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Abstract 

 

A simulation-based framework to optimize occupant-centric controls given 

stochastic occupant behaviour 

Zeinab Khorasani Zadeh 

 

Occupant-centric control (OCC) strategies represent a novel approach to indoor climate control in 

which occupancy patterns and occupant preferences are embedded within control sequences. They 

aim to improve occupant comfort and energy efficiency by learning and predicting occupant 

behaviour (OB), then optimizing building operations accordingly. Previous studies estimate OCC 

can increase energy savings by up to 60% while improving occupant comfort. However, their 

performance is subject to several factors, including uncertainty due to OB, OCC configurational 

settings, as well as building design parameters. To this end, testing OCCs and adjusting their 

configurational settings before implementation are critical to ensure optimal performance. 

Furthermore, identifying building design alternatives that can optimize such performance is an 

important step that faces logistical constraints during field implementations. This research presents 

a framework to optimize OCC performance in a simulation environment, which entails coupling 

synthetic OB models with OCCs that learn their preferences. The framework features a parallel 

processing structure to obviate the computational burden and enhance optimization efficiency. A 

sensitivity analysis is conducted to identify the most influential variables on OCC performance in 

terms of increasing energy efficiency and occupant comfort. A two-step multi-objective 

optimization is then developed to identify the configurational settings and design parameters that 

minimize energy consumption and maximize occupant comfort. Results revealed significant 

improvement in OCC performance when they were customized with the identified optimal settings 

for different occupants. The proposed framework aims to improve OCC performance in actual 

buildings and avoid discomfort issues that may arise during its initial implementation.  
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Chapter 1:  Introduction 

Global energy consumption will grow by nearly 50% between 2018 and 2050 [1]. Thirty percent 

of the total energy consumption is attributed to the global building sector (22% for residential and 

8% for non-residential buildings) [2]. In the United States, residential and commercial buildings 

accounted for 22% and 18% (40% combined) of total U.S. energy consumption in 2020, 

respectively [1]. For any conventional building, building operations constitute 80%-90% of 

building life cycle energy use [3]. Therefore, building operation management plays a crucial role 

in reducing energy consumption in buildings [4]. More than 73% of total energy consumption in 

commercial buildings is attributed to space heating, cooling, and lighting (Figure 1) [5]. As a result, 

focusing on these three categories can significantly reduce energy usage in commercial or 

institutional buildings. The large discrepancy between estimated building energy usage in the 

design phase and the actual energy usage in the actual operation highlighted the role of occupants 

in building energy use [6] .The human factor, including occupant behaviour and preferences, 

significantly affects building operations and, consequently building energy usage and performance 

[2]. Energy consumption in commercial buildings showed a variation of 30% to 150% due to 

occupant behaviour [6]. Besides, without considering occupant behaviour and needs, control 

engineers must make conservative assumptions which lead to operating schedules that exceed 

occupied hours (energy waste), as well as temperature setpoints that result in cold complaints in 

the summer and hot complaints in the winter (Occupant discomfort) [7]. Providing occupant 

comfort is of great importance to the life quality of occupants, including health and productivity. 

This relationship between occupant behaviour and building energy usage, on the one hand, and the 

goal of improving building energy consumption while maintaining or increasing occupant comfort, 

on the other hand, highlights the necessity of an intelligent approach to maintain user expected 

comfort while decreasing energy use during the operation of buildings [8].  
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Figure 1: Commercial/institutional energy use by end-use 2018. 

Given the recent developments in information and communication technology, Occupant-Centric 

building Control (OCC) strategies have been introduced in which a control system acquires various 

data from occupants, the indoor environment, and the outdoor climate. The occupant-related 

information is gained directly or indirectly through various sensors, occupant feedback from 

control interfaces, and mobile or wearable devices. The derived information is then used for 

building controls, e.g., room occupancy patterns and adaptive setpoints, to improve energy 

efficiency and occupant comfort [9], [10]. The newly introduced OCC algorithms, which can 

address the conflicts between the objectives of saving energy and ensuring occupant comfort, 

continue to be brought up to have better control of building operations [11]. 

Many OCC-related studies have indicated that implementing smart control strategies is 

proliferating to make buildings more energy-efficient while improving the level of occupant 

comfort. Although previous studies showed that energy efficiency and occupant comfort can be 

achieved by OCC, the actual performance of OCCs has a significant potential for further 

investigation and improvement. In addition, generalizing the performance of various OCC 

algorithms is known as one of the main limitations of deploying OCC in real buildings. As OCCs 

learn from occupant behaviour and their interactions with building systems, there is a three-way 
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relationship between OCC configurations, the type of occupant subject to OCC, and building 

design parameters that needs to be optimized. OCC's performance can change while learning from 

different types of occupants' interactions within various building design alternatives. Therefore, 

fine-tuning OCC configurations for different building design parameters and various types of 

occupants' preferences is crucial in improving the performance of these control systems. In 

addition, there is an inverse relationship between minimizing building energy consumption and 

improving occupant comfort. Identifying a balance between these two important objectives is 

another important stride in upgrading OCC performance. Multi-objective optimization algorithms 

are required to investigate all the possible various combinations settings thoroughly. Regulating 

OCCs with these optimal solutions will enhance control of the indoor environment, which 

improves building energy performance while meeting occupants' needs at the same time. To the 

best of the authors' knowledge, there has not been any research on the multi-objective optimization 

of the investigated OCCs performance to customize their configuration when learning from 

various types of occupants. 

1.1 Research objectives 

This research aims to develop a simulation-based framework to optimize OCC configurational 

settings while working with various scenarios of occupant preferences before their 

implementation. The proposed simulation framework integrates stochastic occupant behaviour 

models as well as OCCs, which learn from occupants' interaction with building systems and then 

control building operations accordingly. To provide a proof-of-concept of the framework, a single 

office was modelled with different design parameters to represent the capability of the proposed 

framework to investigate OCC performance and identify their optimal configurational settings. 

The main objectives of this research are defined as follows: 

1- Developing an energy model entailing stochastic occupant behaviour models as well as 

OCCs algorithms that learn from occupants’ preferences into the building energy 

simulation program, EnergyPlus.  

2- Integrating the energy simulation model with a sensitivity analysis algorithm to investigate 

the effects of building design variables and OCC configurational settings variables on 

energy consumption and occupant comfort. 
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3- Developing a two-step optimization framework to identify the optimal OCC 

configurational settings while working with various scenarios of occupant preferences 

before their implementation. 

4- Presenting a case study as a proof-of-concept of the framework to represent the capability 

of the framework to investigate OCC performance and identify their optimal 

configurational settings. 

 

1.2 Thesis Organization 

The structure of this thesis is as follows: Chapter 1 provides an introduction, including background, 

problem statement, and a summary of the thesis objectives. Chapter 2 contains a review of the 

literature on (1) different occupancy and occupant behaviour modeling approaches; (2) OCCs and 

recent developments in these control strategies; and (3) recent studies to integrate occupant 

behaviour and OCCs in building simulation tools. Chapter 3 provides a detailed explanation of the 

methodology used to develop the proposed simulation-based optimization framework. In addition, 

the case study which is used as a proof of concept of the proposed framework, is described in this 

chapter. Chapter 4 presents the case study results implemented in the proposed framework, and 

the major findings are discussed. Finally, Chapter 5 provides a summary of the research and its 

contribution. In addition, the limitation of the current study and the recommendation for future 

studies are presented. 
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Chapter 2:  Literature review 

2.1 Introduction 

This chapter aims to provide, firstly, a review of occupancy and occupant behaviour modeling 

approaches. This is then followed by providing an overview of recent developments in OCC 

strategies. Finally, recent studies on the integration of OB and OCC models in building simulation 

tools are reviewed.   

2.2 Occupancy and occupant behaviour modeling 

Occupants are widely recognized as an influential factor in building energy performance and cause 

a discrepancy between predicted and real energy consumption in buildings [12]. In reality, they 

are active recipients in building as opposed to passive recipients meaning that once they feel 

uncomfortable, they interact building systems and components to restore their comfort. Occupants 

can adapt building indoor environment to their comfort by switching lights on, changing 

thermostat setpoints, opening or closing operable windows, and opening or closing window 

shades. In addition, they can adapt themselves to indoor climates. For example, they can change 

their clothing level, activity level or drink hot or cold beverages [13], [14]. These types of 

behaviours are called adaptive behaviours [15]. On the other hand, non-adaptive behaviours are 

motivated by contextual reasons (non-physical factors affecting occupant behaviour) rather than 

physical discomfort [14]. They are not usually undertaken to restore comfort [13].  As an example, 

occupants are more likely to switch off the light or shut down their computers when they are going 

on vacation [16]. In general, there are four main occupant categories to model adaptive and non-

adaptive behaviours (Table 1). These approaches are categorized as: 1- Static or Dynamic and 2- 

Deterministic or Stochastic (aka probabilistic) [17]. Static models are those in which occupants 

are considered as input and are not affected by the building, while dynamic models can model a 

two-way relationship between building and occupant.  In other words, occupants can be affected 

and respond to changes in building and conditions. Deterministic approaches are fixed models, 

and simulation gives the same results after every run. In contrast to the deterministic model, 

Stochastic models are related to the randomness of behaviours [13]. The most popular approach is 

deterministic-static models in the form of fixed schedules. These models are easy to implement 

and have the advantage of simplicity, repeatability, and transparency [18]. However, they ignore 
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the two-way relationship between occupant and building and can not reflect the uncertainty due to 

occupant behaviour. Stochastic-static models can provide insight on uncertainty; they cannot 

characterize the two-way relationship between occupants and building, though. As a result, they 

can be used to model non-adaptive OB such as occupancy or plug loads. Deterministic-dynamic 

models enable characterizing the two-way interactions of occupants and building but do so 

consistently. Stochastic-dynamic models which is the focus of this research are the state-of-the-art 

in OB modeling. They allow both the two-way interactions between occupant and building as well 

as presenting the stochastic aspect of OB [18]. The advantage and disadvantages of each of these 

four models are shown in Table 2.  

Table 1: The four categories of modeling adaptive and non-adaptive OB. 

Type Static Dynamic 

Deterministic A fixed schedule (e.g., lighting, 

occupancy, etc.) 

Use a fixed threshold to determine if the value of 

schedule is 0 or 1 (e.g., light is turned on below a 

fixed indoor illuminance threshold). 

Stochastic  Fixed schedule that multiplies by a 

randomly generated number. 

 

A model that responds to the changes in 

conditions with a degree of randomness (e.g., a 

light use model that predicts the probability of 

light switches on with the value between zero and 

one over a wide range of indoor illuminances. 

 

Table 2: Advantages and disadvantages of the four categories for OB modeling [17]. 

Model Advantages Disadvantages 

static Simple and suitable for non-adaptive 

behaviour (e.g., Occupancy). 

Ignore the effect of building designs on occupant 

adaptive behaviour and vice versa. 

Dynamic Enables understanding the effect of 

building designs on occupant behaviour 

and vice versa. 

Requires more details (e.g., room temperature or 

indoor illuminance). 
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Deterministic Requires only a single simulation as it 

gives the same result for every simulation. 

Do not imply building performance uncertainty. 

Stochastic Provides a range of feasible results and 

occupant diversity. 

Requires approximately 50 to 100 simulations. 

 

Thanks to the recent development in information and communication technologies, several 

mathematical methods have been developed to quantitively model occupants' presence and actions 

(OPA) in the building using the collected data during the occupants' monitoring period [19]. 

Advanced OB modeling has been developed based on a wide range of statistical methods to model 

stochastic OB. Logistic regression model is a common statistical model that has been widely used 

to model stomachic OB due to its capability to model binary dependent variables (e.g., if an action 

happened or not) as well as using non-normal distribution [13]. Another approach among advanced 

OB modeling is agent-based modeling (ABM). In ABM, occupant is treated as an individual who 

can make decisions and take actions and interact with the others [20]. In 2021, Zambrano et al. 

classified OB models based on their level of complexity (from the lowest to the highest level): 

fixed schedule, non-probabilistic models, stochastic (probabilistic models), and ABM [20]. This 

section provides a summary of the two most complicated OB modeling categories (stochastic and 

ABM) with more details on stochastic occupant behaviour modeling as the focus of this research. 

2.2.1 Probabilistic/Stochastic models 

As occupants behave in a random way, stochastic models are developed to model OB under various 

situations. These models estimate the probability of action based on historical or statistical data 

[21]. Three types of stochastic occupant behaviour modeling are commonly used: Markov chain 

models, Bernoulli process, and survival analysis [22], [23], [24]. Bernoulli models predict the state 

of a building system or component [13]. They can be used when the probability of a state or event 

is independent of previous states or events. They are sufficient for large-scale energy modeling but 

do not represent individual behaviour and the timing of occupant actions [23]. Survival models are 

usually used to estimate the duration when a state remains unchanged by the occupant [25]. As an 

example, Wang et al., (2005) proposed a survival model to predict the duration of time it takes 

when the occupant goes for a lunch or coffee break [26]. Markov chain models are widely used to 
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predict OB among these three approaches. It is a time series of data in which all the states of the 

systems can be observed directly. The basic assumption of this approach is that the future state 

only depends on the present state while being independent of all past states. These models are 

developed using two types of data: Time use Survey data (TUS) [27] and sensor measured data 

[28]. The advantage of Markov chain models is to predict the probability of transition between two 

states rather than one state and therefore predicts behaviour patterns more realistically [14], [15]. 

Markov chain models are divided into two main categories to predict occupant behaviour: 

Discrete-time Markov model and discrete-event Markov model. Discrete-time Markov models 

predict the likelihood of an action by the occupant in the next time step [14]. Thus, the states can 

change only at fix discrete time intervals. To address this shortcoming, discrete-event Markov 

models are developed in which the probability of an action is linked to an event. For example, 

Reinhart developed a model for light switches using the discrete-event Markov approach. This 

model implies that occupant is more likely to switch light on (action) at arrival (event) and switches 

the light off (action) at departure (event) [24]. Despite discrete-time Markov models that only work 

with fixed time steps, discrete-event probabilistic models have been proved to be efficient since 

they can incorporate various time steps in the simulation. However, a key to the success of 

developing these stochastic models is to link an occupant action to a suitable event (as a substitute 

for time step) [14].  

2.2.2 Agent-based models (ABM) 

Agent-based models are computational methods comprised of multi-agents that can interact with 

each other and their environment under defined rules [12], [29]. Each agent can evaluate their 

situation and change their behaviours in response to other agents and the environment. Andrew et 

al.  (2013) proposed a comprehensive framework to model occupant behaviour using agent-based 

modeling. The framework was comprised of two main sub-models: building performance sub-

model and human agent sub-model. Building performance sub-model tracked and modified the 

state of the indoor environment. The human agent sub-model simulated occupant response and 

reaction to the changing environmental conditions. As for the occupant module, a procedurally 

oriented model of human decision-making called the Belief-Desire-Intention (BDI) framework 

was introduced, which was then enriched to an advanced version [30]. 
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ABM has the flexibility of adding more agents to simulate multiple behaviours as well as the 

ability to extend for further levels such as building levels. In addition, these models are well suited 

to consider OB's social and psychological aspects. However, real-time communication between 

ABM and building energy simulation programs is challenging as these programs are usually 

unique in their coding language [12]. 

2.3 Occupant centric control strategies 

OCC strategies represent a novel approach for indoor climate control in which occupancy patterns 

and occupant preferences are embedded within control sequences. They aim to improve both 

occupant comfort and energy efficiency by learning and predicting occupant behaviour then 

optimizing building operations accordingly. In recent years, applying OCC to improve the building 

design and operation through BAS has been subject to increased academic interest [6]. OCC can 

be divided into two main categories based on the type of occupant-related data it uses: 1) 

Occupancy-centric controls and 2) Occupant behaviour-centric controls. Occupancy-centric 

control adjusts setpoints and schedules based on presence or absence of occupant data or occupant 

count data. However, Occupant-behaviour-centric controls learn from occupant behaviour and 

preferences (e.g., through their interactions) and then adjust building system operations (e.g., 

heating and cooling setpoints) [9].  

The past decade showed a significant development of OCC algorithms [31]. For example, an 

adaptive lighting and blind control algorithm were developed based on analyzing occupant 

behaviour in ten private offices [32]. The photosensor setpoints to switch off the lights and open 

the blinds were derived from an algorithm that learns from occupants' preference towards light 

switch on and blind closing behaviour. The results indicated that the control algorithm could 

considerably reduce light electricity consumption (25%) without affecting occupant comfort 

negatively. A reinforcement learning (RL)-based OCC for thermostats was also developed by [33]. 

The agent learned occupant behaviour and indoor environment while monitoring indoor air 

temperature, occupancy, and thermal comfort and determined the thermostat setpoint to reach a 

balance between energy consumption and occupant comfort. Jung et al. (2021) proposed a novel 

OCC algorithm to control indoor temperature setpoint using a deep learning algorithm [34]. 

Occupant activity recognition was performed using a one-dimensional convolutional neural 

network model, and an RL-based model was developed to control indoor temperature. The results 
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showed that the developed RL model decreased thermal discomfort by 50.3% compared to the RL-

based model without considering occupant activities. In addition, the proposed control method 

reduced occupant thermal discomfort by 10.9% more than manual control. Ye et al. (2021) 

evaluated the energy-saving potential of deploying two advanced OCCs, including presence-based 

and counting-based strategies in primary schools in the US [35]. The results revealed that the 

energy-saving potential of counting-based OCC was up to 12% and 10% for presence-based OCC. 

Although literature witnessed a major effort for the development of OCC algorithms, the 

implementation of these control systems in real buildings is very limited due to some logistical 

constraints. Researchers employed simulation-based methodologies to investigate the performance 

of OCCs by modeling the target building. Bakker et al. (2017) highlighted that many aspects of 

these control strategies could be further developed using simulation to increase energy-saving and 

occupant comfort before real-world applications [36]. 

2.4 Integrating OB and OCC in building performance simulation (BPS) 

Traditionally, deterministic schedules of BPS were used to represent occupant-related input. Over 

the past decade, advanced mathematical models have been developed to predict occupancy profile 

and occupant behaviour more accurately. Generally, to integrate OB models in BPS, these 

stochastic mathematical equations should be formulated using custom functions to overwrite 

default controls [37]. Ouf et al. (2018) provided an overview of various methods for incorporating 

OB models into BPS [37]. They classified all the methods of integrating OB in BPS into two main 

approaches: 1) direct input and 2) user modifications. Direct input includes defining schedules for 

the operation of different building components such as HVAC system, specifying changes in 

occupant density and the use of light and equipment, and designating specific rules for using lights, 

operable windows and shading devices in common BPS tools. Although these methods can be 

beneficial for predicting thermal loads, they are incapable of representing occupant adaptive and 

non-adoptive behaviours. The user modifications approach, however, enables integrating more 

comprehensive occupant adaptive and non-adaptive behviour, including human-building 

interactions. The user modification approach is divided into three sub-categories, including 1) co-

simulation, 2) custom function, and 3) user-modified source code [37].  

Co-simulation is a method that allows different simulation tools to run at the same time and 

simulate different components while switching information in a combined routine [38]. As an 
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example, Hong et al. (2016) presented a new OB modeling tool with an occupant behaviour 

Functional Mock-up Unit (obFMU) [39]. It allows co-simulation of OB with BEM programs based 

on the Functional Mock-up Interface (FMI), which does not restrict users to the specific simulation 

program. This tool allows interoperability of OB models during simulation, obviating some of the 

shortcomings of generic co-simulation limitations, such as a virtual testbed for building control. 

In spite of all the advantages offered by co-simulation, it still needs advanced user experience [37]. 

In the custom function approach, the user can write functions or custom code as an input file of 

the building energy model to overwrite existing or default controls [38]. As an example, 

EnergyPlus has an energy management system (EMS) feature to implement such functionality 

[38]. Gunay et al. (2016) implemented OB models for lighting, blind, occupancy, and clothing 

using the EMS feature of EnergyPlus [40]. This method has high flexibility by allowing users to 

change the building energy model in BPS without recompiling the BPS programs' source code 

[38].  

As OCCs learn from human-building interactions, simulation-based OCC research must be 

accompanied by comprehensive occupant behaviour models, including both adaptive and non-

adaptive behaviour. In 2021, Hobson et al. developed a library of OCC in R to provide a practical 

workflow to evaluate OCC in building simulation [41]. This approach was broken down into two 

main phases: 1) the offline learning phase and 2) the simulation phase. In the first phase, five 

different occupancy-centric and occupant behaviour-centric control metrics (e.g., presence or 

absence time) were used from measured Building Automation System (BAS) data of 29 private 

offices. To this end, R functions were developed to extract occupant-centric metric-related data 

from different types of archived BAS data. In the second phase, these occupant-centric metrics 

were integrated into EnergyPlus to test several OCC strategies and investigate their impact on 

energy use and thermal discomfort. Pang et al., (2020) used a hybrid simulation to quantify the 

energy-saving potential of occupant-centric HVAC controls in office buildings [11]. Multiple 

advanced OCCs for multi-zone VAV systems were integrated into the simulation. The EMS 

module of EnergyPlus was used to implement OCC strategies, and Python scripts were used to 

generate EMS programs with implemented OCC strategies. In another study in 2021, the U.S 

Department of Energy (DOE) Asset Scoring Tool and EnergyPlus were used to investigate the 

energy-saving potential in large hotels due to occupancy sensors and OCC implementation. This 
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tool was used to evaluate the physical characteristics of the building regardless of occupancy and 

operational choices. The authors used EnergyPlus built-in EMS module to implement the OCC 

algorithms to read the real-time value of the indoor variables during execution [42]. Ouf et al. 

(2020) implemented different OCC algorithms and OB models using the EMS object of 

EnergyPlus to test and finetuning their settings. They highlighted the necessity of optimizing these 

control systems before field implementation [7].  
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Chapter 3: Methodology 

This chapter is divided into two main subsections. First, it begins by presenting the proposed 

framework to perform multi-objective optimization of OCC performance using a simulation 

approach. The first subsection describes occupancy and stochastic occupant behaviour models 

used in the proposed framework. Subsequently, the method used to implement occupant behaviour 

models and OCC algorithms in the simulation framework is explained. Finally, it explains the 

genetic algorithm-based optimization model used to optimize the performance of OCC.  

The second subsection provides a detailed description of the case study demonstrated as the proof 

of concept of the framework, starting with describing the office building model. Afterwards, the 

occupant-related parameters and OCC algorithms mainly used in the case study are described. 

Finally, more details about the sensitivity analysis method and applied optimization algorithm that 

were particularly used in the case study are provided. 

3.1 Simulation-based framework 

An overview of the proposed framework to optimize OCC performance is shown in Figure 2. In 

this framework, stochastic and dynamic occupancy and occupant behaviour (OB) models are 

integrated into the building simulation program. OCC algorithms are then implemented to learn 

simultaneously from occupant behaviours and their interactions with the building and control the 

building operations. Coupling the simulation model with a sensitivity analysis algorithm, the 

influence of each design variable and OCC configurational settings variable on building energy 

consumption and occupant comfort are identified. The influential variables are then selected and 

defined as decision variables for the optimization problem.  

This framework conducts optimization for each type of occupant in two main steps. First, a multi-

objective optimization algorithm determines the optimal design variables using the simulation 

model with the OB and OCC information. In the second step, the building is modelled using the 

optimal design alternative from the first step optimization, then the optimization algorithm 

identifies the optimal OCC configurational settings. In both steps, optimization aims to minimize 

building energy consumption while improving occupant comfort, which is represented by the 

number of occupant interactions with various systems. The proposed framework enables defining 

various occupant behaviour assumptions. Moreover, several OCC algorithms can be investigated 



14 

 

using this framework, and their optimal performance can be identified while learning from 

different occupant preferences. It is worth mentioning that the sensitivity analysis and optimization 

process were coded to work in parallel computing mode to take advantage of multi-core processors 

rather than the traditional simulation-based framework. 

 

Figure 2: Overview of the proposed method 

3.1.1 OB models 

Four OB models were used to simulate stochastic occupant behaviour in this framework. Since 

more than 73% of total energy consumption in commercial buildings is attributed to space heating, 

cooling, and lighting [5], focusing on these categories can significantly reduce energy usage in this 

sector. However, other behaviours can be implemented in the framework for further studies to 

optimize building's operational energy consumption more realistically. This section summarizes 

these four models, including occupancy, lighting, heating and cooling setpoints, and blinds. 

A probabilistic model to predict occupancy in offices was implemented based on the model 

proposed by [26]. At the beginning of each day, five event times, including arrival, two coffee 

breaks, lunch break, and departure, were sampled randomly from a pre-defined normal distribution 

(Table 3). The duration of coffee and lunch breaks was calculated through an exponential 
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probability distribution with the time constant of 15 minutes for a coffee break and 1 hour for a 

lunch break. Office status was considered vacant during weekends and holidays. 

Table 3: Occupancy events and time 

Event Time (Mean ± SD) 

Arrival 9 AM ± 15 min 

Coffee Break 1 10:30 AM ± 15 min 

Lunch Break 12 ±15 min 

Coffee Break 2 3 PM ± 15 min 

Departure 5 PM ± 15 min 

 

A probabilistic logistic regression equation was used to model occupant behaviour towards light 

and thermostat use (Equation (1)). These models were adapted from literature [43], [44]. However, 

the coefficients (β0 and β1) were modified to represent different occupant behaviours which are 

explained in more detail in Section 3.2.1. For light switch behaviour, this logistic regression model 

predicts the probability of switching lights on (P(x)) based on indoor illuminance (x) upon arrival 

and during the presence of occupant. The probability of light switching off upon departure was 

calculated based on the predicted length of absence. As the duration of expected absence increased, 

the probability of switching off the lights increased accordingly. Similarly, to predict the 

probability of increasing and decreasing the heating and cooling setpoints (P(x)), the indoor 

temperature in each time step (x) was used as the predictor as shown in Equation (1). 

 

𝑃(𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥)
 

 

 

 

(1) 

 

Where P(x) is the probability of action happened by the occupant, β0 and β1 are the coefficients of 

the logistic regression model, and x is the predictor of the model. 

Occupants' interaction with blinds was predicted using the model presented by [45]. Either 

lowering or raising blind action was predicted based on indoor illuminance and the current 

unshaded fraction. If an action was predicted, the probability of fully opening or closing the blind 
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was calculated with a logistic regression model with solar radiation as the predictor. Alternatively, 

if a partial lowering or closing action was predicted, the related counterpart was drawn from the 

Weibull distribution. In the proposed framework, if the predicted partial for blind closing was more 

than 0.5, it was assumed that the blind was fully closed. Likewise, if it was predicted less than 0.5, 

the blind was assumed to be fully open. 

3.1.2 Integrating OB models and OCC algorithms in building energy simulation 

In this framework, the EMS (EnergyManagementSystem) object of EnergyPlus is used to 

implement occupant behaviour models and OCC algorithms in which occupant and OCC can affect 

the operation of building systems using EMS actuators at every time step. Indoor environmental 

sensors to measure indoor temperature, indoor illuminance, and solar radiation are defined as EMS 

sensors. The probabilistic occupancy and OB models are integrated into the simulation-based 

framework using custom scripts in EMS. Similarly, OCC algorithms are implemented using EMS 

and learned from OB in each time step (Figure 3). Occupants and OCC interact with building 

operations by changing the value of the actuators and consequently the value of pre-defined 

schedules for occupancy, lighting, blinds, and heating and cooling setpoints. More details on the 

implementing methods can be found in [40], [7]. 

 

Figure 3: Exchanging data between OB and OCC algorithms and building energy model through EMS object of EnergyPlus. 
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3.1.3 Optimization 

Two types of decision variables for the optimization problem are defined: building designs 

variables and OCC configurational variables. A sensitivity analysis is conducted before 

optimization to investigate the effects of each variable on energy consumption and occupant 

comfort. Based on the sensitivity analysis results, the influential variables are then selected as 

decision variables for the optimization problem. 

The genetic algorithm (GA) optimization method is used to optimize OCC performance when 

learning from various occupant behaviours. The main objective of the optimization is to minimize 

annual energy consumption while maximizing occupant comfort (visual and thermal comfort). The 

objective functions are formulated as follows: EUI (Energy use intensity) and the annual number 

of thermostat keypress and light switch on actions by occupant as the proxy of occupant comfort. 

The NSGA-II algorithm (Non-dominated Sorting Genetic Algorithm) proposed by Deb et al. 

(2002) is used to identify the best trade-off solutions between EUI and comfort [46]. It is an 

evolutionary algorithm that uses the concept of elitism and non-dominated sorting to improve the 

convergence of multi-objective optimization problems. According to Wang (2016), NSGA-II is a 

mature algorithm for multi-objective optimization with the high capability of solving a wide range 

of problems with considerable complexity [47]. In this algorithm, once the population of the first 

generation is produced, the value of objective functions is evaluated and sorted based on non-

domination ranking and crowd distance. Then, the offspring population is produced using genetic 

operators such as Cross over and Mutation. In the next step, parents and offspring population 

combined and sorted based on the best ranking. The best candidates are then used to produce the 

next generation and offspring population. Once the stop criteria are fulfilled, the algorithm stops 

and reports the Pareto front optimal points. Readers can refer to Deb et al. for more details on how 

the algorithm finds Pareto-optimal solutions.  

A two-step optimization process is then defined. In the first step (step one), the multi-objective 

optimization algorithm is run, and only building design parameters are defined as the optimization 

decision variables. In this step, the simulation is performed with OCCs using the original 

configurational settings, and the optimization algorithm determines the optimal design variables. 

The goal is to optimize building design parameters based on the type of occupant. In the second 

step (step two), the optimal design variables are used, and the optimization algorithm is run using 
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OCC configurational settings as the optimization decision variables. In this step, the optimization 

algorithm determines the optimal OCC configurational settings while learning from different 

occupant types. Finally, the optimization algorithm identifies the optimal OCC configurational 

settings to minimize EUI and the number of occupant interactions with building systems. In this 

research, optimization is also conducted using all the optimization variables (building design 

variables and OCC configurational variables) in one step at once. The goal is to compare the 

performance of one-step and two-step optimization mathematically in this context. 

3.2 Case study 

To provide a proof-of-concept of the proposed framework, a single office with a floor area of 16 

m2 (4m x 4m) and a height of 3 m was created in EnergyPlus (Figure 4) and simulated using the 

EnergyPlus weather data file (EPW) for Montreal. Internal heat gains from occupants were set to 

130 W per person, which is based on the activity level of an occupant in the office. It was assumed 

that the office is occupied by one person. For the initial design, 35% WWR was installed on the 

south side of the building. The other three walls of the building and the roof and floor of the 

building were assumed to be adiabatic (i.e., attached to spaces with the same thermal condition). 

An interior shading device was defined as a blind, and a daylight reference point was located at 

the height of 0.8 m, almost equivalent to desk height. An ideal load air-based HVAC system was 

designed with a heating and cooling capacity of 2000 W. The initial selected design parameters 

were derived from previous studies, and they meet the requirements specified by NECB 2017 

(Table 4). 

 

Figure 4: Single office building modeled as a case study. 
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Table 4: Initial design parameter for the office building model. 

Design parameters Values Unit 

Window glazing U-Factor 1.6 W
(m2K)⁄  

Window glazing VT 0.6 - 

Window glazing SHGC 0.3 - 

Blind VT 0.2 - 

Blind solar transmittance 0.05 - 

Wall R-Value 3.07 (m2K)
W

⁄  

 

3.2.1 Occupant-related modifications 

In this case study, two different types of occupants were defined to represent two extreme occupant 

behaviours, namely tolerant and sensitive. Overall, under the same environmental condition, 

sensitive occupant interacts with building operations more than tolerant occupant behaviour. In 

other words, tolerant occupant has more adaptability to the changes in the environmental condition. 

As mentioned in Section 3.1.1, the occupant behaviour models towards light and thermostat were 

developed based on a logistic regression equation. The authors modified the coefficients of these 

logistic regression models to define sensitive and tolerant occupant preferences. For example, for 

the lighting model, a sensitive occupant has a higher probability of interacting with the building 

than tolerant occupant with the same indoor illuminance (Figure 5). Similarly, the logistic 

regression coefficients of the implemented thermostat model were modified so that in summer, 

sensitive occupant has a higher probability of decreasing the cooling setpoint with the same indoor 

temperature than tolerant occupant. Likewise, in the winter, the probability of increasing the 

heating setpoint is greater for the sensitive occupant than the tolerant occupant type given the same 

indoor temperature (Figure 6). 
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(a) (b) 

Figure 5: The probability of light a) switches on, b) switches off for two types of occupant. 

  

(a) (b) 

Figure 6: The probability of setpoint a) increase, b) decrease for two types of occupants. 

3.2.2 OCCs 

In this study, three OCCs for controlling lights, heating, and cooling setpoints were investigated 

from the literature. In the following, the way that each of these OCCs works is explained. 

3.2.2.1 Lighting OCC #1 

The first implemented OCC (lighting OCC #1) works with a threshold for light switching off [32]. 

This OCC switches lights off either when the indoor illuminance exceeds this threshold or in the 

occupant's absence. This threshold decreased gradually until an occupant light switch on action 

was observed, at which point the threshold slightly increased. The rate of increasing or decreasing 

the threshold relied on quadratic deviation (Equations 2-7): 
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𝐿(𝑇ℎ)𝑂𝑓𝑓 =
(−𝐷1 − 2)

𝐷2
 

 

(2) 

 

𝑃𝑜𝑐𝑐 =
1

1 + 𝑒−(𝐷1+𝐷2∗𝐿𝑢𝑥)
 

 

(3) 

 

Where 𝐿(𝑇ℎ)𝑂𝑓𝑓 is a light switch off threshold and 𝑃𝑜𝑐𝑐 is the probability of light switch on by 

occupant, which is predicted by OCC based on a logistic regression probability with indoor 

illuminance (Lux) as a predictor and D1 and D2 are the coefficients of the logistic regression.  

If the light switch on action by occupant is not observed in 30 minutes, these two coefficients get 

updated based on the following formula (4-5), which causes a slight increase in the threshold for 

light switch off: 

𝐷1
′ = 𝐷1 − ((𝑃𝑜𝑐𝑐

2)(1 − 𝑃𝑜𝑐𝑐
2)(𝐿𝑅)) 

 

(4) 

 

𝐷2
′ = 𝐷2 − ((𝑃𝑜𝑐𝑐

2)(1 − 𝑃𝑜𝑐𝑐
2)(𝐿𝑅)(𝐿𝑢𝑥) 

 

 

(5) 

 

Where 𝐷1
′and 𝐷2

′ are the new values of the logistic regression coefficients, LR is the learning 

rate, which is defined as 0.001 in the original configuration, and Lux is indoor illuminance in foot-

candles. The initial value of D1 and D2were 1 and -0.01, respectively. 

Once occupant switches the light on, these two thresholds get updated based on the following 

equations (6-7) 

𝐷1
′ = 𝐷1 + ((𝑃𝑜𝑐𝑐)(1 − 𝑃𝑜𝑐𝑐)2(𝐿𝑅)) 

 

(6) 

 

𝐷2
′ = 𝐷2 + ((𝑃𝑜𝑐𝑐)(1 − 𝑃𝑜𝑐𝑐)2(𝐿𝑅)(Lux)) (7) 
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In the original configuration of this OCC, the light switches off threshold can only decrease to 200 

lux and increase to 500 lux, which becomes constant afterward 

3.2.2.2 Lighting OCC #2 

The second implemented OCC (lighting OCC #2) works with a threshold for switching lights on 

and off [48]. The switching on threshold is derived dynamically based on the average of indoor 

illuminance when the occupant turns on the light (Equation 8). 

𝐿(𝑇ℎ)𝑂𝑁 =
∑ 𝐼𝑛

𝑁
𝑛=1

𝑁
 

 

 

(8) 

 

Where 𝐿(𝑇ℎ)𝑂𝑁 is a light switch on threshold, In is indoor illuminance when occupant switches the 

light on, and N is the number of times that occupant switches the light on within one month.  

This average is taken every month, which means that the threshold gets updated monthly. The light 

switching off threshold is calculated by adding the light's illuminance in the room at night (e.g. 

450 Lux) to the threshold for Light switch on. 

3.2.2.3 Thermostat OCC 

The implemented thermostat OCC works with heating setpoint in the winter and cooling setpoint 

in the summer [49]. The heating setpoint decreases gradually till it is interrupted by occupant 

thermostat keypress action, after which it increases slightly. Similarly, the cooling setpoint 

increases gradually as long as no interaction with thermostats by the occupant is observed. Once 

the occupant adjusts the thermostat setpoint, the cooling setpoint decreases slightly. The rate of 

increasing or decreasing setpoints relied on a quadratic deviation (Equations 9- 14): 

𝐻𝑆𝑃 =
(−𝑎𝐻 − 2)

𝑏𝐻
 

 

 

(9) 
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𝑃𝑜𝑐𝑐 =
1

1 + 𝑒−(𝑎𝐻+𝑏𝐻∗𝑇𝑖𝑛)
 

 

(10) 

 

Where  𝐻𝑆𝑃 is the heating setpoint determined by OCC, and 𝑃𝑜𝑐𝑐 is the probability of increasing 

heating setpoint by occupant. This probability is predicted by OCC based on a logistic regression 

probability with indoor temperature (𝑇𝑖𝑛) as a predictor and 𝑎𝐻 and 𝑏𝐻 are the coefficients of the 

logistic regression.  

In the winter, if occupant does not increase the HSP, these two thresholds get updated every 30 

minutes based on the following formulas, which causes a slight decrease in the HSP: 

𝑎𝐻
′ = 𝑎𝐻 − ((𝑃𝑜𝑐𝑐

2)(1 − 𝑃𝑜𝑐𝑐
2)(𝐿𝑅)) 

 

 

(11) 

 

𝑏𝐻
′ = 𝑏𝐻 − ((𝑃𝑜𝑐𝑐

2)(1 − 𝑃𝑜𝑐𝑐
2)(𝐿𝑅)(𝑇𝑖𝑛) 

 

 

(12) 

 

Where 𝑎𝐻
′and 𝑏𝐻

′
 are the new values of the logistic regression coefficients, LR is the learning rate 

which is defined as 0.001 in the original configuration of this OCC, and 𝑇𝑖𝑛 is indoor temperature. 

The initial value of 𝑎𝐻 and 𝑏𝐻 were 20 and -1, respectively. 

If the occupant increases the HSP, these two thresholds get updated using the following equations: 

 

𝑎𝐻
′ = 𝑎𝐻 + ((𝑃𝑜𝑐𝑐)(1 − 𝑃𝑜𝑐𝑐)2(𝐿𝑅)) 

 

 

(13) 

 

 

𝑏𝐻
′ = 𝑏𝐻 + ((𝑃𝑜𝑐𝑐)(1 − 𝑃𝑜𝑐𝑐)2(𝐿𝑅)( 𝑇𝑖𝑛)) 

 

 

(14) 
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Similarly, for the cooling setpoint in the summer: 

 

𝐶𝑆𝑃 =
(−𝑎𝐶 − 2)

𝑏𝐶
 

 

 

 

(15) 

 

𝑃𝑜𝑐𝑐 =
1

1 + 𝑒−(𝑎𝐶+𝑏𝐶∗𝑇𝑖𝑛)
 

 

 

(16) 

 

 

Where  𝐶𝑆𝑃is the cooling setpoint which is defined by OCC, and 𝑃𝑜𝑐𝑐 is the probability of reducing 

cooling setpoint by the occupant, which is predicted by OCC based on a logistic regression model 

with indoor temperature (𝑇𝑖𝑛) as a predictor and 𝑎𝐶  and 𝑏𝐶  are the coefficients of the logistic 

regression. In the summer, if occupant does not decrease the CSP, these two thresholds get updated 

every 30 minutes using the following equation, which results in a slight increase in the CSP: 

 

𝑎𝐶
′ = 𝑎𝐶 − ((𝑃𝑜𝑐𝑐

2)(1 − 𝑃𝑜𝑐𝑐
2)(𝐿𝑅)) 

 

 

 

(17) 

 

𝑏𝐶
′ = 𝑏𝐶 − ((𝑃𝑜𝑐𝑐

2)(1 − 𝑃𝑜𝑐𝑐
2)(𝐿𝑅)(𝑇𝑖𝑛) 

 

 

(18) 

 

In which  𝑎𝐶
′and 𝑏𝐶

′
 are the new values of the logistic regression coefficients, LR is the learning 

rate which is defined as 0.001 in the original configuration of this OCC, and 𝑇𝑖𝑛 is indoor 

temperature. The initial value of 𝑎𝐶 and 𝑏𝐶  were -25 and 1, respectively. 

Once occupant decreases the heating setpoint, these two coefficients are updated based on the 

following equations: 

 

𝑎𝐶
′ = 𝑎𝐶 + ((𝑃𝑜𝑐𝑐)(1 − 𝑃𝑜𝑐𝑐)2(𝐿𝑅)) 

(19) 
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𝑏𝐶
′ = 𝑏𝐶 + ((𝑃𝑜𝑐𝑐)(1 − 𝑃𝑜𝑐𝑐)2(𝐿𝑅)( 𝑇𝑖𝑛)) 

 

 

(20) 

 

 

The original configuration of this OCC has the conservative boundaries of [20,22] ℃ for heating 

setpoint and [22, 25] ℃ for cooling setpoint. In other words, if the setpoints exceed these 

boundaries, it becomes constant at the boundaries' point till it backs to the defined range. 

3.2.3 Sensitivity analysis 

In this case study, a sensitivity analysis was conducted to identify the most influential variables on 

EUI and the number of occupant interactions with building systems. Overall, two main scenarios 

for sensitivity analysis were defined: 1- variables selection for the most influential parameters on 

EUI by considering tolerant behaviour scenario, 2- variable selection based on the most influential 

variables on the number of occupant interactions regarding sensitive behaviour scenario. Since 

sensitive occupant interacts with building systems more frequently, this type of occupant is more 

appropriate to show how the number of interactions is affected by the changes in defined variables. 

Sensitivity analysis was conducted separately for the three OCCs (Light #1, Light #2, and 

Thermostat). Therefore, a total of 6 cases for sensitivity analysis were defined. To quantify the 

effect of changes in each variable on the target variable (EUI or comfort), each variable changed 

in the range with the defined increment in Table 5 and Table 6, while other variables were kept 

constant in their original values. 

To investigate the results of sensitivity analysis, the slope of 
𝜕𝑦𝑖

𝜕𝑥𝑖
  is calculated using the finite 

differences method, and then the mean (μ) and standard deviation (SD) were calculated. ∂𝑦𝑖 

indicates the change in target variable to the corresponding change in variable x. In this method, a 

larger value of μ implies that the variable has a larger overall influence on the target variable. The 

larger value of SD indicates that the influence of that variable is highly nonlinear. This method 

allows a qualitative assessment of the importance of each variable while dealing with nonlinear 
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responses. The sensitivity analysis results were normalized before calculating μ and SD to make 

the variables comparable as their scales were not the same. 

Table 5: Range of design variables for the three OCCs. 

Variable Unit Min Max Increment OCC 

VT (glazing) - 0.3 0.8 0.05 Lighting 

Wall visible reflectance - 0 1 0.1 Lighting 

Roof visible reflectance - 0 1 0.1 Lighting 

Floor visible reflectance - 0 1 0.1 Lighting 

North axis Degree 0 270 90 Lighting, Thermostat 

Blinds visible transmittance - 0.05 0.2 0.05 Lighting 

WWR  - 20 70 5 Lighting, Thermostat 

U-Factor (glazing) W/m2K 1.4 2.2 0.1 Thermostat 

SHGC - 0.3 0.6 0.05 Thermostat 

WWR  - 20 70 5 Lighting, Thermostat 

Blind solar transmittance - 0.05 0.2 0.05 Thermostat 

Wall R-value 𝑚2𝐾
𝑊⁄  4 11 1 Thermostat 

 

Table 6: Range of OCC configurational settings variables. 

variables OCC Min Max Unit Increment 

Upper boundary for heating setpoint Thermostat 22 30 ℃ 0.5 

Lower boundary for heating setpoint Thermostat 15 20 ℃ 0.5 

Upper boundary for cooling setpoint Thermostat 12 30 ℃ 0.5 

Lower boundary for cooling setpoint Thermostat 15 20 ℃ 0.5 

Learning rate Thermostat 0.0005 0.01 - 0.0005 

Time interval Thermostat 10 240 Minute - 

Upper boundary for light switches off threshold Lighting #1 300 700 Lux 20 

Lower boundary for light switches off threshold Lighting #1 0 300 Lux 20 

Learning rate Lighting #1 0.0005 0.1 - 0.0005 

Time interval Lighting #1 10 240 Minute - 

Period of updating the threshold Lighting# 2 1 120 Day 1 

Threshold for the first period Lighting# 2 0 300 Lux 20 

 

3.2.4 Optimization 

In this case study, four optimization cases were defined (Table 7). The GA was used to optimize 

the performance of OCCs, and optimization was conducted using Pymoo Python packages. In 

addition, a number of Python packages such as EPPY and GEOMEPPY were used as an interface 

to modify (EMS) object's scripts in EnergyPlus through Python programming language to change 

the decision variables of the optimization problem in the simulation environment. GA parameters 

such as population size, mutation probability, crossover probability, elite ratio, which are a 
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function of problem space and available computational capacity, are shown in Table 8. These 

parameters were selected based on a practical approach by evaluating the optimum result 

improvement and the computational time. For this study, the maximum number of iterations (40) 

is considered for termination criteria.  

Table 7: The list of optimization cases 

  OCC thermostat and lighting #1  OCC thermostat and lighting #2  

Occupant type Tolerant Sensitive Tolerant Sensitive 

Case # 1 2 3 4 

 

Table 8: GA optimization parameters 

Optimization parameters Value 

Population size 15 

Cross over probability 0.7 

Mutation probability 0.35 

Elite ratio 0.05 

Maximum number of generations 40 

 

The main objective of optimization was to minimize EUI while maximizing occupant comfort. A 

two-objective and a three-objective optimization problems were defined. For the former, two 

objective functions were formulated: the first one was annual energy consumption per square meter 

(EUI), and the second objective function was defined as the total annual number of thermostat 

keypresses and light switches by the occupant (used as a comfort proxy). Since the annual number 

of light switches is naturally much larger than the number of thermostat keypresses, the second 

objective function was normalized. To this end, the number of interactions was divided by the 

maximum observed number of interactions. For two-objective optimization, it was assumed that 

there is no difference between interaction with light switch and interaction with thermostat 

keypress in terms of the level of comfort. As a result, the goal is to minimize the number of 

interactions in total (summation of interactions with light switch and thermostat keypress) 

regardless of the type of interaction. As to three-objective optimization, three objective functions 

were defined as follows: 1- EUI, 2- Annual number of light switches, 3- Annual number of 
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thermostat keypresses. The logic behind three-optimization was to distinguish between two types 

of interactions with light switches and thermostat keypress from the point of comfort view.  

As the simulation relied on stochastic models, EUI and the number of occupant interactions with 

building systems was different after each run with a set of identical variables. Therefore, 

simulations had to be repeated multiple times to get an average of EUI and the number of 

interactions. To this end, the initial model was run 200 times, and the expanding mean for EUI and 

the number of interactions were calculated. It was found that after 32 runs, the changes in 

expanding mean for EUI were less than 2%. The change in expanding mean for the number of 

interactions by sensitive occupant with light, setpoint increase, and setpoint decrease were less 

than 2% after 25, 32, and 110 runs, respectively (Figure 7). Therefore, to calculate the objective 

functions for each set of candidate parameters, the model was executed 110 times, and the average 

value of target variables was calculated over 100 runs using a high-performance computer (HPC) 

with multi-core processing. Parallel processing allows to break down a complicated, time-

consuming problem into different parts and distribute them among a group of cores. Each core 

executes the assigned task independently. At the end of the process, the final results are pooled. In 

this study, a 32-core processer was used, which significantly lowered the computational time 

required for executing the simulation-based multi-objective optimization procedure.  

As mentioned in Section 3.1.3, optimization was conducted using two different steps for both two-

objective and three-objective optimization. In the following, each step is explained in more detail. 
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(a) (b) 

  

(c) (d) 

Figure 7: Change in expanding mean over 200 runs for a) EUI, b) light switches on, c) setpoint increase, and d) setpoint decrease. 

3.2.4.1 Optimization step one 

Two types of decision variables, specifically building design variables and OCC configurational 

settings variables, were defined. In the optimization step one, optimization was conducted using 

building design variables as the optimization decision variables. In this step, simulation was run 

while OCC configurational settings were set to their original values. Table 5 indicates the solution 

space of design variables for three investigated OCCs. These ranges of design parameters were 

selected in a way that meets the requirements by NECB 2017. 

3.2.4.2 Optimization step two 

In optimization step two, the optimal points obtained from optimization step one were used as the 

value of building design parameters, and the optimization was conducted using OCC 

configurational variables as the optimization variables. The decision variables for three 

investigated OCCs were formulated as follows:  
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Regarding the original configuration of lighting OCC #1, the light switch of threshold can only 

decrease to 200 lux and increase to 500 lux, which becomes constant afterward. In this study, the 

boundaries of (0, 300) and (300, 700) with the increment of 20 Lux were considered for minimum 

and maximum limits for threshold, respectively, to identify the optimized constraints for OCC 

configuration based on each occupant type. Moreover, a boundary of (0.0005, 0.01) was 

considered as an optimization boundary for learning rate, which affects the intensity of the 

increasing and decreasing rate. The time interval when OCC increases the threshold is every 30 

minutes in the original configuration. The optimization problem defined the following time 

intervals to find the optimal time span for this OCC configuration: 10, 20, 30, 60, 90, 120, 150, 

180, 210 and 240 minutes. 

The decision variables for lighting OCC #2 were considered as follows: boundaries of (1,120) days 

are considered for the duration which the average take over for calculating light switch on 

threshold to investigate different duration from one day to almost one season. This average is taken 

every one month in the original configuration. In addition, a boundary of (0, 300) Lux was defined 

as a boundary for the initial value of the threshold when OCC still does not learn from occupant 

behaviour. 

For thermostat OCC, a range of [15, 20] for the lower boundary of the heating setpoint and [22, 

30] for the upper boundary of the heating setpoint were considered. Likewise, a range of [15, 20] 

for the lower boundary and [25, 30] for the upper boundary of the cooling setpoint were considered 

to estimate the optimal boundaries. In addition, a boundary of (0.0005, 0.01) was defined for 

learning rate, which affects the intensity of the increasing and decreasing rate. As mentioned 

earlier, the time interval when OCC increases the cooling setpoint and decreases the heating 

setpoint is every 30 minutes in the original configuration. The solution space for this variable was 

defined as 10, 20, 30, 60, 90, 120, 150, 180, 210, and 240 minutes for optimization problems to 

determine the best time interval for each optimization case.  

 Table 6 shows the solution space of OCC configurational variables defined for the optimization 

problems. Overall, the solution spaces of 1.43× 1021 for the combination of OCC thermostat and 

OCC light #1, and 74.02× 1019 for the combination of OCC thermostat and OCC light #2 were 

defined.  
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Chapter 4:  Results and discussion 

This section presents the results of the case study, including the sensitivity analysis to investigate 

the effect of design variables and OCC configurational settings on annual energy consumption and 

the annual number of occupant interactions. This is followed by presenting the results of multi-

objective optimization to minimize EUI and the number of occupant interactions for both tolerant 

and sensitive occupant scenarios. Finally, the major findings for each OCCs are discussed in the 

last subsection. 

4.1 Sensitivity analysis results 

Figure 8 depicts the results of sensitivity analysis for OCC thermostat in which EUI was defined 

as the dependent variable. Overall, there are two main areas in the plot which show the influential 

and linear variables (under the line of μ=SD), and influential but nonlinear (above the line plot for 

μ=SD). As the values of μ get closer to 0, the less influential the variables are. Figure 9 illustrates 

the sensitivity analysis results for OCC thermostat, considering the number of occupant 

interactions as the target variable. The analysis indicated all the variables, including OCC variables 

and design parameters, were influential on EUI and the number of occupant interactions. 

  

(a) (b) 

Figure 8: Sensitivity analysis results for OCC thermostat in which EUI defined as the dependent variable a) design variables, b) 

OCC configurational settings variables 
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(a) (b) 

Figure 9:  Sensitivity analysis results for OCC thermostat configurational settings variables for the number of a) SP increase, b) 

SP decrease. 

According to the sensitivity analysis results for thermostat OCC using building design variables 

(see Appendix), glazing U-factor, WWR, exterior wall R-value and solar heat gain coefficient 

showed strong highly linear effects on EUI. Building axis, however, had a highly nonlinear but 

influential effect on EUI. Among OCC configurational settings variables for OCC thermostat, 

upper boundary, and lower boundary for CSP had a strong linear impact on EUI, while the other 

four OCC variables were recognized as influential but nonlinear parameters. Among OCC 

variables, learning rate was found to be a highly influential variable for both EUI (nonlinear) and 

the number of interactions (almost linear) for this OCC. 

A similar sensitivity analysis was conducted for OCC lighting #1 and OCC lighting #2 (results can 

be found in the Appendix). Based on the results, among design variables, ceiling visible 

absorptance, blind visible transmittance, WWR, and wall visible absorptance were identified as 

influential linear variables in changing EUI for both OCC light #1 and light #2. All the investigated 

OCC configurational settings variables for both OCC light #1 and light #2 were found as influential 

variables for EUI and the number of interactions. Overall, all the investigated OCC variables were 

included in the multi-objective optimization problem since they showed considerable effects on at 

last one of the objective functions based on the sensitivity analysis results. 

4.2 Multi-objective optimization results 

This section shows the results of multi-objective optimization to identify the optimal Pareto-Front 

alternatives for design parameters and OCC configurational settings variables. Optimization was 
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conducted for four cases shown in Table 7. For brevity, the results of optimization for case #1 are 

presented and the results of optimization for the other three cases can be found in Appendix. In the 

following, the results of two-objective optimization and three-objective optimization are presented 

respectively.  

4.2.1 Two-objective optimization results 

By conducting step one optimization, in which design variables were defined as the optimization 

decision variables, the algorithm introduced 5 Pareto-optimal alternatives (Figure 10_a). Point #3 

was selected as the best trade-off between the two objectives. In the second step, the optimization 

was performed using the optimal design variables of the selected best solution (Point #3) to find 

the Pareto-optimal alternatives for OCC configurational settings. The result of optimization for 

step two is shown in Figure 10-b. 

 

 

(a) 

  3 
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(b) 

Figure 10: Results of multi-objective optimization for case #1: a) Optimization-step one, b) Optimization-Step two 

Optimization was also conducted using a one-step optimization problem explained in Section 

3.1.3. Figure 11 shows a comparison between the results of one-step optimization versus two-step 

optimization. It can be seen how the two-step optimization method was capable of further 

minimizing the defined objective functions than one-step optimization. These two steps of 

optimization were also performed for the other three cases shown in Table 7. The values of optimal 

design parameters introduced by the first optimization step for the four optimization cases are 

shown in Table 9. 

 

1 

2 

3 
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Figure 11: Comparison of one-step optimization with the two-step optimization method. 

 

Table 9: The building design value of selected Pareto-optimal alternatives for all Optimization cases. 

Case 

# 

U-Factor 

(glazing) 

SHGC North 

axis 

WWR  Blind 

ST 

Wall 

R-

value 

Window 

VT 

Wall 

visible 

reflectance 

Ceiling 

visible 

Absorptance 

Floor visible 

Absorptance 

Blind 

VT 

1 1.4 0.6 0 0.2 0.15 11 0.75 0.0 0.0 0 0.2 

2 1.4 0.45 0 0.2 0.15 11 0.8 0.0 0.0 0 0.2 

3 1.4 0.6 0 0.2 0.05 10 0.7 0.0 0.0 0.3 0.2 

4 1.4 0.45 0 0.2 0.2 10 0.8 0.0 0.1 0 0.15 

 

In analyzing the optimization results, three types of Pareto optimal points (P.O.P) were selected 

(Figure 10), where P.O.P #1 has the highest EUI but the lowest number of interactions (comfort-

side), P.O.P #3 has the lowest EUI but the highest number of interactions (energy-side), and P.O.P 

#2 as the best trade-off between two objectives (balanced-solution). The values of these OCC 

configurational alternatives for optimization case #1 and case #2 are shown in Table 10, while case 

#3 and case #4 are shown in Table 11. 
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Table 10: Value of selected Pareto-optimal alternatives for optimization case #1 and case #2. 

OCC Thermostat configurations 

OCC Variable Unit 

Pareto-optimal solutions 

(Case #1_Tolerant) (Case #2_Sensitive) 

P.O.P #1 P.O.P #2 P.O.P #3 P.O.P #1 P.O.P #2 
P.O.P #3 

 

Learning rate - 0.002 0.0085 0.008 0.0005 0.0075 0.0085 

Time interval min 60 10 30 240 30 30 

Maximum amount 

for threshold 

(Heating) 

℃ 26 24 24.5 27 26 26.5 

Minimum amount 

for threshold 

(Heating) 

℃ 17 16 15 19 17 16.5 

Maximum amount 

for threshold 

(Cooling) 

℃ 27 29 30 25 25.5 30 

Minimum amount 

for threshold 

(Cooling) 

℃ 17 17.5 18 16 17 18 

OCC Light #1 configurations 

OCC Variable Unit 

Pareto-optimal solutions 

(Case #1_Tolerant) (Case #2_Sensitive) 

P.O.P #1 P.O.P #2 P.O.P #3 P.O.P #1 P.O.P #2 P.O.P #3 

Learning rate - 0.004 0.004 0.004 0.005 0.0055 0.0055 

Time interval min 150 10 10 180 30 30 

Upper boundary for 

the light threshold 
Lux 340 520 340 440 480 540 

Lower boundary for 

the light threshold 
Lux 180 40 40 200 280 0 

 

Table 11: Value of selected Pareto-optimal alternatives for optimization case #3 and case #4. 

OCC Thermostat configurations 

OCC Variable Unit 

Pareto-optimal solutions 

(Case #3_Tolerant) (Case #4_Sensitive) 

P.O.P #1 P.O.P #2 P.O.P #3 P.O.P #1 P.O.P #2 P.O.P #3 

Learning rate - 0.005 0.0085 0.009 0.0005 0.0085 0.009 

Time interval min 30 20 20 30 30 20 

Maximum amount 

for threshold 

(Heating) 

℃ 26.5 25 24.5 27.5 26.5 26 

Minimum amount for 

threshold (Heating) 
℃ 16.5 16 15 18.5 17 16.5 

Maximum amount 

for threshold 

(Cooling) 

℃ 25.5 27 29.5 24 25 25.5 

Minimum amount for 

threshold (Cooling) 
℃ 18 18.5 20 17 17 18 

OCC Light #2 configurations 

OCC Variable Unit Pareto-optimal solutions 
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(Case #3_Tolerant) (Case #4_Sensitive) 

P.O.P #1 P.O.P #2 P.O.P #3 P.O.P #1 P.O.P #2 P.O.P #3 

Period of updating 

the threshold 
Day 4 60 118 1 6 87 

Threshold for the first 

period 
Lux 160 60 0 280 280 260 

 

Baseline scenarios for all four optimization cases were defined when they worked using initial 

design parameters and original values of OCC configurational settings (Table 12). The baseline 

scenarios provided an environment where different OCCs can be compared under similar 

conditions. Based on the results, before optimization, lighting OCC#1 used 12.77 kWh/m2/yr of 

electricity more than lighting OCC #2. However, the difference between EUI was 8.52 kWh/m2/yr. 

As lighting OCC #1 used more electricity for lighting energy than lighting OCC #2, thermostat 

OCC needed less heating energy when working with the combination of this OCC than lighting 

OCC #2. In other words, a small part of the need for heating energy was produced by lights. Figure 

12 indicates the percentage of changes in the optimal value of the two objective functions relative 

to the baseline scenarios for the three selected Pareto-optimal alternatives for each of the 

optimization cases. As mentioned above, the results of baseline scenarios revealed that lighting 

OCC #2 showed a better performance in terms of reducing light electricity consumption. The 

annual electricity consumption for OCC lighting #1 was more than twice that of OCC lighting #2 

for both occupant types. Furthermore, the type of occupant affected the performance of OCC light 

#1 more than OCC light #2 as the range of differences in EUI, and the number of interactions were 

more significant for OCC light #1 than OCC light #2 by changing the type of occupant. However, 

after optimizing the performance of these two OCCs, the results indicated that OCC lighting# 1 

had a better performance in terms of energy consumption than OCC lighting #2, which highlighted 

the necessity of customizing OCC configurations based on the type of occupant. 

Generally, the optimization algorithm was able to reduce both objective functions for all 

optimization cases to a great extent. The optimization results for the combination of OCC light #1 

and OCC thermostat showed that the optimization algorithm could minimize EUI by 42% and 35% 

for tolerant and sensitive occupants, respectively. It also introduced optimal alternatives that 

improve occupant comfort by reducing the number of interactions by 50% and 42% for tolerant 

and sensitive occupants, respectively. Likewise, using the optimal configurational setting for OCC 
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light #2 and OCC thermostat, energy usage was reduced by 31% and 25% for the tolerant and 

sensitive occupant, respectively. 

A number of alternatives can improve occupant comfort to 55% and 30% for tolerant and sensitive 

occupant types, respectively. These three types of optimal solutions provide various options for 

each type of occupant. Based on the priority of the occupant, which can be either energy-saving 

priority or comfort priority, the OCC configuration can be customized. As an example, if the 

priority of a sensitive occupant is energy-saving than comfort, the optimization algorithm proposed 

a set of optimal configurations that can reduce energy consumption to 35%. However, occupant 

comfort yet can be improved to 8%. On the other hand, a sensitive occupant with a comfort priority 

can reach a 42% increase in comfort while reducing energy consumption to 24%. In contrast, 

tolerant occupant with energy priority allowed to increase the number of interactions by about 1.5 

times more than the baseline scenario to reach about 40% energy-saving. It does not happen for 

sensitive occupant which is aligned with the fact that the level of tolerance is higher for tolerant 

occupant than sensitive occupant. In other words, for sensitive occupant, there is no trade-off 

between energy-saving and interactions if they reach this high number of interactions (e.g., 1.5 

times more than baseline). It would happen in the points that there is no energy-saving  in exchange 

for lowering comfort to this extent. 

Table 12: The results of baseline scenarios for all four cases. 

Case # 1 2 3 4 

Average light electricity use (kW/m2) 20.31 21.50 7.54 8.54 

Average annual number of interactions (Normalized) 1.2 1.73 1.33 1.57 

Average of EUI (kWh/m2/yr) 82.72 92.02 74.20 83.92 

 

 

 



39 

 

 

 

(a) 

 

 

(b) 

Figure 12: Percentage of changes in the optimal values of a) EUI, and b) Interactions, relative to the baseline scenarios. 
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4.2.2 Three-objective optimization results 

The results of optimization for the three-objective optimization problem for tolerant and sensitive 

occupants are shown in Figure 13. Each axis is dedicated to each defined objective function. The 

rainbow color bar shows the intensity of EUI in order of the colors, from blue corresponding to 

the lowest to red corresponding to the highest EUI. Three-optimization presented several optimal 

points on the Pareto plot. Each point can be designated as the optimum state of the OCC 

configurational settings. Selecting any point depends on the decision-maker criteria. Three points 

were distinguished on the Pareto plot, where P.O.P #1 has the lowest EUI, P.O.P #2 has the lowest 

number of thermostat keypress, and P.O.P #3 has the lowest number of light switches. The value 

of this Pareto-optimal points is shown in Table 13 and Table 14. As expected, EUI changed 

inversely with the number of interactions, either thermostat keypress or light switches. In other 

words, decreasing EUI increases the number of interactions. In addition, optimization introduced 

some points with equal EUI (same color tone) but different interactions with thermostat keypress 

and light switches. One of the main benefits of three-objective optimization is providing various 

configurations that can meet different occupant needs without affecting EUI inversely. For 

example, if an occupant complains about a high number of interactions with light switches but not 

thermostat, the issue can be resolved by switching to another appropriate Pareto-optimal 

alternative without increasing energy consumption. Based on the results, it can be done by 

decreasing learning rate for OCC lighting (0.002) and decreasing the frequency of updating light 

threshold for light switching off (every four hours) while increasing the corresponding value for 

OCC thermostat (e.g., increasing learning rate to 0.0015 and the frequency of updating the 

setpoints to every 150 minutes). Although two-objective optimization was able to minimize energy 

usage more than three objective-optimization, three-objective optimization gives more freedom 

over controlling the number of interactions based on their type, which can be interpreted as 

granting privilege to the comfort.  
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(a) 

 

(b) 

Figure 13:Three-objective optimization results for 2) Case #1 and b) Case #2. 
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Table 13: Value of selected Pareto-optimal alternatives for three-optimization case #1 and case #2. 

OCC Thermostat configurations 

OCC Variable 
Uni

t 

Pareto-optimal solutions 

(Case #1_Tolerant) (Case #2_Sensitive) 

P.O.P #1 P.O.P #2 P.O.P #3 P.O.P #1 P.O.P #2 P.O.P #3 

Learning rate - 0.0085 0.005 0.0015 0.0065 0.0005 0.0075 

Time interval min 60 240 150 150 240 240 

Maximum amount 

for threshold 

(Heating) 

℃ 22 26 22.5 23 26.15 23.5 

Minimum amount 

for threshold 

(Heating) 

℃ 15 19 17 18 20 17.5 

Maximum amount 

for threshold 

(Cooling) 

℃ 29 26 28 25.5 25.5 27 

Minimum amount 

for threshold 

(Cooling) 

℃ 20.5 19 19 19.5 16.5 18 

OCC Light #1 configurations 

OCC Variable 
Uni

t 

Pareto-optimal solutions 

(Case #1_Tolerant) (Case #2_Sensitive) 

P.O.P #1 P.O.P #2 P.O.P #3 P.O.P #1 P.O.P #2 P.O.P #3 

Learning rate - 0.006 0.0045 0.002 0.004 0.004 0.0005 

Time interval min 60 150 240 120 240 240 

Upper boundary for 

the light threshold 
Lux 300 320 420 320 340 440 

Lower boundary for 

the light threshold 
Lux 20 200 260 140 260 280 

 

Table 14: Value of selected Pareto-optimal alternatives for three-optimization case #3 and case #4. 

OCC Thermostat configurations 

OCC Variable 
Uni

t 

Pareto-optimal solutions 

(Case #3_Tolerant) (Case #4_Sensitive) 

P.O.P #1 P.O.P #2 P.O.P #3 P.O.P #1 P.O.P #2 P.O.P #3 

Learning rate - 0.009 0.0055 0.0085 0.0055 0.001 0.005 

Time interval min 10 240 210 20 240 240 

Maximum amount 

for threshold 

(Heating) 

℃ 22.5 25.5 23.5 24 26.5 24.5 

Minimum amount for 

threshold (Heating) 
℃ 15.5 20 17.5 17.5 20.5 17 

Maximum amount 

for threshold 

(Cooling) 

℃ 28.5 26 28 26.5 24.5 28 

Minimum amount for 

threshold (Cooling) 
℃ 21 19.5 20.5 17.5 18 17.5 

OCC Light #2 configurations 

OCC Variable 
Uni

t 

Pareto-optimal solutions 

(Case #3_Tolerant) (Case #4_Sensitive) 
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P.O.P #1 P.O.P #2 P.O.P #3 P.O.P #1 P.O.P #2 P.O.P #3 

Period of updating 

the threshold 
Day 85 12 14 60 60 8 

Threshold for the first 

period 
Lux 120 80 260 160 160 280 

 

4.3 Discussion 

In this section, the major findings of the results of multi-objective optimization are discussed. 

The first subsection’s discussion focuses on the results of step one optimization, and the rest of 

the subsections are dedicated to the results of optimization for each investigated OCC. 

4.3.1 Building design variables 

According to the optimization results for building design parameters (Table 5), some optimal 

points were in the same range for all cases regardless of the type of occupants. To name the main 

one: the south direction of the building was identified as the optimal axis to minimize EUI as well 

as the number of interactions for both occupant types. Since the simulation was conducted using 

the cold climate of the Montreal weather file, high solar heat gain in this direction causes a 

reduction in electricity consumption. In addition, WWR of 20% was estimated as the optimal 

window to wall ratio for both occupant types. One of the notable differences between the design 

parameters for different types of occupant was related to SHGC, which were gained as 0.6 and 

0.45 for tolerant and sensitive occupant, respectively. Given that the optimization algorithm chose 

the south direction for the office building model as the optimal axis, the higher SHGC for tolerant 

occupant decreases energy consumption needs in the winter while not disturbing occupant comfort 

in the summer. However, the lower value of SHGC for sensitive occupant was selected as the 

optimal point. It can be said that, although higher SHGC would cause to decrease in energy usage 

in the winter, it disturbs sensitive occupant in the summer and results in a higher number of 

interactions with thermostat keypress. Moreover, window visible transmittance was identified as 

another feature that its optimal value depends on the type of occupant for both light OCC #1 and 

OCC #2. The difference between them was quite slight, though. 

4.3.2 Lighting OCC #1 

For lighting #1 OCC, the optimal lower boundary of a threshold for switching lights off was 40 

lux and 280 lux for tolerant and sensitive occupant, respectively. It can be concluded that 200 lux 
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as the original lower boundary of the threshold for this OCC was too conservative for tolerant 

occupant. However, the upper boundary of 500 lux in the original configuration of this OCC was 

known as a bit strict; since the optimal value of some Pareto-optimal alternatives exceeds the 

original value of this OCC to ensure occupant comfort (e.g., 540 lux). In the original configuration, 

this OCC reduced the threshold every 30 minutes. Based on the optimal alternatives introduced by 

the optimization algorithm, this frequency can be reduced to every 10 minutes for tolerant 

occupant. If the goal is to improve the comfort for sensitive occupant, the algorithm suggested 

regulating time interval every 3 hours to reduce the switch-off threshold. 

4.3.3 Lighting OCC #2 

Regarding the optimization results for lighting OCC #2, the frequency of updating the light 

switching on threshold (P.O.P #2) was identified as almost every week and every two months for 

the sensitive and tolerant occupant, respectively. It can be said that this period was reduced to one 

week for sensitive occupants as they are naturally more vulnerable to changes in indoor 

illuminance. As a result, OCC should update the threshold more frequently to track their reaction 

to illuminance changes by passing days. Moreover, the fact that this threshold should be updated 

more frequently to skew to the comfort side of the plot makes sense as it is totally aligned with the 

results of sensitivity analysis results. 

4.3.4 Thermostat OCC 

Some logical patterns can be observed when comparing the optimal values of OCC variables for 

the three selected alternatives (Table 6). For example, optimal points for the learning rate of the 

OCC thermostat were introduced as 0.005, 0.0075, and 0.0085 for alternatives 1,2 and 3 for 

sensitive occupant, respectively. Learning rate was growing as the optimal alternatives moved 

from the comfort-side (right) side of the Pareto-Front plot to the lowest EUI (left) side of it. 

Similarly, it happened for the tolerant occupant; based on sensitivity analysis results, a higher 

learning rate reduced energy consumption while disrupting occupant comfort. In addition, in 

general, the optimal value of the learning rate for tolerant occupant was higher than the related 

counterpart for sensitive occupant. As the learning rate acts as a rate of increase or decrease of the 

new setpoint by OCC, there is a need to slow down this rate for sensitive occupant to avoid 

disturbing occupant comfort. Likewise, time interval for OCC thermostat, which shows the 

frequency of reducing HSP in the winter and increasing CSP in the summer by OCC, were higher 
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for tolerant than sensitive occupant. It can be concluded that, although a smaller value of time 

interval can minimize energy usage and the number of interactions for tolerant occupant, the longer 

time interval would be necessary for sensitive occupant, since it can guarantee comfort for this 

type of occupant.  

The original configuration of OCC thermostat defined the boundary of [22, 25] ℃ for cooling 

setpoint in the summer. The Pareto-optimal alternatives introduced these boundaries so that they 

can reduce to 16℃ or reach 27℃ in the summer. On the other hand, by comparing EUI and the 

number of interactions for these alternatives with the baseline scenario, it was found that the two 

objectives improved. In other words, the optimization algorithm was able to find the optimal points 

that can improve occupant comfort to a great extent while minimizing energy consumption. 

However, the optimal points for the boundaries were not as strict as the original configuration. 

Correspondingly, the heating setpoint can change with the boundary of [20, 22] ℃ in the original 

configuration. Nevertheless, the Pareto-front optimal solutions of the upper boundary for heating 

setpoint exceeded 27℃ and 26℃ for sensitive and tolerant occupant, respectively. Heating 

setpoint can also decrease to 16.5℃ and 15℃ for sensitive and tolerant occupant, respectively. It 

is worth noting that although expanding these boundaries gives more freedom to OCC to change 

the setpoint, it does not necessarily mean that it chooses a higher HSP or lower CSP. In fact, by 

expanding these boundaries, the OCC can learn from occupant interactions efficiently without 

increasing discomfort that can cause an increase in these occupant interactions with buildings. 
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Chapter 5:  Conclusion 

The operation of building systems is highly dependent on occupant behaviour and their interactions 

with building systems. OCCs are recognized as promising strategies to enhance energy 

management of buildings. Hence, optimizing the performance of such control systems and 

customizing their configurations based on the type of occupants and building is an important step 

to promote user satisfaction as well as energy efficiency. This study proposed a simulation-based 

framework to optimize the performance of OCC algorithms when learning from stochastic 

occupant behaviour. The main contribution of this research is integrating a simulation model with 

a multi-objective optimization algorithm to optimize the performance of OCCs in office buildings 

based on stochastic and dynamic occupant behaviour models. The simulation-based framework is 

also equipped with parallel processing capability, which enables robust assessment of optimization 

problems by investigating a larger domain of solutions while reducing computational time. The 

framework enables customizing OCC configurational settings while learning from behaviours of 

different occupant types. It also provided an environment in which different OCCs can be 

compared under similar conditions, which may not be easily feasible in real buildings.  

Conducting a sensitivity analysis on OCC configurational variables and design parameters gives 

an in-depth insight to decision-makers to identify which available options would significantly 

improve building energy efficiency and comfort for each occupant type. The two-step optimization 

framework provides a general approach to robustly optimize these variables for different ranges 

of occupant types. The first optimization step determines how building design parameters can be 

influenced by the type of occupant and the choice of OCC. The second optimization step enables 

improving OCC performance while learning from different ranges of occupant preferences. A 

single office building was modeled as a proof of concept of the proposed framework, which 

indicated that the original configuration of OCCs does not suit various types of occupants, which 

can cause occupant dissatisfaction and energy waste. It was found that the performance of OCCs 

can improve significantly when their configurational settings are fine-tuned to occupant 

preferences. In addition, a number of optimal building design parameters were influenced by the 

type of OCCs when learning from different occupant types. As a result, the choice of OCC and its 

parameters should be informed by design decisions.  
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The proposed framework will enable building operations to perform efficiently by working in 

optimal configurational settings for a broad range of occupant preferences and building types. 

Therefore, performing simulation using the presented framework for other cities' weather data files 

would allow building designers to localize the OCC to optimize energy consumption and occupant 

satisfaction in that context. Furthermore, building designers can use this framework to identify the 

most compatible combination of OCC configurational settings with design alternatives as well as 

the potential limitation of employing OCCs in existing buildings before field implementation. 

They can also use this framework to investigate how design parameters can be affected by 

considering the uncertainty due to occupant behaviour and the choice of OCC. In addition, it allows 

building operators to analyze and optimize OCC configurational settings based on the type of 

occupant and improve the performance of the building in terms of energy consumption and the 

level of comfort in the post-occupancy stage.    

5.1 Limitations and future work 

Notwithstanding all the benefits of the proposed framework, it should also be mentioned that the 

case study has some limitations that must be acknowledged. Since the presented simulation 

framework works with stochastic occupant behaviour, the performance of OCCs was optimized 

based on the assumptions of these probabilistic models. Although all the occupant behaviour 

models used in this study were previously published and developed and validated using real-world 

data (e.g. [24], [26], [43]), future work should consider integrating more comprehensive occupant 

behaviour models that represent other behaviours. For example, discomfort glare index (DGI) and 

the position of the occupant desk with respect to the window and light of the office could be 

included to simulate occupants’ interactions with lights and blinds more precisely. Furthermore, 

the correlation between different types of occupant behaviour can be investigated.  

The assumptions that were made to introduce sensitive and tolerant OB were arbitrary to represent 

two extreme occupant scenarios since there is generally no information on occupant type 

beforehand. To resolve this limitation, future work can investigate a more extensive range of 

occupant assumptions to introduce various occupant types and preferences. Although the results 

of step one optimization showed that optimal building design variables changed by the type of 

occupant and OCCs, applying these changes in building designs is quite challenging, specifically 

if the choice of OCCs or the type of occupant is identified after the design stage. To resolve this 
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issue, building designers would use this framework to identify the optimal designs variables for 

the average preferences of different occupant types, given uncertainty due to occupant behaviour. 

Subsequently, building operators can optimize OCC configurational settings for each occupant 

type using optimization step two of the framework. 

Future work will also focus on implementing and optimizing other OCCs that target different 

buildings systems using alternative approaches. Although the proof-of-concept case study was 

based on an individual office building model, the proposed framework can be extended to various 

building types, behaviours, and OCCs, which enables building operators to explore the potential 

benefits and appropriate settings for implementing OCC strategies. 

5.2 Reproducibility 

This section explains the overall steps of Python code, which can be found in the Appendix. 

At first, the required packages were installed and called from their sources. Then, the working 

directory is defined, and the EnergyPlus directory with the executable file is provided to the 

code. Based on the Pymoo package instruction, the optimization problem has to be structured 

like a class. One of the class components initializes the optimization criteria such as number of 

variables, number of objectives, the boundaries of variables, etc. The second component of the 

class is the simulation model developed for this paper's purpose. The path to "idf" file and 

weather file (epw) is passed to the code at this stage. After that, the variables (building design 

variables/ OCC configurational variables) which are selected based on sensitivity analysis results 

have to be defined with their applicable ranges. The code replaces the variables in the "idf" file 

with the assigned value from the optimization algorithm selection process at each simulation 

loop. Then, the code creates multiple identical idfs and passes them through the simulation 

program (EP) along with weather files. The multi-core processing is implemented to speed up 

the simulation process. The idf and weather files split based on the number of cores passed to the 

model. In this model, high-performance computing (HPC) is implemented to handle multicore 

processing. The number of cores passes to the code by the "Ncores=int(sys.argv[1])" command. 

Results of the simulation are stored in multiple arrays. At the end of one loop of the process, the 

average of each array will be passed to the optimization algorithm. According to the termination 

criteria, the algorithm will decide to terminate the process to continue to create a new set of 
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variables. The last part of the code is the genetic algorithm setting section. At this stage, the 

parameters and characteristics of the selected GA method are passed to the GA model to run the 

optimization algorithm. 
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Appendix A. The results of sensitivity analysis for OCC light #2 and OCC light #2. 

  

OCC light #1- Tolerant OCC light #1- Sensitive 

  

OCC light #2- Tolerant OCC light #2- Sensitive 
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Appendix B. Results of finite differences method for all cases. 

 

 

Result of sensitivity analysis for OCC thermostat design variables based on sensitive occupant scenario and the number of 

interactions as the target variable. 

 
OCC Thermostat _ Sensitive occupant_ Design variables 

Design Variables SP increase SP decrease 

Mean SD Mean SD 

1 Exterior Wall R-value 1 1.88 0.88 3.48 

2 SHGC 0.99 2.03 0.99 1.05 

3 WWR 0.86 1.39 0.97 0.81 

4 U-factor Glazing 0.81 1.74 0.88 1.34 

5 Building Axis 0.38 1.96 0.30 2.09 

6 Blind Solar Transmittance 0.20 2.41 0.27 2.12 

 

 

Result of sensitivity analysis for OCC thermostat variables based on sensitive occupant scenario and the number of interactions 

as the target variable 

 
OCC Thermostat _ Sensitive occupant  

OCC Variables 
SP increase SP decrease 

Mean SD Mean SD 

1 Lower boundary for CSP - - 0.97 0.81 

2 Upper boundary for CSP - - 0.84 1.55 

3 Learning Rate 0.99 2.06 0.94 3.24 

4 Lower boundary for HSP 0.90 0.87 - - 

5 Upper boundary for HSP 0.76 6.17 - - 

6 Time interval 0.10 5.29 0.79 8.40 
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Result of sensitivity analysis for OCC light #2 based on sensitive occupant scenario and the number of light switches on as the 

target variable. 

 
OCC Light #1 _ Sensitive occupant 

 OCC Variables Mean (𝝁) SD (∂) 

1 Blind VT 1 0.38 

2 Wall visible absorptance 0.98 2.22 

3 Building axis 0.85 2.33 

4 Floor visible absorptance 0.56 4.23 

5 Window VT 0.51 2.91 

6 Ceiling visible absorptance 0.36 4.45 

7 Learning rate 0.23 6.13 

8 The lower boundary for the light threshold 0.18 5.80 

9 The upper boundary for the light threshold 0.18 7.70 

10 WWR 0.05 4.30 

11 Time interval 0.04 5.18 

 

Result of sensitivity analysis for OCC light #2 based on sensitive occupant scenario and the number of light switches on as the 

target variable. 

 
OCC Light #2 _ Sensitive occupant 

 OCC Variables Mean (𝝁) SD (∂) 

1 Blind VT 0.99 0.58 

2 Ceiling visible absorptance 0.85 5.15 

3 The initial value of the threshold 0.76 5.83 

4 WWR 0.69 2.86 

5 Floor visible absorptance 0.65 3.67 

6 Window VT 0.54 6.82 

7 Wall visible absorptance 0.48 4.91 

8 Building axis 0.32 2.32 

9 Period of updating the threshold 0.07 31.30 
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Appendix C. Two-objective optimization results. 

 

Case #2- Step 1 (design variables) 

 

 

Case #2- Step 2 (OCC configurational variables) 
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Case #3- Step 1 (design variables) 

 

 

Case #3- Step 2 (OCC configurational variables) 
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Case #4- Step 1 (design variables) 

 

 

Case #4- Step 2 (OCC configurational variables) 
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Appendix D. Three-objective optimization results 

 

Case #3- Tolerant 

 

 

Case #4- Sensitive 
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Appendix E. PYTHON code of multi-objective optimization.  

"""multiprocessing runs""" 

 

#!/usr/bin/env python 

# coding: utf-8 

# %% 

import pandas as pd 

import os 

import eppy as ep 

from eppy import modeleditor 

import sys 

from eppy.modeleditor import IDF 

import pandas as pd 

import csv 

from statistics import mean 

import numpy as np 

from geneticalgorithm import geneticalgorithm as ga 

from eppy.pytest_helpers import do_integration_tests 

from eppy.runner.run_functions import install_paths, EnergyPlusRunError 

from eppy.runner.run_functions import multirunner 

from eppy.runner.run_functions import run 

from eppy.runner.run_functions import runIDFs 

import pymoo 

import autograd.numpy as anp 

 

from pymoo.problems.util import load_pareto_front_from_file 

from pymoo.model.problem import Problem 

from pymoo.algorithms.nsga2 import NSGA2 

from pymoo.optimize import minimize 

from pymoo.visualization.scatter import Scatter 

from pymoo.factory import get_algorithm, get_crossover, get_mutation, 

get_sampling 

from pymoo.model.population import Population 

from pymoo.performance_indicator.hv import Hypervolume 

from pymoo.util.nds.non_dominated_sorting import NonDominatedSorting 

Ncores=int(sys.argv[1]) 

 

 

# %% 

path = "/speed-scratch/z_khoras/" 

 

 

# %% 

iddfile = path+ '/EP-8-9/EnergyPlus-8-9-0/Energy+.idd' 

IDF.setiddname(iddfile) 
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# %% 

"""multiprocessing runs""" 

 

# using generators instead of a list 

# when you are running a 100 files you have to use generators 

 

import os  

from eppy.modeleditor import IDF 

from eppy.runner.run_functions import runIDFs 

 

class MultiNGBT(Problem): 

     

    def __init__(self): 

        super().__init__(n_var=7, n_obj=2, n_constr=0, 

elementwise_evaluation=True, type_var=int) 

        #self.args = args 

        self.xl=anp.array([0,0,0,0,0,0,0]) 

        self.xu = anp.array([3,10,10,10,10,10,3])         

     

 

 

    def _evaluate(self, X, out,*args, **kwargs): 

         

         

         

        def make_options(idf): 

            idfversion = 

idf.idfobjects['version'][0].Version_Identifier.split('.') 

            idfversion.extend([0] * (3 - len(idfversion))) 

            idfversionstr = '-'.join([str(item) for item in idfversion]) 

            fname = idf.idfname 

            options = { 

                'ep_version':idfversionstr, 

                'output_prefix':os.path.basename(fname).split('.')[0], 

                'output_suffix':'C', 

                'output_directory':os.path.dirname(fname), 

                'readvars':True, 

                'expandobjects':True 

                } 

            return options 

         

        path = "/speed-scratch/z_khoras/" 

        from eppy.modeleditor import IDF 

        iddfile = path+ '/EP-8-9/EnergyPlus-8-9-0/Energy+.idd' 

        IDF.setiddname(iddfile) 

        epwfile = path+'/PMBTNG/CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw' 

        #mapping for heating maximum threshold  

        #maxh=np.arange(25,30.1,0.5) 

        a = 26.5 

        #a = str(X[0]) 
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        # mapping for heating minimum threshold 

        #minhandc=np.arange(15,20.1,0.5) 

        b= 19 

 

        #mapping for cooling maximum threshold 

        #maxc=np.arange(25,30.1,0.5) 

        c=25.5 

        #c = str(X[1]) 

        #c= maxc[int(X[1])] 

        #mapping for colling minimum threshold 

        d=16.5 

 

        #mapping for U-factor glazing 

        #e1=np.arange(1.4,2.2,0.1) 

        e2=1.4 

 

        #mapping for SHGC 

        #SHGC=np.arange(0.3,0.61,0.05) 

        f=0.5499 

 

        # mapping axis to an array 

        g1=[0,90,180,270] 

        g2=g1[int(X[0])] 

 

        #mapping for blind solar transmittance 

        #Blind=np.arange(0.05,0.2,0.05) 

        h=0.05 

 

        #mapping wwr 

        i1=np.arange(0.2,0.71,0.05) 

        #i2=0.2 

        i2 = i1[int(X[1])] 

        #mapping for roof R-value 

        #j1=np.arange(0.55,1.26,0.1) 

        j2=1.0499 

 

        #mapping for floor R-value 

        #k1=np.arange(0.13,0.54,0.1) 

        k2=0.43 

 

        #mapping for exterior wall R-value 

        #l1=np.arange(0.2,0.6,0.05) 

        l2=0.499 

 

        #Mapping for period 

        m = 30 

 

        # mapping for luxmean 

        #n1=np.arange(0,301,20) 

        n2= 0 
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        #mapping for window VT 

        o1=np.arange(0.3,0.81,0.05) 

        #o2=0.649 

        o2 = o1[int(X[2])] 

 

        #mapping visible reflectance for floor 

        p1=np.arange(0,1.1,0.1) 

        #p2=0 

        p2 = p1[int(X[3])] 

         

        #mapping visible reflectance for roof 

        q1 = p1[int(X[4])] 

        #q1=0.2 

 

        #mapping visible reflectance for walls 

        r1=np.arange(0,1.1,0.1) 

        #r2=r1[int(X[1])] 

        #r2=0 

        r2 =r1[int(X[5])] 

         

        #mapping for blind visible transmittance 

        s1=np.arange(0.05,0.21,0.05) 

        #s2=0.15 

        s2 = s1[int(X[6])] 

 

        fname1 = path +'/PMBTNG/BT_NG_S.idf' 

        epwfile = path+'/PMBTNG/CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw' 

 

        idf = IDF(fname1,epwfile) 

        occthermostatmodel = 

idf.idfobjects['EnergyManagementsystem:program'][8] 

        occthermostatmodel.Program_Line_73 ="IF HSP < " + str(b) #maybe we 

can use directly "set x=" + str(X[0]) 

        occthermostatmodel.Program_Line_74 ="set HSP = " + str(b) 

        # the second variable: 

        occthermostatmodel.Program_Line_75="ELSEIF HSP >" + str(a) 

        occthermostatmodel.Program_Line_76="set HSP = " + str(a) 

        # the third variable: 

        occthermostatmodel.Program_Line_79 ="IF CSP < " + str(d) 

        occthermostatmodel.Program_Line_80 ="set CSP = " + str(d) 

        # the forth variable 

        occthermostatmodel.Program_Line_81 ="ELSEIF CSP > " + str(c) 

        occthermostatmodel.Program_Line_82 ="set CSP = " + str(c) 

        # u-factor glazing 

        Windowmaterial = 

idf.idfobjects['WindowMaterial:SimpleGlazingSystem'][0] 

        Windowmaterial.UFactor=e2 

        #SHGC 

        Windowmaterial.Solar_Heat_Gain_Coefficient=f 

        #the north axes 

        office=idf.idfobjects['Building'][0] 

        office.North_Axis=g2 
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        #blind solar Transmittance 

        Blind_material=idf.idfobjects['WindowMaterial:Shade'][0] 

        Blind_material.Solar_Transmittance=h 

        #floor R-value 

        F16_acoustic_tile_floor=idf.idfobjects['Material'][13] 

        F16_acoustic_tile_floor.Thickness=k2 

        #roof R-value 

        F16_acoustic_tile_roof=idf.idfobjects['Material'][5] 

        F16_acoustic_tile_roof.Thickness=j2 

        # interior wall R-value 

        #G01a_19mm_gypsum_board=idf.idfobjects['Material'][2] 

        #G01a_19mm_gypsum_board.Thickness=l1 

        #exterior wall R-value 

        halfinch_gypsum=idf.idfobjects['Material'][6] 

        halfinch_gypsum.Thickness=l2 

 

        #Nagy OCC 

        occlightingmodel = 

idf.idfobjects['EnergyManagementsystem:program'][4] 

        occlightingmodel.Program_Line_7 ="set x=" + str(m) #maybe we can use 

directly "set x=" + str(X[0]) 

        # the second variable: 

        occlightingmodel.Program_Line_3="set luxmean=" + str(n2) 

        # the third variable: 

        Windowmaterial = 

idf.idfobjects['WindowMaterial:SimpleGlazingSystem'][0] 

        Windowmaterial.Visible_Transmittance=o2 

        #the forth variable (floor visible absorptance) 

        F16_acoustic_tile_floor=idf.idfobjects['Material'][13] 

        F16_acoustic_tile_floor.Visible_Absorptance=p2 

        #the fifth variable (roof visible absorptance) 

        F16_acoustic_tile_roof=idf.idfobjects['Material'][5] 

        F16_acoustic_tile_roof.Visible_Absorptance=q1 

        #wall visible absorptance 

        G01a_19mm_gypsum_board=idf.idfobjects['Material'][2] 

        G01a_19mm_gypsum_board.Visible_Absorptance=r2 

        #the north axes 

        #blind visible Transmittance 

        Blind_material=idf.idfobjects['WindowMaterial:Shade'][0] 

        Blind_material.Visible_Transmittance=s2 

 

        idf.saveas(path +'/PMBTNG/BT_NG_S.idf') 

         

        #WWr 

        from geomeppy import IDF 

 

        fname2 = path +'/PMBTNG/BT_NG_S.idf' 

        idf1 = IDF(fname2,epwfile) 

        idf1.set_wwr(wwr=0, wwr_map={180: i2}, force=True, construction= 

"Exterior Window") 

        idf1.saveas(path +'/PMBTNG/BT_NG_S.idf') 

        #setting wshCTRL 
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        from eppy.modeleditor import IDF 

        fname1 = path +'/PMBTNG/BT_NG_S.idf' 

        epwfile = path+'/PMBTNG/CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw' 

        idf = IDF(fname1,epwfile) 

        sub_surface = idf.idfobjects['FenestrationSurface:Detailed'][0] 

        sub_surface.Shading_Control_Name="wshCTRL1" 

        idf.saveas(path +'/PMBTNG/BT_NG_S.idf') 

         

        fnames=[] 

        for i in range (1,33): 

            fname1 = path +'/PMBTNG/BT_NG_S.idf' 

            epwfile = path+'/PMBTNG/CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw' 

            idf = IDF(fname1,epwfile) 

            idf.saveas(path +'/PMBTNG/BT_NG_S%d.i 

        from eppy.modeleditor import IDF 

        from eppy.runner.run_functions import runIDFs 

        idfs = (IDF(fname, epwfile) for fname in fnames) 

        runs = ((idf, make_options(idf) ) for idf in idfs) 

        num_CPUs = Ncores 

        runIDFs(runs, num_CPUs) 

 

        TCENERGY=[] 

        THENERGY=[] 

        TEUI=[] 

        TL = [] 

        TINC=[] 

        TDCR=[] 

        TRELC=[] 

        TON=[] 

        TOFF=[] 

 

        for i in range (1,33): 

            Data=pd.read_csv(path +'/PMBTNG/BT_NG_S%d.csv'%(i)) 

 

            CENERGY=Data['THERMAL ZONE 1 IDEAL LOADS AIR SYSTEM:Zone Ideal 

Loads Zone Total Cooling Energy [J](TimeStep)'].sum()*2.78*10**(-7) 

            HENERGY=Data['THERMAL ZONE 1 IDEAL LOADS AIR SYSTEM:Zone Ideal 

Loads Zone Total Heating Energy [J](TimeStep)'].sum()*2.78*10**(-7) 

            INC=Data['EMS:SP_Incoutput [](TimeStep)'].sum() 

            DCR=Data['EMS:SP_Dcroutput [](TimeStep)'].sum() 

            ELC=Data['LIGHT:Lights Electric Energy 

[J](TimeStep)'].sum()*2.78*10**(-7) 

            ON=Data['EMS:countonoutput [](TimeStep)'].iloc[-1] 

            OFF=Data['EMS:countoffoutput [](TimeStep)'].iloc[-1] 

            TRELC.append(ELC) 

            TON.append(ON) 

            TOFF.append(OFF) 

            TCENERGY.append(CENERGY) 

            THENERGY.append(HENERGY) 

            TINC.append(INC) 

            TDCR.append(DCR) 
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            file = path +'/PMBTNG/BT_NG_S%dTable.csv'%(i) 

            f = open(file,'rt') 

            reader = csv.reader(f) 

            csv_list = [] 

            for l in reader: 

                csv_list.append(l) 

            f.close() 

            df = pd.DataFrame(csv_list) 

df'%(i)) 

         

            fnames.append(path +'/PMBTNG/BT_NG_S%d.idf'%(i)) 

         

            Lighting = df.iloc[51,2] 

            EUI=df.iloc[14,3] 

            TEUI.append(EUI) 

            TL.append(Lighting) 

        # change type of EUI array from string to float  

        TEUI = np.array(TEUI, dtype=np.float32) 

        TL = np.array(TL, dtype=np.float32) 

        TEUI=TEUI*0.278 

        TL = TL*278 

        #print (np.average(TCENERGY)) 

        #print (np.average(THENERGY)) 

        #print (np.average(TINC))   

        #print (np.average(TDCR)) 

        #print (np.average(TRELC)) 

        #print (np.average(TON))   

        #print (np.average(TOFF)) 

        obj1 = np.average(TL) 

        obj2 = np.average(TON) 

         

        out["F"] = anp.column_stack([obj1, obj2]) 

        #return (np.average(TEUI),np.average(TOFF)) 

 

    #def _calc_pareto_front(self, *args, **kwargs): 

    #    return load_pareto_front_from_file("MultiNGBT.pf") 

    def _cal_pareto_front(self, *args, **kwargs): 

        return func_pf(**kwargs) 

    #def _calc_pareto_set(self, *args, **kwargs): 

    #    return func_ps(**kwargs)      

#vectorized_problem = MultiNGBT() 

 

# %% 

problem = MultiNGBT() 

 

 

method = get_algorithm("nsga2", 

                       pop_size=15, 

                       sampling=get_sampling("int_random"), 

                       crossover=get_crossover("int_sbx", prob=1.0, eta=3.0), 

                       mutation=get_mutation("int_pm", eta=3.0), 

                       eliminate_duplicates=True, 
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                       ) 

 

 

res = minimize(problem, 

               method, 

               ("n_gen", 30), 

               verbose=True, 

               save_history = True, 

               seed=5) 

print("Best solution found: %s" % res.X) 

print("Function value: %s" % res.F) 

print("design Space Value: %s" % res.X) 

print("Algorithm Object: %s" % res.algorithm) 

print("Final Population Object: %s" % res.pop) 

print("History: %s" % res.history) 

 

all_pop = Population() 

 

for algorithm in res.history: 

    all_pop = Population.merge(all_pop, algorithm.off) 

df_Var = pd.DataFrame(all_pop.get("X"), columns=[f"X{i+1}" for i in 

range(problem.n_var)]) 

df_Res = pd.DataFrame(all_pop.get("F"), columns=[f"F{i+1}" for i in 

range(problem.n_obj)]) 

df_Var.to_csv('Variables.csv') 

df_Res.to_csv('Results.csv') 

 

#pf = problem.pareto_front(use_cache = False, flatten = False) 

#ps = problem.pareto_set(use_cache = False, flatten = False) 

#print(pf) 

#print(ps) 

#Val2 = [e.pop.get("F").max() for e in res.history] 

Val = [e.pop.get("F").min(axis=0) for e in res.history] 

print(Val) 

 

#Performance  

#non dominated sorting 

#print(Val2) 

#plot = Scatter() 

#plot.add(res.F, color="red") 

#plot.show() 

 

 

 

 

 


