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Abstract 
 

Development of BIM-based Automated Methods for Building Management and Structural 

Safety Assessment 

 

Mojtaba Valinejadshoubi, Ph.D. 

Concordia University, 2021 

 

Despite the progress made in modern project management methods, there is still a lack of 

appropriate automated tools that support digital integration over the project life cycle. There is 

considerable demand for fully embracing the latest technological opportunities such as Building 

Information Modeling (BIM), Internet of Things (IoT), Structural Health Monitoring (SHM), and 

prefabrication to support that digital transformation in construction. The   aim   of   this   study   is   

to develop a set of automated management solutions and related tools to address the issues 

highlighted above. The thesis is presented as a collection of manuscripts of five peer-reviewed 

journal articles authored based on the present research. The first development is of a BIM-based 

method for 3D model visualization of buildings and their non-structural elements and their 

corresponding seismic risk levels and locations. It supports automated assessment of seismic risk 

of these elements. The second focuses on the development of a novel data-driven SHM technique 

to monitor the structural behavior of individual building modules to detect possible damages during 

their transportation. It consists of two main components, a sensor-based data acquisition (DAQ) 

and storage module, and an automated data analysis module that uses unsupervised machine 

learning techniques to identify damages during transportation using onboard captured acceleration 

data. It can be used to ascertain the safety of delivered modules before their assembly on site. The 

third accounts for the development of an automated BIM-based framework to facilitate effective 
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data management and representation of sensory components of the SHM tool used in buildings. It 

allows for visualization of damages in building components based on the interpretation of the 

captured sensor data. It is designed to facilitate effective visualization capabilities for a rapid and 

efficient structural condition assessment. The fourth development is designed to dynamically 

update the thermal comfort data in monitored buildings by integrating their BIM models with 

captured sensor data. The default range utilized in this development is based on the American 

Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard. It is 

expected to provide a robust and practical tool for data collection, analysis, and visualization to 

facilitate intelligent monitoring of the thermal condition in buildings and help decision-makers take 

needed timely data-driven decisions. The fifth and last development is designed to alert IoT 

companies of malfunctioning of deployed sensors utilizing a BIM platform and a cloud database 

to process and transfer related actionable information. 
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Chapter 1: Introduction and Organization of the Thesis 
 

1.0. Introduction 
 

Most industries have experienced noticeable changes in recent decades, focusing on 

utilizing digital transformation to achieve higher levels of efficiency. There is also an increasing 

implementation of digital technologies in the construction industry. From the overview of academic 

research, research analysis reveals increasing implementation and adoption of digital technologies 

for construction operations (Morgan, 2019; Pan et al., 2020). The McKinsey Global Institute 

(2017) research indicates that digital transformation can lead to 14 to 15 percent productivity gains 

and 4 to 6 percent cost reductions. However, the transformation effects encompassing digital 

technology implementation are yet to be fully utilized within the architectural, engineering, and 

construction (AEC) industry. There has been some hesitation about fully embracing the latest 

technological opportunities. It has been recently recognized that the construction industry is close 

to a “major” digital technology implementation (Murray, 2018; Autodesk, 2020) despite 

anticipated difficulties.  Although the implementation of digital technologies such as BIM, IoT, 

SHM, laser scanning, prefabrication, and machine learning solutions throughout the built asset 

lifecycle are expected to boost productivity and enhance  project performance and safety (Agarwal 

et al., 2016), they may lead to new challenges, such as, poor digital skills amongst the workforce, 

which was cited as a significant limiting factor to the adoption of processes such as BIM by the 

fifth annual Construction Manager BIM survey (2020), resistance to change etc. On the other hand, 

there is still a lack of automated tools to support digital transformation over the project life cycle.  

The   aim   of   this   research   is   to   develop a set of automated management solutions to 

address the issues highlighted above by supporting digital transformation over the building project 

life cycle. And accordingly help facility managers to increase the efficiency of buildings’ 

https://www.frontiersin.org/articles/10.3389/fbuil.2021.660758/full#B51
https://www.frontiersin.org/articles/10.3389/fbuil.2021.660758/full#B56
https://www.frontiersin.org/articles/10.3389/fbuil.2021.660758/full#B52
https://www.frontiersin.org/articles/10.3389/fbuil.2021.660758/full#B4
https://www.frontiersin.org/articles/10.3389/fbuil.2021.660758/full#B1
https://www.frontiersin.org/articles/10.3389/fbuil.2021.660758/full#B1
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operations in terms of occupants’ safety and indoor air quality, and help management teams in 

reliable delivery of modular and off-site construction. To achieve the aim of this thesis, the 

following main objectives and tasks were undertaken, which are briefly listed below: 

1. Developing a standardized framework for visualizing and prioritizing the seismic risk level 

of Non-Structural Elements (NSEs) in buildings using BIM. 

▪ Creating a BIM model with all NSEs and developing a framework to link between 

NSEs BIM elements and their seismic risk score to be able to prioritize and identify 

the most hazardous elements and automatically update their seismic risk score based 

on their position and type.  

2. Developing a Multi-functional data-driven SHM system for monitoring prefabricated 

building modules during transportation 

▪ Developing a cost-effective sensor-based DAQ and storage module to be easily 

attached to the prefabricated modules to monitor them during transportation. 

▪ Developing a novel and effective visualization-based method to identify the failed 

sensors before starting the data analysis. 

▪ Developing a data analysis method to identify and classify different levels of 

damage that might occur on prefabricated modules during transportation. 

▪ Comparing and evaluating the performance of different clustering 

algorithms using accuracy score and confusion matrix to identify the 

algorithm with the highest damage identification and classification 

accuracy in the case of transportation monitoring through a real case study. 

▪ Validating the developed monitoring system through a real case study (two 

prefabricated modules). 
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3. Developing a workflow to integrate BIM into the SHM process to represent and access 

sensor data, run a data interpretation or damage assessment process, and map it on the 

corresponding virtual building components. 

▪ Creating sensory system components in the BIM model with all essential 

monitoring parameters. 

▪ Designing a specific relational database model to embody the SHM sensor 

measurement. 

▪ Proposing a conceptual framework of the wireless strain monitoring system. 

▪ Developing a workflow including eight modules to have a near real-time BIM-based 

monitoring system visualization using Threshold Value Analysis (TVA) method. 

4. Developing an IoT and BIM-based automated alert system for thermal comfort 

monitoring in buildings 

▪ Developing a cost-effective wireless monitoring system to measure temperature and 

humidity level of indoor spaces. 

▪ Designing a specific relational database model to embody the thermal monitoring 

measurements. 

▪ Developing an integrated workflow, including nine major modules, to compile, 

standardize, integrate, and visualize monitoring data in a BIM environment to have 

a self-updating BIM model to provide real-time thermal condition monitoring 

5. Developing an integrated BIM-based framework for alert generation in the events of 

malfunctioning Facility Management (FM) sensors in smart IoT environments. 

▪ Creating a BIM model with FM-related sensors with all associated parameters. 

▪ Developing a workflow to integrate the associated sensors and maintenance-related 

information into a cloud-based tool. 
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1.1. Thesis Organization 
 

The present thesis is organized as a manuscript-based thesis that has a collection of five 

journal manuscripts produced as a result of the research conducted. The primary purposes of this 

research are to develop primarily BIM-based and sensor driven automated methods for efficient 

monitoring and management of occupants’ thermal comfort in built facilities in a cost-efficient 

manner, and assist facility managers in tracking and transferring the status of the monitoring 

sensors needed for the methods referred to above. This chapter provides a brief introduction and 

background, problem statement, research motivation, objectives, brief description of developed 

methods, and thesis organization. 

This thesis is organized into seven Chapters. The methodologies and research findings are 

elaborated in the five journal manuscripts provided in Chapters 2 to 6, respectively. The current 

chapter also discusses how the manuscripts in Chapters 2 to 6 are connected to achieve the proposed 

objectives. In keeping with common practice in preparation of manuscript-based theses, published 

papers are presented as is, along with an added section on updated literature review. 

The first manuscript, Valinejadshoubi et al. (2018), is provided in Chapter 2 and was 

published in the Journal of Earthquake Engineering. The paper describes a newly developed 

framework for automated seismic risk assessment of NSEs in buildings using BIM. The end-users 

of the developed method presented in this manuscript are facility managers and their staff by 

enabling them to identify, visualize, quantify, and prioritize the most vulnerable NSEs in built 

facilities to apply suitable risk mitigation measures. The outputs of this paper can also be potentially 

expanded to the case of prefabricated building modules to identify the most vulnerable NSEs 

against transportation vibration forces. 
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The third Chapter presents the second manuscript, Valinejadshoubi et al. (2021), submitted 

to the Journal of Automation in Construction. It focuses on the development of SHM tools to assess 

transportation-induced damage in prefabricated building modules for offsite construction to 

improve the reliability of the modules’ delivery. This paper developed a novel data-driven SHM 

tool to monitor the structural behavior of individual prefabricated building modules during 

transportation to ascertain their safe delivery. This multi-functional tool can be used for different 

purposes, such as structural damage detection and sensor failure analysis, leading to a safer delivery 

of construction projects, primarily in modular construction projects. The developed tool provides 

reliable delivery for modular construction projects, supports manufacturers’ claim on repair and 

modification costs from the insurance company, and improves the customer perceptions of the 

quality of prefab construction. After building modules were delivered and installed, management 

of the operational phase of the building begins with a focus on the structural safety of constructed 

facilities and occupants’ satisfaction as described in the third, fourth and fifth papers.  

The fourth Chapter presents the third manuscript, Valinejadshoubi et al. (2019), on 

developing an integrated BIM-based monitoring system for rapid detection of damaged critical 

elements during building operations with updated info about the current state of structural elements. 

This paper was accepted and published in the ASCE Journal of Computing in Civil Engineering. 

Such integration is essential for increasing the efficiency of SHM of buildings in the operational 

phase. The end-users of the developed tool are engineers and facility managers to interpret and 

assess the ongoing condition of critical structural elements during the building operation and 

identify hidden damaged elements for their timely replacement. It also supports them in providing 

all the maintenance and repair-related information about the damaged components.  
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Besides the structural health of a building during its operation, a building needs to provide 

healthy environment for its occupants in terms of thermal comfort and indoor environmental 

quality, which is the primary purpose of the fourth manuscript, presented in Chapter 5 of this thesis. 

The fourth paper, Valinejadshoubi et al. (2021), presents a developed IoT-BIM-based system that 

works as an alert tool for thermal comfort monitoring purposes in an indoor building space. This 

paper was accepted and published in the Journal of Sustainable Cities and Society. The developed 

tool is expected to provide a robust and practical tool for reliable data collection, analysis, and 

visualization to facilitate intelligent monitoring of the thermal condition in buildings and help 

decision-makers make faster and better decisions, which may help in maintaining the level of 

occupants’ thermal comfort to a satisfactory level. The developed tool is expected to support 

facility managers and related decision-makers in remotely tracking the thermal condition status of 

building spaces and taking needed timely actions accordingly. These actions can be taken 

considering different reasons such as possible damages to the building envelop, overheating issues 

in prefabricated timber buildings, and HVAC system failure or malfunction.  

Chapter 6 presents the fifth manuscript on developing a method for BIM-based integration 

of sensor data and their maintenance-related information into a cloud-based tool to provide a fast 

and efficient communication platform between the building facility manager and IoT companies 

for intelligent sensor management. This paper was published in the Journal of Facilities 

Management in 2021. The developed method is expected to improve the sensors’ operation and 

maintenance plan during the building operational phase. The end-users of the developed workflow 

are facility managers to improve their communication and information sharing with involved IoT 

companies in management events of sensors’ failure or malfunction. 
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The seventh and concluding chapter summarizes the overall primary findings of the 

performed research and its contributions. This chapter highlights how BIM is used in each chapter 

of this thesis. It also summarizes research limitations provides recommendations for future 

research. Figure 1-1 shows an overview of the scope of the five papers presented in this thesis and 

how they are interconnected to each other.  

 

Figure 1-1: The scope of presented papers and their connection to each other 
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Chapter 2: Identifying At-Risk Non-Structural Elements in Buildings using 

BIM: A Case Study Application  
 

General  

In this chapter, the published paper is presented as is, followed by an updated literature review 

section. This paper was accepted and published in the journal of Earthquake Engineering in 2018*. 

The main objective of this paper is to integrate seismic risk evaluation with BIM to enable 

visualization and prioritization related to seismic risk levels of NSEs in built facilities.  

 

Abstract 

The non-structural elements (NSE) of a building could be hazardous in the event of an earthquake. 

Hence, a seismic risk assessment is critical for identifying hazardous elements. This paper proposes 

a method for visualizing a building’s NSEs to assess their seismic risks using Building Information 

Modeling (BIM) to visualize and automatically mapping risk factors. The relevant Canadian and 

American standards were used to calculate the level of risk associated with each NSE for a typical 

six-story residential building. 

Keywords: Non-Structural Elements, Seismic Risk Assessment; Building Information Modeling; 

Operational and Functional Component; Visualization 

 

______________________________________________________________________________ 

* Valinejadshoubi. M, Bagchi. A, and Moselhi. O, (2018), Journal of Earthquake Engineering, 

Vol 24. Issue 5, Pages 869-880  
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2.1. Introduction 
 

Previous earthquakes have demonstrated that when buildings’ non-structural components 

are not properly fastened, they can pose significant risk to the occupants’ safety (FEMA 74, 2005; 

International Risk Management Institute, 2017). Observations from many earthquakes have shown 

that even though the structural elements are undamaged, extensive damage to Non-Structural 

Elements (NSE) can lead to injury or loss of life, and disruption of services (International 

Association for the Seismic Performance of Non-Structural Elements, 2015). Therefore, knowing 

the seismic risk level of NSEs in new and existing buildings could help to decide whether measures 

to mitigate risk are necessary. A three-dimensional (3D) visualization tool can improve 

communication between engineers and owners. Foo and Cheung (2004) demonstrated how to 

reduce the seismic risk of NSEs using the method provided in the relevant Canadian Standard 

(CSA-S832). Wang (2008) presented the CSA S832 seismic risk assessment procedures as a 

valuable tool in seismic risk assessment of both new and existing buildings. Seismic risk 

assessment methodologies provided in FEMA and ASCE (FEMA-E-74, 2011; ASCE/SEI, 2010) 

also provide necessary tools for mitigating the seismic risk of NSEs.  

This study uses Building Information Modeling (BIM) to develop a seismic risk assessment 

framework for visualizing and mapping the seismic risk levels for NSEs in buildings based on 

existing Canadian (CSA-S832-14) and American (FEMA-E-74) standards. BIM provides a useful 

visualization tool for 3D digital representation of a building’s physical characteristics. Recently, 

researchers used BIM to assess seismic risk of both structural and non-structural systems 

effectively. Welch et al. (2014) investigated BIM capabilities in the assessment and mitigation of 

seismic risks in buildings. BIM centralizes building data and its components, and then adds the 
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capability to create a 3D model and to exchange data with other software systems using the standard 

data format, Industrial Foundation Classes (IFC). 

 

2.2. Proposed Methodology 
 

           First, an architectural model with all non-structural components and building contents 

is modeled in a BIM software, such as the Revit 2016 architectural template. Then, the 

model is linked to its mechanical components and plumbing system, such as water 

heaters, heating, ventilation, and air conditioning (HVAC) system (ducts and diffusers), and cold 

and hot water piping. After modeling the building’s NSEs, their risk index (R) values are 

determined, using CSA-S832 and FEMA-E-74 standards, and assigned in the generated BIM 

model. The components with high-risk value (R) are identified and prioritized in the developed 3D 

and 2D visual models of the building’s NSEs. Consequently, the level of seismic damage of the 

NSEs and related downtime and property losses (PLs) are brought to the attention of stakeholders 

for devising cost-effective seismic mitigation strategies. CSA-S832 (2014) is the standard for 

seismic risk reduction of NSEs in buildings in Canada. In this standard, NSEs are referred to as 

Operational and Functional Components (OFCs) of buildings and provides a procedure for 

determining the risk level corresponding to the significant seismic hazards as defined in the 

National Building Code of Canada (NBCC 2010) (International Risk Management Institute, 2017; 

Foo and Cheung, 2004). The CSA-S832 determines the seismic risk index of NSEs, R, in the 

following equation:    

                                                             R = V × C                                              (1) 

 

Where V is the seismic vulnerability index, and C is the consequence index. 
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   V = VG × VB × VE/10              (2)    

   C=∑ (RS)                                  (3) 

 In Eq. (2), VG, VB, and VE indicate the ground motion characteristic index, the building 

characteristic index, and the OFC characteristic index, respectively. C is determined from the sum 

of the Rating Score (RS) related to the performance objectives. Table 2-1 and Table 2-2 show the 

indices used in determining the vulnerability (V) and consequence (C) indices. 

The American standard of “FEMA-E-74 (2011)” is also used in the model to 

reduce the seismic risks of non-structural components in buildings. It provides a framework 

for the seismic risk rating of NSEs in buildings using indices, such as shaking intensity, life 

safety (LS) risk, PL risk, and functional loss (FL) risk. Shaking intensity is related to the 

location of the building and its prevailing low, moderate, or high ground motion. LS is the 

risk of being injured by non-structural components, while PL is the risk of incurring a repair 

or replacement cost to an item because of damage. FL represents the risk attributed to the 

malfunction of impacted components. Also, the standard includes the type of component 

detail and whether it is non-engineered (NE), prescriptive (PR), or engineering required (ER) 

(FEMA-E-74, 2011).  

Table 2-3 describes the parameters needed for assessing the seismic risk of NSEs by the 

FEMA-E-74 standard. Figure 2-1 illustrates this study’s hierarchy. 

 

 

 

 

 



12 
 

Table 2-1: The indices for determining vulnerability index, (R), for NSEs (CSA-S832, 2014) 

 

 

 

Vulnerability 

Index (V) 

 

 

 

 

 

 

 

V=VG×VB 

× VE/10 

 

 

VG (the ground 

motion 

characteristics 

index) = 

Fa × Sa (0.2)/1.25 

 

Fa = acceleration-based site 

coefficient as defined in NBCC 

Sa (0.2) = spectral response 

acceleration value for a period 

of 0.2 s 

 

VB: The building 

characteristics 

index 

Based on predominant type of 

seismic force resisting system of 

the building structure. (e.g., for 6 

stories reinforced concrete 

moment resistant frame built on 

site class D stiff soil 1.4) Table 4, 

CSA 

VE: The NSE 

characteristics 

index 

Obtained by the weighted sum of 

four rating scores (∑ (RSi ×4
𝑖=1

WFi)) shown below: 

  Range RS WF 

 

 

 

 

 

 

 

 

 

 

 

NSE restraint (RS1) 

 

Full restraint    1         4 

Partial 

restraint/ 

questionable 

   5    4 

No restraint   10    4 

Impact/pounding (RS2) Gap adequate 1 3 

Gap inadequate 

/questionable 

10 3 

NSE overturning (RS3) 

h: distance from support 

or restraint to center of 

gravity or top of OFC 

d: horizontal distance 

between NSE supports 

NSE fully 

restrained 

against 

overturning or 

h/d ≤ 1/ (1.2Fa × 

Sa (0.2)) 

 

1 

 

2 

h/d >1/ (1.2Fa × 

Sa (0.2)) 

10 2 

NSE flexibility and 

location in building 

(RS4) 

Stiff or flexible 

NSE on or 

below ground 

floor 

1 1 

Stiff NSE above 

ground floor 

5 1 

Flexible NSE 

above ground 

floor 

10 1 
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Table 2-2: The indices for determining consequence index, (C), for NSEs (CSA-S832, 2014) 

 

 

 

 

 

 

 

 

 

Consequence 

Index (C) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C=∑(RS) 

 

 

 

 

 

Life safety (LS) 

[Mandatory] 

Parameter range Rating 

Score (RS) 

Threat to very few (N≤1) 

N (occupancy factor as defined in 

Table L-5 CSA-S832-14) = area × 

occupancy density × duration factor 

Area = occupied area exposed to 

risk, m2 

Occupancy = per m2 

Duration factor = average weekly 

hours of human occupancy/100 ≤ 1 

 

1 

Threat to few (1<N<10) 

 

5 

Threat to many (N ≥ 10) 

 

10 

 

Limited 

Functionality 

(LF) 

[Higher than 

mandatory] 

Not applicable or NSE breakdown 

greater than one week is tolerable 

0 

NSE breakdown up to one week is 

tolerable 

1 

NSE in high importance category 

building, not required to be fully 

functional 

3 

NSE in post-disaster facility, not 

required to be fully functional 

5 

Full 

Functionality 

(FF) 

[Highest] 

N/A 0 

NSE, required to be fully functional 10 

 

Property 

Protection (PP) 

[Optional] 

NSE damage can lead to financial 

losses related to asset damage, 

replacement, and in interruption 

business due to non-operational 

components 

 

Score may vary from 0 to 10 as 

determined by the owner/operator 

 

 

 

0-10 
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Table 2-3: Parameters for seismic risk assessment of non-structural elements according to 

FEMA-E-74 Standard (2011) 

 

 

FEMA-E-74 Standard 

Shaking intensity: Low (L), Medium (M), High (H) 

Life safety (LS) 

Property Loss (PL) 

Functional Loss (FL) 

Type of detail:  Non-engineered (NE), Prescriptive 

(PR), or Engineering Required (ER) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                              

 

Figure 2-1: Hierarchy of the study 

Building plans and details 

Building architectural modeling using 

BIM 

 

Placing different OFCs 

[architectural components 

& building contents] 
 

Linking MEP details to the architectural model 
Plumbing System 

Hot water 

Cold Water 

Mechanical equipment 

Air handling 

Water Heater 

HVAC system 

Diffusers 

Ducts 

 

Providing an inventory of important OFCs 

in BIM 

 
OFCs seismic risk assessment 

implementation 

CSA-S832 

Standard 

Creating a list of OFCs with high risk 

 

 

Prioritize the OFCs based on their Risk Index 

 

Color-coding of non-structural elements based on their seismic risk score  

Automate 

through 

BIM 

FEMA-E-74 

Standard 

 

Auto updating the seismic risk score of the non-structural elements based 

on their coordinates 
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2.3. Example Application 

 2.3.1. Building Characteristics 

            For this study, we use a six-story reinforced concrete apartment building with 

moment resisting frames in the longitudinal and transversal directions founded on 

stiff soil. Moreover, the apartment building is assumed to be subjected to a seismic 

hazard level corresponding to that of Montreal, Canada. The building was modeled 

in Revit 2016, where different types of architectural components, building contents, 

mechanical equipment, and plumbing systems were considered. Pertinent assumptions relating to 

the type of attachment, flexibility, functionality, and so forth, for NSEs were based on standard 

practices in building construction. Table 2- 4 shows the kinds of NSEs used in this study. 

Table 2-4: List of all types of NSEs used for this study 

Category Type Assumptions 

Building 

Contents 

M-Entertainment center(shelving), 

(2743×762×2134mm) 

Against the partition wall, free 

standing with no connection 

 

 

Architectural 

Components 

Suspended compound ceiling: 

600×1200mm grid, outer layer: 

ceiling tile 

Has no sway braces, tiles are tight to 

the walls, heavy duty suspended 

ceiling system 

Glazed curtain system panel Not anchored, tight to the exterior 

walls 

Interior partition wall attached to the suspended ceiling 

Parapet Over public sidewalk, not anchored 

Windows Tight to the exterior walls 

 

Mechanical 

Equipment & 

Plumbing 

 

Supply diffuser 600×600 face and 

300×300 connection (HVAC) 

Partially anchored to the ceiling, must 

be fully functional except for toilet 

Round HVAC duct Partially seismic restraint 

Water heater Full restraint, must be fully functional 

Pipes (hot and cold-water 

plumbing) 

Partially seismic restraint, against the 

partition wall and ceiling, must be 

fully functional 
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2.3.2. Seismic Risk Assessment of Non-Structural Elements  

 

Figure 2-2 shows the architectural plan and 3D model of the building, including the NSEs 

and the mechanical, electrical, and plumbing (MEP) details. After modeling the building and its 

NSEs, all indices needed for seismic risk assessment of the NSEs, including those required for 

determining the vulnerability index (V) and consequence index (C), were assigned to each 

corresponding element in the model to generate their seismic risk assessment tables in the 

architectural and the MEP model. CSA-S832 (2014) accords a risk index of 16 or below to a low 

level of seismic risk where no mitigation measures are required. For each NSE with a risk index 

higher than 16, an appropriate mitigation measure is needed, and its priority depends on its ranking 

relative to the other elements. 

  

  

Figure 2-2: The BIM model of the case-study building with its non-structural elements 
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 Table 2-5: Samples of seismic risk index tables created in Revit for ceiling and diffusers
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Table 2-5 shows two samples of seismic risk assessment tables of building’s NSEs created 

in the BIM model to assign the seismic risk rating to each NSE in the model. They were prioritized 

based on their risk index and those elements with seismic scores more than 16 were highlighted 

automatically in red using the conditional formatting defined in the model.  In Montreal, the 

acceleration-based site coefficient, Fa is 1.14, and the spectral response acceleration (Sa) 

corresponding to the building period of 0.2s, is 0.64.  The values of VB for a six-story reinforced 

concrete moment resistant frame in site class D stiff soil is 1.4 according to CSA-S832 (2014). 

With these values, VG is Fa × Sa (0.2)/1.25 or 0.58, which is constant for all NSEs. 

 

2.3.3. Non-Structural Elements with Higher Seismic Risk 

 

        Table 2-6 shows the seismic risks of the NSEs to the building rated using CSA-S832 and 

FEMA-E-74 standards. The seismic risk score (RS) can be used to assess the vulnerability 

of NSEs during an earthquake. The seismic risks of an NSE can be injury or loss of life, 

loss of function of the NSE, and direct and indirect financial setback. According to CSAS832, a 

seismic RS of less than 16 represents a low seismic risk, whereas a rating of 16–49 

represents a moderate risk, and a rating larger than 49 represents a high risk. Therefore, 

the components with seismic RS exceeding 16 are shown in the table and were prioritized 

based on their respective score as the risk for those elements needs to be mitigated. The 

seismic RSs of the NSEs of the building, as shown in shown in Table 2-6, were calculated 

using Eqs. (1–3) corresponding to the CSA standard, the assumptions made in Table 2-4, 

and the indices determined from Tables 2-1 and 2-2. For example, the seismic RS of a curtain 

panel (east) was calculated as follows. Table 2-4 assumes that the glazed curtain panels are 

not anchored and are tight to the exterior walls. To determine R, the first vulnerability 
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index (V) and consequence index (C) need to be calculated. To calculate V, as shown in 

Table 2-1, three indices, VG, VB and VE must be determined. VG is dependent on the 

location of the building (Montreal) and VB is dependent on the type of building (e.g., six-story 

reinforced concrete moments resistant frame built on site class D stiff soil). VE is 

obtained from the weighted sum of four rating scores, RS1 (NSE restraint), RS2 (impact/ 

pounding), RS3 (overturning), and RS4 (NSE flexibility and location in building). As 

assumed in Table 2-4, no restraint was used for the curtain panels. Therefore, the RS and 

weight factor, WF, are determined 10.0 and 4.0, respectively; RS1 was calculated at 40.0. 

Regarding RS2, it was also assumed that there is no gap between the curtain panels and 

the walls. Therefore, their RS and WF are taken as 10.0 and 3.0, respectively; RS2 is 

calculated at 30.0. Accordingly, RS and WF for RS3 and RS4 are 1.0, 2.0, and 10.0, 1.0, 

respectively. Therefore, VE (the NSE characteristic index) is calculated as 82.0. And 

consequently, V is calculated as 6.70 using Eq. (2). To calculate C, the LS and functionality 

indices are used, as shown in Table 3. Since the main entrance of the building faces east, and the 

curtain panels are used for the living rooms of the building, the damaged curtain 

walls may cause injury to people. Therefore, their RS for LS is determined as 10.0. The 

curtain panels are required to be fully functional because if they are damaged or broken 

due to an earthquake, the building may not be suitable for occupancy. Therefore, RS for 

functionality the index is assumed at 10.0 for the curtain panels, and C is calculated as 20.0 

using Eq. (3). In this case, the total seismic RS is 134.0 using Eq. (1)         

The last column of Table 2-6 shows the four indices required for seismic risk assessment 

of the NSEs of the building based on the FEMA-E-74 standard. In this column, the FEMA 

E-74 RSs of H, M, and L refer to high, medium, and low, respectively, as described in 

Table 2-3. For example, for the curtain panel in the east H, M, H, ER mean that its risks 
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associated with LS, PL, and FL are high, moderate, and high respectively; and ER implies 

that engineering parameters are required for its installation. Table 2-4 shows the assumptions made 

for risk assessment using both the Canadian and American standards. As seen 

in Table 2-6, the results provided by both methods are similar except for a few elements 

such as the diffuser. According to FEMA-E-74 (2011), in zones of moderate 

seismic hazard like Montreal, the risks associated with LS and PL resulting from diffusors 

are high. In the present case study, the risk of such diffusors is deemed medium since they 

are assumed to be partially anchored to the ceiling (Table 2-4). This also applies to shelving 

where the LS risk is usually high in a location with moderate seismic hazard but based on 

its position in the building and anchorage system, the LS risk is evaluated as low.  

By developing a list of possible damage and mitigation techniques for high-risk NSEs, 

one can investigate what mitigation measures will be useful in reducing seismic risk. For 

instance, as shown in Table 2-6, according to the current assumptions, the glazed curtain 

wall panel in the east view has the highest seismic risk. Therefore, if vibration isolation is 

provided for the building’s glazed curtain panels to control vibration due to earthquake, 

and if a type of glass that will shatter safely is used, its vulnerability index will be reduced 

to 4.5 and its seismic RS will be considerably decreased from 134 (High Risk) to 49.4 

(almost Moderate Risk) (around a 63% reduction). Such changes in an element’s seismic 

RS can be automatically updated and saved in the BIM after its consequence and vulnerability RSs 

have been modified. 
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Table 2-6: Seismic risk assessment of non-structural elements with high seismic risk (RS) 

*(R – Restrained; I – Impact; O – Overturn; FX – Flexibility; LS – Life Safe; FO – Fully 

Operational, HR – High Risk, MR – Moderate Risk) 

 

OFC RS 

(R)

* 

WF  

(R) 

W 

RS1 

RS 

(I)* 

WF 

(I) 

W 

RS

2 

RS 

(O)* 

WF 

(O) 

W 

RS

3 

RS 

(FX)

* 

WF 

(FX) 

W 

RS

4 

VE V RS 

(LS)* 

RS 

(FO)

* 

C Seismic Risk 

Score 

CSA FEMA 

Curtain 

Panel 

(East) 

10 4 40 10 3 30 1 2 2 10 1 10   82 6.7 10 10 20      

134.0 

  HR 

H, M, 

H, ER 

Curtain 

Panel 

(West) 

10 4 40 10 3 30 1 2 2 10 1 10   82 6.7 5 10 15      

100.5 

   HR 

M, M, 

H, ER 

Interior 

Partition 

10 4 40 10 3 30 1 2 2 10 1 10 82 6.7 5 10 15  

100.5 

HR 

M, M, 

H, ER 

Diffuser 

 

5 4 20 10 3 30 1 2 2 10 1 10 62 5.1 5 10 15 76.0 

HR 

H, 

H,L,ER 

Windows 

(except 

for toilet) 

1 4 4 10 3 30 1 2 2 10 1 10 46 3.7 5 10 15 56.4 

HR 

M, M, 

H, NE 

Hot 

water 

pipe 

(bath) 

5 4 20 10 3 30 1 2 2 10 1 10 62 5.1 1 10 11 55.7 

HR 

L, M, 

H, ER 

Parapet 10 4 40 1 3 3 10 2 20 5 1 5 68 5.5 10 0 10 55.6 

HR 

H, L, 

L, ER 

Cold 

water 

pipe 

(bath) 

5 4 20 10 3 30 1 2 2 10 1 10 62 5.1 0 10 10 50.7 

HR 

L, M, 

M, ER 

HVAC 

duct 

(dining 

room) 

5 4 20 1 3 3 1 2 2 10 1 10 35 2.9 5 10 15 42.9 

MR 

L, M, 

L, ER 

Shelving 

(dining 

room) 

10 4 40 10 3 30 10 2 20 10 1 10    100 8.2 5 0 5 40.8 

MR 

L, M, 

L, NE 

Ceiling 10 4 40 10 3 30 1 2 2 10 1 10   82 6.7 5 1 6    40.2 

   MR 

M, M, 

M, PR 

Water 

heater 

1 4 4 1 3 3 10 2 20 10 1 10 37 3.0 1 10 11 33.2 

MR 

M, H, 

L, PR 

HVAC 

duct 

(Toilet) 

5 4 20 1 3 3 1 2 2 10 1 10 35 2.9 1 10 11 31.5 

MR 

L, L, L, 

ER 
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 2.3.4. Automatic Color-Coding of NSEs Based on Their Seismic Risk Score (CSA-S832) 

 

The NSEs of the building are now represented by different colors based on their seismic 

RS. By color-coding the NSEs of the building, engineers and owners can visually assess the 

seismic risk condition of the building NSEs. For automatic color-coding of the NSEs based 

on their RSs, we used a visual programming tool called Dynamo BIM (2017). The seismic RSs for 

the NSEs were categorized and color coded into six ranges: white was used for seismic RS between 

0 and 16, yellow was used for the seismic RSs between 30.0 and 60.0, and red was used for seismic 

RSs between 120.0 and 140.0. Figure 2-3 shows the color-based representation of the NSEs of the 

building’s first level in the Revit model. As shown, the curtain panels represented in red have the 

highest seismic RS. 

 

Figure 2-3: Color-coding of different ranges of seismic risk scores in the BIM model 

 

The color-based representation of NSEs based on their seismic risk is an efficient way to 

visually identify the high-risk components and to study the effects of mitigation measures. 

For example, one parameter affected by the location of the NSEs can be the “LS RS”. If 
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some NSEs, such as the shelving and dining room table as shown in Figure 2-4a are too close (e.g., 

less than the height of the shelving), according to the CSA-S832 standard the LS RS index is 

increased from one to five.  

 

 
(a) 

 

(b) 

Figure 2-4:  Automatic updating the seismic risk score and the color of elements based on their 

location 
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As shown in Figure 2-4a, the LS RS index of these two elements is one, and their seismic RS 

is 8.17. Therefore, they are represented in white. The distances of the shelving and dining 

table are 1.4 m and 1.18 m, respectively. In this case, the gap between the shelving and 

dining table is about 2.3 m. When the dining room table is moved closer to the shelving, 

the distance between them will be automatically updated in the BIM and so will the 

seismic score (Figure 2-4b). As shown in Figure 2-4b, when the dining room table was moved 

closer 

to the shelving, the LS RS was automatically updated to 5.0, the seismic RS was increased 

to 40.86, and consequently, the color changed from white to yellow. Automatic updating 

of the seismic RS of NSEs in the building model can be a useful tool for facilities managers 

to mitigate the seismic risk of the NSEs in buildings. 

 

2.4. Conclusion 
 

          We proposed a method for BIM-based visualization using a 3D model of a building and its 

NSE with their corresponding seismic risk levels, location, and other related information. This 

paper’s main contribution is the development of an easily understandable standardized framework 

for identifying and prioritizing the NSEs with high seismic risk by integrating the two relevant 

standards of CSA-S832 and FEMA-E-74 into a BIM. This method allows for an assessment of the 

seismic risk of an NSE in a building to be automatically updated based on the building’s location 

and type. Integrating the seismic risk information of a building’s NSEs into a visualization tool, 

allows for the interpretation of the data from a visual inspection after an earthquake to be easily 

integrated into the BIM model of a building and the assessment of different retrofit strategies. BIM 

models can be used as repositories to prioritize high-risk NSEs based on their likely damage, types, 
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and related retrofit actions. It improves the project participants’ understanding of the vulnerability 

of NSEs in evaluating the seismic risk associated with NSEs in a building. The model can also 

capture the personnel involved and their responsibilities making management of retrofit actions 

efficient. The proposed method can potentially be applied to existing buildings to identify NSEs 

with high seismic risk potential such that suitable mitigation techniques can be adopted. It can also 

be used in the design stage for a new building. The paper demonstrated the BIM method utilizing 

a case study building and assessed the seismic risk of the OFCs or NSEs using the relevant 

Canadian and American standards. It should be noted that the proposed method is flexible 

regarding the standard or guidelines used for seismic risk assessment of NSEs, not restricted to 

those used for the demonstration. 
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Updated Literature Review and Related Materials 
 

 This section focuses primarily on recent publications and related works not cited in the 

published paper above. 

NSEs are more vulnerable against the vibration events such as earthquakes.  The NSEs 

failure may lead to injury or loss of life. It might also lead to disruption of services during the 

operational phase or even during the transportation stage in modular construction projects, which 

is significant for public facilities such as hospitals, airports, and fire stations. The reports from 
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previous earthquakes have demonstrated extensive damages to NSEs, which led to the loss of their 

functionality (Miranda et al., 2012; Ricci et al., 2009; Filiatrault et al., 2001).  

Developing a practical visual framework is critical to improving communication between 

engineers and owners to better understand most vulnerable NSEs. Despite the importance of better 

visualization and understanding of NSEs’ vulnerability against vibration events, few studies have 

integrated it with an effective visualization tool such as BIM. Augulo et al. (2020) developed a 

methodology to use BIM for seismic performance assessment in a building. However, they only 

considered the structural elements, not NSEs, and utilized BIM only as an input into the FEM 

software for the structural analysis purpose. Perrone and Filiatrault (2017) developed a workflow 

for seismic design of NSEs using BIM. However, their study was not comprehensive (considered 

only a specific type of NSEs), and it did not benefit from the 3D visualization capability of BIM to 

highlight seismic vulnerability levels of NSEs, which might not be entirely understandable for non-

experts.  

As presented in this chapter, the developed method addressed these issues. Automatic 

seismic risk calculation and color-based representation of NSEs of a building in a BIM model is 

an efficient and fast method to identify high-risk components visually. As shown in Figure 2-3r 

(the updated version of Figure 2-3), NSEs are represented with different colors in the BIM model 

based on the pre-defined ranges of seismic risk as indicated in the figure legend. 
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Figure 2-3r: Color-coding of different ranges of seismic risk scores in the BIM model 
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Chapter 3: Automated Damage Detection System for Prefabricated Building 

Modules during Transportation  

 

General  

This paper was submitted to the Journal of Automation in Construction in 2021*. The main 

objective of this paper is to develop a cost-effective sensor-based DAQ system and an efficient 

data analysis method to monitor and detect possible damage related to the structural condition of 

prefabricated modules during transportation. 

Abstract 
 

Transportation is a significant part of a prefabricated building module. The purpose of our research 

is to develop a novel data-driven structural health monitoring (SHM) system to monitor the 

structural condition of individual prefabricated building modules during transportation by detecting 

possible damages caused during their delivery. The developed system consists of two main 

components: a sensor-based data acquisition (DAQ) and storage module, (which measures and 

stores the acceleration response of the building module), and an automated data analysis module 

(which uses a data-driven approach to analyze the captured acceleration data and identify and 

classify damages). We explored the capability of the developed system via a real case study. We 

attached 8 vibration sensors to the walls and floors of a wooden prefabricated building module in 

the factory and monitored its structural behavior during road transport over 300 km. The 

accelerometer data were collected, cleaned, and preprocessed to extract damage-sensitive features 

__________________________________________________________ 

* Mojtaba Valinejadshoubi, Ashutosh Bagchi & Osama Moselhi (2021), Journal of Automation in 

Construction (under revision) 
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utilizing different data thresholds. The acceleration Root Mean Square (RMS) parameter, proved 

and used as an effective damage-sensitive feature in SHM projects, was used to derive a statistical 

pattern recognition algorithm for damage detection. We experimented with 4 common 

unsupervised clustering algorithms used in SHM studies to determine the best damage detection 

and classification process: k-means, mean shift, density-based spatial clustering of applications 

with noise (DBSCAN), and agglomerative clustering. After the initial analysis, we observed only 

one pattern of data, which meant that the building module was transported safely to the site. We 

established three different scenarios to simulate different levels of damage to the building modules. 

The performance of algorithms used in damage identification and classification was investigated 

by two parameters, accuracy score and confusion matrix. After detailed analysis based on different 

clustering algorithms, we found that the DBSCAN algorithm yielded the full accuracy score in the 

case of more than one level of damage compared with k-means, mean shift, and agglomerative 

clustering with accuracy scores of 0.81, 0.79, and 0.78 respectively.  In the end, we developed a 

novel visualization-based method to identify the failed sensors. The system can allow for timely 

replacement of damaged parts of the prefabricated modules before installation, provide evidence 

to support manufacturers’ insurance claims on repair and modification costs, and improve customer 

perceptions of the quality of prefab construction.  However, the developed system should be tested 

further on more prefabricated building modules with a larger number of sensors.  

Keywords: Modular construction; monitoring system; Structural Health Monitoring; 

Transportation phase; Clustering techniques, Damage sensitive feature. 
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3.1. Introduction 
 

  The construction industry is quite labor-intensive and is exposed to risks associated with 

markets, sites, and weather conditions (Boadu et al., 2020). Modular and offsite construction aims 

to address some of these issues. After the fabrication process, building modules are transported 

from the factory to the project site for installation. Transportation is a significant phase of modular 

construction that can affect the module delivery time and project completion (Sun et al., 2020). In 

North America, prefabricated modules are transported to the construction site (or to storage) on a 

flatbed tractor-trailer unit and are finally lifted and placed onto a pre-constructed foundation. The 

challenge during the transportation phase is that the building modules are subjected to additional 

stresses because of transportation-induced vibrational forces (Godbole et al., 2018). Vibrations 

imparted on the prefabricated modular building unit due to road unevenness have been 

experimentally quantified in (Innella et al., 2020). These additional stresses may damage individual 

modules, lead to rejection or rework at the building site, require additional resources and costs, and 

cause schedule delays because of mis-fitting and out-of-tolerance modules. Some manufacturers 

reported using up to 30% more reinforcing materials in modules to minimize damages arising from 

trucking (PATH Inventory, 2003). However, the amount and placement of the extra reinforcing 

materials are usually based on judgment rather than objective analysis. Inappropriate placement of 

reinforcing materials can lead to concentration of stresses at vulnerable locations, which may cause 

cracking in internal finishing materials.  

The modules can be subjected to the road-induced vibrational forces caused by roughness 

originating from poorly finished roads, with design features such as construction joints, thermal 

expansion joints, and the presence of distress (such as cracks, bumps, potholes, corrugation, etc.). 

They may also be subjected to aggressive driving behavior such as lane changes, turns with or 

https://www.sciencedirect.com/science/article/abs/pii/S2352710218300196#!
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without acceleration, sudden braking, rapid acceleration, and excess speed. Additionally, modules 

are also subjected to wind forces during transportation that can cause high-magnitude force for 

significant amounts of time (Gupta et al., 2008). The combination of transportation-induced 

vibrational forces and wind forces can produce more destructive effects, which can damage 

structural and non-structural components.  

Even small amounts of transportation damage to building modules can disrupt the building 

envelope's continuity, causing substantial air leakage and moisture deposition, reducing its long-

term durability, and causing mold problems and heat loss (Smith et al., 2007). From a structural 

perspective, transportation damages may impair the structural performance of the completed 

building. From a management perspective, transportation damages to building modules, if they are 

not detected and repaired right away, may lead to mis-alignment issues during the installation 

process, affecting the project’s final delivery time and cost. Thus, shipping insurance is necessary 

so that the building modules are insured against all possible structural and non-structural damages 

to ensure compensation for the repair cost. Manufacturers usually buy shipping insurance to cover 

both all-risk and basic-risk conditions to ensure reimbursement for modules’ repair costs if they 

are damaged. Basic-risk conditions cover collision, earthquake, cyclones, and other common 

losses, and all-risk coverage includes all possible risks (including partial and total loss) caused by 

physical loss or damage during door-to-door transit (Freight Insurance, 2003). In the case that 

damages are not detected on time before delivery, the repair cost might be very difficult to recoup 

from the insurance company because of the lack of timely evidence after delivery. Although 

transportation-induced damages to prefabricated building modules are possible, manufacturers 

rarely monitor prefabricated modules during transportation because of the monitoring costs and 

complexity. Therefore, utilizing a monitoring system is crucial for modular building manufacturers 
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to detect damaged modules after transportation and claim the insurance company’s reimbursement 

for repair and modification costs. 

 

3.2. Literature Review 
 

 Our literature review begins with the damage-related studies of prefabricated buildings and their 

limitations. It continues with a review of the classification methods and clustering algorithms 

studies that have been found to be more effective and practical in the cases of structural health 

monitoring (SHM) of prefabricated modules during transportation. Early damage detection is an 

initial and essential step in SHM that aims to evaluate a structure’s overall condition and determine 

whether the damage is apparent throughout the structure.   

 Gupta et al. (2008) discussed preservice forces generated in a prefabricated wood light-frame 

building during handling and transportation based on field measurements and analyses. They 

investigated a single-story prefabricated mini home typical of those constructed throughout Canada 

and the USA as single-family dwellings. The only visible damages observed in this study were 

large cracks in the wall plasterboard radiating from corners of window and door openings and in 

the ceiling plasterboard. The cracks were detected based on visual inspections. The authors used 

finite element modeling (FEM) techniques to model the observed damages after transportation and 

validate their findings. Godbole et al. (2018) simulated the vertical motions experienced by the 

chassis of a truck trailer during transport. They concluded that a component mounting should be 

designed to withstand a vertical acceleration of the component.  Bagchi et al. (2007) developed a 

FEM system for vibration-based damage identification in structures. Despite the impact of 

transportation-induced damages on the project cost and delivery time in modular construction 

projects (Lopez and Froese, 2016; Global Infrastructure Hub, 2020), very few studies, as discussed 
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above, have investigated the impact of transportation-induced forces on prefabricated buildings. 

Deformation is an essential parameter for localized damage detection. However, it was observed 

that deformations produced from FE models (a method for validating structural deformation data) 

were not consistent with those measured during the field test (Gupta et al., 2008) because of 

possible modeling errors and are not reliable for structural damage detection in the cases of 

transportation monitoring. For structural deformation monitoring, an excellent understanding of 

the structure is needed to design the instrumentation plan.  If several similar types of 

members/connections exist (usually in prefabricated building modules), and if they are subjected 

to the same forces, identifying the most critical elements for monitoring may not be trivial, and 

planning to install one strain sensor (or more) on each element is not cost-effective. In such cases, 

global damage detection methods using vibration data could be more helpful and cost-effective as 

a smaller number of vibration sensors are required. Also, the previous studies and tests were on a 

prefabricated home, not on prefabricated individual modules. The FE method (physics-based 

approach) and deformation parameter might not be practical for monitoring the structural condition 

of individual prefabricated modules during transportation. The physics-based approach is costly, 

more computationally intensive, and can be complicated (Smarsly et al., 2016).  

In modular building projects, individual modules are transported to the site. Using a 

physics-based approach is not practical because it would be very time-consuming and costly if 

numerical modeling is used and needs detailed data of each module in advance. Conversely, with 

the development of data acquisition (DAQ) and transmission technology, the SHM system’s ability 

to collect data has increased over the years. Valinejadshoubi et al. (2018a) developed a building 

information model (BIM)-based data management system for SHM of modular buildings.  In 

another study, researchers investigated the feasibility of using BIM in the SHM process 
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(Valinejadshoubi et al., 2017). They demonstrated the feasibility of creating and visualizing sensors 

data and information in the BIM model for SHM.  Valinejadshoubi et al. (2018b) developed a 

preliminary scheme for utilizing BIM to manage SHM data for buildings. A significant amount of 

monitoring data is increasingly becoming available (Duan and Zhang, 2006). The management of 

the acceleration data captured during transportation, which may sometimes be hundreds of 

kilometers, can be a demanding task. Even with data compression and embedded systems to 

convert large quantities of data to more manageable amounts of information, there remains the 

need for procedures to manage the data (Brownjohn, 2005). Therefore, an appropriate approach 

such as a data-driven method is more valuable and practical for mitigating the above-mentioned 

issues.   

 Data-driven approaches are easier to implement, and generally less expensive, and are thus 

appealing for continuous monitoring (Catbas et al., 2011; Noman et al., 2012; Posenato et al., 

2010). In a data-driven method, the difficulties lie in finding the physical meanings behind the 

model’s outcomes and data visualization, given the high number of measurement points (Da Silva 

et al., 2007). The integrity of the sensor data needs to be preserved, specifically in a data-driven 

approach, to enhance the reliability and accuracy of the SHM system outputs (Smarsly et al., 2016). 

Because of the significant deviation or noise during measurement, it is essential to develop 

strategies for ensuring the reliability of the sensor data. For this reason, multiple sensors are usually 

employed rather than a single sensor to improve acquired information accuracy (Jafari, 2015). As 

a result, analyzing multi-channel sensors simultaneously increases the complexity of data analysis 

and reduces its speed. Another significant issue researchers have pointed out (Alamdari et al., 2017; 

Diez et al., 2016; Santos et al., 2015) is the non-availability of data from damaged states. SHM 

systems often only have data from the healthy conditions of structures. Thus, many contributors to 

the literature proposed damage detection methods based on unsupervised or one-class approaches.  
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Conventional classification methods include clustering algorithms (Amezquita-Sanchez 

and Adeli, 2015), that is, k-means, which is widely used in SHM. Pang et al. (2020) utilized the k-

means algorithm as a classification technique to process the sensory data generated from full-scale 

seven-story reinforced concrete buildings to verify the classification performances. Agarwal and 

Reddy (2020) used different classifiers, including k-means clustering for the anomaly detection 

task. Diez et al. (2016) presented a clustering-based approach that incorporated K-Nearest 

Neighbors (K-NN) algorithm, k-means, and Fourier transform for vibration signal processing to 

detect damage and abnormal behavior in bridge joints. However, k-means is sensitive to the 

extracted data features and the initial choice of cluster centers (Bouzenad et al., 2019) that may 

lead to erroneous classifications (Amezquita-Sanchez and Adeli, 2015). Santos et al. (2016) 

presented an output-only technique based on mean shift clustering (MSC) to automatically discover 

an unknown number of clusters that correspond to the normal and stable-state conditions of a 

structure. However, the MSC performance suffers when the original distance metric fails to capture 

the underlying cluster structure (Anand et al., 2014). Silva et al. (2016) proposed an unsupervised 

cluster-based technique using agglomerative clustering to discern the structural response as a small 

number of structural states. Their proposed method revealed a better classification performance 

than the alternative one regarding false-positive and false-negative indications of damage, 

demonstrating its applicability for real SHM scenarios. Zhou et al. (2016) proposed a new approach 

for detecting structural damage using structural dynamic response and clustering techniques. They 

utilized agglomerative clustering to discriminate damaged patterns from undamaged 

ones. However, the hierarchical clustering algorithms, such as the agglomerative algorithm, have 

the disadvantage of low effectiveness and instability (Shi et al., 2020) and do not work with missing 

data, resulting in many arbitrary decisions. Entezari et al. (2018) presented a method based on the 

density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm to 
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detect early damage using the vector of the sensitivity of modal strain energy as a damage-sensitive 

feature. Their results showed that the proposed sensitivity function is sensitive to damage and can 

be a reliable damage-sensitive feature in the applications of SHM. Entezami et al. (2020) 

introduced DBSCAN clustering to develop an innovative hybrid strategy for damage detection and 

localization. Li et al. (2020) utilized the DBSCAN algorithm in their proposed automatic modal 

parameter identification procedure and found robust enough to interpret the stabilization diagram. 

Although a significant amount of research has been done in studying the application of 

data-driven techniques in SHM of buildings and infrastructures, the development of statistical 

models (which are more practical than physical models), and the monitoring system to enhance the 

efficiency of the damage detection process in prefabricated building modules, especially during 

transportation, have received very little attention in the literature. Therefore, developing a data-

driven-based framework for condition assessment of prefabricated modules during transportation 

can be helpful for the following reasons: 

a. To improve the damage detection process and allow for timely replacement of damaged 

parts of the prefabricated modules before installation. 

b. To provide evidence to support manufacturers’ claims for repair and modification costs 

from insurance companies. 

c. To improve customers’ perceptions of the quality of prefab construction. 

 

3.3. Research Mission 
 

Modular building design is more complicated than conventional design because of the 

different processes involved, such as manufacturing, transportation, and installation. Therefore, 

prefabricated modules are subjected to various loads in these processes in addition to 
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operational loads. Safe delivery of prefabricated building modules is critical for a successful 

modular building project. It improves customer perceptions of the quality of prefab 

construction and can prevent any adverse effects (caused by structural damages) during 

installation and operational phases. Damages can occur to sections or components of building 

modules during transportation. These damages can be costly to fix and may cause negative 

public perception of modular buildings. Based on Splittgerber (1978), damage due to vibration 

can occur for particle peak velocities (PPV) values ≥3 mm/s. Transportation monitoring of 

prefabricated mini home, conducted by Smith et al. (2007), revealed that the PPV values 

developed during transportation are much higher than for lifting processes. According to their 

study, based on PPV parameter values, in some locations of the instrumented prefabricated 

home, the ratio of the likelihood of transportation-related damage compared to damage during 

fabrication was more than 6, which indicates higher possibility of damage occurrence to 

prefabricated modules during transportation. Even small amounts of transportation damage to 

building modules can disrupt the building envelope’s continuity, causing substantial air leakage 

and moisture deposition, thereby incurring long-term durability, mold, and heat loss problems 

(Smith et al., 2007). From a structural point of view, transportation damage may impair the 

structural performance of the completed building. From a management point of view, 

transportation damage to building modules, if not detected right away, can lead to mis-

alignment issues during the installation process, affecting the project’s delivery time and cost. 

Figure 3-1 shows some examples of damages that occurred on the prefabricated house in our 

example during transportation. 
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Figure 3-1: Damages observed in the prefabricated building after transportation (Smith et al., 

2007) 

 

Despite the importance of the transportation phase in modular building projects, studying the 

damage of modules during transportation has received the little attention. Moreover, researchers 

have not developed a cost-effective and rapid, automated SHM system to monitor prefabricated 

modules during transportation. Several factory-produced prefabricated modules may be 

transported daily to the construction site. Thus, using the popular FEM updating techniques 

(model-update methods) is costly (Smarsly et al., 2016) and impractical even sometimes not 

feasible. Therefore, a data-driven approach would be more helpful in these cases. There are some 

challenges in data-driven techniques, such as the need for many data points, the integrity of data, 
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the existence of noisy data in real SHM projects, the visualization of data (Da Silva et al., 2007), 

and the unavailability of data from the damaged structure (Alamdari et al., 2017; Diez et al., 2016; 

Santos et al., 2015). Developing a data-driven structural damage detection framework, which 

would address these challenges, is important to improve the damage detection process for the 

timely replacement of damaged module parts of before installation.  

The main goal of our study is to develop a novel data-driven monitoring system to detect 

possible damages in prefabricated building modules after transportation. To achieve this goal, our 

objectives are as follows:  

a. To develop a sensor-based DAQ and storage module to be easily attached to the 

prefabricated modules to record and store acceleration data produced during transportation. 

b. To develop a novel and easily understandable visualization-based method to identify the 

failed sensors before starting the data analysis 

c. To test and evaluate the performance of different clustering algorithms to identify the 

algorithm with the highest damage identification and classification accuracy in the case of 

transportation monitoring via a real case study. 

The system, we developed for this study, is intended to solve the issues that existed in previous 

studies (Gupta et al., 2008; Smith et al., 2007) such as the size of monitoring system (which is 

critical for monitoring individual prefabricated building modules during transportation), the cost 

and complexity of a model-based approach in the structural damage detection process, the 

inapplicability of a model-based approach (which is time consuming and requires detailed 

modeling data), and the possible uncertantities in loading data and temporary supports 

configurations (which might affect the outputs of a model-based approach in this case). 
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3.4. Research Methodology 
 

The developed system was designed to monitor the structural health of individual building 

modules during transportation. It consists of two main components: a sensor-based DAQ system 

to acquire and store the captured vibrational data during transportation in the form of acceleration 

records, and a data-driven automated data analysis module to analyze the recorded acceleration 

data and identify damage accordingly. The DAQ system consists of ten components which the 

following section describes. The available sampling rate of the DAQ system to build the monitoring 

system was identified as 125 Hz. The data analysis module consists of six sub-modules:  data 

preprocessing, damage-sensitive feature extraction, noise elimination, dimensionality reduction, 

pattern recognition, and decision-making. The Python programming language has been used here 

to code the submodules for the data analysis module. Figure 3-2 demonstrates the overall 

framework of the developed monitoring system. 

 

Figure 3-2: The overall architecture of the developed monitoring system framework 
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We attached the DAQ systems to the prefabricated modules at selected locations before 

transportation to collect and store transportation-induced vibrations in three directions using 

accelerometer sensors. When prefabricated modules were delivered to the site, we detached the 

sensors from them and analyzed the acceleration data recorded in the SD card.  To amplify the 

reliability of readings, in each designated location, we used two sensors to increase the accuracy 

of acceleration data by averaging the two readings. Each of the six sub-modules are described 

below. Figure 3-3 shows the detailed architecture of the developed monitoring system framework.  

1. Data preprocessing:   

As shown in Figure 3-3, the sub-module contains defining and merging datasets, and data 

cleansing, a fundamental step for any machine learning technique. Datasets are defined, and 

missing values in each direction (X, Y, and Z) are replaced by the mean value, developing a robust 

model for our machine learning step.  

2. Damage sensitive feature extraction:  

The second step is to extract features sensitive to structural damages. Modal parameters, such 

as frequency and mode shape parameters, usually lead to the loss of information compared with 

the raw data, which can erase any small changes due to structural damages. Therefore, as a 

statistical parameter, we choose the root mean square (RMS) in our study as a damage-sensitive 

feature. RMS is directly associated with the vibration signal's energy level, which has been proved 

and used as a practical damage-sensitive feature in SHM studies (Avci et al., 2021). As indicated 

in Figure 3-3, acceleration data in three directions are classified based on the event size of 2500 

data points, which means the prefabricated modules’ structural characteristics over the truck during 
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the transportation was monitored and checked every 20s. Therefore, a new dataset of RMS data in 

XYZ directions is defined for the next step. 

3. Noise Elimination:  

The occurrences of noisy data in the data set can significantly affect the prediction of any 

meaningful information, leading to decreased classification accuracy and poor prediction results. 

As shown in Figure 3-3, in this sub-module, noise detection and removal are carried out using the 

quantile method (Han et al., 2012) to improve the quality of the dataset used in training and testing 

the machine learning algorithm used in this sub-module. 

4. Data Dimensionality Reduction:  

In this sub-module, principal component analysis (PCA) is used to decrease the dataset 

dimensionality from 3D to 2D for better visualization and decision making. PCA is an unsupervised 

linear transformation technique used to extract the critical information from the data and express it 

as a set of summary indices called principal components (Salem and Hussein, 2019; Jolliffe and 

Cadima, 2016). 

5. Pattern Recognition: 

Because there is no information about the damaged state of the building modules during 

transportation, unsupervised machine learning techniques are used. With an unsupervised training 

mode, detecting structural damages mainly depends on identifying abnormal data from the testing 

data. As shown in Figure 3-3, we use four clustering algorithms, k-means, mean shift, DBSCAN, 

and agglomerative in our study. The elbow method and silhouette index (SI) are used to optimize 

the number of clusters. For some clustering techniques, such as mean shift and DBSCAN clustering, 
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we search the optimum parameters’ value by the trial-and-error method to discover which model’s 

parameters’ value resulted in the most skillful predictions. 

6. Decision-Making: 

When the clustering is implemented on the PCA dataset, the decision is made based on the 

number of detected clusters. If there are no separated, (i.e., compacted) clusters and we find only 

one pattern of data, then there is no damage found, indicating that the building module was 

transported safely to the site. Otherwise, some damages occurred to the building module. The 

damaged data clusters can be analyzed further to assess the size and location of damages. 

Figure 3-3 shows the detailed architecture of the developed monitoring system framework. 

 

3.5. The System Framework 

3.5.1. Hardware configuration of the system 

  The developed DAQ system utilizes an accelerometer to monitor each module's dynamic 

characteristics during transportation to detect any possible damage before the delivery process. 

The components of the system are as follows: 

1. Arduino Uno: An Arduino Uno board is an open-source microcontroller board that works 

as the sensor’s processing core. 

2. MPU6050: An MPU6050 accelerometer consists of a 3-axis accelerometer with micro-

electro-mechanical system (MEMs) technology. The sampling rate of the MP6050 in the 

developed system has been measured at 125 Hz.  

3. Data logger module: A data logger module with 2GB micro-SD card is used for storing the 

vibration data for damage detection analysis. 

4. Battery: A 9V battery is used to add a portability feature to monitoring system units. 
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Figure 3-3: The detailed architecture of the developed monitoring system framework 
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5. Switch: An on-off switch is used to connect the battery to or disconnect it from the Arduino 

Uno board. 

6. Push buttons: A push button is used to toggle between two operational states of the sensor. 

7. LED lights: Red and green LED lights are used as indicators to show the system’s 

operational state. When the switch turns on, the LED light turns red, indicating that the 

battery provides appropriate voltage for the Arduino board and peripherals. By pressing the 

push button, the LED light turns green, which shows the system is collecting the vibration 

data. 

8. Jumper wires: Jumper wires connect the sensor and SD card module to the microcontroller 

and connect the microcontroller to the battery. 

9. Double-sided tape: Double-sided tape is used to attach monitoring system units to the 

building modules. 

10. Protection box: A protection box accommodates all the components and protects them 

against operational and environmental loads.  

 

The hardware total cost is approximately $100 CAD which is much more cost-effective than 

the alternative systems (shock and vibration sensors) used for monitoring shipments (EnDAQ, 

2021; spotsee, 2021). Commercially available shock and vibration sensors (EnDAQ, 2021), 

produced to identify and respond to potential shipping hazards, use piezoelectric accelerometers 

that only allocate 32 kB of memory per "event," enough for 4,096 data points which are not suitable 

in the case of prefabricated building modules transportation where there are millions of data points 

available.    

The switch supplies power for the Arduino Uno board in a fully assembled sensor with a 

functional battery. The Arduino Uno board’s voltage regulator regulates and adjusts different 
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voltages to supply the main microcontroller and peripherals, including the SD card module and 

MPU6050 breakout board. A simple state machine controls the functionality of the components. 

Upon start, the red LED on the sensor box begins to blink, indicating the idle state of the sensor. It 

means the battery is providing appropriate voltage for the Arduino board and peripherals. The 

sensor should not remain in this state as the microcontroller and the peripherals are consuming 

power. After placing the protection box in the designated location, pressing the push button begins 

the sensor’s sampling process. At this stage, the green LED on the board is “On” and the sensor 

goes through the following steps: 

1. The microcontroller in the Arduino Uno board reads acceleration values for three directions 

(XYZ) through the I2C protocol and stores the acceleration values in its internal memory. 

Reading a sample from MPU6050 includes setting up some registers and reading the result 

from internal registers of MPU6050. 

2. The microcontroller repeats step one 15 times. 

3. After filling the internal memory, the microcontroller writes all the samples for 15 readings 

into the SD card.  

4. The microcontroller returns to step one. 

This process can be halted and restarted by the push button and the main switch. Switching 

off the device is considered a new reading in the memory, whereas the push button stops the 

sampling (push button stops cannot be seen in the log file). When the system starts working, the 

log file is created in the SD file, and X, Y, and Z data are separated by a tab (\t) in each line. 

3.5.2. Data Collection and Pre-processing 

 The data collection system stores acceleration data measured during transportation in an 

SD card. SD cards are removed from the system after transportation, and the acceleration data are 
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analyzed. The first step of data analysis is data preprocessing, where datasets are created, and 

missing values identified and filled by the mean value of acceleration readings in each direction. 

 

3.5.3. Damage sensitive feature extraction 

 When the acceleration datasets are created and preprocessed, a damage-sensitive feature is 

extracted from the raw acceleration data in each direction. The structural behavior of the building 

modules is monitored and evaluated using µ̅rms per event during transportation. The µ̅rms, as shown 

in the formula below, is the root-mean-square acceleration (or RMS acceleration) directly related 

to the energy level of the vibration signal. After calculating the RMS value for each event, new 

datasets are defined and merged to build a single comprehensive dataset.   

                                                                               

  (1) 

 

, where: 

n is the number of data points in each event and 

y is the acceleration data in XYZ directions. 

 

3.5.4. Noise Elimination 

The real-world data include meaningless data called noise, which can significantly affect 

various machine learning data analysis tasks such as classification and clustering. In this step, 

outliers are detected by the quantile method and removed from the datasets. Outliers are data 
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objects which their values are abnormally different (much higher or lower) from others (Han et al., 

2021).  

 

3.5.5. Data Dimensionality Reduction 

The main idea of PCA is to reduce the dimensionality of a data set while retaining as much 

as possible of the variation the data set contains. This reduction is achieved by transforming data 

into a new set of variables, the principal components (PCs), which are uncorrelated, and are ordered 

so that the first few retain most of the variation present in all the original variables (Salem and 

Hussein, 2019, Jolliffe and Cadima, 2016). 

In this study, PCA is used to reduce the dimensionality of datasets from 3D to 2D for better 

visualization, and to remove the variance due to the environmental effect under the normal 

condition which can affect the damage detection process. Figure 3-4 shows the whole process of 

building a new sub-space based on principal components. 

 

    

 

    

 

Figure 3-4: The PCA process 
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3.5.6. Pattern Recognition 

 As the most crucial unsupervised machine learning problem, the clustering technique is 

used to find a structure in a collection of unlabeled data. For pattern recognition, we use four 

clustering algorithms often found in the technical literature as popular for SHM projects, including 

k-means, mean shift, DBSCAN, and agglomerative clustering techniques. A cluster refers to a 

collection of data points aggregated together for certain similarities. 

 3.5.6.1. K-Means Clustering 

 The k-means algorithm is a partition-based clustering algorithm that searches for a pre-

determined number of clusters within an unlabeled multidimensional dataset.  It starts with the first 

group of randomly selected centroids used as the beginning points for every cluster and then 

optimizes the centroids’ positions by performing iterative calculations. The cluster center is the 

arithmetic mean of all the points belonging to the cluster (Ali and Kadhum, 2017, Shukla and 

Naganna, 2014). Each point is closer to its cluster center than to other cluster centers. A critical 

part of the k-means clustering is choosing the number of clusters (K). The elbow and silhouette 

analysis methods optimize the number of clusters for the k-means clustering (Clayman et al., 2020; 

Horvat et al., 2021; Yuan and Yang, 2019; Syakur et al., 2018). The idea of the elbow method is to 

choose K at which the sum of squared error (SSE) or the sum of the squared distance between each 

member of the cluster and its centroid decreases abruptly.  

𝑆𝑆𝐸 = ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2𝑛

𝑖=1                                                                                                             (2) 

 

Silhouette refers to a method that interprets consistency within data clusters. It represents 

how well each data point has been classified. The SI, which ranges from -1 to +1, is a measure of 
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how similar a data point is to its cluster than to other clusters. A higher SI value indicates that the 

data point is well matched to its cluster and poorly matched to neighboring clusters. 

 

 (3) 

 

(4) 

where: 

a(i) is the mean distance between i and all other points in the same cluster. 

b(i) is the smallest mean distance of i to all points in any other cluster of which i is not a member 

(neighboring cluster (Ck), which has the smallest mean dissimilarity with the cluster i (Ci). 

 

  (5) 

 

where: 

 s(i) is the silhouette value of data point i. 

 An s(i) close to one means that the data is appropriately clustered. An s(i) close to negative 

one means that the data is not appropriately clustered and belongs to its neighboring cluster.  

3.5.6.2. Mean Shift Clustering 

Mean shift clustering is a nonparametric, partition-based clustering technique that does not 

require prior knowledge of the number of clusters. The algorithm determines the number of 

clusters with respect to the data. It builds upon the concept of kernel density estimation (KDE), a 

s(i) =
b(i)−a(i)

max (a(i), b(i) )
 -1=<S(i)<=1 

a(i) =
1

Ci − 1
∑ d(i, j)

j€Ci,i≠j
 

b(i) = min
1

Ck
∑ d(i, j)

j€Ck
 

 
 
  

http://en.wikipedia.org/wiki/Kernel_density_estimation
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method to estimate the distribution in a dataset. It is also called a mode-seeking algorithm and is 

used to locate the maxima of a density function (Abdallah and Shimshoni, 2014). The strengths of 

mean shift clustering are that it does not assume any predefined shape on data clusters, and that it 

relies on choosing a single parameter: bandwidth. 

3.5.6.3. DBSCAN Clustering 

             The density-based spatial clustering of applications with noise (DBSCAN) algorithm is 

a density-based, nonparametric clustering algorithm that groups data points close to one another 

based on two parameters: a distance measurement (eps) and a minimum number of points 

(MinPoints). If the distance between two points is lower or equal to the eps value, these points are 

considered neighbors. The MinPoints parameter is the number of points needed to form a dense 

region. Data points are classified as a core point (a point with at least MinPoints number of data 

points in its surrounding), a border point (a point which is reachable from a core point but with less 

than MinPoints number of data points in its surrounding), or an outlier (a point which is neither core 

point nor border point) based on eps and MinPoints parameters (Perafan-Lopez and Sierra-Perez, 

2021; Deng, 2020). 

  Choosing good eps and MinPoints values is essential in the DBSCAN clustering algorithm. 

Selecting a minimal eps value prevents many data points from being clustered and makes them 

outliers and selecting a very high eps value leads to placing the majority of data points in the same 

cluster. 

 In general, small eps values are preferable. In contrast, larger MinPoints values are usually 

better, especially for the large dataset. One of the DBSCAN clustering algorithm’s main strengths 

is that it is more efficient for arbitrary-shaped clusters. In contrast, partition-based and hierarchical 

clustering techniques are highly efficient with regular clusters. 

https://en.wikipedia.org/wiki/Cluster_analysis#Density-based_clustering
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 3.5.6.4. Agglomerative Clustering 

              The agglomerative algorithm is a hierarchical clustering algorithm used to group objects 

in clusters based on their similarity. It works in a bottom-up manner, which means each data point 

is considered a single-element cluster initially. At each step, the two most similar clusters are 

combined into a new bigger cluster. The algorithm is iterated until all data points become a member 

of a single big cluster. The result is a tree-based representation of the data points called a 

dendrogram (Karthikeyan et al., 2020).  

            The agglomerative algorithm begins by measuring the distance between the data points via 

a clustering distance measurement such as euclidean distance using the following formula and 

grouping the data points close to one another. 

 

d =  √∑ (xi − yi)2n
i=1   (6) 

 

3.6. Case Study 
 

 The significance of monitoring prefabricated modules during transportation is that the 

manufacturer had already experienced some damages on prefabricated modules during 

transportation caused by the vibrational forces. Figure 3-5 shows evidence of some prefabricated 

modules damaged during transportation, rejected by the client, and returned to the factory for the 

required modifications. However, some structural damages might be hidden. These damages need 

to be identified and investigated further. 

 

https://en.wikipedia.org/wiki/Cluster_analysis#Density-based_clustering
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Figure 3-5: Sample of actual damages (cracks) on prefabricated individual modules caused by 

the transportation-induced forces 

 

 We used two factory-finished wooden modular building units to demonstrate the use of the 

developed system. The modules were produced by RCM Solutions Modulaires Company located 

in Quebec, Canada, and transported about 300 km, by a tractor-trailer, as shown in Figure 3-6, from 

the factory to the installation site in Montreal, Canada. The size of the bigger module was 12.8 x 

3.5m (42' x 11'-6.5 "). We attached four monitoring system units to each module. The number of 

sensors was selected in this study based on the budget and time of developing the monitoring 

systems. This is stated as one of the limitations of this work at the end of the Discussion section. 

To amplify the reliability of readings, two vibration sensors were attached to the floors and two 

monitoring system units to the walls. The location of sensors was selected close to the openings of 

each prefabricated module due to the concentration of stresses produced by the vibration force in 

these locations, as observed and recommended in the research conducted by Smith et al. (2007). 
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Figure 3-7 shows one of the modules’ floor plans and the position of monitoring system units 

attached close to the window opening. 

 

Figure 3-6: The transportation route of the instrucmented prefabricated module 

 

 

Figure 3-7: The instrumented prefabricated module’s floor plan and the monitoring systems’ 

position 

 

 The sensors and the associated monitoring systems were activated, and the transportation 

began after closing the temporary doors. Figure 3-8 shows some instrumented prefabricated 

modules in the factory and the installation site. 
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Figure 3-8: The pictures of the instrumented prefabricated modules in the factory and 

installation site 

 

When the modules were delivered to the installation site, we detached the sensors for the data 

analysis. 
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3.7. System Implementation 
 

      We used the developed system to monitor and assess the structural behavior of two wooden 

prefabricated building modules during transportation. Eight sensors and their monitoring units 

were attached to the walls and floors of prefabricated modules to measure and record acceleration 

data for the duration of the monitoring period. In our study, only the data measured by two 

monitoring units with vibration sensors (Module 1 & Module 7) attached to one of the prefabricated 

module’s floors were analyzed. More than 1.7 million raw acceleration data points were measured 

and stored in the system’s SD card. Figure 3-9 shows the acceleration time history plot in XYZ 

directions for these monitoring system units. As shown in Figure 3-9, vibrational forces produced 

at the beginning and end of the transportation (on local and city roads) are much bigger than the 

vibrational forces produced during the middle of the transportation (on highways), indicating the 

poor road quality and conditions of local roads. 

 

 

 

(a) Monitoring system unit number 1 

 

 

 

(b) Monitoring system unit number 7  

Figure 3-9: Acceleration data plot for two monitoring system units 
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 After visualizing the acceleration data, the data analysis was carried out on the raw acceleration 

data. 

a. Data Collection and Preprocessing Module 

        In the first step, a dataset was defined to accommodate the raw acceleration data in XYZ 

directions. When the dataset was created, the pre-processing module searched to detect if there 

were any missing values in the dataset. Then, the mean value of the available acceleration readings 

replaced the missing values in each direction (X, Y, and Z). It should be noted that missing values 

were replaced by the same mean value. 

b.  Damage Sensitive Feature Extraction 

 We grouped the created datasets based on a 2500 acceleration group size. We calculated the 

RMS value for use separately as a damage-sensitive feature of each group. Figure 3-10 shows the 

number of RMS values and RMS data points in XYZ directions. As shown in Figure 3-10, 691 

RMS values were calculated and extracted from the raw acceleration dataset with 1,728,600 data 

points. 

c. Noise Elimination Module 

 In this step, we identified and removed the noisy data from the dataset to improve the 

clustering accuracy. The quantile method was used to find the noise. Data were considered an 

outlier if their value was less than low quantile (1st percentile), the point where 1% of the data 

have values less than it, and greater than high quantile (99th percentile), the point where 99% of 

the data have values less than it and was tagged as NaN and then removed from the dataset. In this 

dataset, we identified and removed 36 outliers. Figures 3-11 and 3-12 show the outputs of the Noise 

Elimination Module. In Figure 3-12, outliers are marked with a circle (O).  
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Figure 3-10: The RMS dataset 

 

Figure 3-11: The number of RMS data points after noise elimination 
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(a) Before noise elimination                                            (b) After noise elimination 

Figure 3-12: The pair plot of the RMS dataset before and after noise elimination step 

 

d. Data Dimensionality Reduction Module 

           The Data Dimensionality Reduction Module uses the PCA algorithm to reduce the dataset's 

dimension from 3D to 2D. The PCA creates a low-dimensional representation of the samples from 

a data set, which is optimal because it retains as much variance in the original data set as possible. 

The first step of PCA is feature scaling. Standardization is a scaling technique where the values are 

centered on the mean with a unit standard deviation. The PCA calculates a new projection of the 

data set, and the new axis is based on the standard deviation of the variables. Therefore, a high 

standard deviation variable will have a higher weight for calculating the axis than a variable with 

a low standard deviation. If RMS data are standardized, all data points have the same standard 

deviation; thus, all features have the same weight, and the PCA calculates the relevant axis. 

 We used the standard scaler method to scale the RMS values in all directions. Equation (7) 

is the formula for standardization. 
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𝑋′ =
(𝑋−µ)

𝜎
                                                                                                                   (7) 

where: 

 µ is the mean of feature value, 

 and 𝜎 is the standard deviation of the feature values. 

          After standardizing the RMS dataset, we applied the PCA algorithm to decrease the 

dimension of the data set to 2D. Figure 3-13 shows both principal components (PCs) calculated for 

each feature (X, Y, and Z). 

.   

Figure 3-13: The PCs of the RMS dataset for each direction 

 Therefore, the corresponding PCs multiplied by the RMS values in each direction calculate 

a new data point for the PC dataset. The first and second PCs are calculated based on the following 

formulas: 
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𝑃𝐶1 = (0.596552X) + (0.578346𝑌) + (0.556454𝑍)                                                         (8) 

𝑃𝐶2 = (−0.200139X) + (−0.564232𝑌) + (0.800991𝑍)             (9) 

where: 

X, Y, and Z are RMS values in X, Y, and Z directions, respectively. 

The scatter plot, as shown in Figure 3-14, displays the results from PCA. 

 

Figure 3-14: The scatter plot of PCA data 

  PCs are extracted to represent the patterns encoding the highest variance in the data set. 

However, in many high-dimensional real-world data sets, the most dominant patterns (i.e., those 

captured by the first principal components) separate the samples’ subgroups from one another. 

Therefore, the PCA data can be used as a practical input into the clustering algorithms. 

e.  Pattern Recognition Module 

 The Pattern Recognition Module was applied to the PCA data to detect any dissimilarity 

between data. Figure 3-15 shows that only one data pattern was found by the k-means clustering 



63 
 

algorithm where the data are compacted, meaning that no structural damage occurred on the 

prefabricated module. 

 

Figure 3-15: The cluster resulting from k-means clustering 

3.8. Validation 
 

3.8.1. Damage Simulation on the Test Data 

             

 After analyzing the data measured by the monitoring system units, we determined that no 

damage occurred on the instrumented prefabricated building unit during transportation. As Table 

3-1 shows, three scenarios were proposed to simulate different structural damage levels on the 

acceleration data to validate the developed system and workflow and select the best classification 

method. The damage simulation Scenarios, used in this study, were established based on the 

method used in the research conducted by Ding et al., (2014) for simulating the effects of structural 

damages on the RMS values of acceleration. Scenario 1 indicates two types of classification, intact 

and low damage data.  Scenario 2 shows three types of classification, intact, low damage, and 

medium damage data. And finally, scenario 3 indicates four types of classification, intact, low, 

medium, and high damage data. 
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 Table 3-1: The proposed scenarios description 

           

3.8.2. Evaluation of Clustering Methods Based on Proposed Scenarios 

 

            As Table 3-1 describes, in scenario 1, only one level of damage (low damage) was defined 

by amplifying the last 35% of RMS data points by a factor of 1.05. We standardized the modified 

RMS dataset, and applied PCA to it to use as the input to different clustering algorithms. We 

applied the PCA algorithm to the modified RMS dataset in all established scenarios. We classified 

the vibration data according to the damage classification numbers to evaluate the accuracy of 

different clustering algorithms used in this study and identify them visually. Figure 3-16 shows 

PCA plots based on different proposed damage simulation scenarios. A specific color shows each 

level of damages. 

Scenario Level of Damage Damage Simulation Description 

Scenario 1  One level of damage 

 Damage Classification Number: 

         Intact: 0 

         Damage Level 1: 1 (low) 

• Amplifying the last %35 of RMS data 

by a factor of 1.05                   

Scenario 2 Two levels of damages 

 Damage Classification Number: 

         Intact: 0 

         Damage Level 1: 1 (low) 

         Damage Level 2: 2 (medium) 

• Amplifying the last %35 of RMS data 

by a factor of 1.05 & 1.10  

• %80 of data by 1.05 

• %20 of data by 1.10 

Scenario 3 Three levels of damages 

Damage Classification Number: 

         Intact: 0 

         Damage Level 1: 1 (low) 

         Damage Level 2: 2 (medium) 

         Damage Level 3: 3 (high) 

• Amplifying the last %35 of RMS data 

by a factor of 1.03, 1.06 & 1.08 

• %60 of data by 1.03 

• %25 of data by 1.06 

• %15 of data by 1.08 
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(a) Scenario 1                                                           (b) Scenario 2            

 

(c) Scenario 3 

Figure 3-16: PCA plots based on different damage classifications 

a. K-means clustering  

       The k-means algorithm was used to evaluate its effectiveness and accuracy in identifying and 

classifying damages in different proposed scenarios. Because the number of clusters must be 

predetermined in the k-means clustering, we used the elbow method and silhouette analyses to 

optimize the number of clusters. We applied both methods to the data of different scenarios’ data 
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and determined their optimum number of clusters. We calculated the number of clusters for 

scenarios 1, 2, and 3 to be two, three, and four respectively, which was correct based on the damage 

simulation.  Figure 3-17 shows the optimum number of clusters found by the elbow method for the 

first and third scenarios where Sum of Squared Errors (SSE) decreases abruptly. As shown, the 

number of clusters was identified as two and four correctly for the first and third scenarios, which 

means there are two and four damage classifications in scenarios number one and three, 

respectively.  

 

 

 

 

 

 

Figure 3-17: The optimum number of clusters for the first and third scenarios calculated by the 

Elbow method 

 We also applied silhouette analysis to the data of different scenarios to determine the 

optimum number of clusters and validate the elbow method results. The output (number of clusters) 

from the silhouette analysis was the same as the outputs determined by the elbow method, and for 

Scenarios 1, 2, and 3 we calculated two, three, and four, respectively. As shown in Figure 3-18, the 

silhouette score for n_clusters = 4 in scenario 3 has the highest value and is closer to one, which 

shows the optimum number of clusters.  
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Figure 3-18: The optimum number of clusters for the first and third scenarios calculated by the 

silhouette analysis 

 After identifying the optimum number of clusters, we used the number of clusters as input 

for the k-means clustering. Figures 3-19 and 3-20 illustrate the classification results of scenarios 1, 

2, and 3. As shown, although the algorithm accurately detected the number of clusters (damage 

classification), only the damaged and undamaged data in scenario one was grouped in suitable 

clusters, and the k-means algorithm could not classify all the damaged data accurately in scenarios 

2 and 3.  
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Figure 3-19: K-means clustering classification result on the scenario 1 data 

  

Figure 3-20: K-means clustering classification result on the scenario two and scenario three data 

 As shown in Figure 3-19, the k-means algorithm could successfully group all damaged and 

intact data into a separate cluster in scenario 1. However, in scenarios 2 and 3, as shown in Figure 

3-20, k-means could only group intact and damage level 3 data correctly into a separate cluster. At 

the same time, it could not classify damage level 1 and damage level 2 accurately.  
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b. Mean shift clustering  

Unlike the k-means algorithm, the number of clusters is estimated based on the bandwidth 

parameters such as n_ samples and quantile. The bandwidth is the distance/size scale of the kernel 

function or window size across which the mean is calculated. 

The n_ samples parameter refers to the number of input points (in this case, the number of 

RMS data points). Quantile should be in the range of [0, 1]. The optimum value of “quantile” was 

identified as 0.5 for scenarios 1 and 2 and 0.3 for scenario 3, which also worked for scenarios 1 

and 2, using the trial-and-error method to estimate the correct number of clusters for different 

scenarios. A quantile of 0.5 means that the median of all pairwise distances was used.  Using the 

specified quantile parameter value, we estimated the number of clusters correctly (2, 3, and 4 for 

scenarios 1, 2, and 3, respectively). Like K-means clustering, the mean shift algorithm could 

successfully group all damaged and intact data into a separate cluster in scenario 1. Scenario two 

could only group intact and damage level 2 data correctly into a different cluster (Figure 3-21 [a]). 

In scenario three, the mean shift could only group intact and damage level 3 data correctly into a 

separate cluster (Figure 3-21 [b]). At the same time, it could not accurately classify damage level 

1 and damage level 2 data into suitable clusters. 
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 (a) 

 

 

 

 

 

(b) 

Figure 3-21: Mean shift clustering classification result on (a) scenario two and (b) scenario three 

data (b) 

c. Agglomerative clustering 

 Agglomerative clustering uses the euclidean distance parameter to find similar data 

points and group them into the same cluster. Although the number of clusters cannot be estimated 

automatically by the algorithm, it can be identified by the algorithm dendrogram. As Figure 3-22 

[a, b] shows, the number of clusters was identified correctly from the dendrogram. Like k-means 

and mean shift clustering, the agglomerative clustering could successfully group all damaged and 
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intact data into a separate cluster in scenario 1. However, in scenario 2, as shown in Figure 3-22 

[c], it could only group the intact and damage level 2 data correctly into a separate cluster. 

Simultaneously, scenario 3 only grouped the intact and damage level 3 data correctly and could not 

accurately classify damage level 1 and damage level 2. 

 

 (a) (b) 

 

 (c) (d) 

Figure 3-22: The agglomerative clustering classification result on the scenario two (a, c) and 

scenario three data (b, d) 

 

 

d.  DBSCAN clustering 

 The DBSCAN algorithm is one of the most common clustering algorithms that separates 

high-density from low-density clusters. Some substantial advantages of the DBSCAN algorithm are 

estimating the number of clusters, sorting data into clusters of varying shapes, and being robust to 
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outliers. Because the simulated damaged data was already labeled based on different damage 

classifications, we considered different sets of values for the model’s parameters, ‘eps’ and 

‘MinPoints’, to achieve the correct number of clusters and classification. The optimum value of 

‘eps’ and MinPoints was identified as 0.6 and 15, respectively, using the trial-and-error method to 

estimate the correct number of clusters for different proposed scenarios. As Figure 3-23 shows, the 

number of clusters was estimated correctly using the specified eps and MinPoints parameter values 

(2, 3, and 4 for scenarios 1, 2, and 3, respectively). However, because in modular buildings, most 

of the individual modules have the same size and are transported to the site with the same temporary 

configuration of supports on the truck, the optimum values identified for the DBSCAN algorithm 

for the first individual modules and the same road profile can be used for other prefabricated 

modules. 

As Figure 3-23 shows, unlike other algorithms, the DBSCAN algorithm could classify all 

damage levels in all scenarios and group them correctly. It could group “densely grouped” data 

points into a single cluster, which plays a substantial role in correctly classifying different levels 

of damage.  The most exciting feature of DBSCAN clustering is that it is robust to outliers. As 

shown in Figure 3-23, outliers were illustrated in black. In this case, because the dataset was already 

denoised, these outliers might be caused by the impact loads produced because of the weak road 

condition. Therefore, if required, outliers can automatically be added to their closest cluster for 

further analysis. 
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(a) 

 

 (b)                                                                          (c)  

Figure 3-23: The DBSCAN clustering classification result on the scenario one, two and three (a, b, 

and c respectively)  

3.9.    Evaluating the Accuracy of Different Clustering Algorithms 
 

       We compared the classification accuracy of different clustering algorithms used in this study 

for different proposed scenarios (scenarios 1 and 2) and different sizes of event (625 [5s], 1250 

[10s], and 2500 [20s] to identify the most effective algorithm and optimum size of event for the 

developed framework. We investigated the accuracy of algorithms using two parameters: accuracy 

score and confusion matrix.  
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  The accuracy score is the ratio of the number of correct predictions and the total number of 

predictions calculated by the algorithm. A confusion matrix is an N x N matrix used for evaluating 

the performance of a classification model, where N is the number of target classes. The matrix 

gives a holistic view of what kinds of errors it is making. Table 3-2 shows the structure of the 

confusion matrix for two types of classes (scenario one). In Table 3-2, the columns represent the 

actual values of the target variable, and the rows represent the predicted values of the target 

variable. In the confusion matrix, TP (true positive) and TN (true negative) show the number of 

data points correctly clustered by the algorithm, and FP (false positive) and FN (false negative) 

show the number of data points falsely predicted by the algorithm. Tables 3-3 and 3-4 show the 

accuracy of the clustering algorithms used in the developed framework for scenarios one and two 

for different events. 

 

Accuracy score =
Number of correct predictions

Total number of predictions
                                                      (10) 

 

Table 3-2: The structure of confusion matrix                                                              

Positive Negative 

Positive TP FP 

                Negative FN TN 

 
 

 As Table 3-3 shows, in scenario 1, in case of a single level of damage, for data windows of 

10s and 20s, all algorithms could yield the complete accuracy score of 1. In the data window of 5s, 

the only algorithm that could not obtain a complete accuracy score was the agglomerative 

algorithm with two false negative (FN) predictions, which could be negligible. 
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Table 3-3: The accuracy performance of different clustering algorithms for different sizes of the 

event in case of existing one level of damage 
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Table 3-4: The accuracy performance of different clustering algorithms for different sizes of the 

event in case of existing two levels of damage 
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As Table 3-4 shows, in the case of more than one damage level, most algorithms’ accuracy 

scores were decreased. The only algorithm with the acceptable accuracy score of 1 in a case of 

existing different damage classifications in other data windows (5s, 10s, and 20s) was the DBSCAN 

algorithm which could classify all the data points in their associated clusters. 

 

3.10. Sensor Failure Analysis Module 
 

The developed sensor failure analysis module can be used to detect the sensor failure using a 

correlation matrix. We used RMS data, calculated in section 9.2, to evaluate the correlation 

between the variables on each axis of accelerometer sensors. As shown in Figure 3-24, a heat map 

plot was used to explain the correlation among the variables of each sensor. We evaluated the 

correlation of RMS acceleration data in X, Y, and Z directions, captured by the sensors placed on 

the same type of element. Therefore, the outputs of sensors attached to the walls and floors were 

compared to calculate their correlation. Correlation ranges from -1 to +1. Values closer to zero 

mean there is no linear trend between the two variables. The correlation coefficient close to 1 

indicates that the data are more positively correlated. The diagonals are all yellow because those 

squares correlate each variable to itself (so it is a perfect correlation). The larger values are shown 

in lighter colors and indicate higher correlation between the two variables. The plot is also 

symmetrical about the diagonal because the same two variables are paired together in those squares. 
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 Figure 3-24: The heat map plot used to show the correlation between the sensors   

 The purple cells in the heat map plot (Figure 3-24) mean there is no correlation between 

the sensor data. For example, as Figure 3-24 shows, there is no correlation between sensor number 

4 and sensors 2 and 3. Table 3-5 shows the correlation between pairs of associated sensors. 

According to Table 3-5, the checkmark means the sensors’ data are correlated, and the cross mark 

means there is no correlation between them.  
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Table 3-5: The correlation between different sensors 

Sensors Combination RMS (X) RMS (Y) RMS (Z) 

Sensor 1 _ Sensor 7 
   

Sensor 1 _ Sensor 5    
Sensor 1 _ Sensor 8 

   
Sensor 2 _ Sensor 6 

   
Sensor 2 _ Sensor 3 

   

Sensor 3 _ Sensor 4    
Sensor 2 _ Sensor 4    
Sensor 3 _ Sensor 6 

   

Sensor 4 _Sensor 6    
Sensor 5 _ Sensor 8    
Sensor 5 _ Sensor 7    
Sensor 7 _ Sensor 8 

   
 

 As Table 3-5 shows, there is no correlation between sensors 3-4, 2-4, and 6-4 (attached to 

the module’s wall) and sensors 1-5, 8-5, and 7-5 (attached to the module’s floor) in all directions, 

and there is no correlation between sensors 2-3, and 6-3 in the Z direction. Thus, we can conclude 

that sensors 4 and 5 failed in all directions (XYZ) and sensor number 3 failed only in the Z 

direction. The sensor failure analysis module can help SHM engineers find failed sensors quickly 

to exclude their data in the data analysis. 

3.11. Discussion 
 

Structural damages may occur because of transportation-induced vibration forces, which 

can lead to misalignment issues and continuity disruption in the building envelope, causing project 

delays and cost increase because of additional reworks, modifications, and substantial air leakage 

and moisture deposition, thereby creating long-term durability, mold problems, and heat loss 

respectively. This paper introduced a novel semi-automated data-driven monitoring system, 
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particularly for monitoring prefabricated building modules during their transportation, to ensure 

their structural integrity before their installation.  

In terms of the size of the hardware system, the developed sensing system (set up in a 

protection box) can be attached to different parts of actual prefabricated building modules to track 

and monitor their structural behavior against the road and driver-induced vibrational forces during 

transportation to the site. The MPU6050 accelerometer was selected for the system, which is 

designed for low power, low cost, and high-performance requirements. The system can measure 

the modules’ acceleration in XYZ directions and store the measurements in an embedded SD card 

during transportation. The SD card module was preferred over wireless-based, remote-sensing 

monitoring for two reasons. First, in case of structural damage occurring on prefabricated modules 

during transportation, the truck drivers cannot safely stop their vehicles on the road, and repairing 

the modules is impossible in transit. Second, it is much more cost-effective than wireless systems. 

Using an onboard card data storage module (in this case, using an SD card) is more practical and 

less costly. Therefore, the developed hardware system is efficient in monitoring prefabricated 

building modules in terms of size and power.  

The developed system integrates the sensing system and machine learning technology to 

monitor the structural behavior of prefabricated building modules in a semi-automated manner. As 

we mentioned earlier, although structural damages (minor or major) might occur during 

transportation, few studies have examined this occurrence. In our current study, we selected the 

Python programming language to analyze data because of its simplicity, speed, and the availability 

of effective machine learning libraries and frameworks. After creating databases and preprocessing 

the acceleration data, we selected the RMS parameter as the damage-sensitive feature. The reason 

for choosing the RMS parameter over other common parameters such as acceleration frequency 
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was the sensitivity of RMS acceleration against minor structural damages usually hidden in the 

prefabricated modules. Modal parameters identification leads to a loss of information compared 

with the raw data and can erase any small changes caused by structural damage. We used the PCA 

algorithm to reduce dimensionality and remove the environmental effects for better visualization 

and damage classification and extract critical information from the data. As shown in Figure 3-25, 

PCA could make the damage detection and classification processes significantly easier. In scenario 

3, where there were three levels of damage, as shown in Figure 3-25[a], damage identification and 

classification were not easily possible based on the initial RMS data point plot, whereas after the 

PCA process, different levels of damage could be visualized easily. Thus, RMS acceleration has 

been used as a practical damage-sensitive feature in transportation-induced vibration monitoring, 

and the PCA algorithm has been utilized in the data analysis module for an easier and more efficient 

damage detection and classification process.  

 

 

 

 

 

 

 

(a) Initial RMS data points                                                    (b) PCA Data 

Figure 3-25: The data points plot before and after PCA 
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The output of PCA was used as input to the machine learning algorithms. The reason for using k-

means, mean shift, agglomerative, and DBSCAN unsupervised clustering algorithms in this study 

was their application and popularity in SHM studies and projects (Bouzenad et al., 2019; Entezami 

et al., 2020; Agarwal and Reddy, 2020; Azimi et al, 2020, Andrade et al, 2020; Pang et al, 2020; 

Hamishebahar et al, 2020; Huang et al., 2019; Chen et al., 2018; Perera et al, 2019; Bull et al., 

2018). After optimizing the clustering parameters, k (number of clusters) for the k-means and 

agglomerative algorithms using the elbow method and Silhouette Index (SI), quantile for the mean 

shift algorithm, and minPts and eps for the DBSCAN algorithm by trial-and-error method, the 

algorithms’ accuracy was evaluated based on intentional simulated damage labels. After analysis, 

it was found that density-based clustering such as the DBSCAN algorithm could classify different 

damage levels based on density levels. Because of random vibration production and unexpected 

road conditions, we found that the shape of clusters might be arbitrary, which can be 

distinguishable by density-based clustering, whereas partition-based and hierarchical clustering 

techniques are highly efficient with typical clusters. Figure 3-26 shows the high classification 

accuracy of the DBSCAN clustering algorithm. Figure 3-26 (a) shows the classification output of 

the DBSCAN algorithm on scenario 3 data, and Figure 3-26 (b) shows the classification based on 

the actual damage labels. As shown, DBSCAN could assign the data point in its correct cluster 

(cluster number 1), although it is further from other cluster members, which shows the high 

classification accuracy of the DBSCAN algorithm in this case. This result has been observed in the 

accuracy score and confusion matrix analysis in which the DBSCAN algorithm yields the full 

accuracy score in the case of more than one level of damage compared to other algorithms. 

Therefore, the accuracy score and confusion matrix have proven effective methods for comparing 

different types of clustering techniques to identify the algorithm with the highest classification 

accuracy. 
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(a) DBSCAN clustering                                        (b) Real Classification (PCA) 

Figure 3-26: The high accuracy of DBSCAN clustering  

  According to Table 3-4, six monitoring modules (out of eight) could successfully measure 

and store acceleration data (with a sampling rate of 125 Hz) during transportation. When erroneous 

data produced by one kind of sensing unit out of a pair that result in serious consequences to the 

system operations and data analysis, identifying the faulty sensor plays an essential role in the 

correct functioning of the monitoring systems. On the other hand, identifying which sensor out of 

a pair is faulty can be challenging. Therefore, there is a critical need to detect such failures before 

starting the data interpretation. Most of the previous sensors’ fault detection methods have been 

based on machine learning techniques, but researchers have found that, in this case, machine 

learning techniques are computationally intensive and need large training datasets (Weiss et al., 

2016, Gaddam et al., 2020). The developed sensor failure identification module presented in our 

study effectively detects sensor’s failure by using a correlation matrix between sensors. In this 

developed module, the correlation is considered among sensors placed in the same location and the 

sensors attached to the same components such as walls and floors. A sensor failure happens if there 

is no correlation between a pair of sensors installed in the same area. Because the elements of a 

prefabricated module experience almost the same vibrational force during transportation, the 
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developed module also investigates the correlation among sensors installed in different positions 

on a component (e.g., wall or floor) to compare the correlation between a sensor to all other sensors 

to identify the faulty one. Another benefit of this module is its integration with the developed 

framework, which works as a part of the system.  

  Our study introduced a multi-functional data-driven SHM system to monitor the structural 

behavior of individual building modules during transportation to detect any possible damages after 

the delivery. However, we note the following limitations to our study:   

1. The system developed here was tested with a limited number of sensors (two sensors on 

a wall and two on each module’s floor). The system can also be expanded to use different 

sensors for other purposes, such as strain sensors to monitor the deformation of structural 

elements. The developed system should be tested further on more prefabricated modules 

with a larger number and multiple types of sensors. 

2. The developed monitoring system was tested on only two prefabricated individual 

modules transported by the same truck. Because the transportation-induced damages on 

prefabricated modules are inevitable, as observed in our visit to the factory site, more tests 

on prefabricated modules of different sizes should be conducted to validate the developed 

system on units with some actual structural damages. 

3. The three damage scenarios used in our research were hypothetical to simulate different 

possible intensities of structural damage (low, medium, and high) on prefabricated 

building modules during transportation using amplification factors. However, more 

monitoring tests need to be conducted on prefabricated modules to find actual damaged 

data. 
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4. In our study, we searched for the optimum values of the following parameters for mean 

shift and DBSCAN clustering using the trial-and-error method to determine the most 

suitable predictions. An optimization technique is required to find the optimum clustering 

parameters’ values automatically. However, because most of the building modules are 

prefabricated with the same size in modular building construction projects and transported 

to the site with the same configuration of temporary supports on the truck, the optimum 

values for the clustering algorithm for the same road profile can be used for other building 

modules. 

 

3.12.  Conclusion 
 

       Monitoring the structural integrity of prefabricated building modules during transportation 

is critical for manufacturers and owners to ensure that modules are delivered safely to the site. The 

main purpose of this research was to develop a data-driven monitoring system to monitor the 

structural condition of individual building modules during transportation to detect possible 

damages caused during their delivery. For this purpose, a system, which consists of two main 

components (DAQ and data analysis components), was developed. The system used acceleration 

data and unsupervised clustering techniques to detect and classify damaged and undamaged data. 

A user-friendly visualization-based method was also integrated into the system to identify sensors 

malfunction. The capability of the developed system was explored via a real case study. 

Based on the study presented here, we made the following conclusions: 

❑ The developed monitoring systems could successfully record the vibration of prefabricated 

building modules during the transportation to the site. 
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❑ Acceleration RMS was used as a practical and effective statistical damage-sensitive feature 

in the developed system. 

❑ PCA was used as a solid and effective data reduction algorithm to remove environmental 

impacts during transportation and make the damage detection and classification process 

more efficient. 

❑ Different clustering algorithms were applied to RMS data during the damage detection 

process, and accuracy score and confusion matrix parameters were used as effective 

parameters to evaluate the performance of these algorithms 

❑ All algorithms could successfully estimate the correct number of clusters (two clusters) and 

appropriately assign data points to their corresponding clusters for one level of damage. 

❑ After detailed analysis using different clustering algorithms, it was found that the DBSCAN 

algorithm yields the complete accuracy score of one in the case of more than one level of 

damage compared to k-means, mean shift, and agglomerative clustering with the accuracy 

score of 0.81, 0.79 and 0.78 respectively. 

❑ Using the sensor failure identification module developed in this study, we identified two 

malfunctioning sensors (numbers 4 and 5), and their data were excluded from the analysis. 

 

Timely modifications of damaged prefabricated modules can prevent problems of additional 

costs and time arising from misalignment issues during the installation phase and problems during 

the operational phase such as air leakage and moisture deposition which can negatively impact the 

performance of building envelope of the modules. The system we developed in our study aims to 

solve the issues that existed in previous studies, such as the size of the monitoring system (which 

is critical in the monitoring of individual prefabricated building modules during transportation), 

the cost and complexity of a model-based approach in the structural damage detection process, the 
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inapplicability of a model-based approach (which is time-consuming and requires detailed 

modeling data), and the possible uncertainties in loading data and temporary support configurations 

(which might affect the outputs of model-based approach in this case).The developed system can 

allow for timely replacement of damaged parts of the prefabricated modules before installation. It 

can also provide evidence to support manufacturers’ insurance claims on repair and modification 

costs and improve customer perceptions of the quality of prefab construction. However, the 

developed system should be tested further on more numbers and types of prefabricated building 

modules with a larger number of sensors to be validated with some real damages rather than 

damages simulated in this study. Moreover, optimized parameters value of some clustering 

techniques, used in this study, should be found automatically by using some optimization technique 

which will be addressed in the feature research. 

 

References 
 

Abdallah, L., and Shimshoni, I. (2014). “Mean Shift Clustering Algorithm for Data with Missing 

Values.” International Conference on Data Warehousing and Knowledge Discovery, 8646, 

ISBN: 978-3-319-10159-0. 

Agarwal, S., Reddy, C. R. K. (2020). “A Comprehensive Study of Clustering Algorithms in Data 

Stream.” International Journal of Engineering Research & Technology (IJERT), 9 (10). 

Alamdari, M. M., Rakotoarivelo, T., and Khoa, N. L. D. (2017). “A spectral-based clustering for 

structural health monitoring of the Sydney Harbour Bridge.” Journal of Mechanical Systems 

and Signal Processing, 87, Part A: 384-400. 

Ali, H. H., and Kadhum, L. E. (2017). “K- Means Clustering Algorithm Applications in Data 

Mining and Pattern Recognition.” International Journal of Science and Research (IJSR), 6(8): 

1577 – 1584. 

Amezquita-Sanchez, J. P., Adeli, H. (2015). “Feature extraction and classification techniques for 

health monitoring of structures.” Sci. Iran. 22:1931–1940. 



88 
 

Anand, S., Mittal, S., Tuzel, O., and Meer, P. (2014), “Semi-Supervised Kernel Mean Shift 

Clustering.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(6): 1201 – 

1215. 

Andrade, N. L., Finotti Amaral, R. P.,  Barbosa, F. D. S., and Cury, A. A. (2020). “A hybrid 

learning strategy for structural damage detection.” Structural Health Monitoring, SAGE 

Journal. 

Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., and Inman, D. (2021). “A review 

of vibration-based damage detection in civil structures: From traditional methods to Machine 

Learning and Deep Learning applications.” Journal of Mechanical Systems and Signal 

Processing, 147. 

Azimi, M., Eslamlou, D. A., and Pekcan, G. (2020). “Data-Driven Structural Health Monitoring 

and Damage Detection through Deep Learning: State-of-the-Art Review.” Sensors, 20, 2778. 

Bagchi, A., Humar, J. and Noman, A. (2007). “Development of a Finite Element System for 

Vibration Based Damage Identification in Structures.” Journal of Applied Sciences, 7(17): 

2404-2413. 

Boadu, E. F., Wang, C. C., and Sunindijo, R. Y. (2020), “Characteristics of the Construction 

Industry in Developing Countries and Its Implications for Health and Safety: An Exploratory 

Study in Ghana.” Int. J. Environ. Res. Public Health, 17, 4110. 

Bouzenad, A. E., Mountassir, M., Yaacoubi, S., Dahmene, F., Koabaz, M., Buchheit. L., and Ke, 

W. (2019). “A Semi-Supervised Based K-Means Algorithm for Optimal Guided Waves 

Structural Health Monitoring: A Case Study.” Inventions, 4, 17. 

Brownjohn, J. M. W., Omenzetter, P., and Moyov, P. (2005). “Data Mining and Visualisation for 

Anomaly Detection and Diagnosis in Civil Structures.” 23rd International Modal Analysis 

Conference, At Orlando, USA. 

Bull, L., Worden, K., Manson, G., and Dervilis, N. (2018). “Active learning for semi-supervised 

structural health monitoring.” Journal of Sound and Vibration, 437: 373-388. 

Catbas, F. N., Kijewski-Correa, T., and Aktan, A. E. (2011). “Structural Identification (ST-Id) of 

Constructed Facilities.” American Society of Civil Engineers (ASCE) Structural Engineering 

Institute (SEI). 

https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Piazzaroli+Finotti+Amaral%2C+Rafaelle
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Souza+Barbosa%2C+Fl%C3%A1vio+de
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Abrah%C3%A3o+Cury%2C+Alexandre


89 
 

Chen, W., Hu, X., Chen, W., Hong, Y., and Yang, M. (2018). “Airborne LiDAR Remote Sensing 

for Individual Tree Forest Inventory Using Trunk Detection-Aided Mean Shift Clustering 

Techniques.” Remote Sensing 10(7):1078. 

Clayman, C., Srinivasan, S. M., and Sangwan, R. S. (2020), “K-means Clustering and Principal 

Component Analysis of Microarray Data of L1000 Landmark Genes.” Complex Adaptive 

Systems Conference with Theme: Leveraging AI and Machine Learning for Societal 

Challenges, Procedia Computer Science 168: 97–104. 

Da Silva, S., Junior, M. D., and Junior, V. L. (2007). “Damage Detection in a Benchmark Structure 

Using AR-ARX Models and Statistical Pattern Recognition.” J. of the Braz. Soc. of Mech. Sci. 

& Eng, XXIX(2): Pages:174-184. 

Deng, D. (2020). "DBSCAN Clustering Algorithm Based on Density." 2020 7th International 

Forum on Electrical Engineering and Automation (IFEEA): 949-953. 

Diez, A., Khoa, N. L. D., Alamdari, M. M., Wang, Y., Chen, F., and Runcie, P. (2016), “A 

clustering approach for structural health monitoring on bridges.” J Civil Struct Health Monit, 

6:429-445. 

Ding, Y., Sun, P., Wang, G., Song, Y., Wu, L., Yue, Q., and Li, A. (2014). “Early-Warning Method 

of Train Running Safety of a High-Speed Railway Bridge Based on Transverse Vibration 

Monitoring.” Hindawi Publishing Corporation, Shock and Vibration, 2015. 

Duan, Z., and Zhang, K. (2006). “Data Mining Technology for Structural Health Monitoring.” 

Pacific Science Review, 8: 27-36. 

EnDAQ, (2021), Retrieved from                                                             

https://endaq.com/collections/endaq-shock-recorders-vibration-data-logger-sensors. 

Entezami, A., Sarmadi, H., and Saeedi Rzavi, B. (2020). “An innovative hybrid strategy for 

structural health monitoring by modal flexibility and clustering methods.”, Journal of Civil 

Structural Health Monitoring, 10: 845–859. 



90 
 

Entezari, H. O., Ghalehnovi, M., and Entezami, A. (2018). “Early damage detection in structural 

health monitoring by a sensitivity method and DBSCAN clustering.” 6th International 

Conference on Acoustics & Vibration (ISAV2016) At: K. N. Toosi University of Technology, 

Tehran, Iran. 

Freight Insurance Coverage Terms & Conditions. (2003). Retrieved 1 9, 2014, from panfins: 

http://www.pafins.com/freightinsurancecoverage.htm. 

Gaddam, A., Wilkin, T., Angelova, M., and Gaddam, J. (2020), “Detecting Sensor Faults, 

Anomalies and Outliers in the Internet of Things: A Survey on the Challenges and Solutions.” 

Electronics, 9, 511. 

Global Infrastructure Hub. (Dec 2020). “Prefabrication of Building Parts and Modular 

Construction.”, Retrieved from https://www.gihub.org. 

Godbole, S., Lam. N., Mafas, M., Fernando, S., Gad. E., and Hashemi, J. (2018). “Dynamic loading 

on a prefabricated modular unit of a building during road transportation.” Journal of Building 

Engineering, 18: 260-269. 

Gupta, G., Asiz, A., and Smith, I. (2008). “Structural Performance of Prefabricated Wood Building 

during Handling and Transportation.” Proceeding of the 10th World Conference on Timber 

Engineering, June 2-5, Miyazaki. Japan. 

Hamishebahar, Y., Li, H. Z., and Guan, H. (2020) “Application of Machine Learning Algorithms 

in Structural Health Monitoring Research.” EASEC,16: 219-228. 

Han, J., Kamber, M., and Pei, J. (2012). “Data Mining Concepts and Techniques.” Third Edition, 

Morgan Kaufmann Publishers.  

Horvat, M., Jovic, A., and Burnik, K. (2021). “Assessing the Robustness of Cluster Solutions in 

Emotionally-Annotated Pictures Using Monte-Carlo Simulation Stabilized K-Means 

Algorithm.” Journal of Machine Learning and Knowledge Extraction, 3: 435–452. 

Huang, F., Chen, Y., Li, L., Zhou, J., Tao, J., Tan, X., and Fan, G. (2019). “Implementation of the 

parallel mean shift-based image segmentation algorithm on a GPU cluster.” International 

Journal of Digital Earth, 12(3). 

http://www.pafins.com/freightinsurancecoverage.htm
https://www.sciencedirect.com/science/article/abs/pii/S2352710218300196#!
https://link.springer.com/book/10.1007/978-981-15-8079-6


91 
 

Innella, F., Bai, Y., and Xhu, Z. (2020). “Acceleration responses of building modules during road 

transportation.” Engineering Structures, 210: 110398. 

Jafari, M. (2015). “Optimal redundant sensor configuration for accuracy increasing in space inertial 

navigation system.” Journal of Aerospace Science and Technology. 47: 467-472. 

Jolliffe, I. T., and Cadima, J. (2016). “Principal component analysis: a review and recent 

developments.” Philos Trans A Math Phys Eng Sci, 374(2065). 

Karthikeyan, G. B., Manikandan, G., and Thomas, T. (2020). “A comparative study on k-means 

clustering and agglomerative hierarchical clustering.” International Journal of Emerging 

Trends in Engineering Research, 8(5): 1600–1604. 

Li, S., Pan, J., Luo, G., and Wang, J. (2020). “Automatic modal parameter identification of high 

arch dams: feasibility verification.” Earthquake Engineering and Engineering Vibration, 19: 

953–965. 

Lopez, D., and Froese, T. M. (2016). “Analysis of costs and benefits of panelized and modular 

prefabricated homes.” International Conference on Sustainable Design, Engineering and 

Construction, Procedia Engineering, 145: 1291 – 1297. 

Noman, A.S., Deeba, F., and Bagchi. A. (2012). “Health Monitoring of Structures Using Statistical 

Pattern Recognition Techniques.” ASCE J of Performance of Constructed Facilities, 27(5): 

575-584, DOI: 10.1061/ (ASCE) CF.1943-5509.0000346. 

Pang, L., Liu, J., Harkin, J., Martin, G., McElholm, M., JavEd, A., and McDaid, L. (2020). “Case 

Study-Spiking Neural Network Hardware System for Structural Health Monitoring.” Sensors 

(Basel). 20(18): 5126. 

PATH Inventory. (2003). “Modular Multiple Dwellings, Partnership in Advanced Technology in 

Housing.” Washington, DC, 2. 

Perafan-Lopez, J. C., and Sierra-Perez, J. (2021). “An unsupervised pattern recognition 

methodology based on factor analysis and a genetic-DBSCAN algorithm to infer operational 

conditions from strain measurements in structural applications.” Chinese Society of 

Aeronautics and Astronautics& Beihang University, 34 (2): 165-181. 

https://link.springer.com/journal/11803
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570929/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570929/


92 
 

Perera, R., Torres. L., Ruiz, A., Barris, C., and Baena, M. (2019). “An EMI-Based Clustering for 

Structural Health Monitoring of NSM FRP Strengthening Systems.” Sensors (Basel), 19(17): 

3775. 

Posenato, D., Kripakaran, P., Inaudi, D., and Smith, I. F. C. (2010). “Methodologies for model 

free data interpretation of civil engineering structures.” Computers & Structures, 88(7-8), 

467–482. 

Salem, N., and Hussein, S. (2019). “Data dimensional reduction and principal components 

analysis.” 16th International Learning & Technology Conference,  

Procedia Computer Science, 163: 292-299. 

Santos, A., Figueiredo, E., and Costa, J. (2015). “Clustering studies for damage detection in 

bridges: A comparison study.” In Proceeding of 10th International Workshop on Structural 

Health Monitoring: 1165–1172, Stanford University, Stanford, CA-USA, Sep 2015 

Santos, A., Silva, M., Santos, R., Figueiredo, E., Sales, C., Joao, C. (2016). “Output-only structural 

health monitoring based on mean shift clustering for vibration-based damage detection.” 8th 

European Workshop on Structural Health Monitoring (EWSHM 2016), Spain, Bilbao. 

Shi, P., Zhao, Z., Zhong, H., Shen, H., and Ding, L. (2020). “An improved agglomerative 

hierarchical clustering anomaly detection method for scientific data.” Concurrency and 

Computation: Practice and Experience, 33(6). 

Shukla, S., and Naganna, S. (2014). “A Review on K-means Data Clustering Approach.”, 

International Journal of Information & Computation Technology, 4 (17): 1847-1860. 

Silva, M., Santos, A., Santos, R., Figueiredo, E., Sales, C., Joa, C. (2016). “A structural damage 

detection technique based on agglomerative clustering applied to the Z-24 Bridge.” 8th 

European Workshop on Structural Health Monitoring (EWSHM 2016), Spain, Bilbao. 

Smarsly, K., Dragos, K., and Wiggenbrock, J. (2016). “Machine learning techniques for structural 

health monitoring.” 8th European Workshop on Structural Health Monitoring (EWSHM 2016), 

5-8 July 2016, Spain, Bilbao. 

https://www.sciencedirect.com/science/journal/18770509/163/supp/C
https://onlinelibrary.wiley.com/journal/15320634
https://onlinelibrary.wiley.com/journal/15320634
https://onlinelibrary.wiley.com/toc/15320634/2021/33/6


93 
 

Smith, I., Asiz, A., and Gupta, G. (2007). “High Performance Modular Wood Construction 

Systems.” Final Report, Value to Wood Program, Project UNB5, Natural Resources Canada, 

Ottawa, Canada, pp. 80. 

Splittgerber, H. (1978). “Effect of Vibration on Building and Occupants of Buildings.” Conference 

on Instrumentation for Ground Vibration and Earthquakes, 147-152, Institution of Civil 

Engineers, London, UK. 

Sun,Y., Wang, J., Wu, J., Shi, W., Ji, D., Wang, X., and Zhao, X. (2020). “Constraints Hindering 

the Development of High-Rise Modular Buildings.”, Appl. Sci. 2020, 10, 7159. 

Syakur, M. A., Khotimah, B. K., Rochman, E. M., and Satoto, B. D. (2018). “Integration K-Means 

Clustering Method and Elbow Method for Identification of The Best Customer Profile 

Cluster.” IOP Conference Series: Materials Science and Engineering. 

Valinejadshoubi, M., Bagchi. A., and Moselhi, O., (2018a). “Development of a BIM-Based Data 

Management System for Structural Health Monitoring with Application to Modular Buildings: 

A Case Study.” ASCE J of Computing in Civil Engineering, 33(3), 05019003. 

Valinejadshoubi, M., Bagchi, A., & Moselhi, O. (2017). “Managing structural health monitoring 

data using building information modelling.” In SMAR 2017, the Fourth international 

conference on smart monitoring, assessment and rehabilitation of civil structures, (September 

13-15, 2017). 

Valinejadshoubi, M., Bagchi, A., Moselhi, O., and Shakibaborough, A. (2018b). “Investigation on 

the potential of building information modeling in structural health monitoring of buildings.” 

CSCE annual conference, June, Fredericton, NB (GC-136). 

Weiss, B., Helu, M., Vogl, G., Qiao, G. (2016). “Use Case Development to Advance Monitoring, 

Diagnostics, and Prognostics in Manufacturing Operations.” IFAC-PapersOnLine 49(31), pp: 

13-18. 

SpotSee. (2021). “Impact Sensors, Impact Monitors and Shock Sensors.” Retrieved from 

www.spotsee.io. 

Yuan, C., and Yang, H. (2019). “Research on K-Value Selection Method of K-Means Clustering 

Algorithm.”, Multidisciplinary Scientific Journal, 2(16): 226-235. 

https://iopscience.iop.org/journal/1757-899X
http://www.spotsee.io/


94 
 

Zhou, Y., Maia, N. M. M., Sampaio, R. C., and Wahab, M. A. (2016). “Structural damage detection 

using transmissibility together with hierarchical clustering analysis and similarity measure.” 

Structural Health Monitoring 21(6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



95 
 

Chapter 4: Development of a BIM-Based Data Management System for 

Structural Health Monitoring with application to Modular Buildings: A Case 

Study  
 

General  

In this chapter, the published paper is presented as is, followed by an updated literature review 

section. This paper was accepted and published in the Journal of Computing in Civil Engineering 

in 2019*. The main objective of this paper is to develop an automatic workflow to integrate BIM 

into the SHM process to increase the speed and efficiency of structural condition assessment. 

 

Abstract 
 

Modular buildings or off-site construction of building units are increasingly gaining momentum. 

Although such construction practices have advantages in terms of cost competitiveness and 

delivery time, they have many issues related to structural integrity and secondary stresses from 

vibration during transit and misalignment during installation. Therefore, monitoring the vibration, 

strain, and deformation of the modules using structural health monitoring (SHM) techniques is 

important. The primary purpose of this study is to explore building information modeling (BIM) 

techniques to facilitate effective data management and the representation of sensory components 

of the SHM system in a building and to render or visualize the damage or distress in building 

components based on the interpretation of sensor data. The proposed framework consists of two 

main modules: (1) an automated sensor-based data acquisition and storage module, which extracts 

sensor data for a structure from a corresponding relational database; and (2) an automated data and  

_______________________________________________________ 

* Valinejadshoubi. M, Bagchi. A, and Moselhi. O, (2019), Journal of Computing in Civil 

Engineering, Vol. 33, Issue 3, Pages 1-16 
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damage visualization module, through which sensor data are interpreted to identify damage or 

anomalies in the structure and the affected building components are highlighted and tagged in the 

BIM of the building to facilitate visualization. The damaged or near-damaged elements of the 

modules are highlighted in the BIM model through color-coding based on predefined threshold 

strain values. Because detecting buckled or yielded steel members (local damages) in a building or 

a module is challenging given that these components are often hidden behind fireproof coating and 

drywall, the proposed SHM-based condition assessment system will contribute—especially in the 

preinstallation and operational phases—to providing efficient, near-real-time health monitoring of 

buildings and increasing the efficiency of the structural condition assessment process. These 

benefits could be particularly useful for modular buildings, for which the modules are constructed 

in a plant and transported to the site for installation. In these stages, a module may undergo hidden 

or visible damage, the installed sensors are expected to provide a mechanism to assess such 

damage, and the entire process can be managed through BIM. Importantly, note that although a 

similar concept was explored by other researchers to integrate SHM with BIM, the present study 

provides a more comprehensive methodology through the complete implementation of the system 

to demonstrate the concept through a case study.   

Keywords: Structural Health Monitoring (SHM), building information modeling (BIM), 

Relational database, Damage visualization, Modular buildings 

 

 

 

 



97 
 

4.1. Introduction 
 

The modular construction process represents the highest degree of industrialization of the 

building construction process, which is currently growing rapidly. Presently, in some construction 

projects, prefabrication/modular construction is approximately 85% (McGraw-Hill Construction, 

2011). Clients’ requirements for rapid construction, improved quality, and early investment returns 

are some of the motivating factors for modular construction.   

Modular steel buildings are usually composed of prefabricated cold-formed steel 

assemblies or modules that are fabricated in a manufacturing plant and then shipped to the 

construction site to be installed to form a building. Compared with hot-rolled steel structures, cold-

formed light steel structures are lighter but more susceptible to structural damage given normal and 

extreme loads (Yang and Bai, 2017). A sufficient understanding of the structural behavior of 

multistory modular buildings subjected to different load types is lacking (Ramaji and Memari, 

2013). Different situations exist that could lead to the failure of a module, such as increased damage 

during erection or transportation. Geometric variability is inevitable and can cause problems in the 

assembly process. A module’s component geometry can change from its original design because 

of problems arising from the manner in which it is handled in the plant, during transportation, and 

at installation (Rausch et al., 2017). The geometric change may lead exceed the tolerance of fit and 

generate secondary stresses at installation, causing further damage.  

From the manufacturing to the operational phase, modules are subjected to different types 

of direct and indirect loads. The modules are required to be designed to withstand fabrication, 

transportation, and installation loads (Naqvi et al., 2014). Predicting the final and capacity of a 

modular building after being transported is difficult and lifting-induced stresses are not entirely 

predictable. Because the structural elements of a module of a building are usually hidden behind 
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the fireproof coatings or drywall, detecting the buckled or yielded steel members (local damages) 

in a module is challenging (Zhang and Bai, 2015). In this context, a useful monitoring tool such as 

SHM is needed for early structural condition assessment and damage detection in specific parts of 

the modules in each phase. SHM systems are ranked as one or a combination of the following SHM 

categories: sensor deployment studies (category 1), anomaly detection (category 2), model 

validation (category 3), threshold check (category 4), and damage detection (category 5), 

(Vardanega et al., 2016). Higher level categories (e.g., categories 4 and 5) have the potential to 

yield significant values to many stakeholders. According to Webb (2014) and Webb et al. (2014), 

most published SHM studies are devoted to categories 1 to 3 and the least to category 4.  

In practice, monitoring the strain response contributes to an assessment of the structural 

condition (Park et al., 2013; Ni et al., 2010, 2008). Continuous monitoring of a real-time dynamic 

strain in a structure can provide valuable information for damage assessments, inspections, and 

decision making. Strain provides information about the local behavior of structural components 

and is one of the most used parameters in SHM. Strain is essential in condition monitoring of 

modular buildings, which can aid in the assessment of damage in structural members in building 

modules at different stages, and helps assess the reliability of structural components. 

Fast and accurate assessment of the structural condition of modules and buildings (modular 

or other) is essential for timely maintenance and repair to avoid project delays, and is important for 

occupant safety and occupancy after extreme load events. The challenge, in general, is an effective 

visualization tool utilizing BIM to make the SHM information easily accessible, understood, and 

applicable (Zhang and Bai, 2015), which could increase the efficiency of the structural condition 

assessment process and facilities management. BIM can be used effectively to capture the real time 

building information that can be used for owners and facility managers to provide accurate and 
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upgraded details on the state of various parts of the building (Chen et al., 2014). BIM combined 

with real-time monitoring of structural health and damage assessment methods could provide a 

robust and intelligent system for managing modern buildings, including the modular building type 

(Seam et al., 2013). However, integrating SHM into the BIM environment has challenges. The 

study run by Rio et al. (2013) revealed that accomplishing a dynamic monitoring system for the 

structural behavior of a building to provide sensor data to BIM is not part of BIM functionality and 

is still a challenge. They concluded that BIM standards need to be extended to allow them to 

represent monitoring-related information. The study by Wang et al. (2017) found that applying 

BIM in SHM can improve the effectiveness of monitoring processes and decision making in 

construction informatics applications. 

Despite its potential benefits, few attempts have been made to integrate BIM into SHM. 

Sternal and Dragos (2016) proposed BIM-based modeling of wireless SHM systems using the 

industry foundation class (IFC) standard. Although they believed that integrating monitoring-

related information into BIM helps categorize, document, and update this information throughout 

the entire life cycle of the monitored structure, it was mentioned at the end that the current IFC 

standard does not provide sufficient entities to holistically model and digitally represent an overall 

wireless SHM system. Theiler et al. (2017) attempted to design a BIM-based prototype SHM and 

control system by using the extended IFC schema. Smarsly and Tauscher (2016) proposed a 

conceptual monitoring information modeling built on the IFC standard. Although the authors 

defined a semantic model to extend the existing IFC 4 standard for digital representation of 

monitoring-related information, the paper was conceptual and did not include implementation or 

validation. Del Grosso et al. (2017) attempted to explore the idea of integrating 6D digital models 

with SHM systems, but the study mainly focused on creating and modeling the sensor system in 

the BIM software application and did not provide the linkage to sensor data or facilitate 
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visualization. Although the authors of this study discussed the state of the art of the current and 

potential relationship between SHM and BIM, they believed that the topic is not explored 

well and needs further investigation. Additionally, it was noted that no preferred workflow exists 

to inform the BIM model with SHM and interpreted data regarding elements of the project. A 

preliminary scheme for utilizing BIM to manage SHM data for buildings was developed in 

Valinejadshoubi et al. (2018c, 2017). BIM was also effectively used in thermal comfort monitoring 

(Valinejadshoubi et al., 2018b) and the assessment of the seismic risk of non-structural components 

in buildings (Valinejadshoubi et al., 2018a). 

Although BIM is desired as a dynamic workbench for managing all data related to a 

building project, connectivity between BIM and SHM is lacking. The full integration between 

virtual and physical sensors, connecting and inserting sensor data remotely into an external 

database through Internet of Thing (IoT) technology, and applying a three-dimensional (3D) 

visualization-based alarm system for SHM projects have not been adequately addressed in previous 

studies, and the BIM approach has not yet been fully applied and validated for SHM purposes. To 

address some of these issues, in the present study, a novel integrated system is developed for 

structural condition monitoring of building components. SHM data are stored in the database and 

automatically accessed by the BIM model, and the conditions of the relevant building elements are 

calculated and mapped on the BIM model to visualize the overall state of the structure. The main 

purpose of this study is to create a mechanism for a BIM model of a building or module to represent 

and access sensor data, run a data interpretation or damage assessment process, and map it on the 

corresponding building components. Doing so would facilitate an effective visualization capability 

for a rapid and efficient structural condition assessment based on the SHM data. The proposed 

framework can be applied by engineers and facility managers to interpret and assess the ongoing 

condition of modules during the transportation, installation, and operational phases, to identify 
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hidden damages, and to replace the damaged parts by providing and managing updated monitoring 

data in a rapid manner to promote timely repair.   

 

4.2. BIM and its Role in the Modular Building Construction  
 

          Presently, the architectural, engineering, and construction (AEC) industries have been 

seeking an effective tool for reducing the cost and completion time of projects and increasing their 

productivity and quality (Azhar et al., 2008). BIM has significantly altered the 

way that building information is managed by the AEC industry. BIM incorporates digital modeling 

software to design and manage a project more efficiently (Nassar, 2010) and provides powerful 

new value to construction firms. BIM breaks down the barriers between 

disciplines by encouraging the sharing of knowledge throughout a project’s lifecycle. BIM 

improves constructability and shortens a project’s completion time. In a BIM project, multiple 

documents are not used in traditional ways; instead, they are digitized and added to a database in 

BIM software. All information is built into an intelligent BIM model instead of needing to look at 

separate drawings, schedules, and specifications for the information on a particular element. 

BIM is an organized collection of building data. Regarding BIM, everything begins with a 

3D building model. This model has more than just simple geometry added to it for visualization. 

A true BIM model consists of the virtual equivalent of actual building sections. These intelligent 

elements are the digital prototype of the physical elements, including walls, columns, windows, 

doors, specialty equipment, and others. The model allows us to simulate the building and 

understand its behavior before actual construction begins. Of course, the most basic BIM model is 

used to create realistic visualizations of the planned building. As previously mentioned, the data in 

a BIM model are not only used during the design and construction phases of the building project 
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but also throughout the building’s life cycle. The building-related data can be easily archived in 

the BIM model for such things as future usage, analysis, retrieval, and maintenance.  

Because modular construction has an additional manufacturing stage relative to 

conventional construction, utilizing BIM as a powerful information management tool is required. 

A current issue of offsite construction has been perceived as a process lacking flexibility in design. 

BIM can partially address this limitation by providing access to a vastly broader range of 

constituent parts in various levels of detail, from the micro level of an individual fastener to the 

macro level of a volumetric component (Patlakas et al., 2015). BIM can be used for proper 

information exchange between different disciplines, which is a fundamental need in 

multidisciplinary projects such as modular building projects. Data-rich models such as BIM can be 

used effectively by other members of the design team to coordinate the fabrication of a building’s 

different systems (Nawari, 2012). BIM can be used in effective simulation and visualization of a 

building and its components in digital forms, which are useful for accurate planning of onsite 

module installations and can resolve any spatial constraints (Han et al., 2011). Due to the large 

number of elements in modular structures, an automated system is needed for visualizing and 

monitoring the structural condition of elements in modules in each phase of the project.  

 

4.3. SHM in Modular Buildings 
 

A modular building is erected by assembling individual modules. Every module is a 

primary rectangular frame made of steel or wood frames. The modular units are stacked on top of 

and or next to one another through a connector at every joint. Two types of connections—vertical 

(column to column) and horizontal—are used in modular building construction.  
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Potential failure modes in modular buildings include structural component failures within a 

modular frame and connection failures at the modular joints. Regarding component failures, corner 

posts buckling or load-bearing studs and bending of columns/beams may occur. Regarding 

connection failures at the joints, modular units become separated, which reduces their axial 

stiffness to zero, causing a critical situation concerning the overall integrity of the entire system. 

Local connection failure (LCF) occurs due to excessive concentrated force on the connection 

region, causing complications in the load transfer path. Different types of loads, such as 

manufacturing, transportation, installation, and operation, are applied to the modules. Any damage 

to the modules before installation may affect the operational performance of the same. Hence, the 

modules must be erected without any hidden damage. SHM can be applied for early and rapid 

structural condition assessment and damage identification of building modules during every phase 

to assist engineers in deciding on rehabilitation measures when the module’s components 

experience unexpected changes in excessive deformation, deflection, and strain.   

SHM system design is developed based on failure modes. It is advantageous for modules’ 

components to be equipped with SHM systems as they are being manufactured. Particular care 

should be taken regarding the installed sensors on the elements from 

roughness-induced vibration forces during transportation. Different types of sensors can be applied 

in the SHM of the modules. For instance, linear variable displacement transducer (LVDT)/ 

ultrasonic sensors are used to measure critical structural deformation (serviceability) and the 

module separation at the connection region (LCF). Moreover, strain gauges are used to measure 

the real-time strain on critical structural members in the modular system. 
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4.4. Determining the Locations of Strain Sensors  
 

Modules can be made from light gauge/cold-formed steel or hot-rolled steel such as pipe 

chassis. However, compared with hot-rolled steel modules, cold-formed light steel modules are 

more susceptible to deformation and buckling due to applied loads.  

The level of strain in structural elements serves as a significant indicator of the level of 

deformation and damage in the structural and non-structural elements. Considering this fact, SHM 

systems often employ strain gauges to measure strains in critical components. Modular 

construction projects are more complex than conventional ones given the additional manufacturing 

and transportation processes. Therefore, in addition to operational load, the building modules are 

subjected to manufacturing, transportation, and installation loads that make their structural 

elements more susceptible to damage or excessive deformations. For instance, transportation and 

handling of modules is an important part of the overall life of the modules when they experience 

high mechanical loads. To identify vulnerable and critical elements, a detailed and accurate 

structural analysis is needed for each phase for typical modules. 

For example, the force from vibrations during the transportation of modules can be 

simulated in a finite element (FE) model of individual modules to identify their critical elements 

that could be damaged given road-induced vibration. For this purpose, random vibration data can 

be used to simulate field and transportation conditions. Random vibration is typically described by 

power spectral density (PSD) curves of average acceleration intensity in the frequency domain. 

Different transport vehicles can be related to different PSD shapes and amplitudes. In North 

America, modules are commonly transported by road (using tractor-trailers). The ASTM D4169 

Truck Profile [ASTM D4169 (ASTM, 2016)] is among the most widely used road-induced 

vibration profiles for general simulation and random vibration tests in laboratory experiments. In 
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such cases, the vibration test on a truck is performed at a single intensity level (e.g., Assurance 

Level II) for the entire test duration. The recently updated version of the standard [ASTM 

D4169 (ASTM, 2016)] recommends the use of three different intensity levels: low, medium, and 

high, corresponding to the 90th, 95th, and 99th percentile intensities. Figure 4-1 shows the PSD 

levels for different frequencies according to the ASTM D4169 standard, which is typically used 

for performance testing of shipping containers and systems. The typical PSD units are acceleration 

[G^2/Hz] versus frequency [Hz]. Note that the amplitude is actually [GRMS^2/Hz], where RMS = 

root-mean square. The RMS notation is typically omitted for brevity. GRMS is used to define the 

overall energy or acceleration level of random vibrations. In Figure 4-1, profiles 1 to 3 correspond 

to low-, medium-, and high-level PSD levels, respectively. 

As an example, the FE model of an industrial pipe chassisc module (hot-rolled steel 

module) used by Shahtaheri et al. (2017) has been developed here using Autodesk’s Simulation 

Mechanical. 

 

Figure 4-1: Random Vibration Profiles of Trucks (ASTM D4169 Truck Assurance Levels 1 to 3) 
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To simulate the transportation vibration forces, high PSD level, and its corresponding 

frequencies as given in Figure 4-1 were applied to the developed FE model. Figure 4-2 shows the 

FE model of a pipe chassis module. The arrangement of the temporary supports and module 

dimensions are assumed to be the same as that used in Shahtaheri et al. (2017). As shown in Figure 

4-2, the most critical elements with the highest displacement should be monitored during the 

transportation phase. Although the maximum displacement obtained from the analysis is found to 

be very small (approximately 0.26 mm), in the case of a light gauge/cold formed steel module, it 

could be much larger. In contrast, uncertainties such as temporary support configuration, which is 

usually based on experiments rather than objective analysis, might even increase the magnitude of 

the maximum displacement in the structural elements of the module.  

 

(a) The industrial pipe chassis module (Shahtaheri et al., 2017) 

(b) The FE model 

Figure 4-2: A sample of random vibration simulation of a pipe chassis module 
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  Similarly, the structural behavior of modules could be analyzed against manufacturing, 

installation, and operational loads to determine their critical elements in each phase. 

 

4.5. Data Management Challenges in SHM Process 
 

One of the inherent challenges in SHM is high-volume data management. Management of 

all original raw data and all postprocessed data during the entire life cycle of the structure with 

possible size of hundreds of gigabytes can become a problem if all of the original data are to be 

kept for future processing (Rio et al., 2013). In periodic SHM installations, all data are stored onsite 

on a data acquisition (DAQ) unit. Additional computation and storage resources are required for 

continuous monitoring. In most cases, sensors are set at a frequency of 100 Hz and a 16- or 24-bit 

resolution per sample, yielding 26 megabytes of daily volume from a single sensor channel. 

Therefore, setting up network communications between an onsite DAQ system and a remote data 

server is necessary. 

 Efficient storage of SHM data facilitates easy examination and backup. The best approach 

for SHM data storage is storing them in a commercial database system or a database storage system 

from a third party such as MySQL or PostgreSQL. Taking the SHM data files saved in the DAQ 

system and loaded into the database is necessary (Karbhari and Ansari, 2009). 

After collecting and analyzing the data from the DAQ system, SHM measurements need to 

be archived for their protection against data loss and to maintain a chronology record of the 

structures. Given the high volume of data in the SHM process, downsizing 

the data for better management is critical. Jeong et al. (2016) used NoSQL database technologies 

to propose a data management infrastructure framework for bridge monitoring applications.  
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Koo et al. (2011) presented an SHM data management system (SDMS) based on the 

MySQL database management system (DBMS) for efficient data storage, retrieval, and sharing of 

large measurement data sets acquired continuously from SHM systems. However, to solve SHM 

data management issues, a greater need exists for more efficient tools and integrated systems. 

 

4.6. Research Methodology 
 

The proposed framework consists of several modules and submodules. The objective of 

SHM-based condition assessment module is to assess the building modules’ conditions through 

strain sensor data in an automated manner. Depending on the type of sensors, 

different methods can be applied. For example, in the case of strain sensors, the threshold value 

analysis (TVA) method is often employed to detect the exceedance of available threshold strain 

levels. In contrast, accelerometer data are often processed using different signal processing 

techniques in time or frequency domains to determine global parameters such as frequencies and 

mode shapes. By integrating SHM with the BIM model, the detected changes 

in the system properties or the local damage can be mapped on the BIM model and visualized 

dynamically. In the present study, only strain sensors are considered for demonstration purposes. 

Strain sensors can be used to rapidly identify and locate the spot wherein an element exceeds the 

pre-set strain threshold. The system is linked to the BIM model to highlight the damaged elements 

in an automated manner.  

 By linking SHM to BIM, the efficiency and speed of structural condition assessment 

processes can be increased, and the process can potentially help non-engineers interact with the 

building elements and gain an overall sense of the structural condition. Although this system is 

applicable for all types of structures and infrastructures, its uniqueness in modular construction is 
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in its ability to rapidly detect the buckled or yielded steel members (local damages) in a module, 

which are often hidden behind the fireproof coating and drywall at different phases (e.g., 

manufacturing, shipping and installation). 

The developed framework consists of four subcomponents, including an Arduino Uno 

microcontroller (Arduino, Ivrea, Italy) equipped with a strain sensor, an amplifier and Wi-Fi shield 

(sensory system); Autodesk Revit 2017 (BIM software); Dynamo (visual programming 

environment); and SQL Server (database management system). In this framework, two links exist: 

the link between the sensory system and the SQL server and the link between the SQL server and 

the BIM model.  

 First, the BIM model is developed with all elements including the virtual sensor and its 

essential parameters, such as StrainMaxPoint, DamageFlag, Sensor-ID, and others. The BIM 

model is used as a central model to visualize and monitor the strain level remotely produced in 

critical elements. After developing the BIM model, a specific database is designed in a MySQL 

environment to house and update the captured sensors data. DAQ systems such as 

Arduino Uno are coded to remotely send the sensors’ measurements in real time to an external 

database using the Arduino GSM Shield (Arduino, Ivrea, Italy). The Arduino GSM Shield 

connects the Arduino to the Internet using a GPRS wireless network. Before transferring the sensor 

data to MySQL server, a schema (database) table and essential parameters such as Record-ID and 

Sensor-Value are generated for the strain sensor in the database to accommodate the sensor 

information and the sampling data. In this study, only strain value is of concern. When strain sensor 

data are imported into the database, they need to be read by an external tool before processing. For 

this purpose, a visual programming and computational design tool called Dynamo is utilized for 

automation purposes (Dynamo BIM, 2017).   
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To link the MySQL database (physical sensors data) and the BIM model (virtual sensors), 

nine modules were developed and coded in Dynamo to automatically read the strain data stored in 

the database, sort the data, and update the BIM model with the latest real-time sensor data. These 

data were used to send notifications to engineers through their wireless devices, such as personal 

computers or smartphones, enabling them to then take the necessary actions if strain values exceed 

the predefined strain level. The individual steps of the workflow, developed in Dynamo, are 

subsequently described.  

 Once the strain data are read, a module is developed to automatically sort and interpret. 

For example, when strain sensors are used to measure the real-time strain on critical structural 

members in the modular system, the developed module sorts the strain data and obtains the 

maximum strain value in every time interval. Once the strain data are sorted, and the maximum 

strain value is extracted, an additional module then updates the corresponding virtual sensor 

parameter in the BIM model. One or more pre-set strain threshold values can be defined to 

automatically highlight the structural elements in the BIM model to rapidly identify and locate the 

elements for which pre-set threshold strain occurs. In this study, only one threshold is defined. The 

damaged elements for which the strain exceeds the threshold are highlighted in the BIM model to 

generate an alarm signal. The hierarchy of the processing modules is shown in Figure 4-3. 

To illustrate the capabilities of the system developed, a set of strain values is utilized to 

mimic the data produced by a strain sensor. 
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4.7. The System Framework 
 

4.7.1. The Conceptual Framework of Wireless Strain Monitoring System 

 

The DAQ system recommended in this framework consists of strain gauges, a 

microcontroller and its software, an instrumentation amplifier module, a 9V battery, a Wi-Fi shield, 

jumper wires, and a computer with programmable software. 

The system configuration is based on the Arduino Uno open-source microcontroller used 

for onboard data acquisition. The microcontroller is based on the ATmega328P, an Atmel AVR 

processor that can be programmed in a computer using the C language through a Universal Serial 

Bus (USB) port. The microcontroller can sense the environment by receiving input from a variety 

of sensors and can be powered by connecting to a computer with a USB cable, an AC-to-DC 

adapter, or a battery. In this study, a battery is used during monitoring. The Arduino 

board can operate on an external supply of 6 to 20 V. However, if supplied with less than 7V, it 

may be unstable. If using more than 12V, the voltage may overheat and damage the board. 

Therefore, the range should be between 7 and 12V. Hence, a 9V battery is recommended. 

Strain gauges are variable resistors for which the resistance changes when they are stretched 

or compressed along their length. When bonded to a structural element, the resistance 

changes proportionally to the strain of the element depending on the force applied to deform it. 

Although directly reading the voltage change of the bridge of a strain gauge is possible, doing 

so is normally impractical without an amplifier. The maximum voltage change from the strain is 

too small for the digital to analog converter in an Arduino to register. The instrumentation 

amplifier boosts the signal to bring it to a readable range. For this purpose, an instrumentation 

amplifier, such as the INA125P amplifier, should be used when measuring the strain gauge data 

with the Arduino. 
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Figure 4-3: Hierarchy of the steps in this study 

 

The open-source Arduino software (IDE) can program the Arduino Uno to process the raw 

data and extract the results of interest to be transmitted to a central station, thus reducing the 

data communication demand that is particularly suitable for wireless communication in SHM 

systems. Storing a sensor’s data over a cloud-based database server such as an SQL database is 

also possible. Creating a website or another app to read the sensor values in the SQL database and 

track the events according to the threshold values will give considerable power to any SHM project. 

For this purpose, a Wi-Fi shield compatible with the Arduino Uno is recommended. An Arduino 

compatible shield, such as the ESP8266 WiFi Shield, equips the Arduino with the ability to connect 
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to the wireless networks that can be used for Internet of Things (IoT) or WiFi-related projects. 

Monitoring data such as strain values can be stored directly in a MySQL server using the MySQL 

Connector in the Arduino library. The MySQL Connector in the Arduino library can be used to 

connect the Arduino project directly to a MySQL server without using an intermediate computer 

or a web- or cloud-based service. When the strain values are measured and stored in a prebuilt 

MySQL database, they can be analyzed in remote wireless connected devices such as personal 

computers, tablets, or smartphones. An alarm system could be proposed in these devices for rapid 

detection of excessive deformation (plastic deformation) in structural elements for timely repair or 

replacement of the faulty elements. Figure 4-4 illustrates the architecture of a conceptual 

framework of a wireless strain monitoring system. 

 

 

Figure 4-4: The conceptual framework of a wireless strain monitoring system 
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4.7.2. SHM System Modeling in the BIM Model 

 

After developing the BIM model, SHM sensors need to be simulated in the model. A strain 

sensor is modeled and attached to its specified locations in the BIM model. Many different 

categories exist in the BIM objects, such as column, beam, floor, roof, door, window, and 

others. In BIM, each category has its own IFC class name, such as IfcColumn and IfcRoof to name 

a few, and in sensors—IfcSensor and IfcSensorType class names are categorized under the specific 

equipment category. Therefore, sensors in the BIM model must be developed subject to the 

specialty equipment category. 

Different parameters are defined for the strain sensor during modeling: identity data (e.g., 

manufacturer, label, mark, model, cost), phasing, scope, station, and data (StrainMaxPoint, 

DamageFlag). Station parameter is defined to show the exact location of the sensors in the BIM 

model, and the mark parameter is set to link the physical sensors to virtual sensors in the BIM 

model. In fact, the physical sensors’ specific identification (ID) must be assigned to 

each corresponding virtual sensor in the BIM model to link the physical and virtual sensor. 

StrainMaxPoint is the parameter created to accommodate the maximum strain value recorded by 

the strain sensor at each time interval, and DamageFlag is generated to show the structural elements 

condition rate. A building module and a strain sensor modeled in the BIM tool, along with some 

of its defined parameters, are illustrated in Figure 4-5. 
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Figure 4-5: Developing the BIM model and the virtual strain sensor 

 

4.7.3. Defining the Sensor Database Model 

 

To insert the sensed data from a sensor into a database such as MySQL, a schema (database) 

and a table, along with all essential parameters, are to be defined. The table will embody the sensor 

data received from the DAQ system. To prevent users from manually generating the sensor 

database model, two modules are created in Dynamo to draw a schema, producing a table and 

columns in an automated manner. The schema—shmsystem—is defined along with a table called 

strainsensor_1. Three parameters are introduced for the strainsensor_1 table: Record_ID, 

Sensor_Value, and Sensor_Name, where Record_ID constitutes the primary key. Appropriate 

nodes, code blocks, and connections are required to automate this process. The modules developed 

to generate the schema and table in the MySQL database in an automatic sense and to embody the 

strain sensor measurements are illustrated in Figure 4-6.  
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Figure 4-6: Automated generation of a schema and table for the strain gauge in database 

 

Dynamo supports the use of code blocks, elements containing small scripts written in a 

textual programming language such as C++ and Python. These code blocks allow for the generation 

of short algorithms that introduce more complex functionalities that are not possible to be generated 

by other nodes. As shown in Figure 4-6, two code blocks are applied when generating a schema 

and its table, and one code block is employed to create the parameters of the table.  

The database model can be expanded in the case of using strain sensors for multiple 

structural elements, and if a comprehensive database model for the entire sensory system, the 

information on the corresponding structural elements and their condition are required. Figure 4-7 

shows the entity relationship diagram (ERD) of the proposed database model when using multiple 

strain sensors (e.g., four strain sensors) in the system.  
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Figure 4-7: ERD of the SHM System Database 

 

As shown in Figure 4-7, the ERD consists of six entities: Strainsensor_1, Strainsensor_2, 

Strainsensor_3, Strainsensor_4, structural_element, and condition. The relationship among the 

entities shows that a one-to-many relationship exists between strainsensor and structural_element 

entities, and a one-to-one relationship between structural_element and condition entities. 

Therefore, each strain sensor is installed on only one structural element, but a structural element 

may have multiple sensors. Each structural element may also have a condition: undamaged, 

partially damaged, or severely damaged.  
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4.7.4. Connecting to the Database 

 

After generating modules for developing a sensor database model, the module(s) need to 

be connected to another module(s) to be integrated into the database. Consequently, a new module 

needs to be generated for connecting other modules to the MySQL database. In this module, several 

code blocks are involved in inserting server and port number, user id, and password. In fact, this 

module performs as a central module to which all other modules are to be connected. 

 

4.7.5. Extracting Parameters from the BIM Model 

 

Here, a module is generated to retrieve the virtual sensor parameters from the BIM model. 

The sensor parameters need to be obtained to check the latest values of these parameters in the 

BIM model.  

In this module, first, the specialty equipment category is read from the list of categories in 

the BIM model because the virtual strain sensor object is modeled in this category. Next, all 

elements are selected in this category (virtual sensors in the BIM model). Then, the user-defined 

sensor parameters such as StrainMaxPoint and DamageFlag, the values of which are to be 

displayed, are extracted from the BIM model, and shown in one list. 

 

4.7.6. BIM Model to the Database Linkage 

 

After extracting the essential parameters from the BIM model, they need to be linked to the 

parameters in the database already generated for each sensor. This integration is required for any 
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future BIM model updating. A module is developed to connect the parameters extracted from the 

BIM model to the sensor parameters defined in the MySQL database. 

Using this module, the Sensor_Value parameter generated in the MySQL database is linked 

to the StrainMaxPoint parameter generated in the BIM model. Inevitably, the module needs to be 

connected to the modules previously developed. 

 

4.7.7. Automatic Reading of Sensor Values from MySQL Database Server 

 

When a connection was established between the BIM model and the MySQL database 

server, the next step is to automatically read the sensed data from the MySQL database. 

Different nodes are applied and connected to one another for this automatic sensor data 

reading. As previously mentioned, the StrainMaxPoint parameter is generated and assigned to the 

virtual sensor in the BIM model. Consequently, only the maximum strain value at every time 

interval is to be sent to the BIM model to update the StrainMaxPoint parameter of the virtual strain 

sensor. In this module, to find the maximum value of the strain at each time interval, the strain 

values are sorted because, for comparison purposes, only the maximum volume of the strain is 

required. If the maximum strain value is less than the predefined threshold strain value, then the 

structural element is not damaged and remains intact.  

 

4.7.8. Updating the Virtual Sensor Parameter in the BIM Model 

 

After retrieving and sorting the sensed values stored in the MySQL database, the associated 

virtual sensor parameters are updated in the BIM model using a module developed for that purpose. 
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In this module, the SetParamaterByName node is used to update the StrainMaxPoint 

parameter of the strain sensor in the BIM model based on the maximum strain value recorded from 

the MySQL database. The maximum strain value is recorded at the end of each time interval, and 

the corresponding parameter in the BIM model is updated accordingly. A set of modules is 

developed for defining the threshold strain values and color-coding schemes for the damaged 

structural components to represent their status in the BIM model. Therefore, an alarm system can 

be generated and transmitted to the responsible personnel to attend to the structure. 

 

4.7.9. Defining the Threshold Strain Value 

 

Identifying an appropriate threshold value is essential for strain monitoring of critical 

structural elements. The allowable strain in the studs can be determined based on the yield strength 

(207.0 MPa) and Elastic Modulus (210,000 MPa) of the material, which is around 990 microstrain 

(με) for the present case.  

                 By applying this module, the condition of the DamageFlag parameter of the virtual strain 

sensor is classified into the following two cases: undamaged and damaged. If the maximum strain 

measurement does not exceed the predefined threshold strain value, the DamageFlag parameter is 

considered undamaged. Otherwise, it is flagged as damaged. To check these conditions, this module 

needs to be connected to the module previously developed for which the StrainMaxPoint parameter 

value is applied as one of the inputs that indicates the maximum strain value measured by the 

physical strain sensor.  
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4.7.10. Mapping a Virtual Sensor in the BIM Model to the intersecting Structural Framing     

Members  

 

To visualize damaged elements in the BIM model, a parameter called condition needs to be 

updated based on the strain sensor’s DamageFlag parameter. If the DamageFlag parameter is set, 

the structural element’s condition parameter indicates the member as damaged. Before upgrading 

the condition parameter based on the DamageFlag parameter, the virtual sensor intersection by 

the correlating structural framing member in the BIM model must be assured.   

            In the module performing this function, first, the geometry related intersection between the 

virtual sensors (specialty equipment category) and structural members (structural framing 

category) is checked. If an intersection is found between these two members, then the module will 

update the condition parameter of the structural member based on the DamageFlag parameter of 

the correlating sensor in the BIM model. Accordingly, the damaged structural members are 

identified if their condition parameter identifies the member as damaged. 

 

4.7.11. Color-Coding of Damage Structural BIM Element 

 

After upgrading the ‘Condition’ parameter for structural framing members, the damaged 

elements are highlighted using a predefined color code. It works as an alarm system to highlight 

the elements where the strain produced by external forces exceed the pre-defined threshold value. 

For this purpose, a module is created, in which, the structural framing elements with damaged 

‘condition’ parameter are filtered from the list of all structural framing members and highlighted 

in the BIM model. 
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4.8. Model Implementation 
 

The initial step of integrating BIM into the SHM process is to link the physical sensors to 

virtual sensors and connect them to real data from the field. This integration is possible by attaching 

the physical sensor ID to the virtual sensor in the BIM model. To do so, first, a BIM model of an 

individual four-sided steel module is developed. Second, the process modules, as described in the 

previous section, are generated to introduce a workflow to link the virtual to the physical strain 

sensor, update the associated parameters, such as StrainMaxPoint, DamageFlag, and condition, 

and then highlight the damaged structural framing members in the BIM model.   

The Arduino-based DAQ system can be coded to transfer the sensed data to an external 

database such as the MySQL database server. Before sending and accommodating the sensor data, 

the schema, tables, and relevant parameters need to be generated in the MySQL database. When 

sensors’ data are sent to the database, they should be preprocessed before becoming exposed to 

further analysis. In this study, a list of one hundred strain data points is introduced to a MySQL 

database. The strain values and their record IDs are imported into the MySQL database, as shown 

in Figure 4-8. 
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Figure 4-8: The physical strain sensor reading introduced to the database 

 

As observed in Figure 4-8, the shmsystem schema and the strainsensor_1 table with three 

parameters, including Record_ID, Sensor_Value, and Sensor_Name, are generated in the MySQL 

database before introducing the strain data. Once the strain data are added to the database, the 

values are read from the MySQL database server and sorted through the module previously 

developed in an automatic sense. All parameters are captured, read, and sorted. The maximum 

strain reading from the list of strain values is extracted after the values are sorted because, if the 

maximum strain value of an element in every time interval does not exceed the allowable strain 

(threshold) value, the element is regarded as undamaged. In contrast, if the maximum strain 

produced in a structural member exceeds the predefined allowable strain value, then the element is 

damaged and needs specific considerations and corrective action. How the strain sensor values are 
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read from the predefined schema and sorted to update the StrainMaxPoint parameter of the virtual 

strain sensor in the BIM model is illustrated in Figure 4-9. 

  

Figure 4-9: Automatic reading of strain sensor data and updating BIM model 

 

As observed in Figure 4-9, only one strain sensor with ID number 513556 exists in the 

example BIM model. After reading the strain values from the database, the maximum strain value 
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is found to be 995 με, which is transferred to the next module to update the StrainMaxPoint 

parameter of the corresponding virtual sensor in the BIM model. The virtual strain sensor and its 

parameter updated in the BIM model are shown in Figure 4-10. 

 

 

Figure 4-10: Updating BIM parameter based on maximum strain value in µε 

 

As observed in Figure 4-10, after running the program, the StrainMaxPoint parameter is 

automatically updated. This step is an initial damage visualization process in the BIM model in a 

sense that the damage detection scenario begins from transferring the DamageFlag parameter 

information from a virtual strain sensor to the correlating structural framing member. By adopting 

the previously described module, the DamageFlag parameter becomes damaged because the 

extracted maximum strain value of 995 με is more than the predefined threshold strain value of 990 
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με. To upgrade the condition parameter of the monitored structural member based on the 

DamageFlag parameter of the virtual strain sensor, the intersection between the virtual sensor and 

correlating structural framing member needs to be checked in the BIM model through the 

previously described module, as shown in Figure 4-11. 

 

 

 

Figure 4-11: Checking the intersection between the virtual sensor and the BIM structural element 
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First, the geometry of all structural framing elements and virtual sensors are extracted from 

the BIM model. To identify the structural members to which the virtual sensors are attached, the 

structural members are filtered to separate the structural member to which the strain sensor is 

connected from other members. When the correlating structural member is separated from others, 

its condition parameter is updated based on the DamageFlag parameter of the corresponding virtual 

strain sensor. Consequently, because the DamageFlag parameter in the virtual strain sensor 

indicates the damage state, the condition parameter is updated to the 

damage state in the correlating structural member. When the condition parameter in a structural 

member indicates the damage state, the damaged element is highlighted in the BIM model 

through the module as described previously. As shown in Figure 4-12, the structural member to 

which the virtual strain sensor is attached is damaged and is highlighted in the BIM model shown 

in Figure 4-13. 

One of the advantages directly attributed to BIM in the SHM integration process is that all 

of the information of the structure generated during its lifecycle is accessible, which can facilitate 

easier decision making for repair and maintenance plans. For instance, information on a damaged 

member such as material, type, cut length, type of connections, manufacturer address, phone 

number, date, time, minimum number of workers needed, and others, can all 

be easily extracted from the BIM model. The architecture of the developed system workflow and 

the correlation among its modules are shown in Figure 4-14. If the modules are not correctly 

connected to each other, the system might not work. 
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Figure 4-12: Threshold strain value definition and color-coding of damaged structural BIM 

elements 

 

In Figure 4-14, the modules were numbered to better demonstrate their linkage. In Figure 

4-14, the output of module number 1 that links the system to the MySQL server is connected to the 

following modules: number 2 (to connect the system to the monitoring database and table in the 

database), number 4 (to link the BIM model to the database containing sensor data), and module 

number 5 (to retrieve the sensor data from the database). The output of module number 3 (to extract 

strain sensor parameters from the BIM model) is connected to module number 4. 
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Figure 4-13: 3D damage visualization of damaged structural BIM element 
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Figure 4-14: The workflow for integrating BIM into SHM process 

 

As shown in Figure 4-14, a link exists between the following modules: numbers 2 and 4 to 

connect the maximum strain value in each event to the corresponding parameter in the BIM model. 

The output of module number 2 is connected to module number 5 (to automatically read and sort 

strain values stored in the database). The output of module number 5 is connected to module 

number 6 to update the sensor parameters in the BIM model. Finally, to automatically update and 

highlight the affected structural element in the BIM model based the threshold strain value defined 

in module number 8, module number 7 is connected to modules number 6 and 9 in the developed 

workflow. 
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4.9. Discussion 
 

The main purpose of this paper was to investigate the potential of BIM in the damage 

visualization and rapid detection of damaged elements in structures such as building modules. This 

paper introduced a novel integrated strain-based monitoring system framework in BIM. The small 

size and low cost of the conceptual sensory system proposed in this study can be effective in 

modular structures that usually consist of small and narrow components. The system can also be 

utilized for rapid condition assessment of structural components. For this purpose, monitoring data 

were integrated into BIM through a novel workflow developed in a visual programming 

environment. The corresponding structural elements are automatically highlighted in the BIM 

model when strain measurements surpass the predefined threshold. Exceeding the strain threshold 

can be considered as damage or unacceptable deformations that can be further accentuated by 

repeated loading, especially during the operational phase. 

To show the capabilities of the developed system, a set of strain values stored in a MySQL 

database was utilized to mimic the data produced by the proposed wireless strain gauge sensory 

system. Additionally, the BIM model of an individual light gauge steel module was used to 

demonstrate the capability of the developed framework in terms of damage visualization. The strain 

values studied in this paper were analyzed and compared with the threshold values detected by the 

developed system. For automatic recording, sorting and updating of strain values, and linking 

between the physical and virtual sensors (in the BIM model), a novel workflow consisting of nine 

modules as shown in Figure 4-13 was developed in a visual programming environment called 

Dynamo. The developed system was able to successfully transfer the sensor data stored in a central 

database server and map the strain sensors to the corresponding structural elements in the BIM 

model and update the related structural element parameters. The system was able to detect the 
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maximum strain values for each event as well as the values beyond the predefined threshold values. 

Through a color-coding scheme, the system was also able to automatically highlight the structural 

element in which case the strain values surpassed the threshold values. Incorporating BIM into the 

strain monitoring system provides engineers and facility managers the additional information 

required for deciding on repair and maintenance.  

Although the approach is quite general and could be applied to any type of structure, such 

as buildings and bridges, this paper focuses on application to modular buildings as a case study. 

Additionally, modular construction has some challenges that differ from conventionally 

constructed buildings and bridges. In this case, the modules are subjected to different types of 

loads, such as manufacturing, transportation, handling, installation, and operational loads during 

their life cycle, and the main challenge is to detect buckled or yielded steel members (local 

damages) in a module, often hidden behind fireproof coating and drywall. For example, any 

possible damage that occurs in the building modules during transportation may cause miss-

alignment issues during installation, affecting the structural performance and 

disrupting continuity in the envelope, which may significantly increase air leakage. Manufacturers 

usually buy shipping insurance that covers the all-risk and basic risk conditions to be reimbursed 

for repair costs of the modules if they are damaged during transportation. Therefore, the developed 

system can be used as an efficient, reliable, and rapid monitoring technique for timely detection of 

damages in modules after transportation and when claiming the repair and modification costs from 

the insurance company. The system is crucial to monitor the state of the critical 

elements of the modules in each phase to ensure their acceptable conditions before going to the 

next phase. 
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However, this work has some limitations, which are as follows.  

1. The system developed here was tested using a limited number of sensors, and only strain 

sensors were used. The system should be tested further with a larger number and multiple 

types of sensors. Data from different types of sensors are interpreted in different ways. For 

example, strain data can be compared to a threshold value for a certain level of damage, 

whereas acceleration data can be used to determine the change in vibration modes and 

frequencies. 

2. Deformation is a good parameter for localized damage detection, but a very good 

understanding of the structure is needed to design the instrumentation plan. If several 

similar types of members/connections are present and subjected to the same order of forces, 

identifying the most critical monitoring elements may not be trivial, and installing one or 

more sensor(s) on each element is not cost effective. Further study is required to 

automatically identify the critical locations and sensors. 

 

4.10. Conclusions  
 

Utilizing an effective data management system, such as BIM, for buildings can be extremely 

helpful for a rapid and efficient structural condition assessment and visualization. As a 

comprehensive, detailed, information-based strategy, BIM provides all of the information about 

the damaged elements, which is useful for effective repair/replacement of the damaged elements. 

Because the hidden structural damages (e.g., excessive deformation of structural elements in 

building modules) occurred during transportation or handling processes, they may lead to 

misalignment risks during installation. Rapid detection of such damages and repair or replacement 
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of the damaged components can help mitigate the misalignment risks and the possibility of further 

damage during installation.   

An SHM framework in which a BIM was adopted for automated and graphical structural 

condition monitoring, particularly for modular structures, was proposed in this article. Building 

modules are more susceptible to damage during transportation and installation. In such cases, the 

structural elements are often hidden, and structural damage such as excessive deformation is 

difficult to detect. BIM can serve as an ideal four-dimensional graphical computing environment 

for SHM and repair and maintenance plans. The ability of BIM to visualize the SHM information 

of a structure will be beneficial for engineers and decision makers because it provides accurate and 

updated information on the current state of structural elements, structural reliability, and 

maintenance work to be scheduled. A BIM-based integrated structural health framework was 

developed for rapid and efficient monitoring of structural deformation.  

Based on the findings, the following observations were made. 

1. A virtual sensor’s parameter in the BIM model can be updated based on the measured data 

from the corresponding physical sensor. This feature was applied to determine when a 

predefined threshold strain level is exceeded at the monitored location of a structure.  

2. The capability of the developed framework was examined through a set of strain values 

stored in a specially designed MySQL database and a BIM model. 

3. The state of a concerned structural framing member in the BIM model was updated and 

highlighted when the strain value exceeded the threshold value. Data from other sensors, 

such as an accelerometer, or temperature can be integrated in the same way. 

Although the present study demonstrates the feasibility of remote strain sensing and decision 

making to monitor the state of a hidden structural element in a building module during its life 
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cycle, further studies are required to conduct a large-scale investigation that uses multiple types of 

sensors to monitor the critical elements with different types of materials in a module. Additionally, 

a need exists for experimental validation of the developed system using real-life applications. 
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Updated Literature Review and Related Materials 
 

 This section focuses primarily on recent publications and related works not cited in the 

published paper above. 

The lack of enabling tools for understanding, visualizing, and documenting sensor outputs 

has encouraged researchers to use BIM-based systems. After reviewing 278 journal articles by 

Shafie Panah and Kioumarsi (2021), it was concluded that despite the introduced improvements, 

there are still some limitations, such as extending the IFC schema and interoperability issues, which 

affect the modeling and maintenance process.  

O’Shea and Murphy (2020) explored the potential for implementing BIM on an existing 

structure for asset management and SHM. They developed a method for modeling and representing 

SHM sensors in the BIM model. However, the study only focuses on data visualization, and it does 

not consider damage and its related levels of intensities using visualization methods such as color-

coding the BIM model based on the sensor data analysis. At the same time, the developed tool 

presented in this chapter is able to automatically highlight the structural element through a color-

coding scheme, in which case the strain values surpassed specified threshold values. Also, their 

system does not work in real-time because for any update, the sensor data is converted to excel 

format, saved locally, and then read into the BIM model utilizing the Dynamo tool. The developed 

system presented in this chapter solves this problem by storing the SHM data in an external cloud-

based database. 

Angelosanti et al. (2021) developed a workflow between SHM sensors data and a BIM 

environment. Although they cited the manuscript presented in this chapter in their paper, there is 

still a lack of automation in their workflow by using a local database for transferring the sensor 
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data into the BIM environment. Moreover, their workflow is not able to be utilized as an alert 

system for facility managers, while the method developed in this chapter has the capability to solve 

the issues stated above. 
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Chapter 5: Development of an IoT and BIM-Based Automated Alert System 

for Thermal Comfort Monitoring in Buildings  
 

 

General  
 

In this chapter, the published paper is presented as is, followed by an updated literature review 

section. This paper was accepted and published in the Journal of Sustainable Cities and Society in 

2021*.  The main objective of this paper is to develop an automatic workflow to integrate IoT and 

BIM for monitoring thermal comfort in building spaces.  

Abstract 
 

A comfortable thermal indoor environment is crucial for occupants’ well-being and productivity. 

Building Management System (BMS) is usually used to monitor the thermal condition of buildings. 

One of BMS’s main challenges is in the data visualization stage, in which 2D vector graphics are 

used, which is not fully interactive and can only be manipulated by a trained operator. Building 

Information Modeling (BIM) has emerged as a useful tool in the construction industry, which can 

be applied in all stages of a project lifecycle. The use of BIM in facilities management is currently 

limited since BIM applications have primarily been implemented within the design and 

construction phases. The main objective of this study is to integrate a sensor-based alert system 

into BIM models for thermal comfort monitoring in buildings during the operational phase and 

visualize a building’s thermal condition virtually. In order to improve the performance of 

environmental monitoring management of buildings in smart cities, this research presents a newly 

_________________________________________________________________________     

* Valinejadshoubi. M, Moselhi. O, Bagchi. A, and Salem. A (2021), Journal of Sustainable Cities 

and Society, Vol 66 



143 
 

developed integrated solution based on a BIM platform and Internet of Things (IoT). The designed 

prototype explores the integration of commercial BIM platforms with sensor data to create a self-

updating BIM model to provide real-time thermal condition monitoring based on the American 

Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard within an 

office environment. The temperature and humidity values, measured by sensors, are sent to the 

MySQL database server. An integrated workflow was developed to compile, standardize, integrate, 

and visualize monitoring data in a BIM environment to facilitate interpretation, analysis, and 

monitoring data exchange. The developed system was able to detect the time and location of a case 

study office room experiencing the levels of thermal comfort/discomfort based on the targeted 

thresholds. In this case, thirteen levels of thermal discomfort cases, out of forty-nine data points 

during the test, were detected, and the developed system was also able to generate a trigger and 

transmit alarms to facility managers via their wireless devices in real-time. The results demonstrate 

that the proposed system is a visually effective monitoring system for environmental monitoring 

management. The fully automated developed system is expected to provide a robust and practical 

tool for reliable data collection, analysis, and visualization to facilitate intelligent monitoring of the 

thermal condition in buildings and help decision-makers make faster and better decisions, which 

may help in maintaining the level of occupants’ thermal comfort to a satisfactory level. 

 

Keywords: Building Information Modeling; Building Management System; Facilities 

management; IoT, Thermal comfort 
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5.1. Introduction 
 

Approximately 90 % of an organization’s operating costs are allocated to staff costs, 

including salaries and benefits (Health, Wellbeing & Productivity in Offices, 2014). Factors such 

as indoor environmental conditions may affect workers’ comfort, consequently, their health and 

well-being, and their productivity (Sakellaris et al., 2016). When an office environment gets too 

warm, it makes employees feel tired, while if an office environment gets too cold, it causes the 

employees’ attention to drift, making them restless and easily distracted. Charles, Reardon, and 

Magee (2005) argued that indoor air quality (IAQ) and thermal comfort are the most critical factors 

contributing to worker productivity, satisfaction, and well-being.  

According to the Canadian Centre for Occupational Health and Safety (CCOHS), thermal 

comfort is met when a person wearing a reasonable amount of clothing feels neither too cold nor 

too warm. The study presented in Seppanen ¨ and Fish (2006) showed that maximum productivity 

was observed at 21.6 ◦C, although adaptive comfort theory suggests optimum productivity can be 

attained over a broader range of indoor temperatures (De Dear & Brager, 1998). It is essential to 

ensure that different thermal comfort conditions are within acceptable limits. 

ASHRAE Standard 55 (ANSI/ASHRAE Standard-55, 2017) is an American National Standard 

published by ASHRAE that establishes the ranges of indoor environmental conditions to achieve 

acceptable thermal comfort for occupants of buildings. According to ASHRAE Standard 55, 

various factors influence the thermal comfort level, including air temperature, radiant temperature, 

air velocity, relative humidity, occupant’s clothing insulation, and occupant’s activity level. Due 

to low velocity, according to indoor climate studies (Kantor & Unger, 2011; 

Langner, Scherber, & Endlicher, 2013; Matzarakis & Amelung, 2008), air temperature is 

approximately equal to the radiant temperature in indoor environments. 
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According to the Health and Safety Executive (HSE, 2017) Standard, the most commonly 

used indicator of thermal comfort is air temperature. However, the temperature should be 

considered in relation to other environmental factors. Gupta (2006) suggested that comfort can be 

achieved only when the air temperature and humidity are within the specified range, often referred 

to as the ‘comfort zone’. The Canadian Centre for Occupational Health and Safety (CCOHS) 

suggested that the humidity levels should be kept between 30% and 70%. Relative humidity levels 

below 30% can cause discomfort through drying of the eyes and skin, while relative humidity levels 

above 70% may make the area feel stuffy. Thermal comfort assessments are determined separately 

for the summer and winter seasons in accordance with relevant standards (Kalz and Pfafferott, 

2014). Comfort ratings are analyzed in hours of exceedance during the time of occupancy. For 

either comfort model, the operative temperature should always be within the permissible ranges at 

all locations within the occupied zone of space (Kalz and Pfafferott, 2014). Comfort is a subjective 

issue and can vary widely from person to person. However, there is a generally agreed range of 

temperatures at which at least 80% of people will feel comfortable and will perform effectively 

and efficiently.   

Despite high energy use in buildings, adequate thermal comfort levels may not be provided 

during hot and cold weather. This was observed in two case studies conducted by Quigley (2016) 

on light gauge steel modular buildings’ energy and thermal performance that air 

leakage and overheating are the two main issues that led to reducing the thermal comfort. In another 

study conducted by Adekunle and Nikolopoulou (2016), it was revealed that lack of thermal mass 

and low U-values could risk increasing overheating in prefabricated timber buildings leading to 

thermal discomfort. 

Gathering data and energy and environmental performance evaluation data are at the heart 

of energy efficiency strategies to reduce energy use in buildings. Environmental monitoring 
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technologies have a significant role to play in energy efficiency measures. There is also an increase 

in energy-related building legislations and regulations around the world. For example, the 

European Energy Performance of Buildings Directive (EPBD) (2014) encourages intelligent 

metering and active control systems in buildings through building regulations. In the USA, the 

Energy Policy Act of 2005 has metering requirements for federal buildings. Most US states, cities, 

and districts have adopted the International Energy Conservation Code (IECC) (2018), with 

enhanced metering and control requirements. 

There are two methods to assess indoor climate and air quality in a controlled environment; 

surveys and questionnaires (Leo Samuel, Dharmasastha, Shiva Nagendra, & Prakash Maiya, 2017; 

Sakka, Wagner, & Santamouris, 2010; Seon, Jeong, & Yun, 2013; Singh, Mahapatra, & Teller, 

2013; Yu, Li, Yao, Wang, & Li, 2017; Zinzi & Carnielo, 2017), and sensors. Building occupants 

may not be interested in answering accurately, long surveys frequently. Although thermal comfort 

data are commonly collected and stored in databases, they are not modeled and 

managed as a part of BIM models. The relationship between building spaces and their IAQ is more 

challenging to observe in tabular information than in the 3D model. It is important to note that the 

state of a building may change during its operational phase, and there is no robust 

standard to check if the building preserves its performance characteristics despite the changes in 

maintenance state, occupants’ numbers, activities, and seasons.  

As an effective visualization and management tool, BIM has recently become an essential 

tool in the construction industry. The use of BIM in facilities management is currently limited since 

BIM applications have primarily been implemented within the design and construction phases. 

It is advantageous to enable BIM models to provide real-time information through the monitoring 

process. Hence, this will allow the facility managers to interact with the built environment in real 

time and provide a better user interface than a traditional thermal condition monitoring system. 
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There is a limited volume of research available on BIM-based dynamic systems for real-

time and near-real-time monitoring of thermal comfort in buildings. As discussed later, the 

literature shows some weaknesses in existing methods of thermal comfort monitoring, such as 

lack of automation and data retrieval (Rania and Isam, 2019; Wu & Liu, 2020), challenges in the 

continuous object tracking in IoTs in smart cities (Chauhdary, Hassan, Alqarni, Alamri, & Bashir, 

2019), limited computer implementation (Cahill, Menzel, & Flynn, 2012; Del Grosso, 

Basso, Ruffini, Fagini, & Cademartori, 2017; Smarsly & Tauscher, 2016; Sternal & Dragos, 2016), 

and lack of integration of sensor-based alarm systems into BIM models for thermal comfort 

monitoring in buildings during the operational phase. The present work attempts to address 

some of these issues to narrow the research gap by integrating BIM and IoT technologies to 

automate thermal comfort monitoring. The conception of IoT had founded the smart cities, which 

support the city operations intelligently with minimal human interaction. A smart city 

emerged as a solution to address the challenges that arise with the exponential population (Silva, 

Khan, & Han, 2018).   

The primary purpose of this integration is to benefit from the rich User Interface (UI) of 

BIM-based software and to supplement BIM models with real-time temperature and humidity 

sensor values. An integrated solution is proposed in this paper with the aim of real-time monitoring 

of thermal comfort in indoor environments to reduce health hazards inside buildings. The BIM-

based software application is used to visualize building spaces, and the IoT-based system is used 

to monitor real-time temperature and humidity values. The proposed system sends alerts, 

notifications and all essential information such as room ID, room name, room location, occupancy, 

etc., using a cloud-based service to the building supervisors and facility manager to remotely 

acquire just the thermal condition status of monitored spaces to take necessary actions if the 

operating temperature exceeds the pre-defined thresholds. The proposed system can be an 
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alternative solution for smaller buildings that might not benefit from smart technology and are 

unmonitored. It could show the facility management engineers the climate’s state in each room and 

occupants’ wishes. Such a system could also be used by other specialists, such as building 

environment professionals, to locate places with potential IAQ issues, and get their most updated 

information required.  

 

5.2. Literature Review 
 

The architecture, engineering, and construction (AEC) industry uses BIM to reduce cost 

and completion time and improve productivity and quality of projects (Azhar, Nadeem, Mok, & 

Leung, 2008). BIM is a robust platform for managing complex building information and can be 

used to visualize a building virtually over its lifecycle. BIM incorporates digital modeling software 

to design and execute a project efficiently (Nassar, 2010). In a BIM project, multiple documents 

are used in non-traditional ways (Australian Construction Industry Forum, 2014): documents are 

digitized then added to a BIM software database. An accurate BIM model consists of the virtual 

equivalent of the actual building sections.  

BIM models are useful in assessing buildings’ energy efficiency in the design phase 

(Valinejadshoubi, Bagchi, & Shakibabarough, 2015) using different design parameters such as 

orientation and materials. Figure 5-1 shows the different levels of BIM. Although BIM up to level 

2 is very well defined but BIM level 3 is still under development. BIM level 2 means that the model 

should be assessed for 3D (construction elements, quantities), 4D (time), and 5D (cost) 

representations of a building. The main requirement of BIM level 3 is integrated BIM (iBIM) and 

Lifecycle Management (Goodhew, 2016). Therefore, the integration of a monitoring system into 

BIM would help achieve this next level of BIM. 
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Figure 5-1: Different levels of BIM (BIMtaskgroup, 2011) 

 

BIM’s real-time monitoring process can help facility managers, clients, or engineers to 

efficiently monitor the building by obtaining and visualizing the accurate data captured by sensors. 

By visualizing and monitoring a building’s thermal comfort, the building supervisor and 

facility manager can take necessary actions to operate temperature data across pre-defined 

thresholds. The study conducted by Rio, Ferreira, and Pocas-Martins (2012) revealed that 

accomplishing the dynamic monitoring system of a building to provide sensor data to BIM is not 

part of the BIM functionality and is still challenging. They concluded that BIM 

standards need to be extended to allow them to represent monitoring-related information. The study 

conducted by Wang, Fu, and Yang (2017) found that applying BIM in monitoring systems can 

improve the effectiveness of monitoring processes and decision making. Failure to integrate the 

data with a BIM model of the building will hinder the facility manager’s ability to intuitively 

identify potential problems.  

 The literature review highlights some significant attempts at integrating BIM with different 

sensing technologies in recent years. Some researchers embedded sensors information into an 

industry foundation classes (IFC) format to be fully interoperable. IFC was developed by the 

International Alliance for Interoperability (IAI), known as building smart, and is an open-exchange 
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format compatible with different BIM tools that aid in standardizing projects (Grzybek, 2010). 

Katranuschkov, Weise, Windisch, Fuchs, and Scherer (2010) used IFC models to control 

the air conditioning system via temperature and humidity sensors in rooms with smart IT devices. 

Chen, Bulbul, Taylor, and Olgun (2014) tried to connect the data captured by real sensors 

embedded in a geothermal bridge deck system to the IFC-based BIM model. They concluded that 

the sensor data should be monitored in the BIM model for condition assessment under different 

climate conditions. Park, Kim, Chin, and Yun (2011) integrated online monitoring with BIM to 

efficiently deliver a vast amount of sensor data from the smart space to develop the manager’s data 

accessibility and management convenience. Kim, Cheng, Sohn, and Chang (2014) presented a 

systematic and practical approach to assess the surface quality of precast concrete elements using 

BIM and a 3D laser scanning technique to prevent failure during construction. They held the 

manual inspection and surface quality assessment of prefabricated concrete components to be 

demanding and costly. Arslan, Riaz, Kiani, and Azhar (2014) offered a new methodology 

for integrating captured sensors’ data from the hot and humid environment with BIM providing 

solutions for health and safety planning in buildings. Valinejadshoubi, Bagchi, and Moselhi (2017) 

investigated the feasibility of using BIM in the SHM process. They demonstrated the 

feasibility of creating and visualizing sensors data and information in the BIM model for the 

purpose of structural health monitoring. A preliminary scheme for utilizing BIM to manage SHM 

data for buildings was developed in Valinejadshoubi, Bagchi, Moselhi, and Shakibaborough 

(2018). Valinejadshoubi et al. (2019) developed a BIM-based integrated model for rapid structural 

damage detection using strain values. Some other BIM-Sensor based integrated solutions and their 

limitations are summarized in Table 5-1. 
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Although BIM is desired to be a dynamic workbench for managing all data related to a 

building project, there are still many challenges in the management of performance data using 

existing data specifications (e. g., IFC) such as the size of data sets, levels of detail, and 

interoperability 

with existing formats employed to store historical performance data (Gerrish, Ruikar, Cook, 

Johnson, & Phillip, 2015). The challenges of using existing standards like IFC in modeling 

monitoring systems for asset monitoring and management include lack of specific entities and 

attributes for modeling, lack of directives for data management and visualization, and lack of 

guidelines for connection with external sources of data and other standard data models (Davila 

Delgado, Butler, Brilakis, Elshafie, & Middleton, 2018). When transformed into IFC, the models 

lost some information included in the original proprietary format. As described in this section, most 

previous studies used the IFC standard in their framework, which has the challenges mentioned 

above. 

It is apparent from Table 5-1 that the potential of using BIM in sensor-based monitoring 

has not been fully explored particularly when BIM is becoming a popular platform in the AEC 

industry. As shown, although some researchers tried to integrate BIM into IoT systems, most of 

them have been aimed at building conceptual frameworks, mapping the information coming from 

the sensors to the 3D model with limited attempts at computer implementation and development 

of an automated BIM-based integrated alarm system, especially for thermal comfort 

monitoring purpose. 
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Table 5-1: Previous studies on a BIM-based sensor-integrated solution 

Authors Type of Sensor Used Purpose Limitation 

(Wu and Liu, 

2020) 

Temperature, Humidity, 

CO2 

Integrating IoT into BIM Storing Data into a local 

database, Lack of automation 

(Natephra and 

Motamedi, 

2019) 

Temperature, Humidity, 

Light 

Integration of 

environmental sensors 

and BIM 

Lack of thermal data retrieval 

system  

(Wehbe and 

Shahrour , 

2019) 

Temperature, Humidity, 

Light 

Integrating IoT into BIM Storing Data into a local 

database, Lack of automation 

(Emad Al-

Qattan et al. 

2017) 

Ribbon sensor Generative modeling Used only in the design stage 

(Natephra et al., 

2017) 

Environmental sensor Integrating BIM 

geometry data and 

environmental sensor 

data 

The Lack of direct integration 

of sensor data and the BIM 

software.  

Humidity data have not been 

used to assess thermal 

comfort; 

(Del Grosso et 

al, 2017) 

SHM sensors Integrating BIM into 

SHM system 

Mostly focused on sensor 

simulation in BIM; 

(Smarsly and 

Tauscher, 2016) 

SHM sensors Integrating BIM into 

SHM system 

Only conceptual. 

No validation; 

(Sternal and 

Dragos, 2016) 

SHM sensors BIM-based modeling of 

wireless SHM systems 

No computer implementation. 

The inability of the IFC 

standard to provide sufficient 

entities to model overall 

wireless SHM;  

(M. Rahmani 

Asl et al., 2015) 

Daylight Energy performance 

factor, daylighting 

performance factor 

Not automated. 

Used only in the design stage  

(K.M. Kensek, 

2014) 

Light, humidity, CO2 A link from the Revit 

model to a physical 

model 

Used only in the design stage 

(Cahill et al., 

2012) 

Temperature, humidity, 

light, CO2, 

presence detection 

sensors 

Optimization of building 

operations 

No computer implementation. 

Only conceptual. 

No validation; 
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Regarding the BIM-based thermal comfort monitoring, one of the few studies conducted 

could be the study conducted by Natephra, Motamedi, Yabuki, and Fukuda (2017) in which a BIM-

based method was proposed for integrating BIM geometry data and environmental sensor data for 

assessing the indoor thermal comfort level per location.  The findings show that there is no direct 

integration of sensor data and the BIM software (e.g., Autodesk Revit) in their method. The authors 

also mentioned that although relative humidity data were collected by the sensors, in their case 

study, such data have not been used to assess thermal comfort while evaluating the comfort level 

in an airconditioned building, relative humidity data should be integrated into the system.  

Wu and Liu (2020) developed a BIM-based visual energy conservation system. They 

developed a system to integrate BIM into IoT for IAQ and thermal comfort monitoring. However, 

(Lee et al., 

2012) 

Load sensors Crane navigation system 

for blind lifts 

 

(Woo et al., 

2011) 

Electricity consumption 

sensors 

Building energy 

monitoring 

No validation. 

Only focused on sensor data 

storage; 

(Ryoo and Park, 

2011) 

Inclinometers and GPS 

sensors 

Integration of BIM with 

sensors to improve the 

mobility of BIM models 

Only conceptual. 

No validation; 

(O’Flynn et al., 

2010) 

Temperature, humidity 

light sensors, motion and 

occupation sensors 

IoT for building energy 

management application 

Mostly focused on the 

hardware system. 

Conceptual in BIM part; 

(Yin, 2010) Temperature, CO2 and 

humidity 

Use of BMS to monitor 

a building's operation 

and energy performance. 

Only Conceptual. 

Lack of visualization; 

(Katranuschkov 

et al., 2010) 

Temperature and 

humidity sensors 

BIM based generation of 

multi-model views 

No linkage between BIM and 

IoT. 

(Keller et al., 

2008) 

Temperature and flow 

sensors 

To identify, archive and 

manage building 

performance data and 

information 

No computer implementation. 

Only conceptual; 
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they used PMV as an index for the thermal comfort analysis, which is not accurate in practical 

applications due to the parameters like clothing insulation and airspeeds. Their system was also not 

entirely automated due to using a local database like Excel, which needs manual updating. 

Natephra and Motamedi (2019) proposed a method for an automated live sensor data 

visualization of building indoor environment conditions based on environmental sensors and BIM. 

They used Arduino microcontroller and Dynamo to record and transfer sensor data into the BIM 

model. Although the system works well in visualizing data, it does not have any data retrieval 

module to retrieve thermal condition data of building spaces if required. 

In a study conducted by Wehbe and Shahrour (2019), the use of BIM to support decisions 

concerning comfort conditions in buildings was presented. Although they tried to link between IoT 

and BIM, they collected sensor data in a local database that prevents and minimizes the real-time 

updating of thermal comfort parameters in BIM and decreases collaboration works. 

The full integration between virtual and physical sensors, the connection and insertion of 

sensor data remotely into an external database through the Internet of Thing (IoT) technology, and 

the application of a 3D visualization-based alarm system for thermal condition monitoring projects 

have not been adequately addressed in previous works. Also, the BIM approach has not yet been 

fully applied and validated for monitoring purposes. This paper designed a system to address some 

of these issues by developing a method for integrating the IoT system into BIM for thermal comfort 

monitoring in a building. 

 

5.3. Thermal Comfort Assessment and Monitoring  
 

There are relevant standards, such as ASHRAE Standard 55 and HSE standard pertinent to 

acceptable thermal comfort for occupants of buildings. 

https://en.wikipedia.org/wiki/Thermal_comfort
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According to the Northeast Document Conservation Center (2012), to have an accurate 

record of existing environmental conditions throughout a building, temperature and relative 

humidity must be measured and recorded with instruments designed for that purpose. Table 5-2 

shows the acceptable temperature ranges in hot and cold seasons based on more than 80 % 

occupants’ satisfaction according to ASHRAE Standard 55-2017, which is widely used in North 

America. 

Table 5-2: Acceptable operative temperature ranges (ASHRAE Standard 55, 2017) 

 

Season Relative Humidity (RH)  

(%) 

Acceptable Operating 

Temperature 

         (°C) 

       Reference 

Winter 30=<RH<60        20.5 – 25.5 (ASHRAE 

Standard 55) RH=60        20 – 24 

 

Some thermal comfort indices, such as the Predictive Mean Vote (PMV) are used to predict 

thermal comfort. PMV index is used in the Standard ISO 7740. The PMV considers four physical 

variables (air temperature, air velocity, mean radiant temperature, and relative humidity) and two 

personal variables (clothing insulation and activity level of the occupant). The equation to calculate 

PMV is: 

 

PMV = [0.303·e(−0.036·M) + 0.028] ·{(M−W) − 3.05×10−3·[5733−6.99(M−W) − pa] 

−0.42 ·[(M−W) − 58.15] − 1.7×10−5 ·M·(5867−pa) − 0.0014 ·M·(34−ta) 

− 3.96 × 10−8 · fcl · [(tcl + 273)4 − (tr + 273)4] − fcl · hc · (tcl − ta)}]                                       (1) 

where: 

Season Relative Humidity (RH) 

(%) 

Acceptable Operating 

Temperature 

            (°C) 

       Reference 

Summer 30=<RH<60        24.5 – 28 (ASHRAE 

Standard 55) RH=60        23 – 25.5 
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tcl  Clothing surface temperature °C is related to the cloth that the person wears  

M  Metabolic rate (W/m2) 

W  The mechanical power (W/m2), zero for activities like writing 

Ta  Indoor air temperature °C 

tr  Radiant air temperature °C 

var  Relative air velocity (m/s) 

pa  Partial pressure of water vapor (Pa) 

 

The factors which cause a discrepancy between the predicted and actual occupant thermal 

comfort level are inaccurate measurements of the person’s characteristics (Clothing surface 

temperature (tcl) and Metabolic rate of the occupants (M)). Therefore, the PMV model’s accuracy 

depends on accurately monitoring and controlling the airspeed and accurate measurement of 

clothing insulation, which could be challenging in practical applications. 

Computerized BMS is usually used to monitor climate conditions and manage the HVAC 

system. BMS can also provide temperature and relative humidity data for analysis (Northeast 

Document Conservation Center, 2012). Analog and digital input signals tell the BMS what 

temperature, humidity, etc., are. BMS deployment usually involves installing sensors, software, a 

network, and cloud-based data storage mostly applied to decrease energy use and save money. 

However, BMS is complicated and requires specific installation, programming, and maintenance. 

BMS is a customized system applied to large buildings or groups of buildings. However, most 

buildings, particularly modular buildings, are categorized as low-rise or mid-rise building. For 

instance, high-rise buildings make up only 10 percent of the US commercial real 

estate stock and 90 percent of the total building stock in the US and might not benefit from a smart 

technology installed and are unmonitored or not managed at all for energy or operational savings 
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(Rawal, 2016). In a BMS, the data are first extracted from sensors using a Programmable Logic 

Controller (PLC). A Supervisory Control and Data Acquisition (SCADA) system is used to read 

data from PLC. The SCADA is hosted onto a database server to accommodate the transmitted data. 

In the end, the Human-Machine Interface (HMI) collects the data from the 

SCADA and displays it to the facility manager to manage the operation of the infrastructure 

sustainably. One of the main challenges of BMS is in the data visualization stage, in which 2D 

vector graphics are used, which is not fully interactive and can only be manipulated by a trained 

operator (Reeser, Jankowski, & Kemper, 2015).   

Therefore, integrating BIM with BMS data can be useful in order to help managers and 

users perform visual browsing of spatial data and to make building performance information more 

readily accessible to all building stakeholders, which can both boost energy management awareness 

and support decision-making during the operating stage. 

 

5.4. Research Methodology 
 

The indoor office building environment requires an efficient HVAC system to provide 

thermal comfort in compliance with the relevant standard like ASHRAE standard (2017), as shown 

in Table 5-2, and tolerable relative humidity ranges as recommended by CCOHS (2018). 

As shown in Table 5-2, for the relative humidity of 30–60, the temperature range for normal 

comfort level is 20.5–25.5. Although ASHRAE standard suggests the maximum humidity level as 

60, CCOHS recommends the maximum humidity as 70, and above that level, the area may feel 

stuffy and uncomfortable. Accordingly, the following temperature and humidity ranges are used 

here, as shown in Table 5-3. Table 5-3 is based on winter temperature ranges. However, these 
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ranges of humidity and temperature values can be modified by the user of the proposed 

methodology, if different climatic conditions and standards are used. 

Table 5-3: Acceptable operative temperature ranges in the wintertime used in this study 

Relative Humidity (%) Acceptable Operating Temperature (°C) 

30=<RH<60 20.5 – 25.5  

60=<RH<70 20 – 24  

 

As shown in Figure 5-2, the proposed method is comprised of three main components: the 

IoT system, relational database, and BIM. Each is described in detail below.   

The first component, the IoT system, is a smartboard associated with a microcontroller. 

Waspmote microcontroller is used to communicate air temperature and humidity data in individual 

rooms. The smartboard is connected to temperature and humidity sensors for collecting the thermal 

comfort data in a specified time interval. The time interval of saving sensor data in a database can 

be increased or decreased by a user as required. In this study, the interval was set at 5 min in the 

field study, which is described further below. These time intervals, referred to later 

as delays, are specified within C++ language code via a programmable peripheral associated with 

the microcontroller. The microcontroller can also host a variety of wireless communication 

protocols (e.g., Bluetooth, ZigBee, and WiFi), allowing these technologies to send and receive data. 

ZigBee based sensor networks were experimented by researchers for some applications other than 

thermal comfort monitoring, such as materials tracking and supply chain management systems 

(Cho, Kwon, Shin, Chin, & Kim, 2011; Shin, Park, & Kwon, 2007). Such applications 

generally have more sensitivity to cyber-attacks. ZigBee has an advantage over Bluetooth as it has 

sensitivity, while WiFi is more sensitive but more expensive. Changing the data communication 
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shield allows the usage of any of the 3 communication protocols, but ZigBee has been 

chosen here for the reasons mentioned above. 

The second component is a relational database developed in the MySQL environment to 

house and update the captured sensors data. The microcontroller can be coded to store and transfer 

sensors data to the database at predetermined time intervals. In this study, the microcontroller is 

coded to send the sensors’ measurements and their measurement time to an online MySQL database 

via ZigBee every 5 min. Therefore, every 5 min, the MySQL tables are automatically updated 

based on the newly captured sensor data. The database developed for the proposed method consists 

of a schema, six tables, and corresponding parameters for the temperature and humidity sensors to 

accommodate the sensor-related sampling data. 

The third component is the BIM-based model of a building. The BIM model is used as a 

central model to visualize and monitor the thermal comfort levels of rooms remotely and increase 

the monitoring process’s speed. Every 5 min, when the MySQL tables are automatically updated 

based on the new sensor data, the BIM model is also updated. To link between MySQL database 

(physical sensors data) and the BIM model (virtual sensors), nine modules were developed and 

coded in Dynamo to automatically read temperature and humidity values stored in the 

database, sort the data, update the BIM model with latest real-time sensor data, and send data to 

the cloud using a cloud-based collaboration and data exchange services application like Flux, 

Konstru or Speckle to send notifications to building supervisors and the facility manager through 

their wireless devices, such as personal smartphones, so they can then take necessary actions if 

operating temperature data goes  across the pre-defined thresholds. Dynamo is a visual 

programming and computational design tool applied for automation purposes (Dynamo 
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BIM, 2017). Space, referred to as room in the BIM model, is color-coded and automatically 

highlighted whenever a room’s operating temperature data violates a pre-defined threshold. 

Therefore, the developed prototype comprises Waspmote microcontroller and smart 

sensing board equipped with humidity and temperature sensors (Sensory System); Autodesk Revit 

Architecture 2018 (BIM Software); Dynamo (Visual Programming Environment); SQL Server 

(Database Management System); and a cloud-based server (Flux).  

The developed model has recently been applied in a real office unit located in Ville Saint 

Laurent, Quebec, Canada.  

 

Figure 5-2: Hierarchy of the study 

Figure 5-3 illustrates a schematic diagram that shows the data flow in the proposed method. 

As shown, the temperature and humidity values, measured by the microcontroller, are sent to a 
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cloud-based database through a smart board and ZigBee module. The monitoring data is 

managed in a pre-designed database and are transferred to the BIM model and a cloud-based system 

through a specially designed workflow to let facility managers or building supervisors to monitor 

different spaces in a building remotely and identify the technical reasons for possible issues through 

their PC and wireless-connected devices.   

 

Figure 5-3: Developed dataflow schema 
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5.5. The System Framework 
 

5.5.1. Hardware configuration of the system 

 

Over recent decades, the automated data acquisition (DAQ) technology market has 

witnessed a remarkable advance in hardware and software. Most available technologies are 

expensive and in a black box format. Black box format users cannot access the relevant algorithms 

and modify them as they see fit. Also, the stored data are often difficult to obtain without using 

seller-specific software. Limited research was conducted to study and develop the customized 

design of automated DAQ systems to confront the above challenges and overcome the off-the shelf 

technologies-related limitations (open-source technologies allocate a minute portion in DAQ 

systems’ marketplace).  

There are two pioneers in the domain of cost-efficient open-source technologies, Arduino 

and Waspmote. Although Arduino is older than Waspmote, both platforms are using standard 

coding syntax. Arduino is considerably useful to learn how to use electronics and to do less costly, 

simple projects (e.g., home automation projects), while Waspmote is a device specially designed 

to create long lifetime IoT systems expected to be installed in a real scenario like a city, agriculture 

farm, or construction job site. However, although this case study has relatively the same incentives 

for using either technology, Waspmote was chosen as it alone has the radio certification for possible 

combinations of the communication modules (802.15.4, ZigBee, 3 G, ZigBee + 3 G). 

The hardware consists of a microcontroller to perform specific tasks through programming. 

This microcontroller integrates with a board that can be attached to various peripherals, such as 

data transmitters. The acquisition system is used to collect the required thermal comfort data 

(temperature and humidity data) over a set of defined time intervals using temperature and humidity 
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sensors. The developed system is designed to acquire temperature and humidity data in uniform 

intervals (every 5 min. in this study), with ranges predefined in the microcontroller programming 

using C++ language. The received data are then transmitted to a MySQL database through the 

ZigBee data transmission module. Table 5-4 shows the specifications (such as Measurement 

Range, Sensitivity, accuracy, and operation temperature) of each type of sensor used in this study. 

Figure 5-4 shows the DAQ system hardware used in this study. 

Table 5-4: Specifications of Sensors (Waspmote datasheets, 2012) 

 

Type of 

Sensor 

Measurement 

range 

Sensitivity Accuracy Operation 

temperature 

Temperature 

Sensor 

-40ºC ~ 

+125ºC 

10mV/ºC ±2ºC (range 0ºC ~+70ºC), 

±4ºC (range -40 ~+125ºC) 

-40 ~ 

+125ºC 

Humidity 

Sensor 

0 ~ 100%RH 

 

- <±4%RH (range 30~ 80%), 

<±6%RH (range 0 ~ 100) 

-40 ~ +85ºC 

 

 

Figure 5-4: DAQ system hardware used in this research 
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5.5.2. Development of the BIM model 

 

A small two-story office building located in Ville Saint Laurent, Quebec, Canada is modeled 

in Autodesk Revit Architecture 2018 in this case study. The building was chosen because the 

building includes office space above a restaurant and the old HVAC system in the office required 

upgrading. 

 The heat generated by the restaurant’s kitchen is transferred to the above floors, reducing 

thermal comfort.  

After developing the BIM model, virtual humidity and temperature 

sensors were embedded in the model. A set of parameters were introduced in the modeling process: 

‘LatestDateTime’, ‘Sensor_ID’, ‘Humidity’, and ‘Temperature’ for the sensor objects; and ‘Latest 

DateTime’, ‘Humidity Level’, ‘Temperature Level’, and ‘Thermal Comfort Check’. Two 

parameters, ‘Humidity’ and ‘Temperature’ were created to accommodate the maximum humidity 

and temperature values recorded by the humidity and temperature sensors at two-hour intervals. 

The ‘LatestDateTime’ parameter was created to accommodate the maximum operative temperature 

measurement’s date and time, and the ‘Sensor_ID’ parameter was used to link the physical sensors 

to virtual sensors in the BIM model. The physical sensors’ specific ID must be assigned to each 

corresponding virtual sensor in the BIM model to link the two types of sensors. ‘Humidity Level’ 

and ‘Temperature Level’ parameters were created for the ‘Room’ object to accommodate the latest 

‘Humidity’ and ‘Temperature’ parameters values of the correlating virtual sensors in the BIM 

model, and the ‘Thermal Comfort Check’ parameter was used to monitor the working range 

condition of the instrumented room. Only the room located at the top of the restaurant’s kitchen on 

level 1 above the ground floor, with an area of about 215 ft2, was instrumented and used in this 
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study. Figure 5-5 shows how the virtual temperature and humidity sensors and their user-defined 

parameters are shown in the developed 3D BIM model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5: The instrumented office room, virtual sensors, and their parameters in the BIM model 

 

5.5.3. MySQL database  

 

To insert the sensed data into a database like MySQL, a schema (database), and tables and all 

essential parameters are to be defined.  The tables house the sensor data received from the DAQ 

system.  
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The schema, named ‘thermal_condition_monitoring’ is defined along with six tables named 

‘waspmote_humidity_sensor’,‘waspmote_temperature_sensor’,‘temperature_measurement_hist 

ry’, ‘humidity_measurement_history’, ‘room’, and ‘room_info’. The parameters defined for each 

table are shown in Table 5-5. 

Table 5-5: MySQL database model specifications used in this study 

 

  Four parameters were introduced for the sensor’s tables: ‘Record_ID’, ‘Sensor_ID’, 

‘Sensor_Value’, and ‘Recorded_AT’ where ‘Record_ID’ constitutes the primary key. Five 

parameters were introduced for ‘room’ table: ‘Room_ID’, ‘Room_Name’, ‘Occupancy’, 

‘Thermal_Condition’, and ‘Latest_DateTime’ where ‘Room_ID’ constitutes the primary key. Four 

parameters are also introduced for ‘room_info’ table, including ‘Room_ID’, ‘Room_Name’, 

‘Thermal_Condition’, and ‘Latest_DateTime’. 

The temperature and humidity values are measured, stored in a DAQ system, and 

transferred to a MySQL database at a specified interval to be stored in their corresponding tables 

(waspmote_temperature_sensor, and waspmote_humidity_sensor). Here, an interval of 5 min is 

used as an example. Therefore, the ‘Record_ID’, ‘Sensor_Value’, and ‘Recorded_AT’ parameters 

Tables Parameters 

waspmote_temperature_sensor ‘Record_ID’, ‘Sensor_ID’, ‘Sensor_Value’, 

‘Recorded_AT’ 

waspmote_humidity_sensor ‘Record_ID’, ‘Sensor_ID’, ‘Sensor_Value’, 

‘Recorded_AT’ 

temperature_measurement_history ‘Record_ID’, ‘Sensor_ID’, ‘Sensor_Value’, 

‘Recorded_AT’ 

humidity_measurement_history ‘Record_ID’, ‘Sensor_ID’, ‘Sensor_Value’, 

‘Recorded_AT’ 

room ‘Room_ID’, ‘Room_Name’, ‘Occupancy’, 

‘Thermal_Condition’, ‘Latest_DateTime’ 

room_info ‘Room_ID’, ‘Room_Name’, ‘Thermal_Condition’, 

‘Latest_DateTime’ 
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in these tables are updated every 5 min. These tables are linked with the central BIM model which 

is also updated at the same interval (e.g., every 5 min, in this case). To have a history of the 

temperature and humidity values in the monitored space, the data at each 

time interval is transferred to the database and placed in the measurement history tables 

(temperature_measurement_history, and humidity_measurement_history). Once the BIM model is 

updated based on the sensor data, it updates the ‘room’ table in the MySQL database using the 

developed workflow. And finally, the ‘room_info’ table is populated based on the information 

updated in the ‘room’ table every 5 min if the room’s thermal condition is not acceptable. 

Therefore, ‘room_info’ table is used as a history of the thermal condition of the room when the 

thermal condition is poor. 

The database model can be expanded in case of using temperature and humidity sensors for 

multiple rooms. To construct a comprehensive database model for the whole sensory system, the 

information on the corresponding rooms and their conditions must be determined. Figure 5-6 shows 

the Entity-Relationship Diagram (ERD) of the proposed database model.  

As shown in Figure 5-6, the ERD consists of six entities, waspmote_temperature_sensor, 

waspmote_humidity_sensor, temperature_measurement_history, humidity_measurement_history, 

room, and  room_info. According to the relationship among the entities, it is observed that there is 

“One to Many” relationship between temperature_measurement_history and 

waspmote_temperature_sensor, humidity_measurement_history and waspmote_humidity_sensor, 

room and waspmote_temperature_sensor, room and waspmote_humidity_sensor, and room_info 

and room entities. It means that a given set of temperature and humidity sensors belongs to only 

one room, but a room element may have multiple sets of temperature and humidity sensors. 
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Figure 5-6: ERD of the Monitoring System Database 

 

  The following tables, temperature_measurement_history and 

humidity_measurement_history, may consist of one or more than one sensor that can be filtered by 

the Sensor_ID parameter.  Room_info table may also have one or more monitored rooms 

containing the information about the room when the room’s thermal condition is not perfect. 

The database model was created to support the developed system utilizing nine specially 

designed modules in Dynamo, as depicted in Figure 5-7. 
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Figure 5-7: The overall workflow for integrating BIM into thermal comfort monitoring 

 

In Figure 5-7, the modules were numbered to demonstrate their linkage better. In the figure, 

Module number 1 is used to connect the developed framework to the MySQL database server using 

server ID, port number, user ID, and password. The output of module number 1 is connected to 

modules number 2 (to connect the system to the created schema in MySQL database and its 

corresponding tables), number 4 (to link the virtual temperature and humidity sensors in the BIM 

model respectively to the database containing sensor data, and number 5 (to retrieve the 

temperature and humidity sensor data respectively from the database). Module number 2 is 

connected to module number 5. Module number 3 is connected to module number 4 (to extract the 

values of the relevant parameters of temperature and humidity sensors, respectively, from the 
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BIM model and link them to the corresponding parameters in the database). Module number 5 is 

connected to module number 6 (to update the temperature and humidity sensor parameters in the 

BIM model, respectively). Module number 7 is used to map the sensors to the corresponding rooms 

in the BIM model and update the related room parameters and is connected to modules number 8 

and 9. Module number 8 is used to define the temperature ranges based on the humidity values 

and the room’s corresponding thermal comfort level. And finally, module number 9 is used to 

transfer the related information to the cloud for remote monitoring using wireless devices, such as 

smartphones. 

Only three modules, 5, 6, and 7, are presented here for space limitations. Module 5 was 

developed for automatic reading and sorting the sensed temperature values from the database. 

Module 6 was developed for the automatic updating of the temperature sensor parameter in the 

BIM model, and Module 7 was developed for the automatic updating of office room parameters in 

the BIM model. The modules shown in Figure 5-7 are described in the following sections.  

 

5.5.4. Extracting parameters from the BIM model 

 

Here, a module is developed to retrieve the virtual sensor parameters from the BIM model. 

The sensor parameters must be extracted to check the latest values of the parameters in the BIM 

model. The module consists of four parts. First, ‘Networked Sensor: Temperature Sensor’ is read 

from the list of family types in the BIM model. Second, all elements are selected in this category. 

Third, the values for the user-defined sensor parameters, like Sensor_ID, Temperature, and Latest 

DateTime, are displayed, and fourth, extracted from the BIM model to be shown in one list. A 

similar structure is used for the virtual humidity sensor and its parameters from the BIM model.  
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5.5.5. Connecting the BIM model to the database 

 

After extracting the essential parameters from the BIM model, they must be linked to the 

database’s parameters already created for each sensor. This integration is required for any future 

BIM model updating. A similar workflow can also be used to link the virtual humidity sensor 

with the database. The ‘Sensor_Value’ parameter created in the MySQL database is linked to the 

‘Temperature’ parameter of the virtual temperature sensor in the BIM model, ‘Sensor_ID’ 

parameter created in the database is linked to the ‘Sensor_ID’ parameter of the virtual temperature 

sensor in the BIM model, and ‘Recorded_AT’ parameter defined in the database is linked to the 

‘Latest DateTime’ parameter in the BIM model. The relevant parameters are listed first and are 

then connected to the ‘waspmote_temperature_sensor’ table and the values extracted from the BIM 

model. 

 

5.5.6. Automatic reading of sensor values from MySQL database server 

 

When a connection is established between the BIM model and the MySQL database server, 

the next step is to read the sensed data from the MySQL database in an automatic manner. Different 

nodes are applied and connected for this automatic sensor data reading. As mentioned earlier, the 

‘Humidity’ and ‘Temperature’ parameters are created and assigned to the virtual sensors in the 

BIM model; consequently, the temperature and humidity values at every time interval (every 5 

min) are to be sent to the BIM model to update the ‘Humidity’ and ‘Temperature’ parameters of 

the virtual humidity and temperature sensors. If the temperature value at each time interval is within 

the pre-defined acceptable operative temperature ranges, it means that the office room’s thermal 

comfort is in excellent condition. A similar structure can be used for the humidity sensor. 
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5.5.7. Updating the virtual sensors parameters in the BIM model 

 

After reading and sorting the sensed values stored in the MySQL database, the associated 

parameters of virtual sensors have to be updated in the BIM model at each time interval. For this 

purpose, a module is created to update the BIM model. The module first selects the 

temperature sensor and its elements in the BIM model. Then, the Element.SetParamaterByName 

node is applied to update the Sensor_ID, Temperature, and Latest DateTime parameters of the 

temperature sensor in the BIM model based on the sensor information and maximum temperature 

value recorded from the MySQL database. In the first part of this module, the temperature or 

humidity value and its measurement time and the sensor ID are separated for use as the input in the 

second part of this module for updating the corresponding parameters in the 

BIM model. After every time interval, the temperature and humidity values are recorded, and the 

corresponding parameters in the BIM model are updated. A similar module was used to update 

humidity sensor parameters. 

To design an alarm system in the BIM model, a conditional statement has to be defined, 

and the BIM model color-coded to highlight the Room object in the BIM model to which the 

sensors are attached subject to extreme temperature ranges. This alarm system works as a signal to 

the building supervisors or facility manager when the sensor readings exceed the pre-defined 

acceptable ranges. 

 

5.5.8. Defining the conditional statements and updating room parameters   

 

For thermal comfort visualization in the BIM model, a parameter named ‘Thermal Comfort 

Check’ was defined for the ‘Room’ object in the BIM model, which has to be updated based on the 
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‘Humidity Level’ and ‘Temperature Level’ values stored in room object. A module was created 

to cross the sensor value between the virtual temperature sensors and the correlating office room 

in the BIM model. A similar workflow was used for the humidity sensors. Then, a module was 

created to define the conditional statement, according to Table 5-3. By using the developed 

module, the sensors and the room where they are installed were identified. The instrumented office 

rooms were identified and separated from the un-instrumented ones in the BIM model. Then, when 

the instrumented office rooms were identified, ‘Temperature Level’ and ‘Latest DateTime’ 

parameters of the instrumented room were updated based on the ‘Temperature’ and ‘Latest 

DateTime’ parameters of the temperature sensor in the BIM model. A similar structure is used for 

the humidity sensor in this study. 

The conditions shown in Table 5-3 are applied in this study. The status of the ‘Thermal 

Comfort Check’ parameter of the Room object in the BIM model was classified into four cases: 

‘Too Hot,’ ‘Too Cold,’ ‘Normal,’ and ‘Unacceptable Humidity Level.’ If the temperature 

measurement does not meet the condition, the ‘Thermal Comfort Check’ parameter is considered 

‘too hot’ or ‘too cold’; otherwise, it is normal. However, if the humidity measurement was too high 

(more than 70 %) or too low (less than 30 %), then the ‘Thermal Comfort Check’ parameter showed 

an ‘unacceptable humidity level’. When the office room’s thermal comfort level was recognized, 

the ‘Thermal Comfort Check’ parameter of room objects was updated in the BIM model to inform 

the building supervisor and facility manager about the latest thermal comfort of the instrumented 

offices and their HVAC system performance.  Through this module, some of the room’s parameters 

such as Room_ID, Room_Name, Occupancy, Thermal_Condition, Latest_DateTime are extracted 

from the BIM model and transferred to the MySQL database to update the room table after each 

time interval. After each time interval, if the room’s thermal condition is not normal, the room 
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table’s information is transferred and saved in room_info table through a query used in MySQL 

server to have comprehensive information about the thermal condition of each room.   

 

5.6. System Implementation 
 

The modules described in the previous section were developed to introduce a workflow to 

link virtual and physical humidity and temperature sensor, update the associated parameters of 

‘Humidity Level’, ‘Temperature Level’, ‘Latest DateTime’, and ‘Thermal Comfort Check’, and 

then highlight the corresponding office room in the BIM model based on its thermal comfort status 

at each time interval (e.g., every 5 min). The Waspmote-based DAQ system was coded to transfer 

the sensed temperature and humidity data to the MySQL database server at each time interval. A 

query was used in the MySQL server to update the predefined tables and parameters at each time 

interval.  

The test was conducted on the 10th of November 2018. At each time interval, one 

temperature and one humidity data points were recorded. The system recorded Forty-nine data 

points during the test (four hours) to validate the proposed method. After each time interval, the 

BIM model and its corresponding user-defined parameters like Sensor_ID, Temperature, Humidity 

and Latest DateTime for the virtual temperature and humidity sensors, and Thermal Comfort 

Check, Humidity Level, Temperature Level, and Latest DateTime for room objects were updated. 

Once the BIM model was updated, the thermal condition-related information was transferred from 

the BIM model to the database to update the “room” table in the defined database. If the room’s 

thermal condition was not perfect at each time interval, a query was used in MySQL to transfer 

room-related information from the “room” table and store them in the “room_info” table to have 

a thermal discomfort history of the room. 
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Figure 5-8 shows the temperature and humidity values and the room’s thermal condition measured 

in the 18th time interval, which were stored in their corresponding tables in MySQL server. 

 

(a) 

 

(b) 

 

(c) 

    

Figure 5-8: Transferring sensors reading remotely to the database (18th-time interval) 

 

As can be seen from Figure 5-8, temperature and humidity values, their measurement time, 

and the room information were successfully stored in their corresponding tables in the MySQL 

database. Once the sensors’ data was introduced to the database, the values were retrieved from the 

MySQL database and sorted automatically in the module described earlier. The ‘Sensor_ID’, 

‘Sensor_Value’, and ‘Recorded_AT’ values were captured, read, and sorted for humidity and 
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temperature sensors installed in the office room.  The humidity and temperature readings of sensor 

values were extracted after the values were sorted. Figure 5-9 shows the developed module 

described earlier to automatically read and sort temperature values from the database. As shown, 

the temperature value measured in the 18th time-interval was read from the proposed method 

successfully, and the temperature value and its measurement time were extracted from the list of 

measurements to be transferred to the corresponding parameters in the BIM model. 

  

                                      

 

 

 

 

 

Figure 5-9: Reading and sorting the second time-interval temperature data from the database 

 

In the developed workflow for integrating BIM into thermal comfort monitoring, Periodic 

mode was used with the time interval of 300,000 milliseconds (5 min.) to automatically read and 
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extract data from the MySQL database, update the BIM model and send the thermal condition info 

to the MySQL and cloud-based database every 5 min. As shown in Figure 5-10, the test started at 

10:00 AM on Nov 10th, 2018, and the system was updated 49 times in the total test time (four 

hours). 

 

Figure 5-10: Setting the developed workflow to automatically update the system every 5 minutes  

 

When the sensors’ values were read and transferred, the BIM model’s virtual sensors 

parameters were updated using the modules described earlier. The parameters defined for the office 

rooms in the BIM model (‘Humidity Level’, ‘Temperature Level’, ‘Thermal Comfort Check’, and 

Latest DateTime) were updated using the modules described earlier. 

Figure 5-11 shows the module developed to automatically update temperature parameters 

in the BIM model based on the captured sensor data. A similar module was used for the automatic 

updating of humidity parameters in the BIM model. 
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Figure 5-11: Automatic updating of temperature sensor parameters in the BIM model 

 

 When the room’s parameters were updated, the room was highlighted based on the colors 

defined in Table 5-6.  
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Table 5-6: Classification of office rooms based on their thermal comfort level and color 

 

Thermal Comfort Check Parameter Colour 

Normal! White 

Too Hot! Red 

Too Cold! Blue 

Unacceptable Humidity Level Purple 

 

Figure 5-12 shows a picture of the developed BIM-IoT system in operation during the test 

when the room temperature level exceeded the acceptable threshold. 

 

Figure 5-12: Picture of thermal comfort monitoring test setup in the second-time interval 

 

As shown in Figure 5-13, the instrumented office room’s working range condition in the 

BIM model is ‘Normal!’ and ‘Too Hot!’, respectively, in the first- and eighteenth-time intervals. 

Therefore, the room was highlighted in red in the time interval eighteen. As observed, the 

maximum temperature value was measured at 26.0 ◦C at 11:25 AM.   
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(a) 
 

 

 

(b) 

Figure 5-13: Screenshots of BIM user interface: (a) first time interval (b) 18th  time interval  

 

As mentioned earlier, waspmote_temperature_sensor and waspmote_- humidity_sensor 

tables only accommodate one row of data (data captured at each time interval). Therefore, to have 

a history of temperature and humidity measurements of each room, the data were transferred from 

waspmote_temperature_sensor and waspmote_humidity_sensor tables to 
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temperature_measurement_history and humidity_measurement_history tables in the MySQL 

database. 

Figure 5-14 shows the layout of the temperature_measurement_history table in the 

“thermal_condition_monitoring” database, which accommodates all the temperature data recorded 

during the test. Figure 5-15 indicates the room table data, which shows where and when the thermal 

discomfort occurs.  

 

 

 

 

 

 

 

 

 

Figure 5-14: Temperature_measurement_history table data at the end of the test 

 

Figure 5-16 illustrates the temperature variations in the instrumented office during the 

monitoring period. As shown, the temperature level exceeded the acceptable threshold thirteen 

times. 



182 
 

 

Figure 5-15: room table data at the end of the test 

 

As shown in Figure 5-16, at thirteen data points (mostly at noon), the temperature level 

exceeded the acceptable threshold, and the thermal condition of the instrumented room was not 

ideal (Too Hot).  

 

 

Figure 5-16: Temperature recording map in the instrumented office 
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Sending real-time notifications to building supervisors and the facility manager through the 

wireless connected devices, such as smartphones or iPads, is critical for taking necessary actions 

if the operating temperature data does not fall within the predefined acceptable range. For this 

purpose, a module is also developed to send the room data from the BIM model to the cloud-based 

storage and collaboration service. As mentioned earlier, Flux is used in this study for this purpose. 

Parameters of the instrumented room (i.e., ‘Name’, ‘Office ID’, ‘Level’, and ‘Thermal 

Comfort Check’), are extracted from the BIM model and transferred to the cloud. To define an 

appropriate title for each data in the cloud, several parameters were defined: ‘Office ID’ was 

defined for the ‘Element.id’ parameter, ‘Office Number’ was defined for the ‘Name ‘parameter, 

‘Level’ was defined for ‘Level’ parameter, and ‘Working Range Check’ was defined for ‘Thermal 

Comfort Check’ parameter of the BIM model. Therefore, the building supervisors or the facility 

manager can access the room data and HVAC system performance remotely through their wireless 

devices, such as a smartphone (Figure 5-17(b)) besides their PC (Figure 5-17(a)), at any time and 

any location. 

5.7. Policy implication 

Policy-makers are not achieving the results expected from implementing energy-saving 

policies in buildings (Galvin, 2015). Currently, most Energy standards have been applied only to 

new buildings, and the challenge of high-energy consumption in existing buildings has not been 

adequately addressed. To make energy standards and policies more effective for existing buildings, 

one method is developing and using new and efficient technologies. 

The system developed in this study can track the operation and improve the thermal 

performance of each room’s utilities by monitoring the thermal condition in buildings, detecting 

any defects in HVAC systems, and avoiding energy waste.  
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                                                                         (a) 

 

(b) 

Figure 5-17: The data representation of the instrumented room in the cloud (a) with a smartphone 

(b) 

 

 

 

Residential or office buildings may have different energy policies for their rooms or offices 

depending on different factors such as the type and importance of rooms, the number of 

occupancies, etc. 
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Data extracted and analyzed by developed system can help managers create and even 

modify energy policies to control consumption and waste and maintain the thermal level in an 

acceptable range. The system can record the number of discomforts cases in each room and 

integrate it with the occupants’ satisfaction level, analyzed by a daily computer-based 

questionnaire, to generate energy policies and alerts about the HVAC system performance or 

building envelop related issues leading to future savings on renovation projects. 

Our system’s central database can also be connected to a policy server of each department, 

office, or room. Such a system allows FMs to monitor any changes to their energy policies 

established to take timely action when the thermal condition exceeds the desirable levels. 

Using information extracted from the developed system, policymakers can consider the risk 

of thermal discomfort on energy consumption and, consequently, on their policy outcome in the 

rooms with high thermal discomfort cases. Also, from the policy maker’s perspective, outcomes of 

the developed system can indicate the need for better investigating the occupants’ ventilation 

practices before taking any appropriate corrective action. 

5.8. Discussion 
 

Recent services such as Amazon CloudWatch and Google provide cloud services for data 

analytics, including platforms for data visualization. Although these kinds of services can collect 

data and create alarms and graphs, they are not flexible and cannot facilitate interaction between 

the building data model and sensor data.  

This paper introduced a novel, fully automated integrated thermal comfort monitoring 

system, particularly for low-rise and mid-rise buildings that may not be equipped with BMS. The 

developed system integrated the IoT system and BIM technology to monitor the thermal comfort 
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level in office environments remotely in an automated manner. The system linked the virtual 

environment to the physical environment: IoT system was used to measure the humidity and 

temperature levels of the room, and the sensors data was transferred to a remote database via 

the internet, and BIM was used to visualize the monitored thermal comfort level of the room 

remotely through wireless-connected devices, as well as effective space and facility management. 

The temperature and humidity data collected from the case study were studied and analyzed. 

The values of these actual readings were compared with threshold values detected by the developed 

system. The system was able to detect values beyond the defined threshold values. The system 

could also trigger and transmit alarms to building supervisors and facility managers via their 

wireless devices in near real-time. 

As mentioned earlier, BMS is usually used in huge buildings to manage the operation of 

their sustainability. BMS is not fully interactive and can only be manipulated by a trained operator 

(Reeser et al., 2015). In small- and medium-sized buildings where the BMS may not be used, 

or in buildings where the only purpose is to monitor the environmental quality factor (e.g., thermal 

comfort) of space not to control the electrical and mechanical components, the developed 

monitoring system, presented in this paper, can be an alternative one as a powerful data-driven 

asset management tool to provide a smart technology for energy savings and creating a healthy and 

productive workplace, especially in office buildings.  

The data from sensors (humidity and temperature sensors) was extracted using a low-cost 

microcontroller and smartboard and transmitted to a SQL server in the developed system. The 

benefits of using the IoT system to transmit temperature and humidity data, as opposed to passing 

them over the wire, are increasing the flexibility and decreasing the installation complexity and 

cost. Using a wired monitoring system to transmit sensors data from different monitored rooms to 
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a central office using hundreds of meters of wire may not be feasible due to increased complexity 

and increased monitoring cost. A novel workflow including nine specially designed modules in the 

visual programming tool, Dynamo, was developed to read and sort data stored in the database, 

transfer them into the BIM model and update the BIM model automatically at every time interval. 

BIM was utilized to replace HMI in BMS, which currently uses 2D vector graphics for data 

visualization. The integration of BIM into thermal comfort monitoring would improve the 

building’s maintenance plan by helping the facility managers inspect the monitored environments 

of the building inside the 3D model, while it is impossible to do this type of inspection within the 

conventional HMI interface.  

Moreover, the HMI interface does not provide enough information about the building 

elements (e.g., wiring, ducts, pipes, envelopes, etc.), which are usually hidden. Therefore, for any 

reason that may cause thermal discomfort, whether HVAC failures or heat loss due to cracks in 

building envelopes, a rich BIM model information would help the facility managers seek a proper 

and fast possible solution providing an effective maintenance planning. Transferring the related 

information of building spaces such as the room location, the number of occupants, thermal 

condition, required actions, the type and location of HVAC systems, properties of building 

envelopes, etc., from the BIM model to the cloud would be beneficial to the facility managers to 

visualize the workspaces at any time in any place, observe their associated real-time environmental 

sensor data for timely and effective decision making without a physical inspection, and to support 

maintenance planning decisions, such as prioritizing maintenance works by considering different 

factors such as the importance of spaces and number of occupancies. 

The present study attempts to fill the gaps found in the literature, as discussed in Table 5-

1, such as the lack of automation (Asl, Zarrinmehr, Bergin, & Yan, 2015; Wehbe & Shahrour, 
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2019; Wu & Liu, 2020), lack of data retrieval system (Natephra & Motamedi, 2019), and the lack 

of computer implementation and validation (Del Grosso et al., 2017; Emad, Wei, & Philip, 2017; 

Natephra et al., 2017; Smarsly & Tauscher, 2016; Sternal & Dragos, 2016) in the thermal comfort 

monitoring. This study introduced a multi-functional BIM-based automated system for thermal 

comfort monitoring in buildings to have some of the features mentioned above (e.g., automation, 

data retrieval, computer implementation, etc.).   

However, there are some limitations in this work, which are as follows: 

1. While the present study demonstrates the feasibility of remote sensing and decision making 

to manage thermal comfort in buildings, the study is somewhat limited in terms of the space 

monitored. Further studies are required to conduct a large-scale investigation and review 

its integration with the facility managers and other stakeholders to test the system for its 

reliability, reproducibility, robustness, and ease of use. 

2. The system developed here was tested with a limited number of sensors. The system can 

also be expanded to use different sensors for other purposes, such as indoor air quality 

sensors (e.g., an oxide gas sensor, a particle dust sensor, etc.) and facility management 

sensors (e.g., motion sensor, occupancy sensor, light sensor, etc.). The developed system 

should be tested further with a larger number and multiple types of sensors. 

 

5.9. Conclusion  
 

Monitoring of thermal comfort quality is a critical task for building supervisors and facility 

managers. In this paper, a developed BIM-based framework for automated monitoring of thermal 

comfort levels is described. Based on the study presented here, the following conclusions are made. 
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• BIM’s ability to visualize the monitored information is expected to assist building 

supervisors and facility managers in locating spaces experiencing thermal comfort 

problems. 

• The integration of BIM and IoT through a specially designed database and modules 

developed in a visual programming environment provides an effective visualization of 

office spaces associated with indoor air temperature and humidity levels.  

• Storing related data in a cloud can provide concerned authorities appropriate and timely 

access to the thermal comfort condition data remotely through their wireless connected 

devices, leading to higher efficiency in monitoring building spaces.  

• The system developed in this study was implemented, and its capabilities were 

illustrated through a case study. The system was able to detect the time and location of 

the office room, experiencing thermal discomfort based on targeted thresholds.  

• The system could detect and record thirteen thermal discomfort cases that exceeded the 

thermal threshold value during the test. 

• When sensor values crossed over the defined temperature level thresholds, the system 

highlighted the room in Red on the BIM model and generated text alarms. 

• The temperature records showed that thermal discomfort mostly happened at noon in 

the instrumented room. It shows that the room’s HVAC system did not work properly 

when the room was affected by the extra heat from the lower level. 

• Using measurement history tables in the designed database, facility managers can 

retrieve and visualize the previously-stored sensor values from the central database, 

which can be used for future investigations, pattern analysis, and building controls 

optimization. 
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• By incorporating rooms’ name into the database, in case of having HVAC problems 

according to the thermal condition data, facility managers can have access to relevant 

data, such as the amount of deviation from the thermal threshold from the database, and 

information like the number of occupancy, type, and location of the room to prioritize 

their maintenance tasks. 

• The system can detect sensors’ malfunction by sorting data based on each temperature 

and humidity sensors if more than one sensor of each type is installed in a room. 

• The system presented in this study can motivate building owners to use it in low-rise 

and mid-rise buildings where BMS is not usually used.  

• Although installing sensors on HVAC systems can monitor real-time temperature 

changes, the developed system can be used to make HVAC systems intelligent and 

manage them. 

• he developed system can be used to detect defects in HVAC systems that avoid the high 

costs of the system’s failure. 

• The use of the developed system can help facility managers take timely actions related 

to occupants’ thermal comfort and avoid property damage and hazardous situations. 

• Such an approach (by taking real-time and accurate thermal data) can lead to better 

policymaking, which may help decision-makers or urban planners revise the existing 

guidelines, protocols, or building regulations. 
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Updated Literature Review and Related Materials 
 

 This section focuses primarily on recent publications and related works not cited in the 

published paper above. 

Building Management System (BMS) usually monitors the thermal condition of building 

spaces, utilizing sensor-captured temperature and humidity data. However, due to the high cost of 

BMS deployment it is usually applied to large or groups of buildings which make up only 10 percent 

of commercial real estate stock in the US (Rawal, 2016). Moreover, while existing BMS systems 

provide some access to sensor information, the way such information is presented often lacks the 

context of 3D building information. 

Desogus et al. (2021) developed a workflow to obtain a dynamic and automated data 

exchange between the environmental sensors and the BIM model using the Dynamo visual 

programming platform and Application Programming Interface (API). However, their study does 

not include the capability to rapidly identify problematic areas in built facilities. The developed tool 

presented in this chapter utilizes a color scheme to highlight building areas where comfort conditions 

are not met. 

Recently, Autodesk has been working on developing a tool called Autodesk Project Dasher 

to increase building performance. Project Dasher (2021) is an ongoing Autodesk research project 

that uses a BIM-based platform as a visual analytics tool to help improve the performance 

monitoring of buildings. In that project a BIM model is combined with sensors from a BMS to give 

rich, in-context visualization of building operations.  

The main differences between Project Dasher and the developed tool in this paper are: 
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▪ Autodesk Project Dasher is still in development state and is not commercial software 

yet. But the development process of the tool, presented in this chapter, has been 

finalized, and its validation effort has been completed. 

▪ The primary capability of the Autodesk Project Dasher tool is visualizing the 

thermal range of building spaces using temperature values, while the tool developed 

in this study has been established based on the combination of different temperature 

and relative humidity ranges for different thermal comfort conditions according to 

relevant standards such as ASHRAE standard which is widely used in North 

America. 

▪ The thermal comfort ranges might need to be modified based on different weather 

conditions and seasons. The developed tool in this study is flexible to be used in 

different seasons and weather conditions in which the thermal comfort ranges can 

be adjustable. But Autodesk Project Dasher is in a black box format, where users 

cannot modify it and extend to address related applications. The developed tool can 

work as an alert system by sending real-time notifications to facility managers and 

their staff through their wireless connected devices to take necessary actions if 

required. At the same time, Autodesk Project Dasher does not have that capability. 

▪ The developed tool integrates with an external database to record and store all daily 

thermal discomfort cases of building spaces in a specific entity which allows facility 

managers to track any changes to the established building or department energy 

policies, while Autodesk Project Dasher does not have this capability. 
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Chapter 6: Integrating BIM into Sensor-based Facilities Management 

Operations  
 

General  
 

This paper was published in the Journal of Facilities Management in 2021*. The main objective of 

this paper is to develop an automated workflow to generate alerts in the events of malfunctioning 

sensors used in Facility Management (FM). 

Abstract 
 

Purpose – To mitigate the problems in sensor-based facility management (FM) such as lack of 

detailed visual information about a built facility and the maintenance of large-scale sensor 

deployments, an integrated data source for the facility’s life cycle should be used. Building 

information modeling (BIM) provides a useful visual model and database that can be used as a 

repository for all data captured or made during the facility’s life cycle. It can be used for modeling 

the sensing-based system for data collection, serving as a source of all information for smart objects 

such as the sensors used for that purpose. Although few studies have been conducted in integrating 

BIM with sensor-based monitoring system, providing an integrated platform using BIM for 

improving the communication between FMs and Internet of Things (IoT) companies in cases 

encountered failed sensors has received the least attention in the technical literature. Therefore, the 

purpose of this paper is to conceptualize and develop a BIM-based system architecture for fault 

detection and alert generation for malfunctioning FM sensors in smart IoT environments during 

the operational phase of a building to ensure minimal disruption to monitoring services. 

__________________________________________________________________________  

*Valinejadshoubi, M., Moselhi, O. and Bagchi, A. (2021), "Integrating BIM into sensor-based 

facilities management operations", Journal of Facilities Management, ISSN: 1472-5967. 

https://www.emerald.com/insight/search?q=Mojtaba%20Valinejadshoubi
https://www.emerald.com/insight/search?q=Osama%20Moselhi
https://www.emerald.com/insight/search?q=Ashutosh%20Bagchi
https://www.emerald.com/insight/publication/issn/1472-5967
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Keywords: Building information modeling, Operational phase, Sensor-based facility 

management, Fault detection, Smart IoT environments, Sensor management 

Design/methodology/approach – This paper describes an attempt to examine the applicability of 

BIM for an efficient sensor failure management system in smart IoT environments during the 

operational phase of a building. For this purpose, a seven-story office building with four typical 

types of FM-related sensors with all associated parameters was modeled in a commercial BIM 

platform. An integrated workflow was developed in Dynamo, a visual programming tool, to 

integrate the associated sensors maintenance-related information to a cloud-based tool to provide 

a fast and efficient communication platform between the building facility manager and IoT 

companies for intelligent sensor management. 

Findings – The information within BIM allows better and more effective decision-making for 

building facility managers. Integrating building and sensors information within BIM to a cloud-

based system can facilitate better communication between the building facility manager and IoT 

company for an effective IoT system maintenance. Using a developed integrated workflow 

(including three specifically designed modules) in Dynamo, a visual programming tool, the system 

was able to automatically extract and send all essential information such as the type of failed 

sensors as well as their model and location to IoT companies in the event of sensor failure using a 

cloud database that is effective for the timely maintenance and replacement of sensors. The system 

developed in this study was implemented, and its capabilities were illustrated through a case study. 

The use of the developed system can help facility managers in taking timely actions in the event of 

any sensor failure and/or malfunction to ensure minimal disruption to monitoring services. 

Research limitations/implications – However, there are some limitations in this work which are 

as follows: while the present study demonstrates the feasibility of using BIM in the maintenance 
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planning of monitoring systems in the building, the developed workflow can be expanded by 

integrating some type of sensors like an occupancy sensor to the developed workflow to 

automatically record and identify the number of occupants (visitors) to prioritize the maintenance 

work; and the developed workflow can be integrated with the sensors’ data and some machine 

learning techniques to automatically identify the sensors’ malfunction and update the BIM model 

accordingly. 

Practical implications – Transferring the related information such as the room location, 

occupancy status, number of occupants, type and model of the sensor, sensor ID and required action 

from the BIM model to the cloud would be extremely helpful to the IoT companies to actually 

visualize workspaces in advance, and to plan for timely and effective decision-making without any 

physical inspection, and to support maintenance planning decisions, such as prioritizing 

maintenance works by considering different factors such as the importance of spaces and number 

of occupancies. The developed framework is also beneficial for preventive maintenance works. 

The system can be set up according to the maintenance and time-based expiration schedules, 

automatically sharing alerts with FMs and IoT maintenance contractors in advance about the IoT 

parts replacement. For effective predictive maintenance planning, machine learning techniques 

can be integrated into the developed workflow to efficiently predict the future condition of 

individual IoT components such as data loggers and sensors, etc. as well as MEP components. 

Originality/value – Lack of detailed visual information about a built facility can be a reason behind 

the inefficient management of a facility. Detecting and repairing failed sensors at the earliest 

possible time is critical to ensure the functional continuity of the monitoring systems. On the other 

hand, the maintenance of large-scale sensor deployments becomes a significant challenge. Despite 

its importance, few studies have been conducted in integrating BIM with a sensor-based monitoring 
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system, providing an integrated platform using BIM for improving the communication between 

facility managers and IoT companies in cases encountered failed sensors. In this paper, a cloud-

based BIM platform was developed for the maintenance and timely replacement of sensors which 

are critical to ensure minimal disruption to monitoring services in sensor-based FM. 

 

6.1. Introduction 
 

Facility management (FM) is focused on the efficient operation and maintenance of 

commercial and industrial properties. According to the International Facilities Management 

Association (IFMA, 2009), FM is defined as a multidisciplinary task to provide a satisfactory built 

environment by coordinating people, places, processes, technology and the environment. 

The use of different types of intelligent technologies in the workplace necessitates the 

connectivity of these technologies through enabling digital platforms. The Internet of Things (IoT) 

is an enabler of such connectivity that facilitates efficient maintenance decisions. The data collected 

by the IoT allow FM teams to be more effective in preventing maintenance issues and reducing the 

time spent on repairs and regular maintenance tasks. Sensors play a significant role in data 

collection on an IoT platform.  

A study from The National Institute of Standards and Technology’s (NIST), (2020) showed 

that most efficiency-related losses in US capital facilities come from insufficient interoperability 

among the software systems of computer-aided design, engineering and FM communication, while 

interoperability issues and a lack of well-integrated information management systems and 

documentation techniques can make FM an expensive task. The most significant FM cost portion 

is allocated to data verification and validation, data transfer, interoperability and information delays 
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(Gallaher et al., 2004). One of the main challenges in sensor-based FM is in the data visualization 

stage in which 2D vector graphics are used because these are not sufficiently interactive and can 

only be manipulated by a trained operator (Reeser et al., 2015). Lack of detailed visual information 

about a built facility can be a reason for that facility’s inefficient management. Given the 

importance of health monitoring applications, it is critical to monitor and maintain the functionality 

of the IoT deployment continuously. Hence, detecting and repairing failed sensors simultaneously 

is critical to ensure the monitoring systems’ functional continuity. On the other hand, the 

maintenance of large-scale sensor deployments has become a significant challenge. 

To mitigate these problems, an integrated data source for the facility’s life cycle should be 

used. Building information modeling (BIM) provides a useful visual model and database used as a 

repository for all data captured or created during the facility’s life cycle. Currently, BIM is 

increasingly applied to FM in the operations and maintenance stage. Simultaneously, IoT 

technology can be used to acquire operational data on building facilities to support FM. BIM can 

be used for modeling the sensor-based system for data collection, serving as a source of all 

information for smart objects such as the sensors used for that purpose. Although few researchers 

have investigated the integration of BIM with sensor-based monitoring systems (Suprabhas, 2016; 

Kazado et al., 2019; Chang et al., 2018; Kensek, 2020), most of them have focused exclusively on 

the automatic transmission of sensor information to BIM models. Providing an integrated platform 

using BIM to improve communication between FM and IoT companies in the event of sensor 

failure has received the least attention in the technical literature. The main objective of this paper 

is to conceptualize and develop a BIM-based system architecture for fault detection and alert 

generation for malfunctioning FM sensors in smart IoT environments during the operational phase 

of a building for the maintenance and timely replacement of sensors. 
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6.2. Building Information Modeling  
 

The architecture, engineering and construction (AEC) industry has been seeking a useful 

tool for reducing projects’ cost and time to completion and for increasing productivity and quality 

(Azhar et al., 2008). Typically, there are hundreds to thousands of documents for each project, and 

human interpretations are required to tie them together. Effective coordination between design 

disciplines and the communication of design information to the field is a constant challenge. BIM 

has significantly altered the way building information is managed by the AEC industry. It 

incorporates digital modeling software to design and manage a project more efficiently (Nassar, 

2010). BIM breaks down the barriers between disciplines by encouraging knowledge sharing 

throughout the project’s life cycle. BIM improves constructability and can shorten the project’s 

completion time. In a BIM project, multiple documents are not used in traditional ways (Australian 

Construction Industry Forum [ACIF], 2014); instead, they are digitized and added to a BIM 

software database. All information is built into an intelligent BIM model so that users need not 

look at separate drawings, schedules and specifications for the information on a particular element 

or a component in the project. 

BIM is an organized collection of building data in a 3D building model (Graphisoft, a 

Nemwtschek Company, 2015). The model is a virtual equivalent of the actual building and its 

elements (Graphisoft, a Nemwtschek Company, 2015). These intelligent elements are the digital 

prototype of the physical elements, including walls, columns, windows, doors and stairs. The model 

allows us to simulate the building and understand its behavior before the commencement of 

construction. The building-related data can be easily archived in the BIM model for future use, 

analysis, retrieval and maintenance.  
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6.3. Utilizing Building Information Modeling in Sensor-Based Facilities Management  
 

BIM models can be valuable tools in FM because they are essentially 3D model interfaces 

with links to information on the building components and the equipment that needs to 

be maintained. For instance, information about installation, operation and maintenance manuals; 

spare part lists; and construction materials can be stored in a BIM model. The applications of BIM 

for operation and FM can include record modeling, preventive maintenance scheduling, building 

system analysis, asset management, space management, tracking and disaster planning.  

For managing older buildings, BIM integrated within the clouds generated by a 3D scanning 

of the building can be used to overcome the absence of data. This process can serve several 

purposes, including spatial analysis, renovation and retrofitting. Using Web services and cloud-

based hosting, the project’s participants (e.g., owners, facility managers, engineers and contractors) 

can secure access to the shared data. FM companies have recently added value and have increased 

profit margins by using IoT solutions to reduce costs and increase value to end users.  

A significant number of studies have been conducted to integrate BIM into the monitoring 

system, but it remains challenging. Wang et al. (2013) found that applying BIM in monitoring 

systems can improve the effectiveness of monitoring processes. Valinejadshoubi et al. (2017, 

2018a) investigated the feasibility of using BIM in the structural health-monitoring process. They 

demonstrated the feasibility of creating, visualizing and managing sensor data and information in 

a BIM model for structural health monitoring. Valinejadshoubi et al. (2018b) developed a BIM-

based integrated model to rapidly detect structural damage using strain values. Suprabhas and 

Nicholas Dib (2017) developed an application that integrates sensor data collected using a wireless 

sensor network; the application reports the data via a virtual model of the building to aid FM 

personnel in the early detection of defects. Cahill et al. (2012) examined the implementations of 
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BIM to potentially support a static data value from a sensor data source to assist stakeholders in 

making appropriate decisions regarding a building’s life cycle. Zhang et al. (2015) developed an 

FM tool to support energy management in buildings. 

The benefits to the FM discipline of using sensors are numerous, and the failure of these 

sensors can increase operational costs and lead to undesirable consequences. A sensor takes 

measurements at regular intervals and helps facility managers make decisions based on a 

combination of captured sensor data. If a sensor suddenly fails or malfunctions, the building 

facility manager should inform the IoT companies at the earliest possible juncture to fix the 

problem because such a failure can negatively affect or even interrupt the monitoring 

system, and accordingly, any decision based on the data. Therefore, timely maintenance of failed 

sensors is critical in such deployments to ensure minimal monitoring service disruption. Despite 

the importance of timely detection of a failed sensor in IoT monitoring, it has received the least 

attention in the literature. To mitigate this issue, an integrated BIM-based workflow was developed 

to integrate the associated sensor maintenance-related information to a cloud-based tool to provide 

a fast and efficient communication platform between the building facility manager and IoT 

companies for intelligent sensor management. 

 

6.4. Research Methodology 
 

In this case-based research study, the authors developed a sensor-based FM integrated with 

a cloud-based service tool, which can be used for real-time communication between different 

disciplines. A seven-story office building, shown in Figure 6-1, was simulated in Autodesk Revit 

software. Sensors typically used in FM, such as occupancy detection sensors, temperature sensors, 
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humidity sensors, and CO2 sensors, were modeled and placed in their designated locations in the 

building’s BIM model. Parameters such as Sensor Name, Model, Mark, Website and Comment 

were used for the sensors’ identification, and parameters such as Level and Station were used to 

identify the sensors’ location. Rooms were assigned to each specified space on all floors to work 

as the sensors’ stations (locations) in the BIM model. Information such as sensors’ models and 

sensors’ marks (physical IDs) were given to the building facility manager by the IoT company to 

accommodate them into their central BIM model upon installing the sensory system in the building. 

For effective and fast communication between the facility manager and IoT company in 

case of a sensor failure, a real-time BIM-based communication platform was developed in this 

study. To create this platform, a workflow was designed in Dynamo to automatically extract and 

send all information such as the sensor’s type, model and exact location from the detailed BIM 

model to the IoT company whenever a sensor failure was reported to the facility manager. In case 

of a diagnosis of multiple sensor failures, sensor replacement can be prioritized by considering the 

average number of daily occupants in each room based on the occupancy sensor data. 

Cloud-based collaboration and data exchange service applications such as Flux, Konstru or 

Speckle can be used to send notifications to the IoT company through their wireless devices, such 

as personal smartphones and to receive sensor failure notifications and all essential information 

from the BIM model. Figure 6-2 illustrates the dataflow schema used in this study. 
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Figure 6-1: 3D view of the case-study building 

 

Figure 6-2: Developed dataflow schema 
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6.5. Integrating Sensor-Based Facilities Management with Building Information Modeling 

 

6.5.1. Placing sensors in the Building Information Modeling model 

 

Categories in Revit include column, beam, floor, roof, door, and window. There is also a 

category pertinent to specialty equipment, enabling the inclusion of sensor classes such as IfcSensor 

and IfcSensorType. In Revit, each category has its own industry foundation class (IFC) name; for 

example, a column is IfcColumn, and a roof is IfcRoof.  

Four sensors – occupancy, temperature, humidity and CO2 – are used in this study. These 

are shown in Table 6-1 along with their respective purposes. Each sensor was modeled and placed 

in its appropriate location in the building’s BIM model. Two sets of parameters were defined for 

each sensor. The first includes IfcExportType and IfcExportAs, and the second includes Name, 

Station, Level, Model, Mark and Sensed Data. The Station parameter was defined to show where 

sensors were installed. The Mark parameter was determined to map virtual sensors in the BIM 

model onto their real-world sensors. This was designed to link the collected data from each physical 

sensor stored in the data acquisition system with virtual sensors in the BIM model through Web-

based methods such as the internet protocol address and programming methods such as the 

application programming interface. After defining the four aforementioned sensors, these sensors 

were placed in their locations in the BIM model. 

Figure 6-3 shows the location of sensors in each room of Level 1 in 2D and 3D views. As 

shown in Figure 6-3, the temperature sensor, CO2 sensor, humidity sensor, and occupancy sensor 

are displayed by the colors red, violet, blue, and green, respectively. 
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Table 6-1: Types of sensors used in this study 

Type Location Application Benefits 

Occupancy 

sensor 

On the wall/ceiling To detect the presence 

or absence of people in 

a space to activate and 

deactivate the lights 

Lighting energy 

savings 

Increased comfort 

level 

Temperature 

sensor 

On the wall (should not be 

near outside doors/windows) 

HVAC environmental 

control 

Heating energy 

savings 

Increased comfort 

level 

Humidity 

sensor 

On the ground/wall Monitoring the 

humidity levels in any 

room of a building 

Preventing unsafe or 

undesirable moisture 

levels in the room 

CO2 sensor On the same wall as the 

temperature sensor (48 in, or 

122 cm, is standard) 

Monitoring the room’s 

CO2 level 

Increased indoor air 

quality 

 

 

6.5.2. Creating a schedule of sensors used in the BIM model 

 

After placing all sensors in their locations, their information can be sorted and managed. 

The BIM software can provide the schedule table for each type of 3D element. As many parameters 

as are needed can be considered in the table. As illustrated in Figure 6-4, parameters such as Name, 

Station, Level, Model, Mark and Sensed Data were considered in the sensor schedule table. As 

mentioned earlier, the physical sensors’ specific IDs must be provided and assigned manually to 

each sensor in the model using the Mark parameter. The ID numbers shown in the Mark column 

in the schedule table were hypothetical in this study. The Station parameter was used to indicate 

the location of each sensor in the model. In the BIM model, each element had a specific ID. By 

using the elements’ ID, the exact position of each sensor was marked in the model. In the Station 

column, sensors’ locations were identified by the room ID where they were installed. Figure 6-4 
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shows the sensors’ schedule table in the BIM model for offices 1 to 5 and the sensors’ locations in 

each office. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-3: Visualization of sensors in 2D and 3D views in the BIM model 
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Figure 6-4: Sensor schedule table created in the BIM model and location of sensors in 2D view 
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6.6. Results 
 

Cloud-based applications can improve mobility and accessibility. Cloud-based application 

tools can take data from different sources and combine them into one online navigation 3D model. 

The model provides access to all building data and associated operation manuals, manufacturer 

specs, equipment catalogs and images. It can help facility managers be involved in a real-time 

collaborative environment. Facility managers will have access to the building data from anywhere 

with an internet connection at any time, which can help when making significant decisions. It can 

improve the real-time collaboration between team members, such as engineers and facility 

managers.  

The emerging cloud-BIM technology is considered to be an enabling tool that can deal with 

the standalone nature of traditional BIM. It can lead to higher levels of cooperation and 

collaboration and can provide an effective real-time communication platform for project team 

members (Wong et al., 2014). For example, if the building facility manager notices that some 

sensors in the building are not working, then he or she, through a cloud-based application, can 

inform the service personnel from the IoT company and ask them to replace the sensors and provide 

the sensors’ locations, ID numbers and model and specifications. Simultaneously, he or she can 

inform the building manager to ensure that the specified room is unoccupied at specific times. In 

this study, Dynamo was used to integrate the BIM model with a Web-based service. Dynamo is a 

visual programming and computational design tool that extends BIM with the data and logic 

environment of a graphical algorithm editor, and it is ultimately linked with the BIM environment. 

Building data from the model are extracted, sorted, updated and shared with a third party in the 

cloud-based environment. 



217 
 

Room-related parameters such as Name, Level, Room ID, Occupancy and Number of 

Occupants as well as sensor-related parameters such as Sensor Name, Sensor Station, Mark, 

Comments and Website were extracted from the BIM model and sent to a cloud-based collaboration 

and data exchange service application such as Flux, Konstru or Speckle to share them between the 

IoT company and the building manager and inform them about any updated information.  

Figures 6-5 and 6-7 show the modules developed in Dynamo to extract, combine and sort 

Rooms and Sensors information from the BIM model and automatically update them in the cloud-

based platform. As shown, an appropriate relationship between the nodes is essential for 

automating this process. The building facility manager provides information such as the names and 

occupancy status of the rooms. The number of occupants can be provided either by the facility 

manager or as detected by occupancy sensors. The rooms’ location is derived from the BIM model. 

The IoT company provides the sensors’ names, physical IDs and websites. The sensors’ location 

is provided from the BIM model, and the facility manager supplies information about the status of 

the sensors. As shown in Figure 6-8, it is assumed that occupancy sensors in office number four 

and office number five are not working correctly. Therefore, the building facility manager can 

request the IoT company to replace the failed sensors and ask the building supervisor to ensure the 

associated rooms are unoccupied according to the maintenance schedule. Consequently, 

parameters in the cloud are automatically updated through Dynamo, and the IoT company, as well 

as the building manager, will both be informed simultaneously about these requests through their 

desktop computer or smartphone, email and/or iPad (Figure 6-9). Therefore, the IoT company’s 

service personnel will be informed of the failed sensors’ location, ID number and specifications. 

Some other parameters, such as the preferred replacement date and time and sensors image, can 

also be added to this list. 
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Figure 6-5: Extracting, combining, and sorting room information from the BIM model 
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Figure 6-6: Extracting, combining, and sorting sensor information from the BIM model 
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Figure 6-7: Integrating BIM model into a cloud-based database 

 

As explained in this section, the parameters of the virtual sensors in the BIM model can be 

successfully updated by building facility managers and transferred to the cloud-based database to 

generate an alert for malfunctioning FM sensors in smart IoT environments to be used by the IoT 

company. 
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Figure 6-8: Updating some of the parameters of sensor and room elements in the BIM model 

 

 

Figure 6-9: Real-time notification and updating of rooms and sensors status in a cloud database 
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6.6.1. Discussion  

 

Building maintenance is a complex process that requires a significant flow of information 

and a quick call to action. Despite this, many facility managers do not have access to a unique 

platform with centralized information, where they can check the status of all operations, including 

any failure reports. The solution may involve centralizing all daily work and using mobile devices 

to register every failure and to manage and monitor the next steps in real time. To address this 

issue, this study introduced an automated, integrated workflow to use BIM information to provide 

a fast and efficient communication platform between the building facility manager and the IoT 

companies for sensor replacement management in case any sensor failure or sensor malfunction 

occurs in the building. 

In this study, the BIM model was developed to accommodate all essential parameters. Two 

types of parameters were used to identify the type and location of each virtual sensor in the BIM 

model. To develop a real-time BIM-based communication platform, an integrated workflow 

(including three specifically designed modules) was developed in Dynamo to automatically extract 

and send all essential information such as the sensor’s type, model and location to the IoT company 

in the event of sensor failure. The integration of the monitoring system into the BIM would improve 

the sensors’ operation and maintenance plan during the building operational phase by helping the 

facility managers inspect the monitoring system and the sensors’ performance and by sending the 

relevant information to the model in the event of any sensor failure and/or malfunction. It would 

then transfer all essential information to the IoT company for timely sensor replacement to ensure 

minimal disruption to monitoring services.  

The developed framework also benefits preventive maintenance work. The system can be 

set up according to the maintenance and expiration schedules, automatically sharing alerts with 
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FMs and IoT maintenance contractors in advance about the IoT parts replacement. For effective 

predictive maintenance planning, machine learning techniques can be integrated into the developed 

workflow to efficiently predict the future condition of individual IoT components like data loggers 

and sensors as well as MEP components. For instance, when temperature sensors are used to 

monitor the thermal condition of different rooms in a building, a threshold can be defined, 

according to a specific standard or energy policy, to send an automatic thermal comfort alert to the 

cloud to inform the building FMs whenever the operating temperature exceeds the predefined 

thresholds. When FMs receive thermal discomfort alerts, they can initiate a root cause analysis to 

identify and locate the problem. For sensor fault detection, machine learning techniques can also 

be used in the developed system to establish, for example, the initial thermal pattern of each room 

using temperature sensors to find malfunctioning sensors when the sensor records a different 

thermal pattern than another sensor in the same room. 

Transferring related information such as the room location, occupancy status, number of 

occupants, type and model of the sensor, sensor ID and required action from the BIM model to the 

cloud would help the IoT companies to visualize the workspaces in advance and to plan for timely 

and effective decision-making without any physical inspection, thereby reducing the inspection 

cost. It would also help support maintenance planning decisions, such as prioritizing maintenance 

works, by considering different factors such as the importance of spaces and number of 

occupancies.  

However, there are some limitations in this work, which are as follows: 

1. Although the present study demonstrates the feasibility of using BIM in the maintenance 

planning of monitoring systems in the building, the developed workflow can be expanded by 

integrating some types of sensors like occupancy sensors into the developed workflow to 
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automatically record and identify the number of occupants and visitors to prioritize the 

maintenance work. 

2. The developed workflow can be integrated with the sensors’ data and machine learning 

techniques to automatically identify the sensors’ malfunctions and update the BIM model 

accordingly. 

 

6.7. Conclusion 
 

IoT technology dramatically reduces operation and maintenance costs. Using IoT sensors, 

the building equipment maintenance can be automatically scheduled. One of the most 

significant inefficiencies in building operations is the general lack of access to credible building 

and sensor information. This study’s author investigated BIM’s capability in sensor information 

management using cloud services in smart IoT environments during a building’s operational phase. 

The research has highlighted the applicability of BIM in an efficient and rapid sensor failure 

management system. Based on the study presented here, the following conclusions are made: 

• The information within BIM allows better and more effective decision-making for building 

facility managers. 

• Integrating building and sensor information from BIM into a cloud-based system can 

facilitate better communication between the building facility manager and the IoT company 

for effective IoT system maintenance. 

• The system developed in this study was implemented, and its capabilities were illustrated 

through a case study. The developed system (including three specifically designed modules) 
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was able to automatically extract, read and transfer all essential information to a cloud 

database to be used by an IoT company for timely sensor replacement.  

• The use of the developed system can help facility managers take timely actions in the event 

of any sensor failure and/or malfunction to ensure minimal disruption to monitoring 

services. 
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Chapter 7: Summary and Conclusions 

 

7.1. Summary 
 

In this thesis, a set of automated management solutions were developed for building 

management, focusing on structural safety and monitoring and managing occupants’ thermal 

comfort to assist facility managers in tracking the status of deployed sensors. 

The main contributions of this thesis are: 

• Developing a method for an automated BIM-based system for identifying and 

prioritizing the NSEs with high seismic risk. 

• Developing a methodology for updating some seismic risk score parameters using 

the elements’ geometry and location in the BIM model. 

• Developing the small size and low-cost DAQ system for vibration monitoring for 

modules in transit. 

• Developing a solution for Data storage cost reduction by integrating onboard 

memory into the hardware system. 

• Developing a damage detection method using different clustering techniques for 

vibration monitoring during transportation. 

• Developing a technique for detecting sensor failure. 

• Developing a method to integrate BIM and SHM for increasing the speed and 

efficiency of structural condition monitoring. 

• Integrating multiple cost-effective sensing technologies and external databases to 

improve the data storage and retrieval process for thermal comfort monitoring.  
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• Developing an automated workflow to link between the virtual and physical 

sensors. 

• Developing a workflow for improving the maintenance plan for sensors as a part of 

a building’s operation. 

• Developing an automated data-driven SHM system to provide a cost-effective 

solution for modular building manufacturers and building owners to verify safe 

delivery of prefabricated modules. This multi-functional system can be used for 

different purposes, such as structural damage detection and sensor failure analysis.  

• Developing an integrated strain-based monitoring system framework for better 

damage visualization and rapid detection of damaged structural elements using an 

effective visualization technique such as BIM. The small size and low cost of the 

sensory system proposed here can be effective in modular structures, usually 

consisting of small-sized and narrow components. 

• Developing an integrated BIM-based monitoring system to work as a 3D 

visualization-based monitoring and alarm system for indoor thermal condition 

monitoring. The Building Management System (BMS) is not fully interactive and 

can only be manipulated by a trained operator. Moreover, while existing BMS 

systems provide some access to sensor information, the way they present often lacks 

the context of 3D building information. The developed system can solve this 

problem. 

•  Development of the framework presented in Chapter 6 could be beneficial for 

facility managers who may not have access to a specialized platform with 

centralized information to register every failure and manage and monitor the next 
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steps in real-time, especially for smaller buildings. The application of the 

framework is expected to reduce inspection costs by helping the IoT companies to 

visualize the workspaces in advance and plan for timely and effective decisions 

without any physical inspection. 

BIM is a process of creating and managing information in construction projects used in the 

AEC industry to improve efficiency and reduce the costs of projects. How BIM was used in this 

thesis is listed below:  

Chapter 2: 

▪ Modeling 3D structural and non-structural elements of the building, including MEP 

elements. 

▪ Creating user-defined parameters for the indices required for the seismic risk score 

calculation 

▪ Calculating and prioritizing the seismic risk of each NSEs and highlighting them 

utilizing a color scheme. 

▪ Updating the seismic risk score of NSEs based on their geometry information and 

position in the building. 

 

Chapter 4: 

▪ Modeling all the elements of the structure. 

▪ Modeling the virtual sensors and defining all the parameters required for the 

monitoring purpose. 

▪ Updating the value and status of monitoring parameters using the workflow developed 

in the visual programming tool, Dynamo. 
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▪ Highlighting the damaged structural element based on the SHM sensor data and the 

pre-defined threshold value using the developed workflow. 

▪ Providing information such as the cut length for the repair and replacement of damaged 

elements.  

 

Chapter 5 

▪  Building the architectural 3D model of the building, including all the monitored 

spaces. 

▪ Modeling the virtual temperature and humidity sensors and defining all the parameters 

required for the monitoring purpose. 

▪ Updating the value and status of monitoring parameters using the developed workflow. 

▪ Highlighting building spaces automatically using the developed workflow where 

comfort conditions are not met. 

▪ Generating automatic text alarms using the developed workflow to notify building 

facility managers shows when thermal discomfort situation occurs. 

 

Chapter 6: 

▪ Building the 3D model of the building, including all the architectural elements and 

virtual sensors, and defining their maintenance-related parameters. 

▪ Updating parameters such as “sensor condition” and “room occupancy”. 

▪ Transferring information to the cloud database to generate an alert for sensors 

malfunction using the developed workflow. 
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7.2. Conclusions 

 

Based on the studies presented in this thesis, the following conclusions are made: 

• The automated tools developed in this study can support digital transformation over the 

project life cycle in the AEC industry. 

• The developed BIM-based tool for visualizing the NSEs seismic score (presented in 

chapter 2) can be used during the operational phase to identify the most vulnerable 

NSEs and their position to assess different retrofit strategies. The developed method 

could also be extended to building modules during transportation to construction sites. 

• The developed data-driven SHM system (presented in chapter 3) could be used as a 

quick and effective solution to verify the safety of prefabricated building modules 

during their transportation. 

• The developed BIM-based SHM tool (presented in chapter 4) could be adopted for 

automated and graphical structural condition monitoring, which is useful for engineers 

and decision-makers to visualize updated information about the current state of 

structural elements in 3D models. 

• The developed IoT-BIM-based thermal comfort monitoring tool (presented in chapter 

5) can be used as an alert and database tool to store indoor thermal data of rooms and 

notify FMs if the rooms’ temperature exceeds defined thresholds.  

• The integrated BIM-based tool (presented in Chapter 6) can be used to notify the IoT 

companies in cases of sensor failure events and provide them with required info via a 

cloud-based database. This tool can facilitate communication between FMs and the IoT 

companies and can lead to a more efficient IoT system maintenance environment. 
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7.3. Limitations and future research 
 

While the present research provides a proof of concept for the developed framework and its 

feasibility, it is essential to test it more rigorously to ascertain its generality. The following can be 

considered in future work: 

1. Increasing the number of monitoring tests on different types (steel and wooden) and sizes 

of prefabricated modules to compare and assess their structural behavior and identify 

damages to further test and validate the developed system and its robustness. 

2. Although the optimum values for parameters of the machine learning algorithms used in 

the developed transportation monitoring system were searched using a trial-and-error, an 

optimization technique such as Genetic Algorithm can be applied to find the optimum 

values automatically. 

3. The integrated BIM-based monitoring system was tested using only one virtual sensor. It 

should be tested further with a larger number of virtual sensors to investigate and test their 

impact on the performance of the system. 

4. While the developed BIM-based thermal comfort monitoring and alarm system 

demonstrate the feasibility of remote sensing and decision-making to manage thermal 

comfort in buildings, the study is somewhat limited in terms of the space monitored. Further 

studies are required to conduct a large-scale investigation and review its integration with 

the facility managers and other stakeholders to test the system for its reliability, 

reproducibility, robustness, and ease of use. 

5. While the developed integrated BIM-based sensor failure management workflow 

demonstrates the feasibility of using BIM in tracking the performance of the configurated 

sensors-based plan for monitoring the status of the sensors used in buildings, the developed 
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workflow can be expanded to integrate other types of sensors such as occupancy sensors to 

automatically record and identify the number of occupants in the monitored facility to 

prioritize the sensor maintenance works.  
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