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Abstract

Development of BIM-based Automated Methods for Building Management and Structural
Safety Assessment

Mojtaba Valinejadshoubi, Ph.D.

Concordia University, 2021

Despite the progress made in modern project management methods, there is still a lack of
appropriate automated tools that support digital integration over the project life cycle. There is
considerable demand for fully embracing the latest technological opportunities such as Building
Information Modeling (BIM), Internet of Things (IoT), Structural Health Monitoring (SHM), and
prefabrication to support that digital transformation in construction. The aim of this study is
to develop a set of automated management solutions and related tools to address the issues
highlighted above. The thesis is presented as a collection of manuscripts of five peer-reviewed
journal articles authored based on the present research. The first development is of a BIM-based
method for 3D model visualization of buildings and their non-structural elements and their
corresponding seismic risk levels and locations. It supports automated assessment of seismic risk
of these elements. The second focuses on the development of a novel data-driven SHM technique
to monitor the structural behavior of individual building modules to detect possible damages during
their transportation. It consists of two main components, a sensor-based data acquisition (DAQ)
and storage module, and an automated data analysis module that uses unsupervised machine
learning techniques to identify damages during transportation using onboard captured acceleration
data. It can be used to ascertain the safety of delivered modules before their assembly on site. The

third accounts for the development of an automated BIM-based framework to facilitate effective



data management and representation of sensory components of the SHM tool used in buildings. It
allows for visualization of damages in building components based on the interpretation of the
captured sensor data. It is designed to facilitate effective visualization capabilities for a rapid and
efficient structural condition assessment. The fourth development is designed to dynamically
update the thermal comfort data in monitored buildings by integrating their BIM models with
captured sensor data. The default range utilized in this development is based on the American
Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard. It is
expected to provide a robust and practical tool for data collection, analysis, and visualization to
facilitate intelligent monitoring of the thermal condition in buildings and help decision-makers take
needed timely data-driven decisions. The fifth and last development is designed to alert IoT
companies of malfunctioning of deployed sensors utilizing a BIM platform and a cloud database

to process and transfer related actionable information.
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Chapter 1: Introduction and Organization of the Thesis
1.0. Introduction

Most industries have experienced noticeable changes in recent decades, focusing on
utilizing digital transformation to achieve higher levels of efficiency. There is also an increasing
implementation of digital technologies in the construction industry. From the overview of academic
research, research analysis reveals increasing implementation and adoption of digital technologies
for construction operations (Morgan, 2019; Pan et al., 2020). The McKinsey Global Institute
(2017) research indicates that digital transformation can lead to 14 to 15 percent productivity gains
and 4 to 6 percent cost reductions. However, the transformation effects encompassing digital
technology implementation are yet to be fully utilized within the architectural, engineering, and
construction (AEC) industry. There has been some hesitation about fully embracing the latest
technological opportunities. It has been recently recognized that the construction industry is close
to a “major” digital technology implementation (Murray, 2018; Autodesk, 2020) despite
anticipated difficulties. Although the implementation of digital technologies such as BIM, IoT,
SHM, laser scanning, prefabrication, and machine learning solutions throughout the built asset
lifecycle are expected to boost productivity and enhance project performance and safety (Agarwal
et al., 2016), they may lead to new challenges, such as, poor digital skills amongst the workforce,
which was cited as a significant limiting factor to the adoption of processes such as BIM by the
fifth annual Construction Manager BIM survey (2020), resistance to change etc. On the other hand,
there is still a lack of automated tools to support digital transformation over the project life cycle.

The aim of this research is to develop a set of automated management solutions to
address the issues highlighted above by supporting digital transformation over the building project

life cycle. And accordingly help facility managers to increase the efficiency of buildings’

1


https://www.frontiersin.org/articles/10.3389/fbuil.2021.660758/full#B51
https://www.frontiersin.org/articles/10.3389/fbuil.2021.660758/full#B56
https://www.frontiersin.org/articles/10.3389/fbuil.2021.660758/full#B52
https://www.frontiersin.org/articles/10.3389/fbuil.2021.660758/full#B4
https://www.frontiersin.org/articles/10.3389/fbuil.2021.660758/full#B1
https://www.frontiersin.org/articles/10.3389/fbuil.2021.660758/full#B1

operations in terms of occupants’ safety and indoor air quality, and help management teams in
reliable delivery of modular and off-site construction. To achieve the aim of this thesis, the

following main objectives and tasks were undertaken, which are briefly listed below:

1. Developing a standardized framework for visualizing and prioritizing the seismic risk level
of Non-Structural Elements (NSEs) in buildings using BIM.
» (Creating a BIM model with all NSEs and developing a framework to link between
NSEs BIM elements and their seismic risk score to be able to prioritize and identify
the most hazardous elements and automatically update their seismic risk score based
on their position and type.
2. Developing a Multi-functional data-driven SHM system for monitoring prefabricated
building modules during transportation
* Developing a cost-effective sensor-based DAQ and storage module to be easily
attached to the prefabricated modules to monitor them during transportation.
*= Developing a novel and effective visualization-based method to identify the failed
sensors before starting the data analysis.
* Developing a data analysis method to identify and classify different levels of
damage that might occur on prefabricated modules during transportation.
= Comparing and evaluating the performance of different clustering
algorithms using accuracy score and confusion matrix to identify the
algorithm with the highest damage identification and -classification
accuracy in the case of transportation monitoring through a real case study.
= Validating the developed monitoring system through a real case study (two

prefabricated modules).



3. Developing a workflow to integrate BIM into the SHM process to represent and access

sensor data, run a data interpretation or damage assessment process, and map it on the

corresponding virtual building components.

Creating sensory system components in the BIM model with all essential
monitoring parameters.

Designing a specific relational database model to embody the SHM sensor
measurement.

Proposing a conceptual framework of the wireless strain monitoring system.
Developing a workflow including eight modules to have a near real-time BIM-based

monitoring system visualization using Threshold Value Analysis (TVA) method.

Developing an IoT and BIM-based automated alert system for thermal comfort

monitoring in buildings

Developing a cost-effective wireless monitoring system to measure temperature and
humidity level of indoor spaces.

Designing a specific relational database model to embody the thermal monitoring
measurements.

Developing an integrated workflow, including nine major modules, to compile,
standardize, integrate, and visualize monitoring data in a BIM environment to have

a self-updating BIM model to provide real-time thermal condition monitoring

5. Developing an integrated BIM-based framework for alert generation in the events of

malfunctioning Facility Management (FM) sensors in smart [oT environments.

Creating a BIM model with FM-related sensors with all associated parameters.
Developing a workflow to integrate the associated sensors and maintenance-related

information into a cloud-based tool.



1.1. Thesis Organization

The present thesis is organized as a manuscript-based thesis that has a collection of five
journal manuscripts produced as a result of the research conducted. The primary purposes of this
research are to develop primarily BIM-based and sensor driven automated methods for efficient
monitoring and management of occupants’ thermal comfort in built facilities in a cost-efficient
manner, and assist facility managers in tracking and transferring the status of the monitoring
sensors needed for the methods referred to above. This chapter provides a brief introduction and
background, problem statement, research motivation, objectives, brief description of developed

methods, and thesis organization.

This thesis is organized into seven Chapters. The methodologies and research findings are
elaborated in the five journal manuscripts provided in Chapters 2 to 6, respectively. The current
chapter also discusses how the manuscripts in Chapters 2 to 6 are connected to achieve the proposed
objectives. In keeping with common practice in preparation of manuscript-based theses, published

papers are presented as is, along with an added section on updated literature review.

The first manuscript, Valinejadshoubi et al. (2018), is provided in Chapter 2 and was
published in the Journal of Earthquake Engineering. The paper describes a newly developed
framework for automated seismic risk assessment of NSEs in buildings using BIM. The end-users
of the developed method presented in this manuscript are facility managers and their staff by
enabling them to identify, visualize, quantify, and prioritize the most vulnerable NSEs in built
facilities to apply suitable risk mitigation measures. The outputs of this paper can also be potentially
expanded to the case of prefabricated building modules to identify the most vulnerable NSEs

against transportation vibration forces.



The third Chapter presents the second manuscript, Valinejadshoubi et al. (2021), submitted
to the Journal of Automation in Construction. It focuses on the development of SHM tools to assess
transportation-induced damage in prefabricated building modules for offsite construction to
improve the reliability of the modules’ delivery. This paper developed a novel data-driven SHM
tool to monitor the structural behavior of individual prefabricated building modules during
transportation to ascertain their safe delivery. This multi-functional tool can be used for different
purposes, such as structural damage detection and sensor failure analysis, leading to a safer delivery
of construction projects, primarily in modular construction projects. The developed tool provides
reliable delivery for modular construction projects, supports manufacturers’ claim on repair and
modification costs from the insurance company, and improves the customer perceptions of the
quality of prefab construction. After building modules were delivered and installed, management
of the operational phase of the building begins with a focus on the structural safety of constructed
facilities and occupants’ satisfaction as described in the third, fourth and fifth papers.

The fourth Chapter presents the third manuscript, Valinejadshoubi et al. (2019), on
developing an integrated BIM-based monitoring system for rapid detection of damaged critical
elements during building operations with updated info about the current state of structural elements.
This paper was accepted and published in the ASCE Journal of Computing in Civil Engineering.
Such integration is essential for increasing the efficiency of SHM of buildings in the operational
phase. The end-users of the developed tool are engineers and facility managers to interpret and
assess the ongoing condition of critical structural elements during the building operation and
identify hidden damaged elements for their timely replacement. It also supports them in providing

all the maintenance and repair-related information about the damaged components.



Besides the structural health of a building during its operation, a building needs to provide
healthy environment for its occupants in terms of thermal comfort and indoor environmental
quality, which is the primary purpose of the fourth manuscript, presented in Chapter 5 of this thesis.
The fourth paper, Valinejadshoubi et al. (2021), presents a developed loT-BIM-based system that
works as an alert tool for thermal comfort monitoring purposes in an indoor building space. This
paper was accepted and published in the Journal of Sustainable Cities and Society. The developed
tool is expected to provide a robust and practical tool for reliable data collection, analysis, and
visualization to facilitate intelligent monitoring of the thermal condition in buildings and help
decision-makers make faster and better decisions, which may help in maintaining the level of
occupants’ thermal comfort to a satisfactory level. The developed tool is expected to support
facility managers and related decision-makers in remotely tracking the thermal condition status of
building spaces and taking needed timely actions accordingly. These actions can be taken
considering different reasons such as possible damages to the building envelop, overheating issues

in prefabricated timber buildings, and HVAC system failure or malfunction.

Chapter 6 presents the fifth manuscript on developing a method for BIM-based integration
of sensor data and their maintenance-related information into a cloud-based tool to provide a fast
and efficient communication platform between the building facility manager and [oT companies
for intelligent sensor management. This paper was published in the Journal of Facilities
Management in 2021. The developed method is expected to improve the sensors’ operation and
maintenance plan during the building operational phase. The end-users of the developed workflow
are facility managers to improve their communication and information sharing with involved IoT

companies in management events of sensors’ failure or malfunction.



The seventh and concluding chapter summarizes the overall primary findings of the

performed research and its contributions. This chapter highlights how BIM is used in each chapter

of this thesis. It also summarizes research limitations provides recommendations for future

research. Figure 1-1 shows an overview of the scope of the five papers presented in this thesis and

how they are interconnected to each other.
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Figure 1-1: The scope of presented papers and their connection to each other



Chapter 2: Identifying At-Risk Non-Structural Elements in Buildings using
BIM: A Case Study Application

General

In this chapter, the published paper is presented as is, followed by an updated literature review
section. This paper was accepted and published in the journal of Earthquake Engineering in 2018".
The main objective of this paper is to integrate seismic risk evaluation with BIM to enable

visualization and prioritization related to seismic risk levels of NSEs in built facilities.

Abstract

The non-structural elements (NSE) of a building could be hazardous in the event of an earthquake.
Hence, a seismic risk assessment is critical for identifying hazardous elements. This paper proposes
a method for visualizing a building’s NSEs to assess their seismic risks using Building Information
Modeling (BIM) to visualize and automatically mapping risk factors. The relevant Canadian and
American standards were used to calculate the level of risk associated with each NSE for a typical

six-story residential building.

Keywords: Non-Structural Elements, Seismic Risk Assessment; Building Information Modeling;

Operational and Functional Component; Visualization

* Valinejadshoubi. M, Bagchi. A, and Moselhi. O, (2018), Journal of Earthquake Engineering,
Vol 24. Issue 5, Pages 869-880



2.1. Introduction

Previous earthquakes have demonstrated that when buildings’ non-structural components
are not properly fastened, they can pose significant risk to the occupants’ safety (FEMA 74, 2005;
International Risk Management Institute, 2017). Observations from many earthquakes have shown
that even though the structural elements are undamaged, extensive damage to Non-Structural
Elements (NSE) can lead to injury or loss of life, and disruption of services (International
Association for the Seismic Performance of Non-Structural Elements, 2015). Therefore, knowing
the seismic risk level of NSEs in new and existing buildings could help to decide whether measures
to mitigate risk are necessary. A three-dimensional (3D) visualization tool can improve
communication between engineers and owners. Foo and Cheung (2004) demonstrated how to
reduce the seismic risk of NSEs using the method provided in the relevant Canadian Standard
(CSA-S832). Wang (2008) presented the CSA S832 seismic risk assessment procedures as a
valuable tool in seismic risk assessment of both new and existing buildings. Seismic risk
assessment methodologies provided in FEMA and ASCE (FEMA-E-74, 2011; ASCE/SEI, 2010)
also provide necessary tools for mitigating the seismic risk of NSEs.

This study uses Building Information Modeling (BIM) to develop a seismic risk assessment
framework for visualizing and mapping the seismic risk levels for NSEs in buildings based on
existing Canadian (CSA-S832-14) and American (FEMA-E-74) standards. BIM provides a useful
visualization tool for 3D digital representation of a building’s physical characteristics. Recently,
researchers used BIM to assess seismic risk of both structural and non-structural systems
effectively. Welch et al. (2014) investigated BIM capabilities in the assessment and mitigation of

seismic risks in buildings. BIM centralizes building data and its components, and then adds the



capability to create a 3D model and to exchange data with other software systems using the standard

data format, Industrial Foundation Classes (IFC).

2.2. Proposed Methodology

First, an architectural model with all non-structural components and building contents
is modeled in a BIM software, such as the Revit 2016 architectural template. Then, the
model is linked to its mechanical components and plumbing system, such as water
heaters, heating, ventilation, and air conditioning (HVAC) system (ducts and diffusers), and cold
and hot water piping. After modeling the building’s NSEs, their risk index (R) values are
determined, using CSA-S832 and FEMA-E-74 standards, and assigned in the generated BIM
model. The components with high-risk value (R) are identified and prioritized in the developed 3D
and 2D visual models of the building’s NSEs. Consequently, the level of seismic damage of the
NSEs and related downtime and property losses (PLs) are brought to the attention of stakeholders
for devising cost-effective seismic mitigation strategies. CSA-S832 (2014) is the standard for
seismic risk reduction of NSEs in buildings in Canada. In this standard, NSEs are referred to as
Operational and Functional Components (OFCs) of buildings and provides a procedure for
determining the risk level corresponding to the significant seismic hazards as defined in the
National Building Code of Canada (NBCC 2010) (International Risk Management Institute, 2017;
Foo and Cheung, 2004). The CSA-S832 determines the seismic risk index of NSEs, R, in the
following equation:

R=VxC (1)

Where V'is the seismic vulnerability index, and C is the consequence index.
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V=VG x VB x VE/10 (2)
C=Y. (RS) (3)

In Eq. (2), VG, VB, and VE indicate the ground motion characteristic index, the building
characteristic index, and the OFC characteristic index, respectively. C is determined from the sum
of the Rating Score (RS) related to the performance objectives. Table 2-1 and Table 2-2 show the
indices used in determining the vulnerability (¥) and consequence (C) indices.

The American standard of “FEMA-E-74 (2011)” is also used in the model to
reduce the seismic risks of non-structural components in buildings. It provides a framework
for the seismic risk rating of NSEs in buildings using indices, such as shaking intensity, life
safety (LS) risk, PL risk, and functional loss (FL) risk. Shaking intensity is related to the
location of the building and its prevailing low, moderate, or high ground motion. LS is the
risk of being injured by non-structural components, while PL is the risk of incurring a repair
or replacement cost to an item because of damage. FL represents the risk attributed to the
malfunction of impacted components. Also, the standard includes the type of component
detail and whether it is non-engineered (NE), prescriptive (PR), or engineering required (ER)
(FEMA-E-74, 2011).

Table 2-3 describes the parameters needed for assessing the seismic risk of NSEs by the

FEMA-E-74 standard. Figure 2-1 illustrates this study’s hierarchy.
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Table 2-1: The indices for determining vulnerability index, (R), for NSEs (CSA-S832, 2014)

Fa = acceleration-based site
VG (the ground coefficient as defined in NBCC
motion Sa (0.2) = spectral response
Vulnerability V=VGxVB characteristics acceleration value for a period
Index (V) x VE/10 index) = of 0.2 s
Fax Sa(0.2)/1.25
Based on predominant type of
VB: The building | seismic force resisting system of
characteristics the building structure. (e.g., for 6
index stories  reinforced  concrete
moment resistant frame built on
site class D stiff'soil 1.4) Table 4,
CSA
VE: The NSE Obtained by the weighted sum of
characteristics four rating scores (Y7—;(RSi X
index WFi)) shown below: ;
Range RS WF
NSE restraint (RS1) Full restraint 1 4
Partial 5 4
restraint/
questionable
No restraint 10 4
Impact/pounding (RS2) Gap adequate 1 3
Gap inadequate 10 3
/questionable
NSE overturning (RS3) | NSE fully
h: distance from support | restrained 1 2
or restraint to center of against
gravity or top of OFC overturning or
d: horizontal distance h/d <1/ (1.2F, %
between NSE supports Sa (0.2))
h/d >1/ (1.2F, % 10 2
Sa (0.2))
NSE flexibility and Stiff or flexible 1 1
location in building NSE on or
(RS4) below ground
floor
Stiff NSE above 5 1

ground floor

Flexible NSE 10
above ground

floor
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Table 2-2: The indices for determining consequence index, (C), for NSEs (CSA-S832, 2014)

Consequence
Index (C)

C=X(RS)

Parameter range Rating
Score (RS)
Threat to very few (N<1)
N (occupancy factor as defined in 1
Table L-5 CSA-S832-14) = area X
Life safety (LS) | occupancy density x duration factor
[Mandatory] | Area = occupied area exposed to
risk, m?
Occupancy = per m?
Duration factor = average weekly
hours of human occupancy/100 <1
Threat to few (1<N<10) 5
Threat to many (N > 10) 10
Not applicable or NSE breakdown 0
Limited greater than one week is tolerable
Functionality NSE breakdown up to one week is 1
(LF) tolerable
[Higher than NSE in high importance category 3
mandatory] building, not required to be fully
functional
NSE in post-disaster facility, not 5
required to be fully functional
Full N/A 0
Functionality | NSE, required to be fully functional 10
(FF)
[Highest]
NSE damage can lead to financial
Property losses related to asset damage,
Protection (PP) replacement, and in interruption
[Optional] business due to non-operational 0-10

components

Score may vary from 0 to 10 as
determined by the owner/operator
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Table 2-3: Parameters for seismic risk assessment of non-structural elements according to
FEMA-E-74 Standard (2011)

Shaking intensity: Low (L), Medium (M), High (H)
Life safety (LS)

FEMA-E-74 Standard Property Loss (PL)

Functional Loss (FL)

Type of detail: Non-engineered (NE), Prescriptive
(PR), or Engineering Required (ER)

[ Building plans and details ]

Cold Water

[ Plumbing System

Building architectural modeling using Placing different OFCs
BIM [architectural components
‘ & building contents]

]‘_[ Linking MEP details to the architectural model
; Mechanical equipment ]

Providing an inventory of important OFCs
in BIM Water Heater

[ CSA-S832 l

HVAC system ]

Standard OFCs seismic risk assessment
implementation Automate Air handlin
FEMA-E-74 ‘ through £
Standard BIM
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[ Prioritize the OFCs based on their Risk Index
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[ Color-coding of non-structural elements based on their seismic risk score ]

¥

Auto updating the seismic risk score of the non-structural elements based
on their coordinates

Ducts

e

Figure 2-1: Hierarchy of the study




2.3. Example Application

2.3.1. Building Characteristics

For this study, we use a six-story reinforced concrete apartment building with

moment resisting frames in the longitudinal and transversal directions founded on
stiff soil. Moreover, the apartment building is assumed to be subjected to a seismic
hazard level corresponding to that of Montreal, Canada. The building was modeled
in Revit 2016, where different types of architectural components, building contents,

mechanical equipment, and plumbing systems were considered. Pertinent assumptions relating to

the type of attachment, flexibility, functionality, and so forth, for NSEs were based on standard

practices in building construction. Table 2- 4 shows the kinds of NSEs used in this study.

Table 2-4: List of all types of NSEs used for this study

Category Type Assumptions
Building M-Entertainment center(shelving), | Against the partition wall, free
Contents (2743%762%2134mm) standing with no connection
Suspended compound ceiling: Has no sway braces, tiles are tight to
600x1200mm grid, outer layer: the walls, heavy duty suspended
ceiling tile ceiling system
Architectural Glazed curtain system panel Not anchored, tight to the exterior
Components walls
Interior partition wall attached to the suspended ceiling
Parapet Over public sidewalk, not anchored
Windows Tight to the exterior walls
Supply diffuser 600x600 face and | Partially anchored to the ceiling, must
300%300 connection (HVAC) be fully functional except for toilet
Mechanical Round HVAC duct Partially seismic restraint
Equipment & Water heater Full restraint, must be fully functional
Plumbing Pipes (hot and cold-water Partially seismic restraint, against the
plumbing) partition wall and ceiling, must be
fully functional
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2.3.2. Seismic Risk Assessment of Non-Structural Elements

Figure 2-2 shows the architectural plan and 3D model of the building, including the NSEs
and the mechanical, electrical, and plumbing (MEP) details. After modeling the building and its
NSEs, all indices needed for seismic risk assessment of the NSEs, including those required for
determining the vulnerability index (V) and consequence index (C), were assigned to each
corresponding element in the model to generate their seismic risk assessment tables in the
architectural and the MEP model. CSA-S832 (2014) accords a risk index of 16 or below to a low
level of seismic risk where no mitigation measures are required. For each NSE with a risk index
higher than 16, an appropriate mitigation measure is needed, and its priority depends on its ranking

relative to the other elements.
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Figure 2-2: The BIM model of the case-study building with its non-structural elements
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Table 2-5 shows two samples of seismic risk assessment tables of building’s NSEs created
in the BIM model to assign the seismic risk rating to each NSE in the model. They were prioritized
based on their risk index and those elements with seismic scores more than 16 were highlighted
automatically in red using the conditional formatting defined in the model. In Montreal, the
acceleration-based site coefficient, F, is 1.14, and the spectral response acceleration (Sa)
corresponding to the building period of 0.2s, is 0.64. The values of V3 for a six-story reinforced
concrete moment resistant frame in site class D stiff soil is 1.4 according to CSA-S832 (2014).

With these values, VG is Fa % S, (0.2)/1.25 or 0.58, which is constant for all NSEs.

2.3.3. Non-Structural Elements with Higher Seismic Risk

Table 2-6 shows the seismic risks of the NSEs to the building rated using CSA-S832 and
FEMA-E-74 standards. The seismic risk score (RS) can be used to assess the vulnerability
of NSEs during an earthquake. The seismic risks of an NSE can be injury or loss of life,
loss of function of the NSE, and direct and indirect financial setback. According to CSAS832, a
seismic RS of less than 16 represents a low seismic risk, whereas a rating of 16—49
represents a moderate risk, and a rating larger than 49 represents a high risk. Therefore,
the components with seismic RS exceeding 16 are shown in the table and were prioritized
based on their respective score as the risk for those elements needs to be mitigated. The
seismic RSs of the NSEs of the building, as shown in shown in Table 2-6, were calculated
using Eqgs. (1-3) corresponding to the CSA standard, the assumptions made in Table 2-4,
and the indices determined from Tables 2-1 and 2-2. For example, the seismic RS of a curtain
panel (east) was calculated as follows. Table 2-4 assumes that the glazed curtain panels are

not anchored and are tight to the exterior walls. To determine R, the first vulnerability
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index (V) and consequence index (C) need to be calculated. To calculate V, as shown in
Table 2-1, three indices, VG, VB and VE must be determined. VG is dependent on the
location of the building (Montreal) and VB is dependent on the type of building (e.g., six-story
reinforced concrete moments resistant frame built on site class D stiff soil). VE is
obtained from the weighted sum of four rating scores, RS1 (NSE restraint), RS2 (impact/
pounding), RS3 (overturning), and RS4 (NSE flexibility and location in building). As
assumed in Table 2-4, no restraint was used for the curtain panels. Therefore, the RS and
weight factor, WF, are determined 10.0 and 4.0, respectively; RS1 was calculated at 40.0.
Regarding RS2, it was also assumed that there is no gap between the curtain panels and
the walls. Therefore, their RS and WF are taken as 10.0 and 3.0, respectively; RS2 is
calculated at 30.0. Accordingly, RS and WF for RS3 and RS4 are 1.0, 2.0, and 10.0, 1.0,
respectively. Therefore, VE (the NSE characteristic index) is calculated as 82.0. And
consequently, V is calculated as 6.70 using Eq. (2). To calculate C, the LS and functionality
indices are used, as shown in Table 3. Since the main entrance of the building faces east, and the
curtain panels are used for the living rooms of the building, the damaged curtain
walls may cause injury to people. Therefore, their RS for LS is determined as 10.0. The
curtain panels are required to be fully functional because if they are damaged or broken
due to an earthquake, the building may not be suitable for occupancy. Therefore, RS for
functionality the index is assumed at 10.0 for the curtain panels, and C is calculated as 20.0
using Eq. (3). In this case, the total seismic RS is 134.0 using Eq. (1)

The last column of Table 2-6 shows the four indices required for seismic risk assessment
of the NSEs of the building based on the FEMA-E-74 standard. In this column, the FEMA
E-74 RSs of H, M, and L refer to high, medium, and low, respectively, as described in

Table 2-3. For example, for the curtain panel in the east H, M, H, ER mean that its risks
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associated with LS, PL, and FL are high, moderate, and high respectively; and ER implies
that engineering parameters are required for its installation. Table 2-4 shows the assumptions made
for risk assessment wusing both the Canadian and American standards. As seen
in Table 2-6, the results provided by both methods are similar except for a few elements
such as the diffuser. According to FEMA-E-74 (2011), in zones of moderate
seismic hazard like Montreal, the risks associated with LS and PL resulting from diffusors
are high. In the present case study, the risk of such diffusors is deemed medium since they
are assumed to be partially anchored to the ceiling (Table 2-4). This also applies to shelving
where the LS risk is usually high in a location with moderate seismic hazard but based on
its position in the building and anchorage system, the LS risk is evaluated as low.

By developing a list of possible damage and mitigation techniques for high-risk NSEs,
one can investigate what mitigation measures will be useful in reducing seismic risk. For
instance, as shown in Table 2-6, according to the current assumptions, the glazed curtain
wall panel in the east view has the highest seismic risk. Therefore, if vibration isolation is
provided for the building’s glazed curtain panels to control vibration due to earthquake,
and if a type of glass that will shatter safely is used, its vulnerability index will be reduced
to 4.5 and its seismic RS will be considerably decreased from 134 (High Risk) to 49.4
(almost Moderate Risk) (around a 63% reduction). Such changes in an element’s seismic
RS can be automatically updated and saved in the BIM after its consequence and vulnerability RSs

have been modified.
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Table 2-6: Seismic risk assessment of non-structural elements with high seismic risk (RS)

*(R — Restrained; I — Impact; O — Overturn; FX — Flexibility; LS — Life Safe; FO — Fully
Operational, HR — High Risk, MR — Moderate Risk)

OFC |RS |WF W RS WF | W |RS WF| W RS |WF | W |VE | V RS |RS |C Seismic Risk
R) | (R) RS1 |(D* | (@) | RS |(O)* |(O) | RS |(FX) |(FX) | RS (LS)* |(FO) Score
* 2 3 * 4 * CSA | FEMA
Curtain | 10 | 4 40 10 | 3 30 1 2 2 10 1 10 | 82 | 6.7 10 10 | 20 H, M,
Panel 134.0 | H, ER
(East) HR
Curtain | 10 | 4 40 10| 3 30 1 2 2 10 1 10 | 82 | 6.7 5 10 | 15 M, M,
Panel 100.5 | H, ER
(West) HR
Interior | 10 | 4 40 10 | 3 30 1 2 2 10 1 10 82 | 6.7 5 10 | 15 M, M,
Partition 100.5 | H, ER
HR
Diffuser | 5 4 20 10| 3 30 1 2 2 10 1 10 62 | 5.1 5 10 | 15| 76.0 H,
HR | H,L,ER
Windows | 1 4 4 10| 3 30 1 2 2 10 1 10 | 46 | 3.7 5 10 | 15| 564 | M, M,
(except HR H, NE
for toilet)
Hot 5 4 20 10| 3 30 1 2 2 10 1 10 62 | 5.1 1 10 | 11| 55.7 L, M,
water HR H, ER
pipe
(bath)
Parapet | 10 | 4 40 1 3 3 10 | 2 | 20 5 1 5 68 | 5.5 10 0 10 | 55.6 H, L,
HR L, ER
Cold 5 4 20 10| 3 30 1 2 2 10 1 10 62 | 5.1 0 10 | 10 | 50.7 L, M,
water HR M, ER
pipe
(bath)
HVAC 5 4 20 1 3 3 1 2 2 10 1 10 35 | 29 5 10 | 15| 429 L, M,
duct MR L, ER
(dining
room)
Shelving | 10 | 4 40 10| 3 30 10 | 2 | 20 10 1 10 | 100 | 8.2 5 0 5 | 40.8 L, M,
(dining MR L, NE
room)
Ceiling | 10 | 4 40 10 | 3 30 1 2 2 10 1 10 | 82 | 6.7 5 1 6 402 | M, M,
MR | M, PR
Water 1 4 4 1 3 3 10 | 2 | 20 10 1 10 | 37 | 3.0 1 10 | 11| 332 M, H,
heater MR L, PR
HVAC 5 4 20 1 3 3 1 2 2 10 1 10 | 35 | 29 1 10 [ 11| 315 |L,L,L,
duct MR ER
(Toilet)
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2.3.4. Automatic Color-Coding of NSEs Based on Their Seismic Risk Score (CSA-S832)

The NSEs of the building are now represented by different colors based on their seismic
RS. By color-coding the NSEs of the building, engineers and owners can visually assess the
seismic risk condition of the building NSEs. For automatic color-coding of the NSEs based
on their RSs, we used a visual programming tool called Dynamo BIM (2017). The seismic RSs for
the NSEs were categorized and color coded into six ranges: white was used for seismic RS between
0 and 16, yellow was used for the seismic RSs between 30.0 and 60.0, and red was used for seismic
RSs between 120.0 and 140.0. Figure 2-3 shows the color-based representation of the NSEs of the
building’s first level in the Revit model. As shown, the curtain panels represented in red have the

highest seismic RS.

Figure 2-3: Color-coding of different ranges of seismic risk scores in the BIM model

The color-based representation of NSEs based on their seismic risk is an efficient way to
visually identify the high-risk components and to study the effects of mitigation measures.

For example, one parameter affected by the location of the NSEs can be the “LS RS”. If
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some NSEs, such as the shelving and dining room table as shown in Figure 2-4a are too close (e.g.,
less than the height of the shelving), according to the CSA-S832 standard the LS RS index is

increased from one to five.
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Figure 2-4: Automatic updating the seismic risk score and the color of elements based on their
location
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As shown in Figure 2-4a, the LS RS index of these two elements is one, and their seismic RS
is 8.17. Therefore, they are represented in white. The distances of the shelving and dining
table are 1.4 m and 1.18 m, respectively. In this case, the gap between the shelving and
dining table is about 2.3 m. When the dining room table is moved closer to the shelving,
the distance between them will be automatically updated in the BIM and so will the
seismic score (Figure 2-4b). As shown in Figure 2-4b, when the dining room table was moved
closer
to the shelving, the LS RS was automatically updated to 5.0, the seismic RS was increased
to 40.86, and consequently, the color changed from white to yellow. Automatic updating
of the seismic RS of NSEs in the building model can be a useful tool for facilities managers

to mitigate the seismic risk of the NSEs in buildings.

2.4. Conclusion

We proposed a method for BIM-based visualization using a 3D model of a building and its
NSE with their corresponding seismic risk levels, location, and other related information. This
paper’s main contribution is the development of an easily understandable standardized framework
for identifying and prioritizing the NSEs with high seismic risk by integrating the two relevant
standards of CSA-S832 and FEMA-E-74 into a BIM. This method allows for an assessment of the
seismic risk of an NSE in a building to be automatically updated based on the building’s location
and type. Integrating the seismic risk information of a building’s NSEs into a visualization tool,
allows for the interpretation of the data from a visual inspection after an earthquake to be easily
integrated into the BIM model of a building and the assessment of different retrofit strategies. BIM

models can be used as repositories to prioritize high-risk NSEs based on their likely damage, types,
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and related retrofit actions. It improves the project participants’ understanding of the vulnerability
of NSEs in evaluating the seismic risk associated with NSEs in a building. The model can also
capture the personnel involved and their responsibilities making management of retrofit actions
efficient. The proposed method can potentially be applied to existing buildings to identify NSEs
with high seismic risk potential such that suitable mitigation techniques can be adopted. It can also
be used in the design stage for a new building. The paper demonstrated the BIM method utilizing
a case study building and assessed the seismic risk of the OFCs or NSEs using the relevant
Canadian and American standards. It should be noted that the proposed method is flexible
regarding the standard or guidelines used for seismic risk assessment of NSEs, not restricted to

those used for the demonstration.
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Updated Literature Review and Related Materials

This section focuses primarily on recent publications and related works not cited in the

published paper above.

NSEs are more vulnerable against the vibration events such as earthquakes. The NSEs
failure may lead to injury or loss of life. It might also lead to disruption of services during the
operational phase or even during the transportation stage in modular construction projects, which

is significant for public facilities such as hospitals, airports, and fire stations. The reports from
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previous earthquakes have demonstrated extensive damages to NSEs, which led to the loss of their
functionality (Miranda et al., 2012; Ricci et al., 2009; Filiatrault et al., 2001).

Developing a practical visual framework is critical to improving communication between
engineers and owners to better understand most vulnerable NSEs. Despite the importance of better
visualization and understanding of NSEs’ vulnerability against vibration events, few studies have
integrated it with an effective visualization tool such as BIM. Augulo et al. (2020) developed a
methodology to use BIM for seismic performance assessment in a building. However, they only
considered the structural elements, not NSEs, and utilized BIM only as an input into the FEM
software for the structural analysis purpose. Perrone and Filiatrault (2017) developed a workflow
for seismic design of NSEs using BIM. However, their study was not comprehensive (considered
only a specific type of NSEs), and it did not benefit from the 3D visualization capability of BIM to
highlight seismic vulnerability levels of NSEs, which might not be entirely understandable for non-
experts.

As presented in this chapter, the developed method addressed these issues. Automatic

seismic risk calculation and color-based representation of NSEs of a building in a BIM model is

an efficient and fast method to identify high-risk components visually. As shown in Figure 2-3r
(the updated version of Figure 2-3), NSEs are represented with different colors in the BIM model

based on the pre-defined ranges of seismic risk as indicated in the figure legend.
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Figure 2-3r: Color-coding of different ranges of seismic risk scores in the BIM model

28



Chapter 3: Automated Damage Detection System for Prefabricated Building
Modules during Transportation

General

This paper was submitted to the Journal of Automation in Construction in 2021°. The main
objective of this paper is to develop a cost-effective sensor-based DAQ system and an efficient
data analysis method to monitor and detect possible damage related to the structural condition of

prefabricated modules during transportation.

Abstract

Transportation is a significant part of a prefabricated building module. The purpose of our research
is to develop a novel data-driven structural health monitoring (SHM) system to monitor the
structural condition of individual prefabricated building modules during transportation by detecting
possible damages caused during their delivery. The developed system consists of two main
components: a sensor-based data acquisition (DAQ) and storage module, (which measures and
stores the acceleration response of the building module), and an automated data analysis module
(which uses a data-driven approach to analyze the captured acceleration data and identify and
classify damages). We explored the capability of the developed system via a real case study. We
attached 8 vibration sensors to the walls and floors of a wooden prefabricated building module in
the factory and monitored its structural behavior during road transport over 300 km. The

accelerometer data were collected, cleaned, and preprocessed to extract damage-sensitive features

* Mojtaba Valinejadshoubi, Ashutosh Bagchi & Osama Moselhi (2021), Journal of Automation in
Construction (under revision)
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utilizing different data thresholds. The acceleration Root Mean Square (RMS) parameter, proved
and used as an effective damage-sensitive feature in SHM projects, was used to derive a statistical
pattern recognition algorithm for damage detection. We experimented with 4 common
unsupervised clustering algorithms used in SHM studies to determine the best damage detection
and classification process: k-means, mean shift, density-based spatial clustering of applications
with noise (DBSCAN), and agglomerative clustering. After the initial analysis, we observed only
one pattern of data, which meant that the building module was transported safely to the site. We
established three different scenarios to simulate different levels of damage to the building modules.
The performance of algorithms used in damage identification and classification was investigated
by two parameters, accuracy score and confusion matrix. After detailed analysis based on different
clustering algorithms, we found that the DBSCAN algorithm yielded the full accuracy score in the
case of more than one level of damage compared with k-means, mean shift, and agglomerative
clustering with accuracy scores of 0.81, 0.79, and 0.78 respectively. In the end, we developed a
novel visualization-based method to identify the failed sensors. The system can allow for timely
replacement of damaged parts of the prefabricated modules before installation, provide evidence
to support manufacturers’ insurance claims on repair and modification costs, and improve customer
perceptions of the quality of prefab construction. However, the developed system should be tested

further on more prefabricated building modules with a larger number of sensors.

Keywords: Modular construction; monitoring system; Structural Health Monitoring;

Transportation phase; Clustering techniques, Damage sensitive feature.
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3.1. Introduction

The construction industry is quite labor-intensive and is exposed to risks associated with
markets, sites, and weather conditions (Boadu et al., 2020). Modular and offsite construction aims
to address some of these issues. After the fabrication process, building modules are transported
from the factory to the project site for installation. Transportation is a significant phase of modular
construction that can affect the module delivery time and project completion (Sun et al., 2020). In
North America, prefabricated modules are transported to the construction site (or to storage) on a
flatbed tractor-trailer unit and are finally lifted and placed onto a pre-constructed foundation. The
challenge during the transportation phase is that the building modules are subjected to additional
stresses because of transportation-induced vibrational forces (Godbole et al., 2018). Vibrations
imparted on the prefabricated modular building unit due to road unevenness have been
experimentally quantified in (Innella et al., 2020). These additional stresses may damage individual
modules, lead to rejection or rework at the building site, require additional resources and costs, and
cause schedule delays because of mis-fitting and out-of-tolerance modules. Some manufacturers
reported using up to 30% more reinforcing materials in modules to minimize damages arising from
trucking (PATH Inventory, 2003). However, the amount and placement of the extra reinforcing
materials are usually based on judgment rather than objective analysis. Inappropriate placement of
reinforcing materials can lead to concentration of stresses at vulnerable locations, which may cause
cracking in internal finishing materials.

The modules can be subjected to the road-induced vibrational forces caused by roughness
originating from poorly finished roads, with design features such as construction joints, thermal
expansion joints, and the presence of distress (such as cracks, bumps, potholes, corrugation, etc.).

They may also be subjected to aggressive driving behavior such as lane changes, turns with or
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without acceleration, sudden braking, rapid acceleration, and excess speed. Additionally, modules
are also subjected to wind forces during transportation that can cause high-magnitude force for
significant amounts of time (Gupta et al., 2008). The combination of transportation-induced
vibrational forces and wind forces can produce more destructive effects, which can damage
structural and non-structural components.

Even small amounts of transportation damage to building modules can disrupt the building
envelope's continuity, causing substantial air leakage and moisture deposition, reducing its long-
term durability, and causing mold problems and heat loss (Smith et al., 2007). From a structural
perspective, transportation damages may impair the structural performance of the completed
building. From a management perspective, transportation damages to building modules, if they are
not detected and repaired right away, may lead to mis-alignment issues during the installation
process, affecting the project’s final delivery time and cost. Thus, shipping insurance is necessary
so that the building modules are insured against all possible structural and non-structural damages
to ensure compensation for the repair cost. Manufacturers usually buy shipping insurance to cover
both all-risk and basic-risk conditions to ensure reimbursement for modules’ repair costs if they
are damaged. Basic-risk conditions cover collision, earthquake, cyclones, and other common
losses, and all-risk coverage includes all possible risks (including partial and total loss) caused by
physical loss or damage during door-to-door transit (Freight Insurance, 2003). In the case that
damages are not detected on time before delivery, the repair cost might be very difficult to recoup
from the insurance company because of the lack of timely evidence after delivery. Although
transportation-induced damages to prefabricated building modules are possible, manufacturers
rarely monitor prefabricated modules during transportation because of the monitoring costs and

complexity. Therefore, utilizing a monitoring system is crucial for modular building manufacturers
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to detect damaged modules after transportation and claim the insurance company’s reimbursement

for repair and modification costs.

3.2. Literature Review

Our literature review begins with the damage-related studies of prefabricated buildings and their
limitations. It continues with a review of the classification methods and clustering algorithms
studies that have been found to be more effective and practical in the cases of structural health
monitoring (SHM) of prefabricated modules during transportation. Early damage detection is an
initial and essential step in SHM that aims to evaluate a structure’s overall condition and determine

whether the damage is apparent throughout the structure.

Gupta et al. (2008) discussed preservice forces generated in a prefabricated wood light-frame
building during handling and transportation based on field measurements and analyses. They
investigated a single-story prefabricated mini home typical of those constructed throughout Canada
and the USA as single-family dwellings. The only visible damages observed in this study were
large cracks in the wall plasterboard radiating from corners of window and door openings and in
the ceiling plasterboard. The cracks were detected based on visual inspections. The authors used
finite element modeling (FEM) techniques to model the observed damages after transportation and
validate their findings. Godbole et al. (2018) simulated the vertical motions experienced by the
chassis of a truck trailer during transport. They concluded that a component mounting should be
designed to withstand a vertical acceleration of the component. Bagchi et al. (2007) developed a
FEM system for vibration-based damage identification in structures. Despite the impact of
transportation-induced damages on the project cost and delivery time in modular construction

projects (Lopez and Froese, 2016; Global Infrastructure Hub, 2020), very few studies, as discussed
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above, have investigated the impact of transportation-induced forces on prefabricated buildings.
Deformation is an essential parameter for localized damage detection. However, it was observed
that deformations produced from FE models (a method for validating structural deformation data)
were not consistent with those measured during the field test (Gupta et al., 2008) because of
possible modeling errors and are not reliable for structural damage detection in the cases of
transportation monitoring. For structural deformation monitoring, an excellent understanding of
the structure is needed to design the instrumentation plan. If several similar types of
members/connections exist (usually in prefabricated building modules), and if they are subjected
to the same forces, identifying the most critical elements for monitoring may not be trivial, and
planning to install one strain sensor (or more) on each element is not cost-effective. In such cases,
global damage detection methods using vibration data could be more helpful and cost-effective as
a smaller number of vibration sensors are required. Also, the previous studies and tests were on a
prefabricated home, not on prefabricated individual modules. The FE method (physics-based
approach) and deformation parameter might not be practical for monitoring the structural condition
of individual prefabricated modules during transportation. The physics-based approach is costly,

more computationally intensive, and can be complicated (Smarsly et al., 2016).

In modular building projects, individual modules are transported to the site. Using a
physics-based approach is not practical because it would be very time-consuming and costly if
numerical modeling is used and needs detailed data of each module in advance. Conversely, with
the development of data acquisition (DAQ) and transmission technology, the SHM system’s ability
to collect data has increased over the years. Valinejadshoubi et al. (2018a) developed a building
information model (BIM)-based data management system for SHM of modular buildings. In

another study, researchers investigated the feasibility of using BIM in the SHM process
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(Valinejadshoubi et al., 2017). They demonstrated the feasibility of creating and visualizing sensors
data and information in the BIM model for SHM. Valinejadshoubi et al. (2018b) developed a
preliminary scheme for utilizing BIM to manage SHM data for buildings. A significant amount of
monitoring data is increasingly becoming available (Duan and Zhang, 2006). The management of
the acceleration data captured during transportation, which may sometimes be hundreds of
kilometers, can be a demanding task. Even with data compression and embedded systems to
convert large quantities of data to more manageable amounts of information, there remains the
need for procedures to manage the data (Brownjohn, 2005). Therefore, an appropriate approach
such as a data-driven method is more valuable and practical for mitigating the above-mentioned
issues.

Data-driven approaches are easier to implement, and generally less expensive, and are thus
appealing for continuous monitoring (Catbas et al., 2011; Noman et al., 2012; Posenato et al.,
2010). In a data-driven method, the difficulties lie in finding the physical meanings behind the
model’s outcomes and data visualization, given the high number of measurement points (Da Silva
et al., 2007). The integrity of the sensor data needs to be preserved, specifically in a data-driven
approach, to enhance the reliability and accuracy of the SHM system outputs (Smarsly et al., 2016).
Because of the significant deviation or noise during measurement, it is essential to develop
strategies for ensuring the reliability of the sensor data. For this reason, multiple sensors are usually
employed rather than a single sensor to improve acquired information accuracy (Jafari, 2015). As
a result, analyzing multi-channel sensors simultaneously increases the complexity of data analysis
and reduces its speed. Another significant issue researchers have pointed out (Alamdari et al., 2017;
Diez et al., 2016; Santos et al., 2015) is the non-availability of data from damaged states. SHM
systems often only have data from the healthy conditions of structures. Thus, many contributors to

the literature proposed damage detection methods based on unsupervised or one-class approaches.
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Conventional classification methods include clustering algorithms (Amezquita-Sanchez
and Adeli, 2015), that is, k-means, which is widely used in SHM. Pang et al. (2020) utilized the k-
means algorithm as a classification technique to process the sensory data generated from full-scale
seven-story reinforced concrete buildings to verify the classification performances. Agarwal and
Reddy (2020) used different classifiers, including k-means clustering for the anomaly detection
task. Diez et al. (2016) presented a clustering-based approach that incorporated K-Nearest
Neighbors (K-NN) algorithm, k-means, and Fourier transform for vibration signal processing to
detect damage and abnormal behavior in bridge joints. However, k-means is sensitive to the
extracted data features and the initial choice of cluster centers (Bouzenad et al., 2019) that may
lead to erroneous classifications (Amezquita-Sanchez and Adeli, 2015). Santos et al. (2016)
presented an output-only technique based on mean shift clustering (MSC) to automatically discover
an unknown number of clusters that correspond to the normal and stable-state conditions of a
structure. However, the MSC performance suffers when the original distance metric fails to capture
the underlying cluster structure (Anand et al., 2014). Silva et al. (2016) proposed an unsupervised
cluster-based technique using agglomerative clustering to discern the structural response as a small
number of structural states. Their proposed method revealed a better classification performance
than the alternative one regarding false-positive and false-negative indications of damage,
demonstrating its applicability for real SHM scenarios. Zhou et al. (2016) proposed a new approach
for detecting structural damage using structural dynamic response and clustering techniques. They
utilized agglomerative clustering to discriminate damaged patterns from undamaged
ones. However, the hierarchical clustering algorithms, such as the agglomerative algorithm, have
the disadvantage of low effectiveness and instability (Shi et al., 2020) and do not work with missing
data, resulting in many arbitrary decisions. Entezari et al. (2018) presented a method based on the

density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm to
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detect early damage using the vector of the sensitivity of modal strain energy as a damage-sensitive
feature. Their results showed that the proposed sensitivity function is sensitive to damage and can
be a reliable damage-sensitive feature in the applications of SHM. Entezami et al. (2020)
introduced DBSCAN clustering to develop an innovative hybrid strategy for damage detection and
localization. Li et al. (2020) utilized the DBSCAN algorithm in their proposed automatic modal

parameter identification procedure and found robust enough to interpret the stabilization diagram.

Although a significant amount of research has been done in studying the application of
data-driven techniques in SHM of buildings and infrastructures, the development of statistical
models (which are more practical than physical models), and the monitoring system to enhance the
efficiency of the damage detection process in prefabricated building modules, especially during
transportation, have received very little attention in the literature. Therefore, developing a data-
driven-based framework for condition assessment of prefabricated modules during transportation

can be helpful for the following reasons:

a. To improve the damage detection process and allow for timely replacement of damaged
parts of the prefabricated modules before installation.

b. To provide evidence to support manufacturers’ claims for repair and modification costs
from insurance companies.

c. To improve customers’ perceptions of the quality of prefab construction.

3.3. Research Mission

Modular building design is more complicated than conventional design because of the
different processes involved, such as manufacturing, transportation, and installation. Therefore,

prefabricated modules are subjected to various loads in these processes in addition to
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operational loads. Safe delivery of prefabricated building modules is critical for a successful
modular building project. It improves customer perceptions of the quality of prefab
construction and can prevent any adverse effects (caused by structural damages) during
installation and operational phases. Damages can occur to sections or components of building
modules during transportation. These damages can be costly to fix and may cause negative
public perception of modular buildings. Based on Splittgerber (1978), damage due to vibration
can occur for particle peak velocities (PPV) values >3 mm/s. Transportation monitoring of
prefabricated mini home, conducted by Smith et al. (2007), revealed that the PPV values
developed during transportation are much higher than for lifting processes. According to their
study, based on PPV parameter values, in some locations of the instrumented prefabricated
home, the ratio of the likelihood of transportation-related damage compared to damage during
fabrication was more than 6, which indicates higher possibility of damage occurrence to
prefabricated modules during transportation. Even small amounts of transportation damage to
building modules can disrupt the building envelope’s continuity, causing substantial air leakage
and moisture deposition, thereby incurring long-term durability, mold, and heat loss problems
(Smith et al., 2007). From a structural point of view, transportation damage may impair the
structural performance of the completed building. From a management point of view,
transportation damage to building modules, if not detected right away, can lead to mis-
alignment issues during the installation process, affecting the project’s delivery time and cost.
Figure 3-1 shows some examples of damages that occurred on the prefabricated house in our

example during transportation.

38



]
-
-

(a) corner of door opening (b) ceiling opening (skylight)

(¢c) roof-to-ceiling junction

Figure 3-1: Damages observed in the prefabricated building after transportation (Smith et al.,
2007)

Despite the importance of the transportation phase in modular building projects, studying the
damage of modules during transportation has received the little attention. Moreover, researchers
have not developed a cost-effective and rapid, automated SHM system to monitor prefabricated
modules during transportation. Several factory-produced prefabricated modules may be
transported daily to the construction site. Thus, using the popular FEM updating techniques
(model-update methods) is costly (Smarsly et al., 2016) and impractical even sometimes not
feasible. Therefore, a data-driven approach would be more helpful in these cases. There are some

challenges in data-driven techniques, such as the need for many data points, the integrity of data,
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the existence of noisy data in real SHM projects, the visualization of data (Da Silva et al., 2007),
and the unavailability of data from the damaged structure (Alamdari et al., 2017; Diez et al., 2016;
Santos et al., 2015). Developing a data-driven structural damage detection framework, which
would address these challenges, is important to improve the damage detection process for the

timely replacement of damaged module parts of before installation.

The main goal of our study is to develop a novel data-driven monitoring system to detect
possible damages in prefabricated building modules after transportation. To achieve this goal, our

objectives are as follows:

a. To develop a sensor-based DAQ and storage module to be easily attached to the
prefabricated modules to record and store acceleration data produced during transportation.

b. To develop a novel and easily understandable visualization-based method to identify the
failed sensors before starting the data analysis

c. To test and evaluate the performance of different clustering algorithms to identify the
algorithm with the highest damage identification and classification accuracy in the case of

transportation monitoring via a real case study.

The system, we developed for this study, is intended to solve the issues that existed in previous
studies (Gupta et al., 2008; Smith et al., 2007) such as the size of monitoring system (which is
critical for monitoring individual prefabricated building modules during transportation), the cost
and complexity of a model-based approach in the structural damage detection process, the
inapplicability of a model-based approach (which is time consuming and requires detailed
modeling data), and the possible uncertantities in loading data and temporary supports

configurations (which might affect the outputs of a model-based approach in this case).
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3.4. Research Methodology

The developed system was designed to monitor the structural health of individual building
modules during transportation. It consists of two main components: a sensor-based DAQ system
to acquire and store the captured vibrational data during transportation in the form of acceleration
records, and a data-driven automated data analysis module to analyze the recorded acceleration
data and identify damage accordingly. The DAQ system consists of ten components which the
following section describes. The available sampling rate of the DAQ system to build the monitoring
system was identified as 125 Hz. The data analysis module consists of six sub-modules: data
preprocessing, damage-sensitive feature extraction, noise elimination, dimensionality reduction,
pattern recognition, and decision-making. The Python programming language has been used here
to code the submodules for the data analysis module. Figure 3-2 demonstrates the overall

framework of the developed monitoring system.
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Figure 3-2: The overall architecture of the developed monitoring system framework
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We attached the DAQ systems to the prefabricated modules at selected locations before
transportation to collect and store transportation-induced vibrations in three directions using
accelerometer sensors. When prefabricated modules were delivered to the site, we detached the
sensors from them and analyzed the acceleration data recorded in the SD card. To amplify the
reliability of readings, in each designated location, we used two sensors to increase the accuracy
of acceleration data by averaging the two readings. Each of the six sub-modules are described

below. Figure 3-3 shows the detailed architecture of the developed monitoring system framework.

1. Data preprocessing:

As shown in Figure 3-3, the sub-module contains defining and merging datasets, and data
cleansing, a fundamental step for any machine learning technique. Datasets are defined, and
missing values in each direction (X, Y, and Z) are replaced by the mean value, developing a robust

model for our machine learning step.

2. Damage sensitive feature extraction:

The second step is to extract features sensitive to structural damages. Modal parameters, such
as frequency and mode shape parameters, usually lead to the loss of information compared with
the raw data, which can erase any small changes due to structural damages. Therefore, as a
statistical parameter, we choose the root mean square (RMS) in our study as a damage-sensitive
feature. RMS is directly associated with the vibration signal's energy level, which has been proved
and used as a practical damage-sensitive feature in SHM studies (Avci et al., 2021). As indicated
in Figure 3-3, acceleration data in three directions are classified based on the event size of 2500

data points, which means the prefabricated modules’ structural characteristics over the truck during

42



the transportation was monitored and checked every 20s. Therefore, a new dataset of RMS data in

XYZ directions is defined for the next step.

3. Noise Elimination:

The occurrences of noisy data in the data set can significantly affect the prediction of any
meaningful information, leading to decreased classification accuracy and poor prediction results.
As shown in Figure 3-3, in this sub-module, noise detection and removal are carried out using the
quantile method (Han et al., 2012) to improve the quality of the dataset used in training and testing

the machine learning algorithm used in this sub-module.

4. Data Dimensionality Reduction:

In this sub-module, principal component analysis (PCA) is used to decrease the dataset
dimensionality from 3D to 2D for better visualization and decision making. PCA is an unsupervised
linear transformation technique used to extract the critical information from the data and express it
as a set of summary indices called principal components (Salem and Hussein, 2019; Jolliffe and

Cadima, 2016).

5. Pattern Recognition:

Because there is no information about the damaged state of the building modules during
transportation, unsupervised machine learning techniques are used. With an unsupervised training
mode, detecting structural damages mainly depends on identifying abnormal data from the testing
data. As shown in Figure 3-3, we use four clustering algorithms, k-means, mean shift, DBSCAN,
and agglomerative in our study. The e/lbow method and silhouette index (SI) are used to optimize

the number of clusters. For some clustering techniques, such as mean shift and DBSCAN clustering,
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we search the optimum parameters’ value by the trial-and-error method to discover which model’s

parameters’ value resulted in the most skillful predictions.
6. Decision-Making:

When the clustering is implemented on the PCA dataset, the decision is made based on the
number of detected clusters. If there are no separated, (i.e., compacted) clusters and we find only
one pattern of data, then there is no damage found, indicating that the building module was
transported safely to the site. Otherwise, some damages occurred to the building module. The

damaged data clusters can be analyzed further to assess the size and location of damages.

Figure 3-3 shows the detailed architecture of the developed monitoring system framework.

3.5. The System Framework
3.5.1. Hardware configuration of the system

The developed DAQ system utilizes an accelerometer to monitor each module's dynamic
characteristics during transportation to detect any possible damage before the delivery process.
The components of the system are as follows:

1. Arduino Uno: An Arduino Uno board is an open-source microcontroller board that works
as the sensor’s processing core.

2. MPU6050: An MPU6050 accelerometer consists of a 3-axis accelerometer with micro-
electro-mechanical system (MEMs) technology. The sampling rate of the MP6050 in the
developed system has been measured at 125 Hz.

3. Data logger module: A data logger module with 2GB micro-SD card is used for storing the
vibration data for damage detection analysis.

4. Battery: A 9V battery is used to add a portability feature to monitoring system units.

44



_ — Buussnio
| PRI A annesawo| iy
| (2)sda ¢ IE ) Tg]
_ Sl pajeunsg y Ny2S8d
| S ——— buLsysne)
ajuenb  pejewgsgy | HUS UESI
_Efus_ noqa paulap-18sf ) Buuasnin
wpujs  MOuzZundo|  SUBSAFY

_
a|npol —_—— == ]
_ Buuaysn|y ainjea4 H SjusA3pan0 t
IIIIIIIIIIII s e — Buissasoid-aig
r _
sanbiuyos] Huluies (ZAX)
pasiuadnsun _ sanjeA SINY _ 4

L

» pabeweq-un Tl!_i
|

_ pafieweq

|SINPOI uopeultl|3 3sioN aAlIsuas-abeweq

_Iéﬁllll _
| _E:__mn_ slosuag .__ anpoyy Bunyep :o_m_uon_l
_ [BAOWUISY B _
_ uonala( JaIng
_ _ uonoenxs
| +) punoy, aInjead
_
_

f

uouboaay ulaled

(vod) _
sishjeuy Juauodwo) | |
lediouud _

_

uonnpay
Ayeuoisusuig

uonisinboy ejeq

| 3|NpOJy UonoRLXT ainjeaq _

||4||—

palo)g pue
palaljag

103ley

uoadsul
13s0[0 spaaN

.

3OUBINSUI WO 1500
uoneaypouw Buiureln

uoneaIpo
B Ylomay

Sjulod eje( 005 = jusrg

[ ]

|
|
_ (spuoass 07)
_

e e ——————— —

_I
|
|

eleg \_ i slaseleq Buiblap i
|
| .

_ 93Npoj\ | | Z3INPOW | | 93INPOJ\ | | G BNPOW | | ¥ 3NPOIN | | € 3INPOW | | Z=INPOW | | | 3INPOly _ (ZAx) elea
20y 90y 9y 5y 90y 50y 5y 5oy _ Uojess|eooy
| _ _ I ] _ 1 ]
||||||I..||||T|||_|||..|||||I“.|.
(L) 100|4 lem 1004 ]
1
I ] 1 1
u 3|npop 9 __d 0 a|npo m sBuipeal Jo
0 2ROl K0 NP t---» Kygetal o) Aduwe o]
Bupjing Buipjing Bupjing
_
Sa|npo
Bulpjing

Figure 3-3: The detailed architecture of the developed monitoring system framework
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10.

Switch: An on-off switch is used to connect the battery to or disconnect it from the Arduino
Uno board.

Push buttons: A push button is used to toggle between two operational states of the sensor.
LED lights: Red and green LED lights are used as indicators to show the system’s
operational state. When the switch turns on, the LED light turns red, indicating that the
battery provides appropriate voltage for the Arduino board and peripherals. By pressing the
push button, the LED light turns green, which shows the system is collecting the vibration
data.

Jumper wires: Jumper wires connect the sensor and SD card module to the microcontroller
and connect the microcontroller to the battery.

Double-sided tape: Double-sided tape is used to attach monitoring system units to the
building modules.

Protection box: A protection box accommodates all the components and protects them

against operational and environmental loads.

The hardware total cost is approximately $100 CAD which is much more cost-effective than

the alternative systems (shock and vibration sensors) used for monitoring shipments (EnDAQ,
2021; spotsee, 2021). Commercially available shock and vibration sensors (EnDAQ, 2021),
produced to identify and respond to potential shipping hazards, use piezoelectric accelerometers
that only allocate 32 kB of memory per "event," enough for 4,096 data points which are not suitable
in the case of prefabricated building modules transportation where there are millions of data points

available.

The switch supplies power for the Arduino Uno board in a fully assembled sensor with a

functional battery. The Arduino Uno board’s voltage regulator regulates and adjusts different
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voltages to supply the main microcontroller and peripherals, including the SD card module and
MPU6050 breakout board. A simple state machine controls the functionality of the components.
Upon start, the red LED on the sensor box begins to blink, indicating the idle state of the sensor. It
means the battery is providing appropriate voltage for the Arduino board and peripherals. The
sensor should not remain in this state as the microcontroller and the peripherals are consuming
power. After placing the protection box in the designated location, pressing the push button begins
the sensor’s sampling process. At this stage, the green LED on the board is “On” and the sensor

goes through the following steps:

1. The microcontroller in the Arduino Uno board reads acceleration values for three directions
(XYZ) through the 12C protocol and stores the acceleration values in its internal memory.
Reading a sample from MPUG6050 includes setting up some registers and reading the result

from internal registers of MPU6050.

2. The microcontroller repeats step one 15 times.
3. After filling the internal memory, the microcontroller writes all the samples for 15 readings
into the SD card.
4. The microcontroller returns to step one.
This process can be halted and restarted by the push button and the main switch. Switching
off the device is considered a new reading in the memory, whereas the push button stops the
sampling (push button stops cannot be seen in the log file). When the system starts working, the

log file is created in the SD file, and X, Y, and Z data are separated by a tab (\t) in each line.

3.5.2. Data Collection and Pre-processing
The data collection system stores acceleration data measured during transportation in an
SD card. SD cards are removed from the system after transportation, and the acceleration data are
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analyzed. The first step of data analysis is data preprocessing, where datasets are created, and

missing values identified and filled by the mean value of acceleration readings in each direction.

3.5.3. Damage sensitive feature extraction

When the acceleration datasets are created and preprocessed, a damage-sensitive feature is
extracted from the raw acceleration data in each direction. The structural behavior of the building
modules is monitored and evaluated using fimms per event during transportation. The pirms, as shown
in the formula below, is the root-mean-square acceleration (or RMS acceleration) directly related
to the energy level of the vibration signal. After calculating the RMS value for each event, new

datasets are defined and merged to build a single comprehensive dataset.

(1

, Where:

n is the number of data points in each event and

y is the acceleration data in XYZ directions.

3.5.4. Noise Elimination
The real-world data include meaningless data called noise, which can significantly affect
various machine learning data analysis tasks such as classification and clustering. In this step,

outliers are detected by the quantile method and removed from the datasets. Outliers are data
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objects which their values are abnormally different (much higher or lower) from others (Han et al.,

2021).

3.5.5. Data Dimensionality Reduction

The main idea of PCA is to reduce the dimensionality of a data set while retaining as much
as possible of the variation the data set contains. This reduction is achieved by transforming data
into a new set of variables, the principal components (PCs), which are uncorrelated, and are ordered
so that the first few retain most of the variation present in all the original variables (Salem and

Hussein, 2019, Jolliffe and Cadima, 2016).

In this study, PCA is used to reduce the dimensionality of datasets from 3D to 2D for better
visualization, and to remove the variance due to the environmental effect under the normal
condition which can affect the damage detection process. Figure 3-4 shows the whole process of

building a new sub-space based on principal components.

Dataset R Computing the mean for | Computing the covariance
- every dimension - matrix
v
Using d x k N Sor_tmgkth§ elgenvectorsfi& Computing eigenvectors and
eigenvector matrix to [ choosing k eigenvectors to form i« the corresponding eigenvalues
build a new subspace a d % k dimensional matrix W

Figure 3-4: The PCA process
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3.5.6. Pattern Recognition

As the most crucial unsupervised machine learning problem, the clustering technique is
used to find a structure in a collection of unlabeled data. For pattern recognition, we use four
clustering algorithms often found in the technical literature as popular for SHM projects, including
k-means, mean shift, DBSCAN, and agglomerative clustering techniques. A cluster refers to a

collection of data points aggregated together for certain similarities.

3.5.6.1. K-Means Clustering

The k-means algorithm is a partition-based clustering algorithm that searches for a pre-
determined number of clusters within an unlabeled multidimensional dataset. It starts with the first
group of randomly selected centroids used as the beginning points for every cluster and then
optimizes the centroids’ positions by performing iterative calculations. The cluster center is the
arithmetic mean of all the points belonging to the cluster (Ali and Kadhum, 2017, Shukla and
Naganna, 2014). Each point is closer to its cluster center than to other cluster centers. A critical
part of the k-means clustering is choosing the number of clusters (K). The e/bow and silhouette
analysis methods optimize the number of clusters for the k-means clustering (Clayman et al., 2020;
Horvat et al., 2021; Yuan and Yang, 2019; Syakur et al., 2018). The idea of the e/bow method is to
choose K at which the sum of squared error (SSE) or the sum of the squared distance between each

member of the cluster and its centroid decreases abruptly.

SSE =¥, (yi — f(xi)" @)

Silhouette refers to a method that interprets consistency within data clusters. It represents

how well each data point has been classified. The S/, which ranges from -1 to +1, is a measure of
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how similar a data point is to its cluster than to other clusters. A higher SI value indicates that the

data point is well matched to its cluster and poorly matched to neighboring clusters.

~ 1 . 3)
a(i) = Z,-m#jd("’)

. . 1 .
b(i) = min &ZEde(l']) (4)

where:
a(i) is the mean distance between i and all other points in the same cluster.

b(i) 1s the smallest mean distance of i to all points in any other cluster of which 7 is not a member

(neighboring cluster (Cy), which has the smallest mean dissimilarity with the cluster i (C;).

s(i) = —20-al 1=<S(i)<=1 %)
max (a(i), b(i))
where:
s(i) s the silhouette value of data point i.

An s5(i) close to one means that the data is appropriately clustered. An s(i) close to negative

one means that the data is not appropriately clustered and belongs to its neighboring cluster.

3.5.6.2. Mean Shift Clustering

Mean shift clustering is a nonparametric, partition-based clustering technique that does not
require prior knowledge of the number of clusters. The algorithm determines the number of
clusters with respect to the data. It builds upon the concept of kernel density estimation (KDE), a
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method to estimate the distribution in a dataset. It is also called a mode-seeking algorithm and is
used to locate the maxima of a density function (Abdallah and Shimshoni, 2014). The strengths of
mean shift clustering are that it does not assume any predefined shape on data clusters, and that it

relies on choosing a single parameter: bandwidth.

3.5.6.3. DBSCAN Clustering

The density-based spatial clustering of applications with noise (DBSCAN) algorithm is
a density-based, nonparametric clustering algorithm that groups data points close to one another
based on two parameters: a distance measurement (eps) and a minimum number of points
(MinPoints). If the distance between two points is lower or equal to the eps value, these points are
considered neighbors. The MinPoints parameter is the number of points needed to form a dense
region. Data points are classified as a core point (a point with at least MinPoints number of data
points in its surrounding), a border point (a point which is reachable from a core point but with less
than MinPoints number of data points in its surrounding), or an outlier (a point which is neither core
point nor border point) based on eps and MinPoints parameters (Perafan-Lopez and Sierra-Perez,

2021; Deng, 2020).

Choosing good eps and MinPoints values is essential in the DBSCAN clustering algorithm.
Selecting a minimal eps value prevents many data points from being clustered and makes them
outliers and selecting a very high eps value leads to placing the majority of data points in the same

cluster.

In general, small eps values are preferable. In contrast, larger MinPoints values are usually
better, especially for the large dataset. One of the DBSCAN clustering algorithm’s main strengths
1s that it is more efficient for arbitrary-shaped clusters. In contrast, partition-based and hierarchical

clustering techniques are highly efficient with regular clusters.
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3.5.6.4. Agglomerative Clustering
The agglomerative algorithm is a hierarchical clustering algorithm used to group objects
in clusters based on their similarity. It works in a bottom-up manner, which means each data point
is considered a single-element cluster initially. At each step, the two most similar clusters are
combined into a new bigger cluster. The algorithm is iterated until all data points become a member
of a single big cluster. The result is a tree-based representation of the data points called a

dendrogram (Karthikeyan et al., 2020).

The agglomerative algorithm begins by measuring the distance between the data points via
a clustering distance measurement such as euclidean distance using the following formula and

grouping the data points close to one another.

d= /YL, (xi—yi)? (©)

3.6. Case Study

The significance of monitoring prefabricated modules during transportation is that the
manufacturer had already experienced some damages on prefabricated modules during
transportation caused by the vibrational forces. Figure 3-5 shows evidence of some prefabricated
modules damaged during transportation, rejected by the client, and returned to the factory for the
required modifications. However, some structural damages might be hidden. These damages need

to be identified and investigated further.
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Figure 3-5: Sample of actual damages (cracks) on prefabricated individual modules caused by

the transportation-induced forces

We used two factory-finished wooden modular building units to demonstrate the use of the
developed system. The modules were produced by RCM Solutions Modulaires Company located
in Quebec, Canada, and transported about 300 km, by a tractor-trailer, as shown in Figure 3-6, from
the factory to the installation site in Montreal, Canada. The size of the bigger module was 12.8 x
3.5m (42' x 11'-6.5 "). We attached four monitoring system units to each module. The number of
sensors was selected in this study based on the budget and time of developing the monitoring
systems. This is stated as one of the limitations of this work at the end of the Discussion section.
To amplify the reliability of readings, two vibration sensors were attached to the floors and two
monitoring system units to the walls. The location of sensors was selected close to the openings of
each prefabricated module due to the concentration of stresses produced by the vibration force in

these locations, as observed and recommended in the research conducted by Smith et al. (2007).
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Figure 3-7 shows one of the modules’ floor plans and the position of monitoring system units

attached close to the window opening.
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Figure 3-6: The transportation route of the instrucmented prefabricated module
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Figure 3-7: The instrumented prefabricated module’s floor plan and the monitoring systems’
position

The sensors and the associated monitoring systems were activated, and the transportation
began after closing the temporary doors. Figure 3-8 shows some instrumented prefabricated

modules in the factory and the installation site.
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Figure 3-8: The pictures of the instrumented prefabricated modules in the factory and
installation site

When the modules were delivered to the installation site, we detached the sensors for the data

analysis.
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3.7. System Implementation

We used the developed system to monitor and assess the structural behavior of two wooden
prefabricated building modules during transportation. Eight sensors and their monitoring units
were attached to the walls and floors of prefabricated modules to measure and record acceleration
data for the duration of the monitoring period. In our study, only the data measured by two
monitoring units with vibration sensors (Module 1 & Module 7) attached to one of the prefabricated
module’s floors were analyzed. More than 1.7 million raw acceleration data points were measured
and stored in the system’s SD card. Figure 3-9 shows the acceleration time history plot in XYZ
directions for these monitoring system units. As shown in Figure 3-9, vibrational forces produced
at the beginning and end of the transportation (on local and city roads) are much bigger than the
vibrational forces produced during the middle of the transportation (on highways), indicating the

poor road quality and conditions of local roads.
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After visualizing the acceleration data, the data analysis was carried out on the raw acceleration

data.
a. Data Collection and Preprocessing Module

In the first step, a dataset was defined to accommodate the raw acceleration data in XYZ
directions. When the dataset was created, the pre-processing module searched to detect if there
were any missing values in the dataset. Then, the mean value of the available acceleration readings
replaced the missing values in each direction (X, Y, and Z). It should be noted that missing values

were replaced by the same mean value.
b. Damage Sensitive Feature Extraction

We grouped the created datasets based on a 2500 acceleration group size. We calculated the
RMS value for use separately as a damage-sensitive feature of each group. Figure 3-10 shows the
number of RMS values and RMS data points in XYZ directions. As shown in Figure 3-10, 691
RMS values were calculated and extracted from the raw acceleration dataset with 1,728,600 data

points.
c. Noise Elimination Module

In this step, we identified and removed the noisy data from the dataset to improve the
clustering accuracy. The quantile method was used to find the noise. Data were considered an
outlier if their value was less than low quantile (1st percentile), the point where 1% of the data
have values less than it, and greater than high quantile (99™ percentile), the point where 99% of
the data have values less than it and was tagged as NaN and then removed from the dataset. In this
dataset, we identified and removed 36 outliers. Figures 3-11 and 3-12 show the outputs of the Noise

Elimination Module. In Figure 3-12, outliers are marked with a circle (O).
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Figure 3-10: The RMS dataset
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Figure 3-11: The number of RMS data points after noise elimination
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Figure 3-12: The pair plot of the RMS dataset before and after noise elimination step

d. Data Dimensionality Reduction Module

The Data Dimensionality Reduction Module uses the PCA algorithm to reduce the dataset's
dimension from 3D to 2D. The PCA creates a low-dimensional representation of the samples from
a data set, which is optimal because it retains as much variance in the original data set as possible.
The first step of PCA is feature scaling. Standardization is a scaling technique where the values are
centered on the mean with a unit standard deviation. The PCA calculates a new projection of the
data set, and the new axis is based on the standard deviation of the variables. Therefore, a high
standard deviation variable will have a higher weight for calculating the axis than a variable with
a low standard deviation. If RMS data are standardized, all data points have the same standard

deviation; thus, all features have the same weight, and the PCA calculates the relevant axis.

We used the standard scaler method to scale the RMS values in all directions. Equation (7)

is the formula for standardization.
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(7)

where:
u is the mean of feature value,
and o is the standard deviation of the feature values.

After standardizing the RMS dataset, we applied the PCA algorithm to decrease the
dimension of the data set to 2D. Figure 3-13 shows both principal components (PCs) calculated for

each feature (X, Y, and 7).
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Figure 3-13: The PCs of the RMS dataset for each direction

Therefore, the corresponding PCs multiplied by the RMS values in each direction calculate
a new data point for the PC dataset. The first and second PCs are calculated based on the following
formulas:
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PC1 = (0.596552X) + (0.578346Y) + (0.5564542) (8)

PC2 = (—0.200139X) + (—0.564232Y) + (0.8009912) 9)

where:

X, Y, and Z are RMS values in X, Y, and Z directions, respectively.

The scatter plot, as shown in Figure 3-14, displays the results from PCA.
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Figure 3-14: The scatter plot of PCA data

PCs are extracted to represent the patterns encoding the highest variance in the data set.
However, in many high-dimensional real-world data sets, the most dominant patterns (i.e., those
captured by the first principal components) separate the samples’ subgroups from one another.

Therefore, the PCA data can be used as a practical input into the clustering algorithms.

e. Pattern Recognition Module

The Pattern Recognition Module was applied to the PCA data to detect any dissimilarity

between data. Figure 3-15 shows that only one data pattern was found by the k-means clustering
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algorithm where the data are compacted, meaning that no structural damage occurred on the

prefabricated module.
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Figure 3-15: The cluster resulting from k-means clustering

3.8. Validation

3.8.1. Damage Simulation on the Test Data

After analyzing the data measured by the monitoring system units, we determined that no
damage occurred on the instrumented prefabricated building unit during transportation. As Table
3-1 shows, three scenarios were proposed to simulate different structural damage levels on the
acceleration data to validate the developed system and workflow and select the best classification
method. The damage simulation Scenarios, used in this study, were established based on the
method used in the research conducted by Ding et al., (2014) for simulating the effects of structural
damages on the RMS values of acceleration. Scenario 1 indicates two types of classification, intact
and low damage data. Scenario 2 shows three types of classification, intact, low damage, and
medium damage data. And finally, scenario 3 indicates four types of classification, intact, low,

medium, and high damage data.
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Table 3-1: The proposed scenarios description

Scenario Level of Damage Damage Simulation Description

Scenario 1 | One level of damage e Amplifying the last %35 of RMS data
Damage Classification Number: by a factor of 1.03
Intact: 0
Damage Level 1: 1 (low)
Scenario 2 | Two levels of damages e Amplifying the last %35 of RMS data
by a factor of 1.05 & 1.10
o %380 of data by 1.05
Intact: 0 o %20 of data by 1.10
Damage Level 1: 1 (low)
Damage Level 2: 2 (medium)
Scenario 3 |Three levels of damages e Amplifying the last %35 of RMS data
by a factor of 1.03, 1.06 & 1.08
e %60 of data by 1.03
Intact: 0 e %25 of data by 1.06

Damage Level 1: 1 (low) e 9%]l5 of data by 1.08
Damage Level 2: 2 (medium)
Damage Level 3: 3 (high)

Damage Classification Number:

Damage Classification Number:

3.8.2. Evaluation of Clustering Methods Based on Proposed Scenarios

As Table 3-1 describes, in scenario 1, only one level of damage (low damage) was defined
by amplifying the last 35% of RMS data points by a factor of 1.05. We standardized the modified
RMS dataset, and applied PCA to it to use as the input to different clustering algorithms. We
applied the PCA algorithm to the modified RMS dataset in all established scenarios. We classified
the vibration data according to the damage classification numbers to evaluate the accuracy of
different clustering algorithms used in this study and identify them visually. Figure 3-16 shows
PCA plots based on different proposed damage simulation scenarios. A specific color shows each

level of damages.
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Figure 3-16: PCA plots based on different damage classifications

a. K-means clustering

The k-means algorithm was used to evaluate its effectiveness and accuracy in identifying and
classifying damages in different proposed scenarios. Because the number of clusters must be
predetermined in the k-means clustering, we used the e/bow method and silhouette analyses to

optimize the number of clusters. We applied both methods to the data of different scenarios’ data
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and determined their optimum number of clusters. We calculated the number of clusters for
scenarios 1, 2, and 3 to be two, three, and four respectively, which was correct based on the damage
simulation. Figure 3-17 shows the optimum number of clusters found by the e/bow method for the
first and third scenarios where Sum of Squared Errors (SSE) decreases abruptly. As shown, the
number of clusters was identified as two and four correctly for the first and third scenarios, which
means there are two and four damage classifications in scenarios number one and three,

respectively.

The Elbow Method showing the optimal k

The Elbow Method showing the optimal k

175

150

125

Distortion

Figure 3-17: The optimum number of clusters for the first and third scenarios calculated by the

Elbow method

We also applied silhouette analysis to the data of different scenarios to determine the
optimum number of clusters and validate the e/bow method results. The output (number of clusters)
from the silhouette analysis was the same as the outputs determined by the e/bow method, and for
Scenarios 1, 2, and 3 we calculated two, three, and four, respectively. As shown in Figure 3-18, the
silhouette score for n_clusters = 4 in scenario 3 has the highest value and is closer to one, which

shows the optimum number of clusters.
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Figure 3-18: The optimum number of clusters for the first and third scenarios calculated by the

silhouette analysis

After identifying the optimum number of clusters, we used the number of clusters as input
for the k-means clustering. Figures 3-19 and 3-20 illustrate the classification results of scenarios 1,
2, and 3. As shown, although the algorithm accurately detected the number of clusters (damage
classification), only the damaged and undamaged data in scenario one was grouped in suitable

clusters, and the k-means algorithm could not classify all the damaged data accurately in scenarios

2 and 3.
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Figure 3-19: K-means clustering classification result on the scenario 1 data

- -

’ Y
2 \
- ~
P o S ’ e o aq \
- N \ 4 e 3 o \
20 L7 .9 \i Vi v e \
// ~ \ / . o co £ 1
” y S, 4 %8 1) / Y H ., o %
e %le o 1 — [
4 P Y IR 1 %T e * . !
. Vs oseoo? ) [P o 0 o« e N
- / . Ll - ii / m‘ J’ 0..00 L L] oy
e sl ¢ T P P 1
, / / {1:? !, 4 -, g X /7
65 P 7 ! [} 1 oo 4 4 /\7 o’ / -
, ’ d‘%g‘.o . & / \ oo e -
/'@ 7’ ] we LY - Vs 7\ ot O p .7 sl
.
o {/ // RS . 7 as ’ ,/ N o‘;'i%% /// e 4
= - N s, ’ . 7
P . o/ / 4 L "7
A ’ ! . e~ o - - ot 7/
s g { , i - // P
/ \ codn” 4 LI A
10 7 " \ ¥ e 4 ot .
p N e . s T
7/ ~ t M - 7 | 7
// ’ ~So e _ -~ . -,
15 15 - "c— . /‘l‘ e
« - l_’/

Figure 3-20: K-means clustering classification result on the scenario two and scenario three data

As shown in Figure 3-19, the k-means algorithm could successfully group all damaged and
intact data into a separate cluster in scenario 1. However, in scenarios 2 and 3, as shown in Figure
3-20, k-means could only group intact and damage level 3 data correctly into a separate cluster. At

the same time, it could not classify damage level 1 and damage level 2 accurately.
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b. Mean shift clustering

Unlike the k-means algorithm, the number of clusters is estimated based on the bandwidth
parameters such as n_samples and quantile. The bandwidth is the distance/size scale of the kernel

function or window size across which the mean is calculated.

The n_ samples parameter refers to the number of input points (in this case, the number of
RMS data points). Quantile should be in the range of [0, 1]. The optimum value of “quantile” was
identified as 0.5 for scenarios 1 and 2 and 0.3 for scenario 3, which also worked for scenarios 1
and 2, using the trial-and-error method to estimate the correct number of clusters for different
scenarios. A quantile of 0.5 means that the median of all pairwise distances was used. Using the
specified quantile parameter value, we estimated the number of clusters correctly (2, 3, and 4 for
scenarios 1, 2, and 3, respectively). Like K-means clustering, the mean shift algorithm could
successfully group all damaged and intact data into a separate cluster in scenario 1. Scenario two
could only group intact and damage level 2 data correctly into a different cluster (Figure 3-21 [a]).
In scenario three, the mean shift could only group intact and damage level 3 data correctly into a
separate cluster (Figure 3-21 [b]). At the same time, it could not accurately classify damage level

1 and damage level 2 data into suitable clusters.
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Figure 3-21: Mean shift clustering classification result on (a) scenario two and (b) scenario three

data (b)
c.  Agglomerative clustering

Agglomerative clustering uses the euclidean distance parameter to find similar data
points and group them into the same cluster. Although the number of clusters cannot be estimated
automatically by the algorithm, it can be identified by the algorithm dendrogram. As Figure 3-22
[a, b] shows, the number of clusters was identified correctly from the dendrogram. Like k-means
and mean shift clustering, the agglomerative clustering could successfully group all damaged and
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intact data into a separate cluster in scenario 1. However, in scenario 2, as shown in Figure 3-22
[c], it could only group the intact and damage level 2 data correctly into a separate cluster.
Simultaneously, scenario 3 only grouped the intact and damage level 3 data correctly and could not

accurately classify damage level 1 and damage level 2.
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Figure 3-22: The agglomerative clustering classification result on the scenario two (a, c¢) and
scenario three data (b, d)

d. DBSCAN clustering

The DBSCAN algorithm is one of the most common clustering algorithms that separates
high-density from low-density clusters. Some substantial advantages of the DBSCAN algorithm are

estimating the number of clusters, sorting data into clusters of varying shapes, and being robust to
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outliers. Because the simulated damaged data was already labeled based on different damage
classifications, we considered different sets of values for the model’s parameters, ‘eps’ and
‘MinPoints’, to achieve the correct number of clusters and classification. The optimum value of
‘eps’ and MinPoints was identified as 0.6 and 15, respectively, using the trial-and-error method to
estimate the correct number of clusters for different proposed scenarios. As Figure 3-23 shows, the
number of clusters was estimated correctly using the specified eps and MinPoints parameter values
(2, 3, and 4 for scenarios 1, 2, and 3, respectively). However, because in modular buildings, most
of the individual modules have the same size and are transported to the site with the same temporary
configuration of supports on the truck, the optimum values identified for the DBSCAN algorithm
for the first individual modules and the same road profile can be used for other prefabricated
modules.

As Figure 3-23 shows, unlike other algorithms, the DBSCAN algorithm could classify all
damage levels in all scenarios and group them correctly. It could group “densely grouped” data
points into a single cluster, which plays a substantial role in correctly classifying different levels
of damage. The most exciting feature of DBSCAN clustering is that it is robust to outliers. As
shown in Figure 3-23, outliers were illustrated in black. In this case, because the dataset was already
denoised, these outliers might be caused by the impact loads produced because of the weak road
condition. Therefore, if required, outliers can automatically be added to their closest cluster for

further analysis.
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Figure 3-23: The DBSCAN clustering classification result on the scenario one, two and three (a, b,

and c respectively)
3.9. Evaluating the Accuracy of Different Clustering Algorithms

We compared the classification accuracy of different clustering algorithms used in this study
for different proposed scenarios (scenarios 1 and 2) and different sizes of event (625 [5s], 1250
[10s], and 2500 [20s] to identify the most effective algorithm and optimum size of event for the
developed framework. We investigated the accuracy of algorithms using two parameters: accuracy

score and confusion matrix.
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The accuracy score is the ratio of the number of correct predictions and the total number of
predictions calculated by the algorithm. A confusion matrix is an N x N matrix used for evaluating
the performance of a classification model, where N is the number of target classes. The matrix
gives a holistic view of what kinds of errors it is making. Table 3-2 shows the structure of the
confusion matrix for two types of classes (scenario one). In Table 3-2, the columns represent the
actual values of the target variable, and the rows represent the predicted values of the target
variable. In the confusion matrix, TP (true positive) and TN (true negative) show the number of
data points correctly clustered by the algorithm, and FP (false positive) and FN (false negative)
show the number of data points falsely predicted by the algorithm. Tables 3-3 and 3-4 show the
accuracy of the clustering algorithms used in the developed framework for scenarios one and two

for different events.

Number of correct predictions

(10)

Accuracy score =
y Total number of predictions

Table 3-2: The structure of confusion matrix

Positive | Negative
Positive TP .
Negative . TN

As Table 3-3 shows, in scenario 1, in case of a single level of damage, for data windows of
10s and 20s, all algorithms could yield the complete accuracy score of 1. In the data window of 5s,
the only algorithm that could not obtain a complete accuracy score was the agglomerative

algorithm with two false negative (FN) predictions, which could be negligible.
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Table 3-3: The accuracy performance of different clustering algorithms for different sizes of the

event in case of existing one level of damage
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Table 3-4: The accuracy performance of different clustering algorithms for different sizes of the

event in case of existing two levels of damage
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As Table 3-4 shows, in the case of more than one damage level, most algorithms’ accuracy
scores were decreased. The only algorithm with the acceptable accuracy score of 1 in a case of
existing different damage classifications in other data windows (5s, 10s, and 20s) was the DBSCAN

algorithm which could classify all the data points in their associated clusters.

3.10. Sensor Failure Analysis Module

The developed sensor failure analysis module can be used to detect the sensor failure using a
correlation matrix. We used RMS data, calculated in section 9.2, to evaluate the correlation
between the variables on each axis of accelerometer sensors. As shown in Figure 3-24, a heat map
plot was used to explain the correlation among the variables of each sensor. We evaluated the
correlation of RMS acceleration data in X, Y, and Z directions, captured by the sensors placed on
the same type of element. Therefore, the outputs of sensors attached to the walls and floors were
compared to calculate their correlation. Correlation ranges from -1 to +1. Values closer to zero
mean there is no linear trend between the two variables. The correlation coefficient close to 1
indicates that the data are more positively correlated. The diagonals are all yellow because those
squares correlate each variable to itself (so it is a perfect correlation). The larger values are shown
in lighter colors and indicate higher correlation between the two variables. The plot is also

symmetrical about the diagonal because the same two variables are paired together in those squares.
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Figure 3-24: The heat map plot used to show the correlation between the sensors

The purple cells in the heat map plot (Figure 3-24) mean there is no correlation between
the sensor data. For example, as Figure 3-24 shows, there is no correlation between sensor number
4 and sensors 2 and 3. Table 3-5 shows the correlation between pairs of associated sensors.
According to Table 3-5, the checkmark means the sensors’ data are correlated, and the cross mark

means there is no correlation between them.
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Table 3-5: The correlation between different sensors

Sensors Combination RMS (X) RMS (Y) RMS (Z2)
Sensor 1 _ Sensor 7

Sensor 1~ Sensor 5 e X Y4
Sensor 1 _ Sensor 8

Sensor 2 Sensor 6

Sensor 2 _ Sensor 3
Sensor 3 _ Sensor 4 X X
Sensor 2 Sensor 4 )4 )4

Sensor 3 _ Sensor 6

Sensor 4 Sensor 6
Sensor 5 _ Sensor 8
Sensor 5 Sensor 7
Sensor 7 _ Sensor 8

X X |X
X X |X

CRXKX X[ X (XX | X

As Table 3-5 shows, there is no correlation between sensors 3-4, 2-4, and 6-4 (attached to
the module’s wall) and sensors /-5, 8-5, and 7-5 (attached to the module’s floor) in all directions,
and there is no correlation between sensors 2-3, and 6-3 in the Z direction. Thus, we can conclude
that sensors 4 and 5 failed in all directions (XYZ) and sensor number 3 failed only in the Z
direction. The sensor failure analysis module can help SHM engineers find failed sensors quickly

to exclude their data in the data analysis.

3.11. Discussion

Structural damages may occur because of transportation-induced vibration forces, which
can lead to misalignment issues and continuity disruption in the building envelope, causing project
delays and cost increase because of additional reworks, modifications, and substantial air leakage
and moisture deposition, thereby creating long-term durability, mold problems, and heat loss

respectively. This paper introduced a novel semi-automated data-driven monitoring system,
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particularly for monitoring prefabricated building modules during their transportation, to ensure

their structural integrity before their installation.

In terms of the size of the hardware system, the developed sensing system (set up in a
protection box) can be attached to different parts of actual prefabricated building modules to track
and monitor their structural behavior against the road and driver-induced vibrational forces during
transportation to the site. The MPU6050 accelerometer was selected for the system, which is
designed for low power, low cost, and high-performance requirements. The system can measure
the modules’ acceleration in XYZ directions and store the measurements in an embedded SD card
during transportation. The SD card module was preferred over wireless-based, remote-sensing
monitoring for two reasons. First, in case of structural damage occurring on prefabricated modules
during transportation, the truck drivers cannot safely stop their vehicles on the road, and repairing
the modules is impossible in transit. Second, it is much more cost-effective than wireless systems.
Using an onboard card data storage module (in this case, using an SD card) is more practical and
less costly. Therefore, the developed hardware system is efficient in monitoring prefabricated

building modules in terms of size and power.

The developed system integrates the sensing system and machine learning technology to
monitor the structural behavior of prefabricated building modules in a semi-automated manner. As
we mentioned earlier, although structural damages (minor or major) might occur during
transportation, few studies have examined this occurrence. In our current study, we selected the
Python programming language to analyze data because of its simplicity, speed, and the availability
of effective machine learning libraries and frameworks. After creating databases and preprocessing
the acceleration data, we selected the RMS parameter as the damage-sensitive feature. The reason

for choosing the RMS parameter over other common parameters such as acceleration frequency
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was the sensitivity of RMS acceleration against minor structural damages usually hidden in the
prefabricated modules. Modal parameters identification leads to a loss of information compared
with the raw data and can erase any small changes caused by structural damage. We used the PCA
algorithm to reduce dimensionality and remove the environmental effects for better visualization
and damage classification and extract critical information from the data. As shown in Figure 3-25,
PCA could make the damage detection and classification processes significantly easier. In scenario
3, where there were three levels of damage, as shown in Figure 3-25[a], damage identification and
classification were not easily possible based on the initial RMS data point plot, whereas after the
PCA process, different levels of damage could be visualized easily. Thus, RMS acceleration has
been used as a practical damage-sensitive feature in transportation-induced vibration monitoring,
and the PCA algorithm has been utilized in the data analysis module for an easier and more efficient

damage detection and classification process.
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Figure 3-25: The data points plot before and after PCA
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The output of PCA was used as input to the machine learning algorithms. The reason for using .-
means, mean shift, agglomerative, and DBSCAN unsupervised clustering algorithms in this study
was their application and popularity in SHM studies and projects (Bouzenad et al., 2019; Entezami
et al., 2020; Agarwal and Reddy, 2020; Azimi et al, 2020, Andrade et al, 2020; Pang et al, 2020;
Hamishebahar et al, 2020; Huang et al., 2019; Chen et al., 2018; Perera et al, 2019; Bull et al.,
2018). After optimizing the clustering parameters, k& (number of clusters) for the k-means and
agglomerative algorithms using the e/bow method and Silhouette Index (SI), quantile for the mean
shift algorithm, and minPts and eps for the DBSCAN algorithm by trial-and-error method, the
algorithms’ accuracy was evaluated based on intentional simulated damage labels. After analysis,
it was found that density-based clustering such as the DBSCAN algorithm could classify different
damage levels based on density levels. Because of random vibration production and unexpected
road conditions, we found that the shape of clusters might be arbitrary, which can be
distinguishable by density-based clustering, whereas partition-based and hierarchical clustering
techniques are highly efficient with typical clusters. Figure 3-26 shows the high classification
accuracy of the DBSCAN clustering algorithm. Figure 3-26 (a) shows the classification output of
the DBSCAN algorithm on scenario 3 data, and Figure 3-26 (b) shows the classification based on
the actual damage labels. As shown, DBSCAN could assign the data point in its correct cluster
(cluster number 1), although it is further from other cluster members, which shows the high
classification accuracy of the DBSCAN algorithm in this case. This result has been observed in the
accuracy score and confusion matrix analysis in which the DBSCAN algorithm yields the full
accuracy score in the case of more than one level of damage compared to other algorithms.
Therefore, the accuracy score and confusion matrix have proven effective methods for comparing
different types of clustering techniques to identify the algorithm with the highest classification

accuracy.
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Estimated number of clusters: 3

(a) DBSCAN clustering (b) Real Classification (PCA)

Figure 3-26: The high accuracy of DBSCAN clustering

According to Table 3-4, six monitoring modules (out of eight) could successfully measure
and store acceleration data (with a sampling rate of 125 Hz) during transportation. When erroneous
data produced by one kind of sensing unit out of a pair that result in serious consequences to the
system operations and data analysis, identifying the faulty sensor plays an essential role in the
correct functioning of the monitoring systems. On the other hand, identifying which sensor out of
a pair is faulty can be challenging. Therefore, there is a critical need to detect such failures before
starting the data interpretation. Most of the previous sensors’ fault detection methods have been
based on machine learning techniques, but researchers have found that, in this case, machine
learning techniques are computationally intensive and need large training datasets (Weiss et al.,
2016, Gaddam et al., 2020). The developed sensor failure identification module presented in our
study effectively detects sensor’s failure by using a correlation matrix between sensors. In this
developed module, the correlation is considered among sensors placed in the same location and the
sensors attached to the same components such as walls and floors. A sensor failure happens if there
is no correlation between a pair of sensors installed in the same area. Because the elements of a

prefabricated module experience almost the same vibrational force during transportation, the
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developed module also investigates the correlation among sensors installed in different positions
on a component (e.g., wall or floor) to compare the correlation between a sensor to all other sensors
to identify the faulty one. Another benefit of this module is its integration with the developed

framework, which works as a part of the system.

Our study introduced a multi-functional data-driven SHM system to monitor the structural
behavior of individual building modules during transportation to detect any possible damages after

the delivery. However, we note the following limitations to our study:

1. The system developed here was tested with a limited number of sensors (two sensors on
a wall and two on each module’s floor). The system can also be expanded to use different
sensors for other purposes, such as strain sensors to monitor the deformation of structural
elements. The developed system should be tested further on more prefabricated modules
with a larger number and multiple types of sensors.

2. The developed monitoring system was tested on only two prefabricated individual
modules transported by the same truck. Because the transportation-induced damages on
prefabricated modules are inevitable, as observed in our visit to the factory site, more tests
on prefabricated modules of different sizes should be conducted to validate the developed
system on units with some actual structural damages.

3. The three damage scenarios used in our research were hypothetical to simulate different
possible intensities of structural damage (low, medium, and high) on prefabricated
building modules during transportation using amplification factors. However, more
monitoring tests need to be conducted on prefabricated modules to find actual damaged

data.
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4. In our study, we searched for the optimum values of the following parameters for mean
shift and DBSCAN clustering using the trial-and-error method to determine the most
suitable predictions. An optimization technique is required to find the optimum clustering
parameters’ values automatically. However, because most of the building modules are
prefabricated with the same size in modular building construction projects and transported
to the site with the same configuration of temporary supports on the truck, the optimum
values for the clustering algorithm for the same road profile can be used for other building

modules.

3.12. Conclusion

Monitoring the structural integrity of prefabricated building modules during transportation
is critical for manufacturers and owners to ensure that modules are delivered safely to the site. The
main purpose of this research was to develop a data-driven monitoring system to monitor the
structural condition of individual building modules during transportation to detect possible
damages caused during their delivery. For this purpose, a system, which consists of two main
components (DAQ and data analysis components), was developed. The system used acceleration
data and unsupervised clustering techniques to detect and classify damaged and undamaged data.
A user-friendly visualization-based method was also integrated into the system to identify sensors
malfunction. The capability of the developed system was explored via a real case study.

Based on the study presented here, we made the following conclusions:
U The developed monitoring systems could successfully record the vibration of prefabricated

building modules during the transportation to the site.
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Acceleration RMS was used as a practical and effective statistical damage-sensitive feature
in the developed system.

PCA was used as a solid and effective data reduction algorithm to remove environmental
impacts during transportation and make the damage detection and classification process
more efficient.

Different clustering algorithms were applied to RMS data during the damage detection
process, and accuracy score and confusion matrix parameters were used as effective
parameters to evaluate the performance of these algorithms

All algorithms could successfully estimate the correct number of clusters (two clusters) and
appropriately assign data points to their corresponding clusters for one level of damage.
After detailed analysis using different clustering algorithms, it was found that the DBSCAN
algorithm yields the complete accuracy score of one in the case of more than one level of
damage compared to k-means, mean shift, and agglomerative clustering with the accuracy
score of 0.81, 0.79 and 0.78 respectively.

Using the sensor failure identification module developed in this study, we identified two

malfunctioning sensors (numbers 4 and 5), and their data were excluded from the analysis.

Timely modifications of damaged prefabricated modules can prevent problems of additional

costs and time arising from misalignment issues during the installation phase and problems during

the operational phase such as air leakage and moisture deposition which can negatively impact the

performance of building envelope of the modules. The system we developed in our study aims to

solve the issues that existed in previous studies, such as the size of the monitoring system (which

is critical in the monitoring of individual prefabricated building modules during transportation),

the cost and complexity of a model-based approach in the structural damage detection process, the
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inapplicability of a model-based approach (which is time-consuming and requires detailed
modeling data), and the possible uncertainties in loading data and temporary support configurations
(which might affect the outputs of model-based approach in this case).The developed system can
allow for timely replacement of damaged parts of the prefabricated modules before installation. It
can also provide evidence to support manufacturers’ insurance claims on repair and modification
costs and improve customer perceptions of the quality of prefab construction. However, the
developed system should be tested further on more numbers and types of prefabricated building
modules with a larger number of sensors to be validated with some real damages rather than
damages simulated in this study. Moreover, optimized parameters value of some clustering
techniques, used in this study, should be found automatically by using some optimization technique

which will be addressed in the feature research.
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Chapter 4: Development of a BIM-Based Data Management System for
Structural Health Monitoring with application to Modular Buildings: A Case
Study

General

In this chapter, the published paper is presented as is, followed by an updated literature review
section. This paper was accepted and published in the Journal of Computing in Civil Engineering
in 2019". The main objective of this paper is to develop an automatic workflow to integrate BIM

into the SHM process to increase the speed and efficiency of structural condition assessment.

Abstract

Modular buildings or off-site construction of building units are increasingly gaining momentum.
Although such construction practices have advantages in terms of cost competitiveness and
delivery time, they have many issues related to structural integrity and secondary stresses from
vibration during transit and misalignment during installation. Therefore, monitoring the vibration,
strain, and deformation of the modules using structural health monitoring (SHM) techniques is
important. The primary purpose of this study is to explore building information modeling (BIM)
techniques to facilitate effective data management and the representation of sensory components
of the SHM system in a building and to render or visualize the damage or distress in building
components based on the interpretation of sensor data. The proposed framework consists of two
main modules: (1) an automated sensor-based data acquisition and storage module, which extracts

sensor data for a structure from a corresponding relational database; and (2) an automated data and

* Valinejadshoubi. M, Bagchi. A, and Moselhi. O, (2019), Journal of Computing in Civil
Engineering, Vol. 33, Issue 3, Pages 1-16
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damage visualization module, through which sensor data are interpreted to identify damage or
anomalies in the structure and the affected building components are highlighted and tagged in the
BIM of the building to facilitate visualization. The damaged or near-damaged elements of the
modules are highlighted in the BIM model through color-coding based on predefined threshold
strain values. Because detecting buckled or yielded steel members (local damages) in a building or
a module is challenging given that these components are often hidden behind fireproof coating and
drywall, the proposed SHM-based condition assessment system will contribute—especially in the
preinstallation and operational phases—to providing efficient, near-real-time health monitoring of
buildings and increasing the efficiency of the structural condition assessment process. These
benefits could be particularly useful for modular buildings, for which the modules are constructed
in a plant and transported to the site for installation. In these stages, a module may undergo hidden
or visible damage, the installed sensors are expected to provide a mechanism to assess such
damage, and the entire process can be managed through BIM. Importantly, note that although a
similar concept was explored by other researchers to integrate SHM with BIM, the present study
provides a more comprehensive methodology through the complete implementation of the system

to demonstrate the concept through a case study.

Keywords: Structural Health Monitoring (SHM), building information modeling (BIM),

Relational database, Damage visualization, Modular buildings
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4.1. Introduction

The modular construction process represents the highest degree of industrialization of the
building construction process, which is currently growing rapidly. Presently, in some construction
projects, prefabrication/modular construction is approximately 85% (McGraw-Hill Construction,
2011). Clients’ requirements for rapid construction, improved quality, and early investment returns
are some of the motivating factors for modular construction.

Modular steel buildings are usually composed of prefabricated cold-formed steel
assemblies or modules that are fabricated in a manufacturing plant and then shipped to the
construction site to be installed to form a building. Compared with hot-rolled steel structures, cold-
formed light steel structures are lighter but more susceptible to structural damage given normal and
extreme loads (Yang and Bai, 2017). A sufficient understanding of the structural behavior of
multistory modular buildings subjected to different load types is lacking (Ramaji and Memari,
2013). Different situations exist that could lead to the failure of a module, such as increased damage
during erection or transportation. Geometric variability is inevitable and can cause problems in the
assembly process. A module’s component geometry can change from its original design because
of problems arising from the manner in which it is handled in the plant, during transportation, and
at installation (Rausch et al., 2017). The geometric change may lead exceed the tolerance of fit and
generate secondary stresses at installation, causing further damage.

From the manufacturing to the operational phase, modules are subjected to different types
of direct and indirect loads. The modules are required to be designed to withstand fabrication,
transportation, and installation loads (Naqvi et al., 2014). Predicting the final and capacity of a
modular building after being transported is difficult and lifting-induced stresses are not entirely

predictable. Because the structural elements of a module of a building are usually hidden behind
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the fireproof coatings or drywall, detecting the buckled or yielded steel members (local damages)
in a module is challenging (Zhang and Bai, 2015). In this context, a useful monitoring tool such as
SHM is needed for early structural condition assessment and damage detection in specific parts of
the modules in each phase. SHM systems are ranked as one or a combination of the following SHM
categories: sensor deployment studies (category 1), anomaly detection (category 2), model
validation (category 3), threshold check (category 4), and damage detection (category 5),
(Vardanega et al., 2016). Higher level categories (e.g., categories 4 and 5) have the potential to
yield significant values to many stakeholders. According to Webb (2014) and Webb et al. (2014),

most published SHM studies are devoted to categories 1 to 3 and the least to category 4.

In practice, monitoring the strain response contributes to an assessment of the structural
condition (Park et al., 2013; Ni et al., 2010, 2008). Continuous monitoring of a real-time dynamic
strain in a structure can provide valuable information for damage assessments, inspections, and
decision making. Strain provides information about the local behavior of structural components
and is one of the most used parameters in SHM. Strain is essential in condition monitoring of
modular buildings, which can aid in the assessment of damage in structural members in building
modules at different stages, and helps assess the reliability of structural components.

Fast and accurate assessment of the structural condition of modules and buildings (modular
or other) is essential for timely maintenance and repair to avoid project delays, and is important for
occupant safety and occupancy after extreme load events. The challenge, in general, is an effective
visualization tool utilizing BIM to make the SHM information easily accessible, understood, and
applicable (Zhang and Bai, 2015), which could increase the efficiency of the structural condition
assessment process and facilities management. BIM can be used effectively to capture the real time

building information that can be used for owners and facility managers to provide accurate and
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upgraded details on the state of various parts of the building (Chen et al., 2014). BIM combined
with real-time monitoring of structural health and damage assessment methods could provide a
robust and intelligent system for managing modern buildings, including the modular building type
(Seam et al., 2013). However, integrating SHM into the BIM environment has challenges. The
study run by Rio et al. (2013) revealed that accomplishing a dynamic monitoring system for the
structural behavior of a building to provide sensor data to BIM is not part of BIM functionality and
is still a challenge. They concluded that BIM standards need to be extended to allow them to
represent monitoring-related information. The study by Wang et al. (2017) found that applying
BIM in SHM can improve the effectiveness of monitoring processes and decision making in
construction informatics applications.

Despite its potential benefits, few attempts have been made to integrate BIM into SHM.
Sternal and Dragos (2016) proposed BIM-based modeling of wireless SHM systems using the
industry foundation class (IFC) standard. Although they believed that integrating monitoring-
related information into BIM helps categorize, document, and update this information throughout
the entire life cycle of the monitored structure, it was mentioned at the end that the current IFC
standard does not provide sufficient entities to holistically model and digitally represent an overall
wireless SHM system. Theiler et al. (2017) attempted to design a BIM-based prototype SHM and
control system by using the extended IFC schema. Smarsly and Tauscher (2016) proposed a
conceptual monitoring information modeling built on the IFC standard. Although the authors
defined a semantic model to extend the existing IFC 4 standard for digital representation of
monitoring-related information, the paper was conceptual and did not include implementation or
validation. Del Grosso et al. (2017) attempted to explore the idea of integrating 6D digital models
with SHM systems, but the study mainly focused on creating and modeling the sensor system in

the BIM software application and did not provide the linkage to sensor data or facilitate
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visualization. Although the authors of this study discussed the state of the art of the current and
potential relationship between SHM and BIM, they believed that the topic is not explored
well and needs further investigation. Additionally, it was noted that no preferred workflow exists
to inform the BIM model with SHM and interpreted data regarding elements of the project. A
preliminary scheme for utilizing BIM to manage SHM data for buildings was developed in
Valinejadshoubi et al. (2018c, 2017). BIM was also effectively used in thermal comfort monitoring
(Valinejadshoubi et al., 2018b) and the assessment of the seismic risk of non-structural components
in buildings (Valinejadshoubi et al., 2018a).

Although BIM is desired as a dynamic workbench for managing all data related to a
building project, connectivity between BIM and SHM is lacking. The full integration between
virtual and physical sensors, connecting and inserting sensor data remotely into an external
database through Internet of Thing (IoT) technology, and applying a three-dimensional (3D)
visualization-based alarm system for SHM projects have not been adequately addressed in previous
studies, and the BIM approach has not yet been fully applied and validated for SHM purposes. To
address some of these issues, in the present study, a novel integrated system is developed for
structural condition monitoring of building components. SHM data are stored in the database and
automatically accessed by the BIM model, and the conditions of the relevant building elements are
calculated and mapped on the BIM model to visualize the overall state of the structure. The main
purpose of this study is to create a mechanism for a BIM model of a building or module to represent
and access sensor data, run a data interpretation or damage assessment process, and map it on the
corresponding building components. Doing so would facilitate an effective visualization capability
for a rapid and efficient structural condition assessment based on the SHM data. The proposed
framework can be applied by engineers and facility managers to interpret and assess the ongoing

condition of modules during the transportation, installation, and operational phases, to identify
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hidden damages, and to replace the damaged parts by providing and managing updated monitoring

data in a rapid manner to promote timely repair.

4.2. BIM and its Role in the Modular Building Construction

Presently, the architectural, engineering, and construction (AEC) industries have been
seeking an effective tool for reducing the cost and completion time of projects and increasing their
productivity and quality (Azhar et al.,, 2008). BIM has significantly altered the
way that building information is managed by the AEC industry. BIM incorporates digital modeling
software to design and manage a project more efficiently (Nassar, 2010) and provides powerful
new value to construction firms. BIM breaks down the Dbarriers between
disciplines by encouraging the sharing of knowledge throughout a project’s lifecycle. BIM
improves constructability and shortens a project’s completion time. In a BIM project, multiple
documents are not used in traditional ways; instead, they are digitized and added to a database in
BIM software. All information is built into an intelligent BIM model instead of needing to look at

separate drawings, schedules, and specifications for the information on a particular element.

BIM is an organized collection of building data. Regarding BIM, everything begins with a
3D building model. This model has more than just simple geometry added to it for visualization.
A true BIM model consists of the virtual equivalent of actual building sections. These intelligent
elements are the digital prototype of the physical elements, including walls, columns, windows,
doors, specialty equipment, and others. The model allows us to simulate the building and
understand its behavior before actual construction begins. Of course, the most basic BIM model is
used to create realistic visualizations of the planned building. As previously mentioned, the data in

a BIM model are not only used during the design and construction phases of the building project
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but also throughout the building’s life cycle. The building-related data can be easily archived in

the BIM model for such things as future usage, analysis, retrieval, and maintenance.

Because modular construction has an additional manufacturing stage relative to
conventional construction, utilizing BIM as a powerful information management tool is required.
A current issue of offsite construction has been perceived as a process lacking flexibility in design.
BIM can partially address this limitation by providing access to a vastly broader range of
constituent parts in various levels of detail, from the micro level of an individual fastener to the
macro level of a volumetric component (Patlakas et al., 2015). BIM can be used for proper
information exchange between different disciplines, which is a fundamental need in
multidisciplinary projects such as modular building projects. Data-rich models such as BIM can be
used effectively by other members of the design team to coordinate the fabrication of a building’s
different systems (Nawari, 2012). BIM can be used in effective simulation and visualization of a
building and its components in digital forms, which are useful for accurate planning of onsite
module installations and can resolve any spatial constraints (Han et al., 2011). Due to the large
number of elements in modular structures, an automated system is needed for visualizing and

monitoring the structural condition of elements in modules in each phase of the project.

4.3. SHM in Modular Buildings

A modular building is erected by assembling individual modules. Every module is a
primary rectangular frame made of steel or wood frames. The modular units are stacked on top of
and or next to one another through a connector at every joint. Two types of connections—vertical

(column to column) and horizontal—are used in modular building construction.
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Potential failure modes in modular buildings include structural component failures within a
modular frame and connection failures at the modular joints. Regarding component failures, corner
posts buckling or load-bearing studs and bending of columns/beams may occur. Regarding
connection failures at the joints, modular units become separated, which reduces their axial
stiffness to zero, causing a critical situation concerning the overall integrity of the entire system.
Local connection failure (LCF) occurs due to excessive concentrated force on the connection
region, causing complications in the load transfer path. Different types of loads, such as
manufacturing, transportation, installation, and operation, are applied to the modules. Any damage
to the modules before installation may affect the operational performance of the same. Hence, the
modules must be erected without any hidden damage. SHM can be applied for early and rapid
structural condition assessment and damage identification of building modules during every phase
to assist engineers in deciding on rehabilitation measures when the module’s components
experience unexpected changes in excessive deformation, deflection, and strain.

SHM system design is developed based on failure modes. It is advantageous for modules’
components to be equipped with SHM systems as they are being manufactured. Particular care
should be taken regarding the installed sensors on the elements from
roughness-induced vibration forces during transportation. Different types of sensors can be applied
in the SHM of the modules. For instance, linear variable displacement transducer (LVDT)/
ultrasonic sensors are used to measure critical structural deformation (serviceability) and the
module separation at the connection region (LCF). Moreover, strain gauges are used to measure

the real-time strain on critical structural members in the modular system.
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4.4. Determining the Locations of Strain Sensors

Modules can be made from light gauge/cold-formed steel or hot-rolled steel such as pipe
chassis. However, compared with hot-rolled steel modules, cold-formed light steel modules are
more susceptible to deformation and buckling due to applied loads.

The level of strain in structural elements serves as a significant indicator of the level of
deformation and damage in the structural and non-structural elements. Considering this fact, SHM
systems often employ strain gauges to measure strains in critical components. Modular
construction projects are more complex than conventional ones given the additional manufacturing
and transportation processes. Therefore, in addition to operational load, the building modules are
subjected to manufacturing, transportation, and installation loads that make their structural
elements more susceptible to damage or excessive deformations. For instance, transportation and
handling of modules is an important part of the overall life of the modules when they experience
high mechanical loads. To identify vulnerable and critical elements, a detailed and accurate
structural analysis is needed for each phase for typical modules.

For example, the force from vibrations during the transportation of modules can be
simulated in a finite element (FE) model of individual modules to identify their critical elements
that could be damaged given road-induced vibration. For this purpose, random vibration data can
be used to simulate field and transportation conditions. Random vibration is typically described by
power spectral density (PSD) curves of average acceleration intensity in the frequency domain.
Different transport vehicles can be related to different PSD shapes and amplitudes. In North
America, modules are commonly transported by road (using tractor-trailers). The ASTM D4169
Truck Profile [ASTM D4169 (ASTM, 2016)] is among the most widely used road-induced

vibration profiles for general simulation and random vibration tests in laboratory experiments. In
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such cases, the vibration test on a truck is performed at a single intensity level (e.g., Assurance
Level II) for the entire test duration. The recently updated version of the standard [ASTM
D4169 (ASTM, 2016)] recommends the use of three different intensity levels: low, medium, and
high, corresponding to the 90th, 95th, and 99th percentile intensities. Figure 4-1 shows the PSD
levels for different frequencies according to the ASTM D4169 standard, which is typically used
for performance testing of shipping containers and systems. The typical PSD units are acceleration
[G"2/Hz] versus frequency [Hz]. Note that the amplitude is actually [GRMS”"2/Hz], where RMS =
root-mean square. The RMS notation is typically omitted for brevity. GRMS is used to define the
overall energy or acceleration level of random vibrations. In Figure 4-1, profiles 1 to 3 correspond
to low-, medium-, and high-level PSD levels, respectively.

As an example, the FE model of an industrial pipe chassisc module (hot-rolled steel
module) used by Shahtaheri et al. (2017) has been developed here using Autodesk’s Simulation

Mechanical.
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Figure 4-1: Random Vibration Profiles of Trucks (ASTM D4169 Truck Assurance Levels 1 to 3)
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To simulate the transportation vibration forces, high PSD level, and its corresponding
frequencies as given in Figure 4-1 were applied to the developed FE model. Figure 4-2 shows the
FE model of a pipe chassis module. The arrangement of the temporary supports and module
dimensions are assumed to be the same as that used in Shahtaheri et al. (2017). As shown in Figure
4-2, the most critical elements with the highest displacement should be monitored during the
transportation phase. Although the maximum displacement obtained from the analysis is found to
be very small (approximately 0.26 mm), in the case of a light gauge/cold formed steel module, it
could be much larger. In contrast, uncertainties such as temporary support configuration, which is
usually based on experiments rather than objective analysis, might even increase the magnitude of

the maximum displacement in the structural elements of the module.

(a) The industrial pipe chassis module (Shahtaheri et al., 2017)
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Figure 4-2: A sample of random vibration simulation of a pipe chassis module
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Similarly, the structural behavior of modules could be analyzed against manufacturing,

installation, and operational loads to determine their critical elements in each phase.

4.5. Data Management Challenges in SHM Process

One of the inherent challenges in SHM is high-volume data management. Management of
all original raw data and all postprocessed data during the entire life cycle of the structure with
possible size of hundreds of gigabytes can become a problem if all of the original data are to be
kept for future processing (Rio et al., 2013). In periodic SHM installations, all data are stored onsite
on a data acquisition (DAQ) unit. Additional computation and storage resources are required for
continuous monitoring. In most cases, sensors are set at a frequency of 100 Hz and a 16- or 24-bit
resolution per sample, yielding 26 megabytes of daily volume from a single sensor channel.
Therefore, setting up network communications between an onsite DAQ system and a remote data
server is necessary.

Efficient storage of SHM data facilitates easy examination and backup. The best approach
for SHM data storage is storing them in a commercial database system or a database storage system
from a third party such as MySQL or PostgreSQL. Taking the SHM data files saved in the DAQ
system and loaded into the database is necessary (Karbhari and Ansari, 2009).

After collecting and analyzing the data from the DAQ system, SHM measurements need to
be archived for their protection against data loss and to maintain a chronology record of the
structures. Given the high volume of data in the SHM process, downsizing
the data for better management is critical. Jeong et al. (2016) used NoSQL database technologies

to propose a data management infrastructure framework for bridge monitoring applications.
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Koo et al. (2011) presented an SHM data management system (SDMS) based on the
MySQL database management system (DBMS) for efficient data storage, retrieval, and sharing of
large measurement data sets acquired continuously from SHM systems. However, to solve SHM

data management issues, a greater need exists for more efficient tools and integrated systems.

4.6. Research Methodology

The proposed framework consists of several modules and submodules. The objective of
SHM-based condition assessment module is to assess the building modules’ conditions through
strain sensor data in an automated manner. Depending on the type of sensors,
different methods can be applied. For example, in the case of strain sensors, the threshold value
analysis (TVA) method is often employed to detect the exceedance of available threshold strain
levels. In contrast, accelerometer data are often processed using different signal processing
techniques in time or frequency domains to determine global parameters such as frequencies and
mode shapes. By integrating SHM with the BIM model, the detected changes
in the system properties or the local damage can be mapped on the BIM model and visualized
dynamically. In the present study, only strain sensors are considered for demonstration purposes.
Strain sensors can be used to rapidly identify and locate the spot wherein an element exceeds the
pre-set strain threshold. The system is linked to the BIM model to highlight the damaged elements

in an automated manner.

By linking SHM to BIM, the efficiency and speed of structural condition assessment
processes can be increased, and the process can potentially help non-engineers interact with the
building elements and gain an overall sense of the structural condition. Although this system is

applicable for all types of structures and infrastructures, its uniqueness in modular construction is
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in its ability to rapidly detect the buckled or yielded steel members (local damages) in a module,
which are often hidden behind the fireproof coating and drywall at different phases (e.g.,

manufacturing, shipping and installation).

The developed framework consists of four subcomponents, including an Arduino Uno
microcontroller (Arduino, Ivrea, Italy) equipped with a strain sensor, an amplifier and Wi-Fi shield
(sensory system); Autodesk Revit 2017 (BIM software); Dynamo (visual programming
environment); and SQL Server (database management system). In this framework, two links exist:
the link between the sensory system and the SQL server and the link between the SQL server and

the BIM model.

First, the BIM model is developed with all elements including the virtual sensor and its
essential parameters, such as StrainMaxPoint, DamageFlag, Sensor-ID, and others. The BIM
model is used as a central model to visualize and monitor the strain level remotely produced in
critical elements. After developing the BIM model, a specific database is designed in a MySQL
environment to house and update the captured sensors data. DAQ systems such as
Arduino Uno are coded to remotely send the sensors’ measurements in real time to an external
database using the Arduino GSM Shield (Arduino, Ivrea, Italy). The Arduino GSM Shield
connects the Arduino to the Internet using a GPRS wireless network. Before transferring the sensor
data to MySQL server, a schema (database) table and essential parameters such as Record-ID and
Sensor-Value are generated for the strain sensor in the database to accommodate the sensor
information and the sampling data. In this study, only strain value is of concern. When strain sensor
data are imported into the database, they need to be read by an external tool before processing. For
this purpose, a visual programming and computational design tool called Dynamo is utilized for

automation purposes (Dynamo BIM, 2017).
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To link the MySQL database (physical sensors data) and the BIM model (virtual sensors),
nine modules were developed and coded in Dynamo to automatically read the strain data stored in
the database, sort the data, and update the BIM model with the latest real-time sensor data. These
data were used to send notifications to engineers through their wireless devices, such as personal
computers or smartphones, enabling them to then take the necessary actions if strain values exceed
the predefined strain level. The individual steps of the workflow, developed in Dynamo, are

subsequently described.

Once the strain data are read, a module is developed to automatically sort and interpret.
For example, when strain sensors are used to measure the real-time strain on critical structural
members in the modular system, the developed module sorts the strain data and obtains the
maximum strain value in every time interval. Once the strain data are sorted, and the maximum
strain value is extracted, an additional module then updates the corresponding virtual sensor
parameter in the BIM model. One or more pre-set strain threshold values can be defined to
automatically highlight the structural elements in the BIM model to rapidly identify and locate the
elements for which pre-set threshold strain occurs. In this study, only one threshold is defined. The
damaged elements for which the strain exceeds the threshold are highlighted in the BIM model to

generate an alarm signal. The hierarchy of the processing modules is shown in Figure 4-3.

To illustrate the capabilities of the system developed, a set of strain values is utilized to

mimic the data produced by a strain sensor.
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4.7. The System Framework

4.7.1. The Conceptual Framework of Wireless Strain Monitoring System

The DAQ system recommended in this framework consists of strain gauges, a
microcontroller and its software, an instrumentation amplifier module, a 9V battery, a Wi-Fi shield,
jumper wires, and a computer with programmable software.

The system configuration is based on the Arduino Uno open-source microcontroller used
for onboard data acquisition. The microcontroller is based on the ATmega328P, an Atmel AVR
processor that can be programmed in a computer using the C language through a Universal Serial
Bus (USB) port. The microcontroller can sense the environment by receiving input from a variety
of sensors and can be powered by connecting to a computer with a USB cable, an AC-to-DC
adapter, or a battery. In this study, a battery is used during monitoring. The Arduino
board can operate on an external supply of 6 to 20 V. However, if supplied with less than 7V, it
may be unstable. If using more than 12V, the voltage may overheat and damage the board.
Therefore, the range should be between 7 and 12V. Hence, a 9V battery is recommended.

Strain gauges are variable resistors for which the resistance changes when they are stretched
or compressed along their length. When bonded to a structural element, the resistance
changes proportionally to the strain of the element depending on the force applied to deform it.
Although directly reading the voltage change of the bridge of a strain gauge is possible, doing
so is normally impractical without an amplifier. The maximum voltage change from the strain is
too small for the digital to analog converter in an Arduino to register. The instrumentation
amplifier boosts the signal to bring it to a readable range. For this purpose, an instrumentation
amplifier, such as the INA125P amplifier, should be used when measuring the strain gauge data

with the Arduino.
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Figure 4-3: Hierarchy of the steps in this study

The open-source Arduino software (IDE) can program the Arduino Uno to process the raw
data and extract the results of interest to be transmitted to a central station, thus reducing the
data communication demand that is particularly suitable for wireless communication in SHM
systems. Storing a sensor’s data over a cloud-based database server such as an SQL database is
also possible. Creating a website or another app to read the sensor values in the SQL database and
track the events according to the threshold values will give considerable power to any SHM project.
For this purpose, a Wi-Fi shield compatible with the Arduino Uno is recommended. An Arduino

compatible shield, such as the ESP8266 WiFi Shield, equips the Arduino with the ability to connect
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to the wireless networks that can be used for Internet of Things (IoT) or WiFi-related projects.

Monitoring data such as strain values can be stored directly in a MySQL server using the MySQL

Connector in the Arduino library. The MySQL Connector in the Arduino library can be used to

connect the Arduino project directly to a MySQL server without using an intermediate computer

or a web- or cloud-based service. When the strain values are measured and stored in a prebuilt

MySQL database, they can be analyzed in remote wireless connected devices such as personal

computers, tablets, or smartphones. An alarm system could be proposed in these devices for rapid

detection of excessive deformation (plastic deformation) in structural elements for timely repair or

replacement of the faulty elements. Figure 4-4 illustrates the architecture of a conceptual

framework of a wireless strain monitoring system.
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Figure 4-4: The conceptual framework of a wireless strain monitoring system
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4.7.2. SHM System Modeling in the BIM Model

After developing the BIM model, SHM sensors need to be simulated in the model. A strain
sensor is modeled and attached to its specified locations in the BIM model. Many different
categories exist in the BIM objects, such as column, beam, floor, roof, door, window, and
others. In BIM, each category has its own IFC class name, such as IfcColumn and IfcRoof to name
a few, and in sensors—IfcSensor and IfcSensorType class names are categorized under the specific
equipment category. Therefore, sensors in the BIM model must be developed subject to the

specialty equipment category.

Different parameters are defined for the strain sensor during modeling: identity data (e.g.,
manufacturer, label, mark, model, cost), phasing, scope, station, and data (StrainMaxPoint,
DamageFlag). Station parameter is defined to show the exact location of the sensors in the BIM
model, and the mark parameter is set to link the physical sensors to virtual sensors in the BIM
model. In fact, the physical sensors’ specific identification (ID) must be assigned to
each corresponding virtual sensor in the BIM model to link the physical and virtual sensor.
StrainMaxPoint 1s the parameter created to accommodate the maximum strain value recorded by
the strain sensor at each time interval, and DamageFlag is generated to show the structural elements
condition rate. A building module and a strain sensor modeled in the BIM tool, along with some

of its defined parameters, are illustrated in Figure 4-5.
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Figure 4-5: Developing the BIM model and the virtual strain sensor

4.7.3. Defining the Sensor Database Model

To insert the sensed data from a sensor into a database such as MySQL, a schema (database)
and a table, along with all essential parameters, are to be defined. The table will embody the sensor
data received from the DAQ system. To prevent users from manually generating the sensor
database model, two modules are created in Dynamo to draw a schema, producing a table and
columns in an automated manner. The schema—shmsystem—is defined along with a table called
strainsensor 1. Three parameters are introduced for the strainsensor 1 table: Record ID,
Sensor Value, and Sensor Name, where Record ID constitutes the primary key. Appropriate
nodes, code blocks, and connections are required to automate this process. The modules developed
to generate the schema and table in the MySQL database in an automatic sense and to embody the

strain sensor measurements are illustrated in Figure 4-6.
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Figure 4-6: Automated generation of a schema and table for the strain gauge in database

Dynamo supports the use of code blocks, elements containing small scripts written in a
textual programming language such as C++ and Python. These code blocks allow for the generation
of short algorithms that introduce more complex functionalities that are not possible to be generated
by other nodes. As shown in Figure 4-6, two code blocks are applied when generating a schema

and its table, and one code block is employed to create the parameters of the table.

The database model can be expanded in the case of using strain sensors for multiple
structural elements, and if a comprehensive database model for the entire sensory system, the
information on the corresponding structural elements and their condition are required. Figure 4-7
shows the entity relationship diagram (ERD) of the proposed database model when using multiple

strain sensors (e.g., four strain sensors) in the system.
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Figure 4-7: ERD of the SHM System Database

As shown in Figure 4-7, the ERD consists of six entities: Strainsensor 1, Strainsensor 2,

Strainsensor 3, Strainsensor 4, structural element, and condition. The relationship among the

entities shows that a one-to-many relationship exists between strainsensor and structural _element

entities, and a one-to-one relationship between structural element and condition entities.

Therefore, each strain sensor is installed on only one structural element, but a structural element

may have multiple sensors. Each structural element may also have a condition: undamaged,

partially damaged, or severely damaged.
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4.7.4. Connecting to the Database

After generating modules for developing a sensor database model, the module(s) need to
be connected to another module(s) to be integrated into the database. Consequently, a new module
needs to be generated for connecting other modules to the MySQL database. In this module, several
code blocks are involved in inserting server and port number, user id, and password. In fact, this

module performs as a central module to which all other modules are to be connected.

4.7.5. Extracting Parameters from the BIM Model

Here, a module is generated to retrieve the virtual sensor parameters from the BIM model.
The sensor parameters need to be obtained to check the latest values of these parameters in the

BIM model.

In this module, first, the specialty equipment category is read from the list of categories in
the BIM model because the virtual strain sensor object is modeled in this category. Next, all
elements are selected in this category (virtual sensors in the BIM model). Then, the user-defined
sensor parameters such as StrainMaxPoint and DamageFlag, the values of which are to be

displayed, are extracted from the BIM model, and shown in one list.

4.7.6. BIM Model to the Database Linkage

After extracting the essential parameters from the BIM model, they need to be linked to the

parameters in the database already generated for each sensor. This integration is required for any
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future BIM model updating. A module is developed to connect the parameters extracted from the

BIM model to the sensor parameters defined in the MySQL database.

Using this module, the Sensor Value parameter generated in the MySQL database is linked
to the StrainMaxPoint parameter generated in the BIM model. Inevitably, the module needs to be

connected to the modules previously developed.

4.7.7. Automatic Reading of Sensor Values from MySQL Database Server

When a connection was established between the BIM model and the MySQL database

server, the next step is to automatically read the sensed data from the MySQL database.

Different nodes are applied and connected to one another for this automatic sensor data
reading. As previously mentioned, the StrainMaxPoint parameter is generated and assigned to the
virtual sensor in the BIM model. Consequently, only the maximum strain value at every time
interval is to be sent to the BIM model to update the StrainMaxPoint parameter of the virtual strain
sensor. In this module, to find the maximum value of the strain at each time interval, the strain
values are sorted because, for comparison purposes, only the maximum volume of the strain is
required. If the maximum strain value is less than the predefined threshold strain value, then the

structural element is not damaged and remains intact.

4.7.8. Updating the Virtual Sensor Parameter in the BIM Model

After retrieving and sorting the sensed values stored in the MySQL database, the associated

virtual sensor parameters are updated in the BIM model using a module developed for that purpose.
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In this module, the SetParamaterByName node is used to update the StrainMaxPoint
parameter of the strain sensor in the BIM model based on the maximum strain value recorded from
the MySQL database. The maximum strain value is recorded at the end of each time interval, and
the corresponding parameter in the BIM model is updated accordingly. A set of modules is
developed for defining the threshold strain values and color-coding schemes for the damaged
structural components to represent their status in the BIM model. Therefore, an alarm system can

be generated and transmitted to the responsible personnel to attend to the structure.

4.7.9. Defining the Threshold Strain Value

Identifying an appropriate threshold value is essential for strain monitoring of critical
structural elements. The allowable strain in the studs can be determined based on the yield strength
(207.0 MPa) and Elastic Modulus (210,000 MPa) of the material, which is around 990 microstrain

(ue) for the present case.

By applying this module, the condition of the DamageFlag parameter of the virtual strain
sensor is classified into the following two cases: undamaged and damaged. If the maximum strain
measurement does not exceed the predefined threshold strain value, the DamageFlag parameter is
considered undamaged. Otherwise, it is flagged as damaged. To check these conditions, this module
needs to be connected to the module previously developed for which the StrainMaxPoint parameter
value is applied as one of the inputs that indicates the maximum strain value measured by the

physical strain sensor.
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4.7.10. Mapping a Virtual Sensor in the BIM Model to the intersecting Structural Framing
Members

To visualize damaged elements in the BIM model, a parameter called condition needs to be
updated based on the strain sensor’s DamageFlag parameter. If the DamageFlag parameter is set,
the structural element’s condition parameter indicates the member as damaged. Before upgrading
the condition parameter based on the DamageFlag parameter, the virtual sensor intersection by
the correlating structural framing member in the BIM model must be assured.

In the module performing this function, first, the geometry related intersection between the
virtual sensors (specialty equipment category) and structural members (structural framing
category) is checked. If an intersection is found between these two members, then the module will
update the condition parameter of the structural member based on the DamageFlag parameter of
the correlating sensor in the BIM model. Accordingly, the damaged structural members are

identified if their condition parameter identifies the member as damaged.

4.7.11. Color-Coding of Damage Structural BIM Element

After upgrading the ‘Condition’ parameter for structural framing members, the damaged
elements are highlighted using a predefined color code. It works as an alarm system to highlight
the elements where the strain produced by external forces exceed the pre-defined threshold value.
For this purpose, a module is created, in which, the structural framing elements with damaged
‘condition’ parameter are filtered from the list of all structural framing members and highlighted

in the BIM model.
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4.8. Model Implementation

The initial step of integrating BIM into the SHM process is to link the physical sensors to
virtual sensors and connect them to real data from the field. This integration is possible by attaching
the physical sensor ID to the virtual sensor in the BIM model. To do so, first, a BIM model of an
individual four-sided steel module is developed. Second, the process modules, as described in the
previous section, are generated to introduce a workflow to link the virtual to the physical strain
sensor, update the associated parameters, such as StrainMaxPoint, DamageFlag, and condition,
and then highlight the damaged structural framing members in the BIM model.

The Arduino-based DAQ system can be coded to transfer the sensed data to an external
database such as the MySQL database server. Before sending and accommodating the sensor data,
the schema, tables, and relevant parameters need to be generated in the MySQL database. When
sensors’ data are sent to the database, they should be preprocessed before becoming exposed to
further analysis. In this study, a list of one hundred strain data points is introduced to a MySQL
database. The strain values and their record IDs are imported into the MySQL database, as shown

in Figure 4-8.
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Figure 4-8: The physical strain sensor reading introduced to the database

As observed in Figure 4-8, the shmsystem schema and the strainsensor 1 table with three
parameters, including Record ID, Sensor Value, and Sensor Name, are generated in the MySQL
database before introducing the strain data. Once the strain data are added to the database, the
values are read from the MySQL database server and sorted through the module previously
developed in an automatic sense. All parameters are captured, read, and sorted. The maximum
strain reading from the list of strain values is extracted after the values are sorted because, if the
maximum strain value of an element in every time interval does not exceed the allowable strain
(threshold) value, the element is regarded as undamaged. In contrast, if the maximum strain
produced in a structural member exceeds the predefined allowable strain value, then the element is

damaged and needs specific considerations and corrective action. How the strain sensor values are

123



read from the predefined schema and sorted to update the StrainMaxPoint parameter of the virtual

strain sensor in the BIM model is illustrated in Figure 4-9.
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Figure 4-9: Automatic reading of strain sensor data and updating BIM model

As observed in Figure 4-9, only one strain sensor with ID number 513556 exists in the

example BIM model. After reading the strain values from the database, the maximum strain value
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is found to be 995 pe, which is transferred to the next module to update the StrainMaxPoint
parameter of the corresponding virtual sensor in the BIM model. The virtual strain sensor and its

parameter updated in the BIM model are shown in Figure 4-10.
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Figure 4-10: Updating BIM parameter based on maximum strain value in pg

As observed in Figure 4-10, after running the program, the StrainMaxPoint parameter is
automatically updated. This step is an initial damage visualization process in the BIM model in a
sense that the damage detection scenario begins from transferring the DamageFlag parameter
information from a virtual strain sensor to the correlating structural framing member. By adopting
the previously described module, the DamageFlag parameter becomes damaged because the

extracted maximum strain value of 995 pe is more than the predefined threshold strain value of 990
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pe. To upgrade the condition parameter of the monitored structural member based on the
DamageFlag parameter of the virtual strain sensor, the intersection between the virtual sensor and
correlating structural framing member needs to be checked in the BIM model through the

previously described module, as shown in Figure 4-11.
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First, the geometry of all structural framing elements and virtual sensors are extracted from
the BIM model. To identify the structural members to which the virtual sensors are attached, the
structural members are filtered to separate the structural member to which the strain sensor is
connected from other members. When the correlating structural member is separated from others,
its condition parameter is updated based on the DamageFlag parameter of the corresponding virtual
strain sensor. Consequently, because the DamageFlag parameter in the virtual strain sensor
indicates the damage state, the condition parameter is updated to the
damage state in the correlating structural member. When the condition parameter in a structural
member indicates the damage state, the damaged element is highlighted in the BIM model
through the module as described previously. As shown in Figure 4-12, the structural member to
which the virtual strain sensor is attached is damaged and is highlighted in the BIM model shown

in Figure 4-13.

One of the advantages directly attributed to BIM in the SHM integration process is that all
of the information of the structure generated during its lifecycle is accessible, which can facilitate
easier decision making for repair and maintenance plans. For instance, information on a damaged
member such as material, type, cut length, type of connections, manufacturer address, phone
number, date, time, minimum number of workers needed, and others, can all
be easily extracted from the BIM model. The architecture of the developed system workflow and
the correlation among its modules are shown in Figure 4-14. If the modules are not correctly

connected to each other, the system might not work.
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Figure 4-12: Threshold strain value definition and color-coding of damaged structural BIM
elements

In Figure 4-14, the modules were numbered to better demonstrate their linkage. In Figure

4-14, the output of module number 1 that links the system to the MySQL server is connected to the

following modules: number 2 (to connect the system to the monitoring database and table in the

database), number 4 (to link the BIM model to the database containing sensor data), and module

number 5 (to retrieve the sensor data from the database). The output of module number 3 (to extract

strain sensor parameters from the BIM model) is connected to module number 4.
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Figure 4-14: The workflow for integrating BIM into SHM process

As shown in Figure 4-14, a link exists between the following modules: numbers 2 and 4 to

connect the maximum strain value in each event to the corresponding parameter in the BIM model.

The output of module number 2 is connected to module number 5 (to automatically read and sort

strain values stored in the database). The output of module number 5 is connected to module

number 6 to update the sensor parameters in the BIM model. Finally, to automatically update and

highlight the affected structural element in the BIM model based the threshold strain value defined

in module number 8, module number 7 is connected to modules number 6 and 9 in the developed

workflow.
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4.9. Discussion

The main purpose of this paper was to investigate the potential of BIM in the damage
visualization and rapid detection of damaged elements in structures such as building modules. This
paper introduced a novel integrated strain-based monitoring system framework in BIM. The small
size and low cost of the conceptual sensory system proposed in this study can be effective in
modular structures that usually consist of small and narrow components. The system can also be
utilized for rapid condition assessment of structural components. For this purpose, monitoring data
were integrated into BIM through a novel workflow developed in a visual programming
environment. The corresponding structural elements are automatically highlighted in the BIM
model when strain measurements surpass the predefined threshold. Exceeding the strain threshold
can be considered as damage or unacceptable deformations that can be further accentuated by

repeated loading, especially during the operational phase.

To show the capabilities of the developed system, a set of strain values stored in a MySQL
database was utilized to mimic the data produced by the proposed wireless strain gauge sensory
system. Additionally, the BIM model of an individual light gauge steel module was used to
demonstrate the capability of the developed framework in terms of damage visualization. The strain
values studied in this paper were analyzed and compared with the threshold values detected by the
developed system. For automatic recording, sorting and updating of strain values, and linking
between the physical and virtual sensors (in the BIM model), a novel workflow consisting of nine
modules as shown in Figure 4-13 was developed in a visual programming environment called
Dynamo. The developed system was able to successfully transfer the sensor data stored in a central
database server and map the strain sensors to the corresponding structural elements in the BIM

model and update the related structural element parameters. The system was able to detect the
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maximum strain values for each event as well as the values beyond the predefined threshold values.
Through a color-coding scheme, the system was also able to automatically highlight the structural
element in which case the strain values surpassed the threshold values. Incorporating BIM into the
strain monitoring system provides engineers and facility managers the additional information

required for deciding on repair and maintenance.

Although the approach is quite general and could be applied to any type of structure, such
as buildings and bridges, this paper focuses on application to modular buildings as a case study.
Additionally, modular construction has some challenges that differ from conventionally
constructed buildings and bridges. In this case, the modules are subjected to different types of
loads, such as manufacturing, transportation, handling, installation, and operational loads during
their life cycle, and the main challenge is to detect buckled or yielded steel members (local
damages) in a module, often hidden behind fireproof coating and drywall. For example, any
possible damage that occurs in the building modules during transportation may cause miss-
alignment issues during installation, affecting the structural performance and
disrupting continuity in the envelope, which may significantly increase air leakage. Manufacturers
usually buy shipping insurance that covers the all-risk and basic risk conditions to be reimbursed
for repair costs of the modules if they are damaged during transportation. Therefore, the developed
system can be used as an efficient, reliable, and rapid monitoring technique for timely detection of
damages in modules after transportation and when claiming the repair and modification costs from
the insurance company. The system is crucial to monitor the state of the critical
elements of the modules in each phase to ensure their acceptable conditions before going to the

next phase.

132



However, this work has some limitations, which are as follows.

1. The system developed here was tested using a limited number of sensors, and only strain
sensors were used. The system should be tested further with a larger number and multiple
types of sensors. Data from different types of sensors are interpreted in different ways. For
example, strain data can be compared to a threshold value for a certain level of damage,
whereas acceleration data can be used to determine the change in vibration modes and
frequencies.

2. Deformation is a good parameter for localized damage detection, but a very good
understanding of the structure is needed to design the instrumentation plan. If several
similar types of members/connections are present and subjected to the same order of forces,
identifying the most critical monitoring elements may not be trivial, and installing one or
more sensor(s) on each element is not cost effective. Further study is required to

automatically identify the critical locations and sensors.

4.10. Conclusions

Utilizing an effective data management system, such as BIM, for buildings can be extremely
helpful for a rapid and efficient structural condition assessment and visualization. As a
comprehensive, detailed, information-based strategy, BIM provides all of the information about
the damaged elements, which is useful for effective repair/replacement of the damaged elements.
Because the hidden structural damages (e.g., excessive deformation of structural elements in
building modules) occurred during transportation or handling processes, they may lead to

misalignment risks during installation. Rapid detection of such damages and repair or replacement
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of the damaged components can help mitigate the misalignment risks and the possibility of further
damage during installation.

An SHM framework in which a BIM was adopted for automated and graphical structural
condition monitoring, particularly for modular structures, was proposed in this article. Building
modules are more susceptible to damage during transportation and installation. In such cases, the
structural elements are often hidden, and structural damage such as excessive deformation is
difficult to detect. BIM can serve as an ideal four-dimensional graphical computing environment
for SHM and repair and maintenance plans. The ability of BIM to visualize the SHM information
of a structure will be beneficial for engineers and decision makers because it provides accurate and
updated information on the current state of structural elements, structural reliability, and
maintenance work to be scheduled. A BIM-based integrated structural health framework was
developed for rapid and efficient monitoring of structural deformation.

Based on the findings, the following observations were made.

1. A virtual sensor’s parameter in the BIM model can be updated based on the measured data
from the corresponding physical sensor. This feature was applied to determine when a
predefined threshold strain level is exceeded at the monitored location of a structure.

2. The capability of the developed framework was examined through a set of strain values
stored in a specially designed MySQL database and a BIM model.

3. The state of a concerned structural framing member in the BIM model was updated and
highlighted when the strain value exceeded the threshold value. Data from other sensors,

such as an accelerometer, or temperature can be integrated in the same way.

Although the present study demonstrates the feasibility of remote strain sensing and decision

making to monitor the state of a hidden structural element in a building module during its life
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cycle, further studies are required to conduct a large-scale investigation that uses multiple types of
sensors to monitor the critical elements with different types of materials in a module. Additionally,

a need exists for experimental validation of the developed system using real-life applications.
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Updated Literature Review and Related Materials

This section focuses primarily on recent publications and related works not cited in the

published paper above.

The lack of enabling tools for understanding, visualizing, and documenting sensor outputs
has encouraged researchers to use BIM-based systems. After reviewing 278 journal articles by
Shafie Panah and Kioumarsi (2021), it was concluded that despite the introduced improvements,
there are still some limitations, such as extending the IFC schema and interoperability issues, which

affect the modeling and maintenance process.

O’Shea and Murphy (2020) explored the potential for implementing BIM on an existing
structure for asset management and SHM. They developed a method for modeling and representing
SHM sensors in the BIM model. However, the study only focuses on data visualization, and it does
not consider damage and its related levels of intensities using visualization methods such as color-
coding the BIM model based on the sensor data analysis. At the same time, the developed tool
presented in this chapter is able to automatically highlight the structural element through a color-
coding scheme, in which case the strain values surpassed specified threshold values. Also, their
system does not work in real-time because for any update, the sensor data is converted to excel
format, saved locally, and then read into the BIM model utilizing the Dynamo tool. The developed
system presented in this chapter solves this problem by storing the SHM data in an external cloud-

based database.

Angelosanti et al. (2021) developed a workflow between SHM sensors data and a BIM
environment. Although they cited the manuscript presented in this chapter in their paper, there is

still a lack of automation in their workflow by using a local database for transferring the sensor
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data into the BIM environment. Moreover, their workflow is not able to be utilized as an alert
system for facility managers, while the method developed in this chapter has the capability to solve

the 1ssues stated above.
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Chapter 5: Development of an IoT and BIM-Based Automated Alert System
for Thermal Comfort Monitoring in Buildings

General

In this chapter, the published paper is presented as is, followed by an updated literature review
section. This paper was accepted and published in the Journal of Sustainable Cities and Society in
2021". The main objective of this paper is to develop an automatic workflow to integrate IoT and

BIM for monitoring thermal comfort in building spaces.

Abstract

A comfortable thermal indoor environment is crucial for occupants’ well-being and productivity.
Building Management System (BMS) is usually used to monitor the thermal condition of buildings.
One of BMS’s main challenges is in the data visualization stage, in which 2D vector graphics are
used, which is not fully interactive and can only be manipulated by a trained operator. Building
Information Modeling (BIM) has emerged as a useful tool in the construction industry, which can
be applied in all stages of a project lifecycle. The use of BIM in facilities management is currently
limited since BIM applications have primarily been implemented within the design and
construction phases. The main objective of this study is to integrate a sensor-based alert system
into BIM models for thermal comfort monitoring in buildings during the operational phase and
visualize a building’s thermal condition virtually. In order to improve the performance of

environmental monitoring management of buildings in smart cities, this research presents a newly

* Valinejadshoubi. M, Moselhi. O, Bagchi. A, and Salem. A (2021), Journal of Sustainable Cities

and Society, Vol 66
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developed integrated solution based on a BIM platform and Internet of Things (IoT). The designed
prototype explores the integration of commercial BIM platforms with sensor data to create a self-
updating BIM model to provide real-time thermal condition monitoring based on the American
Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard within an
office environment. The temperature and humidity values, measured by sensors, are sent to the
MySQL database server. An integrated workflow was developed to compile, standardize, integrate,
and visualize monitoring data in a BIM environment to facilitate interpretation, analysis, and
monitoring data exchange. The developed system was able to detect the time and location of a case
study office room experiencing the levels of thermal comfort/discomfort based on the targeted
thresholds. In this case, thirteen levels of thermal discomfort cases, out of forty-nine data points
during the test, were detected, and the developed system was also able to generate a trigger and
transmit alarms to facility managers via their wireless devices in real-time. The results demonstrate
that the proposed system is a visually effective monitoring system for environmental monitoring
management. The fully automated developed system is expected to provide a robust and practical
tool for reliable data collection, analysis, and visualization to facilitate intelligent monitoring of the
thermal condition in buildings and help decision-makers make faster and better decisions, which

may help in maintaining the level of occupants’ thermal comfort to a satisfactory level.

Keywords: Building Information Modeling; Building Management System; Facilities

management; [oT, Thermal comfort
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5.1. Introduction

Approximately 90 % of an organization’s operating costs are allocated to staff costs,
including salaries and benefits (Health, Wellbeing & Productivity in Offices, 2014). Factors such
as indoor environmental conditions may affect workers’ comfort, consequently, their health and
well-being, and their productivity (Sakellaris et al., 2016). When an office environment gets too
warm, it makes employees feel tired, while if an office environment gets too cold, it causes the
employees’ attention to drift, making them restless and easily distracted. Charles, Reardon, and
Magee (2005) argued that indoor air quality (IAQ) and thermal comfort are the most critical factors
contributing to worker productivity, satisfaction, and well-being.

According to the Canadian Centre for Occupational Health and Safety (CCOHS), thermal
comfort is met when a person wearing a reasonable amount of clothing feels neither too cold nor
too warm. The study presented in Seppanen “ and Fish (2006) showed that maximum productivity
was observed at 21.6 C, although adaptive comfort theory suggests optimum productivity can be
attained over a broader range of indoor temperatures (De Dear & Brager, 1998). It is essential to
ensure that different thermal comfort conditions are within acceptable limits.
ASHRAE Standard 55 (ANSI/ASHRAE Standard-55, 2017) is an American National Standard
published by ASHRAE that establishes the ranges of indoor environmental conditions to achieve
acceptable thermal comfort for occupants of buildings. According to ASHRAE Standard 55,
various factors influence the thermal comfort level, including air temperature, radiant temperature,
air velocity, relative humidity, occupant’s clothing insulation, and occupant’s activity level. Due
to low velocity, according to indoor climate studies (Kantor & Unger, 2011;
Langner, Scherber, & Endlicher, 2013; Matzarakis & Amelung, 2008), air temperature is

approximately equal to the radiant temperature in indoor environments.
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According to the Health and Safety Executive (HSE, 2017) Standard, the most commonly
used indicator of thermal comfort is air temperature. However, the temperature should be
considered in relation to other environmental factors. Gupta (2006) suggested that comfort can be
achieved only when the air temperature and humidity are within the specified range, often referred
to as the ‘comfort zone’. The Canadian Centre for Occupational Health and Safety (CCOHS)
suggested that the humidity levels should be kept between 30% and 70%. Relative humidity levels
below 30% can cause discomfort through drying of the eyes and skin, while relative humidity levels
above 70% may make the area feel stuffy. Thermal comfort assessments are determined separately
for the summer and winter seasons in accordance with relevant standards (Kalz and Pfafferott,
2014). Comfort ratings are analyzed in hours of exceedance during the time of occupancy. For
either comfort model, the operative temperature should always be within the permissible ranges at
all locations within the occupied zone of space (Kalz and Pfafferott, 2014). Comfort is a subjective
issue and can vary widely from person to person. However, there is a generally agreed range of
temperatures at which at least 80% of people will feel comfortable and will perform effectively
and efficiently.

Despite high energy use in buildings, adequate thermal comfort levels may not be provided
during hot and cold weather. This was observed in two case studies conducted by Quigley (2016)
on light gauge steel modular buildings’ energy and thermal performance that air
leakage and overheating are the two main issues that led to reducing the thermal comfort. In another
study conducted by Adekunle and Nikolopoulou (2016), it was revealed that lack of thermal mass
and low U-values could risk increasing overheating in prefabricated timber buildings leading to
thermal discomfort.

Gathering data and energy and environmental performance evaluation data are at the heart

of energy efficiency strategies to reduce energy use in buildings. Environmental monitoring
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technologies have a significant role to play in energy efficiency measures. There is also an increase
in energy-related building legislations and regulations around the world. For example, the
European Energy Performance of Buildings Directive (EPBD) (2014) encourages intelligent
metering and active control systems in buildings through building regulations. In the USA, the
Energy Policy Act of 2005 has metering requirements for federal buildings. Most US states, cities,
and districts have adopted the International Energy Conservation Code (IECC) (2018), with
enhanced metering and control requirements.

There are two methods to assess indoor climate and air quality in a controlled environment;
surveys and questionnaires (Leo Samuel, Dharmasastha, Shiva Nagendra, & Prakash Maiya, 2017;
Sakka, Wagner, & Santamouris, 2010; Seon, Jeong, & Yun, 2013; Singh, Mahapatra, & Teller,
2013; Yu, Li, Yao, Wang, & Li, 2017; Zinzi & Carnielo, 2017), and sensors. Building occupants
may not be interested in answering accurately, long surveys frequently. Although thermal comfort
data are commonly collected and stored in databases, they are not modeled and
managed as a part of BIM models. The relationship between building spaces and their [AQ is more
challenging to observe in tabular information than in the 3D model. It is important to note that the
state of a building may change during its operational phase, and there is no robust
standard to check if the building preserves its performance characteristics despite the changes in
maintenance state, occupants’ numbers, activities, and seasons.

As an effective visualization and management tool, BIM has recently become an essential
tool in the construction industry. The use of BIM in facilities management is currently limited since
BIM applications have primarily been implemented within the design and construction phases.
It is advantageous to enable BIM models to provide real-time information through the monitoring
process. Hence, this will allow the facility managers to interact with the built environment in real

time and provide a better user interface than a traditional thermal condition monitoring system.
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There is a limited volume of research available on BIM-based dynamic systems for real-
time and near-real-time monitoring of thermal comfort in buildings. As discussed later, the
literature shows some weaknesses in existing methods of thermal comfort monitoring, such as
lack of automation and data retrieval (Rania and Isam, 2019; Wu & Liu, 2020), challenges in the
continuous object tracking in [oTs in smart cities (Chauhdary, Hassan, Alqarni, Alamri, & Bashir,
2019), limited computer implementation (Cahill, Menzel, & Flynn, 2012; Del Grosso,
Basso, Ruffini, Fagini, & Cademartori, 2017; Smarsly & Tauscher, 2016; Sternal & Dragos, 2016),
and lack of integration of sensor-based alarm systems into BIM models for thermal comfort
monitoring in buildings during the operational phase. The present work attempts to address
some of these issues to narrow the research gap by integrating BIM and IoT technologies to
automate thermal comfort monitoring. The conception of IoT had founded the smart cities, which
support the city operations intelligently with minimal human interaction. A smart city
emerged as a solution to address the challenges that arise with the exponential population (Silva,
Khan, & Han, 2018).

The primary purpose of this integration is to benefit from the rich User Interface (UI) of
BIM-based software and to supplement BIM models with real-time temperature and humidity
sensor values. An integrated solution is proposed in this paper with the aim of real-time monitoring
of thermal comfort in indoor environments to reduce health hazards inside buildings. The BIM-
based software application is used to visualize building spaces, and the IoT-based system is used
to monitor real-time temperature and humidity values. The proposed system sends alerts,
notifications and all essential information such as room ID, room name, room location, occupancy,
etc., using a cloud-based service to the building supervisors and facility manager to remotely
acquire just the thermal condition status of monitored spaces to take necessary actions if the

operating temperature exceeds the pre-defined thresholds. The proposed system can be an

147



alternative solution for smaller buildings that might not benefit from smart technology and are
unmonitored. It could show the facility management engineers the climate’s state in each room and
occupants’ wishes. Such a system could also be used by other specialists, such as building
environment professionals, to locate places with potential IAQ issues, and get their most updated

information required.

5.2. Literature Review

The architecture, engineering, and construction (AEC) industry uses BIM to reduce cost
and completion time and improve productivity and quality of projects (Azhar, Nadeem, Mok, &
Leung, 2008). BIM is a robust platform for managing complex building information and can be
used to visualize a building virtually over its lifecycle. BIM incorporates digital modeling software
to design and execute a project efficiently (Nassar, 2010). In a BIM project, multiple documents
are used in non-traditional ways (Australian Construction Industry Forum, 2014): documents are
digitized then added to a BIM software database. An accurate BIM model consists of the virtual
equivalent of the actual building sections.

BIM models are useful in assessing buildings’ energy efficiency in the design phase
(Valinejadshoubi, Bagchi, & Shakibabarough, 2015) using different design parameters such as
orientation and materials. Figure 5-1 shows the different levels of BIM. Although BIM up to level
2 is very well defined but BIM level 3 is still under development. BIM level 2 means that the model
should be assessed for 3D (construction elements, quantities), 4D (time), and 5D (cost)
representations of a building. The main requirement of BIM level 3 is integrated BIM (iBIM) and
Lifecycle Management (Goodhew, 2016). Therefore, the integration of a monitoring system into

BIM would help achieve this next level of BIM.

148



\

Leveld Level1 Level2 Leveld

]
. g

iBIM § p
o
§
DM =
1FC 1FD El
T
AVAI S =
CAD |[Bsiio22007 130 BIM Ei

| User Guides CIC, Avanti, BST
© 2008 Bew - Richards
Drawings, lines arcs text etc Models, objects, M Data

Figure 5-1: Different levels of BIM (BIMtaskgroup, 2011)

BIM’s real-time monitoring process can help facility managers, clients, or engineers to
efficiently monitor the building by obtaining and visualizing the accurate data captured by sensors.
By visualizing and monitoring a building’s thermal comfort, the building supervisor and
facility manager can take necessary actions to operate temperature data across pre-defined
thresholds. The study conducted by Rio, Ferreira, and Pocas-Martins (2012) revealed that
accomplishing the dynamic monitoring system of a building to provide sensor data to BIM is not
part of the BIM functionality and 1is still challenging. They concluded that BIM
standards need to be extended to allow them to represent monitoring-related information. The study
conducted by Wang, Fu, and Yang (2017) found that applying BIM in monitoring systems can
improve the effectiveness of monitoring processes and decision making. Failure to integrate the
data with a BIM model of the building will hinder the facility manager’s ability to intuitively

identify potential problems.

The literature review highlights some significant attempts at integrating BIM with different
sensing technologies in recent years. Some researchers embedded sensors information into an
industry foundation classes (IFC) format to be fully interoperable. IFC was developed by the

International Alliance for Interoperability (IAI), known as building smart, and is an open-exchange
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format compatible with different BIM tools that aid in standardizing projects (Grzybek, 2010).
Katranuschkov, Weise, Windisch, Fuchs, and Scherer (2010) used IFC models to control
the air conditioning system via temperature and humidity sensors in rooms with smart IT devices.
Chen, Bulbul, Taylor, and Olgun (2014) tried to connect the data captured by real sensors
embedded in a geothermal bridge deck system to the IFC-based BIM model. They concluded that
the sensor data should be monitored in the BIM model for condition assessment under different
climate conditions. Park, Kim, Chin, and Yun (2011) integrated online monitoring with BIM to
efficiently deliver a vast amount of sensor data from the smart space to develop the manager’s data
accessibility and management convenience. Kim, Cheng, Sohn, and Chang (2014) presented a
systematic and practical approach to assess the surface quality of precast concrete elements using
BIM and a 3D laser scanning technique to prevent failure during construction. They held the
manual inspection and surface quality assessment of prefabricated concrete components to be
demanding and costly. Arslan, Riaz, Kiani, and Azhar (2014) offered a new methodology
for integrating captured sensors’ data from the hot and humid environment with BIM providing
solutions for health and safety planning in buildings. Valinejadshoubi, Bagchi, and Moselhi (2017)
investigated the feasibility of using BIM in the SHM process. They demonstrated the
feasibility of creating and visualizing sensors data and information in the BIM model for the
purpose of structural health monitoring. A preliminary scheme for utilizing BIM to manage SHM
data for buildings was developed in Valinejadshoubi, Bagchi, Moselhi, and Shakibaborough
(2018). Valinejadshoubi et al. (2019) developed a BIM-based integrated model for rapid structural
damage detection using strain values. Some other BIM-Sensor based integrated solutions and their

limitations are summarized in Table 5-1.
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Although BIM is desired to be a dynamic workbench for managing all data related to a
building project, there are still many challenges in the management of performance data using
existing data specifications (e. g., IFC) such as the size of data sets, levels of detail, and
interoperability
with existing formats employed to store historical performance data (Gerrish, Ruikar, Cook,
Johnson, & Phillip, 2015). The challenges of using existing standards like IFC in modeling
monitoring systems for asset monitoring and management include lack of specific entities and
attributes for modeling, lack of directives for data management and visualization, and lack of
guidelines for connection with external sources of data and other standard data models (Davila
Delgado, Butler, Brilakis, Elshafie, & Middleton, 2018). When transformed into IFC, the models
lost some information included in the original proprietary format. As described in this section, most
previous studies used the IFC standard in their framework, which has the challenges mentioned

above.

It is apparent from Table 5-1 that the potential of using BIM in sensor-based monitoring
has not been fully explored particularly when BIM is becoming a popular platform in the AEC
industry. As shown, although some researchers tried to integrate BIM into 10T systems, most of
them have been aimed at building conceptual frameworks, mapping the information coming from
the sensors to the 3D model with limited attempts at computer implementation and development
of an automated BIM-based integrated alarm system, especially for thermal comfort

monitoring purpose.
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Table 5-1: Previous studies on a BIM-based sensor-integrated solution

Authors Type of Sensor Used Purpose Limitation
(Wu and Liu, Temperature, Humidity, | Integrating IoT into BIM | Storing Data into a local
2020) CO, database, Lack of automation
(Natephra and | Temperature, Humidity, | Integration of Lack of thermal data retrieval
Motamedi, Light environmental sensors system
2019) and BIM
(Wehbe and Temperature, Humidity, | Integrating IoT into BIM | Storing Data into a local
Shahrour , Light database, Lack of automation
2019)
(Emad Al- Ribbon sensor Generative modeling Used only in the design stage
Qattan et al.
2017)
(Natephra et al., | Environmental sensor Integrating BIM The Lack of direct integration
2017) geometry data and of sensor data and the BIM

environmental sensor
data

software.
Humidity data have not been
used to assess thermal

comfort;

(Del Grosso et | SHM sensors Integrating BIM into Mostly focused on sensor

al, 2017) SHM system simulation in BIM;
(Smarsly and SHM sensors Integrating BIM into Only conceptual.
Tauscher, 2016) SHM system No validation;
(Sternal and SHM sensors BIM-based modeling of | No computer implementation.

Dragos, 2016) wireless SHM systems The inability of the IFC
standard to provide sufficient
entities to model overall
wireless SHM;

(M. Rahmani Daylight Energy performance Not automated.

Asl et al., 2015)

factor, daylighting
performance factor

Used only in the design stage

(K.M. Kensek, | Light, humidity, CO2 A link from the Revit Used only in the design stage
2014) model to a physical
model
(Cahill et al., Temperature, humidity, Optimization of building | No computer implementation.
2012) light, CO2, operations Only conceptual.

presence detection
sensors

No validation;
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(Lee etal.,

Load sensors

Crane navigation system

2012) for blind lifts
(Woo et al., Electricity consumption | Building energy No validation.
2011) sensors monitoring Only focused on sensor data
storage;
(Ryoo and Park, | Inclinometers and GPS Integration of BIM with | Only conceptual.
2011) sensors sensors to improve the No validation;
mobility of BIM models
(O’Flynn et al., | Temperature, humidity IoT for building energy Mostly focused on the
2010) light sensors, motion and | management application | hardware system.
occupation sensors Conceptual in BIM part;
(Yin, 2010) Temperature, CO2 and Use of BMS to monitor | Only Conceptual.
humidity a building's operation Lack of visualization,;
and energy performance.
(Katranuschkov | Temperature and BIM based generation of | No linkage between BIM and
etal., 2010) humidity sensors multi-model views IoT.
(Keller et al., Temperature and flow To identify, archive and | No computer implementation.
2008) sensors manage building Only conceptual;

performance data and
information

Regarding the BIM-based thermal comfort monitoring, one of the few studies conducted

could be the study conducted by Natephra, Motamedi, Yabuki, and Fukuda (2017) in which a BIM-

based method was proposed for integrating BIM geometry data and environmental sensor data for

assessing the indoor thermal comfort level per location. The findings show that there is no direct

integration of sensor data and the BIM software (e.g., Autodesk Revit) in their method. The authors

also mentioned that although relative humidity data were collected by the sensors, in their case

study, such data have not been used to assess thermal comfort while evaluating the comfort level

in an airconditioned building, relative humidity data should be integrated into the system.

Wu and Liu (2020) developed a BIM-based visual energy conservation system. They

developed a system to integrate BIM into loT for IAQ and thermal comfort monitoring. However,
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they used PMV as an index for the thermal comfort analysis, which is not accurate in practical
applications due to the parameters like clothing insulation and airspeeds. Their system was also not
entirely automated due to using a local database like Excel, which needs manual updating.

Natephra and Motamedi (2019) proposed a method for an automated live sensor data
visualization of building indoor environment conditions based on environmental sensors and BIM.
They used Arduino microcontroller and Dynamo to record and transfer sensor data into the BIM
model. Although the system works well in visualizing data, it does not have any data retrieval
module to retrieve thermal condition data of building spaces if required.

In a study conducted by Wehbe and Shahrour (2019), the use of BIM to support decisions
concerning comfort conditions in buildings was presented. Although they tried to link between loT
and BIM, they collected sensor data in a local database that prevents and minimizes the real-time
updating of thermal comfort parameters in BIM and decreases collaboration works.

The full integration between virtual and physical sensors, the connection and insertion of
sensor data remotely into an external database through the Internet of Thing (IoT) technology, and
the application of a 3D visualization-based alarm system for thermal condition monitoring projects
have not been adequately addressed in previous works. Also, the BIM approach has not yet been
fully applied and validated for monitoring purposes. This paper designed a system to address some
of these issues by developing a method for integrating the IoT system into BIM for thermal comfort

monitoring in a building.

5.3. Thermal Comfort Assessment and Monitoring

There are relevant standards, such as ASHRAE Standard 55 and HSE standard pertinent to

acceptable thermal comfort for occupants of buildings.
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According to the Northeast Document Conservation Center (2012), to have an accurate
record of existing environmental conditions throughout a building, temperature and relative
humidity must be measured and recorded with instruments designed for that purpose. Table 5-2
shows the acceptable temperature ranges in hot and cold seasons based on more than 80 %
occupants’ satisfaction according to ASHRAE Standard 55-2017, which is widely used in North
America.

Table 5-2: Acceptable operative temperature ranges (ASHRAE Standard 55, 2017)

Season Relative Humidity (RH) Acceptable Operating Reference
(%) Temperature
cO)
Summer 30=<RH<60 24.5-128 (ASHRAE
RH=60 23-255 Standard 55)
Season Relative Humidity (RH) Acceptable Operating Reference
(%) Temperature
cO)
Winter 30=<RH<60 20.5-25.5 (ASHRAE
RH=60 20— 24 Standard 55)

Some thermal comfort indices, such as the Predictive Mean Vote (PMV) are used to predict
thermal comfort. PMV index is used in the Standard ISO 7740. The PMV considers four physical
variables (air temperature, air velocity, mean radiant temperature, and relative humidity) and two
personal variables (clothing insulation and activity level of the occupant). The equation to calculate

PMV is:

PMV =10.303-¢(—0.036-M) + 0.028] - {(M—W) — 3.05x10-3-[5733-6.99(M—W) — pa]

—0.42 -[(M—W) — 58.15] = 1.7x10-5 -M-(5867—pa) — 0.0014 -M-(34—ta)

—3.96 x 10-8 - fcl - [(tcl +273)4 — (tr +273)4] — fcl - he - (tcl —ta)}] (1)
where:
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tel Clothing surface temperature °C is related to the cloth that the person wears

M Metabolic rate (W/m?)

W The mechanical power (W/m?), zero for activities like writing
Ta Indoor air temperature °C
tr Radiant air temperature °C

var  Relative air velocity (m/s)

pa Partial pressure of water vapor (Pa)

The factors which cause a discrepancy between the predicted and actual occupant thermal
comfort level are inaccurate measurements of the person’s characteristics (Clothing surface
temperature (tcl) and Metabolic rate of the occupants (M)). Therefore, the PMV model’s accuracy
depends on accurately monitoring and controlling the airspeed and accurate measurement of
clothing insulation, which could be challenging in practical applications.

Computerized BMS is usually used to monitor climate conditions and manage the HVAC
system. BMS can also provide temperature and relative humidity data for analysis (Northeast
Document Conservation Center, 2012). Analog and digital input signals tell the BMS what
temperature, humidity, etc., are. BMS deployment usually involves installing sensors, software, a
network, and cloud-based data storage mostly applied to decrease energy use and save money.
However, BMS is complicated and requires specific installation, programming, and maintenance.
BMS is a customized system applied to large buildings or groups of buildings. However, most
buildings, particularly modular buildings, are categorized as low-rise or mid-rise building. For
instance, high-rise buildings make up only 10 percent of the US commercial real
estate stock and 90 percent of the total building stock in the US and might not benefit from a smart

technology installed and are unmonitored or not managed at all for energy or operational savings
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(Rawal, 2016). In a BMS, the data are first extracted from sensors using a Programmable Logic
Controller (PLC). A Supervisory Control and Data Acquisition (SCADA) system is used to read
data from PLC. The SCADA is hosted onto a database server to accommodate the transmitted data.

In the end, the Human-Machine Interface (HMI) collects the data from the
SCADA and displays it to the facility manager to manage the operation of the infrastructure
sustainably. One of the main challenges of BMS is in the data visualization stage, in which 2D
vector graphics are used, which is not fully interactive and can only be manipulated by a trained
operator (Reeser, Jankowski, & Kemper, 2015).

Therefore, integrating BIM with BMS data can be useful in order to help managers and
users perform visual browsing of spatial data and to make building performance information more
readily accessible to all building stakeholders, which can both boost energy management awareness

and support decision-making during the operating stage.

5.4. Research Methodology

The indoor office building environment requires an efficient HVAC system to provide
thermal comfort in compliance with the relevant standard like ASHRAE standard (2017), as shown
in Table 5-2, and tolerable relative humidity ranges as recommended by CCOHS (2018).
As shown in Table 5-2, for the relative humidity of 30—60, the temperature range for normal
comfort level is 20.5-25.5. Although ASHRAE standard suggests the maximum humidity level as
60, CCOHS recommends the maximum humidity as 70, and above that level, the area may feel
stuffy and uncomfortable. Accordingly, the following temperature and humidity ranges are used

here, as shown in Table 5-3. Table 5-3 is based on winter temperature ranges. However, these
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ranges of humidity and temperature values can be modified by the user of the proposed

methodology, if different climatic conditions and standards are used.

Table 5-3: Acceptable operative temperature ranges in the wintertime used in this study

Relative Humidity (%) | Acceptable Operating Temperature (°C)

30=<RH<60 20.5-255

60=<RH<70 20-24

As shown in Figure 5-2, the proposed method is comprised of three main components: the

IoT system, relational database, and BIM. Each is described in detail below.

The first component, the IoT system, is a smartboard associated with a microcontroller.
Waspmote microcontroller is used to communicate air temperature and humidity data in individual
rooms. The smartboard is connected to temperature and humidity sensors for collecting the thermal
comfort data in a specified time interval. The time interval of saving sensor data in a database can
be increased or decreased by a user as required. In this study, the interval was set at 5 min in the
field study, which is described further below. These time intervals, referred to later
as delays, are specified within C++ language code via a programmable peripheral associated with
the microcontroller. The microcontroller can also host a variety of wireless communication
protocols (e.g., Bluetooth, ZigBee, and WiF1), allowing these technologies to send and receive data.
ZigBee based sensor networks were experimented by researchers for some applications other than
thermal comfort monitoring, such as materials tracking and supply chain management systems
(Cho, Kwon, Shin, Chin, & Kim, 2011; Shin, Park, & Kwon, 2007). Such applications
generally have more sensitivity to cyber-attacks. ZigBee has an advantage over Bluetooth as it has
sensitivity, while WiFi is more sensitive but more expensive. Changing the data communication
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shield allows the usage of any of the 3 communication protocols, but ZigBee has been

chosen here for the reasons mentioned above.

The second component is a relational database developed in the MySQL environment to
house and update the captured sensors data. The microcontroller can be coded to store and transfer
sensors data to the database at predetermined time intervals. In this study, the microcontroller is
coded to send the sensors’ measurements and their measurement time to an online MySQL database
via ZigBee every 5 min. Therefore, every 5 min, the MySQL tables are automatically updated
based on the newly captured sensor data. The database developed for the proposed method consists
of a schema, six tables, and corresponding parameters for the temperature and humidity sensors to

accommodate the sensor-related sampling data.

The third component is the BIM-based model of a building. The BIM model is used as a
central model to visualize and monitor the thermal comfort levels of rooms remotely and increase
the monitoring process’s speed. Every 5 min, when the MySQL tables are automatically updated
based on the new sensor data, the BIM model is also updated. To link between MySQL database
(physical sensors data) and the BIM model (virtual sensors), nine modules were developed and
coded in Dynamo to automatically read temperature and humidity values stored in the
database, sort the data, update the BIM model with latest real-time sensor data, and send data to
the cloud using a cloud-based collaboration and data exchange services application like Flux,
Konstru or Speckle to send notifications to building supervisors and the facility manager through
their wireless devices, such as personal smartphones, so they can then take necessary actions if
operating temperature data goes across the pre-defined thresholds. Dynamo is a visual

programming and computational design tool applied for automation purposes (Dynamo
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BIM, 2017). Space, referred to as room in the BIM model, is color-coded and automatically

highlighted whenever a room’s operating temperature data violates a pre-defined threshold.

Therefore, the developed prototype comprises Waspmote microcontroller and smart

sensing board equipped with humidity and temperature sensors (Sensory System); Autodesk Revit

Architecture 2018 (BIM Software); Dynamo (Visual Programming Environment); SQL Server

(Database Management System); and a cloud-based server (Flux).

The developed model has recently been applied in a real office unit located in Ville Saint

Laurent, Quebec, Canada.
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Figure 5-3 illustrates a schematic diagram that shows the data flow in the proposed method.

As shown, the temperature and humidity values, measured by the microcontroller, are sent to a
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cloud-based database through a smart board and ZigBee module. The monitoring data is
managed in a pre-designed database and are transferred to the BIM model and a cloud-based system
through a specially designed workflow to let facility managers or building supervisors to monitor
different spaces in a building remotely and identify the technical reasons for possible issues through

their PC and wireless-connected devices.
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Figure 5-3: Developed dataflow schema
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5.5. The System Framework

5.5.1. Hardware configuration of the system

Over recent decades, the automated data acquisition (DAQ) technology market has
witnessed a remarkable advance in hardware and software. Most available technologies are
expensive and in a black box format. Black box format users cannot access the relevant algorithms
and modify them as they see fit. Also, the stored data are often difficult to obtain without using
seller-specific software. Limited research was conducted to study and develop the customized
design of automated DAQ systems to confront the above challenges and overcome the off-the shelf
technologies-related limitations (open-source technologies allocate a minute portion in DAQ

systems’ marketplace).

There are two pioneers in the domain of cost-efficient open-source technologies, Arduino
and Waspmote. Although Arduino is older than Waspmote, both platforms are using standard
coding syntax. Arduino is considerably useful to learn how to use electronics and to do less costly,
simple projects (e.g., home automation projects), while Waspmote is a device specially designed
to create long lifetime IoT systems expected to be installed in a real scenario like a city, agriculture
farm, or construction job site. However, although this case study has relatively the same incentives
for using either technology, Waspmote was chosen as it alone has the radio certification for possible

combinations of the communication modules (802.15.4, ZigBee, 3 G, ZigBee + 3 G).

The hardware consists of a microcontroller to perform specific tasks through programming.
This microcontroller integrates with a board that can be attached to various peripherals, such as
data transmitters. The acquisition system is used to collect the required thermal comfort data

(temperature and humidity data) over a set of defined time intervals using temperature and humidity
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sensors. The developed system is designed to acquire temperature and humidity data in uniform

intervals (every 5 min. in this study), with ranges predefined in the microcontroller programming

using C++ language. The received data are then transmitted to a MySQL database through the

ZigBee data transmission module. Table 5-4 shows the specifications (such as Measurement

Range, Sensitivity, accuracy, and operation temperature) of each type of sensor used in this study.

Figure 5-4 shows the DAQ system hardware used in this study.

Table 5-4: Specifications of Sensors (Waspmote datasheets, 2012)

Type of Measurement | Sensitivity Accuracy Operation
Sensor range temperature
Temperature -40°C ~ 10mV/°C +2°C (range 0°C ~+70°C), -40 ~
+125° +125°
Sensor ¢ +4°C (range -40 ~+125°C) ¢
Humidity 0~ 100%RH - <+4%RH (range 30~ 80%), | -40 ~+85°C
Sensor <+6%RH (range 0 ~ 100)
F
@

Figure 5-4: DAQ system hardware used in this research
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5.5.2. Development of the BIM model

A small two-story office building located in Ville Saint Laurent, Quebec, Canada is modeled
in Autodesk Revit Architecture 2018 in this case study. The building was chosen because the
building includes office space above a restaurant and the old HVAC system in the office required

upgrading.

The heat generated by the restaurant’s kitchen is transferred to the above floors, reducing

thermal comfort.

After  developing the BIM  model, virtual humidity and temperature
sensors were embedded in the model. A set of parameters were introduced in the modeling process:
‘LatestDateTime’, ‘Sensor ID’, ‘Humidity’, and ‘Temperature’ for the sensor objects; and ‘Latest
DateTime’, ‘Humidity Level’, ‘Temperature Level’, and ‘Thermal Comfort Check’. Two
parameters, ‘Humidity’ and ‘Temperature’ were created to accommodate the maximum humidity
and temperature values recorded by the humidity and temperature sensors at two-hour intervals.
The ‘LatestDateTime’ parameter was created to accommodate the maximum operative temperature
measurement’s date and time, and the ‘Sensor ID’ parameter was used to link the physical sensors
to virtual sensors in the BIM model. The physical sensors’ specific ID must be assigned to each
corresponding virtual sensor in the BIM model to link the two types of sensors. ‘Humidity Level’
and ‘Temperature Level parameters were created for the ‘Room’ object to accommodate the latest
‘Humidity’ and ‘Temperature’ parameters values of the correlating virtual sensors in the BIM
model, and the ‘Thermal Comfort Check’ parameter was used to monitor the working range
condition of the instrumented room. Only the room located at the top of the restaurant’s kitchen on

level 1 above the ground floor, with an area of about 215 ft>, was instrumented and used in this
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study. Figure 5-5 shows how the virtual temperature and humidity sensors and their user-defined

parameters are shown in the developed 3D BIM model.

g Networked Sensor 2 Metworked Sensor
= 3 < . .
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Hurnidity 0.000000 Humidity

Temperature Temperature 0.000000

Figure 5-5: The instrumented office room, virtual sensors, and their parameters in the BIM model

5.5.3. MySQL database

To insert the sensed data into a database like MySQL, a schema (database), and tables and all
essential parameters are to be defined. The tables house the sensor data received from the DAQ

system.
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The schema, named ‘thermal condition monitoring’ is defined along with six tables named
‘waspmote _humidity sensor’,*waspmote temperature_sensor’,‘temperature_measurement hist
ry’, ‘humidity measurement history’, room’, and ‘room_info’. The parameters defined for each

table are shown in Table 5-5.

Table 5-5: MySQL database model specifications used in this study

Tables Parameters
waspmote temperature sensor ‘Record ID’, ‘Sensor ID’, ‘Sensor Value’,
‘Recorded AT’
waspmote humidity sensor ‘Record ID’, ‘Sensor ID’, ‘Sensor Value’,

‘Recorded AT’
temperature_measurement_history | ‘Record ID’, ‘Sensor ID’, ‘Sensor Value’,
‘Recorded AT’

humidity measurement history ‘Record ID’, ‘Sensor ID’, ‘Sensor Value’,
‘Recorded AT’

room ‘Room_ID’, ‘Room_Name’, ‘Occupancy’,
‘Thermal Condition’, ‘Latest DateTime’

room_info ‘Room_ID’, ‘Room_Name’, ‘Thermal Condition’,

‘Latest DateTime’

Four parameters were introduced for the sensor’s tables: ‘Record ID’, ‘Sensor ID’,
‘Sensor Value’, and ‘Recorded AT’ where ‘Record ID’ constitutes the primary key. Five
parameters were introduced for ‘7room’ table: ‘Room ID’, ‘Room_ Name’, ‘Occupancy’,
‘Thermal Condition’, and ‘Latest DateTime’ where ‘Room_ID’ constitutes the primary key. Four
parameters are also introduced for ‘room info’ table, including ‘Room ID’, ‘Room_Name’,

‘Thermal Condition’, and ‘Latest DateTime’.

The temperature and humidity values are measured, stored in a DAQ system, and
transferred to a MySQL database at a specified interval to be stored in their corresponding tables
(waspmote_temperature_sensor, and waspmote_humidity sensor). Here, an interval of 5 min is

used as an example. Therefore, the ‘Record ID’, ‘Sensor Value’, and ‘Recorded AT’ parameters
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in these tables are updated every 5 min. These tables are linked with the central BIM model which
is also updated at the same interval (e.g., every 5 min, in this case). To have a history of the
temperature and humidity values in the monitored space, the data at each
time interval is transferred to the database and placed in the measurement history tables
(temperature_measurement _history, and humidity measurement history). Once the BIM model is
updated based on the sensor data, it updates the 7room’ table in the MySQL database using the
developed workflow. And finally, the ‘room info’ table is populated based on the information
updated in the ‘room’ table every 5 min if the room’s thermal condition is not acceptable.
Therefore, ‘room_info’ table is used as a history of the thermal condition of the room when the

thermal condition is poor.

The database model can be expanded in case of using temperature and humidity sensors for
multiple rooms. To construct a comprehensive database model for the whole sensory system, the
information on the corresponding rooms and their conditions must be determined. Figure 5-6 shows

the Entity-Relationship Diagram (ERD) of the proposed database model.

As shown in Figure 5-6, the ERD consists of six entities, waspmote_temperature sensor,
waspmote_humidity sensor, temperature_measurement_history, humidity measurement history,
room, and room_info. According to the relationship among the entities, it is observed that there is
“One to  Many”  relationship  between  femperature measurement history  and
waspmote_temperature_sensor, humidity measurement _history and waspmote_humidity sensor,
room and waspmote_temperature_sensor, room and waspmote_humidity sensor, and room_info
and room entities. It means that a given set of temperature and humidity sensors belongs to only

one room, but a room element may have multiple sets of temperature and humidity sensors.
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Figure 5-6: ERD of the Monitoring System Database

The following tables, temperature_measurement history and
humidity measurement history, may consist of one or more than one sensor that can be filtered by
the Sensor ID parameter. Room info table may also have one or more monitored rooms

containing the information about the room when the room’s thermal condition is not perfect.

The database model was created to support the developed system utilizing nine specially

designed modules in Dynamo, as depicted in Figure 5-7.
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Figure 5-7: The overall workflow for integrating BIM into thermal comfort monitoring

In Figure 5-7, the modules were numbered to demonstrate their linkage better. In the figure,

Module number 1 is used to connect the developed framework to the MySQL database server using

server ID, port number, user ID, and password. The output of module number 1 is connected to

modules number 2 (to connect the system to the created schema in MySQL database and its

corresponding tables), number 4 (to link the virtual temperature and humidity sensors in the BIM

model respectively to the database containing sensor data, and number 5 (to retrieve the

temperature and humidity sensor data respectively from the database). Module number 2 is

connected to module number 5. Module number 3 is connected to module number 4 (to extract the

values of the relevant parameters of temperature and humidity sensors, respectively, from the
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BIM model and link them to the corresponding parameters in the database). Module number 5 is
connected to module number 6 (to update the temperature and humidity sensor parameters in the
BIM model, respectively). Module number 7 is used to map the sensors to the corresponding rooms
in the BIM model and update the related room parameters and is connected to modules number 8
and 9. Module number 8 is used to define the temperature ranges based on the humidity values
and the room’s corresponding thermal comfort level. And finally, module number 9 is used to
transfer the related information to the cloud for remote monitoring using wireless devices, such as

smartphones.

Only three modules, 5, 6, and 7, are presented here for space limitations. Module 5 was
developed for automatic reading and sorting the sensed temperature values from the database.
Module 6 was developed for the automatic updating of the temperature sensor parameter in the
BIM model, and Module 7 was developed for the automatic updating of office room parameters in

the BIM model. The modules shown in Figure 5-7 are described in the following sections.

5.5.4. Extracting parameters from the BIM model

Here, a module is developed to retrieve the virtual sensor parameters from the BIM model.
The sensor parameters must be extracted to check the latest values of the parameters in the BIM
model. The module consists of four parts. First, ‘Networked Sensor: Temperature Sensor’ is read
from the list of family types in the BIM model. Second, all elements are selected in this category.
Third, the values for the user-defined sensor parameters, like Sensor ID, Temperature, and Latest
DateTime, are displayed, and fourth, extracted from the BIM model to be shown in one list. A

similar structure is used for the virtual humidity sensor and its parameters from the BIM model.
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5.5.5. Connecting the BIM model to the database

After extracting the essential parameters from the BIM model, they must be linked to the
database’s parameters already created for each sensor. This integration is required for any future
BIM model updating. A similar workflow can also be used to link the virtual humidity sensor
with the database. The ‘Sensor Value’ parameter created in the MySQL database is linked to the
‘Temperature’ parameter of the virtual temperature sensor in the BIM model, ‘Sensor ID’
parameter created in the database is linked to the ‘Sensor ID’ parameter of the virtual temperature
sensor in the BIM model, and ‘Recorded AT’ parameter defined in the database is linked to the
‘Latest DateTime’ parameter in the BIM model. The relevant parameters are listed first and are
then connected to the ‘waspmote_temperature sensor’ table and the values extracted from the BIM

model.

5.5.6. Automatic reading of sensor values from MySQL database server

When a connection is established between the BIM model and the MySQL database server,
the next step is to read the sensed data from the MySQL database in an automatic manner. Different
nodes are applied and connected for this automatic sensor data reading. As mentioned earlier, the
‘Humidity’ and ‘Temperature’ parameters are created and assigned to the virtual sensors in the
BIM model; consequently, the temperature and humidity values at every time interval (every 5
min) are to be sent to the BIM model to update the ‘Humidity’ and ‘Temperature’ parameters of
the virtual humidity and temperature sensors. If the temperature value at each time interval is within
the pre-defined acceptable operative temperature ranges, it means that the office room’s thermal

comfort is in excellent condition. A similar structure can be used for the humidity sensor.
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5.5.7. Updating the virtual sensors parameters in the BIM model

After reading and sorting the sensed values stored in the MySQL database, the associated
parameters of virtual sensors have to be updated in the BIM model at each time interval. For this
purpose, a module is created to update the BIM model. The module first selects the
temperature sensor and its elements in the BIM model. Then, the Element.SetParamaterByName
node is applied to update the Sensor ID, Temperature, and Latest DateTime parameters of the
temperature sensor in the BIM model based on the sensor information and maximum temperature
value recorded from the MySQL database. In the first part of this module, the temperature or
humidity value and its measurement time and the sensor ID are separated for use as the input in the
second part of this module for updating the corresponding parameters in the
BIM model. After every time interval, the temperature and humidity values are recorded, and the
corresponding parameters in the BIM model are updated. A similar module was used to update
humidity sensor parameters.

To design an alarm system in the BIM model, a conditional statement has to be defined,
and the BIM model color-coded to highlight the Room object in the BIM model to which the
sensors are attached subject to extreme temperature ranges. This alarm system works as a signal to
the building supervisors or facility manager when the sensor readings exceed the pre-defined

acceptable ranges.

5.5.8. Defining the conditional statements and updating room parameters

For thermal comfort visualization in the BIM model, a parameter named ‘Thermal Comfort

Check’ was defined for the ‘Room’ object in the BIM model, which has to be updated based on the
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‘Humidity Level’ and ‘Temperature Level’ values stored in room object. A module was created
to cross the sensor value between the virtual temperature sensors and the correlating office room
in the BIM model. A similar workflow was used for the humidity sensors. Then, a module was
created to define the conditional statement, according to Table 5-3. By using the developed
module, the sensors and the room where they are installed were identified. The instrumented office
rooms were identified and separated from the un-instrumented ones in the BIM model. Then, when
the instrumented office rooms were identified, ‘Temperature Level’ and ‘Latest DateTime’
parameters of the instrumented room were updated based on the ‘Temperature’ and ‘Latest
DateTime’ parameters of the temperature sensor in the BIM model. A similar structure is used for
the humidity sensor in this study.

The conditions shown in Table 5-3 are applied in this study. The status of the ‘Thermal
Comfort Check’ parameter of the Room object in the BIM model was classified into four cases:
‘Too Hot,” ‘“Too Cold,” ‘Normal,” and ‘Unacceptable Humidity Level.” If the temperature
measurement does not meet the condition, the ‘Thermal Comfort Check’ parameter is considered
‘too hot’ or ‘too cold’; otherwise, it is normal. However, if the humidity measurement was too high
(more than 70 %) or too low (less than 30 %), then the ‘Thermal Comfort Check’ parameter showed
an ‘unacceptable humidity level’. When the office room’s thermal comfort level was recognized,
the ‘Thermal Comfort Check’ parameter of room objects was updated in the BIM model to inform
the building supervisor and facility manager about the latest thermal comfort of the instrumented
offices and their HVAC system performance. Through this module, some of the room’s parameters
such as Room_ID, Room_Name, Occupancy, Thermal Condition, Latest DateTime are extracted
from the BIM model and transferred to the MySQL database to update the room table after each

time interval. After each time interval, if the room’s thermal condition is not normal, the room
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table’s information is transferred and saved in room_info table through a query used in MySQL

server to have comprehensive information about the thermal condition of each room.

5.6. System Implementation

The modules described in the previous section were developed to introduce a workflow to
link virtual and physical humidity and temperature sensor, update the associated parameters of
‘Humidity Level’, ‘Temperature Level’, ‘Latest DateTime’, and ‘Thermal Comfort Check’, and
then highlight the corresponding office room in the BIM model based on its thermal comfort status
at each time interval (e.g., every 5 min). The Waspmote-based DAQ system was coded to transfer
the sensed temperature and humidity data to the MySQL database server at each time interval. A
query was used in the MySQL server to update the predefined tables and parameters at each time
interval.

The test was conducted on the 10th of November 2018. At each time interval, one
temperature and one humidity data points were recorded. The system recorded Forty-nine data
points during the test (four hours) to validate the proposed method. After each time interval, the
BIM model and its corresponding user-defined parameters like Sensor ID, Temperature, Humidity
and Latest DateTime for the virtual temperature and humidity sensors, and Thermal Comfort
Check, Humidity Level, Temperature Level, and Latest DateTime for room objects were updated.
Once the BIM model was updated, the thermal condition-related information was transferred from
the BIM model to the database to update the “room ” table in the defined database. If the room’s
thermal condition was not perfect at each time interval, a query was used in MySQL to transfer
room-related information from the “room ” table and store them in the “room_info” table to have
a thermal discomfort history of the room.
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Figure 5-8 shows the temperature and humidity values and the room’s thermal condition measured

in the 18th time interval, which were stored in their corresponding tables in MySQL server.
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Figure 5-8: Transferring sensors reading remotely to the database (18"-time interval)

As can be seen from Figure 5-8, temperature and humidity values, their measurement time,
and the room information were successfully stored in their corresponding tables in the MySQL
database. Once the sensors’ data was introduced to the database, the values were retrieved from the
MySQL database and sorted automatically in the module described earlier. The ‘Sensor ID’,

‘Sensor Value’, and ‘Recorded AT’ values were captured, read, and sorted for humidity and
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temperature sensors installed in the office room. The humidity and temperature readings of sensor
values were extracted after the values were sorted. Figure 5-9 shows the developed module
described earlier to automatically read and sort temperature values from the database. As shown,
the temperature value measured in the 18th time-interval was read from the proposed method
successfully, and the temperature value and its measurement time were extracted from the list of

measurements to be transferred to the corresponding parameters in the BIM model.
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Figure 5-9: Reading and sorting the second time-interval temperature data from the database

In the developed workflow for integrating BIM into thermal comfort monitoring, Periodic

mode was used with the time interval of 300,000 milliseconds (5 min.) to automatically read and
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extract data from the MySQL database, update the BIM model and send the thermal condition info
to the MySQL and cloud-based database every 5 min. As shown in Figure 5-10, the test started at
10:00 AM on Nov 10th, 2018, and the system was updated 49 times in the total test time (four

hours).
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Figure 5-10: Setting the developed workflow to automatically update the system every 5 minutes

When the sensors’ values were read and transferred, the BIM model’s virtual sensors
parameters were updated using the modules described earlier. The parameters defined for the office
rooms in the BIM model (‘Humidity Level’, ‘Temperature Level’, ‘Thermal Comfort Check’, and

Latest DateTime) were updated using the modules described earlier.

Figure 5-11 shows the module developed to automatically update temperature parameters
in the BIM model based on the captured sensor data. A similar module was used for the automatic

updating of humidity parameters in the BIM model.
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Figure 5-11: Automatic updating of temperature sensor parameters in the BIM model

When the room’s parameters were updated, the room was highlighted based on the colors
defined in Table 5-6.
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Table 5-6: Classification of office rooms based on their thermal comfort level and color

Thermal Comfort Check Parameter Colour
Normal! White

Too Hot! -

Too Cold! Blue
Unacceptable Humidity Level -

Figure 5-12 shows a picture of the developed BIM-IoT system in operation during the test

when the room temperature level exceeded the acceptable threshold.

Figure 5-12: Picture of thermal comfort monitoring test setup in the second-time interval

As shown in Figure 5-13, the instrumented office room’s working range condition in the
BIM model is ‘Normal!’ and ‘Too Hot!’, respectively, in the first- and eighteenth-time intervals.
Therefore, the room was highlighted in red in the time interval eighteen. As observed, the

maximum temperature value was measured at 26.0 °C at 11:25 AM.
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Figure 5-13: Screenshots of BIM user interface: (a) first time interval (b) 18" time interval
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As mentioned earlier, waspmote temperature sensor and waspmote - humidity sensor
tables only accommodate one row of data (data captured at each time interval). Therefore, to have
a history of temperature and humidity measurements of each room, the data were transferred from

waspmote_temperature Sensor and waspmote_humidity sensor tables to
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temperature_measurement history and humidity measurement history tables in the MySQL

database.

Figure 5-14 shows the layout of the temperature measurement history table in the
“thermal condition_monitoring” database, which accommodates all the temperature data recorded
during the test. Figure 5-15 indicates the room table data, which shows where and when the thermal

discomfort occurs.
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Figure 5-14: Temperature measurement history table data at the end of the test

Figure 5-16 illustrates the temperature variations in the instrumented office during the
monitoring period. As shown, the temperature level exceeded the acceptable threshold thirteen

times.
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As shown in Figure 5-16, at thirteen data points (mostly at noon), the temperature level

exceeded the acceptable threshold, and the thermal condition of the instrumented room was not

ideal (Too Hot).
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Figure 5-16: Temperature recording map in the instrumented office
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Sending real-time notifications to building supervisors and the facility manager through the
wireless connected devices, such as smartphones or iPads, is critical for taking necessary actions
if the operating temperature data does not fall within the predefined acceptable range. For this
purpose, a module is also developed to send the room data from the BIM model to the cloud-based

storage and collaboration service. As mentioned earlier, Flux is used in this study for this purpose.

Parameters of the instrumented room (i.e., ‘Name’, ‘Office ID’, ‘Level’, and ‘Thermal
Comfort Check’), are extracted from the BIM model and transferred to the cloud. To define an
appropriate title for each data in the cloud, several parameters were defined: ‘Office ID’ was
defined for the ‘Element.id’ parameter, ‘Office Number’ was defined for the ‘Name ‘parameter,
‘Level’ was defined for ‘Level” parameter, and ‘Working Range Check’ was defined for ‘Thermal
Comfort Check’ parameter of the BIM model. Therefore, the building supervisors or the facility
manager can access the room data and HVAC system performance remotely through their wireless
devices, such as a smartphone (Figure 5-17(b)) besides their PC (Figure 5-17(a)), at any time and

any location.

5.7. Policy implication

Policy-makers are not achieving the results expected from implementing energy-saving
policies in buildings (Galvin, 2015). Currently, most Energy standards have been applied only to
new buildings, and the challenge of high-energy consumption in existing buildings has not been
adequately addressed. To make energy standards and policies more effective for existing buildings,

one method is developing and using new and efficient technologies.

The system developed in this study can track the operation and improve the thermal
performance of each room’s utilities by monitoring the thermal condition in buildings, detecting

any defects in HVAC systems, and avoiding energy waste.
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Figure 5-17: The data representation of the instrumented room in the cloud (a) with a smartphone
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Residential or office buildings may have different energy policies for their rooms or offices

depending on different factors such as the type and importance of rooms, the number of

occupancies, etc.
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Data extracted and analyzed by developed system can help managers create and even
modify energy policies to control consumption and waste and maintain the thermal level in an
acceptable range. The system can record the number of discomforts cases in each room and
integrate it with the occupants’ satisfaction level, analyzed by a daily computer-based
questionnaire, to generate energy policies and alerts about the HVAC system performance or

building envelop related issues leading to future savings on renovation projects.

Our system’s central database can also be connected to a policy server of each department,
office, or room. Such a system allows FMs to monitor any changes to their energy policies

established to take timely action when the thermal condition exceeds the desirable levels.

Using information extracted from the developed system, policymakers can consider the risk
of thermal discomfort on energy consumption and, consequently, on their policy outcome in the
rooms with high thermal discomfort cases. Also, from the policy maker’s perspective, outcomes of
the developed system can indicate the need for better investigating the occupants’ ventilation

practices before taking any appropriate corrective action.

5.8. Discussion

Recent services such as Amazon CloudWatch and Google provide cloud services for data
analytics, including platforms for data visualization. Although these kinds of services can collect
data and create alarms and graphs, they are not flexible and cannot facilitate interaction between

the building data model and sensor data.

This paper introduced a novel, fully automated integrated thermal comfort monitoring
system, particularly for low-rise and mid-rise buildings that may not be equipped with BMS. The

developed system integrated the IoT system and BIM technology to monitor the thermal comfort
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level in office environments remotely in an automated manner. The system linked the virtual
environment to the physical environment: IoT system was used to measure the humidity and
temperature levels of the room, and the sensors data was transferred to a remote database via
the internet, and BIM was used to visualize the monitored thermal comfort level of the room
remotely through wireless-connected devices, as well as effective space and facility management.
The temperature and humidity data collected from the case study were studied and analyzed.
The values of these actual readings were compared with threshold values detected by the developed
system. The system was able to detect values beyond the defined threshold values. The system
could also trigger and transmit alarms to building supervisors and facility managers via their

wireless devices in near real-time.

As mentioned earlier, BMS is usually used in huge buildings to manage the operation of
their sustainability. BMS is not fully interactive and can only be manipulated by a trained operator
(Reeser et al., 2015). In small- and medium-sized buildings where the BMS may not be used,
or in buildings where the only purpose is to monitor the environmental quality factor (e.g., thermal
comfort) of space not to control the electrical and mechanical components, the developed
monitoring system, presented in this paper, can be an alternative one as a powerful data-driven
asset management tool to provide a smart technology for energy savings and creating a healthy and

productive workplace, especially in office buildings.

The data from sensors (humidity and temperature sensors) was extracted using a low-cost
microcontroller and smartboard and transmitted to a SQL server in the developed system. The
benefits of using the IoT system to transmit temperature and humidity data, as opposed to passing
them over the wire, are increasing the flexibility and decreasing the installation complexity and

cost. Using a wired monitoring system to transmit sensors data from different monitored rooms to
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a central office using hundreds of meters of wire may not be feasible due to increased complexity
and increased monitoring cost. A novel workflow including nine specially designed modules in the
visual programming tool, Dynamo, was developed to read and sort data stored in the database,
transfer them into the BIM model and update the BIM model automatically at every time interval.
BIM was utilized to replace HMI in BMS, which currently uses 2D vector graphics for data
visualization. The integration of BIM into thermal comfort monitoring would improve the
building’s maintenance plan by helping the facility managers inspect the monitored environments
of the building inside the 3D model, while it is impossible to do this type of inspection within the

conventional HMI interface.

Moreover, the HMI interface does not provide enough information about the building
elements (e.g., wiring, ducts, pipes, envelopes, etc.), which are usually hidden. Therefore, for any
reason that may cause thermal discomfort, whether HVAC failures or heat loss due to cracks in
building envelopes, a rich BIM model information would help the facility managers seek a proper
and fast possible solution providing an effective maintenance planning. Transferring the related
information of building spaces such as the room location, the number of occupants, thermal
condition, required actions, the type and location of HVAC systems, properties of building
envelopes, etc., from the BIM model to the cloud would be beneficial to the facility managers to
visualize the workspaces at any time in any place, observe their associated real-time environmental
sensor data for timely and effective decision making without a physical inspection, and to support
maintenance planning decisions, such as prioritizing maintenance works by considering different

factors such as the importance of spaces and number of occupancies.

The present study attempts to fill the gaps found in the literature, as discussed in Table 5-

1, such as the lack of automation (Asl, Zarrinmehr, Bergin, & Yan, 2015; Wehbe & Shahrour,
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2019; Wu & Liu, 2020), lack of data retrieval system (Natephra & Motamedi, 2019), and the lack
of computer implementation and validation (Del Grosso et al., 2017; Emad, Wei, & Philip, 2017;
Natephra et al., 2017; Smarsly & Tauscher, 2016; Sternal & Dragos, 2016) in the thermal comfort
monitoring. This study introduced a multi-functional BIM-based automated system for thermal
comfort monitoring in buildings to have some of the features mentioned above (e.g., automation,

data retrieval, computer implementation, etc.).

However, there are some limitations in this work, which are as follows:

1. While the present study demonstrates the feasibility of remote sensing and decision making
to manage thermal comfort in buildings, the study is somewhat limited in terms of the space
monitored. Further studies are required to conduct a large-scale investigation and review
its integration with the facility managers and other stakeholders to test the system for its
reliability, reproducibility, robustness, and ease of use.

2. The system developed here was tested with a limited number of sensors. The system can
also be expanded to use different sensors for other purposes, such as indoor air quality
sensors (e.g., an oxide gas sensor, a particle dust sensor, etc.) and facility management
sensors (e.g., motion sensor, occupancy sensor, light sensor, etc.). The developed system

should be tested further with a larger number and multiple types of sensors.

5.9. Conclusion

Monitoring of thermal comfort quality is a critical task for building supervisors and facility
managers. In this paper, a developed BIM-based framework for automated monitoring of thermal

comfort levels is described. Based on the study presented here, the following conclusions are made.
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BIM’s ability to visualize the monitored information is expected to assist building
supervisors and facility managers in locating spaces experiencing thermal comfort
problems.

The integration of BIM and IoT through a specially designed database and modules
developed in a visual programming environment provides an effective visualization of
office spaces associated with indoor air temperature and humidity levels.

Storing related data in a cloud can provide concerned authorities appropriate and timely
access to the thermal comfort condition data remotely through their wireless connected
devices, leading to higher efficiency in monitoring building spaces.

The system developed in this study was implemented, and its capabilities were
illustrated through a case study. The system was able to detect the time and location of
the office room, experiencing thermal discomfort based on targeted thresholds.

The system could detect and record thirteen thermal discomfort cases that exceeded the
thermal threshold value during the test.

When sensor values crossed over the defined temperature level thresholds, the system
highlighted the room in Red on the BIM model and generated text alarms.

The temperature records showed that thermal discomfort mostly happened at noon in
the instrumented room. It shows that the room’s HVAC system did not work properly
when the room was affected by the extra heat from the lower level.

Using measurement history tables in the designed database, facility managers can
retrieve and visualize the previously-stored sensor values from the central database,
which can be used for future investigations, pattern analysis, and building controls

optimization.
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By incorporating rooms’ name into the database, in case of having HVAC problems
according to the thermal condition data, facility managers can have access to relevant
data, such as the amount of deviation from the thermal threshold from the database, and
information like the number of occupancy, type, and location of the room to prioritize
their maintenance tasks.

The system can detect sensors’ malfunction by sorting data based on each temperature
and humidity sensors if more than one sensor of each type is installed in a room.

The system presented in this study can motivate building owners to use it in low-rise
and mid-rise buildings where BMS is not usually used.

Although installing sensors on HVAC systems can monitor real-time temperature
changes, the developed system can be used to make HVAC systems intelligent and
manage them.

he developed system can be used to detect defects in HVAC systems that avoid the high
costs of the system’s failure.

The use of the developed system can help facility managers take timely actions related
to occupants’ thermal comfort and avoid property damage and hazardous situations.
Such an approach (by taking real-time and accurate thermal data) can lead to better
policymaking, which may help decision-makers or urban planners revise the existing

guidelines, protocols, or building regulations.
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Updated Literature Review and Related Materials

This section focuses primarily on recent publications and related works not cited in the

published paper above.

Building Management System (BMS) usually monitors the thermal condition of building
spaces, utilizing sensor-captured temperature and humidity data. However, due to the high cost of
BMS deployment it is usually applied to large or groups of buildings which make up only 10 percent
of commercial real estate stock in the US (Rawal, 2016). Moreover, while existing BMS systems
provide some access to sensor information, the way such information is presented often lacks the

context of 3D building information.

Desogus et al. (2021) developed a workflow to obtain a dynamic and automated data
exchange between the environmental sensors and the BIM model using the Dynamo visual
programming platform and Application Programming Interface (API). However, their study does
not include the capability to rapidly identify problematic areas in built facilities. The developed tool
presented in this chapter utilizes a color scheme to highlight building areas where comfort conditions

are not met.

Recently, Autodesk has been working on developing a tool called Autodesk Project Dasher
to increase building performance. Project Dasher (2021) is an ongoing Autodesk research project
that uses a BIM-based platform as a visual analytics tool to help improve the performance
monitoring of buildings. In that project a BIM model is combined with sensors from a BMS to give

rich, in-context visualization of building operations.

The main differences between Project Dasher and the developed tool in this paper are:
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Autodesk Project Dasher is still in development state and is not commercial software
yet. But the development process of the tool, presented in this chapter, has been
finalized, and its validation effort has been completed.

The primary capability of the Autodesk Project Dasher tool is visualizing the
thermal range of building spaces using temperature values, while the tool developed
in this study has been established based on the combination of different temperature
and relative humidity ranges for different thermal comfort conditions according to
relevant standards such as ASHRAE standard which is widely used in North
America.

The thermal comfort ranges might need to be modified based on different weather
conditions and seasons. The developed tool in this study is flexible to be used in
different seasons and weather conditions in which the thermal comfort ranges can
be adjustable. But Autodesk Project Dasher is in a black box format, where users
cannot modify it and extend to address related applications. The developed tool can
work as an alert system by sending real-time notifications to facility managers and
their staff through their wireless connected devices to take necessary actions if
required. At the same time, Autodesk Project Dasher does not have that capability.
The developed tool integrates with an external database to record and store all daily
thermal discomfort cases of building spaces in a specific entity which allows facility
managers to track any changes to the established building or department energy

policies, while Autodesk Project Dasher does not have this capability.
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Chapter 6: Integrating BIM into Sensor-based Facilities Management
Operations

General

This paper was published in the Journal of Facilities Management in 20217, The main objective of
this paper is to develop an automated workflow to generate alerts in the events of malfunctioning
sensors used in Facility Management (FM).

Abstract

Purpose — To mitigate the problems in sensor-based facility management (FM) such as lack of
detailed visual information about a built facility and the maintenance of large-scale sensor
deployments, an integrated data source for the facility’s life cycle should be used. Building
information modeling (BIM) provides a useful visual model and database that can be used as a
repository for all data captured or made during the facility’s life cycle. It can be used for modeling
the sensing-based system for data collection, serving as a source of all information for smart objects
such as the sensors used for that purpose. Although few studies have been conducted in integrating
BIM with sensor-based monitoring system, providing an integrated platform using BIM for
improving the communication between FMs and Internet of Things (IoT) companies in cases
encountered failed sensors has received the least attention in the technical literature. Therefore, the
purpose of this paper is to conceptualize and develop a BIM-based system architecture for fault
detection and alert generation for malfunctioning FM sensors in smart [oT environments during

the operational phase of a building to ensure minimal disruption to monitoring services.

*Valinejadshoubi, M., Moselhi, O. and Bagchi, A. (2021), "Integrating BIM into sensor-based

facilities management operations", Journal of Facilities Management, ISSN: 1472-5967.
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Keywords: Building information modeling, Operational phase, Sensor-based facility

management, Fault detection, Smart [oT environments, Sensor management

Design/methodology/approach — This paper describes an attempt to examine the applicability of
BIM for an efficient sensor failure management system in smart IoT environments during the
operational phase of a building. For this purpose, a seven-story office building with four typical
types of FM-related sensors with all associated parameters was modeled in a commercial BIM
platform. An integrated workflow was developed in Dynamo, a visual programming tool, to
integrate the associated sensors maintenance-related information to a cloud-based tool to provide
a fast and efficient communication platform between the building facility manager and IoT

companies for intelligent sensor management.

Findings — The information within BIM allows better and more effective decision-making for
building facility managers. Integrating building and sensors information within BIM to a cloud-
based system can facilitate better communication between the building facility manager and IoT
company for an effective IoT system maintenance. Using a developed integrated workflow
(including three specifically designed modules) in Dynamo, a visual programming tool, the system
was able to automatically extract and send all essential information such as the type of failed
sensors as well as their model and location to IoT companies in the event of sensor failure using a
cloud database that is effective for the timely maintenance and replacement of sensors. The system
developed in this study was implemented, and its capabilities were illustrated through a case study.
The use of the developed system can help facility managers in taking timely actions in the event of

any sensor failure and/or malfunction to ensure minimal disruption to monitoring services.

Research limitations/implications — However, there are some limitations in this work which are
as follows: while the present study demonstrates the feasibility of using BIM in the maintenance
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planning of monitoring systems in the building, the developed workflow can be expanded by
integrating some type of sensors like an occupancy sensor to the developed workflow to
automatically record and identify the number of occupants (visitors) to prioritize the maintenance
work; and the developed workflow can be integrated with the sensors’ data and some machine
learning techniques to automatically identify the sensors’ malfunction and update the BIM model

accordingly.

Practical implications — Transferring the related information such as the room location,
occupancy status, number of occupants, type and model of the sensor, sensor ID and required action
from the BIM model to the cloud would be extremely helpful to the IoT companies to actually
visualize workspaces in advance, and to plan for timely and effective decision-making without any
physical inspection, and to support maintenance planning decisions, such as prioritizing
maintenance works by considering different factors such as the importance of spaces and number
of occupancies. The developed framework is also beneficial for preventive maintenance works.
The system can be set up according to the maintenance and time-based expiration schedules,
automatically sharing alerts with FMs and IoT maintenance contractors in advance about the [oT
parts replacement. For effective predictive maintenance planning, machine learning techniques
can be integrated into the developed workflow to efficiently predict the future condition of

individual IoT components such as data loggers and sensors, etc. as well as MEP components.

Originality/value — Lack of detailed visual information about a built facility can be a reason behind
the inefficient management of a facility. Detecting and repairing failed sensors at the earliest
possible time is critical to ensure the functional continuity of the monitoring systems. On the other
hand, the maintenance of large-scale sensor deployments becomes a significant challenge. Despite

its importance, few studies have been conducted in integrating BIM with a sensor-based monitoring
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system, providing an integrated platform using BIM for improving the communication between
facility managers and IoT companies in cases encountered failed sensors. In this paper, a cloud-
based BIM platform was developed for the maintenance and timely replacement of sensors which

are critical to ensure minimal disruption to monitoring services in sensor-based FM.

6.1. Introduction

Facility management (FM) is focused on the efficient operation and maintenance of
commercial and industrial properties. According to the International Facilities Management
Association (IFMA, 2009), FM is defined as a multidisciplinary task to provide a satisfactory built

environment by coordinating people, places, processes, technology and the environment.

The use of different types of intelligent technologies in the workplace necessitates the
connectivity of these technologies through enabling digital platforms. The Internet of Things (IoT)
is an enabler of such connectivity that facilitates efficient maintenance decisions. The data collected
by the IoT allow FM teams to be more effective in preventing maintenance issues and reducing the
time spent on repairs and regular maintenance tasks. Sensors play a significant role in data

collection on an IoT platform.

A study from The National Institute of Standards and Technology’s (NIST), (2020) showed
that most efficiency-related losses in US capital facilities come from insufficient interoperability
among the software systems of computer-aided design, engineering and FM communication, while
interoperability issues and a lack of well-integrated information management systems and
documentation techniques can make FM an expensive task. The most significant FM cost portion

is allocated to data verification and validation, data transfer, interoperability and information delays
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(Gallaher et al., 2004). One of the main challenges in sensor-based FM is in the data visualization
stage in which 2D vector graphics are used because these are not sufficiently interactive and can
only be manipulated by a trained operator (Reeser et al., 2015). Lack of detailed visual information
about a built facility can be a reason for that facility’s inefficient management. Given the
importance of health monitoring applications, it is critical to monitor and maintain the functionality
of the IoT deployment continuously. Hence, detecting and repairing failed sensors simultaneously
is critical to ensure the monitoring systems’ functional continuity. On the other hand, the

maintenance of large-scale sensor deployments has become a significant challenge.

To mitigate these problems, an integrated data source for the facility’s life cycle should be
used. Building information modeling (BIM) provides a useful visual model and database used as a
repository for all data captured or created during the facility’s life cycle. Currently, BIM is
increasingly applied to FM in the operations and maintenance stage. Simultaneously, IoT
technology can be used to acquire operational data on building facilities to support FM. BIM can
be used for modeling the sensor-based system for data collection, serving as a source of all
information for smart objects such as the sensors used for that purpose. Although few researchers
have investigated the integration of BIM with sensor-based monitoring systems (Suprabhas, 2016;
Kazado et al., 2019; Chang et al., 2018; Kensek, 2020), most of them have focused exclusively on
the automatic transmission of sensor information to BIM models. Providing an integrated platform
using BIM to improve communication between FM and IoT companies in the event of sensor
failure has received the least attention in the technical literature. The main objective of this paper
is to conceptualize and develop a BIM-based system architecture for fault detection and alert
generation for malfunctioning FM sensors in smart [oT environments during the operational phase

of a building for the maintenance and timely replacement of sensors.
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6.2. Building Information Modeling

The architecture, engineering and construction (AEC) industry has been seeking a useful
tool for reducing projects’ cost and time to completion and for increasing productivity and quality
(Azhar et al., 2008). Typically, there are hundreds to thousands of documents for each project, and
human interpretations are required to tie them together. Effective coordination between design
disciplines and the communication of design information to the field is a constant challenge. BIM
has significantly altered the way building information is managed by the AEC industry. It
incorporates digital modeling software to design and manage a project more efficiently (Nassar,
2010). BIM breaks down the barriers between disciplines by encouraging knowledge sharing
throughout the project’s life cycle. BIM improves constructability and can shorten the project’s
completion time. In a BIM project, multiple documents are not used in traditional ways (Australian
Construction Industry Forum [ACIF], 2014); instead, they are digitized and added to a BIM
software database. All information is built into an intelligent BIM model so that users need not
look at separate drawings, schedules and specifications for the information on a particular element

or a component in the project.

BIM is an organized collection of building data in a 3D building model (Graphisoft, a
Nemwtschek Company, 2015). The model is a virtual equivalent of the actual building and its
elements (Graphisoft, a Nemwtschek Company, 2015). These intelligent elements are the digital
prototype of the physical elements, including walls, columns, windows, doors and stairs. The model
allows us to simulate the building and understand its behavior before the commencement of
construction. The building-related data can be easily archived in the BIM model for future use,

analysis, retrieval and maintenance.
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6.3. Utilizing Building Information Modeling in Sensor-Based Facilities Management

BIM models can be valuable tools in FM because they are essentially 3D model interfaces
with links to information on the building components and the equipment that needs to
be maintained. For instance, information about installation, operation and maintenance manuals;
spare part lists; and construction materials can be stored in a BIM model. The applications of BIM
for operation and FM can include record modeling, preventive maintenance scheduling, building

system analysis, asset management, space management, tracking and disaster planning.

For managing older buildings, BIM integrated within the clouds generated by a 3D scanning
of the building can be used to overcome the absence of data. This process can serve several
purposes, including spatial analysis, renovation and retrofitting. Using Web services and cloud-
based hosting, the project’s participants (e.g., owners, facility managers, engineers and contractors)
can secure access to the shared data. FM companies have recently added value and have increased

profit margins by using IoT solutions to reduce costs and increase value to end users.

A significant number of studies have been conducted to integrate BIM into the monitoring
system, but it remains challenging. Wang et al. (2013) found that applying BIM in monitoring
systems can improve the effectiveness of monitoring processes. Valinejadshoubi et al. (2017,
2018a) investigated the feasibility of using BIM in the structural health-monitoring process. They
demonstrated the feasibility of creating, visualizing and managing sensor data and information in
a BIM model for structural health monitoring. Valinejadshoubi et al. (2018b) developed a BIM-
based integrated model to rapidly detect structural damage using strain values. Suprabhas and
Nicholas Dib (2017) developed an application that integrates sensor data collected using a wireless
sensor network; the application reports the data via a virtual model of the building to aid FM

personnel in the early detection of defects. Cahill et al. (2012) examined the implementations of

208



BIM to potentially support a static data value from a sensor data source to assist stakeholders in
making appropriate decisions regarding a building’s life cycle. Zhang et al. (2015) developed an

FM tool to support energy management in buildings.

The benefits to the FM discipline of using sensors are numerous, and the failure of these
sensors can increase operational costs and lead to undesirable consequences. A sensor takes
measurements at regular intervals and helps facility managers make decisions based on a
combination of captured sensor data. If a sensor suddenly fails or malfunctions, the building
facility manager should inform the IoT companies at the earliest possible juncture to fix the
problem because such a failure can negatively affect or even interrupt the monitoring
system, and accordingly, any decision based on the data. Therefore, timely maintenance of failed
sensors is critical in such deployments to ensure minimal monitoring service disruption. Despite
the importance of timely detection of a failed sensor in IoT monitoring, it has received the least
attention in the literature. To mitigate this issue, an integrated BIM-based workflow was developed
to integrate the associated sensor maintenance-related information to a cloud-based tool to provide
a fast and efficient communication platform between the building facility manager and IoT

companies for intelligent sensor management.

6.4. Research Methodology

In this case-based research study, the authors developed a sensor-based FM integrated with
a cloud-based service tool, which can be used for real-time communication between different
disciplines. A seven-story office building, shown in Figure 6-1, was simulated in Autodesk Revit

software. Sensors typically used in FM, such as occupancy detection sensors, temperature sensors,
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humidity sensors, and CO2 sensors, were modeled and placed in their designated locations in the
building’s BIM model. Parameters such as Sensor Name, Model, Mark, Website and Comment
were used for the sensors’ identification, and parameters such as Level and Station were used to
identify the sensors’ location. Rooms were assigned to each specified space on all floors to work
as the sensors’ stations (locations) in the BIM model. Information such as sensors’ models and
sensors’ marks (physical IDs) were given to the building facility manager by the loT company to

accommodate them into their central BIM model upon installing the sensory system in the building.

For effective and fast communication between the facility manager and IoT company in
case of a sensor failure, a real-time BIM-based communication platform was developed in this
study. To create this platform, a workflow was designed in Dynamo to automatically extract and
send all information such as the sensor’s type, model and exact location from the detailed BIM
model to the [oT company whenever a sensor failure was reported to the facility manager. In case
of a diagnosis of multiple sensor failures, sensor replacement can be prioritized by considering the

average number of daily occupants in each room based on the occupancy sensor data.

Cloud-based collaboration and data exchange service applications such as Flux, Konstru or
Speckle can be used to send notifications to the IoT company through their wireless devices, such
as personal smartphones and to receive sensor failure notifications and all essential information

from the BIM model. Figure 6-2 illustrates the dataflow schema used in this study.
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Figure 6-1: 3D view of the case-study building
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Figure 6-2: Developed dataflow schema
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6.5. Integrating Sensor-Based Facilities Management with Building Information Modeling

6.5.1. Placing sensors in the Building Information Modeling model

Categories in Revit include column, beam, floor, roof, door, and window. There is also a
category pertinent to specialty equipment, enabling the inclusion of sensor classes such as IfcSensor
and [fcSensorType. In Revit, each category has its own industry foundation class (IFC) name; for

example, a column is /fcColumn, and a roof is IfcRoof.

Four sensors — occupancy, temperature, humidity and CO2 — are used in this study. These
are shown in Table 6-1 along with their respective purposes. Each sensor was modeled and placed
in its appropriate location in the building’s BIM model. Two sets of parameters were defined for
each sensor. The first includes IfcExportType and IfcExportAs, and the second includes Name,
Station, Level, Model, Mark and Sensed Data. The Station parameter was defined to show where
sensors were installed. The Mark parameter was determined to map virtual sensors in the BIM
model onto their real-world sensors. This was designed to link the collected data from each physical
sensor stored in the data acquisition system with virtual sensors in the BIM model through Web-
based methods such as the internet protocol address and programming methods such as the
application programming interface. After defining the four aforementioned sensors, these sensors

were placed in their locations in the BIM model.

Figure 6-3 shows the location of sensors in each room of Level 1 in 2D and 3D views. As
shown in Figure 6-3, the temperature sensor, CO2 sensor, humidity sensor, and occupancy sensor

are displayed by the colors red, violet, blue, and green, respectively.
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Table 6-1: Types of sensors used in this study

Type Location Application Benefits
Occupancy | On the wall/ceiling To detect the presence Lighting energy
sensor or absence of people in | savings
a space to activate and | Increased comfort
deactivate the lights level
Temperature | On the wall (should not be HVAC environmental Heating energy
sensor near outside doors/windows) | control savings
Increased comfort
level
Humidity On the ground/wall Monitoring the Preventing unsafe or
sensor humidity levels in any | undesirable moisture
room of a building levels in the room
COz sensor | On the same wall as the Monitoring the room’s | Increased indoor air
temperature sensor (48 in, or | CO; level quality
122 cm, is standard)

6.5.2. Creating a schedule of sensors used in the BIM model

After placing all sensors in their locations, their information can be sorted and managed.

The BIM software can provide the schedule table for each type of 3D element. As many parameters

as are needed can be considered in the table. As illustrated in Figure 6-4, parameters such as Name,

Station, Level, Model, Mark and Sensed Data were considered in the sensor schedule table. As

mentioned earlier, the physical sensors’ specific IDs must be provided and assigned manually to

each sensor in the model using the Mark parameter. The ID numbers shown in the Mark column

in the schedule table were hypothetical in this study. The Station parameter was used to indicate

the location of each sensor in the model. In the BIM model, each element had a specific ID. By

using the elements’ ID, the exact position of each sensor was marked in the model. In the Station

column, sensors’ locations were identified by the room ID where they were installed. Figure 6-4
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shows the sensors’ schedule table in the BIM model for offices 1 to 5 and the sensors’ locations in

each office.

Figure 6-3: Visualization of sensors in 2D and 3D views in the BIM model
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Figure 6-4: Sensor schedule table created in the BIM model and location of sensors in 2D view
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6.6. Results

Cloud-based applications can improve mobility and accessibility. Cloud-based application
tools can take data from different sources and combine them into one online navigation 3D model.
The model provides access to all building data and associated operation manuals, manufacturer
specs, equipment catalogs and images. It can help facility managers be involved in a real-time
collaborative environment. Facility managers will have access to the building data from anywhere
with an internet connection at any time, which can help when making significant decisions. It can
improve the real-time collaboration between team members, such as engineers and facility

managers.

The emerging cloud-BIM technology is considered to be an enabling tool that can deal with
the standalone nature of traditional BIM. It can lead to higher levels of cooperation and
collaboration and can provide an effective real-time communication platform for project team
members (Wong et al., 2014). For example, if the building facility manager notices that some
sensors in the building are not working, then he or she, through a cloud-based application, can
inform the service personnel from the IoT company and ask them to replace the sensors and provide
the sensors’ locations, ID numbers and model and specifications. Simultaneously, he or she can
inform the building manager to ensure that the specified room is unoccupied at specific times. In
this study, Dynamo was used to integrate the BIM model with a Web-based service. Dynamo is a
visual programming and computational design tool that extends BIM with the data and logic
environment of a graphical algorithm editor, and it is ultimately linked with the BIM environment.
Building data from the model are extracted, sorted, updated and shared with a third party in the

cloud-based environment.
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Room-related parameters such as Name, Level, Room ID, Occupancy and Number of
Occupants as well as sensor-related parameters such as Sensor Name, Sensor Station, Mark,
Comments and Website were extracted from the BIM model and sent to a cloud-based collaboration
and data exchange service application such as Flux, Konstru or Speckle to share them between the

IoT company and the building manager and inform them about any updated information.

Figures 6-5 and 6-7 show the modules developed in Dynamo to extract, combine and sort
Rooms and Sensors information from the BIM model and automatically update them in the cloud-
based platform. As shown, an appropriate relationship between the nodes is essential for
automating this process. The building facility manager provides information such as the names and
occupancy status of the rooms. The number of occupants can be provided either by the facility
manager or as detected by occupancy sensors. The rooms’ location is derived from the BIM model.
The IoT company provides the sensors’ names, physical IDs and websites. The sensors’ location
is provided from the BIM model, and the facility manager supplies information about the status of
the sensors. As shown in Figure 6-8, it is assumed that occupancy sensors in office number four
and office number five are not working correctly. Therefore, the building facility manager can
request the [oT company to replace the failed sensors and ask the building supervisor to ensure the
associated rooms are unoccupied according to the maintenance schedule. Consequently,
parameters in the cloud are automatically updated through Dynamo, and the IoT company, as well
as the building manager, will both be informed simultaneously about these requests through their
desktop computer or smartphone, email and/or iPad (Figure 6-9). Therefore, the [oT company’s
service personnel will be informed of the failed sensors’ location, ID number and specifications.
Some other parameters, such as the preferred replacement date and time and sensors image, can

also be added to this list.
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Figure 6-5: Extracting, combining, and sorting room information from the BIM model
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As explained in this section, the parameters of the virtual sensors in the BIM model can be
successfully updated by building facility managers and transferred to the cloud-based database to
generate an alert for malfunctioning FM sensors in smart [oT environments to be used by the [oT

company.
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6.6.1. Discussion

Building maintenance is a complex process that requires a significant flow of information
and a quick call to action. Despite this, many facility managers do not have access to a unique
platform with centralized information, where they can check the status of all operations, including
any failure reports. The solution may involve centralizing all daily work and using mobile devices
to register every failure and to manage and monitor the next steps in real time. To address this
issue, this study introduced an automated, integrated workflow to use BIM information to provide
a fast and efficient communication platform between the building facility manager and the loT
companies for sensor replacement management in case any sensor failure or sensor malfunction

occurs in the building.

In this study, the BIM model was developed to accommodate all essential parameters. Two
types of parameters were used to identify the type and location of each virtual sensor in the BIM
model. To develop a real-time BIM-based communication platform, an integrated workflow
(including three specifically designed modules) was developed in Dynamo to automatically extract
and send all essential information such as the sensor’s type, model and location to the IoT company
in the event of sensor failure. The integration of the monitoring system into the BIM would improve
the sensors’ operation and maintenance plan during the building operational phase by helping the
facility managers inspect the monitoring system and the sensors’ performance and by sending the
relevant information to the model in the event of any sensor failure and/or malfunction. It would
then transfer all essential information to the IoT company for timely sensor replacement to ensure

minimal disruption to monitoring services.

The developed framework also benefits preventive maintenance work. The system can be

set up according to the maintenance and expiration schedules, automatically sharing alerts with
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FMs and IoT maintenance contractors in advance about the IoT parts replacement. For effective
predictive maintenance planning, machine learning techniques can be integrated into the developed
workflow to efficiently predict the future condition of individual IoT components like data loggers
and sensors as well as MEP components. For instance, when temperature sensors are used to
monitor the thermal condition of different rooms in a building, a threshold can be defined,
according to a specific standard or energy policy, to send an automatic thermal comfort alert to the
cloud to inform the building FMs whenever the operating temperature exceeds the predefined
thresholds. When FMs receive thermal discomfort alerts, they can initiate a root cause analysis to
identify and locate the problem. For sensor fault detection, machine learning techniques can also
be used in the developed system to establish, for example, the initial thermal pattern of each room
using temperature sensors to find malfunctioning sensors when the sensor records a different

thermal pattern than another sensor in the same room.

Transferring related information such as the room location, occupancy status, number of
occupants, type and model of the sensor, sensor ID and required action from the BIM model to the
cloud would help the IoT companies to visualize the workspaces in advance and to plan for timely
and effective decision-making without any physical inspection, thereby reducing the inspection
cost. It would also help support maintenance planning decisions, such as prioritizing maintenance
works, by considering different factors such as the importance of spaces and number of

occupancies.

However, there are some limitations in this work, which are as follows:

1. Although the present study demonstrates the feasibility of using BIM in the maintenance
planning of monitoring systems in the building, the developed workflow can be expanded by
integrating some types of sensors like occupancy sensors into the developed workflow to
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automatically record and identify the number of occupants and visitors to prioritize the
maintenance work.

2. The developed workflow can be integrated with the sensors’ data and machine learning
techniques to automatically identify the sensors’ malfunctions and update the BIM model

accordingly.

6.7. Conclusion

IoT technology dramatically reduces operation and maintenance costs. Using IoT sensors,
the building equipment maintenance can be automatically scheduled. One of the most
significant inefficiencies in building operations is the general lack of access to credible building
and sensor information. This study’s author investigated BIM’s capability in sensor information
management using cloud services in smart [oT environments during a building’s operational phase.
The research has highlighted the applicability of BIM in an efficient and rapid sensor failure

management system. Based on the study presented here, the following conclusions are made:

e The information within BIM allows better and more effective decision-making for building
facility managers.

e Integrating building and sensor information from BIM into a cloud-based system can
facilitate better communication between the building facility manager and the IoT company
for effective loT system maintenance.

e The system developed in this study was implemented, and its capabilities were illustrated

through a case study. The developed system (including three specifically designed modules)
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was able to automatically extract, read and transfer all essential information to a cloud
database to be used by an [oT company for timely sensor replacement.

e The use of the developed system can help facility managers take timely actions in the event
of any sensor failure and/or malfunction to ensure minimal disruption to monitoring

services.
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Chapter 7: Summary and Conclusions

7.1. Summary

In this thesis, a set of automated management solutions were developed for building
management, focusing on structural safety and monitoring and managing occupants’ thermal

comfort to assist facility managers in tracking the status of deployed sensors.

The main contributions of this thesis are:

e Developing a method for an automated BIM-based system for identifying and
prioritizing the NSEs with high seismic risk.

e Developing a methodology for updating some seismic risk score parameters using
the elements’ geometry and location in the BIM model.

e Developing the small size and low-cost DAQ system for vibration monitoring for
modules in transit.

e Developing a solution for Data storage cost reduction by integrating onboard
memory into the hardware system.

e Developing a damage detection method using different clustering techniques for
vibration monitoring during transportation.

e Developing a technique for detecting sensor failure.

e Developing a method to integrate BIM and SHM for increasing the speed and
efficiency of structural condition monitoring.

e Integrating multiple cost-effective sensing technologies and external databases to

improve the data storage and retrieval process for thermal comfort monitoring.
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Developing an automated workflow to link between the virtual and physical
Sensors.

Developing a workflow for improving the maintenance plan for sensors as a part of
a building’s operation.

Developing an automated data-driven SHM system to provide a cost-effective
solution for modular building manufacturers and building owners to verify safe
delivery of prefabricated modules. This multi-functional system can be used for
different purposes, such as structural damage detection and sensor failure analysis.
Developing an integrated strain-based monitoring system framework for better
damage visualization and rapid detection of damaged structural elements using an
effective visualization technique such as BIM. The small size and low cost of the
sensory system proposed here can be effective in modular structures, usually
consisting of small-sized and narrow components.

Developing an integrated BIM-based monitoring system to work as a 3D
visualization-based monitoring and alarm system for indoor thermal condition
monitoring. The Building Management System (BMS) is not fully interactive and
can only be manipulated by a trained operator. Moreover, while existing BMS
systems provide some access to sensor information, the way they present often lacks
the context of 3D building information. The developed system can solve this
problem.

Development of the framework presented in Chapter 6 could be beneficial for
facility managers who may not have access to a specialized platform with

centralized information to register every failure and manage and monitor the next
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steps in real-time, especially for smaller buildings. The application of the
framework is expected to reduce inspection costs by helping the IoT companies to
visualize the workspaces in advance and plan for timely and effective decisions

without any physical inspection.

BIM is a process of creating and managing information in construction projects used in the
AEC industry to improve efficiency and reduce the costs of projects. How BIM was used in this

thesis is listed below:

Chapter 2:

* Modeling 3D structural and non-structural elements of the building, including MEP
elements.

» Creating user-defined parameters for the indices required for the seismic risk score
calculation

* Calculating and prioritizing the seismic risk of each NSEs and highlighting them
utilizing a color scheme.

= Updating the seismic risk score of NSEs based on their geometry information and

position in the building.

Chapter 4:
* Modeling all the elements of the structure.
* Modeling the virtual sensors and defining all the parameters required for the
monitoring purpose.
= Updating the value and status of monitoring parameters using the workflow developed

in the visual programming tool, Dynamo.
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Chapter 5

Chapter 6:

Highlighting the damaged structural element based on the SHM sensor data and the
pre-defined threshold value using the developed workflow.
Providing information such as the cut length for the repair and replacement of damaged

elements.

Building the architectural 3D model of the building, including all the monitored
spaces.

Modeling the virtual temperature and humidity sensors and defining all the parameters
required for the monitoring purpose.

Updating the value and status of monitoring parameters using the developed workflow.
Highlighting building spaces automatically using the developed workflow where
comfort conditions are not met.

Generating automatic text alarms using the developed workflow to notify building

facility managers shows when thermal discomfort situation occurs.

Building the 3D model of the building, including all the architectural elements and
virtual sensors, and defining their maintenance-related parameters.

Updating parameters such as “sensor condition” and “room occupancy”.

Transferring information to the cloud database to generate an alert for sensors

malfunction using the developed workflow.
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7.2. Conclusions

Based on the studies presented in this thesis, the following conclusions are made:

e The automated tools developed in this study can support digital transformation over the
project life cycle in the AEC industry.

e The developed BIM-based tool for visualizing the NSEs seismic score (presented in
chapter 2) can be used during the operational phase to identify the most vulnerable
NSEs and their position to assess different retrofit strategies. The developed method

could also be extended to building modules during transportation to construction sites.

® The developed data-driven SHM system (presented in chapter 3) could be used as a
quick and effective solution to verify the safety of prefabricated building modules
during their transportation.

e The developed BIM-based SHM tool (presented in chapter 4) could be adopted for
automated and graphical structural condition monitoring, which is useful for engineers
and decision-makers to visualize updated information about the current state of
structural elements in 3D models.

e The developed loT-BIM-based thermal comfort monitoring tool (presented in chapter
5) can be used as an alert and database tool to store indoor thermal data of rooms and
notify FMs if the rooms’ temperature exceeds defined thresholds.

e The integrated BIM-based tool (presented in Chapter 6) can be used to notify the [oT
companies in cases of sensor failure events and provide them with required info via a
cloud-based database. This tool can facilitate communication between FMs and the IoT

companies and can lead to a more efficient IoT system maintenance environment.
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7.3. Limitations and future research

While the present research provides a proof of concept for the developed framework and its
feasibility, it is essential to test it more rigorously to ascertain its generality. The following can be

considered in future work:

1. Increasing the number of monitoring tests on different types (steel and wooden) and sizes
of prefabricated modules to compare and assess their structural behavior and identify
damages to further test and validate the developed system and its robustness.

2. Although the optimum values for parameters of the machine learning algorithms used in
the developed transportation monitoring system were searched using a trial-and-error, an
optimization technique such as Genetic Algorithm can be applied to find the optimum
values automatically.

3. The integrated BIM-based monitoring system was tested using only one virtual sensor. It
should be tested further with a larger number of virtual sensors to investigate and test their
impact on the performance of the system.

4. While the developed BIM-based thermal comfort monitoring and alarm system
demonstrate the feasibility of remote sensing and decision-making to manage thermal
comfort in buildings, the study is somewhat limited in terms of the space monitored. Further
studies are required to conduct a large-scale investigation and review its integration with
the facility managers and other stakeholders to test the system for its reliability,
reproducibility, robustness, and ease of use.

5. While the developed integrated BIM-based sensor failure management workflow
demonstrates the feasibility of using BIM in tracking the performance of the configurated

sensors-based plan for monitoring the status of the sensors used in buildings, the developed
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workflow can be expanded to integrate other types of sensors such as occupancy sensors to
automatically record and identify the number of occupants in the monitored facility to

prioritize the sensor maintenance works.
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