lw = 4, ax = ax) 

sns.regplot(x = performance_curve["Number of Features"], y = 

performance_curve["F1"], 

            color = marker_colors, fit_reg = False, scatter_kws = {"s": 200}, 

ax = ax) 
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# Axes limits 

plt.xlim(0.5, len(feature_names)+0.5) 

plt.ylim(0.60, 1) 

 

# Generate a bolded horizontal line at y = 0 

ax.axhline(y = 0.625, color = 'black', linewidth = 1.3, alpha = .7) 

 

# Turn frame off 

ax.set_frame_on(False) 

 

# Tight layout 

plt.tight_layout() 

 

#Define new training and test set based based on selected features by RFECV 

X_train_rfecv = X_train[selected_features] 

X_test_rfecv= X_test[selected_features] 

 

np.random.seed(60) 

classifier.fit(X_train_rfecv, np.ravel(y_train)) 

 

#Finding important features 

np.random.seed(60) 

feature_importance = pd.DataFrame(selected_features, columns = ["Feature 

Label"]) 

feature_importance["Feature Importance"] = classifier.feature_importances_ 

feature_importance = feature_importance.sort_values(by="Feature Importance", 

ascending=False) 

feature_importance 

 

# Initialize GridSearch object for model with selected features 

np.random.seed(60) 

gscv = RandomizedSearchCV(pipeline, param_grid, cv = 3,  n_jobs= -1, verbose 

= 3, scoring = f1_score, n_iter=50) 

 

#Tuning random forest classifier with selected features  

np.random.seed(60) 

gscv.fit(X_train_rfecv,y_train)  

 

#Getting the best parameters of model with selected features 

best_params = gscv.best_params_ 

best_params 

 

#Getting the score of model with selected features 

best_score = gscv.best_score_ 

best_score 

 

#Check overfitting of the  tuned model with selected features  

from sklearn.model_selection import cross_val_score 

mod = XGBClassifier(alpha=0.01,  
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                    eta=0.25, 

                    gamma=0.01, 

                    reg_lambda=0.001, 

                    #max_depth=4, 

                    min_child_weight=0.1, 

                    eval_metric='mlogloss', 

                    random_state=10000) 

 

scores_test = cross_val_score(mod, X_test_rfecv, y_test, scoring='f1', cv=5) 

 

scores_test 

 

results={} 

model=classifier.set_params(alpha=0.01,  

                    eta=0.25, 

                    gamma=0.01, 

                    reg_lambda=0.001, 

                    #max_depth=4, 

                    min_child_weight=0.1, 

                    eval_metric='mlogloss', 

                    random_state=10000) 

model.fit(X_train_rfecv,y_train) 

y_pred = model.predict(X_test_rfecv) 

F1 = metrics.f1_score(y_test, y_pred) 

Recal=recall_score(y_test, y_pred) 

results = {"classifier": model, 

              "Best Parameters": best_params, 

              "Training f1": best_score*100, 

              "Test f1": F1*100,  "Test recall":Recal*100} 

Results 
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Appendix D  

D 1 Inventory data summery  

Table D -  1 Characteristics of inventory data   
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Barrie 16 25 52 70 - 4 - - 3 89 96 - 27 - - 128

Calgary 21 23 47 57 14 - - - - - - - 30 - - 110

Durham 17 20 54 69 - 13 13 - - 94 - - 31 32 - 129

Halifax 44 48 2 67 - - 44 - - - - - 39 - - 148

Kitchener 24 35 36 64 - - 0.3 - - - - - 34 18 - 0.8

Markham 9 14 71 65 - 27 11 - - - - - 23 33 - 132

RoW 10 32 69 22 - - 25 - - 96 - - 32 26 - 86

Saskatoon 19 0.2 68 73 - - 0.9 - - 97 - 0.2 34 5 - 38

St.John's 43 44 12 66 - - - - - - - - 40 - - 74

Vancouver 43 54 0.1 71 - - 47 12 - - 95 - 43 - - 24

Victoria 49 37 7 75 - - 5 - - - - - 56 - 83 108

Waterloo 31 15 53 72 - - 11 - - - 99 - 36 14 - 62

Winnipeg 25 1 55 74 - - - 0.2 - 99 - - 38 - - 36
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D 2 Break data summery  

Table D -  2 Characteristics of broken data   
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Barrie 58 30 7 85 - 3 - - 33 1 82 99 27 - - 185 1.9

Calgary 49 36 9 72 8 1 - 0.3 1 - 93 - 30 - - 151 -

Durham 38 33 18 77 - 32 21 - - - 90 - 31 38 - 180 -

Halifax 74 20 3 78 - - 33 - - - - - 39 - 200 -

Kitchener 70 27 2 83 - - 1 - 54 - 99 - 34 0.08 - 1.7 -

Markham 32 53 11 63 - 72 52 - - - - - 23 - - 217 0.87

RoW 36 40 8 13 - - 12 - - - 95 - 32 4 - 163 -

Saskatoon 37 0.2 10 81 - - 2 - - - - - 34 0.02 - 70 -

St.John's 82 15 1 77 - - - - - - - - 40 - - 105 -

Vancouver 88 4 0.1 87 - - 28 - - - 96 43 - - 43 1.4

Victoria 72 23 3 84 - - 5 - - - - - 56 - 81 155 -

Waterloo 81 14 5 81 - - 23 - - - 99 - 36 2 - 130 -

Winnipeg 65 2 4 80 - - - 0.1 - - 99 - 38 - - 67 -
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Appendix E  

E  1 The defined structure of the collected data 

Table E - 1 Structure of the collected data 

Attribute Type Categories Unit Format 

Material Categorical Asbestos Cement N.A N.A 

Cast Iron 

Concrete 

Copper 

Cross Linked 

Polyethylene 

Ductile Iron 

Galvanized Steel 

HDPE 

PVC 

PVCB 

PVCF 

PVCO 

Polybutylene 

Polyethylene                 

Steel 

Joint type Categorical Bell and Spigot N.A N.A 

Collar 

Flared end 

Gasket 

Grooved 

Lead 

Mechanical 

Rubber 

Threaded 

Universal 

Welded 

Failure/Install month Categorical January N.A N.A 

February 

March 

April 

May 

June 

July 

August 

September 

October 
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November 

December 

Lining Material Categorical CIP N.A N.A 

CM 

CoalTar 

Epoxy 

HDPE 

Polyurea 

UnLined 

Casing Material Categorical Concrete N.A N.A 

Polyethylene 

Polystrene 

Steel 

StryFoam 

Tunnel 

NoCasing 

Coating Material Categorical Asbestos N.A N.A 

CoalTar 

Concrete 

Epoxy 

Foam 

FRC 

PB 

Polyethylene 

StyroFoam 

Urecon 

Y-Jacket 

Uncoated 

Anode Type Categorical Magnesium N.A N.A 

Zinc 

NoAnode 

Soil Type Categorical Clay N.A N.A 

Granular 

Gravel 

Marsh 

Mixed 

Muck 

Natural ground 

Road base 

Rock 

Sand 

Clay/Granular 

Clay/Gravel 

Clay/Muck 
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Clay/Rock 

Clay/Silt 

Clay/Stone 

Clay/Stone/Peat 

Granular/Rock 

Gravel/Rock 

Rock/Peat 

Sand/Clay 

Sand/Clay/Gravel 

Sand/Clay/Loam 

Sand/Clay/Rock 

Sand/Clay/Till 

Sand/Granular 

Sand/Gravel 

Sand/Muck 

Sand/Peat 

Sand/Rock 

Sand/Silt 

Sand/Stone 

Stone/Concrete 

Service Type Categorical Distribution N.A N.A 

Facility 

Service 

Transmission 

Dead-end Booliean Yes 

No 

N.A N.A 

Status 

Replaced Status 

Protection Status 

Lining Status 

Anode Status 

Diameter Numerical N.A mm N.A 

Length Numerical N.A m N.A 

Pipe Depth Numerical N.A m N.A 

Installation/Failure Date Date N.A N.A YYYY/MM/D 
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