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Abstract

Fully Bayesian Inference for Finite and Infinite Discrete Exponential Mixture Models

Xuanbo Su

Count data often appears in natural language processing and computer vision applications.

For example, in images and textual documents clustering, each image or text can be described

by a histogram of visual words or text words. In real applications, these frequency vectors often

show high-dimensional and sparsity nature. In this case, hierarchical Bayesian modeling frame-

works show the ability to model the dependence of the word repetitive occurrences ’burstiness’.

Moreover, approximating these models to exponential families is helpful to improve computing

efficiency, especially when facing high-dimensional count data and large data sets. However, clas-

sical deterministic approaches such as expectation-maximization (EM) do not achieve good results

in real-life complex applications. This thesis explores the use of a fully Bayesian inference for

finite discrete exponential mixture models of Multinomial Generalized Dirichlet (EMGD), Multi-

nomial Beta-Liouville (EMBL), Multinomial Scaled Dirichlet (EMSD), and Multinomial Shifted

Scaled Dirichlet (EMSSD). Finite mixtures have already shown superior performance in real data

sets clustering with EM approach. The proposed approaches in this thesis are based on Monte Carlo

simulation technique of Gibbs sampling mixed with Metropolis-Hastings step, and we utilize expo-

nential family conjugate prior information to construct the required posteriors relying on Bayesian

theory. Furthermore, we also present the infinite models based on Dirichlet processes, which results

in clustering algorithms that do not require the specification of the number of mixture components

to be given in advance. The performance of our Bayesian approaches was tested in some challeng-

ing real-world applications concerning text sentiment analysis, fake news detection, and human face

gender recognition.
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Chapter 1

Introduction

1.1 Motivation

As technology advances, more and more complicated data are generated. Evaluating such valu-

able data and extracting latent pattern is a topic of interest in a variety of scientific and technolog-

ical fields. One of the main attention grabbing approaches is clustering, and finite mixture models

have been frequently used to cluster data into homogeneous groups because of their flexibility and

ease of use. Clustering count vectors is a challenging task on large data sets considering its high

dimensionality and sparsity nature [38]. Bag of words representation for text systematically ex-

hibits the burstiness phenomenon, if a word appears once in a document, it is much more likely

to appear again [20, 39]. This phenomenon is not limited to text and can also be observed in im-

ages with visual words [36]. It also has the sparsity nature that few words show up with high

occurrence and some are less as often as possible or do not appear at all [43]. Thus, such data

are generally represented as sparse high-dimensional vectors, with few thousands of dimensions

with a sparsity of 95% to 99% [25]. Hierarchical Bayesian modeling frameworks, such as Multi-

nomial Generalized Dirichlet mixture model (GDM), Multinomial Beta-Liouville mixture model

(MBL), Multinomial Scaled Dirichlet (MSD), and Multinomial Shifted-Scaled Dirichlet mixture

model (MSSD) [2, 9, 30, 51] , have shown excellent performance for high-dimensional count data

clustering with Expectation-maximization (EM) approach. However, their estimation procedures

are very inefficient when the collection size is large [60]. The exponential family of distributions
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has a finite-sized sufficient statistics [16], meaning that we can compress the data into a fixed-sized

summary without loss of information [24]. Efficient exponential-family approximations to the MGD

(EMGD), MBL (EMBL), MSSD (EMSSD), and MSD (EMSD), have been previously proposed by

Zamzami and Bouguila [60–62]. These distributions have been shown to address the burstiness phe-

nomenon successfully and to be considerably computationally faster than their original distribution

forms especially when dealing with sparse and high-dimensional data. The main problem in the

case of finite mixture models is the estimation of the model parameters [15]. EM algorithm is a

simple and effective approach for model parameters estimation [41]. However, the EM algorithm

for finite mixtures has several drawbacks. For example, the occurrence of local maximum and sin-

gularities in likelihood function will often cause problems for deterministic gradients method [48].

Moreover, in high dimensional estimation, it will be hard to obtain reliable estimates which pos-

sess generalization capabilities to predict the densities at new data points [18, 26]. Some Bayesian

approaches are based on simulation methods, such as Gibbs sampling, which explore high-density

regions [3, 29]. The stochastic aspect of these simulation methods ensures the escape from local

maximum [13]. Tsionas [53] proposed an estimation approach for multivariate t distribution using

Gibbs sampling with data augmentation. Amirkhani, Manouchehri, and Bouguila [4] presented a

fully Bayesian approach within Monte Carlo simulation for Multivariate Beta mixture parameters

estimation. Bouguila, Ziou, and Hammoud [13] successfully adopted a Bayesian algorithm based

on Metropolis-within-Gibbs sampling for a finite Generalized Dirichlet mixture. Najar, Zamzami,

and Bouguila [45] used Monte Carlo simulation method for exponential family approximation to

the Dirichlet Compound Multinomial mixture model (EDCM) parameters estimation and showed

excellent results in some real applications. Another challenging aspect when using a finite mixture

model is usually to estimate the number of clusters which best describes the data without overfitting

or underfitting it. For this purpose, many approaches have been suggested. These approaches can be

divided into two different ways for mixture models. The first way is the implementation of model

selection criteria. The second way is resampling from the full posterior distribution with the number

of clusters considered unknown. However, the majority of these approaches cannot be easily used

for high-dimensional data [12]. The infinite mixture models based on Dirichlet process have re-

cently attracted wide attention, thanks to the development of MCMC techniques. Dirichlet process
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(DP) will resolve the difficulties related to model selection. Rasmussen [47] successfully applied

Dirichlet process on Gaussian mixture model with Gibbs sampling to obtain accurate number of

classes. Bouguila and Ziou [12] also presented a clustering algorithm for Dirichlet process mixture

of Generalized Dirichlet distributions with MCMC techniques. Najar, Zamzami, and Bouguila [46]

proposed an infinite mixture of exponential family approximation to the Multinomial Dirichlet Com-

pound mixture model and shown superior experimental results in recognition of human interactions

in feature films. Thus, we extend these finite mixture models to infinite mixture models based on

Dirichlet process to tackle model selection in the case of sparse high-dimensional vectors.

1.2 Literature Review and Background

1.2.1 Monte Carlo Approximation

If we have enough samples from a distribution p, then according to the law of large numbers,

the average value will converge to the expected value. The estimator is given by [8]:

I =
1

N

N∑
i=1

f(xi) ≈ Ep[f(x)] (1)

where we take N samples, x1, · · · xn, from the p distribution. However, it has some obvious disad-

vantages that it is computationally expensive and there are some distributions that we cannot sample

the data directly from.

1.2.2 Importance Sampling

This approach adds a proposal distribution based on Monte Carlo approximation to solve the

problem of not being able to sample directly from the original distribution. We choose a proposal

distribution that matches the shape of the target distribution and is easier to sample from, then, we

can compute the expectation [8]:

Ep[
f(x)

q(x)
] =

∫
f(x)

q(x)
q(x)dx ≈ 1

N

N∑
i=1

f(xi)

q(xi)
(2)
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1.2.3 Gibbs Sampling

The Gibbs sampler is a technique for generating random variables from a multivariate (marginal)

distribution indirectly, without having to calculate the density [8]. Define a multivariate distribution

as p(x1, · · · , xn). Then, the Gibbs sampling algorithm can be summarized as [33]:

Algorithm 1 Gibbs sampling
1: Input: x0 = x1, · · · , xN ,K
2: for t = 1 → K do
3: xt

1 ∼ p(x1|xt−1
2 , · · · , xt−1

N )
4: xt

2 ∼ p(x2|xt
1, x

t−1
3 · · · , xt−1

N )
5: · · ·
6: xt

N−1 ∼ p(xN−1|xt
1, · · · , xt

N−2, x
t−1
N )

7: xt
N ∼ p(xN |xt

1, · · · , xt
N−1)

8: end for

where x0 is initial vector, and K is the sampling number.

1.2.4 Metropolis-Hastings Sampling

Metropolis, Rosenbluth, and Teller proposed the basic Metropolis algorithm [44], which was

then popularized by Hastings to Metropolis-Hastings (M-H) algorithm [35]. This algorithm is very

general, it can sample data from a complicated distribution, it also needs to choose a proposal

distribution q.

Algorithm 2 M-H sampling
1: Input: x0,K, q

2: for t = 1 → K do

3: x
′ ∼ q(x

′ |xt)

4: A(x
′ |x) = (1, p(x

′
)q(x|x

′
)

p(x)q(x′ |x) )

5: u ∼ [0, 1]

6: if u <= A(x
′ |x) then xt+1 = x

′
else xt+1 = xt

7: end if

8: end for

The obvious drawback of this algorithm is that it is very dependent on the proposal distribution,

which will affect the convergence speed and even the final results.
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1.2.5 Finite Mixture Model

A finite mixture of distributions with M component is defined as [32]:

P (X|Θ) =
M∑
j=1

p(X|ξj)Pj (3)

where the Pj are the mixing weights and p(X|ξj) is the components distribution, Θ = (ξ, P ) is

the entire set of parameters to be estimated, where ξ = (ξ1 · · · ξM ), ξj is represents the parameters

of distribution j, and P = (P1, · · · , PM ) is the vector of mixing weights [5] and it must satisfy:

0 ≤ Pj ≤ 1, j = 1 · · ·M,
∑M

j=1 Pj = 1.

1.2.6 Exponential Family

The exponential family of distributions is widely used in machine learning research due to its

sufficient property, as the sufficient statistics can give all of needed parameter information by the

whole sample data set [37]. For a random variable X and a distribution with M parameters in

exponential-family we have [32]:

p(X|ξ) ∝ H(X)exp(

M∑
l=1

Gl(ξ)Tl(X) + Φ(ξ)) (4)

where Gl(ξ) is called the natural parameter, Tl(X) is the sufficient statistic, H(X) is the underlying

measure, and Φ(ξ) is called log normalizer used to ensure that the distribution integrates to one [24].

1.2.7 The Exponential Family Approximation to Multinomial Generalized Dirichlet

Distribution

The Dirichlet assumption imposes a negative-correlation requirement where all variables in a

random vector are restricted to be negatively correlated. Thus, it is not possible to include a specific

variance information for each entry of the random vector [17]. Moreover, additional strenuous con-

straints are set on the variances and the covariances in case of using the mean probabilities to solve

the parameters of a Dirichlet distribution [55]. The equal-confidence condition is another constraint

of the Dirichlet distribution [56]. A random variable with a small normalized variance is generally
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less uncertain than one with a sizable normalized variance. However, in a Dirichlet random vector,

the normalized variance is the same for all variables. The Generalized Dirichlet distribution (GD)

can release the constraints of variance information in Dirichlet distribution [27]. Moreover, The in-

dependence property of GD distribution, characterized by the ability to sample every single entry of

the random vector from an independent Beta distribution gives more modeling flexibility, compared

with the Dirichlet distribution [17].

Define ρ = (ρ1, · · · , ρD), the GD distribution with parameters α = (α1, · · · , αD) and β =

(β1, · · · , βD), is defined as [54]:

GD(ρ|α, β) =
D∏

d=1

Γ(αd + βd)

Γ(αd)Γ(βd)
ραd−1
d (1−

d∑
l=1

ρd)
ηl (5)

where 0 < ρd < 1, ηl = βd − αd+1 − βd+1, for d = 1, · · · , D − 1 and ηD = βd − 1

The mean and variance of the GD distribution satisfy the following [54]:

E(ρd) =
αd

αd + βd

d−1∏
l=1

βl
αl + βl

V ar(ρd) = E(ρd)(
αd + 1

αd + βd + 1

d−1∏
l=1

βl + 1

αl + βl + 1
− E(xd))

(6)

and the convariance between ρd1 and ρd2 is:

Cov(ρd1, ρd2) = E(ρd2)(
αd1 + 1

αd1 + βd1 + 1

d1−1∏
l=1

βl + 1

αl + βl + 1
− E(ρd1)) (7)

Note that the correlations can be either positive or negative. The GD is reduced to a Dirichlet when

βd = αd+1 + βd+1 [14]. The GD is also a conjugate prior to the multinomial distribution. Thus,

we can derive Multinomial Generalized Dirichlet distribution by integration over the multinomial

parameters τ . If a random vector Xi = [x1 · · ·xD], follows a Multinomial Generalized Dirichlet

distribution [11], then we have:

MGD(Xi|ξ) =
Γ(n+ 1)∏D+1

d=1:xd≥1 Γ(xd + 1)

D∏
d=1:xd≥1

Γ(αd + βd)

Γ(αd)Γ(βd)

Γ(α
′
d + β

′
d)

Γ(α
′
d)Γ(β

′
d)

(8)
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where n =
∑D+1

d xd, α
′
d = αd + xd , β

′
d = βd + xd+1 · · · + xD+1 , for d = 1, · · · , D. The

efficiency of MGD to model sparse high-dimensional count data can be improved by approximating

it to belong to the exponential family. The authors in [60] found, experimentally, that αd ≪ βd ≪ 1

for almost all words w based on different data sets. Moreover, for x ≥ 1, we have [30]:

lim
α→0

Γ(α+ x)

Γ(α)
− αΓ(x) = 0 (9)

Then, the exponential-family form for MGD can be written as [62]:

EMGD(Xi|ξ) ∝ (
∏

D:xD≥1

x−1
d )

∏
D:xD≥1

Γ(zd)

Γ(xd + zd)
n

× {exp
D∑

d=1

I(xd >= 1)log
αdβd

αd + βd
}

(10)

where I(xd >= 1) is an indicator that represents whether a word w shows up at any entry in the

vector Xi, and zd = xd+1 + · · ·+ xD+1.

1.2.8 The Exponential Family Approximation to Multinomial Beta-Liouville Distri-

bution

The Beta-Liouville also is a conjugate prior to the multinomial distribution, and it has two

parameters that can be used to adjust the spread of the distribution which make it more practical

and provide better modeling capabilities, compared with Dirichlet distribution. If a random vector

X = (x1, · · · , xD+1), follows a Multinomial Beta-Liouville distribution, then [10]:

MBL(X|ξ) =
Γ((

∑D+1
d=1 xd) + 1)∏D+1

d=1 Γ(xd + 1)
×

Γ(
∑D

d=1 αd)Γ(α+ β)Γ(α
′
)Γ(β

′
)
∏D

d=1 Γ(α
′
d)

Γ(
∑D

d=1 α
′
d)Γ(α

′ + β′)Γ(α)Γ(β)
∏D

d=1 Γ(αd)
(11)

where α
′
d = αd + xd, α

′
= α+

∑D
d=1 xd , β

′
= β + xD+1, and ξ = (α, β, α1, . . . , αD).

In several real world applications, the MBL mixture model has provided good clustering accuracy,

comparably to Multinomial Scaled Dirichlet mixture model (MSD) [59], and Multinomial Gener-

alized Dirichlet mixture model (MGD) [9], it also outperforms other widely used mixture models,

such as mixtures of Multinomial distributions (MM) and Dirichlet Compound Multinomial (DCM)

7



distributions [19,42]. Approximating MBL to belong to the exponential family can reduce the com-

putation cost and improve the efficiency of MBL to model sparse high-dimensional count data [30].

The authors in [60] found empirically that α ≪ 1 and β ≃ 1 for real data sets with proposed maxi-

mum likelihood method for model parameters estimation. Thus, relying on Eq. 9, we have the form

of exponential approximation for multinomial Beta-Liouville distribution as [60]:

EMBL(X|ξ) ∝ (
∏

d:xd>=1

x−1
d )n!

Γ(S)Γ(α
′
)Γ(β

′
)α

Γ(S + n)Γ(α′ + β′)
× exp{

D∑
d=1

I(xd >= 1)log(αd)} (12)

where I(xd >= 1), the sufficient static, is an indicator whether the word d appears at least once in

the vector X , and S =
∑D

d=1 αd.

1.2.9 The Exponential Family Approximation to Multinomial Scaled Dirichle Dis-

tribution

The Scaled Dirichlet is a generalization of the Dirichlet distribution obtained after applying the

perturbation and powering operations to a Dirichlet random composition [59]. These operations

define a vector-space structure in the simplex and play the same role as sum and product by scalars

in real space. We assume the dimension is D, the scaled Dirichlet with a set of parameters α =

(α1 · · ·αD) which is the shape parameter, and β = (β1 · · ·βD) which is the scale parameter. Then,

the Scaled Dirichlet distribution is defined by [1]:

SD(ρ|α, β) =
Γ(α)

∏D
d=1 β

αd
d ραd−1

d∏D
d=1 Γ(αd)(

∑D
d=1 βdρd)

a
(13)

where a =
∑D

d=1 αd. We note that the Scaled Dirichlet includes the Dirichlet as a special case

when all elements of the vector β are equal to a common constant. Compared to the Dirichlet,

the Scaled Dirichlet has D extra parameters, which enhances the model flexibility [34]. The good

parameterization of scaled Dirichlet gives it the ability to model variance and covariance. Moreover,

unlike Dirichlet, the scaled Dirichlet takes into account relative positions between categories or

multinomial cells. These properties make the scaled Dirichlet a more flexible choice as a prior to

the Multinomial.
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The MSD model is composition of the Multinomial and scaled Dirichlet distribution, in this case,

it has two parameters, which are shape parameter α and scale parameter β, and we assume Xi =

[x1, · · · , xD]. Thus, the MSD is defined by [59]:

MSD(Xi|α, β) =
∫
ρ
M(X|ρ)SD(ρ|θ)dρ

=
n!∏D

d=1 xd!

Γ(a)

Γ(a+ n)
∏D

d=1 β
xd
d

D∏
d=1

Γ(αd + xd)

Γ(αd)

(14)

where D is the vocabulary size, and n =
∑D

d=1 xd.

The exponential family of distributions has obvious benefits such as simplicity, effective optimiza-

tion, it retains the essential information in a dataset and reduces the computation time in high-

dimensional data. Thus, the MSD ditribution has been approximated as a member of the exponen-

tial family in [59], using Eq. 9 for small α values. Thus, the EMSD distribution can be written as

follows:

EMSD(Xi|α, β) =
n!Γ(S)∏D

d=1,xd≥1 xdΓ(S + n)

D∏
d=1,xd≥1

αd

βxd
d

(15)

where S =
∑D

d=1 αd.

1.2.10 The Exponential Family Approximation to Multinomial Shifted-Scaled Dis-

tribution

In dimension D, the SSD distribution with parameters ξ = {α, β, τ} is given by [61]:

SSD(ρ|ξ) = Γ(α)∏D
d=1 Γ(αd)

1

τD−1

∏D
d=1 β

−(αd/τ)
d ρ

(αd/τ)−1
d∑D

d=1(
pd
βd
)(1/τ)

α
′ (16)

where α = (α1, · · · , αD), β = (β1, · · · , βD), α
′
=

∑D
d=1 αd, and τ is a constant. Compared with

SD, SSD keeps (2D+1) degree of freedom that shows more flexible ability for real data applications.

Note that SD is a special case for SSD, when τ = 1. We can obtain multinomial shifted-scaled
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Dirichlet distribution (MSSD) by integrating over multinomial parameters ρ. Thus, we have:

MSSD(X|ξ) =
∫
ρ
M(X|ρ)SD(ρ|θ)dρ

n!Γ(S)∏D
d:xd≥1 xd!Γ(S + τn)

D∏
d:xd≥1

Γ(αd + τxd)

βxd
d Γ(αd)

(17)

where S =
∑D

d αd , n =
∑D

d=1 xd! and ξ = (α, β, τ).

For high dimensional data, the authors in [61] found that the value of α parameters are really small

which combined with some approximation gave the exponential Multinomial Shifted-Scaled Dirich-

let (EMSSD) as:

EMSSD(X|ξ) ∝ n!
Γ(S)τD

Γ(S + τn)

D∏
d:xd≥1

αd

βxd
d (xd × τ)

(18)

1.3 Contributions

In this thesis, we present clustering algorithms based on finite and infinite mixtures of EMGD,

EMBL, and EMSSD from Bayesian viewpoint using Gibbs sampling within M-H steps. These

distributions have already shown excellent performances in clustering real-world high-dimensional

count data sets with deterministic approach. The key contributions of this thesis are as follows:

(1) Determination of conjugate priors to EMGD, EMBL, EMSD, and EMSSD by taking into

account the fact that these distributions are members of the exponential family.

(2) Presenting MCMC algorithms based on Gibbs sampling and Metropolis-Hastings for the pa-

rameters estimation of finite mixture models.

(3) Extending finite mixture models of EMBL, EMGD, and EMSSD to the infinite case and

proposing clustering algorithms based on MCMC and Dirichlet process for parameters esti-

mation.

(4) Through challenging applications that concern text sentiment analysis, text fake news detec-

tion and human face gender recognition, we show that the proposed algorithms are efficient

for clustering sparse high-dimensional count data.
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1.4 Thesis Structure

In Chapter 2, we develop conjugate prior distributions for EMBL, EMGD, and EMSSD. Then,

we present a Bayesian estimation for their finite mixture models parameters using Gibbs sampling,

and extend finite mixture models of EMBL, EMGD, and EMSSD to infinite mixture models while

developing complete clustering algorithms. Chapter 3 is devoted to exhibit the abilities of the pro-

posed approaches in text sentiment analysis, text fake news detection, human face gender recogni-

tion. The concluding remarks and future work directions are given in Chapter 4.

11



Chapter 2

The Proposed Bayesian Learning

Framework

In this chapter, we propose the algorithms to learn the parameters of finite and infinite mixture

models of EMBL, EMGD, and EMSSD.

2.1 Bayesian Learning for Finite Mixture Weight Parameters

Given a set of N independent vectors X = {X1 · · ·XN} described by a finite mixture model,

and M is the number of mixture components, we define an indicator for each Xi in data set X for

each class j as:

Zij =


1 if Xi belongs to class j

0 otherwise

(19)

where Z = {Z1, · · · , ZN} and Zi = (Zi1, · · · , ZiM ).

In the Bayesian paradigm information brought by the complete data (X ,Z), a realization of (X ,Z)∼

p(X ,Z|Θ) is combined with prior information about the parameters Θ that is specified in a prior

distribution with density π(Θ) and summarized in probability distribution π(Θ|X ,Z) called the

posterior distribution. This can be derived from the joint distribution, p(X ,Z|Θ)π(Θ) [13]. Thus,

12



we have:

π(Θ|X ,Z) =
π(Θ)p(X ,Z|Θ)∫
π(Θ)p(X ,Z|Θ)

∝ π(Θ)× p(X ,Z|Θ)

(20)

where
∫
π(Θ)p(X ,Z|Θ) is the marginal density of the complete data (X ,Z).

We can directly simulate Θ ∼ π(Θ|X ,Z) with well-known Gibbs sampler. The Gibbs sampling is

widely used in Bayesian mixture model, especially in the case of incomplete data [50, 52]. That is

associated with each observation Xi a missing multinomial variables Z ∼ M(1, Zi1 · · ·ZiM ).

Zij =
p(Xj |ξj)Pj∑M
j=1 p(Xj |ξj)Pj

(21)

In fact, the weight parameters is independent of X , Pj ∝ π(P |Z) [40], and we know that the vector

P is defined on the simplex {(P1, · · · , PM );
∑M−1

j=1 Pj < 1}, then the natural prior distribution for

vector P is the Dirichlet distribution, we determine the prior π(P ) [7] as:

π(P |ηj) =
Γ(

∑M
j=1 ηj)∏M

j=1 Γ(ηj)

M∏
j=1

P
ηj−1
j (22)

where η = (η1, · · · , ηM ) is the parameters vector of the Dirichlet distribution. Moreover, we have:

π(Z|P ) =

N∏
i=1

π(Zi|P ) =

N∏
i=1

PZi1
1 · · ·PZiM

M

=
N∏
i=1

M∏
j=1

P
Zij

j =

M∏
j=1

P
nj

j

(23)

where nj =
∑N

i=1 IZij=1.

Having the prior distribution and likelihood distribution in hand, we can obtain the posterior for
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weight parameter P by the following:

π(P |Z) ∝ π(P )π(Z|P )

=

M∏
j=1

P
nj

j

Γ(
∑M

j=1 ηj)∏M
j=1 Γ(ηj)

M∏
j=1

P
ηj−1
j

=
Γ(

∑M
j=1 ηj)∏M

j=1 Γ(ηj)

M∏
j=1

P
ηj+nj−1
j

∝ D(η1 + n1 · · · ηM + nM )

(24)

where D is Dirichlet distribution with parameters (η1 + n1, · · · , ηM + nM ). We note that the prior

and posterior distributions π(P ) and π(P |Z) are both Dirichlet distributions, In this case, we say

that the Dirichlet is a conjugate prior for mixture proportions. Therefore, the weight parameters can

be sampled from Dirichlet distribution.

2.2 Bayesian Learning for Infinite Mixture Weight Parameters

In finite mixture model, we have considered M to be fixed finite quantity. In this section, we

will explore the limit M → ∞ and present the conditional posteriors for the indicators and weight

parameters based on Dirichlet process. We take (η1, · · · , ηM ) = (η/M, · · · , η/M) for Eq. 22, thus

we obtain a simpler form for prior probability of infinite mixture weight parameters [49]:

π(Pinf |η) =
Γ(η)

Γ(η/M)M

M∏
j=1

π
η/M−1
j (25)

where we have Pinf = (Pinf1 , · · · , PinfM ). From Eq. 23, we have the prior distribution for the

Z parameter that corresponds to multinomial distribution. Using the standard Dirichlet integral, we

could marginalize out the Pinf parameter to get the following probability for the prior directly in
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terms of the indicators [47]:

p(Z|η) =
∫

P (Z|Pinf )P (Pinf |η)

=
Γ(η)

Γ(η/M)M

∫ M∏
j=1

πnj+η/M−1dπj

=
Γ(η)

Γ(N + η)

M∏
j=1

Γ(nj + η/M)

Γ(η/M)

(26)

Based on Bayes principle, we obtain the conditional posterior distribution for the mixing weight

vector:

π(Pinf |Z) =
p(Pinf |η)p(Z|Pinf )

p(Z|η)

=
M∏
j=1

P
nj

infj

Γ(
∑M

j=1 η)∏M
j=1 Γ(ηj)

M∏
j=1

P
η/M−1

infj

=
Γ(

∑M
j=1 η/M)∏M

j=1 Γ(η/M)

M∏
j=1

P
η/M+nj−1

infj

∝ D(η/M + n1 · · · η/M + nM )

(27)

In order to be able to use Gibbs sampling for the indicators Zi, we need the conditional prior for a

single indicator given all the others: this is easily obtained from Eq. 26 by keeping all but a single

indicator fixed [46]:

p(Zi = j|Z i, η) =
n i,j + η/M

N − 1 + η
(28)

where the subscript −i indicates all except i and n i,j is the number of observations, excluding Xi,

that are associated with component j.

Lastly, we choose inverse Gamma as prior for parameters η:

p(η|ϑ, ϱ) = ϱϑexp(−ϱ/η)

Γ(ϑ)ηϑ+1
(29)

The likelihood for η can be derived from Eq. 26, which together with the prior from Eq. 29 gives:

p(η|ϑ, ϱ,M,N) =
ϱϑexp(−ϱ/η)

Γ(ϑ)ηϑ+1
× ηMΓ(η)

Γ(N + η)
(30)
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For the indicators, letting M → ∞ in Eq. 28, the conditional prior reaches the following

limits [47]:

p(Zi = j|η, Z i) =


n i,j

N − 1 + η
if n ij > 0

η

N − 1 + η
if n ij = 0

(31)

Having this prior distribution, we can obtain the conditional posterior by multiplying the model

likelihood:

p(Zi = j|η, Z i) =


n i,j

N − 1 + η
p(X|ξ) if n ij > 0∫

η

N − 1 + η
p(X|ξ)p(ξ)dξ if n ij = 0

(32)

Unfortunately, this integral is not analytically tractable in Eq. 32, hence, we consider a Monte Carlo

sampling approximation.

2.3 Learning Algorithms for Finite and Infinite Models

In this section, we propose the algorithms to learn the parameters for finite and infinite mixture

models of EMBL, EMGD and EMSSD.

2.3.1 Learning Algorithm for Finite Mixture Model of EMGD

Define π(ξ) as the prior distribution for the parameters of the EMGD distribution. We use the

fact that EMGD belongs to the exponential family. In fact, if a S-parameters density ρ belong to the

exponential family then we can rewrite it in the exponential form [32] which has been shown in Eq.

4. Writing the EMGD in the exponential form gives:

H(X) = (
∏

W :xW≥1

x−1
w )

∏
W :xW≥1

Γ(zw)

Γ(xw + zw)
n!

Gw(ξ) = log
αwβw

αw + βw

Tw(X) =

W∑
w=1

I(xw >= 1)

ϕ(ξ) = 0

(33)
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In this case, a prior of ξ is given by [7] as:

π(ξ) ∝ exp(
W∑
w=1

ρlGw(ξ) + kΦ(ξ)) (34)

where ρ = (ρ1, · · · , ρw), and k > 0 are referred as hyperparameters.

The prior for EMGD can be written as follows:

π(α, β) ∝ exp(

W∑
w=1

ρllog
αwβw

αw + βw
) (35)

Having the prior in hand, the mixture model posterior is (see Appendix. A.1):

π(ξj |M,X) ∝ π(ξj)
∏

Zij=1

EMGD(Xi|ξj)

∝ exp[
W∑
w=1

log
αwβw

αw + βw
(ρw +

N∑
Zij=1

I(xiw ≥ 1))]

×
N∏

Zij=1

(
∏

w:xiw≥1

x−1
iw

Γ(ziw)

Γ(xiw + ziw)
n!)

(36)

According to the posterior hyperparameters, following [5,13], once the sample X is known, we

can use it to get the prior hyperparameters. Then, we held (ρ1, · · · , ρW ) and (η1, · · · , ηM ) fixed at:

ηj = 1, j = 1 · · ·M , ρw = 1, w = 1 · · ·W .

Figure 2.1: Graphical Model Representation of the Finite EMGD
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Algorithm 3 Finite EMGD (FinEMGD) learning algorithm
Initialization: Using MOM and K-means method to initialize model parameters and cluster num-

ber selection
Input: A data set X = {X1 · · ·XN}, each is W-dimensional sparse count vector
output: Θ

for t = 1 · · · :

(1) Generate Zt ∼ M(1; Ẑi1
t−1 · · · ˆZiM

t−1
)

(2) Generate weight parameters P t from Eq. 27

(3) Generate model ξt from Eq. 36 using Metropolis-Hasting(M-H) algorithm

Metropolis-Hasting(M-H) algorithm:

(1) Generate ξ̃j from q(ξ̃j |ξt−1
j ) and u ∼ U [0, 1]

(2) compute r =
π(ξ̃j |M,X)q(ξt−1

j |ξ̃j)
π(ξt−1

j |M,X)q(ξ̃j |ξt−1
j )

(3) if r < u then: ξt = ξ̃ else: ξt = ξt−1

In Algorithm 3, ξj = (αj1, βj1, · · · , αjW , βjW ), and we take the K-means [58] and the method

of moments (MOM) [57] for initializing the model parameters. In the Metropolis-Hastings (M-H)

step, the major factor is choosing proposal distribution q [23, 52]. As the model parameters are

satisfied 0 < αjw ≪ βjw ≤ 1, we choose the Gamma distribution as the proposal distribution for

αjw and βjw.

αjw ∼ G(α, σ1), βjw ∼ G(β, σ2) (37)

where σ1 and σ2 are scale parameters of the Gamma distributions.

The complexity of the algorithm is determined by the size of data set (i.e., number of observations

N ), and the number of mixture components K. The algorithm computation complexity for one iter-

ation is O(NK). The complete algorithm for estimating the EMGD parameters using the proposed

approach is presented in Algorithm 3.

2.3.2 Learning Algorithm for Infinite Mixture Model of EMGD

We know that the model parameters α and β in EMGD satisfy 0 < αjw ≪ βjw < 1, then

appealing flexible choice as prior is the Beta distribution, with shape parameters: δ, ϵ and ϖ, ϱ,
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then:

p(αj) ∝
Γ(δ + ϵ)

Γ(δ)Γ(ϵ)
αδ−1
j (1− αj)

ϵ−1 (38)

p(βj) ∝
Γ(ϖ + ϱ)

Γ(ϖ)Γ(ϱ)
βϖ−1
j (1− βj)

ϱ−1 (39)

where αj = (αj1, · · · , αjD), βj = (βj1, · · ·βjD).

Then, the conditional posterior distributions for αj and βj are:

p(αj |X ,Z) ∝ p(αj)
∏

Zij=1

EGDM(Xi|ξj)

Γ(δ + ϵ)

Γ(δ)Γ(ϵ)
αδ−1
j (1− αj)

ϵ−1
∏

Zij=1

{(
∏

W :xW≥1

x−1
w )

∏
W :xW≥1

Γ(zw)

Γ(xw + zw)
n

× {exp
W∑
w=1

I(xw >= 1)log
αwβw

αw + βw
}}

(40)

p(βj |X ,Z) ∝ p(βj)
∏

Zij=1

EGDM(Xi|ξj)

Γ(ϖ + ϱ)

Γ(ϖ)Γ(ϱ)
βϖ−1
j (1− βj)

ϱ−1
∏

Zij=1

{(
∏

W :xW≥1

x−1
w )

∏
W :xW≥1

Γ(zw)

Γ(xw + zw)
n

× {exp
W∑
w=1

I(xw >= 1)log
αwβw

αw + βw
}}

(41)

In order to have more flexible model, we introduce an additional hierarchical level by allowing the

hyperparmeters to follow some selected distributions. The hyperparmeters δ, ϵ and ϖ, ϱ associated

with α and β respectively are given Beta distribution and Exponential distribution:

p(δ|ς, υ) = Γ(ς + υ)

Γ(ς)Γ(υ)
δς−1(1− ς)υ−1 (42)

p(ϵ|λ) = λexp(−λϵ) (43)

p(ϖ|κ, ω) = Γ(κ+ ω)

Γ(κ)Γ(ωϖκ−1(1− κ)ω−1
(44)

p(ϱ|ι) = ιexp(−ιϱ) (45)
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For those hyperparameters δ, ϵ and ϖ, ϱ, the prior of α and β is considered as likelihood. Thus, the

conditional posterior can be obtained (see Appendix A.4).

Then, we have the learning Algorithm 4 for infinite mixture model of EMGD:

Algorithm 4 Infinite EMGD (InfEMGD) learning algorithm
Initialization: Using MOM to initialize model parameters
Input: A data set X = {X1 · · ·XN}, each is W -dimensional sparse count data
output: Θ

for t = 1 · · · :

(1) Generate Zt from Eq. 31 with Monte Carlo sampling approximation

(2) Update the number of represented components

(3) Generate parameters η from Eq. 27 with adaptive reject sampling (ARS)

(4) Generate weight parameters P t from Dir(η/M + n1, · · · , η/M + nM )

(5) Update α, β in Metropolis-Hasting(M-H) algorithm

Metropolis-Hasting(M-H) algorithm:
for γj in (αj , βj) :

(1) Generate γ̃j from q(γ̃j |γt−1
j ) and u ∼ U [0, 1]

(2) compute r =
p(γ̃j |M,X)q(γt−1

j |γ̃j)
p(γt−1

j |M,X)q(γ̃j |γt−1
j )

from Eq. (39) or Eq. (40)

(3) if r < u then: ξt = ξ̃ else: ξt = ξt−1

Update the hyperparameters δ, ϵ and ϖ, ϱ with MCMC sampling in their conditional posterior
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2.3.3 Learning Algorithm for Finite Mixture Model of EMBL

EMBL also belongs to the exponential family. We define X = {X1, · · · , XN}, where Xi =

[xi1 · · ·xiW ]. We can show following 4 [32], that:

H(X) = (
∏

W :xW≥1

x−1
w )n!

Gw(ξ) = log(αw)

Tw(X) =

W∑
w=1

I(xw >= 1)

ϕ(ξ) = log{Γ(α
′
)Γ(s)Γ(β

′
)Γ(α)α

Γ(s+ n)Γ(α′ + β′)
}

(46)

Thus, we have a prior as follows:

π(α, β) ∝ exp[

W∑
w=1

ρdlog(αd) + k(log(
Γ(s)Γ(α

′
)Γ(β

′
)α

Γ(s+ n)Γ(α′ + β′)
))] (47)

From Bayesian theory, the posterior can be written as (see Appendix A.2):

π(ξj |M,X) ∝ π(ξj)
∏

Zij=1

EMBL(Xi|ξj)

∝ exp[
W∑
w=1

log(αw)(ρw +
N∑

Zij=1

I(xiw ≥ 1))

+ k(log(
Γ(α

′
j)Γ(β

′
j)αj

(S)× (S + 1) · · · (S + n− 1)Γ(α
′
j + β

′
j)
))

+
∑

i=1,zij=1

(log(
Γ(α

′
)Γ(β

′
)α

(S)× (S + 1) · · · (S + n− 1)Γ(α′ + β′)
))]

(48)

Once the sample X is known, the posterior hyperparameters can be fixed, we fix ρw = 1 , k = 1

and η = 1 [5, 13].

In Bayesian approach, choosing an effective proposal prior distribution is significant factor for

the model parameters estimation and convergence time. With many different common proposal
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Figure 2.2: Graphical Model Representation of the Finite EMBL.

distributions attempts, we finally select Beta distribution as proposal distribution for αjw, and inv-

Gamma distribution for β:

αjw ∼ B(α, σ1), β ∼ invG(β, σ2) (49)

The complete steps for estimating the EMBL model parameters using the proposed approach are

given in Algorithm 5. Note that the proposed Algorithm 5 requires computational cost O(NK) per

step.

2.3.4 Learning Algorithm for Infinite Mixture Model of EMBL

As shown empirically, the values of α and β satisfy 0 < α ≪ 1 and β ≃ 1. Thus, we choose

the Beta distribution and Inverse Gamma distribution as priors for α and β with hyperparameters

δ, ϵ and ϖ, ϱ, then

p(αj) ∼
Γ(δ + ϵ)

Γ(δ)Γ(ϵ)
αδ−1
j (1− αj)

ϵ−1 (50)

p(βj) ∼
ϱϖexp(−ϱ/βj)

Γ(ϖ)βϖ−1
j

(51)
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Algorithm 5 Finite EMBL (FinEMBL) learning algorithm
Initialization: Using the MOM and the K-means method to initialize model parameters
Input: A data set X = {X1 · · ·XN}, each is W-dimensional sparse count data
output: Θ

for t = 1 · · · :

(1) Generate Zt ∼ M(1; Ẑi1
t−1 · · · ˆZiM

t−1
)

(2) Generate weight parameters P t from Eq. 24

(3) Generate model ξt from Eq. 48 using Metropolis-Hasting(M-H) algorithm

Metropolis-Hasting(M-H) algorithm:

(1) Generate ξ̃j from q(ξ̃j |ξt−1
j ) and u ∼ U [0, 1]

(2) compute r =
π(ξ̃j |M,X)q(ξt−1

j |ξ̃j)
π(ξt−1

j |M,X)q(ξ̃j |ξt−1
j )

(3) if r < u then: ξt = ξ̃ else: ξt = ξt−1

Having this prior, the full conditional posteriors for αj and βj are:

p(αj |X ,Z) ∝ p(αj)
∏

Zij=1

PEMBL(Xi|ξj)

∝ Γ(δ + ϵ)

Γ(δ)Γ(ϵ)
αδ−1
j (1− αj)

ϵ−1
∏

Zij=1

{(
∏

d:xd>=1

x−1
d )n!

∝ Γ(S)Γ(α
′
)Γ(β

′
)α

Γ(S + n)Γ(α′ + β′)
× exp{

D∑
d=1

I(xd ≥ 1)log(αd)}}

(52)

p(βj |X ,Z) ∝ p(βj)
∏

Zij=1

PEMBL(Xi|ξj)

∝ ϱϖexp(−ϱ/βj)

Γ(ϖ)βϖ−1
j

∏
Zij=1

{(
∏

d:xd>=1

x−1
d )n!

∝ Γ(S)Γ(α
′
)Γ(β

′
)α

Γ(S + n)Γ(α′ + β′)
× exp{

D∑
d=1

I(xd ≥ 1)log(αd)}}

(53)

In order to reduce the sensitivity of parameters, we give priors for the hyperparamete δ, ϵ and ϖ, ϱ,

by choosing Beta distribution, exponential distribution and Inverse Gamma distribution, exponential

distribution, respectively.

p(δ|ς, υ) ∼ Γ(ς + υ)

Γ(ς)Γ(υ)
δς−1(1− ς)υ−1 (54)
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p(ϵ|λ) ∼ λexp(−λϵ) (55)

p(ϖ|κ, ω) ∼ ωκexp(−ω/ϖ)

Γ(κ)ϖκ−1
j

(56)

p(ϱ|ι) ∼ ιexp(−ιϱ) (57)

For those hyperparameters δ, ϵ and ϖ, ϱ, the prior of α and β is considered as likelihood. Thus, the

conditional posterior can be obtained (see Appendix A.4).

Figure 2.3: Graphical Model Representation of the Infinite EMGD or EMBL.

The parameter learning algorithm of this infinite model is similar to that infinite mixture model

of EGDM, we only need to replace the posterior probability for α, β and δ, ϵ,ϖ, ϱ in M-H steps.

Thus, we have the learning Algorithm 6:
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Algorithm 6 Infinite EMBL (InfEMBL) learning algorithm
Initialization: Using MOM to initialize model parameters

Input: A data set X = {X1 · · ·XN}, each is W -dimensional sparse count data

output: Θ

for t = 1 · · · :

(1) Generate Zt from Eq. 31 with Monte Carlo sampling approximation

(2) Update the number of represented components

(3) Generate parameters η from Eq. 27 with adaptive reject sampling (ARS)

(4) Generate weight parameters P t from Dir(η/M + n1, · · · , η/M + nM )

(5) Update α, β in Metropolis-Hasting(M-H) algorithm

Metropolis-Hasting(M-H) algorithm:

for γj in (αj , βj) :

(1) Generate γ̃j from q(γ̃j |γt−1
j ) and u ∼ U [0, 1]

(2) compute r =
p(γ̃j |M,X)q(γt−1

j |γ̃j)
p(γt−1

j |M,X)q(γ̃j |γt−1
j )

from Eq. (43) or Eq. (44)

(3) if r < u then: ξt = ξ̃ else: ξt = ξt−1

Update the hyperparameters δ, ϵ and ϖ, ϱ with MCMC sampling in their conditional posterior
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2.3.5 Learning Algorithm for Finite Mixture Model of EMSD

The exponential family also includes EMSD. We can show following Eq. 4, that:

H(ξ) = n!(
∏
xd≥1

x−1
d )

Gl(ξ) = [log(αjd)− log(βjd)]

Tl(x) =

∑D
d=1 I(xd ≥ 1)∑D

d=1 xd


log(Γ(s+ ni)) = log(Γ(s)) +

n−1∑
t=1

log(s+ t)

Φl(ξ) = log(
Γ(s)

Γ(s+ ni)
) = −

n−1∑
t=1

log(s+ t)

(58)

Thus, the EMSD can be rewritten as:

EMSD(Xi|αj , βj) = (
∏
xd≥1

xd
−1)n!

Γ(s)

Γ(s+ n)

=

{
exp(

D∑
d=1

I(xd ≥ 1)(log(αjd)− xw log(αjd))

} (59)

where the ξj = (αjd, βjd).

In this case, a conjugate prior for ξ is given by:

P (ξj) ∝ exp(

D∑
d=1

ρlGl(ξj) + kΦ(ξj))

∝ exp

[ D∑
d=1

(ρ1 log(αjd)−

ρ2 log(βjd))− k

n−1∑
t=1

log(s+ t)

]
(60)
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Algorithm 7 Finite EMSD (FinEMSD) learning algorithm
Initialization: Using the MOM and the K-means method to initialize model parameters
Input: A data set X = {X1 · · ·XN}, each is D-dimensional sparse count data
output: Θ

for t = 1 · · · :

(1) Generate Zt ∼ M(1; Ẑi1
t−1 · · · ˆZiM

t−1
)

(2) Generate weight parameters P t from Eq. 24

(3) Generate model ξt from Eq. 61 using Metropolis-Hasting(M-H) algorithm

Metropolis-Hasting(M-H) algorithm:

(1) Generate ξ̃j from q(ξ̃j |ξt−1
j ) and u ∼ U [0, 1]

(2) compute r =
π(ξ̃j |M,X)q(ξt−1

j |ξ̃j)
π(ξt−1

j |M,X)q(ξ̃j |ξt−1
j )

(3) if r < u then: ξt = ξ̃ else: ξt = ξt−1

where (ρ1, ρ2, k) are the prior’s hyperparameters. Thus, we can determine the posterior distribution

as follows:

P (ξj |X ,Z) ∝ P (ξj)EMSD(Xi|ξj)

∝ exp

{{[ D∑
d=1

(log(αjd)(ρ1 +
∑

i,zij=1

I(xid ≥ 1))− log(βjd)(ρ2 +
∑

i=1,zij=1

xid)

]}

− k

n−1∑
t=1

log(s+ t) +
∑

i,zij=1

{[
log(n!)−

∑
d,xid≥1

log(xid)−
ni−1∑
t=1

log(s+ t)

]}}

(61)

Considering [5], once the sample X is known, it can be used to get the prior hyperparameters. The

hyperparameters are fixed at: k = 1, ρ1 = 1, ρ2 = 1, η = 1.
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2.3.6 Learning Algorithm for Finite Mixture Model of EMSSD

EMSSD can be written following Eq. 4, as:

H(X) =
n!∏D

w:xw≥1 xiw

Gw1(ξ) = log(αw)− log(τ)

Gw2(ξ) = log(βw)

Tw1(X) =
W∑
w=1

I(xw >= 1)

Tw2(X) =

W∑
w=1

I(xw >= 1)xw

ϕ(ξ) = log{ Γ(α+)τ
D

Γ(α+ + τn)
}

(62)

Thus, we have a prior as follows:

π(ξ) ∝ exp[
W∑
w=1

{ρ1w(log(αw)− log(τ)) + ρ2wlog(βw)}

+ k × log{ Γ(α+)τ
D

Γ(α+ + τn)
}

(63)
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Algorithm 8 Finite EMSSD (FinEMSSD) learning algorithm
Initialization: Using MOM and K-means method to initialize model parameters
Input: A data set X = {X1 · · ·XN}, each is W -dimensional sparse count data
output: Θ

for t = 1 · · · :

(1) Generate Zt ∼ M(1; Ẑi1
t−1 · · · ˆZiM

t−1
)

(2) Generate weight parameters P t from Eq. 24

(3) Generate model ξt from Eq. 64 using Metropolis-Hasting(M-H) algorithm

Metropolis-Hasting(M-H) algorithm:

(1) Generate ξ̃j from q(ξ̃j |ξt−1
j ) and u ∼ U [0, 1]

(2) compute r =
π(ξ̃j |M,X)q(ξt−1

j |ξ̃j)
π(ξt−1

j |M,X)q(ξ̃j |ξt−1
j )

(3) if r < u then: ξt = ξ̃ else: ξt = ξt−1

From Bayesian theory, the posterior can be written as

p(ξj |X ,Z) ∝ π(ξj)
N∏

Zij=1

EMSSD(X|ξj)

=exp[

W∑
w=1

{ρ1w(log(αw)− log(τ)) + ρ2wlog(βw)}

+ k × log{ Γ(α+)τ
W

Γ(α+ + τn)
}

N∏
Zij=1

pEMSSD(X|ξj ,M)

∝exp{(
N∑

Zij=1

[I(xiw ≥ 1) + ρ1w)(
W∑
w=1

log(αjw − τjw))

+ (
N∑

Zij=1

[I(xiw ≥ 1)xiw + ρ2w)(
W∑
w=1

log(βjw))

+ k × log{ Γ(α+)τ
D

Γ(α+ + τn)
+

N∑
Zij=1

Γ(α+)τ
W

Γ(α+ + τni)
}

(64)

Once the sample X is known, the posterior hyperparameters can be fixed, we fix ρ1w = 1, ρ2w = 1

, k = 1 and η = 1. Having the posterior in hand, we can propose the algorithm for finite mixture

model of EMSSD. In Algorithm 8, ξj = [αj1, βj1., τj1, · · · , αjW , βjW , τjW ], and we take the K-
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Figure 2.4: Graphical Model Representation of the Finite EMSSD.

means and the method of Moment (MOM) [57] for initializing model parameters α. We initialize β

with a constant proportion vector and τ as a vector one. Choosing proposal distribution is significant

part in M-H steps [23, 52]. As the model parameters satisfy 0 < αjw ≪ 1 and 0 < βjw < 1, we

choose the Beta distribution and Gamma distribution as the proposal distributions for αjw, βjw and

the Inverse Gamma distribution for τ .

αjw ∼ B(α, σ1), τ ∼ invG(τ, σ2), β ∼ Gamma(β, σ3) (65)

The algorithm computation complexity for one iteration is O(NK).

2.3.7 Learning Algorithm for Infinite Mixture Model of EMSSD

EMSSD is redcued to EMSD, when we set τ = 1. Furthermore, EMSSD shows better exper-

imental results in real applications. Thus, we only extend EMSSD to infinite mixture. We find

that taking the prior (Eq. 63) and the posterior (Eq. 64) for EMSSD parameters in infinite mixture

30



Figure 2.5: Graphical Model Representation of the Infinite EMSSD.

model, we can obtain a superior performance in real applications. Thus, we directly use them to the

infinite mixture model. Then, the complete algorithm can be presented:
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Algorithm 9 Infinite EMSSD (InfEMSSD)
Initialization: Using MOM to initialize model parameters
Input: A data set X = {X1 · · ·XN}, each is W-dimensional sparse count data
output: Θ

for t = 1 · · · :

(1) Generate Zt from Eq.31 with Monte Carlo sampling approximation

(2) Update the number of represented components

(3) Generate parameters η from Eq. 27 with adaptive reject sampling (ARS)

(4) Generate weight parameters P t from Dir(η/M + n1, · · · , η/M + nM )

(5) Update α, β, τ in FinEMSSD Metropolis-Hasting(M-H) algorithm

Metropolis-Hasting(M-H) algorithm:

(1) Generate ξ̃j from q(ξ̃j |ξt−1
j ) and u ∼ U [0, 1]

(2) compute r =
π(ξ̃j |M,X)q(ξt−1

j |ξ̃j)
π(ξt−1

j |M,X)q(ξ̃j |ξt−1
j )

(3) if r < u then: ξt = ξ̃ else: ξt = ξt−1
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Chapter 3

Experimental Results

In this section, we aim at comparing the proposed algorithms and their corresponding finite

mixture models learned with a deterministic approach using EM algorithm in different data clus-

tering applications. The first experiment and second one concentrate on textual data for sentiment

analysis and fake news detection. The last one considers images data for distinguishing male and

female faces. All experiments were conducted using optimized python code on Intel (R) Core (TM)

i7-9750H processor PC with Windows 10 Enterprise Service Pack 1 operating system with a 16 GB

main memory. The results that we will present in the following subsections represent the average

over 20 runs of the different learning algorithms.

3.1 Text Documents Clustering

In this section, we want to test the performance of the proposed framework for text classification

problems.

3.1.1 Pre-processing in Text documents

For all datasets, we did the following pre-processing before providing the experimental results

of our framework:

• Text should be lowercase.

• Non-alphabetic characters should be removed.
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• Stop words should be removed.

• To represent a text document, we apply a count data vector, which correlates to the frequency

to which a word appears.

3.1.2 Text Sentiment Analysis

Sentiment analysis, also called opinion mining, involves analyzing evaluations, attitudes, and

emotions, expressed in a piece of text, towards entities such as products, services, or movies [6].

In our experiment, we classify whether a whole opinion document expresses a positive or negative

sentiment. The challenges in sentiment analysis, as a text clustering application, include that the

reviews are usually limited in length, have many misspellings, and shortened forms of words. Thus,

the vocabulary size is immense, and the count vector that represents each review will be highly

sparse. The experiment used large data set of IMDB movies review with two labels: negative

and positive, and the experiment result is based on comparing recall, precision, and F-Measure

values. We collect 50,000 samples from each IMDB review of different labels, totaling 76,340

unique words. We compare the proposed algorithms with other methods, such as EGDM mixture

model [62], EMBL mixture model [60], EMSSD mixture model [61] that have been proposed for

modeling count data. The results are shown in Tables 3.1, according to the F-Measure in this table,

Table 3.1: IMDB Movie Reviews.
Method Precision Recall F-Measure

FinEMBL-MCMC 84.72 87.88 86.27
FinEMGD-MCMC 85.16 88.73 87.03
FinEMSD-MCMC 83.85 85.66 83.64

FinEMSSD-MCMC 86.14 83.84 84.96
InfEMBL-MCMC 89.18 88.93 89.06
InfEMGD-MCMC 88.68 88.49 88.58
InfEMSSD-MCMC 88.57 89.60 89.08

EGDM -EM 81.36 85.55 83.59
EMBL-EM 83.75 84.60 84.17

EMSSD-EM 82.96 83.01 82.98

we can note that the proposed approaches outperform other compared models and approaches.
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3.1.3 Covid-19 Fake News Detection

In 2020, a new virus swept the world and it brought many disasters to the world. In addition

to the epidemic, the authenticity of news related to it from the Internet has become very important.

The data set considered here contains 947 tweets that are related to Covid-19 information, and that

have been already divided into two classes, one contains real news and the other contains fake news.

We take all of the samples and identify the most often used 1000 unique words in 947 tweets related

to Covid-19 information. From Table 3.2, our proposed algorithms still show excellent performance

Table 3.2: CON-19 Fake News Detection.
Method Accuracy

FinEMSSD-MCMC 85.04
FinEMSD-MCMC 83.21
FinEMGD-MCMC 86.48
FinEMBL-MCMC 86.24
InfEMSSD-MCMC 86.78
InfEMGD-MCMC 87.45
InfEMBL-MCMC 86.26

EMGD -EM 86.50
EMBL-EM 83.75

EMSSD-EM 84.54

in the fake news detection task. Compared with other approaches and models, InfEMGD-MCMC

yields the best accuracy of 87.45 %, and FinEMGD-MCMC also reaches 86.48 %. Compared with

finite mixture models, the performance of our infinite mixture models show higher accuracy rate.

3.2 Images Clustering

In this section, we apply the proposed framework to test its performance in real-world image

classification tasks.

3.2.1 Feature Extraction in Images

The Bag of words was originally used in text classification to represent documents as features

vectors, and its basic idea is to assume that a text, ignoring its word order and grammar and syntax, is

simply viewed as a collection of words and each word in the text is independent [28,31]. Likewise,
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it can be used in images as a bag of visual words. The specific process is as follows:

• We convert M images to a uniform size and then extract SIFT features for each image. Each

SIFT feature is represented by a 128-dimensional vector, and we assumed that a total of N

features are extracted from M images.

• Using the K-Means algorithm to divide the N objects into K clusters to have high similarity

within clusters and low similarity between clusters.

• There are K cluster centers (visual words), and the distance from each SIFT feature of each

image to this visual word is calculated and mapped to the visual word with the closest distance

(i.e., the corresponding word frequency of that visual word + 1).

3.2.2 Human Face Gender Recognition

Figure 3.1: AR Database

In this experiment, we use two standard and challenging face recognition databases. The first

database is the AR face database, which has 4000 color images corresponding to 126 people’s faces

(70 men and 56 women). Images feature frontal view faces with different facial expressions, illu-

mination conditions, and occlusions (sunglasses and scarf).
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Figure 3.2: Caltech Database

The second database is Caltech faces by California Institute of Technology, consists of 450 face

images of around 27 unique people (both genders) with different lighting/expressions/backgrounds

(sample images are shown in Fig. 3.2). We apply bag of feature (BOF) for representing the image

vectors where SIFT has been used for feature extraction, treating the local image patches as the

visual equivalent of individual words.
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Figure 3.3: Intraclass Accuracy for Proposed Models in Caltech Database .

Fig. 3.4 and Fig 3.3 show that our proposed approaches permit good discrimination. The intr-

aclass accuracy performance for the AR using proposed approaches is shown in Fig. 3.4. We note

that InfEMSSD-MCMC shows superior performance in distinguishing women class (97%) from

men class (94%) and InfEMBL-MCMC achieves 96.01% in Caltech data set as we can see in Fig.

3.3. Overall, all of our proposed models and algorithms ensure an accuracy above 85 % in this

application. Compared with the EM algorithm, our proposed MCMC algorithms show higher accu-

racy with the corresponding models.
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Figure 3.4: Intraclass Accuracy for Proposed Models in AR Database.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, we have proposed learning approaches for finite mixtures of EMGD, EMBL, and

EMSSD based on the development of conjugate prior-posterior distributions and the Monte Carlo

simulation techniques of Gibbs sampling mixed with a M-H step. Generally, with the help of prior

information and the stochastic aspect of the simulation in Gibbs sampling, Bayesian inference en-

sures the escape from local maximum. Moreover, we propose extensions based on infinite mixtures

which model well the structure of the data. Our proposed approaches offer excellent modeling ca-

pabilities as shown by the experimental results, which involve text sentiment analysis, fake news

detection and human face recognition, compared to the widely used maximum likelihood-based

approach.

4.2 Future Work

Our framework still has some drawbacks as follows:

• The selection of the proposal distribution has a great impact on the final experimental results,

so we had to spend a lot of time on tuning proposal distribution to achieve good experimental

results. A better approach to investigate in the future is to use the particle M-H technique

based on gradient and Hessian information for the posterior to construct the common proposal
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distribution [22].

• The high computational complexity of the proposed inference led to slow convergence. In the

future, we will concentrate on replacing classical M-H by the Scalable M-H algorithm [21].

This scheme is based on combination of factorized acceptance probabilities, procedures of

Bernoulli processes, and control variate idea. It can be used to reduce the computational

complexity by discovering in advance the sampling points that may be rejected.

• Apply the proposed algorithms and models to more complex tasks.
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Appendix A

A.1 Proof of the Posterior in Finite Mixture of EMGD

π(ξj |M,X) ∝ π(ξj)
∏

Zij=1

EGDM(Xi|ξj)

= exp(
W∑
w=1

ρllog
αwβw

αw + βw
)
∏

Zij=1

{(
∏

W :xW≥1

x−1
w )

∏
W :xW≥1

Γ(zw)

Γ(xw + zw)
n

× {exp
W∑
w=1

I(xw >= 1)log
αwβw

αw + βw
}}

(66)

Removing the equation parts which is only related with data set X , because it does not have an

effect on the calculation in M-H step.

π(ξj |M,X) ∝ π(Θj)
∏

Zij=1

EGDM(Xi|Θj)

∝ exp[
W∑
w=1

log
αwβw

αw + βw
(ρw +

N∑
Zij=1

I(xiw ≥ 1))]

×
N∏

Zij=1

(
∏

w:xiw≥1

x−1
iw

Γ(ziw)

Γ(xiw + ziw)
n!)

(67)
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A.2 Proof of the Posterior in Finite Mixture of EMBL

π(ξj |M,X) ∝ π(ξj)
∏

Zij=1

EMBL(Xi|ξj)

= exp[
W∑
w=1

ρdlog(αd) + k(log(
Γ(S)Γ(α

′
)Γ(β

′
)α

Γ(S + n)Γ(α′ + β′)
))]

×
∏

Zij=1

{(
∏

d:xd>=1

x−1
d )n!

Γ(S)Γ(α
′
)Γ(β

′
)α

Γ(S + n)Γ(α′ + β′)
× exp{

D∑
d=1

I(xd ≤ 1)log(αd)}}

=
∏

Zij=1

(
∏

d:xd>=1

x−1
d n!)exp[

W∑
w=1

log(αw)(ρw +

N∑
Zij=1

I(xiw ≥ 1))

+ k(log(
Γ(S)Γ(α

′
j)Γ(β

′
j)αj

Γ(S + n)Γ(α
′
j + β

′
j)
))

(68)

We remove the equations which are only related with data set X .

For the fact that:

Γ(S + n) = Γ(S)(S)× (S + 1) · · · (S + n− 1) (69)

So we have:

∝ exp[
W∑
w=1

log(αw)(ρw +
N∑

Zij=1

I(xiw ≥ 1))

+ k(log(
Γ(α

′
j)Γ(β

′
j)αj

(S)× (S + 1) · · · (S + n− 1)Γ(α
′
j + β

′
j)
))

+
∑

i=1,zij=1

(log(
Γ(α

′
)Γ(β

′
)α

(S)× (S + 1) · · · (S + n− 1)Γ(α′ + β′)
))]

(70)
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A.3 Conditional Posterior of InfEMGD hyperparmeters

In EMGD, the conditional posteriors become:

p(ϵ| · · · ) ∝ p(ϵ)
M∏
j=1

p(αj |δ, ϵ)

λexp(−λϵ)

M∏
j=1

× Γ(δ + ϵ)

Γ(δ)Γ(ϵ)
αδ−1
j (1− αj)

ϵ−1

(71)

p(δ| · · · ) ∝ p(δ)
M∏
j=1

p(αj |δ, ϵ)

Γ(ς + υ)

Γ(ς)Γ(υ)
δς−1(1− ς)υ−1

× Γ(δ + ϵ)

Γ(δ)Γ(ϵ)
αδ−1
j (1− αj)

ϵ−1

(72)

p(ϱ| · · · ) ∝ p(ϱ)

M∏
j=1

p(βj |ϖ, ϱ)

= ιexp(−ιϱ)

×
M∏
j=1

Γ(ϖ + ϱ)

Γ(ϖ)Γ(ϱ)
βϖ−1
j (1− βj)

ϱ−1

(73)

p(ϖ| · · · ) ∝ p(ϖ))
M∏
j=1

p(βj |ϖ, ϱ)

=
Γ(κ+ ω)

Γ(κ)Γ(ωϖκ−1(1− κ)ω−1

×
M∏
j=1

Γ(ϖ + ϱ)

Γ(ϖ)Γ(ϱ)
βϖ−1
j (1− βj)

ϱ−1

(74)
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A.4 Conditional Posterior of InfEMBL hyperparmeters

In EMBL, the form of p(ϵ| · · · ) and p(δ| · · · ) are same in Eq. 71 and Eq. 72. For the conditional

posteriors of ϱ and ϖ, we have:

p(ϱ| · · · ) ∝ p(ϱ)
M∏
j=1

p(βj |ϖ, ϱ)

= ιexp(−ιϱ)
M∏
j=1

ϱϖexp(−ϱ/βj)

Γ(ϖ)βϖ−1
j

(75)

p(ϖ| · · · ) ∝ p(ϖ)

M∏
j=1

p(βj |ϖ, ϱ)

=
ωκexp(−ω/ϖ)

Γ(κ)ϖκ−1

M∏
j=1

ϱϖexp(−ϱ/βj)

Γ(ϖ)βϖ−1
j

(76)
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[6] L. Batista and S. Ratté. Multi-classifier system for sentiment analysis and opinion mining.

International Conference on Advances in Social Networks Analysis and Mining, pages 96–

100, 2014.

[7] L. M. Berliner. Bayesian Statistics: An Introduction. Edward Arnold, London, 1997.

[8] C. M. Bishop. Pattern recognition. springer, 2006.

46



[9] N. Bouguila. Clustering of count data using generalized dirichlet multinomial distributions.

IEEE Transactions on Knowledge and Data Engineering, 20(4):462–474, 2008.

[10] N. Bouguila. Count data modeling and classification using finite mixtures of distributions.

IEEE Transactions on Neural Networks, 22(2):186–198, 2011.

[11] N. Bouguila and W. ElGuebaly. On discrete data clustering. In Takashi Washio, Einoshin

Suzuki, Kai Ming Ting, and Akihiro Inokuchi, editors, Advances in Knowledge Discovery and

Data Mining, 12th Pacific-Asia Conference, PAKDD 2008, Osaka, Japan, May 20-23, 2008

Proceedings, volume 5012 of Lecture Notes in Computer Science, pages 503–510. Springer,

2008.

[12] N. Bouguila and D. Ziou. A dirichlet process mixture of generalized dirichlet distributions for

proportional data modeling. IEEE Transactions on Neural Networks, 21(1):107–122, 2010.

[13] N. Bouguila, D. Ziou, and R. I. Hammoud. On bayesian analysis of a finite generalized

dirichlet mixture via a metropolis-within-gibbs sampling. Pattern Analysis & Applications,

12(2):151–166, 2009.

[14] N. Bouguila, D. Ziou, and H. Riad I. A bayesian non-gaussian mixture analysis: Application

to eye modeling. In 2007 IEEE Conference on Computer Vision and Pattern Recognition,

pages 1–8, 2007.

[15] S. P. Brooks. On bayesian analyses and finite mixtures for proportions. Statistics and Com-

puting, 11(2):179–190, 2001.

[16] L. D. Brown. Fundamentals of statistical exponential families with applications in statistical

decision theory. Lecture Notes-Monograph Series, 9:100–279, 1986.

[17] K. L. Caballero, B. Joel, and A. Ram. The generalized dirichlet distribution in enhanced

topic detection. In Proceedings of the 21st ACM International Conference on Information and

Knowledge Management, CIKM ’12, page 773–782, New York, NY, USA, 2012. Association

for Computing Machinery.

47



[18] L. Cai. High-dimensional exploratory item factor analysis by a metropolis–hastings rob-

bins–monro algorithm. Psychometrika, 75(1):33–57, 2010.

[19] P. Cerchiello and G. Paolo. Dirichlet compound multinomials for text modelling. Applied

Mathematics, pages 2089–2097, 01 2012.

[20] K. W. Church and W. A. Gale. Poisson mixtures. Natural Language Engineering, 1(2):163–

190, 1995.

[21] R. Cornish, P. Vanetti., A. Bourchard, G. Deligiannidis, and A. Doucet. Scalable Metropolis-

Hastings for exact Bayesian inference with large datasets. Proceedings of the 36th Interna-

tional Conference on Machine Learning, 97:1351–1360, 2019.

[22] J. Dahlin, F. Lindsten., and T. Schön. Particle metropolis–hastings using gradient and hessian

information. Statistics and Computing, 25:81–92, 2015.

[23] S. Daniel and D. Gianola. Likelihood, Bayesian and MCMC methods in quantitative genetics.

Springer, New York, 2002.

[24] A. Dasgupta. The Exponential Family and Statistical Applications, pages 583–612. Springer

New York, 2011.

[25] I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using clus-

tering. Machine Learning, 42(1/2):143–175, 2001.

[26] J. G. Dias and M. Wedel. An empirical comparison of em, sem and mcmc performance for

problematic gaussian mixture likelihoods. Statistics and Computing, 14(4):323–332, 2004.

[27] T. Elguebaly and N. Bouguila. Bayesian learning of generalized gaussian mixture models on

biomedical images. In Friedhelm Schwenker and Neamat El Gayar, editors, Artificial Neural

Networks in Pattern Recognition, 4th IAPR TC3 Workshop, ANNPR 2010, Cairo, Egypt, April

11-13, 2010. Proceedings, volume 5998 of Lecture Notes in Computer Science, pages 207–

218. Springer, 2010.

[28] T. Elguebaly and N. Bouguila. A Bayesian Method for Infrared Face Recognition, pages 123–

138. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

48



[29] T. Elguebaly and N. Bouguila. A bayesian approach for the classification of mammographic

masses. In 2013 Sixth International Conference on Developments in eSystems Engineering,

pages 99–104, 2013.

[30] C. Elkan. Clustering documents with an exponential-family approximation of the dirichlet

compound multinomial distribution. In Proceedings of the 23rd International Conference on

Machine Learning, ICML ’06, page 289–296. Association for Computing Machinery, 2006.

[31] W. Fan and N. Bouguila. Online facial expression recognition based on finite beta-liouville

mixture models. In 2013 International Conference on Computer and Robot Vision, pages

37–44, 2013.

[32] C. Forbes, E. Merran, H. Nicholas, and P. Brian. Statistical distributions. John Wiley and

Sons, 2011.

[33] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restora-

tion of images. Journal of Applied Statistics, 20(5-6):25–62, 1993.

[34] R. K. Hankin. A generalization of the dirichlet distribution. Journal of Statistical Software,

33(11):1–18, 2010.

[35] W. Keith Hastings. Monte carlo sampling methods using markov chains and their applications.

Oxford University Press, 1970.

[36] J. Herve, D. Matthijs, and S. Cordelia. On the burstiness of visual elements. 2009 IEEE

Conference on Computer Vision and Pattern Recognition, pages 1169–1176, 2009.

[37] M. A. Islam and R. I. Chowdhury. Exponential Family of Distributions, pages 23–30. Springer

Singapore, 2017.

[38] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8):651–

666, 2010.

[39] S. M. Katz. Distribution of content words and phrases in text and language modelling. Natural

Language Engineering, 2(1):15–59, 1996.

49



[40] S. Kotz, N. Balakrishnan, and N. L. Johnson. Continuous Multivariate Distributions. Wiley

Online Library, New York, 2014.

[41] E. Levitan and G. T. Herman. A maximum a posteriori probability expectation maximization

algorithm for image reconstruction in emission tomography. IEEE Transactions on Medical

Imaging, 6(3):185–192, 1987.

[42] E. Madsen, D. Kauchak, and C. Elkan. Modeling word burstiness using the dirichlet distribu-

tion. In Proceedings of the 22nd International Conference on Machine Learning, ICML ’05,

page 545–552. Association for Computing Machinery, 2005.

[43] D. Margaritis and S. Thrun. A bayesian multiresolution independence test for continuous

variables. the Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI2001),

pages 346–353, 2013.

[44] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation

of state calculations by fast computing machines. American Institute of Physics, 21(6):1087–

1092, 1953.

[45] F. Najar, N. Zamzami, and N. Bouguila. Fake news detection using bayesian inference. 2019

IEEE 20th International Conference on Information Reuse and Integration for Data Science

(IRI), pages 389–394, 2019.

[46] F. Najar, N. Zamzami, and N. Bouguila. Recognition of human interactions in feature films

based on infinite mixture of edcm. 2020 International Symposium on Networks, Computers

and Communications (ISNCC), pages 1–6, 2020.

[47] C. E. Rasmussen. The infinite gaussian mixture model. Advances in Neural Information

Processing Systems, 12:554–560, 1999.

[48] C. Robert. The Bayesian choice: from decision-theoretic foundations to computational imple-

mentation, volume 2. Springer, 2007.

[49] Z. Song, S. Ali., and N. Bouguila. Bayesian learning of infinite asymmetric gaussian mixture

models for background subtraction. In Image Analysis and Recognition - 16th International

50



Conference, ICIAR 2019, Waterloo, ON, Canada, August 27-29, 2019, Proceedings, Part I,

volume 11662 of Lecture Notes in Computer Science, pages 264–274. Springer, 2019.

[50] X. Su, N. Bouguila, and N. Zamzami. Covid-19 news clustering using mcmc-based learing of

finite emsd mixture models. The International FLAIRS Conference Proceedings, 34, 2021.

[51] N. Tomasev and M. Radovanovic. Clustering Evaluation in High-Dimensional Data, pages

71–107. Springer International Publishing, Cham, 2016.

[52] K. E. Train. Discrete Choice Methods with Simulation, pages 76–96. Cambridge University

Press, 2 edition, 2009.

[53] E. G. Tsionas. Bayesian inference for multivariate gamma distributions. Statistics and Com-

puting, 14(3):223–233, 2004.

[54] Tzu-Tsung. W. Generalized dirichlet distribution in bayesian analysis. Applied Mathematics

and Computation, 97(2-3):165–181, 1998.

[55] Tzu-Tsung. W. A bayesian approach employing generalized dirichlet priors in predicting

microchip yields. Journal of the Chinese Institute of Industrial Engineers, 22(3):210–217,

2005.

[56] Tzu-Tsung. W. Alternative prior assumptions for improving the performance of naı̈ve bayesian

classifiers. Data Mining and Knowledge Discovery, 18(2):183–213, 2009.

[57] Tzu-Tsung. W. Parameter estimation for generalized dirichlet distributions from the sample

estimates of the first and the second moments of random variables. Computational Statistics

& Data Analysis, 54(7):1756–1765, 2010.

[58] A. Wong and H. John. Algorithm as 136: A k-means clustering algorithm. Journal of the

Royal Statistical Society, 28(1):100–108, 1979.

[59] N. Zamzami and N. Bouguila. A novel scaled dirichlet-based statistical framework for count

data modeling: Unsupervised learning and exponential approximation. Pattern Recognition,

95:36–47, 2019.

51



[60] N. Zamzami and N. Bouguila. High-dimensional count data clustering based on an exponential

approximation to the multinomial beta-liouville distribution. Information Sciences, 524:116–

135, 2020.

[61] N. Zamzami and N. Bouguila. Probabilistic modeling for frequency vectors using a flexible

shifted-scaled dirichlet distribution prior. ACM Trans. Knowl. Discov. Data, 14(6):35–69,

2020.

[62] N. Zamzami and N. Bouguila. Sparse count data clustering using an exponential approxima-

tion to generalized dirichlet multinomial distributions. IEEE Transactions on Neural Networks

and Learning Systems, pages 1–14, 2020.

52


	List of Figures
	List of Tables
	Introduction
	Motivation
	Literature Review and Background
	Monte Carlo Approximation
	Importance Sampling
	Gibbs Sampling
	Metropolis-Hastings Sampling
	Finite Mixture Model
	Exponential Family
	The Exponential Family Approximation to Multinomial Generalized Dirichlet Distribution
	The Exponential Family Approximation to Multinomial Beta-Liouville Distribution
	The Exponential Family Approximation to Multinomial Scaled Dirichle Distribution
	The Exponential Family Approximation to Multinomial Shifted-Scaled Distribution

	Contributions
	Thesis Structure

	The Proposed Bayesian Learning Framework
	Bayesian Learning for Finite Mixture Weight Parameters
	Bayesian Learning for Infinite Mixture Weight Parameters
	Learning Algorithms for Finite and Infinite Models
	Learning Algorithm for Finite Mixture Model of EMGD
	Learning Algorithm for Infinite Mixture Model of EMGD
	Learning Algorithm for Finite Mixture Model of EMBL
	Learning Algorithm for Infinite Mixture Model of EMBL
	Learning Algorithm for Finite Mixture Model of EMSD
	Learning Algorithm for Finite Mixture Model of EMSSD
	Learning Algorithm for Infinite Mixture Model of EMSSD


	Experimental Results
	Text Documents Clustering
	Pre-processing in Text documents
	Text Sentiment Analysis
	Covid-19 Fake News Detection

	Images Clustering
	Feature Extraction in Images
	Human Face Gender Recognition


	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix 
	Proof of the Posterior in Finite Mixture of EMGD
	Proof of the Posterior in Finite Mixture of EMBL
	Conditional Posterior of InfEMGD hyperparmeters
	Conditional Posterior of InfEMBL hyperparmeters

	Bibliography

