
Artificial Intelligence Models for Scheduling Big
Data Services on the Cloud

Gaith Rjoub

A Thesis

In

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Information & Systems Engineering) at

Concordia University

Montréal, Québec, Canada

October 2021

© Gaith Rjoub, 2021

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Gaith Rjoub

Entitled: Artificial Intelligence Models for Scheduling Big Data Services

on the Cloud

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information Systems Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. Irfan-Ullah Awan

Dr. Juergen Rilling

Dr. Roch Glitho

Dr. Farnoosh Naderkhani

Dr. Jamal Bentahar

Dr. Omar Abdul Wahab

Approved by
Dr. Mohammad Mannan Graduate Program Director

October 15, 2021

Date of Defence Dr. Mourad Debbabi, Gina Cody School of Engineering

and Computer Science

ABSTRACT

Artificial Intelligence Models for Scheduling Big Data Services on the

Cloud

Gaith Rjoub, Ph.D.

Concordia University, 2021

The widespread adoption of Internet of Things (IoT) applications in many

critical sectors (e.g., healthcare, unmanned autonomous systems, etc.) and the huge

volumes of data that are being generated from such applications have led to an

unprecedented reliance on the cloud computing platform to store and process these

data. Moreover, cloud providers tend to receive massive waves of demands on

their storage and computing resources. To help providers deal with such demands

without sacrificing performance, the concept of cloud automation had recently arisen

to improve the performance and reduce the manual efforts related to the management

of cloud computing workloads.

However, several challenges have to be taken into consideration in order to

guarantee an optimal performance for big data storage and analytics in cloud

computing environments. In this context, we propose in this thesis a smart scheduling

model as an automated big data task scheduling approach in cloud computing

environments. Our scheduling model combines Deep Reinforcement Learning (DRL),

Federated Learning (FL), and Transfer Learning (TL) to automatically predict the IoT

devices to which each incoming big data task should be scheduled to as to improve the

performance and reduce the execution cost. Furthermore, we solve the long execution

iii

time and data shortage problems by introducing a FL-based solution that also ensures

privacy-preserving and reduces training and data complexity.

The motivation of this thesis stems from four main observations/research gaps

that we have drawn through our literature reviews and/or experiments, which are:

(1) most of the existing cloud-based scheduling solutions consider the scheduling

problem only from the tasks priority viewpoint, which leads to increase the amounts

of wasted resources in case of malicious or compromised IoT devices; (2) the existing

scheduling solutions in the domain of cloud and edge computing are still ineffective

in making real-time decisions concerning the resource allocation and management

in cloud systems; (3) it is quite difficult to schedule tasks or learning models from

servers in areas that are far from the objects and IoT devices, which entails significant

delay and response time for the process of transmitting data; and (4) none of the

existing scheduling solutions has yet addressed the issue of dynamic task scheduling

automation in complex and large-scale edge computing settings.

In this thesis, we address the scheduling challenges related to the cloud and edge

computing environment. To this end, we argue that trust should be an integral part

of the decision-making process and therefore design a trust establishment mechanism

between the edge server and IoT devices. The trust mechanism model aims to detect

those IoT devices that over-utilize or under-utilize their resources. Thereafter, we

design a smart scheduling algorithm to automate the process of scheduling large-scale

workloads onto edge cloud computing resources while taking into account the trust

scores, task waiting time, and energy levels of the IoT devices to make appropriate

scheduling decisions. Finally, we apply our scheduling strategy in the healthcare

domain to investigate its applicability in a real-world scenario (COVID-19).

iv

ACKNOWLEDGEMENTS

First and foremost, praises and thanks to the God, the Almighty, for His showers

of blessings throughout my research work and granting me the health, ability, and

patience to complete this thesis.

I would like to express my deep and sincere gratitude to my Ph.D. supervisors,

Dr. Jamal Bentahar and Dr. Omar Abdul Wahab for giving me the opportunity

to do research and providing invaluable guidance throughout this research. Their

dynamism, vision, sincerity and motivation have deeply inspired me. They have

taught me the methodology to carry out the research and to present the research

works as clearly as possible. It was a great privilege and honor to work and study

under their guidance. I am extremely grateful for what they have offered me.

Moreover, I would like to thank my Ph.D. committee members: Dr. Irfan-Ullah

Awan, Dr. Juergen Rilling, Dr. Farnoosh Naderkhani, and Dr. Roch Glitho for

their valuable time and effort in reviewing my thesis and providing me with insightful

comments and recommendations. Your deep knowledge and expertise have made

every encounter a great opportunity to discuss new ideas and enhance the quality of

the research outcomes.

Furthermore, I would like to thank all my colleagues in the research lab at

Concordia University especially Ahmad Bataineh, Dr. Mona Taghavi, and Dr. Nagat

Drawel for providing me with a warm and friendly atmosphere to work in. I would like

also to thank my non-concordian friends with whom I shared precious and enjoyable

moments. Your presence has allowed me to appreciate my stay in Montreal and added

lots of fun to my Ph.D. journey.

This research would not have been possible without the financial assistance of

the Natural Sciences and Engineering Research Council of Canada (NSERC), The

v

Department of National Defence (DND), Fonds de Recherche du Québec - Nature et

Technologies (FRQNT) and Concordia University. This support was very important

for me to alleviate the financial burdens and focus on my research duties.

Last but not least, I would like to thank my parents for their endless and

unconditional love and support. Their guidance has been always important for me to

overcome the difficulties of life. Without my mother, father, wife, and my sons, Adam

and Tim, I could not have been able to succeed throughout my life and become the

person I am today.

vi

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xii

1 Introduction 1

1.1 Context of Research . 1

1.2 Research Questions . 3

1.3 Research Objectives and Contributions 5

1.4 Thesis Organization . 9

2 Research Background 11

2.1 Background . 12

2.1.1 Big Data . 12

2.1.2 Cloud Computing . 14

2.1.3 Edge Computing . 15

2.1.4 Internet of Thing . 16

2.1.5 Federated Learning . 18

2.2 Literature Review and Discussions . 19

2.2.1 Traditional Task Scheduling . 19

2.2.2 Task Scheduling in IoT and Edge Computing Environments . . 21

2.2.3 Trust-based Scheduling . 23

2.2.4 Artificial Intelligence-based Scheduling 24

3 Cloud Task Scheduling based on Artificial Intelligence 33

3.1 Swarm Intelligence . 35

3.1.1 Swarm Intelligence-based Cloud Scheduling 36

3.1.2 Multi-Label prediction based on SI 41

vii

3.2 Performance Evaluation . 42

3.2.1 Implementation and Setup . 43

3.2.2 Experimental Results . 44

3.3 Conclusion . 50

4 Trust-aware Big Data Task Scheduling Approach in Cloud

Computing Environments 51

4.1 An Overview of The Proposed Approach (BigTrustScheduling) 53

4.2 Problem Definition . 56

4.3 BigTrustScheduling: Description of the Proposed Trust-Aware

Scheduling Approach . 59

4.3.1 First Stage: Building trust on VM 59

4.3.2 Second Stage: Task Clustering 69

4.3.3 Third Stage: Trust-Aware Task Scheduling Approach 77

4.4 Experiments and Empirical Analysis 79

4.4.1 Experimental Setup . 79

4.4.2 Experimental Results . 80

4.4.3 Conclusion . 91

5 Deep and Reinforcement Learning for Automated Task Scheduling

in Large-Scale Cloud Computing Systems 92

5.1 An Overview of The Proposed Approach 93

5.1.1 Solution Overview . 93

5.1.2 Reinforcement Learning (RL) 94

5.1.3 Deep Q Networks (DQN) . 97

5.1.4 RNN-LSTM . 98

5.2 Experiments and Empirical Analysis 101

viii

5.2.1 Dataset . 101

5.2.2 Validation Metrics . 102

5.2.3 Experimental Results . 103

5.3 Conclusion . 113

6 Trust-driven Reinforcement Selection Strategy for Federated

Learning on IoT Devices 115

6.1 Trust-Aware IoT Scheduling for Federated Learning 116

6.1.1 Trust Establishment Mechanism 116

6.1.2 DDQN-Trust Scheduling Policy 119

6.1.3 DDQN-Trust-based Federated Learning Model 123

6.1.4 Federated Learning Aggregation Approaches 125

6.2 Experimental Results and Analysis . 127

6.2.1 Experimental Setup . 127

6.2.2 Experimental Results . 128

6.3 Conclusion . 134

7 COVID-FED: Applying Smart Scheduling Approach in the

Healthcare Domain 136

7.1 Problem Formulation . 139

7.1.1 System Model . 139

7.2 COVID-FED Description . 140

7.2.1 Trust Management . 140

7.2.2 DRL Scheduling Policy . 141

7.2.3 Federated Learning Model . 145

7.2.4 Inter-Edge Transfer Learning 147

7.3 Experimental Results and Analysis . 148

ix

7.3.1 Experimental Setup . 148

7.3.2 Experimental Results . 150

7.4 Conclusion . 156

8 Conclusion 158

8.1 Summary and Discussion . 158

8.2 Contributions . 160

8.3 Directions for Future Work . 162

Bibliography 164

x

LIST OF TABLES

3.1 Parameters setting of cloud simulator 43

4.1 Notations . 58

4.2 Trusting lists of VMs in different time moments (the matrix χV,τ) . . . 68

5.1 Confusion matrix . 107

xi

LIST OF FIGURES

2.1 Big data V’s properties . 13

2.2 The five layers of cloud computing . 16

2.3 The four layers of IoT structure . 17

3.1 The average makespan of 3 data centers for the ant colony algorithm . 44

3.2 The average makespan of 3 data centers for the artificial bee honey

algorithm . 45

3.3 The average makespan of 3 data centers for the particle swarm

optimization algorithm . 46

3.4 Ant colony algorithm . 47

3.5 Artificial bee honey algorithm . 48

3.6 PSO algorithm . 48

3.7 MLCCSI model . 49

4.1 The three stages of our proposed solution (BigTrustScheduling) 54

4.2 Tasks assignment and reporting process 61

4.3 Clustering-based costs . 73

4.4 Task makespan: Our solution significantly decreases the tasks

makespan compared to the three considered solutions 81

4.5 Task costs: Our solution is able to decrease the cost of task execution

in comparison with the three considered models 82

4.6 Waiting time: The waiting time of tasks prior to being assigned to

VMs significantly decreases with the increase in the number of deployed

VMs . 83

xii

4.7 Task makespan: Our solution significantly decreases the tasks

makespan compared to the three considered solutions in the presence

of untrusted VMs . 84

4.8 Task cost: Our solution significantly decreases the costs of tasks

compared to the three considered solutions in the presence of untrusted

VMs . 85

4.9 Execution time: The execution time of our solution is lower than

that of the three other compared approaches. 87

4.10 Clustering-based costs . 89

4.11 Task makespan: We study in this figure the impact of varying both

the number of tasks and number of VMs on the overall makespan of

the tasks . 90

5.1 Architecture of an LSTM cell . 100

5.2 Reinforcement learning with LSTM (RL-LSTM) 100

5.3 Training accuracy of machine learning algorithm 104

5.4 Test accuracy of machine learning algorithm 105

5.5 Total utilization cost: We study in this figure the the impact of

varying both the number of tasks and number of VMs on the overall

usage cost . 106

5.6 Average CPU usage . 108

5.7 CPU usage (Mhz) . 109

5.8 Average RAM usage . 110

5.9 RAM usage (KB) . 111

5.10 CPU usage cost: we give in this figure a detailed breakdown of the

CPU usage cost of our DRL-LSTM approach compared to PSO, RR,

and SJF . 112

xiii

5.11 RAM usage cost: we give in this figure a detailed breakdown of the

RAM usage cost of our DRL-LSTM approach compared to PSO, RR,

and SJF . 113

6.1 Accuracy over iteration rounds of different aggregation methods with

the CNN model of our DDQN-Trust and classic DDQN 130

6.2 Performance of the trained CNNs with DDQN-Trust, DQN, and RS

scheduling models . 132

6.3 Reward values in DDQN-Trust, DQN, and Random scheduling policies 133

7.1 System architecture and communication process of federated transfer

learning in edge cloud. 138

7.2 Comparison of accuracy of final global model at five different ESs . . . 150

7.3 Average execution time of the proposed model phases 151

7.4 Comparison of average accuracy of final global model of varying number

of ESs . 152

7.5 Execution time: We study in this figure the impact of varying both

the number of IoT devices and number of ESs on the execution time . . 154

7.6 Average accuracy values in TDRFT, TDRF, DRF, RR, and RS 155

7.7 Average reward values in TDRF, DRF, RR, and RS 156

xiv

Chapter 1

Introduction

In this chapter, we introduce the context of our research work, highlight the problems

tackled in this thesis, pose the corresponding research questions, and identify the

objectives and contributions of our research work.

1.1 Context of Research

The growing adoption of Internet of Things (IoT) in many applications (e.g.,

intelligent transportation systems, healthcare management, etc.) has led to the

generation of unprecedented amounts of data on a daily basis. This raises serious

challenges concerning the storage and processing of such huge amounts of data. To

deal with these challenges, cloud computing has been the imminent choice for most

IoT manufacturers and vendors to provide scalable storage and processing of their

big data. Most companies prefer to migrate the big data storage and analytics

responsibilities to the cloud instead of having to purchase and maintain expensive

hardware equipment on their own. More specifically, the concept of virtualization,

which allows the sharing of computing and storage resources (e.g., CPU, RAM, disk

1

storage, bandwidth) among several users enables cloud systems to support massive

simultaneous storage and computing requests. This, on the other hand, entails a

serious problem for cloud administrators, namely, how to efficiently schedule the

big data tasks in the virtualized environments in such a way to guarantee optimal

performance and minimal resource wastage. Cloud computing has been widely used

for most of the businesses seeking to keep up with the big data evolution trends,

thanks to the wide variety of advantages it offers such as multi-tenancy, elasticity,

and virtualization.

In cloud computing, resources, either software or hardware, are virtualized

and allocated as services from providers to users. The computing resources can be

allocated dynamically upon the requirements and preferences of consumers, where

the resources are located in different regions and have various processing abilities,

characteristics (number of CPU cores, amount of main memory, etc.), and cost

[110]. The process of allocating services to perform a set of tasks while satisfying

constraints in terms of time, cost, Quality of Service (QoS), and service availability

is known as task scheduling [65]. Task scheduling and resource allocation should

be carefully arranged and optimized simultaneously in order to attain an overall

cost and time-effective schedule. Specifically, the process of scheduling big data

analytics tasks in cloud computing environments is quite challenging since it involves

the optimization of several (sometimes conflicting) objectives. On the one hand,

guaranteeing minimal timespan for big data tasks is crucial especially when it comes

to delay-critical applications (e.g., healthcare management, intelligent transportation

systems) wherein small delays might cause loss of life. Moreover, as the number

of needed big tasks is quite large, minimizing the cost of each single task is a

major concern for these data sources (e.g., IoT manufacturer). From the cloud

providers’ site, managing the available resources so as to increase the capacity of

2

simultaneously receiving the largest possible number of tasks is a major concern. That

is, cloud providers should schedule the big data tasks in such a way to guarantee

a minimal CPU, RAM, bandwidth, and disk storage consumption on each tasks,

without sacrificing the overall performance. The concept of cloud automation, which

takes advantage of the latest advancements in artificial intelligence, had recently

arisen to improve the performance and reduce the manual efforts associated with

the provisioning and management of cloud computing workloads [99]. It involves

designing orchestration automation tools and algorithms that run on top of virtualized

environment to make real-time decisions concerning the resource allocation and

management in cloud systems. In this thesis, we provide a novel contribution toward

the concept of cloud automation by proposing an automated big data task scheduling

approach in cloud and edge computing environments using various approaches of

machine learning, namely, Deep Learning (DL), Deep Reinforcement Learning (DRL),

Federated Learning (FL), and Transfer Learning (TL).

1.2 Research Questions

Several approaches have been proposed to improve the task scheduling process in

cloud computing environments. The main idea of these approaches is to reduce

the makespan by trying to reduce the waiting time of the tasks in the queues and

attempting to map tasks to the nearest VMs to reduce the transfer time (i.e., the

data locality concept). However, this does not always guarantee a better performance

in a dynamic and open environment like cloud computing, which leads us to our first

research question (RQ 1):

• RQ 1: How to jointly minimize the makespan of big data tasks, while

minimizing at the same time the monetary cost of their execution?

3

With the large numbers of deployed VMs in cloud-based systems, the chances

of encountering untrusted or poorly-performing VMs is fairly high. Such VMs would

not only cause the makespan to be high, but also increase the amounts of wasted

resources in case of malicious or compromised VMs. Most of the existing cloud-based

scheduling solutions consider the scheduling problem only from the viewpoint of the

tasks by setting a priority degree for each task to determine the order in which it will

be scheduled and executed. Nevertheless, by focusing only on the task priorities and

ignoring the reliability of the VMs, there would still be a large risk to the overall QoS

in the presence of untrusted VMs. For example, a high-priority task might be assigned

to the nearest VM to minimize the transfer time. However, such a VM might undergo

some failure, thus causing a huge spike in both the total makespan and monetary

cost. Therefore, a more intelligent approach which takes into account all these factors

is needed. Thus, our second research question (RQ 2) is:

• RQ 2: How to insure the trustworthness of the VMs that will be

executing the big data tasks?

Growing adoption of Internet of Things (IoT) in many applications (e.g.,

intelligent transportation systems, healthcare management, etc.) has lead to the

generation of unprecedented amounts of data on a daily basis. The concept of cloud

automation, which takes advantage of the latest advancements in artificial intelligence,

had recently arisen to improve the performance and reduce the manual efforts

associated with the provisioning and management of cloud computing workloads [99].

More specifically, making real-time decisions concerning resources scheduling and

management in cloud systems requires developing an automation tool and algorithms

that run on top of the virtualized environment. Therefore, our third research question

(RQ 3) is:

4

• RQ 3: How can we benefit from the cloud automation concept to

automate the process of scheduling big data tasks in cloud-based

environments, so as to improve the performance and reduce

monetary and resource costs?

The centralized architecture of cloud computing hinders its adoption in

environments wherein the generated data needs to be analyzed in real-time in order

to make prompt decisions. Specifically, the fact that cloud datacenters reside in areas

that are far from the objects and devices (e.g., smart cars, radars, etc.) that generate

the data entails significant delay and response time for the process of transmitting data

to/from cloud datacenters. The concepts of edge computing and federated learning

had recently been proposed to tackle this problem and complement cloud computing

so as to improve the response time of the big data analytics process, tackle the issue of

long training period, limited data accessibility, and privacy preservation. Therefore,

our fourth research question (RQ 4) is:

• RQ 4: How to adapt the automated big data task scheduling

approach to work in distributed environments using the concepts

of edge computing and federated learning?

1.3 Research Objectives and Contributions

The ultimate goal of our research work is to propose an automated big data task

scheduling approach in cloud and edge computing environments that operates in

a distributed fashion to reduce the makespan and monetary costs of the analytics

process. The following objectives are identified to attain this goal:

5

• Objective 1: Propose a scheduling approach to optimize the performance of

big data services execution. This approach should minimize the hardware and

network resources cost while improving the response time delivered to customers.

• Objective 2: Integrate trust in the scheduling approach for big data tasks

in cloud computing environments to avoid assigning these tasks to poorly

performing VMs, thus degrading the overall performance of the analytics

process. The trust-aware scheduling approach should consider the following

stages: (1) VMs’ trust level computation; (2) tasks priority levels determination;

and (3) trust-aware scheduling.

• Objective 3: Integrate a Long Short-Term Memory (LSTM) layer into the

design of the scheduling model to keep track of the historical long-term

dependencies that exist between the resource requirements of the tasks and the

resource specifications of the VMs and their impact on the resulting execution

cost.

• Objective 4: Elaborate a distributed and automated big data scheduling model

in the edge computing environments. The objective is to reduce the response

time of the big data analytics process in delay-critical applications.

In order to attain these objectives, the following contributions are offered by

this thesis:

• Contribution 1: We designed a hybrid approach, called Multi Label Classifier

Chains Swarm Intelligence (MLCCSI) to guide the cloud choose the scheduling

technique by using multi criteria decision to optimize the performance. This

approach is based on two strategies. The first strategy is the swarm intelligence,

which we applied on the Ant Colony Optimization (ACO) algorithm, Artificial

6

Bee Colony (ABC) algorithm and, Particle Swarm Optimization (PSO)

algorithm to find the optimal resource allocation for each task in the dynamic

cloud system. Then, the second strategy is the application of the machine

learning algorithm (Classifier Chains) on the results from the three algorithms,

which generates a new hybrid model considering the size of the tasks and the

number of the virtual machines. This strategy not only minimizes the makespan

of a given tasks set, but it also adapts to the dynamic cloud computing system

and balances the entire system load. This contribution is discussed in Chapter

3.

• Contribution 2: We developed a trust-aware scheduling mechanism to increase

the performance of big data services execution, which leads to minimize the

makespan and the execution cost. This will be achieved by terminating the

untrusted VMs and assigning high priority tasks to the most trusted VMs. The

contribution is discussed in Chapter 4.

• Contribution 3: We introduced four deep and reinforcement learning-based

scheduling approaches to automate the process of scheduling large-scale

workloads. We then compared the performance of these approaches and

identified the best one in terms of minimizing the task execution cost and

waiting time. These approaches are: reinforcement learning (RL), deep

Q networks (DQN), recurrent neural networks that use long short-term

memory (RNN-LSTM), and deep reinforcement learning combined with LSTM

(DRL-LSTM). This contribution is discussed in Chapter 5.

• Contribution 4: We introduced DDQN-Trust, a trust establishment technique

for IoT devices. DDQN-Trust is an algorithm that enables the edge servers

to find the optimal scheduling decisions in terms of energy efficiency and

7

trustworthiness. In particular, we first formulate a stochastic optimization

problem that seeks to derive a set of IoT devices that, by sending the federated

learning tasks to them, the edge server can maximize the trust and minimize

the energy cost. The algorithm is designed to solve the optimization problem

while modeling the uncertainty that the server faces regarding the resource and

trust levels of the IoT devices. This contribution is discussed in Chapter 6.

• Contribution 5: In order to conduct a real-world application study of our

scheduling approach, we applied our solution in the healthcare domain to

investigate scalability and applicability in real-world scenarios. We introduced

a comprehensive solution named COVID-FED. COVID-FED is a multi-faceted

COVID-19 detection approach which incorporates federated learning, trust

management, and deep reinforcement learning (DRL) in an edge computing

setting that considers IoT devices and medical imaging. We capitalize on

federated transfer learning over IoT and edge devices for dynamic detection

of COVID-19 from X-ray images. Edge servers collaborate with IoT devices

to train the COVID-19 detection model using federated learning without

exchanging raw confidential data. Transfer learning is important to handle the

scarcity of data in some regions and compensate potential lack of learning at

some servers. DRL and trust management are combined to assign the COVID-19

detection tasks to the most trusted and resource-efficient IoT devices. The

contribution is discussed in Chapter 7.

It is worth noting that the content of this thesis has been published in [86–90].

8

1.4 Thesis Organization

We present in Chapter 2 the background needed to understand the different concepts

and techniques we are using in this thesis. In particular, we give an overview

of the main techniques that contributed in task scheduling, namely deep learning,

cloud computing, cloud federation, edge computing, trust, and big data. Then, we

give a detailed tutorial on the concept of scheduling model and explain its main

categories, mathematical foundations, and illustrative examples. Afterwards, we

provide literature reviews on the scheduling models proposed for tasks over edge

and cloud computing, the main approaches that used deep learning and federated

learning to solve big data and large scale problems, and the major task allocation

systems proposed in the domain of edge and cloud computing.

In Chapter 3, we advance a machine learning algorithm to guide the cloud

choose the scheduling technique by using a multi criteria decision to optimize the

performance. The algorithm contributes in minimizing the makespan of a given task

set. The new strategy is simulated using the CloudSim toolkit package where the

impact of the algorithm is checked with different numbers of VMs and various task

sizes.

In Chapter 4, we tackle the problem of task scheduling process in cloud

environments in the presence of untrusted or poorly-performing VMs. In

particular, we put forward a comprehensive trust-aware scheduling solution called

BigTrustScheduling that consists of three stages: VMs’ trust level computation, tasks

priority level determination, and trust-aware scheduling.

In Chapter 5, we discuss the cloud automation to reduce the manual intervention

and improve the resource management in large-scale cloud computing workloads. We

capitalize on this concept and propose four deep and reinforcement learning-based

scheduling approaches to automate the process of scheduling large-scale cloud

9

computing workloads, while reducing both the resource consumption and task waiting

time.

In Chapter 6, we discuss a comprehensive detection for those IoT devices that

do not dedicate enough resources to serve the federated learning tasks as well as

those that carry out additional computations to achieve some malicious objectives. In

particular, we put forward DDQN-Trust, a federated learning approach that uses a

Double Deep Q Learning-based selection algorithm. DDQN-Trust takes into account

the trust scores and energy levels of the IoT devices to make appropriate scheduling

decisions.

In Chapter 7, we conduct a real-world application study to explore practicality

in the healthcare sector and see how our scheduling model works in a real world

scenario. In particular, we discuss the multi-faceted model and highlight its healthcare

impact on COVID-19 detection by means of a practical example that exploits emerging

technologies of IoT and edge computing.

Finally, in Chapter 8, we summarize the thesis contributions and shed light on

some research gaps that need further consideration by the research community.

10

Chapter 2

Research Background

In this chapter, we explain the main concepts that are needed to understand the

core of the thesis and present a profound and systematic literature review on the

different aspects that our thesis aims to address. In Section 2.1, we explain the main

concepts related to the task scheduling, namely those of big data (Section 2.1.1), cloud

computing (Section 2.1.2), edge computing (Section 2.1.3), and Internet of things

(Section 2.1.4). We define as well the notion of federated learning (Section 2.1.5).

In Section 2.2, we review the relevant related work. Section 2.2.1 is dedicated

to discussing the main traditional scheduling models proposed for cloud computing

environments. Section 2.2.2 surveys the main task scheduling approaches in IoT

and edge computing environments. We give in Section 2.2.3 an overview of the

main trust models proposed in the domain of cloud computing and discuss their

principal shortcomings. In Section 2.2.4, we give a systematic survey on the artificial

intelligence-based scheduling models proposed in the cloud environment.

11

2.1 Background

In this section, we explain the main concepts related to the task scheduling, namely

those of cloud computing, big data, and federated learning.

2.1.1 Big Data

The overwhelming flow of data in both structured and unstructured formats, and

the continuous increase in the volume and detail of data captured by organizations

in many sectors such as health-care, science, engineering, finance, and business have

created a major challenge for manufacturers (e.g., IoT manufacturers). This is mainly

due to the fact that the data growth rate exceeds the ability to design effective storage

and analytics solutions. The big data technology is receiving unprecedented attention

from both academia and industry due to its importance in enabling the extraction

of valuable insights that can be turned into concrete business values. Big data are

characterized by the following main features [44]: (a) big data are numerous; (b)

big data cannot be categorized into regular relational databases; and finally (c) data

are generated, captured, and processed rapidly. Big data can be defined with the

following properties as shows in Fig. 2.1:

A Variety

The evolutions in technology allows firms to use and generate various types of

structured, semi-structured, and unstructured data. Structured data represent

the tabular data found in spreadsheets or relational databases refer to the

structured data, which account only for 5% of all existing data [33]. Images,

audio, and video are examples of unstructured data, which are generated

by many organizations and devices (e.g., devices, unmanned vehicles, etc.).

Extensible Markup Language (XML), a textual language for exchanging data

12

Big Data

Variety

Volume

Variability

Veracity

Velocity

Value

Figure 2.1: Big data V’s properties

on the Web, is a typical example of semi-structured data.

B Volume

A survey conducted by IBM in mid-2012 revealed that just over half of the 1144

respondents considered datasets over one terabyte to be big data [94], where

one terabyte fit on 1500 CDs or 220 DVDs, enough to store around 16 million

Facebook photograph. The problem withs such volumes of data stems from the

impossibility of relying on traditional storage systems to store such amounts of

data. This necessitates thinking of modern distributed approaches that can host

these data in a reliable fashion.

13

C Velocity

Velocity refers to the speed at which vast amounts of data are being generated,

collected and analyzed. The proliferation of digital devices such as smart-phones

and sensors has led to the increase in the amounts of data and the speed at which

they need to be stored and analyzed [120]. For example, some applications (e.g.,

credit card fraud detection) demand real-time data analytics in order to prevent

undesirable consequences.

D Variability

Variability points to the variation in the data flow rates and mostly focuses on

properly understanding and interpreting the correct meanings of raw data which

depends on its context.

E Veracity

Veracity refers to what extent can data be trusted and the reliability inherent in

some sources of data. Therefore, the need to deal with imprecise and mysterious

data is another side of big data, which is directed utilizing tools and analytics

sophisticated for management and mining of uncertain data [34].

F Value

The organizations need to get some sort of value after the massive efforts and

resources spent on the above properties.Thus, value refers to the process of

discovering massive hidden values from large datasets with diverse types and

prompt generation [44].

2.1.2 Cloud Computing

Cloud computing is facing abnormal growth in the incoming demands due to a

new class of traffic from IoT devices such as smart wearables and autonomous

14

cars. Cloud computing resources are offered as services via the Internet as a

layered architecture that consists of five main layers [61, 85] as shows in Fig. 2.2:

Software as a Service (SaaS), Platform as a Service (PaaS), Infrastructure as a

Service (IaaS), Communications as a Service (CaaS), and Data Storage as a Service

(DaaS). SaaS providers use the Internet to deliver software to the end user on-demand.

PaaS provides a platform and environment to allow developers to build applications

and services over the Internet such as operating systems, Web servers, databases,

and programming languages’ execution environments. IaaS provides virtualized

computing resources over the Internet. CaaS enables users to directly communicate

with each other on the cloud the cloud via E-mails, Texts, Voice and Video Calls,

chat box etc. DaaS is a service model in which data is maintained, managed, backed

up remotely and made available to users over a network.

2.1.3 Edge Computing

The adoption of edge computing is a recent idea in the computing world. A

cloud-centric service connects end users to the benefits of cloud storage and

technologies, with service and device processing responsiveness taking place on

demand. These technologies, such as tracking, augmented reality and real-time

traffic monitoring that are now built on the Internet, need rapid processing and

quick response time. Typically, the applications are executed on a resource-challenged

mobile devices while cloud services handle the core service and processing.

Using cloud computing tools for mobility may be problematic because of their

large latency and mobility requirements. edge computing provides these criteria

by removing computing from the central data center and location in the network,

to locations near where the data is accessed and processed. In general, there are

three forms of Edge computing models which address computing problems (i.e. Fog

15

	

Cloud	Applications	(SaaS)	

Cloud	Software	Environment	(PaaS)	

IaaS	 DaaS	 CaaS	

Software	Kernel	
	

Firmware/Hardware	
	

Figure 2.2: The five layers of cloud computing

computing [5], Cloudlets [98], and Mobile Edge computing [54]).

2.1.4 Internet of Thing

The Internet of Things (IoT) is now pervasive in our everyday lives, offering critical

measurement and data gathering resources that help us make better decisions. There

are literally millions of sensors and devices are generating and transmitting vast

amounts of data as well as sending critical messages through intricate networks and

tracking critical machines. As a countermeasure to increased resource use, edge

16

computing has taken on a new role as a solution for the Internet of Things and

the premise of local computing.

The structure of the IoT consists of four layers: service, platform, network, and

device layer. As the classification shown in Fig. 2.3, several research institutions

choose to use a single system architecture for IoT production.

Figure 2.3: The four layers of IoT structure

The interface and communication with users are provided by the service layer.

The service layer, for example, includes automated vehicles, health care, wearable

technologies, and home-security systems [57]. These services are linked with a

platform layer to provide customized services to the users. The platform layer is

the next layer in the IoT framework. This layer is situated under the service layer

17

and serves IoT applications and utilities. There are several kinds of platforms, such

as device platform, data analysis platform, service development platform, and service

platform. For example, the device platform offers a services execution environment

and development for users. Examples of data analysis platforms include context

awareness and prediction, collaboration among things, and link between the service

layer and other layers through natural language to machine language translation. It is

essential to provide software toolkits for users to build IoT services and this provides

by the service development platform. To sum up, the service’s functional capabilities,

it also facilitates generation and implementation of a wide range of applications.

In addition to service and platform layers, the network layer is a core layer in

the IoT setting. It transmits data between devices, contents, services and users. The

layer of the network should be able to store, monitor, and handle huge quantities

of network traffic. The device layer acts as a sender, responsible for gathering and

sending environmental data to the sink node, or gateway, and, as well, as a layer that

receives that data. It must be self-adapting in order to autonomously implement this

actuation [45].

2.1.5 Federated Learning

Federated Learning (FL) is one of the highly effective paradigm shifts in recent years in

AI-based computing. It allows us to obtain better results by cooperatively training a

single machine learning model instead of forcing each edge machine to share its actual

input data. The FL architecture consists of two phases, namely, global computing

and local training. In the local training phase, a parameter server, such as an edge

server, initializes the machine learning algorithm and shares the initial parameters

with the end/edge devices (e.g., IoT devices). The shared parameters are thereafter

used by these devices to train the model on their own data. Then, the devices share

18

the modified parameters acquired from the training of the model on their data with

the parameter server. Global computing allows the whole model to be reconstructed

by aggregating all the received parameter updates in coordination with all the IoT

devices. This method is repeated until a certain degree of accuracy is achieved. The

applications of FL in medical big data are quite promising [18, 115]. We provide in

Section 2.2.4 of this chapter a detailed literature review about the main approaches

that contributed in solving problems related to FL.

2.2 Literature Review and Discussions

In this section, we classify the existing task scheduling approaches in the domain of

cloud computing into five categories, namely task scheduling, trust-based scheduling,

artificial intelligence-based scheduling, resource management using deep learning, and

other approaches.

2.2.1 Traditional Task Scheduling

To take benefits of the cloud computing resources availability and abundance, several

scheduling approaches have been proposed [95, 102, 108]. A scheduling algorithm

called Linear Scheduling for Tasks and Resources (LSTR) is designed in [1]. The

algorithm focuses on the scheduling of the cloud resources among the task requesters,

with the aim of improving the system throughput and resource utilization. Babu

et al. [55] proposed a novel strategy for load balancing of tasks in cloud computing

environments inspired by the behavior of honey bees, which helps to achieve even load

balancing across virtual machine to maximize throughput. It considers the priority

of task waiting in queue for execution in virtual machines. After the work load on

VM has been calculated it decides whether the system is overloaded, under loaded,

19

or balanced. Based on this VMs are grouped. While load balancing is an important

element of scheduling, the strategy proposed is meant for scheduling independent tasks

and not dependent tasks work flows. In [16], the authors propose a batch-based (DAG)

scheduling algorithm, which combines centralized static scheduling and dynamic

workflow to improve resource utilization and achieve quasi-optimal throughput on

heterogeneous platforms.

In [122], the authors propose a task scheduling algorithm considering game

theory designed for energy management in cloud computing, they proposed a task

scheduling model for computing nodes by establishing mathematical model to deal

with big data. Magulur et al. [71] propose several virtual machine configuration

scheduling algorithms for cloud computing platforms that reach an arbitrary fraction

of cloud capacity. To do so, they employ a stochastic model of a cloud computing

cluster in which tasks are performed based on a stochastic process. They introduce

as well a set of policies for configuring non-preemptive frame-based virtual machines.

In [123], by leveraging a game-theoretical model, the authors propose a task scheduling

algorithm designed for energy management in cloud computing. They initiate a

balanced task scheduling model for computing nodes by establishing a mathematical

model to deal with big data. In [106], the authors propose a conceptual, user-centric

game theoretical frame work that includes a two-stage game. The first stage to

capture the user demand preferences, a Stackelberg game is used where IaaS providers

are leaders and IaaS users are followers. On the other hand, the authors propose a

differential game as a second stage to enhance the service ratings given by users in

order to improve the provider position in the market and increase the future users’

demand.

In [129], Zhang et al. propose a two-stage scheduling strategy to maximize task

scheduling performance and minimize unreasonable task allocation in cloud centres.

20

In the first phase, a Bayes classifier is employed to cluster tasks according to historical

scheduling data and correspondingly create suitable VMs. In the second phase,

dynamic scheduling algorithms are proposed to match tasks with the created VMs.

Lu and Gu [68] proposed using an Ant Colony Optimization algorthim (ACO) to find

the closest free cloud resource rapidly and to share some load of the overload cloud

resources adaptively. In their study, the approach does not schedule a set of VMs

on different cloud resources but just execute the ACO process when some VMs are

overloaded. The ACO process just acts like the ant to search for food to find the

optimal physical resource and to create new VMs to share the load of the overloaded

VMs.

Conclusive Remarks Despite their importance, the above-mentioned

approaches overlook the trust levels of the VMs when performing the scheduling

process. This might lead to assigning tasks to some poor-performing VMs, thus

increasing the makespan of the tasks and causing resource wastage from the cloud

providers’ site.

2.2.2 Task Scheduling in IoT and Edge Computing

Environments

Since our solution includes a scheduling component over IoT and edge devices,

it is important to survey the relevant literature. In [58], the authors propose

a semi-distributed joint computation and multi-user scheduling algorithm in

Narrow-Band IoT and edge computing systems. The objective is to minimize the

long-term average weighted sum of delay and power consumption over all the IoT

devices under stochastic traffic arrival. Technically speaking, the authors consider

the stochastic arrival model, and formulate the dynamic optimization problem into an

infinite-horizon average-reward continuous-time Markov decision process (CTMDP)

21

model. To deal with the curse-of-dimensionality problem, they use approximate

dynamic programming techniques including linear function approximation and

semi-gradient TD learning. In [48], the authors study the request scheduling problem

in ultra-dense edge computing (UDEC) networks and provide a non-cooperative game

model based on sub-gradients. The considered UDEC network consists of a macro

base station, many micro stations, and a large number of mobile users under the 5G

architecture.

In [127], the authors propose a deep reinforcement learning approach to deploy

the services in 5G-based mobile edge computing networks. They consider the request

patterns and resource constraints of users to improve the number of services executed

on the ESs and also to reduce the total response time. The problem is modeled as

a Markov decision process and solved using the Dueling-Deep Q-network algorithm

to learn the access patterns of a large number of requests on ESs. In [101], the

authors address the host load prediction problem to improve the management and

consumption of resources in cloud-based systems. In the light of the significant load

variance in cloud environments, the challenge is to establish accurate predictions. A

long short-term memory model (LSTM) is designed to predict the mean host load in

consecutive future intervals to meet this challenge.

In [70], the authors propose a multi-cloud to multi-fog scheduling architecture.

The proposed scheduling solution is based on transmission energy consumption of

terminal devices and makes use of a dynamic threshold strategy to schedule requests

in real-time, thereby guaranteeing the energy balancing of terminal devices without

increasing the delay. To reinforce the load balancing and throughput of cloud

networks, the authors of [72] suggest FMPSO, a hybrid task scheduling algorithm

focused on the Fuzzy method and the Modified Particle Swarm Optimization

technique. To improve the global search capability, FMPSO first considers four

22

updated velocity updating methods and a selection technique. Then, to solve any

of the PSO’s drawbacks, it employs cross-over and mutation operators used in genetic

algorithms. Finally, the fitness values are computed using fuzzy inference in the

proposed process.

In [132], the authors suggest a new algorithm called MGGS (modified genetic

algorithm (GA) combined with greedy strategy). To improve the task scheduling

process, the proposed algorithm uses a modified GA algorithm in combination with a

greedy strategy.

Conclusive Remarks These methods primarily rely on evaluating past

resource data from IoTs in order to forecast future workload and, as a result, enhance

IoT management and allocation processes. Despite this, none of them have yet tackled

the topic of automating work scheduling in dynamic and large-scale edge computing

systems.

2.2.3 Trust-based Scheduling

In [131], the authors propose a scheduling model based on three factors, namely cost,

time, and trust. The main objective is to ameliorate users’ satisfaction using trust

feedback data and risk cost estimation. Wang et al. [116] propose a Bayesian approach

for a cognitive trust model which relies on direct and indirect trust sources to derive

trust values for cloud resources. Thereafter, a trust-based dynamic level scheduling

algorithm called Cloud-DLS is advanced to minimize time costs and ensure a secure

execution of the tasks.

The authors of [103] focus on the challenge of achieving secure scheduling of

users’ requests. They propose a trust model which includes both direct trust and

indirect reputation metrics. The paper focuses on assuring a trustworthy execution

environment in the cloud. Based on the designed trust model, users’ requests are

23

scheduled onto the appropriate resources using a trust-based stochastic scheduling

algorithm.

In [124], the authors propose to integrate trust into workflow execution in cloud

environments. They first investigate the trust relationship between users and cloud

resources and then derive a trust-based directed acyclic graph (DAG) scheduling

algorithm. In [26], the authors propose a trust-aware adaptive DAG tasks scheduling

algorithm using the reinforcement learning and Monte Carlo Tree Search (MCTS)

method. By employing the scheduling state space, action space and reward function,

the authors design a reinforcement learning model to train the policy gradient-based

reinforcement agent. Moreover, the MCTS method can determine actual scheduling

policies when DAG tasks are simultaneously executed on trusted and untrusted

entities.

Conclusive Remarks In summary, the existing trust-based scheduling

approaches focus on improving the security of the cloud environment through relying

on feedback collected from users. On the other hand, the existing approaches ignore

the performance of the VMs, which leads to decreasing the QoS delivered to users.

2.2.4 Artificial Intelligence-based Scheduling

In [100], the authors address the problem of achieving a tradeoff between minimizing

energy consumption in cloud centers, while minimizing at the same time the makespan

of tasks. To do so, they design a multi-objective optimization problem based on the

Dynamic Voltage Frequency Scaling System and employ the Non-dominated Sorting

Genetic Algorithm (NSGA-II) to obtain feasible solutions. Moreover, they advance an

Artificial Neural Network (ANN) technique to predict the corresponding VMs based

on the tasks’ characteristics and resources’ features.

In [38], the authors design a multi-objective optimization problem which

24

seeks to minimize three conflicting objectives, i.e, execution cost, makespan, and

resource utilization. The Epsilon-fuzzy dominance-based composite discrete artificial

bee colony (EDCABC) is then employed to derive Pareto optimal solutions for

multi-objective task scheduling in cloud-based systems. In [56], the authors propose a

novel strategy for load balancing of tasks in cloud computing environments inspired by

the behavior of honey bees, which helps to achieve even load balancing across virtual

machine to maximize throughput. It considers the priority of task waiting in queue

for execution in virtual machines. After the work load on VM has been calculated it

decides whether the system is overloaded, under loaded, or balanced. Based on this

VMs are grouped. While load balancing is an important element of scheduling, the

strategy proposed is meant for scheduling independent tasks and not dependent tasks

work flows.

In [86], the authors propose a scheduling approach called Multi Label Classifier

Chains Swarm Intelligence (MLCCSI) whose aim is to reduce the makespan of tasks’

scheduling. The approach consists of two strategies. The first strategy applies the

Ant Colony Optimization (ACO) algorithm, Artificial Bee Colony (ABC) algorithm

and, Particle Swarm Optimization (PSO) algorithm to derive the optimal solution in

terms of resource allocation for each corresponding task. In the second strategy, a

machine learning technique is employed to predict the best algorithm (i.e, ACO, ABC,

or PSO) that needs to be run to execute each corresponding task, based on several

factors such as task size and number of VMs. The authors in [68], also schedule the

cloud resource for an optimized load balance of various nodes, using an ACO-based

algorithm. They debated that the ACO approach can first choose the node that

has the greatest number of neighboring nodes. This way, the ant can travel in the

maximum potential directions to find more nodes that are overloaded or underloaded.

Furthermore, the ant will detect the heavy-load nodes, and reschedule some load to

25

the light-load nodes.

The authors of [40] propose a Multi-Agent-based Cloud Monitoring (MAS-CM)

model to boost the performance and security of the tasks gathering, scheduling,

and execution in large-scale cloud systems. The main objective of this work is to

prevent unauthorized task injection and alteration, while optimizing the scheduling

process and maximizing resources utilization. In [69], the authors propose an improved

version of the Particle Swarm Optimization (PSO) approach to improve the efficiency

of resource management and reduce task makespan in cloud-based task scheduling

scenarios. The main idea is to change the weights of the particles as the number of

iterations grows up and to introduce random weights in the final stages. This helps

avoid the case where the PSO algorithm generates local optimum solutions in its final

stages. The authors compare their approach experimentally with the traditional PSO,

Short Job First (SJF), Round-Robin (RR), and First Come First Serve (FCFS) and

show that their approach can reduce the makespan with the increase in the number

of tasks.

In [128], the authors propose an improved particle swarm optimization which

the outcome of the evaluation showed that the proposed technique can minimize the

job average execution time, and increase the rate of availability of resources in the

environment. Where the PSO does not solve large scale optimization, then simulated

support algorithm is added into the PSO algorithm which increases the convergence

speed of PSO. The authors in [21], propose a swarm intelligence based algorithm which

reduced searching time. Traditional PSO algorithm is modulated with a random factor

to handle with the precocious concourse problem. Results show that proposed system

is more workable, solid, and scalable than previous methods. The proposed method

gives better performance when compared with the traditional PSO-based algorithm.

Total time taken to complete the task is shorter and stable than traditional PSO-based

26

method which results in low power consumption.

Conclusive Remarks In summary, these approaches employ AI-based

techniques to improve the scheduling process. However, there is no work that provides

a comprehensive view of the task scheduling problem and improves the performance

of big data tasks scheduling in a wide variety of scenarios.

A. Resource Management using Deep Learning

We now move to explaining the literature on resource management in cloud computing

using deep learning, since we intend to design a deep learning-based approach to

automate the big data task scheduling process in cloud environments. In [6], a parallel

Q-learning approach is advanced to reduce the time taken to determine optimal

resource allocation policies in cloud computing. A state action space formalism is

also proposed to guide Q-learning-based agents with no prior experience with finding

appropriate VM allocation policies in IaaS clouds.

In [63], the authors discuss an algorithm for task scheduling that depends on

genetic-ant colony algorithm. The improvement is having a strong optimistic feedback

of ACO and taking into account the convergence rate of the algorithm. However, the

convergence rate is strongly affected by choice of the initial pheromone. The global

search capability of the GA is used to solve the optimal solution quickly and then

converts it into the initial pheromone of ACO. Under the same conditions, the results

shown by simulation experiments suggest that this algorithm exceeds the weights of

GA and ACO.

In [101], Song et al. address the problem of host load prediction to enhance the

resource management and consumption in cloud-based systems. The challenge here

is to come up with accurate predictions in the light of the high load variance in cloud

environments. To tackle this challenge, a Long Short- Term Memory (LSTM)-based

27

model is designed to predict the mean host load over consecutive future time intervals.

In [30] the the authors aim to minimize the cost, especially for a large task scheduling

problem. Therefore, they propose an algorithm based on a deep reinforcement learning

architecture (RLTS) to dynamically schedule tasks with precedence relationship to

cloud servers to minimize the task execution time. Moreover, the authors use Deep

Q-Network, as a kind of deep reinforcement learning algorithms to consider the

problem of complexity and high dimension.

In [41], the authors improve the ABC algorithm by adding one more step

including a mutation operator after the process performed by the employed bees

in ABC. The mutation operator is used after the employed bees have scouted the

solution space. The selection of the food source is done by a random technique, and

the mutation operator is performed if a mutation probability is satisfied. Through

mutation, there is an opportunity of changing the local best position, and the

algorithm may not be enclosed into local optima. When applying the mutation

operator, new food sources are produced. Accordingly, the new generated food sources

replace the older if their fitness value is better.

In [64], a two-phase framework is proposed to address both VM resource

allocation on servers and power management on each server. In the first phase, the

authors capitalize on deep reinforcement learning to achieve VM resource allocation

on servers. In the second phase, LSTM and weight sharing have been employed for

efficient loval power management on servers. In [81], the authors capitalize on deep

learning for VM workload prediction. Specifically, a Deep Belief Network (DBN) is

constructed using multi-layered restricted Boltzmann machines and regression layers.

This DBN is then applied to extract high-level features from VMs’ workload data and

the regression layer is employed to predict the future VMs’ workload.

The improved ant colony algorithm depends on partial swarm optimization

28

which is known as ACA-PSO is proposed by authors in [121]. Initially, the ants

are in the line up with ant colony algorithm for the completion of the traverse, and

re-arrangement of the solutions, while keeping in view the confined and universal

solutions. While ACA-PSO controls the short comings of the algorithm, it easily

gets into confined solutions in cloud computing resource scheduling. In [27], a

routing load balancing policy for grid computing environments is presented. It uses

routing concepts from computer networks to define a neighborhood and search an

adequate computers to divide the applications workload. This algorithm is designed

to equally distribute the workload of tasks of parallel applications over Grid computing

environments. Route algorithms are indicated for environments where there are

several heterogeneous computers and parallel applications that are composed of

multiple tasks. When dealing with large scale systems, an absolute minimization of the

total execution time is not the only objective of a load balancing strategy. In [82], the

authors improve a complete multi objective model for task scheduling optimization.

They considered the conflict between the tasks, and the authority of PSO algorithm

regarding the accuracy, and the speed. In order to deliver an optimal solution for

the presented model, a multi objective algorithm that is based on Multi Objective

PSO (MOPSO) method was proposed. Jswarm package to multi objective Jswarm

(MOJ) package has been used to calculate and implement the proposed model, with

extending Cloudsim toolkit put on MOJ as its task scheduling algorithm. Optimal

task organization among VMs is defined by MOJ in Cloudsim according to MOPSO

algorithm.

Conclusive Remarks These approaches focus mainly on analyzing historical

resource data from VMs to predict future workload and hence improve the VMs

management and allocation processes. Nonetheless, none of them has yet addressed

the problem of automating the process of scheduling big data tasks in cloud computing

29

systems using deep learning that would benefit from the large amount of available

data.

B. Client Scheduling in Federated Learning Environments

In [42], the authors propose an approach based on genetic algorithms and evolutionary

game theory in order to study the problem of forming highly profitable federated

clouds, while maintaining stability among the members in the presence of dynamic

strategies. In [47], the authors propose a decentralised FL at the segment level to

enhance the efficiency of network resources usage among client devices. The authors

explicitly recommend a segmented gossip strategy, which not only makes maximum

use of node-to-node bandwidth, but also achieves strong convergence training.

The authors in [77] present FedCS, a protocol that optimizes FL’s efficiency with

a heterogeneous client in a mobile edge computing environment. FedCS proposes

solving a resource constraint client selection problem that allows the server to

aggregate as many client updates as possible and speed up the training convergence

rate. In [25], the authors address the problem of FL training over wireless realist

networks. The authors formulate an optimization problem considering both the user’s

selection and the allocation of resources to minimize the loss function. The predicted

FL algorithm convergence rate, which takes wireless factors into account, is expressed

in a closed-form.

The authors in [76] incorporate Deep Q Network (DQN) into a mobility-aware

federated learning network for resource allocation. The authors suggest using the

DQN to allow the model owner, without any a priori knowledge of the network,

to find the optimal decisions in terms of energy and channels selection. They

formulate the model owner’s energy and channel selection decision as a stochastic

optimization problem. The optimization problem’s goal is to maximize the model

30

owner’s number of successful transmissions while minimizing energy and channel costs.

In [3], the investigators provide a DQN, which enables the server to learn and find

optimal decisions without knowing the network dynamics in the first place. They use

Mobile Crowd-Machine Learning (MCML) to address traditional machine learning

data privacy.

In [73], the investigators introduce FedAvg in which the server collects the

local stochastic gradient descents from the client devices and takes the average

to produce the next global model. The authors performed extensive experiments

on this algorithm, demonstrating its robustness in unbalanced and non-IID data

distributions. In [60], the authors define an aggregation framework, called FedProx.

FedProx addresses the system and statistical heterogeneity that arises from FL. The

authors argue that FedProx can be viewed as a generalization and re-parametrization

of FedAvg, the current state-of-the-art aggregation method for FL. FedProx allows

variable amounts of work to be performed locally across devices, and relies on a

proximal term to help stabilize the aggregation results.

In [130], the researchers focus on the statistical challenge of FL when local data

is non-IID. To address this challenge, they propose FedShare whose main idea is to

share parts of a small public dataset among clients to alleviate the weight divergence

across the local data of the clients. In [28], the authors define FedSGD and provide

a comprehensive study of its convergence. FedSGD operates under non-IID data for

strongly convex and smooth FL problems. FedSGD is characterized by a trade-off

between the number of local computation rounds and global communication rounds.

Conclusive Remarks The main limitation of these scheduling approaches is

that they work in an offline fashion by trying to optimize a set of parameters each time

a task is received. This entails high execution time and is inefficient for delay-critical

tasks such as big data analytics that need prompt responses. Moreover, the existing

31

scheduling methods in edge computing, FL, and IoT concentrate primarily on the

resource characteristics of participant devices.

32

Chapter 3

Cloud Task Scheduling based

on Artificial Intelligence

Cloud computing has emanated as more than just a technology towards cooperating

with large quantities of data. When mentioning the technology that provides

flexible resources and IT services based on the Internet, the term cloud computing

is therefore used [93]. Cloud computing is more and more popular in large-scale

computing and data storage because it enables the sharing of computing resources

that are distributed, thus leading to an automated system management, workload

balancing and virtualization efficiency. Several applications are increasingly focusing

on third-party resources hosted across the Internet, each with a varying capacity

[126]. In the cloud computing environment, different load balancing and scheduling

approaches (a technique which divides the workload across multiple computing

resources such as computers, hard drives, and network) exist to ensure an appropriate

utilization of resources. They also attempt to fix the problem that all the processors

in the system and every node in the network must share an equal amount of workload

33

which is assigned to them. Load scheduling plays a key role in efficient resource

utilization in a cloud computing environment. Task scheduling approaches can be

divided into two categories:

• The first class is that of batch mode heuristic scheduling in which jobs are

queued within a set and collected as batches as they arrive in the system, after

which they get started after a fixed period. Some examples include First Come

First Serve (FCFS), Round Robin (RR), Min-Max, and Min-Min [43,59,79].

• The second class is the online mode heuristic scheduling, where jobs are

scheduled individually as they arrive in the system. These approaches are more

feasible in a cloud environment as the systems may have different platforms and

execution speeds.

Task scheduling is one of the crucial technologies in cloud computing, and proper

task scheduling is required to improve the efficiency and to minimize the execution

time. The overall performance of cloud systems heavily depends on the underlying

scheduling algorithm. Thus, how to efficiently and rationally allocate the finite,

heterogeneous and geographically distributed resources to meet the end-user’s

requirements is an urgent issue for cloud service providers.

In this chapter, we proposed a hybrid approach, called Multi Label Classifier

Chains Swarm Intelligence (MLCCSI). This approach is based on two strategies.

The first strategy is the swarm intelligence, which we applied on, Ant Colony

Optimization (ACO) algorithm, Artificial Bee Colony (ABC) algorithm and, Particle

Swarm Optimization (PSO) algorithm to find the optimal resource allocation for each

task in the dynamic cloud system. Then, the second strategy is the application of the

machine learning algorithm (Classifier Chains) on the results from the three algorithms

and generate a new hybrid model considering the size of the tasks and the number

34

of the virtual machines. This strategy not only minimizes the makespan of a given

tasks set, but it also adapts to the dynamic cloud computing system and balances

the entire system load. The new scheduling strategy is simulated using the CloudSim

version 2.1 toolkit package [20] and [22]. Roughly speaking, in our model, the machine

learning algorithm required to predict a proper scheduling algorithm for every data

center depending on the execution time. We use initial data from the iterate on the

optimization algorithms to create a model for each data center in the cloud. These

models can be further updated from a new test or real runs. The system can then use

these models to make informed choices towards optimizing some externally defined

criterion.

3.1 Swarm Intelligence

Swarm Intelligence is an Artificial Intelligence (AI) technique, which is studied based

on the monitoring of the collective behavior in biological activities such as ant/bee

foraging, nest building, larval sorting, a division of labor, and collaborative transport,

etc. [15]. The number of applications of swarm intelligence is exponentially increasing

in fields of, e.g., communications networks, combinatorial optimization, and robotics.

Self-organized Services (SOS) in the Cloud with swarm intelligence as one possible

solution have already exhibited their advantages over conventional SOS techniques

in terms of adaptive routing, minimize the required cloud resources (i.e., virtual

machines) load balancing, etc.

35

3.1.1 Swarm Intelligence-based Cloud Scheduling

A. Ant Colony Optimization (ACO)

The essential idea of ACO derives from the foraging behavior of ant colonies. When

an ants group tries to search for food, they use a special genius kind of chemical

to communicate with each other. That chemical is referred to as a pheromone.

Randomly, the ants start to search their food. Once the ants find a path to the

food source, they leave pheromone on the path. An ant can keep track off the trails

of the other ants to the food source by sensing pheromone on the ground. As this

process continues, most of the ants attract to choose the shortest path as there have

been a huge amount of pheromones accumulated on this path [62]. In task scheduling,

during an iteration of the ACO algorithm, each ant k, k = 1, ...,m (m is the number

of the ants), builds a tour executing n (n is the number of tasks) steps in which a

probabilistic transition rule is applied. The k-ant chooses VM j for next task i with

a probability that is computed by Equation 3.1.

pij(t) =

[τij(t)]α ∗ [ηij]β∑
s∈allowedk [τis(t)]α ∗ [ηis]β

ifj ∈ allowedk

0, otherwise

(3.1)

where

• τij(t) shows the pheromone concentration at the t time on the path between

task i and VM j.

• allowedk = {0, 1, · · ·, n− 1}.

• ηij = 1
dij

is the visibility for the t moment, calculated with heuristic algorithm

36

and dij which expresses the expected execution time and transfer time of task i

on VM j can be computed with Equation 3.7.

dij = TL_Taski
Pe_numj ∗ Pe_mipsj_VMj

+ InputF illeSize

VM_bwj
(3.2)

where TL_Taski is the total length of the task that has been submitted to VMj,

Pe_numj is the number of VMj processors, Pe_mipsj is the MIPS of each processor

of VMj Input File Size is the length of the task before execution and VM_bwj is

the communication bandwidth ability of the VMj. Finally the two parameters α and

β control the relative weight of the pheromone trail and the visibility information

respectively. Algorithm 3.1 shows the ACO scheduling [107] where Cloudletlist the

list of tasks, VMlist the list of virtual machines, and tabu indicates the allowed VMs

for ant k in next step also tabu records the traversed VM by ant k.

Algorithm 3.1 Scheduling based ACO
1: Require: α, β, maxiterations, Cloudletlist , VMlist

2: for i in Cloudletlist and k in VMlist do
3: pair Cloudleti, V MK ←− τi,j(0) = C // pheromone(C)
4: VMK ←− Antj ←− randomPick(Antpool)
5: Anttabuj ←− add(VMk)
6: while NOT done do
7: for k = 1tom do
8: VMN ←− select(Antk, V Mlist, Cloudletlist)
9: Anttabui ←− add(VMs)
10: end for
11: for k = 1tom do
12: Lk ←− calculate() // Lk the length of the current best tour done by the

ants.
13: end for
14: τi,j ←− update() // The local Pheromone value
15: pheromoneglobal ←− update()
16: increment (iterations)
17: end while

37

B. Artificial Bee Colony (ABC)

The artificial bee colony algorithm (ABC), an optimization algorithm based on the

intelligent foraging behavior of honey bee swarm was proposed by Karaboga in 2005

[52], [53]. This is nature inspired algorithm for self-organization. ABC contains three

groups of bees: employed bees, onlookers, and scouts. The first half of the colony

consists of the employed artificial bees and the second half includes the onlookers.

For every food source, there is only one employed bee. In other words, the number

of employed bees is equal to the number of food sources. The employed bee of an

abandoned food source becomes a scout. The search carried out by the artificial bees

can be summarized as follows:

• Employed bees determine a food source within the neighborhood of the food

source in their memory.

• Employed bees share their information (distance, quality, direction and other

information) with onlookers within the hive and then the onlookers select one

of the food sources.

• Onlookers select a food source within the neighborhood of the food sources

chosen by themselves.

• An employed bee of which the source has been abandoned becomes a scout and

starts to search a new food source randomly.

This algorithm has a similar principle in balance the work of the virtual machine. The

ABC algorithm calculates the virtual machine workload then it decides whether it is

overloaded, light weighted or balanced. The high priority of the task is off from the

overload virtual machine and tasks are waiting for the light weight virtual machine.

These tasks are known as scout bee in the next step. ABC-inspired Load Balancing

38

technique reduces the response time of VM and also reduces the waiting time of the

task. Onlooker bees calculate the probability of estimating new solution around food

source using the following equation:

pi(t) = fiti(t)
ΣTS
i=1fiti(t)

(3.3)

where fiti will be the Fitness value of task source i, and TS will be the total number

of task sources. Algorithm 3.2 shows the ABC scheduling [2], where Datacenterlist

the list of data centers.

Algorithm 3.2 Scheduling based ABC
1: Require: Cloudletlist, VMlist, Datacenterlist, facLB
2: Groups(q)←− divide(Cloudletlist)
3: for i = 1 to q do
4: lengthi ←− lengthofgroupk(Groupsi)
5: end for
6: for k = 1 to q do
7: CloudletL ←− max(Groupsk)
8: whileGroupsk ≥ Groupsi | i = 1...qandi 6= k do
9: for s = 1 to n do
10: Datacenters ←− select(Datacenterlist)
11: if facLB ≤ VMsAssigned(Datacenter) then
12: assign(CloudletL, Datacenteri6=s (VMleastLoad))
13: else
14: decrement (lengthk)
15: end if
16: end for
17: end while
18: end for

C. Particle Swarm Optimization (PSO)

Particle Swarm Optimisation (PSO) is a swarm-based intelligence algorithm [32],

influenced by the social behavior of animals such as a flock of birds finding a food

source or a school of fish protecting themselves from a predator. A particle in PSO is

39

analogous to a bird or fish flying through a search (problem) space. The movement of

each particle is co-ordinated by a velocity which has both magnitude and direction.

Each particle position at any instance of time is influenced by its best position and

the position of the best particle in a problem space. The performance of a particle is

measured by a fitness value, and in order to measure how well the particle’s position,

the fitness function can be defined:

f = Min(V T ime

V Rutilization
) (3.4)

where V T ime to denote the execution time of VMs for executing all of the tasks,

and V Rutilization to denote the resource utilization of VMs during the process of

running the tasks. Particles in the search process update themselves by tracking

two best-known positions. Best-known position known as a local best position is the

individual best known position in terms of fitness value reached so far by the particle

itself. Another best-known position known as a global best position is the best position

in the entire population. Equation 3.5 shows the velocity, position, global best, local

best update mechanisms. All these update mechanisms affect the search directions of

PSO at later iterations. The velocity and position are updated as follows:

vl+1
i = wvli + a1ϕ1(pbli − pli) + a2ϕ2(gbl − pli)

and

pl+1
i = pli + vl+1

i

(3.5)

where the subscript i denotes the particle number; l the iteration number; pbli the

40

personal best position of the ith particle up to iteration l; gbl the global best position

so far; ϕ1 and ϕ2 two uniformly distributed random numbers used to determine the

influence of pbi and gb; and a1 and a2 two constant values denoting, respectively, the

cognitive and social learning rate. Algorithm 3.3 shows the PSO scheduling [23].

Algorithm 3.3 Scheduling based PSO
1: Input: Task, Particles
2: Output: gBest
3: foreach Pi do
4: pBest = Generate_initial_position(Pi)
5: foreach pBest of particle Pi do
6: gBest = Max(pBest1, pBest2,)
7: repeat
8: j ←− 1 ;
9: while j ≤ m do
10: Select the task tj;
11: Calculate_est(tj);
12: Allocate_task(tj);
13: j + +;
14: foreach particle Pi do
15: Calculatecur_particle_fit; (current particle)
16: if cur_particle_fit < pBesti_fit then
17: Update(pBesti);
18: if cur_particle_fit< gBesti _fit then
19: Update(gBesti);
20: if the termination condition is met then
21: Output 4gBesti; Break;
22: else
23: foreach particle Pi do
24: Update(Pi_velocity);
25: Update(Pi_position);
26: until the termination condition is met ;

3.1.2 Multi-Label prediction based on SI

Multi-label classification (MLC) has attracted increasing attention in the machine

learning community during the past few years. In this chapter, we focus on a method

41

called classifier chains (CC) [83]. As its name suggests, CC selects an order on

the label set, a chain of labels, and trains a binary classifier for each label in this

order. The difference with binary relevance (BR) is that the feature space used to

induce each classifier is extended by the previous labels in the chain. These labels

are treated as additional attributes, with the goal to model conditional dependence

between a label and its predecessors. CC performs particularly well when being used

in an ensemble framework, usually denoted as ensemble of classifier chains (ECC),

which reduces the influence of the label order.

P (y|x) = Πd
j=1P (yj|pa(yj), x) (3.6)

Where, pa(yj) represents the parent labels for yj. Obviously, |pa(yj)| = p, where

p denotes the number of labels prior to yj following the chain order. In the training

phase, according to a predefined chain order, it builds d binary classifiers h1, ..., hd

such that each classifier predicts correctly the value of yj by referring to pa(yj) in

addition to x. In the testing phase, it predicts the value of yj in a greedy manner:

y∗j = argmaxP (yj|pa(yj), x), j = 1,, d. (3.7)

3.2 Performance Evaluation

In this section, we evaluate the performance of our proposed model (MLCCSI). First,

we explain the implementation details and then present the experimental results that

involve the makespan, and compare this results with the optimization algorithms

ACO, ABC, and PSO.

42

3.2.1 Implementation and Setup

We implemented our framework in a 64-bit Windows 7 environment on a machine

equipped with an Intel(R) i5-2400M CPU with Nvidia(Quadro) HD Graphics 3.10

GHz Processor and 8.192 GB RAM. We simulated the proposed model and the

optimization Scheduling algorithms in the CloudSim toolkit [15]. This simulation

mainly shows the advantage of the proposed model compared to the ACO, ABC,

and PSO Algorithms in makespan term. The experiment is implemented with 3 data

centers and 50 tasks between 30 and 2700 bytes with different numbers of VMs varying

from 2 to 50 under the simulation platform. The resource situation is shown in Table

1. The computation workload of the task is 10000 MIPS (Million Instruction per

second), and the manager of the three data centers both have space shared and time

shared policy for VMs, but, for the VMs manager, we set Time shared algorithm for

tasks. All the algorithms are tested by varying the number of the VMs with randomly

varying the size of the tasks.

Table 3.1: Parameters setting of cloud simulator

Type Parameters Value

Data Center

Number of Datacenters 3
Number of Hosts 6
Type of Manager Space shared and Time shared
Datacenter Cost 1 –15

Virtual Machine (VM)

Total number of VMs 2 –50
VM memory(RAM) 512(MB)
Type of Manager Time shared

Bandwidth 1000 bit

Task
Total number of task 50

Size of task 30 –2700 bytes
Number of PEs requirement 2

43

3.2.2 Experimental Results

In this section, we analyze the performance of our model based on the results of

simulation done using CloudSim. We extended the classes of the CloudSim simulator

to simulate our model. In the following illustrations, we compare the makespan of

our model with the basic algorithms. In the first step, we apply the optimization

algorithms when the virtual machines number has been fixed to 2, and the task sizes

are varying between 30, and 2700 bytes. Moreover, we iterate the optimization while

varying the number of virtual machines from 2, to 50. We have run each algorithm

112 times, and the average makespan of these runs is shown in Figs. 3.1, 3.2, and 3.3.

0

500

1000

1500

2000

2500

1 2 3
Data Centers

T
im

e
(m

s)

Figure 3.1: The average makespan of 3 data centers for the ant colony algorithm

We use the machine learning classifier chain algorithm to choose the future

algorithm to be used to schedule the tasks in every data center while having the

best task execution time, by using Gibbs sampler. The key idea of Gibbs sampling

is that one only considers univariate conditional distributions, i.e. the distribution

when all of the variables but one are assigned fixed values. This property makes

44

0

500

1000

1500

2000

2500

1 2 3
Data Centers

T
im

e
(m

s)

Figure 3.2: The average makespan of 3 data centers for the artificial bee honey
algorithm

Gibbs sampling a perfect fit for our fully connected conditional dependency network

we build, where the univariate conditional distributions needed for Gibbs sampling are

directly available from the conditional probabilistic predictors associated with each

variable. The inference procedure of Gibbs sampling is very simple. We first choose

a random ordering of the variable r, and initialize each variable y1 to a value yi.

In each sampling iteration, we visit every variable in the given order, yi(1), ..., y(k),

where r maps the new order index into the original variable index. The new value

of each variable Yr(i) is resampled according to the conditional predictor associated

with it, p(y|x, yr(i), θr(i)). The idea behind Gibbs sampling is to approximate the

joint distribution from the samples obtained from the conditional distributions. The

sampler is expected to converge to a stationary distribution after some burn-in

iterations. Then, it collects samples to recover the approximated joint distribution

and determine the most probable explanation (MPE).

Figs. 3.4, 3.5, and 3.6 show the average makespan on the data center one, two

45

0

500

1000

1500

2000

2500

3000

1 2 3
Data Centers

T
im

e
(m

s)

Figure 3.3: The average makespan of 3 data centers for the particle swarm
optimization algorithm

and three when we used the optimization algorithms ant colony, artificial honey, and

particle swarm, respectively.

46

500
1000

1500
2000

2500
3000

0

10

20

30

40

50
0

500

1000

1500

2000

2500

Task Size (bytes)
Number of VMs

Ti
m

e
(m

s)

DC1
DC2
DC3

Figure 3.4: Ant colony algorithm

47

0

500

1000

1500

2000

2500

3000

0
5

10
15

20
25

30
35

40
45

50
0

500

1000

1500

2000

2500

3000

Task Size (bytes)
Number of VMs

T
im

e
(m

s)

DC1
DC2
DC3

Figure 3.5: Artificial bee honey algorithm

0

500

1000

1500

2000

2500

3000

0
5

10
15

20
25

30
35

40
45

50
0

500

1000

1500

2000

2500

Task Size (bytes)Number of VMs

T
im

e
(m

s)

DC1
DC2
DC3

Figure 3.6: PSO algorithm

48

Furthermore, Fig. 3.7 shows the makespan when used with the multi-label

classifier chain machine learning algorithm, and it shows that the average makespan

of the basic algorithm has been roughly reduced especially for ABC, and PSO

algorithms on all the data centers. When we compare the results with ant colony

algorithm, it shows that the time has been reduced 10% on data center one, 7% on

data center two and 13% on data center three. Furthermore, the figure shows a clear

time decrease on artificial honey bee algorithm, 51% on data center one, 75% on

data center two, and 60% on data center three. Moreover, the decrease on makespan

happens roughly on the particle swarm optimization algorithm, and the figure shows

63% decrease on data center one, 73% on data center two, and finally 68% on data

center three.

0
500

1000
1500

2000
2500

3000

0
5

10
15

20
25

30
35

40
45

50
0

500

1000

1500

2000

2500

Task Size (bytes)Number of VMs

T
im

e
 (

m
s
)

DC1
DC2
DC3

Figure 3.7: MLCCSI model

49

3.3 Conclusion

In this chapter, we have proposed the MLCCSI model for tasks scheduling with

load balancing. We have experimentally evaluated the model in applications with

the number of VMs ranging from 2 to 50 and varying tasks sizes from 30 to 2700.

Three scheduling algorithms are discussed, namely ACO, ABC and PSO and a new

scheduling model that uses these three algorithms is introduced. The experimental

results show that the MLCCSI model minimizes the makespan and utilizes the

resources effectively compared to the standard optimization algorithms. We have

used the makespan as fitness criteria for checking the fitness of the scheduling results,

and The experimental result shows that MLCCSI balances the entire system load

effectively, and it clearly shows reduced average makespan. This method can be

adapted to existing cloud computing systems for decreasing makespan and providing

better resource utilization.

Promisingly, this work gives guidance to a new architecture that could be

adopted to solve or mitigate several challenges that encounter the domain of cloud

computing. It opens as well numerous research directions that seem worthy working

on and investigating such as: (1) building efficient scheduling optimization algorithms

in the cloud, (2) developing resource sharing and task scheduling models, and (3)

building machine learning algorithms and dynamic models to minimize the required

cloud resources and load balancing.

Since the tasks are carried out locally at the level of the VMs or IoT devices,

some malicious devices might optimize for a malicious objective that aims to generate

targeted misclassifications. Some other devices might not dedicate enough resources to

process tasks, which could lead to poor-quality results. To address these challenges,

we propose in the next chapter a scheduling solution that takes into account the

resources availability and trust values of the devices.

50

Chapter 4

Trust-aware Big Data Task

Scheduling Approach in

Cloud Computing

Environments

The term big data had arisen in the past few years as a building block concept, owing

to the increase in the volumes of data that are generated by different businesses

on a daily basis. This raised the need to adopt up-to-date solutions that could

enable the storage, scheduling, and processing of large volumes of data. Cloud

computing has been the number one choice for most of the businesses seeking to

keep up with the big data evolution trends [11], thanks to the wide variety of

advantages it offers such as multi-tenancy, elasticity, and virtualization. Thus, instead

of purchasing and maintaining expensive hardware equipment to store and analyze

big data, companies can now migrate these responsibilities to the cloud to reduce the

51

capital and operational expenditures and enjoy improved performance. This, however,

entails a serious problem for cloud administrators, i.e., how to efficiently schedule the

big data tasks in the virtualized environments so as to guarantee optimal performance

and minimal resource wastage.

In cloud computing, resources, either software or hardware, are virtualized

and allocated as services from providers to users [12]. The computing resources

can be allocated dynamically upon the requirements and preferences of consumers,

where the resources are located in different regions and have various processing

characteristics (number of CPU cores, amount of main memory, etc.), and costs

[110]. The process of allocating services to perform a set of tasks while satisfying

constraints in terms of time, cost, quality of service QoS, and service availability

known as task scheduling [65]. Therefore, task scheduling and resource allocation

should be carefully arranged and optimized simultaneously in order to attain an

overall cost and time-effective schedule. Specifically, the process of scheduling big data

analytics tasks in cloud computing environments is quite challenging since it involves

the optimization of several (sometimes conflicting) objectives. On the one hand,

guaranteeing minimal timespan for big data tasks is crucial especially when it comes

to delay-critical applications (e.g., healthcare management, intelligent transportation

systems) wherein small delays might cause loss of life. Moreover, as the number

of incoming big data tasks is quite large, minimizing the cost of each single task

is a major concern for these data sources (e.g., IoT manufacturer) [9, 31]. From the

cloud providers’ site, managing the available resources so as to increase the capacity of

simultaneously receiving the largest possible number of tasks is a major concern. That

is, cloud providers should schedule the big data tasks in such a way to guarantee a

minimal CPU, RAM, bandwidth, and disk storage consumption on each tasks, without

sacrificing the overall performance.

52

In this chapter, we discuss our trust-aware scheduling solution called

BigTrustScheduling that is proposed for scheduling big data tasks in cloud computing

environments. The proposed solution considers the trust value of the VMs and the

task priority in terms of execution time and price.

4.1 An Overview of The Proposed Approach

(BigTrustScheduling)

Fig. 4.1 shows the design of BigTrustScheduling, our trust-aware scheduling model for

big data tasks in cloud computing environments. The proposed solution consists of

three stages: (1) VMs’ trust level computation; (2) tasks priority levels determination;

and (3) trust-aware scheduling. These stages are executed sequentially to minimize

the hardware and network recourses cost while optimizing the response time delivered

to customers.

53

VMs monitoring:
Tukey method

Heartbeat response
time monitoring

Initial trust
values

Initial trust
values

Trust aggregation and VMs ranking:
MCMC-Gibbs sampler

Final trust
values

VM 1

VM 2

...

…

VM n

Queue of VMs
ranked based on

their trust
values

Task clustering based
on resources
requirement:

Percentile method

Task clustering based
on costs: K-means

algorithm

Clustered tasks Clusterd tasks

Task ranking mechanism: Multi-criteria
decision making

Task priority
values

Task 1

Task 2

...

…

Task m

Queue of tasks
ranked based on

their priority
values

Task

Trust aware
scheduling

Initial trust

Stage one Stage two

Stage three

Figure 4.1: The three stages of our proposed solution (BigTrustScheduling)

The first stage comprises three phases, namely: hearbeat-based initial trust

value computation, statistics-based trust computation, and Markov Chain Monte

Carlo Gibbs Sampler (MCMC)-based trust aggregation and VMs ranking. The

objective of the first phase is to derive initial trust values for the VMs based on the

heartbeats average response time and average frequency ratio. Specifically, we adopt

the concept of JobTracker from the Hadoop platform [117] whose role is to periodically

collect messages (commonly called heartbeats) from tasktracker agents deployed on

VMs to ensure that these VMs are still alive [119]. To further improve the accuracy

of the trust establishment process, we propose in the second phase an Interquartile

Range (IQR) statistical technique (Tukey method) [14] in which the cloud system

continually monitors the CPU, RAM, Bandwidth, and Disk storage consumption to

54

capture any abnormal behavior (i.e., over-utilization or under-utilization). IQR has

been chosen for the considered problem thanks to its robustness to outliers and its

low overhead, which boosts its adoption in resource-constrained environments [39].

In the third phase, we employ the MCMC Gibbs sampler to aggregate the trust

observations collected from the first and the second phases and come up with final

trust values for each VM. The power of Gibbs sampler comes from its ability to break

down the high-dimensional parameter space into several low dimensional phases, thus

facilitating the convergence to the optimal distribution [36].

The second stage comprises three phases, namely: percentile-based task

clustering, machine learning-based task clustering, and multi-criteria decision-making

approach to task priority level determination. The first phase is interested in clustering

tasks on the basis of their hardware, network, and storage requirements, by means

of a statistical technique. Note that our choice of the percentile-based method for

tasks clustering based on their resource requirements stems from the sparse nature

of our data1. This limits the performance of K-means (which highly depends on

the average) and results in a high number of outliers. Thereafter, in the second

phase, we employ the K-means learning method to cluster the tasks according to

their execution costs. The strength of K-means lies in its reasonable computational

overhead for high-dimensional data compared to other clustering techniques (e.g.,

K-medoids, hierarchical clustering, etc.) [51]. Moreover, K-means has been chosen in

this step over the percentile method since our aim is to generate five clusters (i.e.,

very low, low, medium, high, and very high), whereas the percentile method usually

works well for generating a small number of clusters (i.e., three). On top of the

two aforementioned clustering processes, we design in the third phase a multi-criteria

decision-making approach to determine the priority level of each task.
1http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains

55

Having determined the trust level of each VM and the priority level of each task,

we propose in the final stage a trust-aware scheduling approach to match each task to

the corresponding VM. Such a trust-aware scheduling approach can be integrated as a

complementary step into the state-of-the-art big data schedulers such as YARN [111]

and MESOS [46]. In summary, the main contributions of this chapter are:

• Proposing a trust-aware scheduling mechanism to optimize the performance of

big data services execution. To the best of our knowledge, this is the first work

that advances a comprehensive trust-aware and performance-oriented scheduling

approach for big data services on the cloud.

• Designing a trust establishment framework which combines performance

information related to the average heartbeat response time, average heartbeat

frequency ratio, and VMs resources utilization to derive trust values for each

VM.

• Developing two clustering techniques from machine learning and statistics to

group tasks into a set of clusters based on their resource requirements and

execution costs.

• Designing a multi-criteria decision-making mechanism that capitalizes on the

two proposed clustering techniques to determine the priority level of each task.

4.2 Problem Definition

We consider a finite set of jobtrackers, where each jobtracker monitors and manages

a set of tasktrackers responsible for a set V = {v1, v2, ..., vm} of VMs, and let vj be

a typical VM in the set. Every tasktracker monitors and analyzes the CPU, RAM,

disk storage, and network bandwidth utilization of each vj ∈ V . As a first stage, the

56

jobtracker seeks to establish trust relationships toward the tasktrackers based on the

average frequency and response time of the heartbeats. This allows the cloud system

to build an initial trust value for each vj denoted as InitialTrustj. To do so, the cloud

system collects log files from jobtrackers which contain information on the behavior of

the tasktrackers (i.e., heartbeats information) to learn about the active and inactive

ones. In order to complete the final trust decision, the cloud system monitors the VMs

found trusted in the initial trust establishment phase to inspect their CPU, RAM,

network bandwidth, and disk storage utilization, and applies the Interquartile Range

(IQR) statistical measure to identify any abnormal utilization on each vj and hence

compute another initial trust score for each VM. Note that c(vj) represents the CPU

consumption of vj, r(vj) represents the RAM consumption of vj, s(vj) represents the

disk storage consumption of vj, and b(vj) represents the bandwidth consumption of

vj. Finally, the MCMC Gibbs Sampler method is employed to aggregate both initial

trust values, come up with a final trust score for each VM, and rank these VMs based

on their trust scores.

Having computed the trust values of each VM and ranked them based on their

trustworthiness, the next step is to determine the priority level of each task. Let

T = {t1, t2, ..., tn} be a set of tasks submitted by certain users and let ti be a typical

task in the set. Moreover, let Rz
i represent the requirement of each task ti in terms

of the parameter z (CPU, RAM, bandwidth, and disk storage). We first propose

a new method based on the percentile ranking to cluster the tasks based on their

CPU, RAM, network bandwidth, and disk storage requirements Rz
i . Thereafter, we

propose a K-means clustering technique to cluster tasks based on their monetary

prices. Finally, we advocate a multi-decision criteria approach which capitalizes on

the two aforementioned clustering methods to determine the priority level of each task

and rank these tasks based on their priority score.

57

Having ranked VMs based on their trust scores and tasks based on their priority

levels, the final step is to execute the actual scheduling process. To do so, we propose

a new scheduling approach which takes into consideration the trust values of the

VMs, the priority levels of the tasks, and the resource requirements and availabilities

to match each task to the corresponding VM, so as to minimize the makespan and

monetary cost. Note that the different notations used throughout the chapter are

summarized in Table 4.1.

Table 4.1: Notations

Symbol Significance
V : Set of virtual machines.
T : Set of tasks provided by users.
z : A performance parameter z ∈M = {CPU,RAM, bandwidth, disk storage}.
ϕj : Current heartbeat frequency for VM vj .
Φj : Average heartbeat response time for the VM vj .
InitialTrustj : Initial trust believed by the cloud system in the trustworthiness of the virtual machine vj .
ψj : Habitual heartbeat response time from the historical log file for VM vj .
Qj : Heartbeat response frequency ratio for VM vj .
γj : Historical average heartbeat frequency for VM vj .
Wj : Average response time ratio for VM vj .
ηxj : Response time of heartbeat x for VM vj .
τh : Time moment h ∈ N.
Pi : Priority degree of task ti ∈ T .
χV,τ : Matrix storing the trust values of all VMs V across time moments τ .
ejh : Trust value of VM vj at time moment τh.
µ : Set of trust mean values of VM vj across time moments.
ar : Resource requirement cluster r ∈ {1, 2, 3} for low, medium, and high, resp.
cu : Task cost cluster u ∈ {1, . . . , 5} for very low, low, medium, high, and very high, resp.
Dz(T) : A (3× 5)-matrix of requirements for task ti ∈ T in terms of the performance parameter z.
Gru : Position of a particular task belonging to the clusters ar and cu in the matrix Dz(T) (Mru = Dz(T)[r, u]).

58

4.3 BigTrustScheduling: Description of the

Proposed Trust-Aware Scheduling Approach

4.3.1 First Stage: Building trust on VM

A. First Phase: Building Initial Trust on TaskTracker

Scheduling decisions are made by a master node called jobtracker, while the worker

nodes, called tasktrackers are responsible for the task execution. The jobtracker

maintains a queue of the jobs currently running, states in a tasktrackers cluster and

the list of tasks assigned to each tasktracker. Each tasktracker periodically reports

its status (active, inactive) to the jobtracker in the form of a heartbeat message as

shown in Fig. 4.2. The content of the heartbeat message is:

• Lists of completed or failed tasks.

• Progress report of the tasks currently being carried out at the issuer tasktracker.

• Boolean flag (accept new tasks) that indicates whether the sender jobtracker

can assign an additional task or not. This indicator is set to true if the number

of running tasks at the tasktracker is below the VMs capacity.

The jobtracker collects the heartbeats received from the set of tasktrackers

installed on each VM. If a heartbeat is not received from a tasktracker within a

certain interval of time, this means that the VM should be deemed dead or down.

Hence, to calculate the heartbeat response frequency ratio Qj, let γj be the habitual

historical average heartbeat frequency for VM vj, and ϕj be the current heartbeat

frequency for VM vj.

Qj = ϕj
γj
× 100% (4.1)

59

and the average heartbeat response time Φj would be:

Φj =
∑Nj
x=1 η

x
j

Nj

(4.2)

where ηxj represents the response time of the heartbeat x for the VM vj ∈ V , and Nj

is the total number of received heartbeats for vj. Then, the average response time

ratio can be calculated as follows:

Wj = Φj
ψj
× 100% (4.3)

where ψj is the habitual heartbeat response time of VM vj from the historical log file.

Finally, the first trust value of VM vj (FirstInitialTrustj) is computed by dividing

the summation of the average heartbeats response frequency ratio, and the average

response time ratio by two. The reason behind this formula is because we assume

that both the response frequency ratio and average response time ratio have equal

importance.

FirstInitialTrustj = Qj +Wj

2 (4.4)

The second trust value of VM vj (SecondInitialTrustj) it will computed later in

Algorithm 4.3.

60

𝑡1

T
1

𝑡2

𝑡8

𝑡7

𝑡6

𝑡5

𝑡4

𝑡3

Task Tracker Task Tracker Task Tracker Task Tracker

Job Tracker
User

User
Clients

Job Assignment to Job Tracker

Figure 4.2: Tasks assignment and reporting process

B. Second Phase: VMs Monitoring

In this phase, the tasktracker monitors the CPU, RAM memory, network bandwidth,

and disk storage consumption of the VMs to construct a consumption dataset for

each VM. It then employs the IQR statistical technique to recognize any abnormal

consumption. The IQR is a measure of variability whose basic idea is to divide a given

set of data into disjoint quartiles (i.e., Q1, Q2, Q3). The first quartile Q1 is the value

in the dataset that 25% of the values are smaller than it. The second quartile Q2

represents the median value of the dataset. The third quartile Q3 represents the value

in the dataset that 25% of the values are greater than it. The IQR is obtained by

subtracting the first quartile from the third quartile. The reasons for choosing the IQR

measure for our problem are (1) its robustness to disordered and unorganized data and

(2) its simple and light nature that does not require significant computational effort.

Algorithms 4.1, 4.2, and 4.3 (executed by the jobtracker) are introduced to described

61

the aforementioned process. In particular, Algorithm 4.1 determines the VMs whose

consumption exceeds the normal maximal consumption, Algorithm 4.2 is introduced

to determine the VMs whose consumption goes down the normal minimal habitual

consumption (e.g., failed VMs). Based on the results obtained from Algorithm 4.1 and

Algorithm 4.2, Algorithm 4.3 is introduced to compute initial trust for the VMs. After

having collected the CPU, memory, disk storage, and bandwidth consumption for each

VM, the jobtracker calculates the median usage of each VM for each corresponding

metric (e.g., CPU) (Algorithms 4.1 and 4.2 - line 15). Then, based on the calculated

median value, the first and third quartiles Q1 and Q3, respectively, are derived for each

metric (Algorithm 4.1 and 2 - lines 16-17). Using these quartiles, IQR is calculated

by subtracting Q3 from Q1 and multiplying the value obtained by 1.5 (Algorithm

4.1 and Algorithm 4.2 - line 18). Intuitively, this means that any value greater than

one and a half times the upper quartile or lower than one and a half times the lower

quartile shall be considered an outlier according to Tukey’s analysis [112].

62

Algorithm 4.1 VMs Upper Consumption Monitoring
Inputs:

1: vj : a VM being monitored by the cloud system

2: M = {CPU, memory, diskstorage, and bandwidth}: the set of VM ’s metrics to be analyzed by the cloud system

3: δ: size of time window after which the algorithm is to be repeated

Variables:

4: Mz
j (t): a table recording the amount of each metric z ∈ M consumed by vj during the time interval [t− δ, t]

5: x̄z
j (t): the median consumption of z ∈ M by vj during the time interval [t− δ, t]

6: Q1z
j (t): the 1st quartile consumption of z ∈ M by vj during the time interval [t− δ, t]

7: Q3z
j (t): the 3rd quartile consumption of z ∈ M by vj during the time interval [t− δ, t]

8: IQRz
j (t): the IQR consumption of z ∈ M by vj during the time interval [t− δ, t]

9: Lz
j (t): the upper consumption limit of z ∈ M vj during the time interval [t− δ, t]

10: OverUsez
j : sum of VM vj ’s unusual high consumption of z ∈ M (initialized to 0)

11: CountOverUsez
j : a counter enumerating the occurrence of unusual high consumption of z ∈ M by vj (initialized to 0)

12: AvgOverUsez
j : VM vj ’s average unusual high consumption of z ∈ M

Outputs:

13: PropOverUsez
j : VM vj ’s unusual consumption of z ∈ M proportionally to the upper consumption limit of this z

14: |OverusedMetricsj |: the number of metrics that vj over consumed such that |OverusedMetricsj | ≤ |M| for each metric z ∈ M

do

15: Compute the median x̄z
j (t) of Mz

j (t)

16: Find Q1z
j (t) as the median of Mz

j (t)’s lower half

17: Find Q3z
j (t) as the median of Mz

j (t)’s upper half

18: Compute IQRz
j (t) = (Q3z

j (t)−Q1z
j (t))× 1.5

19: Compute Lz
j (t) = IQRz

j (t) +Q3z
j (t)

20: for each data point y ∈ Mz
j (t + µ) do

21: if y > Lz
j (t) then

22: OverUsez
j = OverUsez

j + y

23: CountOverUsez
j = CountOverUsez

j + 1

24: end if

25: if CountOverUsez
j > 0 then

26: AvgOverUsez
j = OverUsez

j /CountOverUse
z
j

27: PropOverUsez
j = Lz

j (t)/AvgOverUsez
j

28: |OverusedMetricsj | = |OverusedMetricsj | + 1

29: end if

30: end for

31: end for

63

Algorithm 4.2 VMs Lower consumption Monitoring
Inputs:

1: vj : a VM being monitored by the cloud system

2: M = {CPU, memory, diskstorage, and bandwidth}: the set of VM ’s metrics to be analyzed by the cloud system

3: δ: size of time window after which the algorithm is to be repeated

Variables:

4: Mz
j (t): a table recording the amount of each metric z ∈ M consumed by vj during the time interval [t− δ, t]

5: x̄z
j (t): the median consumption of z ∈ M by vj during the time interval [t− δ, t]

6: Q1z
j (t): the 1st quartile consumption of z ∈ M by vj during the time interval [t− δ, t]

7: Q3z
j (t): the 3rd quartile consumption of z ∈ M by vj during the time interval [t− δ, t]

8: IQRz
j (t): the IQR consumption of z ∈ M by vj during the time interval [t− δ, t]

9: Wz
j (t): the lower consumption limit of z ∈ M by vj during the time interval [t− δ, t]

10: UnderUsez
j : sum of VM vj ’s unusual low consumption of z ∈ M (initialized to 0)

11: CountUnderUsez
j : a counter enumerating the occurrence of unusual low consumption of z ∈ M by vj (initialized to 0)

12: AvgUnderUsez
j : VM vj ’s average unusual low consumption of z ∈ M

Outputs:

13: PropUnderUsez
j : VM vj ’s unusual consumption of z ∈ M proportionally to the lower consumption limit of this z

14: |UnderusedMetricsj |: the number of metrics that vj over consumed such that |UnderusedMetricsj | ≤ |M|

15: for each metric z ∈ M do

16: Compute the median x̄z
j (t) of Mz

j (t)

17: Find Q1z
j (t) as the median of Mz

j (t)’s lower half

18: Find Q3z
j (t) as the median of Mz

j (t)’s upper half

19: Compute IQRz
j (t) = (Q3z

j (t)−Q1z
j (t))× 1.5

20: Compute Wz
j (t) = Q1z

j (t)− IQRz
j (t)

21: for each data point y ∈ Mz
j (t + µ) do

22: if y < Wz
j (t) then

23: UnderUsez
j = UnderUsez

j + y

24: CountUnderUsez
j = CountUnderUsez

j + 1

25: end if

26: if CountUnderUsez
j > 0 then

27: AvgUndeUsez
j = UnderUsez

j /CountUnderUse
z
j

28: PropUnderUsez
j = Wz

j (t)/AvgUnderUsez
j

29: |UnderusedMetricsj | = |UnderusedMetricsj | + 1

30: end if

31: end for

32: end for

64

Algorithm 4.3 Virtual Machines Monitoring
Inputs:

1: vj : a VM being monitored by the cloud system

2: M = {CPU, memory, diskstorage, and bandwidth}: the set of VM ’s metrics to be analyzed by the cloud system

3: δ: size of time window after which the algorithm is to be repeated

Variables:

4: Mz
j (t): a table recording the amount of each metric z ∈ M consumed by vj during the time interval [t− δ, t]

5: PropOverUsez
j : VM vj ’s unusual consumption of z ∈ M (obtained from algorithm 1) proportionally to the upper consumption

limit of this z

6: |OverusedMetricsj |: the number of metrics that vj over consumed (obtained from algorithm 1) such that |OverusedMetricsj | ≤

|M| obtained from algorithm 1

7: PropUnderUsez
j : VM vj ’s unusual consumption of z ∈ M (obtained from algorithm 2) proportionally to the lower consumption

limit of this z

8: |UnderusedMetricsj |: the number of metrics that vj under consumed (obtained from algorithm 2) such that

|UnderusedMetricsj | ≤ |M|

9: UpperInitialTrustj : the initial trust of cloud system regarding vj ’s trustworthiness with respect to the upper limit.

10: LowerInitialTrustj : the initial trust of cloud system regarding vj ’s trustworthiness with respect to the lower limit.

Output:

11: SecondInitialTrustj : the initial trust of cloud system in VM vj ’s trustworthiness

12: procedure VMMonitoring

13: repeat

14: run Alg. 4.1 on vj , M, δ to obtain PropOverUsez
j and |OverusedMetricsj |

15: if |OverusedMetricsj | = 0 then

16: UpperInitialTrustj = 1

17: else

18: UpperInitialTrustj =

∑
z∈M

P ropOverUsez
j

|OverusedMetricsj |

19: end

20: run Alg. 4.2 on vj , M, δ to obtain PropUnderUsez
j and |UnderusedMetricsj |

21: if |UnderusedMetricsj | = 0 then

22: LowerInitialTrustj = 1

23: else

24: LowerInitialTrustj =

∑
z∈M

P ropUnderUsez
j

|UnderusedMetricsj |

25: end

26: else

27: SecondInitialTrustj =
UpperInitialT rustj +LowerInitialT rustj

2 × 100%

28: until δ elapses

29: end procedure

By adding the IQR to the third quartile, the jobtracker computes the upper

consumption limit for each underlying metric (Algorithm 4.1 - line 19). Similarly, by

subtracting Q1 from IQR, the jobtracker determines the lower consumption limit for

each underlying metric (Algorithm 4.2 - line 19). These limits describe the patterns of

maximal and minimal habitual utilization of each VM at a certain time interval, where

any future utilization greater/lower than the upper/lower limits would be considered

unusual. The jobtracker checks then for any future consumption of the VM at time

65

t+ δ to determine whether there exists any consumption that exceeds the computed

upper limit (Algorithm 4.1 - lines 20-21). If so, this result is added to a table that

registers the VM’s unusual consumption (Algorithm 4.1 - line 22), and the average

unusual consumption for each metric is then computed (Algorithm 4.1 - line 26). At

the same time t+δ, the jobtracker also checks for any consumption that falls below the

computed lower limit (Algorithm 4.2 - lines 20-21). If found, these values are added to

a table that stores the VM’s unusual low consumption (Algorithm 4.2 - line 22), and

the average unusual consumption for each metric is computed (Algorithm 4.2 - line

26). Eventually, the jobtracker computes its initial trust in each VM’s trustworthiness

by dividing the sum of average unusual consumptions over all the metrics by the

number of metrics that the VM has overused if any (Algorithm 4.3 - line 17), and

underused (Algorithm 4.3 - line 22). If no metric has been overused or underused,

the initial trust in the VM’s trustworthiness would be set to 1 (Algorithm 4.3 - line

15 and line 20) respectively. Then, by computing the sum of UpperInitialTrustj and

LowerInitialTrustj and dividing it by two (Algorithm 4.3 - line 25), we obtain the

aggregate trust of each VM. Note finally that the whole process is repeated periodically

after a certain period of time δ to continuously capture the dynamism in the VMs’

performance and behavior.

C. Third Phase: Rank Aggregation via MCMC Gibbs Samples

In this section, we use Gibbs sampling to rank the VMs based on there trust values.

The inputs of this step are the initial trust values obtain from the monitoring algorithm

and the trust values obtained from the heartbeat phase. The average of both trust

sources represents the samples at every time moment used to find the likelihood

distribution, and we used the last time moment to represents the prior distribution.

Using this information the objective of the Gibbs sampling phase is to come up with

66

the posterior or aggregate trust value of each VM at the current time moment (at

which we are interested in computing the trust values).

Trust is calculated dynamically based on the initial trust values obtained from

the monitoring algorithm and the trust value obtained using the heartbeat data.

Based on the collected data from phase one and two each VM can be classified either

trusted or not.

We will be using the MCMC methods in a Bayesian framework. Bayesian

statistics is an interesting topic that we cannot hope to cover in the few lines here.

Historically Bayesian statistics has been quite theoretical, as until about twenty years

or so ago it had not been possible to solve practical problems through the Bayesian

approach due to the intractability of the integrations involved. Therefore, readers

are advised to consult the following references [17, 35] to know more about Bayesian

statistics. In this work, we capitalize on the Bayesian approach to combine our prior

trusted values with the data collected and produce new posterior trust values for each

VM. Note that the methodology followed to compute the aggregate trust values for

the VMs is inspired by [125].

Let χV,τ be a matrix storing the trust values for all VMs V = {v1, v2,

. . . , vm} across time moments τ = {τ1, τ2, . . . , τn}. We use j � j′ to denote

that VM vj is ranked higher than VM vj′ , which means that vj is considered

to be more trusted. Let ejh be the trusted value of VM vj at time moment τh.

Furthermore, any ejh having a highly trusted value would have a small position

index in the matrix χV,τ , i.e. if ejh > ej′h, this means that j � j′. For clarification

purposes, in the following discussion we use index j to denote the identifier of the

VM and index h to denote the corresponding time moment at which the rank is

computed, with m and n denoting the total numbers of VMs being ranked and

time moments, respectively. In our work, each ranked VM is associated with

67

relevant covariates (CPU, RAM, bandwidth, and disk storage) that are used as

a reference to determine the ranks of the VMs as per Algorithm 4.3. Table 4.2

shows the trust matrix χV,τ of VMs V in different time moments τ from Algorithm 4.3.

Table 4.2: Trusting lists of VMs in different time moments (the matrix χV,τ)

VMs / Time Moments τ1 τ2 τ3 ... τn

v1 e11 e12 e13 ... e1n

v2 e21 e22 e23 ... e2n

v3 e31 e32 e33 ... e3n
...

...
...

...
...

vm em1 em2 em3 ... emn

In Table 4.2, ejh represents the trust value of VM vj ∈ V from the matrix χV,τ ,

where j ∈ {1, 2, ...,m} at time moment h, and ejh > ej′h if and only if j � j′. The set

µ = (µ1, ..., µm) represents the trust mean values of each VM across time moments.

Let λ be the trust ranking list for all VMs, where these VMs are sorted in descending

order on the basis of their trust values. The trust ranking list λ should satisfy the

following conditions:

ejh = µj + εjh, εjh ∼ N(0, σ2), (1 ≤ h ≤ n; 1 ≤ j ≤ m) (4.5)

where εjh is a small value and the different εjh values for each VM vj and time moment

h are jointly independent. Thus, to compute the trust value of the VMs (Equation

4.5), we fix σ = 1. Since we only observe the trust ranking list λ, multiplying by a

constant or adding a constant to all the µj does not influence the likelihood function,

and ej1h > ej2h if and only if vj1 � vj2 for the time moment h. The rank model in

Equation 4.5 supposes that the τ values are independent and identically distributed

(i.i.d.) conditionally on µ. Hence, the likelihood function becomes:

68

p(τ1, ..., τn−1|µj) =
n−1∏
h=1

p(τh|µj) =
n−1∏
h=1

∫
Rn
p(τh|ejh, µj)p(ejh|µj)dejh (4.6)

where, p(τh|ejh, µj) = 1. Our goal is to generate an aggregated rank based on an

estimate of µj in Equation 4.6. We can employ a Bayesian method, which is more

convenient to incorporate prior information, to quantify estimation uncertainties, and

to utilize efficient Markov chain Monte Carlo (MCMC) algorithms. With a reasonable

prior value, the posterior mean of µj would also be a consistent estimator under the

same setting as in Equation 4.6. Let p(ejn) denote the prior probability. The posterior

distribution of µj and (ej1 , ..., ejn) is given in Equation 4.7 .

p(µj, e1..., ejn|τ1, ..., τn) = p(ejn).
n−1∏
h=1

p(ejh|µj).
n−1∏
h=1

1{τh = rank(ejh)} (4.7)

4.3.2 Second Stage: Task Clustering

A. First Phase: Percentile Method for Task Clustering based on their

Resource Requirements

Having computed the trust scores of the VMs and ranked them based on their trust

values, we are interested in this section in clustering the tasks on the basis of their

resource requirements. To do so, we take advantage of the percentile method [49],

which is used to partition the observations in a certain dataset into percentiles (e.g.,

10th percentile) based on their values. The task clustering process is depicted in

Algorithm 4.4. The first step in the Algorithm is to sort the resource requirements

of the tasks for each corresponding resource metric (i.e., CPU, RAM, storage, and

bandwidth) (Step 10 in Algorithm 4.4). Then, we compute the lower rank (Step 11

69

in Algorithm 4.4) and higher rank (Step 12 in Algorithm 4.4) indices. The lower

rank index represents the index that 25% of the observations fall below it. On the

other hand, the higher rank index represents the index that 25% of the observations

fall above it. These rank indexes are then split into integer (i.e, RankInteger) and

fractional parts (RankFraction). For example, the integer part of 3.4 would be 3 and the

fractional part would be 0.4. Next, we determine the observations in the sorted dataset

that correspond to the RankInteger and RankInteger + 1 (Steps 13-16 in Algorithm

4.4) and save them into the variables elementvalue and elementPlusOne respectively

(Steps 17-20 in Algorithm 4.4) . The lower and higher percentile values are then

computed by interpolating between elementvalue and elementPlusOne values according

to the RankFraction. Finally, the actual clustering steps are executed by assigning

the tasks whose resource requirements fall under the lower percentile value to the

low requirement cluster klow and the tasks whose resource requirements fall above the

higher percentile value to the high requirement cluster khigh (Steps 24-27 in Algorithm

4.4). The remaining values are automatically assigned to the medium requirement

percentile kmedium (Step 28-30 in Algorithm 4.4).

70

Algorithm 4.4 Task Clustering Algorithm
Inputs:

n: size of the dataset containing the requirements

T : set of task where ti ∈ T

M = {CPU, memory, diskstorage, and bandwidth}: the set of VM ’s metrics to be analyzed by the cloud system

Rz
T : requirement array in terms of the metric z ∈ M for the set T of tasks

Rz
i : requirement in terms of the metric z ∈ M for the task ti ∈ T

Outputs: Clusters kz
high

, kz
medium

, kz
low

, for each z ∈ M

Procedure Task Clustering

for each metric z ∈ M do

Sort Rz
T

Compute Rank1 E1(Rz
T) such that E1(Rz

T) = 0.25 ∗ (n− 1) + 1

Compute Rank2 E2(Rz
T) such that E2(Rz

T) = 0.75 ∗ (n− 1) + 1

RankInteger1 = dE1(Rz
T)e

RankInteger2 = dE2(Rz
T)e

RankF raction1 = E1(Rz
T)− dE1(Rz

T)e

RankF raction2 = E2(Rz
T)− dE2(Rz

T)e

elementvalue1 = Rz
T [dE1(Rz

T)e]

elementvalue2 = Rz
T [dE2(Rz

T)e]

elementP lusOne1 = Rz
T [dE1(Rz

T)e + 1]

elementP lusOne2 = Rz
T [dE2(Rz

T)e + 1]

Compute the lower percentile value such that

lowerpercentile = elementvalue1 + RankF raction1 × (elementP lusOne1 − elementvalue1)

Compute the higher percentile value such that

higherpercentile = elementvalue2 + RankF raction2 × (elementP lusOne2 − elementvalue2)

for each ti ∈ T do

if Rz
i ≤ lowerpercentile then

Assign ti to kz
low

else if Rz
i ≥ higherpercentile then

Assign ti to kz
high

else

Assign ti to kz
medium

end if

end for

end for

end procedure

B. Second Phase: K-Means Clustering

K-means is one of the most widely adopted unsupervised learning techniques. It

aims at clustering a set of observations in a certain dataset based on their degree

of similarity. In this work, we employ K-means to group the tasks into five

different clusters (i.e., very low, low, average, high, and very high) based on their

monetary costs. K-means operates in an iterative manner through assigning each

data observation to one of the K (in our case 5) groups based on some feature

71

similarity criteria (the feature is the cost in our case). Technically speaking, the

K-means algorithm starts by defining K centroids, each pertaining to a given cluster.

These centroids are chosen in such a way to be the farthest possible from one another.

Then, each data observation is assigned to the nearest centroid, according to the

Euclidean distance. Then, the mean of all the observations in each cluster is computed

and identified to be the new centroid of the underlying cluster. This process keeps

repeating until reaching the case where the same points are being assigned to each

cluster in consecutive rounds.

LetX= {xj | j = 1, 2, . . . , n}, be the set of n d-dimensional points to be clustered

into a set of K clusters, C = {ck | k = 1, 2, . . . , K}. Mathematically, the K-means

algorithm seeks to minimize the squared error function given by:

J(C) =
K∑
k=1

∑
xj∈ck

(‖ xj − µk ‖)2 (4.8)

where (‖ xj − µk ‖)2 is a chosen distance measure between a data point xj and the

mean value µk of cluster ck , for all the data points from their respective cluster

centers.

In Fig. 4.3, we show the output yielded after applying the K-means clustering

technique on the cost values of our tasks, which were computed according to Google

Cloud pricing list 2 for the CPU, RAM, bandwidth, and disk storage. By observing

Fig. 4.3, we can notice that the cost range for the very high cluster (in blue) is

between 50$ and 91$ for the CPU, 510$ and 850$ for the RAM, 125$ and 150$ for

the bandwidth, and between 440$ and 830$ for the disk storage. The cost range for

the high cluster (in green) is between 30$ and 42$ for the CPU, between 360$ and

500$ for the RAM, between 95$ and 125$ for the bandwidth, and between 240$ and

415$ for the disk storage. The cost range for the medium cluster (in red) is between
2https://cloud.google.com/pricing/list

72

a) Cost of tasks in terms of CPU b) Cost of tasks in terms of RAM

c) Cost of tasks in terms of bandwidth d) Cost of tasks in terms of disk storage

Figure 4.3: Clustering-based costs

73

21$ and 29$ for the CPU, between 205$ and 340$ for the RAM, between 54$ and 97$

for the bandwidth, and between 90$ and 230$ for the disk storage. The cost range

for the low cluster (in yellow) is between 13$ and 21$ for the CPU, between 80$ and

205$ for the RAM, between 37$ and 68$ for the bandwidth, and between 40$ and

49$ for the disk storage. Finally, the cost range for the very low cluster (in orange)

is between 5$ and 12$ for the CPU, between 2$ and 47$ for the RAM, between 10$

and 36$ for the bandwidth, and between 10$ and 30$ for the disk storage.

C. Third Phase: Multi-Criteria Task Priority Level Determination

Having clustered the tasks based on their resource requirements (Section 4.3.2.A) as

well as their associated costs (Section 4.3.2.B), we are now ready to determine the

priority level of each task. For this end, we adopt a multi-criteria decision-making

technique [109] by following the subsequent steps:

• Determine the potential criteria (task cost clusters derived in Section 4.3.2.B)

and alternatives (task requirement clusters derived in Section 4.3.2.A);

• Put the tasks in the decision matrix based on the clusters to which they belong;

• Compute the weight of each task, for each parameter (i.e., CPU, RAM,

bandwidth, and disk storage), based on its position in the matrix; and

• Compute the overall priority for each task, for all the parameters.

Formally, consider a priority determination problem with a set A = {a1, a2, a3}

of alternatives and a set C = {c1, c2, c3, c4, c5} of criteria. In the set A, a1 represents

the low resource requirements cluster. a2 represents the medium resource requirements

cluster, and a3 represents the hight resource requirements cluster. In the set C, c1

represents the very low task cost cluster, c2 represents the low task cost cluster, c3

74

represents the medium task cost cluster, c4 represents the high task cost cluster, and

c5 represents the very high task cost cluster. The decision matrix representing the

mapping between the set of potential criteria and set of alternatives is depicted in

Matrix (4.9).

Dz(T) =

c1 c2 c3 c4 c5

a1 G11 G12 G13 G14 G15

a2 G21 G22 G23 G24 G25

a3 G31 G32 G33 G34 G35

 (4.9)

In Matrix (4.9), each Gru represents the position of the the task belonging to cluster

ar and cluster cu in the decision matrix. Using this matrix, the priority degree formula

for a task ti is given in Eq. (4.10).

pi =
∑
z∈M Gz

ru

4×G35
× 100%, (4.10)

where Gz
ru is the position of the task ti in the instantiation of the matrix Dz(T), z ∈M

and 4 represents the number of task resource parameters considered in this work. For

example, assume that we have fifteen tasks T = {t1, · · · , t15}. Then, we would have

four different instantiations of the decision matrix Dz(T): Dc(T), Dr(T), Db(T), and

Ds(T) for the CPU, RAM, bandwidth, and disk storage respectively. Assume that

the fifteen tasks are distributed in the four decision matrices as follows:

Dc(T) =

c1 c2 c3 c4 c5

a1 t11 t2 t3 t5 t9

a2 t15 t1 t6 t14 t12

a3 t4 t8 t13 t7 t10

75

Dr(T) =

c1 c2 c3 c4 c5

a1 t13 t9 t5 t1 t2

a2 t8 t3 t4 t11 t6

a3 t12 t15 t14 t10 t7

Db(T) =

c1 c2 c3 c4 c5

a1 t14 t6 t10 t13 t8

a2 t5 t12 t1 t4 t9

a3 t3 t7 t15 t11 t2

Ds(T) =

c1 c2 c3 c4 c5

a1 t11 t13 t15 t5 t3

a2 t2 t9 t10 t6 t7

a3 t4 t12 t8 t1 t14

Then, for the sake of simplicity and without loss of generality, we show in the following

how the priority degree of three random tasks t1, t7 and t13 would be computed as

per Eq. (4.10)

P1 = (4
15) + (4

15) + (6
15) + (12

15)/4× 100%

= (0.27 + 0.27 + 0.4 + 0.8)/4× 100% = 44%

P7 = (12
15) + (15

15) + (6
15) + (10

15)/4× 100%

= (0.8 + 1 + 0.4 + 0.67)/4× 100% = 72%

P13 = (9
15) + (1

15) + (4
15) + (2

15)/4× 100%

= (0.6 + 0.07 + 0.27 + 0.13)/4× 100% = 27%

76

Thus, we can conclude that task t1 has a priority degree of 44%, task t7 has a priority

degree of 72%, and task t13 has a priority degree of 27%. This means that, according

to our scheduling algorithm described in Section 4.3.2.C, task t7 should be scheduled

first, followed by task t1, and then task t13.

4.3.3 Third Stage: Trust-Aware Task Scheduling Approach

Algorithm 4.5 is introduced to illustrate the task scheduling process of the tasks on

the VMs. The Algorithm takes as inputs the queue of tasks ranked based on their

priority degree (as explained in Section 4.3.2.B), the queue of VMs ranked based on

their trust levels (as explained in Section 4.3.2.A), the VMs specifications in terms

of CPU, RAM, bandwidth, and disk storage, and the task resource requirements in

terms of CPU, RAM, band width, and disk storage.

The algorithm tries to match the tasks having the highest priority degrees with

the VMs having the highest trust values, if and only if those VMs have enough

hardware and network resources that satisfy the task requirements. This process

keeps repeated until all tasks are assigned to VMs. In this way, we guarantee that the

untrusted VMs would be the last choice of the scheduling algorithm to assign tasks

to, and that the tasks enjoying high priorities would be mapped to the VMs that are

the most trusted.

77

Algorithm 4.5 Scheduling Algorithm
1: Inputs:

2: T : set of task where ti ∈ T

3: V : set of VMs where vj ∈ V

4: QT : queue of tasks ranked based on their priority values

5: QV : queue of VMs ranked based on their trust values

6: CPUxj : current CPU available on VM vj at time x

7: RAMx
j : current RAM available on VM vj at time x

8: BW x
j : current Bandwidth available on VM vj at time x

9: DSxj : current Disk Storage available on VM vj at time x

10: Rci : the CPU requirements of task ti

11: Rri : the RAM requirements of task ti

12: Rsi : the Disk Storage requirements of task ti

13: Rbi : the Bandwidth requirements of task ti

14: procedure Task Scheduling

15: for each ti ∈ QT

16: repeat

17: hv = head(Qv)

18: if Rci ≤ CPUxhv
and Rri ≤ RAMx

hv
and Rbi ≤ BW x

hv
and Rsi ≤ DSxhv

19: assign ti to hv

20: else

21: hv = hv.next

22: end if

23: until ti is assigned to a VM

24: end for

25: end procedure

78

4.4 Experiments and Empirical Analysis

4.4.1 Experimental Setup

To conduct our experiments, we employ a datset collected by Bitbrains3, a service

provider that is specialized in managed hosting and business computation for

enterprises. The dataset consists of 1, 750 VMs running in a distributed datacenter

and serving up to 8, 260 tasks. The information contained in the dataset include:

timestamps, number of provisioned virtual CPU cores, CPU capacity of each VM,

CPU usage of each VM, amount of memory provisioned to each VM, memory usage

per VM, disk read and write throughput per VM, and network received/transmitted

throughput. We consider both trusted and untrusted VMs, and vary the percentage

of untrusted VMs from 10% to 50%. Untrusted VMs are considered those that exhibit

poor performance in serving customers’ requests and consume abnormal amounts of

resources (e.g., CPU, RAM, etc.). To implement the k-means clustering approach, we

vary the number of clusters from 1 to 5 to determine the optimal number of clusters

that minimizes the percentage of outliers. Based on the experiment results, we could

conclude that a number of 5 clusters achieves the best performance on the considered

dataset.

The objective of the first set of experiments is to study the performance of our

solution in terms of execution time and scheduling time. Minimizing these metrics is

of prime importance to guarantee efficient execution of big data requests in realistic

industrial environments. In the second set of experiments, we measure the monetary

cost entailed by our approach for serving tasks. This is also an important factor for

both providers and customers to help them save resources and money. We compare our

approach with three algorithms i.e, SJF, RR, and improved PSO. The SJF approach
3http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains

79

considers only the size of the tasks to derive the order of their execution. The main

purpose of the RR approach is to support time sharing system among tasks on the

VMs. The main idea of the improved PSO approach is to change the weights of the

particles with the increase in the number of iterations and to inject some random

weights in the final stages to avoid the case where the PSO algorithm generates local

optimum solutions.

Note that the experiments have been conducted using the CloudSim simulator,

which allows us to obtain a realistic cloud environment. The experiments have been

performed in a 64-bit Windows 7 environment on a machine equipped with an Intel

Core i7-6700 CPU 3.40 GHz Processor and 16 GB RAM.

4.4.2 Experimental Results

In Fig. 4.4, we measure the total makespan of the tasks entailed by the different

studied solutions, while varying the number of deployed VMs from 10 to 50. For

this experiment, the number of tasks has been fixed to 7, 884 and assume that all

the considered VMs are all trustworthy. By observing the figure, we notice that our

solution decreases the total makespan compared to the other solutions especially in

a low-density VMs environment (i.e., when the number of deployed VMs is relatively

small). The reason is that in our solution, we provide a matching algorithm that

intelligently maps the resource requirements of the tasks with the resource capabilities

of the VMs. In other words, we decrease the probability of assigning tasks that

require significant amounts of resources to low-performing VMs that would not be

capable of efficiently serving those tasks. The second observation from this figure

is that by increasing the number of deployed VMs, the performance gap between

the different solutions tends to be smaller. This can be justified by the fact that

the larger the number of VMs is (assuming that all these VMs are trustworthy), the

80

larger the resources available to serve tasks would be. Nonetheless, by improving

the performance in low-density VMs, our solution would aid cloud providers with

decreasing their overall costs through decreasing their need to deploy more VMs.

10 15 20 25 30 35 40 45 50
Number of VMs

500

1000

1500

2000

2500

3000

3500

4000

M
ak

es
pa

n(
se

c)

SJF
RR
Improved PSO
Proposed Alg.

Figure 4.4: Task makespan: Our solution significantly decreases the tasks makespan
compared to the three considered solutions

In Fig. 4.5, we study the monetary cost entailed by the different studied

solutions for the cloud providers, while varying the number of deployed VMs from

10 to 50. For this experiment, the number of tasks has been fixed to 7, 884 and

assume that the considered VMs are all trustworthy. By observing the figure, we

notice that our solution considerably help providers reduce their costs compared to

the other solutions. The reason for this observation is that our solution decreases the

81

total makespan of the tasks as shown in Fig. 4.4.

10 15 20 25 30 35 40 45 50
Number of VMs

0

50

100

150

200

250

300

350
C

os
t($

)
SJF
RR
Improved PSO
Proposed Alg.

Figure 4.5: Task costs: Our solution is able to decrease the cost of task execution
in comparison with the three considered models

In Fig. 4.6, we measure the time spent by the tasks waiting in the queue to

be assigned to VMs. Like the previous experiments, we vary the number of deployed

VMs from 10 to 50, while fixing the number of tasks to 7, 884 and assuming that

all the considered VMs are all trustworthy. The main observation that can be drawn

from this figure is that increasing the number of deployed VMs leads to a considerable

decrease in the waiting times. While this result is expected, the objective of this figure

is to show that even for a small number of deployed VMs and a quite large number

of tasks (i.e, 7, 884), the waiting time entailed by our model is still acceptable. For

82

instance, the total waiting time for 7, 884 to be assigned to 10 VMs is 18 seconds.

10 15 20 25 30 35 40 45 50
Number of VMs

0

2

4

6

8

10

12

14

16

18
W

ai
tin

g
Ti

m
e(

se
c)

Figure 4.6: Waiting time: The waiting time of tasks prior to being assigned to VMs
significantly decreases with the increase in the number of deployed VMs

In Fig. 4.7, we measure the makespan of the tasks while varying the percentage

of untrusted VMs from 10% to 50%. For this experiment, we fix the number of

deployed VMs to 50 and the number of tasks to 7, 884. We notice from this figure

that starting from 10% of untrusted VMs, our solution can considerably reduce the

makespan compared to the other approaches. The reason behind this improvement

is that in our solution, we employ a two-step trust establishment mechanism and

MCMC Gibbs Sampler-based aggregation technique to derive the trust value of each

VM and rank them based on their degree of trustworthiness. This is important to

83

avoid assigning tasks to untrusted VMs whose poor performance might affect the

overall timespan and success chances of the task execution process. In other words,

our scheduling technique maps the tasks to the VMs that enjoy high trust values

(i.e., highly performing VMs) to ensure minimal makespan and cost. This means

that untrusted VMs would have quite poor chances of being assigned any tasks. On

the other hand, despite the effectiveness of the other compared approaches, these

approaches ignore the trustworthiness of the VMs in the scheduling process, thus

increasing the chances of tasks being assigned to poorly performing VMs.

10 15 20 25 30 35 40 45 50
Percentage of Untrusted VMs (%)

500

1000

1500

2000

M
ak

es
pa

n(
se

c)

SJF
RR
Improved PSO
Proposed Alg.

Figure 4.7: Task makespan: Our solution significantly decreases the tasks makespan
compared to the three considered solutions in the presence of untrusted VMs

In Fig. 4.8, we quantify the monetary cost of the tasks at the side of the

84

providers, while varying the percentage of untrusted VMs from 10% to 50%. For

this experiment, like the previous experiments we fix the number of deployed VMs

to 50 and the number of tasks to 7, 884. The figure reveals that our solution aids

providers in reducing their monetary costs compared to the other approaches in the

presence of untrusted VMs. This can be justified by the fact that, according to Fig.

4.7, our trust-based approach could decrease the makespan of the task scheduling

and execution processes, in the presence of untrusted VMs. This, in turn, results in

reducing the amount of resources spent on serving the tasks, which leads to decreasing

the monetary costs of the providers.

10 20 30 40 50
Percentage of Untrusted VMs(%)

0

20

40

60

80

100

120

140

160

180

C
os

t($
)

SJF
RR
Improved PSO
Proposed Alg.

Figure 4.8: Task cost: Our solution significantly decreases the costs of tasks
compared to the three considered solutions in the presence of untrusted VMs

85

In Fig. 4.9, we study the runtime of the four compared solutions, while

varying the number of VMs from 10 to 50. For this experiment, we fix the

number of tasks to 7, 884. Execution time refers to the time needed by the

whole set of algorithms that make up the solution to execute. According to

the figure, our approach enjoys lower runtime than the other solutions. The

reason is that, although our solution consists of many phases (i.e., initial trust

computation, VMs monitoring, MCMC-based trust aggregation, K-means-based

task cost clustering, percentile-based task requirement clustering, multi-criteria task

priority determination, and trust-based task scheduling), adopting a trust-based

scheduling approach reduces the chances of tasks failing on some untrusted VMs

and their rescheduling. Moreover, the VMs’ trust-based clustering and tasks priority

determination helps our solution improve the mapping between tasks’ resource

requirements and VMs’ resource availabilities. On the other hand, the SJF solution,

for example, focuses only on the size of the tasks to determine the order of their

execution. This has the limitation of increasing the probability of some tasks being

allocated to untrusted VMs, thus raising the need for rescheduling those tasks in

cases of VM failures. By carefully observing Fig. 4.9, also reveals that the improved

PSO exhibits the highest runtime amongst the other solutions. The reason is that

the improved PSO needs to go through many iterations in order to converge to the

desired solution that minimizes the scheduling process makespan.

86

15 20 25 30 35 40 45 50
Number of VMs

800

1000

1200

1400

1600

1800
A

lg
. E

xe
cu

tio
n

Ti
m

e(
m

ill
is

ec
nd

)

SJF
RR
Improved PSO
Proposed Alg.

Figure 4.9: Execution time: The execution time of our solution is lower than that
of the three other compared approaches.

In Fig. 4.10, we provide an in-depth breakdown of our scheduling solution by

showing, for each VM, the number of assigned tasks and the makespan of the process

of serving these tasks, under a varying percentage of untrusted VMs. In this figure,

the red plots refer to the untrusted VMs, while the blue plots refer to the trusted

ones. The main observation that can be drawn from this figure is that our solution

assigns only a small number of tasks to the untrusted VMs compared to the trusted

ones (for example, in Fig. 4.10a, the highest number of tasks that were assigned to

an untrusted VM was 10 out of 7, 884). The second important observation is that

the trusted VMs (in blue) entail small makespan even when assigned a large number

87

of tasks, compared to the untrusted ones that are assigned a negligible number of

tasks. For example, we can notice from Fig. 4.10a that, among the trusted VMs,

the makespan of the VM that was assigned the largest number of tasks (≈ 490 tasks)

has been ≈ 22s. On the other hand, among the untrusted VMs, the makespan of the

VM that was assigned the largest number of tasks (≈ 15 tasks) has been ≈ 35s. This

shows that even when assigned a considerably smaller number of tasks, untrusted

VMs entail higher makespans compared to the trusted VMs that serve larger pools of

tasks.

88

(a) 10% of untrusted VM (b) 20% of untrusted VM

(c) 30% of untrusted VM (d) 40% of untrusted VM

(e) 50% of untrusted VM

Figure 4.10: Clustering-based costs

In Fig. 4.11, we study the total makespan while varying both the number of

tasks and number of deployed VMs. We notice the total makespan keeps increasing

89

with the increase in the number of tasks. The reason is that the larger the number

of tasks that need to be served is, the more the time it would take to serve them,

for a fixed number of VMs. However, by increasing the number of deployed VMs,

we can reduce the makespan needed to serve an increasing number of tasks. Under

this scenario, our solution shows the ability to reduce the makespan compared to the

other solutions, while showing a greater scalability to the increase in both the number

of tasks and number of VMs. This is particularly useful in production environments

that require serving huge numbers of tasks.

(a) Number of VMs = 10 (b) Number of VMs = 35

(c) Number of VMs = 50

Figure 4.11: Task makespan: We study in this figure the impact of varying both
the number of tasks and number of VMs on the overall makespan of the tasks

90

4.4.3 Conclusion

In this chapter, we investigated the challenges of achieving high-performance

and trustworthy big data task scheduling in cloud computing environments. In

particular, we proposed BigTrustScheduling, a trust-based scheduling approach that

is particularly useful for big data tasks. The main idea is to derive a trust value for

each VM based on its underlying performance, and then prioritize tasks based on

their resource requirements and associated prices.

The proposed scheduling solution intelligently maps the tasks to the appropriate

VMs in such a way that minimizes the makespan and cost of tasks execution. While

this trust-based approach is important to improve the QoS of the big data analytics

process, more challenges have to be taken into consideration to further optimize

the big data task execution in cloud environments. Specifically, with the increasing

number of big data tasks received by cloud providers, there should be an effective and

efficient approach that would help providers automate the scheduling process so as to

reduce the manual intervention, which often results in degraded performance and is

error-prone. Therefore, the results of this chapter are used in Chapter 5 and Chapter

6 for the purpose of building an automated big data scheduling approach to be used

toward the accomplishments of Objective 2 and Objective 3 discussed in Chapter 1.

91

Chapter 5

Deep and Reinforcement

Learning for Automated Task

Scheduling in Large-Scale

Cloud Computing Systems

Cloud computing is undeniably becoming the main computing and storage platform

for today’s major workloads. From IoT and Industry workloads to big data analytics

and decision-making jobs, cloud systems daily receive a massive number of tasks that

need to be simultaneously and efficiently mapped onto the cloud resources. Therefore,

deriving an appropriate task scheduling mechanism that can both minimize tasks’

execution delay and cloud resources utilization is of prime importance. Recently,

the concept of cloud automation has emerged to reduce the manual intervention

and improve the resource management in large-scale cloud computing workloads

[8]. In this chapter, we capitalize on this concept and propose four deep and

92

reinforcement learning-based scheduling approaches to automate the process of

scheduling large-scale workloads onto cloud computing resources, while reducing

both the resource consumption and task waiting time. These used approaches are:

reinforcement learning (RL), deep Q networks (DQN), recurrent neural network long

short-term memory (RNN-LSTM) and deep reinforcement learning combined with

LSTM (DRL-LSTM).

5.1 An Overview of The Proposed Approach

5.1.1 Solution Overview

The topic of task scheduling in cloud computing environments has been extensively

addressed in the literature. The current scheduling approaches can be categorized into

two main classes, i.e., traditional approaches and intelligent approaches. Traditional

approaches focus on tuning and extending conventional scheduling approaches such

as First-In-First-Out (FIFO), Shortest Job First (SJF), Round-Robin (RR), Min-Min

and Max-Min [13,24,37] to fit the cloud computing settings. The main limitation of the

traditional approaches is that they can support only a limited number of parameters

(e.g., makespan) to optimize. This makes them unsuitable for the cloud computing

environment in which many parameters such as task Makespan and CPU, memory,

and bandwidth costs need to be simultaneously optimized.

Intelligent approaches, on the other hand, [7, 10, 38, 40, 80, 86, 100, 116, 133]

capitalize on artificial intelligence techniques such as fuzzy logic, Particle Swarm

Optimization (PSO) and Genetic Algorithm (GA) to devise more solid scheduling

techniques optimizing several parameters simultaneously. However, similar to the

traditional approaches, the intelligent scheduling approaches operate in an offline

fashion through attempting to optimize a series of parameters upon the receipt

93

of a certain task. This causes high execution time, which makes it inefficient for

delay-critical tasks such as Internet of Things (IoT) and big data analytics tasks.

Recently, many attempts [6,64,81,92,101,113,114] have been made to leverage

the booming advancements in the field of machine learning, especially deep learning,

to automate the resource management process in the cloud system. These approaches

are mainly based on the idea of examining historical resource data from VMs in order

to predict the future workload. The objective is to improve the resource management

and avoid the under and over-provisioning cases. In this chapter, we investigate

the application of four deep and reinforcement learning approaches to automate the

process of scheduling tasks over the cloud.

5.1.2 Reinforcement Learning (RL)

The main idea of RL [105] is to teach a certain agent how to behave and adapt to the

changes that take place in its environment. Specifically, we employ the Q-learning

algorithm to learn an optimized scheduling policy by considering the future decisions

and evaluating the feedback from the cloud environment. Let E = {e1, e3, . . . , en} be

a set of tasks submitted by a number of users and V = {v1, v2, · · · , vm} be a set of

VMs. Moreover, let st represent the cloud scheduler state at time moment t in the

state space S and at be an action from the action space A at time moment t with

probability P(s̀|s, a) = P [st+1 = s̀|st = s, at = a], where ∑s̀∈S P(s̀|s, a) = 1 [67]. The

cloud scheduler policy in our model π(a|s), which maps states to actions, assigns

every task ei to a VM vj. The immediate reward of taking action at in state st is

rt. The objective of the cloud scheduler is to find an optimum scheduling policy that

minimizes the cumulative reward value (i.e., cost) for all the considered VMs and

tasks. The states, actions, and reward function of our RL solution are as follows.

94

• State Space

At each time t, the state st represents the current scheduling of the tasks on

the VMs and each VM vj is described in terms of the available resources (CPU,

RAM, bandwidth, and disk storage). A task ei can be assigned to any VM vj

which meets the resource constraints that will be defined latter in this section.

• Action Space

The action at represents the scheduling action at time t of all the considered

tasks on the available VMs. For each task, the action can be presented as (0

or 1), which means the cloud scheduler can assign a task ei to a VM vj or not.

Technically speaking, when a task ei is assigned to a VM vj, the action space

w.r.t that task is presented as a vector of size m, e.g.: (0, 1, 0, 0, . . . , 0), which

indicates the task ei is assigned to the second VM.

• Reward

The reward function is used to represent the task scheduling process efficiency.

If task ei is assigned to VM vj, we define the execution cost ζi,j as an immediate

individual reward. The overall reward at time t rt is the sum of all the costs. The

individual reward is defined in terms of the amounts of CPU, RAM, bandwidth,

and disk storage as follows:

ζi,j = (ψi,j + ϕi,j)× Pj (5.1)

where ϕi,j is the waiting time for ei to be assigned to vj, Pj is the unit price of

each virtual machine vj, and ψi,j is the execution time of ei on vj.

In our optimization scheduling model, we employ the Q-learning method to evaluate

the feedback from the cloud system environment to optimize future decision-making.

95

After collecting each reward, the mean Q-value of an action a on state s following the

policy π is denoted Qπ(s, a) and the optimal value function is:

Q∗(s, a) = minπQπ(s, a) (5.2)

This optimal value function can be nested within the Bellman optimality equation as

follows:

Q∗(s, a) =
∑
s̀

Υ(s̀|s, a)[r + γmin
à
Q∗(s̀, à)] (5.3)

where γ is the discount factor to what degree the future reward is affected by the past

actions, and Υ denotes the transition probability of going from the current state s to

the next state s̀ under action a. We assume that the resource demands of each task is

known upon arrival and for a task ei to be assigned to VM vj the following conditions

should be met:

KCPU
i ≤ CPU t

j ;KRAM
i ≤ RAM t

j ;KBW
i ≤ BW t

j ;KDS
i ≤ DStj (5.4)

where KCPU
i , KRAM

i , KBW
i , and KDS

i are the task CPU, RAM, bandwidth, and

disk-storage requirements respectively, and CPU t
j , RAM

t
j , BW

t
j , and DStj are

the current amounts of available VM CPU, RAM, bandwidth, and disk-storage

specification respectively. After that, the cloud scheduler evaluates Qπ(s, a) for the

current policy π. Then, the policy is updated as follows,

π̀ = argmin
a
Qπ(s, a) (5.5)

Finally, the main objective of this model is to determine the optimal policy π∗ leading

96

to minimize the reward of any state s:

min
π∗

E[Qπ∗(s, a)], ∀s ∈ S (5.6)

5.1.3 Deep Q Networks (DQN)

The goal of deep reinforcement learning (DRL) is to learn the optimal policy

that maximizes the total discounted reward through a process of exploration and

exploitation. The discounted reward is considered since the aim is to maximize the

future reward in the long run, rather than the immediate next reward. In this chapter,

we use DQN, a specific type of DRL that combines Q-learning and deep learning.

In our problem, If we memorize all the Q-values in the Q-table, the imaginable

state may be more than ten thousands, and the matrix Q(s, a) would be very large.

Therefore, we use a deep neural network (DNN) as approximation to estimate Q(s, a)

instead of computing Q-value for each state action pair (s, a). This is important

to model large-scale scheduling scenarios that are characterized by a large number

of actions-state pairs. In our training process, the DRL cloud scheduler selects a

random scheduling action (i.e., assigning tasks ei to VMs vj) with a high probability to

explore the effect of the unknown scheduling alternatives and obtain a better strategy.

The cloud scheduler increases the probability of choosing the action with the highest

Q value during the training process, to minimize the expected cumulative reward

(execution cost), which employs the Bellman equation (Equation 5.3). Technically

speaking, the cloud scheduler chooses to schedule one or more waiting tasks at each

time moment t subject to the conditions in Equation 5.4. The optimal Q − value

function indicates that at time t, each scheduling policy π selects a valid VM from

the set V to execute each task from the set E so as to minimize the overall execution

cost. As in our RL model (Section 5.1.2), the cloud scheduler chooses an action a ∈ A

97

on a state s ∈ S depending on the behavioral policy π(a|s). The goal of our model

is to optimize π∗ that minimizes the expected cumulative reward (i.e., cost), where

the immediate reward at time t of taking action at in state st is rt. We obtain the

actual Q-value of action a, by using the state s as input of the online network, and

s̀ as input to the target network to obtain the minimum Q-value of all actions in the

target network. We use the Mean Square Error (MSE) to define the loss function and

the Bellman equation (Equation 5.3) to minimize the loss function Lu(βu) as follows:

Lu(βu) = E(s,a,r,s̀)[(r + γmin
à
Q(s̀, à|β̀u)−Q(s, a|βu))2] (5.7)

where β represents the parameters of the online network in the uth iteration, β̀

represents the parameters of the target network in the uth iteration [74], and E(s,a,r,s̀)[.]

denotes the expected value of the next reward given the current state s and action a,

together with the next state s̀.

5.1.4 RNN-LSTM

Long short-term memory (LSTM) is a recurrent neural network (RNN) equipped with

an input gate, output gate and a forget gate as shown in Fig. 5.1 along with three

cells: state, output and input. The network structure of the LSTM units that we

integrate into our DRL approach is depicted in Fig. 5.2. Let p denote the input gate,

o denote the output gate and f denote the forget gate. Moreover, we denote by C

the cell state, h the cell output, and by x the cell input. The equations that are used

to compute the LSTM gates and states are given as follows:

ft = σ(Wf .[ht−1, xt] + bf) (5.8)

98

pt = σ(Wp.[ht−1, xt] + bp) (5.9)

ot = σ(Wo.[ht−1, xt] + bo) (5.10)

where W are the weights for each of the gates, the b terms denote bias vectors, and σ

is the logistic sigmoid function.

C̃t = tanh(WC .[ht−1, xt] + bC) (5.11)

where C̃ is the updated cell state and tanh is the hyperbolic tangent function. Given

the value of the input gate activation pt, the forget gate activation ft and the candidate

state value C̃t, we can compute Ct, the memory cells’ new state at time t as follows:

Ct = ft × Ct−1 + pt × C̃t (5.12)

ht = ot × tanhCt (5.13)

The proposed RNN-LSTM prediction method has three parts: data

pre-processing, model training, and model prediction. First, the collected data, i.e.,

(CPU t
j , RAM

t
j , BW

t
j , and DStj) are re-sampled to match the time moments. Second,

the feature vectors of each resource type data are extracted. By training the LSTM

recurrent neural network, the error between output ot and real value is continuously

reduced. Moreover, the LSTM unit can store long-term information and is suitable

for long-term training. In our model, we focus on learning the output of the next

state given the current state of the model. Thus, the model represents the probability

distribution of sequences in the most general form unlike other models that assume

99

tanh Ϭ Ϭ Ϭ

X X X

+ tanh

𝒔𝒕

output
gate

forget
gate

input
gate

input

Figure 5.1: Architecture of an LSTM cell

independence between outputs at different time steps, given latent variable states.

We use two neural network layers in our model. At each time moment t, the first

LSTM-based network layer is employed for cost prediction, where the outputs are all

the VMs predicted states based on the history information. The predicted states are

then used as inputs to the second layer. Next, with the output of the second layer, the

cloud scheduler assigns the tasks to the VMs. Thereafter, the selected VMs execute

 LSTM Cell LSTM Cell LSTM Cell

ℎ𝑡−1 ℎ𝑡 ℎ𝑡+1

𝐶𝑡−1
𝐶𝑡

ℎ𝑡−1 ℎ𝑡

𝑋𝑡−1 𝑋𝑡 𝑋𝑡+1

Figure 5.2: Reinforcement learning with LSTM (RL-LSTM)

100

the policy and transmit their data to the cloud scheduler, along with their current true

states, which will be stored into the history information for future prediction usage.

The cloud scheduler finally receives rewards. All the VMs complete there tasks and

store the cost and the resources usage for future exploitation. We repeat this process

in the next time moments, until the process converges when all the tasks get assigned

with a minimum cost.

5.2 Experiments and Empirical Analysis

5.2.1 Dataset

To carry out our experiments, we employ the Google cluster dataset, which contains

data on the resource requirements and availability for both tasks and VMs. The

Google cluster consists of many machines that are connected via a high-speed network.

The dataset includes 670, 000 traces, where approximately 40 million task events

across over 12000 machines for 30 days have been recorded [84, 118]. The dataset

consists of the following features: start time, end time, job ID, machine ID, task index,

CPU rate, maximum CPU rate, assigned memory usage, maximum memory usage,

canonical memory usage, unmapped page cache, total page cache, disk I/O time, local

disk space usage, maximum disk I/O time, cycles per instruction, aggregation type,

memory accesses per instruction, sample portion, and sampled CPU usage. In the

training part of the LSTM, we first initialize the weights of both the input and output

layers as a normal distribution whose mean is 0 and standard deviation is 1. The bias

for both layers is set to be 0.1. The Multi-Layer Perceptron (MLP) structure consists

of three hidden layers and one LSTM layer. The three hidden layers have 512, 256,

and 128 output dimensions respectively. In addition, a Rectified Linear Unit (ReLU)

is used for the activation function. The output of the MLP is the input to the LSTM.

101

5.2.2 Validation Metrics

In the first set of experiments, we aim to study and compare the training and test

accuracy of the different proposed deep and reinforcement learning-based scheduling

approaches (i.e., RL, DQN, RNN-LSTM, and DRL-LSTM). In both cases, the

accuracy means the accuracy of predicting the appropriate VMs to host each incoming

task. It is computed with regard to a ground Truth.

For the reinforcement and deep reinforcement learning, our scheduling agent

performs actions in the MDP environment populated by the dataset and learns from

the obtained reward at each state to select the next one using our policy function.

The training is also done on the data generated by the agent. At each state, the agent

tries to find the best action that minimizes the reward. The actions that the agent

made at the corresponding states in one learning run, will become part of the training

dataset for the next run. For the testing, the MDP is populated by new data.

We train the scheduling policy in an episodic setting. In each episode, we

consider a varying number of VMs (from 10 to 100), and a fixed number of tasks

(78, 597). The tasks arrive and are scheduled based on the policy, as described in

Section 5.1.2. The episode terminates when all the tasks are executed. During the

training, we simulate fixed number of episodes (100) for each VM set to explore the

probabilistic space of possible actions using the current policy, and use the resulting

data to improve the policy for all the tasks. Technically speaking, we record the state,

action, and reward information for each episode, and use these values to compute the

cumulative reward of each episode. We simulate a large number of iterations (1000

iterations) and then compute the average reward value. The minimum reward value

(cost) from the ground truth corresponds to the full accuracy. The other accuracy

values are computed subsequently. For the testing, 20% of new data (from the dataset)

is used. During testing, the agent follows the learned policy by selecting the action

102

with lowest reward value at each step.

In the second set of experiments, we measure the execution cost entailed by

the different scheduling approaches in terms of CPU and RAM spent on running the

tasks. This perspective is important for both cloud providers and customers in the

sense that it enables them to pick the scheduling approach that reduces their overall

monetary costs. In the third series of experiments, we compare the best identified

candidate with three other scheduling approaches, namely, SJF, RR, and improved

PSO.

It is worth mentioning that in some cases, variable values of the accuracy and

resource utilization metrics are obtained at some simulation rounds. To deal with

this problem, We made sure to run each single simulation for a large number of

iterations (1000 iterations) and then average over these iterations to get a stable and

representative value for each corresponding metric. Our program is written in the

python language, version 3, RapidMiner Studio version 9.3, and performed in a 64-bit

Windows 7 environment on a machine equipped with an Intel Core i7-6700 CPU 3.40

GHz Processor and 16 GB RAM.

5.2.3 Experimental Results

In Fig.5.3, we measure the training accuracy of the different studied approaches. The

main observation that can be drawn from this figure is that increasing the number of

deployed VMs leads to a modest decrease in the accuracy. This can be justified by the

fact that having a larger number of VMs to select from might increase the probability

of mistakenly assigning tasks to some inappropriate VMs. The second observation that

can be drawn is that the DRL-LSTM yields the highest training accuracy (between

94.2% and 96.2%). DQN yields the second highest training accuracy (between 91%

and 96%) followed by RNN-LSTM (between 88% and 96%) and finally RL (between

103

82.1% and 92%).

Figure 5.3: Training accuracy of machine learning algorithm

In Fig. 5.4, we measure the test accuracy of our four approaches. This metric

is of prime importance since it can inform us about the accuracy of the different

approaches on data examples they have not seen yet, thus giving an indication about

the overfitting rate of the machine learning approaches. Again, DRL-LSTM yields the

highest test accuracy (between 89.8% and 95.1%). However, different from the case

of training accuracy, DQN and RNN-LSTM yield similar test accuracy (between 86%

and 92%). This indicates that DQN (which recorded higher training accuracy than

RNN-LTSM) was overfitting the training data. Finally, as is the case for the training

accuracy, RL yields the least test accuracy varying from 67% to 86%.

104

Figure 5.4: Test accuracy of machine learning algorithm

In Fig. 5.5, we present a detailed study on the total utilization cost entailed by

our solutions. In this series of experiments, we vary the number of deployed VMs from

10 to 50, and vary the number of tasks from 50, 000 to 1 million. The objective is to

study the scalability of the different solutions w.r.t the variation in the number of VMs

and number of tasks. We notice from the figure that increasing the number of VMs

leads to an increase in the utilization cost for the different approaches. This is because

deploying more VMs leads to consuming higher amounts of resources. Moreover, we

notice that DRL-LSTM shows a better scalability compared to the other solutions,

followed by DQN and RNN-LSTM interchangeably and then finally RL.

105

(10 VMs) (20 VMs) (30 VMs)

(40 VMs) (50 VMs)

Figure 5.5: Total utilization cost: We study in this figure the the impact of varying
both the number of tasks and number of VMs on the overall usage cost

We provide in Table 5.1 the confusion matrix of the DRL-LSTM approach, which

scored the best amongst the other reinforcement and deep learning solutions in terms

of training and test accuracy. In the matrix, for each underlying VM, the rows refer

to the optimal VM that the tasks should ideally be assigned to. The columns refer

to the VMs chosen (predicted) by DRL-LSTM to receive the tasks. For example, by

examining the matrix, we notice that out of the total number of tasks that should be

scheduled on VM1, DRL-LSTM has actually scheduled 94.46% (second column and

second row) of these tasks on that VM, yielding an insignificant error rate of 5.54%

106

(last column and second row).

Table 5.1: Confusion matrix

VM0 VM1 VM2 VM3 VM4 VM5 VM6 VM7 VM8 VM9 VM10 Error Rate
VM0 100% 0 0 0 0 0 0 0 0 0 0 0
VM1 0 94.46% 0.4% 0 1.72% 3.42% 0 0 0 0 0 5.54%
VM2 0 0.05% 99.95% 0 0 0 0 0 0 0 0 0.05%
VM3 0 0 0 99.92% 0 0 0.08% 0 0 0 0 0.8%
VM4 0 0 0 0 94.08% 0 0 0 0.79% 0 5.13% 5.3%
VM5 0 0 0 0 0.39% 95.45% 0 0 0 4.16% 0 4.77%
VM6 0 0 11.1% 0.77% 0 1.2% 86.93% 0 0 0 0 13%
VM7 0 0 0 0 0 0 0 100% 0 0 0 0
VM8 0.07% 0 0 0 0 0 0 0 99.03% 0 0 0.97%
VM9 0 0 0 0 0 0 0 0 0 100% 0 0
VM10 0 0 1.67% 0 0 0 0 3.07% 0 0 95.26% 4.7%

107

0 1 2 3 4 5 6 7 8 9 10
Number of Tasks 104

0

10

20

30

40

50

60

70

80

90

100
A

ve
ra

ge
 C

P
U

 U
sa

ge
 (%

)

SJF
RR
PSO
RL
RNN-LSTM
DQN
DRL-LSTM

Figure 5.6: Average CPU usage

In the next set of experiments, we are interested in comparing our scheduling

solutions with the traditional scheduling approaches, namely SJF, RR and PSO.

Specifically, in Fig. 5.6, Fig. 5.7, Fig. 5.8 and Fig. 5.9, we measure the average CPU

and RAM utilization entailed on the VMs by our solutions as well as the traditional

scheduling approaches. In these figures, we fix the number of VMs to 100 and vary

the number of tasks up to 100, 000. We observe that increasing the number of tasks

leads to increasing the average CPU and RAM utilization. The second observation

that can be taken from Fig. 5.6 and Fig. 5.8 is that our deep and reinforcement

108

learning-based scheduling solutions reduce the CPU and RAM consumption compared

to the traditional scheduling proposals. The reason is that our learning-based solutions

consist of a learning component that intelligently predicts the appropriate VM for each

incoming task while considering a multitude of metrics at a time.

Time(min)

C
P

U
 U

sa
ge

(M
hz

)

DRL-LSTM PSO RR SJF

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
0

0.5

1

1.5

2

2.5

Figure 5.7: CPU usage (Mhz)

On the other hand, traditional scheduling approaches consider only a small set

of metrics (e.g., waiting time, etc.) when assigning tasks to VMs, which degrades

the quality of their decisions. Moreover, DRL-LSTM minimizes further the CPU and

RAM utilization compared to the rest of our solutions. This outcome is a natural

result of the training and testing accuracy results explained in Fig. 5.3 and Fig. 5.4.

109

0 1 2 3 4 5 6 7 8 9 10
Number of Tasks 104

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

 R
A

M
 U

sa
ge

 (%
)

SJF
RR
PSO
RL
RNN-LSTM
DQN
DRL-LSTM

Figure 5.8: Average RAM usage

Finally, in Fig. 5.10 and Fig. 5.11, we provide a detailed description of the

CPU and RAM monetary costs entailed by DRL-LSTM (the best approach identified

so far) compared to the traditional scheduling approaches (i.e., PSO, RR and SJF).

The experiments have been conducted on a sample of 11 VMs and a number of tasks

fixed to 78, 597. For instance, we can notice from Fig. 5.10 that the CPU cost varies

from 0 to $6.5 in the case of DRL-LSTM (Fig. 5.10a), from 0 to $10 in the case of

RR (Fig. 5.10c) and improved PSO (Fig. 5.10b) and from 0 to $20 in the case of SJF

(Fig. 5.10d).

110

Time(min)

R
A

M
 U

sa
ge

(K
B

)

DRL-LSTM PSO RR SJF

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Figure 5.9: RAM usage (KB)

Furthermore, by examining Fig. 5.11, we notice that the RAM cost varies from 0

to $7 in the case of DRL-LSTM (Fig. 5.11a), from 0 to $15 in the case of the improved

PSO (Fig. 5.11b), from 0 to $20 in the case of RR (Fig. 5.11c), and from 0 to $25 in the

case of SJF (Fig. 5.11d). Overall, we can conclude the DRL-LSTM solution achieves

the best results in terms of training and test accuracy, total utilization cost, and CPU

and RAM utilization compared to both the other three learning-based approaches and

the traditional scheduling solutions.

111

(a) CPU usage cost by using DRL-LSTM (b) CPU usage cost by using PSO

(c) CPU usage cost by using RR (d) CPU usage cost by using SJF

Figure 5.10: CPU usage cost: we give in this figure a detailed breakdown of the
CPU usage cost of our DRL-LSTM approach compared to PSO, RR, and SJF

112

(a) RAM usage cost by using DRL-LSTM (b) RAM usage cost by using PSO

(c) RAM usage cost by using RR (d) RAM usage cost by using SJF

Figure 5.11: RAM usage cost: we give in this figure a detailed breakdown of the
RAM usage cost of our DRL-LSTM approach compared to PSO, RR, and SJF

5.3 Conclusion

In this chapter, we proposed four automated task scheduling approaches in cloud

computing environments using deep and reinforcement learning. The comparison

of the results of these approaches revealed that the most efficient approach is the

one that combines deep reinforcement learning with LSTM to accurately predict the

appropriate VMs that should host each incoming task. Experiments conducted using

the dataset from GCP pricing and Google cluster resource and task requirements

113

revealed that this solution minimizes the CPU utilization cost up to 67% compared

to the Shortest Job First (SJF), up to 35% compared to both the Round Robin (RR)

and improved Particle Swarm Optimization (PSO) approaches. Besides, our solution

reduces the RAM utilization cost by 72% compared to the SJF, by 65% compared to

the RR, and by 31% compared to the improved PSO.

Although very promising results are achieved, the work has still some limitations.

The first issue to be considered is the high computation time of our approach. To

address this problem, we investigate the application of federated learning techniques

in the next chapter, which help reduce the time of learning the model. Moreover, the

proposed solution does not take into account the reliability of the selected IoT devices,

which increases the risk of assigning the tasks to malicious or poorly performing nodes.

To address this problem, in the next chapter, we include the performance and trust

metrics of the IoT devices in the reward function of the different learning models to

better learn the behavior of these devices and avoid selecting the bad ones.

114

Chapter 6

Trust-driven Reinforcement

Selection Strategy for

Federated Learning on IoT

Devices

Federated learning is a distributed machine learning approach that enables a large

number of edge/end devices to perform on-device training for a single machine learning

model, without having to share their own raw data. We consider in this chapter a

federated learning scenario wherein the local training is carried out on IoT devices and

the global aggregation is done at the level of an edge server. One essential challenge

in this emerging approach is IoT selection (also called scheduling), i.e., how to select

the IoT devices to participate in the distributed training process [91]. The existing

approaches suggest to base the scheduling decision on the resource characteristics of

the devices to guarantee that the selected devices would have enough resources to

115

carry out the training. In this chapter, we argue that trust should be an integral part

of the decision-making process and therefore design a trust establishment mechanism

between the edge server and IoT devices. The trust mechanism aims to detect those

IoT devices that over-utilize or under-utilize their resources during the local training.

Thereafter, we introduce DDQN-Trust, a Double Deep Q Learning-based selection

algorithm that takes into account the trust scores and energy levels of the IoT devices

to make appropriate scheduling decisions. Finally, we integrate our solution into four

federated learning aggregation approaches, namely, FedAvg, FedProx, FedShare and

FedSGD.

6.1 Trust-Aware IoT Scheduling for Federated

Learning

6.1.1 Trust Establishment Mechanism

In Algorithm 6.1, we propose a statistical trust establishment method for IoT devices

based on monitoring the CPU and RAM consumption of the devices to identify the

ones that exhibit some abnormal resource consumption behavior, and the devices

whose consumption goes down the normal minimal habitual consumption (e.g., failed

IoTs). This is important to detect those devices that do not dedicate enough resources

to serve the FL tasks as well as those that exhibit some overly high consumption which

could be an indication of some malicious behavior. For example, some malicious

devices might optimize for a malicious objective that aims to generate targeted

misclassification. Such devices are expected to spend more resources than the regular

devices that only try to optimize for the underlying federated task. Note that, every

edge server monitors IoT devices that are located within its range. Thus, Algorithm

116

6.1 is executed by each edge server. The proposed method capitalizes on the modified

Z-score statistical technique. Modified Z-score is a standardized score that measures

outlier strength, i.e., how much a particular score differs from the typical score by

checking the dependability of a particular score on a certain typical score. This

method shows a greater robustness to outliers compared to some other statistical

techniques (e.g, traditional Z-Score, Tukey method, etc.) since it capitalizes on the

median x̄ instead of the mean µ. In our algorithm, this method approximates the

difference of a certain score from the median using the median absolute deviation

MADz
j (t) of a metric z (e.g., CPU, RAM) consumed by a device j during a time

window [t− δ, t] (Algorithm 6.1 line 6).

More specifically, the modified Z-score αzj (i, t) is calculated through dividing

the difference between the consumption xzj(i) of the device j in terms of the resource

metric z at time moment i ∈ [t− δ, t] and the median consumption of that device in

terms of that metric within the time interval [t−δ, t] by the median absolute deviation

of the metric z (Algorithm 6.1 line 20). The constant % = 0.6745 is needed because

E(MADz
j (t)) = 0.6745σ for a large number n of samples. Observations will be labeled

outliers when αzj (i, t) ≥ ϕ, where ϕ = 3.5 as argued in [50]. This limit quantifies the

patterns of maximal and minimal habitual utilization of each IoT device within a

certain time interval. Thus, any future consumption that exceeds or falls under this

limit is deemed to be unusual.

117

Algorithm 6.1 IoT Trust
Inputs:

1: j: an IoT being monitored by the edge computing server

2: M = {CPU, memory}: the set of IoT ’s metrics to be analyzed by the edge server

3: δ: size of time window after which the algorithm is to be repeated

Variables:

4: Mz
j (t): a table recording xz

j (i) (i = t− δ, t− δ+ 1, . . . , t), the amounts of z ∈ M consumed by j during the time interval [t− δ, t]

5: x̄z
j (t): the median of Mz

j (t) (median consumption of z ∈ M by j during the time interval [t− δ, t])

6: MADz
j (t): the median absolute deviation of Mz

j (t), i.e., MADz
j (t) = median

{∣∣xz
j (i)− x̄z

j (t)
∣∣} for all t− δ ≤ i ≤ t

7: αz
j (i, t): the modified Z-score of xz

j (i) ∈ Mz
j (t)

8: AbnormalMetricsz
j : sum of unusual consumption of z ∈ M by j

9: CountAbnormalMetricsz
j : a counter enumerating the occurrence of unusual consumption of z ∈ M by j

10: AvgAbnormalMetricsz
j : j’s average unusual consumption of z ∈ M

11: PropAbnormalMetricsz
j : j’s unusual consumption of z ∈ M proportionally to the upper and lower consumption limits of this z

12: AbnormalMetricsj : the number of abnormal usages of all the metrics by j.

Output:

13: Γj : trust value of j

14: Initialize AbnormalMetricsj to 0

15: for each metric z ∈ M do

16: Initialize AbnormalMetricsz
j and CountAbnormalMetricsz

j to 0

17: Initialize AvgAbnormalMetricsz
j and PropAbnormalMetricsz

j to 0

18: Compute the median x̄z
j (t) of Mz

j (t)

19: Compute the MADz
j (t) of Mz

j (t)

20: Compute αz
j (i, t) =

%(xz
j (i)− x̄z

j (t))

MADz
j

(t)

21: for each data point xz
j (i) ∈ Mz

j (t) do

22: if αz
j (i, t) ≥ ϕ then

23: AbnormalMetricsz
j = AbnormalMetricsz

j + xz
j (i)

24: CountAbnormalMetricsz
j = CountAbnormalMetricsz

j + 1

25: end if

26: end for

27: if CountAbnormalMetricsz
j > 0 then

28: AvgAbnormalMetricsz
j = AbnormalMetricsz

j /CountAbnormalMetricsz
j

29: PropAbnormalMetricsz
j = ϕ

AvgAbnormalMetricsz
j

30: AbnormalMetricsj = AbnormalMetricsj + 1

31: end if

32: end for

33: if AbnormalMetricsj = 0 then

34: Γj = 1

35: else

36: Γj =

∑
z∈M

P ropAbnormalMetricsz
j

AbnormalMetricsj

37: end if

38: return Γj

The Algorithm then checks for any future consumption of the IoT to determine

whether there exists any consumption that exceeds or falls under the computed

abnormal limit (Algorithm 6.1 - lines 22 − 23). If such a case is encountered, this

118

observation is added to a table that registers each IoT’s unusual consumption (if any)

(Algorithm 6.1 - line 24). The average unusual consumption for each metric is then

computed (Algorithm 6.1 - line 28). The Algorithm then computes the trust value

of each IoT by dividing the sum of the proportional abnormal consumption over all

the metrics by the number of metrics that the device has overused/underused (if

any) (Algorithm 6.1 - line 36). If no metric has been overused/underused, the initial

trust in the IoT’s trustworthiness would be set to 1 (Algorithm 6.1 - line 34), which

represents a full trust in that device.

6.1.2 DDQN-Trust Scheduling Policy

Reinforcement learning [87,104] is an active research and application area of machine

learning that has been applied to solve uncertainty-driven problems wherein exact

models are often infeasible. It aims at guiding a certain agent on how to react to

the changes that take place in the environment. The agent performs the appropriate

actions that maximize its cumulative reward according to the current state of the

environment. In this work, we propose DDQN-Trust, a trust and energy-aware

dynamic Double Deep Q Network scheduling method. The proposed method consists

of a multi-layered neural network that, for a given state outputs a vector of actions

given a set of parameters of the network. The problem is formulated as a global

Markov Decision Process (MDP) where the system global states and global actions

are formulated as the combination of IoT devices local states and actions. It is defined

by the tuple
〈
S,A, T,R, γ

〉
, where:

• S: the set of global states of the system.

• A: the set of joint actions of all the IoT devices.

• T : the transition probability function defined as: T (s, a, s′) = Pr(s′|s, a), where

119

s, s′ ∈ S and a ∈ A.

• R : S × A× S 7→ R: the reward function of the model.

• γ: a discount factor that decreases the impact of the past reward.

Let Sj be the set of local states of the IoT device j and J the set of all the devices.

The global state space S is obtained through the Cartesian product of IoT devices

local states: S = ∏
j∈J

Sj. Each local state sj ∈ Sj is as follows:

sj = (Γj, χj); Γj ∈ [0, 1], χj ∈ {0, 1, . . . , χmax} (6.1)

where Γj is the trust value of the IoT device j computed in Algorithm 6.1 and χj is

the energy state of j. Trust and energy state are dynamic, so they could change from

state to state. The global action space of the parameter edge server is the joint action

space of each device: A = ∏
j∈J

Aj where Aj is the set of local actions of j. A local

action aj ∈ Aj is as follows:

aj = (σj, lχj , ξj); σj ∈ {0, 1} , lχj ∈ {0, 1, . . . , χmax} , ξj ∈ R (6.2)

where σj = 1 means the parameter server assigns a training task to the IoT device

j; σj = 0 otherwise, lχj refers to the amount of energy needed by the IoT device j to

download, train and upload the model, and ξj is the cost of transmitting the model

from the parameter server to the device j and running the model. For an action to

be feasible from a global state s to s′, the following condition should hold:

lχj (s′) ≤ χj(s) ∀j ∈ J (6.3)

where lχj (s′) refers to lχj in the action leading to s′ and χj(s) is χj in s. Finally, to

define the reward function R, the objective of maximizing the selection of trusted IoT

120

devices having enough energy to receive and perform the training task is considered.

The cost ξj is also considered proportional to the maximum cost ξmax. The reward

ψj for the device j is a function of state s ∈ S and action a ∈ A as follows:

ψj(s, a) =

Γj.χj − ξj

ξmax
, if lχj ≤ χj.

− ξj
ξmax

, otherwise.
(6.4)

Thus, along with the trust scores of the IoT devices, the edge server accounts for

the available energy level of the devices to make sure that these devices have enough

battery capacity to download, train and upload the model.

The global reward of the parameter server is as follows:

R(s, a) =
∑
j∈J

ψj(s, a) (6.5)

The parameter edge server determines the optimal policy π∗ : S → A that

indicates the actions to be taken at each state to maximize the cumulative reward.

The essential goal of the Q-learning (QL) algorithm used to find π∗ is to update the

Q-value of a state-action pair, Q(s, a), which encodes the expected future discounted

reward for taking action a in state s. The optimal action-value function Q∗(s, a)

is Q∗(s, a) = max
π

Qπ(s, a). This optimal value function can be nested within the

Bellman optimality equation as follows:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

Pr(s′|s, a).max
a′∈A

Q∗(s′, a′) (6.6)

Depending on the Q-table that results from updating the Q(s, a) values, the parameter

server determines the optimal action from any state to maximize the cumulative

reward. The QL algorithm is practical for networks with small state and action

121

spaces only, but when the number of network participants increases (which is the case

of IoT networks that consist of a large number of devices), the problem of assigning

training tasks to the IoT devices becomes high dimensional. The Deep QL (DQL)

algorithm (a combination of QL and deep neural network DNN) comes into play to

solve the high dimensionality problem. The input of the DNN is one of states of the

online network, and the outputs are the Q-values Q(s, a; θ) of all the possible actions,

with θ being the weight matrix of the DNN. The DNN needs to be trained by using

experiences (s, a, R(s, a), s′) to obtain the approximate values Q∗(s, a). We use the

Mean Square Error (MSE) to define the loss function and DNN uses the Bellman

equation to minimize this loss function as follows:

L(θi) = E[(R(s, a) + γ arg max
a′∈A

Q(s′, a′; θ′i)−Q(s, a; θi))2] (6.7)

where θi represents the parameters of the online network at the ith iteration, θ′i

represents the parameters of the target network at the ith iteration, and E[.] denotes

the expected value. Note that the action a is selected based on the ε-greedy policy.

By using the max operator (which uses the same Q-values to select and to evaluate an

action in standard QL and DQN), we observe that it is more likely that this operator

selects overestimated values, resulting in overoptimistic estimates. To prevent such a

problem, we should decouple the action selection from the evaluation by employing

the Double Deep Q-network (DDQN) [96]. The main feature of DDQN is the use of

two separate DNNs, i.e., an online network with weight set θ and a target network

with weight set θ′′. The DDQN employs two valuation functions for two autonomous

DNNs learned through randomly assigning experiences to update one of the two value

functions, resulting in two sets of weights θ for the first DNN and θ′′ for the second

DNN. At each iteration, the weights of the online network are updated, while those

of the target network are kept constant to determine the greedy policy. The target

122

function of our DDQN-Trust error is defined by:

TDDQN−Trust(s, a, s′) = R(s, a) + γQ(s′, arg max
a′∈A

Q(s′, a′; θ); θ′′) (6.8)

To compute the optimal value Q(s′, a′; θ), the weight θ of the online network

uses the next state s′ to select an action, while the target network θ′′ uses the next

state s′ to evaluate the action. Then, a stochastic gradient descent step is performed

to update the weights of the online networks θ based on the loss

6.1.3 DDQN-Trust-based Federated Learning Model

In this section, we describe how the FL process can be executed after integrating our

trust establishment and scheduling mechanisms. A DNN model is distributed over

the IoT devices to be collaboratively trained following the FL framework. Let Dj be a

local dataset collected by the IoT device j, Dj = {(x1j , y1j), . . . , (xnj , ynj)}, where xij

is the ith training sample and yij represents the corresponding ground-truth label. In

this work, we take a general Convolutional Neural Network (CNN) model for analysis.

The edge server receives the local gradient vectors from the trusted IoT devices and

then aggregates (averages) them to obtain the global gradient using Equation (6.9):

g [ν] = 1∑
j∈J
|ϑj|

∑
j∈J
|ϑj|gj [ν] (6.9)

where ϑj is a subset of local data collected from the IoT device j for a training period

ν, with ϑj ⊆ Dj, and gj [ν] being the local gradient which is computed as per Equation

(6.10).

gj [ν] = ∇wjLj (wj, ϑj) (6.10)

123

where wj is the local parameter set of the CNN model, Lj is the local loss function

on the IoT device j to measure the training error and ∇wjLj(.) is the gradient of the

loss function Lj with respect to wj.

Algorithm 6.2 DDQN-Trust-based Federated Learning Algorithm for IoT Selection
1: Initialize the global parameter set of the CNN model

2: for each round τ = 1, 2, . . . do

3: Use Algorithm 6.1 to compute the trust scores of all the IoT devices

4: Use DDQN-Trust to select a subset E ⊆ J of IoT devices to participate in the training

5: Send Wτ to each selected IoT

6: for each IoT device j ∈ E do % E = {1, 2, . . . , E}

7: Execute IoTLocalUpdate(Wτ) % See Algorithm 7.2

8: end for

9: Wτ = 1
n

E∑
j=1

njwj

10: end for

In Algorithms 6.2 and 6.3, we describe the federated learning process after

embedding our proposed trust establishment mechanism and DDQN-Trust scheduling

policy to improve the selection of IoT devices. In Algorithm 6.2, nj is the data size

available on IoT device j, n is the size of the whole data across all devices, E is the

total number of selected devices, τ is the training communication round index and

Wτ is the global parameter set at round τ .

Algorithm 6.3 IoT Local Training
1: IoTLocalUpdate(Wτ)

2: wj = Wτ

3: for each local iteration t = 1 to T do

4: wj = wj − η∇wjLj(wj , ϑj) % η is the learning rate

5: end for

6: return wj to the edge server

Each IoT device runs the stochastic gradient descent (SGD) algorithm based on

the received global gradient. The local loss function on each device j is defined as per

Equation (6.11):

124

Lj (wj) = 1
Nj

∑
(x,y)∈Dj

` (wj, x, y) (6.11)

where ` (wj, x, y) is the sample-wise loss function that quantifies the prediction error

between the learning output (via input x and parameter wj) and the ground-truth

label y, and Nj is the number of data samples of the device j. Each device seeks to

minimize the local loss function defined in Equation (6.11) to minimize the training

error. On a global level, the main target of the training task at the edge server is to

optimize the parameters towards minimizing the global loss function L(W) via the

SGD algorithm expressed as follows:

L(W) = 1∑E
j=1 Nj

E∑
j=1

NjLj(wj) (6.12)

6.1.4 Federated Learning Aggregation Approaches

We integrate our solution with four existing federated learning approaches, namely,

FedProx, FedShare, FedSGD, and FedAvg. The objective is to pick the approach that

best suits our solution.

A. FedAvg

The FedAvg approach relies on a single-model strategy that leverages an

averaged results across many clients. In FedAvg, the server chooses a subset of IoT

devices in each communication round and sends the global model back to them. Each

device will perform a predefined number of gradient descent iterations on its local

data, before pushing the model’s weight to the server. Finally, the server averages

these weights to generate a new global model. Technically speaking, after receiving

the local model wτj and gradient g, the server aggregates them using Algorithm 6.2

125

(Line 9) and Equation (6.9) and shares w and g with the IoT devices.

B. FedSGD

The main idea of FedSGD is to let the IoT devices minimize a surrogate function

Φτ
j [28] after each global round, as follows:

Φτ
j (w) = Ξj(w) + 〈η∇gτ−1 −∇gj(wτ−1), w〉 (6.13)

with Ξj being L-smooth and β strongly convex, ∀j [75], and Φ inspired by the

Distributed Approximate NEwton (DANE) scheme introduced in [97]. Furthermore,

we include both local and global gradient estimates weighted by a controllable

parameter η. Thereafter, the IoTs send not only the local model wj, but also local

gradient estimates ∇gτ−1 to speed the convergence up in the experiments.

C. FedShare

In FedShare, a globally accessed dataset G with a uniform distribution is used

to mitigate the impact of data heterogeneity across the client devices. Specifically,

a sample of this dataset is given to each IoT device in the initialization phase. The

shared data from G is combined with the private data of each device to form the

training set of the device’s local model. The server then aggregates the local models

from the IoT devices using FedAvg to construct the global model. In FedShare, two

trade-offs are considered. The first one is the trade-off between the test accuracy and

the size of G, which is quantified as β = ‖G‖
‖
∏
j∈J

Dj‖
× 100%. The second trade-off is

between the test accuracy and the random distributed fraction [130].

126

D. FedProx

To a certain extent, FedProx is similar to FedAvg in that devices are chosen

at each round, which means that local updates are made to a subset of devices, and

these are then averaged to obtain a global model. Therefore, to reiterate, instead of

all training devices having the same number of rounds, FedProx indirectly trains for

various devices having varying rounds. In other words, instead of assuming a uniform

number of local rounds Ω for all devices throughout the training process, FedProx

implicitly accommodates variable Ω’s for different devices and at different iterations.

We adopt Ωτ
j -inexact solution [60] to find wτj for each IoT device j at round τ where

Ωτ
j -inexact minimizer minimizes the following objective hj:

wτ+1
j ≈ argminw hj(w;wτ) = Lj(wj) + T

2 ‖w − w
τ‖2 (6.14)

6.2 Experimental Results and Analysis

6.2.1 Experimental Setup

To carry out our experiments, we used TensorFlow Federated (TFF), which is an

open-source framework for machine learning on decentralized data. TFF supports a

variety of distributed learning scenarios executed on a large number of heterogeneous

devices having diverse capabilities. We trained a CNN model on the CIFAR-10

dataset1 to evaluate the performance and efficiency of our solution. The dataset

consists of 50, 000 training images and 10,000 testing images divided across 10 object

classes. The employed CNN model consists of six 3× 3 convolution layers as follows:

32, 32, 64, 64, 128, 128. Each layer is activated by a Rectified Linear Unit (ReLU)

and batch normalized. Every pair of convolution layers is followed by a 2 × 2 max
1https://www.cs.toronto.edu/~kriz/cifar.html

127

https://www.cs.toronto.edu/~kriz/cifar.html

pooling layer, followed by three fully-connected layers (where each fully connected

layer takes a 2D input of 382 and 192 units) with ReLU activation and another 10

units activated by soft-max. The model is trained on IoT devices using the Stochastic

Gradient Descent (SGD) algorithm with a batch size of 128 rows. The training dataset

was distributed over a set of 1000 IoT devices (i.e., |J | = 1000) of 4 types: type-1 with

1 CPU core and 1.75GB RAM, type-2 with 2 CPU cores and 3.5GB RAM, type-3 with

4 CPU cores and 7GB RAM, and type-4 with 8 CPU cores and 14GB RAM. At each

iteration, the edge server selects the top 50 IoT devices returned by the scheduling

algorithm (i.e., E = 50).

We evaluate the performance of the proposed DDQN-Trust solution against

the traditional DQN [76] which has lately been used for client selection in federated

learning and with the random scheduling approach, the default approach in federated

learning. The proposed DDQN-Trust model consists of two Deep Neural Networks

(DNNs), where each DNN has a size of 32 × 32 × 32. The Adam optimizer is used

to adjust the learning rate during the training. The learning rate η is initially set

to 0.01 to avoid losing the local minima. In general, the deep Q learning approach

prefers the long-term reward; therefore, we set the value of the discount factor γ to

0.9. We use the ε-greedy policy with ε = 0.9 that balances between the exploration

and exploitation. During the training phase, ε is linearly reduced to zero to move

from exploration to exploitation. Our application is written in Python, version 3, and

executed in a 64-bit Windows 7 environment on a machine equipped with an Intel

Core i7-6700 CPU 3.40 GHz Processor and 16 GB RAM.

6.2.2 Experimental Results

In Fig. 6.1, we measure the accuracy of our DDQN-Trust approach against the classic

DDQN that does not include our trust algorithm. The considered accuracy is yielded

128

by the FedProx, FedShare, FedSGD and FedAvg approaches. We ran the experiments

over 1000 iterations to analyse the scalabilty of the different considered solutions.

The first observation that can be drawn from the figure is that the trust-based

approaches, i.e., FedProx, FedShare, FedSGD and FedAvg with DDQN-Trust achieve

higher accuracy compared to the approaches that do not consider trust, i.e.,

FedProx, FedShare, FedSGD, and FedAvg with DDQN. In particular, the accuracy

levels obtained by the FedProx, FedShare, FedSGD, and FedAvg approaches with

DDQN-Trust are 91%, 85%, 83%, and 81% respectively, whereas the accuracy levels

obtained by the FedProx, FedShare, FedSGD, and FedAvg approaches with DDQN are

77%, 75%, 70%, and 68% respectively. The second observation that can be drawn from

Fig. 6.1 is that the trust-based approaches converge faster to a stable accuracy level

compared to the non-trust approaches. The improvements brought by the trust-based

approaches mainly stem from their consideration of the trust and energy values when

selecting the devices that will participate in the federated training.

129

Figure 6.1: Accuracy over iteration rounds of different aggregation methods with the
CNN model of our DDQN-Trust and classic DDQN

In Fig. 6.2, we compare the accuracy of our trust-based approach against

the DQN and random scheduling approaches used to select the IoT devices while

varying the federation approaches. Specifically, we compare the studied approaches

(i.e., FedProx, FedShare, FedSGD, and FedAvg) with the DDQN-Trust, DQN,

and random scheduling approaches over 1000 iterations. We notice from the

sub-figures that the accuracy obtained by the DDQN-Trust scheduling approach is

higher than that obtained by the DQN and random approaches under the different

aggregation methods. In particular, the accuracy levels obtained by the DDQN-Trust,

DQN, and random scheduling are of 91%, 80%, and 68% respectively with the

FedProx aggregation framework, 88%, 77%, and 61% respectively with the FedShare

130

framework, 85%, 76%, and 63% respectively with the FedSGD framework, and 82%,

74%, and 60% respectively with the FedAvg framework. We also notice from the

sub-figures that DDQN-Trust converges to a stable accuracy level faster than the DQN

and random approaches. The improvements with regard to the random scheduling

approach mainly stem from the fact that DDQN-Trust leverages the trust and energy

values of the IoT devices rather than making random selections. Compared to the

traditional DQN, DDQN-Trust improves the accuracy since it relies on a double Q

learning model that provides a better estimation of the potential actions. This is

thanks to its second Q-function approximator, which helps avoid overoptimism. In

DQN, on the other hand, the Q values are noisy; thus when we take the maximum

over all the actions, there is a considerable risk of obtaining an overestimated value.

One important observation from Fig. 6.1 and Fig. 6.2 is that FedProx

has the highest accuracy and the fastest convergence compared to the other three

aggregation approaches. This is because FedProx addresses the system and statistical

heterogeneity across the IoT devices, which makes its aggregation results more

accurate. On the other hand, the classic FedAvg yields the lowest accuracy level and

the slowest convergence, may be due to the fact that when the local data distributions

across the devices are highly heterogeneous, the local updating schemes may allow

local models to move too far away from the initial global model, potentially damaging

the convergence. FedShare and FedSGD are characterized by an acceptable accuracy

level. In fact, FedShare depends on a data-sharing strategy that seeks to distribute a

small subset of independent global data, characterized by a uniform distribution over

classes, to the local devices. This helps the federated learning model be less influenced

by the data heterogeneity across the IoT devices. On the other hand, FedSGD relies

on a local surrogate function that is designed for each IoT device to allow it to solve

its local optimization problem approximately up to a local accuracy level.

131

(a) FedProx (b) FedShare

(c) FedSGD (d) FedAvg

Figure 6.2: Performance of the trained CNNs with DDQN-Trust, DQN, and RS
scheduling models

In Fig. 6.3, we provide experimental comparisons in terms of cumulative reward.

We ran the experiments over 1000 iterations. We notice from the sub-figures that the

reward obtained by the DDQN-Trust is much higher than those obtained by the DQN

and random scheduling approaches. In particular, the average rewards obtained by

the DDQN-Trust, DQN, and random approaches are 188, 174, and 107, respectively

with the FedProx framework (Fig. 6.3a), 181, 167, and 97 respectively with the

FedShare framework (Fig. 6.3b), 177, 162, and 95 respectively with FedSGD (Fig.

132

6.3c), and 162, 160, and 81 respectively with FedAvg (Fig. 6.3d). This means the

proposed DDQN-Trust approach enables the edge server to better learn the scheduling

policy that best maximizes the reward. In the random approach, the edge server

randomly selects IoT devices, which increases the risk of selecting unreliable devices

or devices that have insufficient energy levels and resources. This endangers the whole

collaborative training process and makes the performance unstable. Moving to the

traditional DQN approach, its overestimation of the future actions leads to a natural

reduction in the overall reward that results from the chosen actions.

(a) FedProx (b) FedShare

(c) FedSGD (d) FedAvg

Figure 6.3: Reward values in DDQN-Trust, DQN, and Random scheduling policies

133

6.3 Conclusion

In this chapter, we designed and formulated a trust and energy-aware FL scheduling

approach in IoT environments using DDQN while considering four aggregation

approaches namely, FedAvg, FedProx, FedShare, and FedSGD. Experiments conducted

on the CIFAR-10 real-world dataset reveal that our DDQN-Trust solution

outperforms, in terms of accuracy and cumulative reward, the most commonly used

scheduling approaches in FL, i.e., DQN and random scheduling. Our solution

accurately selects the appropriate set of IoT devices whose participation in the

federated training improves the machine learning model’s accuracy. We studied the

accuracy of the three models by implementing a CNN model in a federated fashion

on the IoT devices and varying the aggregation approaches. The results revealed

that our DDQN-Trust solution, DQN, and random scheduling yield respectively an

accuracy of 91%, 80%, and 68% with the FedProx aggregation framework, 88%, 77%,

and 61% respectively with FedShare, 85%, 76%, and 63% with FedSGD, and 82%,

74%, and 60% with FedAvg. Besides, our DDQN-Trust converges faster to a stable

accuracy level. Finally, the results revealed that the reward obtained by our proposed

solution is much higher than those obtained by the DQN and random scheduling

approaches. In particular, the average rewards obtained by the DDQN-Trust, DQN,

and random approaches are 188, 174, and 107, respectively with FedProx, 81, 167,

and 97 respectively with FedShare, 77, 162, and 95 respectively with FedSGD, and

162, 160, and 81 respectively with FedAvg.

A major challenge for this model stems from the variability in the availability and

volumes of data from one region to another and the overhead of constantly training

from scratch. To tackle this challenge, we extend our environment in the next chapter

by varying the number of edge server devices to share the knowledge among them

instead of employing just one device. Technically speaking, we adapt and test our

134

solution in a COVID-19 scenario; and integrate a transfer learning method into our

solution. This will enable inter-server knowledge sharing to handle the problem of

COVID-19-related data scarcity in some regions.

135

Chapter 7

COVID-FED: Applying

Smart Scheduling Approach

in the Healthcare Domain

COVID-19 is undoubtedly the talk of the town across the world, owing to the sudden

and non-stop outbreak of this new generation of coronavirus in most of the countries.

This pandemic can, in some cases, entail some progressive respiratory failures and

massive alveolar damage [4], and might sometimes lead to death. Early and automatic

diagnosis is undeniably helpful to achieve timely treatment and even prevention

(e.g., referral to quarantine). Several studies [19, 29, 78] have been conducted for

detecting and fighting against COVID-19. In this chapter, we intend to apply

our scheduling strategy in the healthcare domain to investigate its applicability in

real-world scenarios. We aim to complement these studies by combining several

state-of-the-art concepts from computer science and Artificial Intelligence (AI) to

build a comprehensive solution for health monitoring and tracking (using IoT and

136

edge computing), trust-aware participant selection and job scheduling (using trust

management and Deep Reinforcement Learning (DRL)), privacy-preserving machine

learning (using Federated Learning (FL)) and long training time and data scarcity

problems reduction (using Transfer Learning (TL)).

We propose an all-encompassing solution named COVID-FED. COVID-FED is

a multi-faceted COVID-19 detection approach which incorporates federated learning,

trust management, and Deep Reinforcement Learning (DRL) in an edge computing

setting that considers IoT devices and medical imaging. We capitalize on federated

transfer learning over IoT and edge devices for dynamic detection of COVID-19 from

X-ray images as shown in Fig. 7.1. Edge servers collaborate with IoT devices to

train the COVID-19 detection model using federated learning without exchanging

raw confidential data. Transfer learning is important to handle the scarcity of data

in some regions and compensate potential lack of learning at some servers. DRL and

trust management are combined to assign the COVID-19 detection tasks to the most

trusted and resource-efficient IoT devices.

137

Figure 7.1: System architecture and communication process of federated transfer
learning in edge cloud.

138

7.1 Problem Formulation

7.1.1 System Model

LetM = {m1,m2, . . . ,mx} be a set of x IoT devices charged for COVID-19 detection.

Each IoT device is equipped with X-ray scanning and machine learning capabilities,

which enable it to train a COVID-19 detection model. E = {e1, e2, . . . , er} is a set of

r edge servers (ESs) responsible for aggregating the model updates received from the

IoT devices. Let Tm = {tm1, tm2, . . . , tml} be a set of l training models to be analyzed

on the IoT device m ∈ M , which forms a tuple and αm be a trust value assigned by

an ES from E to this IoT device. An ES e ∈ E chooses to schedule one or more tasks

over the IoT devices at each time step τ .

Let εm be the time needed to train a local model on the device m. We introduce

two functions: Θ1(ε1, ε2, . . . εn) an aggregation function that computes the execution

time of the overall FL process involving the selected n IoT devices participating in

the federated training, and Θ2(α1, α2, . . . αn) an aggregation function that computes

the overall trust of the selected n IoT devices. The sum of εi and αi (i := 1 . . . n)

are examples of these aggregation functions. The objective of our scheduling solution

is to minimize Θ1 and maximize Θ2 subject to the constraints (7.1), (7.2), (7.3), and

(7.4).

KCPU
mi ≤ CPU τ

m, ∀tmi ∈ Tm (7.1)

KRAM
mi ≤ RAM τ

m, ∀tmi ∈ Tm (7.2)

KBW
mi ≤ BW τ

m, ∀tmi ∈ Tm (7.3)

KDS
mi ≤ DSτm, ∀tmi ∈ Tm (7.4)

139

whereKz
mi represents a requirement of the training model tmi where each z represents a

certain resource parameter, i.e., CPU, RAM, bandwidth (BW), and disk storage (DS).

CPU τ
m, RAM

τ
m, BW

τ
m, andDS

τ
m are the current amounts of available CPU, RAM,

Bandwidth, and disk storage on IoT device m.

7.2 COVID-FED Description

7.2.1 Trust Management

To model the trust relationships between an ES ei ∈ E and the IoT devices in terms

of efficiently and honestly executing the COVID-19 detection duties, we employ the

trust establishment algorithm that we recently proposed in 6.1.

The algorithm monitors the IoT devices’ resource consumption over time and

uses a modified Z-score approach to classify the IoT devices that exhibit some

suspicious behavior in terms of over-consumption or under-consumption. This is

highly important to consider in our case to identify those devices that (1) do not

allocate sufficient resources to perform the COVID-19 detection tasks or (2) perform

additional computations to embed some malicious goals (e.g., optimize for a malicious

objective that seeks to cause misclassification) into their local training problems. Note

that each ES monitors the IoT devices that are located within its range.

The main idea of the trust approach is to approximate the difference of a

given score from the median using the median absolute deviation in our algorithm

MADz
m(τ) of a metric z (e.g., CPU, RAM, BW, DS) consumed by the IoT device

m at the current time τ . More specifically, the modified Z-score (β) is calculated

through dividing the difference between the consumption of the device m in terms of

the resource metric z at time moment τ and the median consumption of that device

in terms of that metric within the time interval τ by the median absolute deviation

140

of the metric z as follows:

βzm(τ) = %(xzm(τ)− x̄zm(τ))
MADz

m(τ) (7.5)

where constant % = 0.6745 is needed because E(MADz
m(τ)) = 0.6745σ for a large

number n of samples.

Then the algorithm tests to decide if there is any consumption that exceeds or

falls below the computed abnormal limit for any potential consumption of the IoT

device.

Afterwards, by dividing the sum of this relative abnormal consumption

PropAbnormalMetricszm over all the z ∈ Z metrics by the number of

AbnormalMetricsm of metrics that the device has overused/underused, we derive

the trust value of each device αm. If no metric has been overused/underused, the

initial trust in the IoT device’s trustworthiness will be 100%.

αm =
∑
z∈Z PropAbnormalMetricszm

AbnormalMetricsm
(7.6)

7.2.2 DRL Scheduling Policy

The proposed scheduling policy consists of a multi-layered neural network that, for a

given state, outputs a vector of actions, given a set of parameters of the network [90].

The problem is formulated as a global Markov Decision Process (MDP) where the

global states and global actions of the system are formulated as a combination of

local states and actions of the IoT devices. The scheduling policy is defined by the

tuple
〈
S,A, T , R, γ

〉
, where:

• S: Set of global states of the system.

• A: Set of joint actions over all the IoT devices.

141

• T : Transition probability function defined as: T (s, a, s′) = Pr(s′|s, a), where

s, s′ ∈ S and a ∈ A.

• R : S × A 7→ R: Reward function of the model.

• γ: Discount factor that decreases the impact of the past reward.

Let Sm be the set of local states of the IoT device m ∈ M . The global state space

S is obtained through the Cartesian product of the IoT devices’ local states, i.e.,

S = ∏
m∈M

Sm. Each local state sm ∈ Sm is computed as follows:

sm =(αm, ϑm, δ||m); αm ∈ {0, 1, . . . , αmax} ,

ϑm ∈ {0, 1, . . . , ϑmax} ,

δ||m ∈ {0, 1, . . . , δmax}

(7.7)

where αm is the trust value of the IoT device m computed in Equation (7.6), ϑm is the

time needed to run the local model on the device m, and δ||m is the normalized amount

of resources (i.e., CPU, RAM, bandwidth, and disk storage) on the device m. Trust

value and execution time are dynamic, so they could change from state to state. The

global action space of the parameter server is the joint action space of each device:

A = ∏
m∈M

Am where Am is the set of local actions of m. A local action am ∈ Am is as

follows:

am =(σm, εm, K ||m, ζm);

σm ∈ {0, 1} , εm ∈ {0, 1, . . . , εmax} ,

K ||m ∈ {0, 1, . . . , Kmax} , ζm ∈ R

(7.8)

where σm = 1 means that the parameter server assigns a training task to the IoT

device m and σm = 0 means that the server does not assign the task to m. εm refers

to the time needed by the IoT device m to download, train and upload the model, and

142

K ||m is the normalized amount of resources needed to assign the model from the ES to

the IoT device m, and ζm is the cost of transmitting the model from the parameter

server to the device m and running the model. For an action to be feasible from a

global state s to s′, the following condition should hold:

εm(s′) ≤ ϑm(s) ∀m ∈M (7.9)

K ||m(s′) ≤ δ||m(s) ∀m ∈M & ∀z ∈ Z (7.10)

where εm(s′) and K ||m(s′) refer to εm and K ||m in the action leading to s′; and ϑm(s)

and δ||m(s) are ϑm in s and δ||m in s consecutively.

The reward function R is defined in such a way to maximize the selection of

trustworthy IoT devices to perform the federated training and to minimize overall

training time. The cost ζm is also considered proportional to the maximum cost ζmax.

The reward Ψm for the device m is a function of state s ∈ S and action a ∈ A and is

computed as follows:

Ψm(s, a) =

σm.εm.K
||
m − ζm

ζmax
, if K ||m(s′) ≤ δ||m(s).

and εm(s′) ≤ ϑm(s).

− ζm
ζmax

, otherwise.

(7.11)

The ES accounts for the available resources on the IoT devices in addition

to the trust scores of these devices to ensure that they have sufficient capacity to

download, train and upload the machine learning model. Thus, the global reward of

the parameter server is given by the following equation:

143

R(s, a) =
∑
m∈M

Ψm(s, a) (7.12)

The parameter ES determines the optimal policy π∗ : S → A that indicates

the actions to be taken at each state to maximize the cumulative reward. The

Q-learning (QL) algorithm’s essential goal to find π∗ is to update the Q-value of

a state-action pair, Q(s, a), which encodes the expected future discounted reward

for taking action a in certain state s. The optimal action-value function Q∗(s, a)

is Q∗(s, a) = max
π

Qπ(s, a). This optimal value function can be nested within the

Bellman optimality equation as follows:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

Pr(s′|s, a).max
a′∈A

Q∗(s′, a′) (7.13)

The parameter server calculates the optimal action from any state to maximize

the cumulative reward, based on the Q-table that emerges from updating the Q(s, a)

values. The QL algorithm is only feasible for networks with limited state and

action spaces, but the issue of assigning training tasks to IoT devices becomes highly

dimensional when the number of network participants increases (as is the case for IoT

networks consisting of a large number of devices). To solve the high dimensionality

problem, the Deep QL (DQL) algorithm (a combination of QL and Deep Neural

Network DNN) comes into play.

The DNN takes as input one of the online network’s states, and outputs the

Q-values Q(s, a; θ), as well as the weight-matrix θ of the DNN of all eventual actions.

In order to obtain approximate values Q∗(s, a), DNN needs to be trained using

experience (s, a, R(s, a), s′). To define the loss function, we use the mean square error

(MSE), and DNN uses the Bellman equation to minimize the following loss function:

144

L(θi) = E[(R(s, a) + γ arg max
a′∈A

Q(s′, a′; θ′i)−Q(s, a; θi))2] (7.14)

where θi denotes the online network parameters of the ith iteration, θ′i represents the

goal network parameters of the ith iteration, and E[.] represents the expected value.

Note that the action a is chosen on the basis of the ε-greedy policy [66].

7.2.3 Federated Learning Model

We adopt the FL to achieve privacy-preserving on-device COVID-19 data analytics.

Let Dm be a local X-ray images dataset collected by IoT device m. Dm =

{(x1m , y1m), . . . , (xnm , ynm)}, where xim is the ith training sample and yim represents

the corresponding ground-truth label. In this work, we employ a general CNN model

to perform our analysis on the X-ray data. The ES first trains a global CNN model on

a publicly available X-ray dataset and then sends the initial parameters to the set of

IoT devices selected as per our scheduling solution discussed in Section 7.2.2. These

IoT devices capitalize on the shared parameters to locally train the CNN on their

own set of collected X-ray images and hence derive an updated set of the parameters.

Upon receiving the updated parameters from the IoT devices, the server aggregates

(using Equation (7.15)) these parameters to derive a global aggregate model.

g [ν] = 1∑
m∈M

|λm|
∑
m∈M

|λm|gm [ν] (7.15)

where λm ⊆ Dm is a subset of local data collected by IoT device m for a training

period ν and gm [ν] is the local gradient which is computed as per Equation (7.16).

gm [ν] = ∇wmLm (wm, λm) (7.16)

145

where wm is the set of local parameters of the CNN model, Lm is the local loss function

(in terms of training error) to be minimized on IoT device m and ∇wmLm(.) is the

gradient of the loss function Lm with respect to wm.

Algorithm 7.1 DRL-based Federated Learning Algorithm for COVID-19 Detection
1: Initialize the global parameter set of the CNN model on a publicly available X-ray

image data
2: for each round ϕ = 1, 2, . . . do
3: Use our scheduling solution described in Section 7.2.2 to select a subset E
⊆M of IoT devices to participate in the training

4: Send Wϕ to each selected IoT
5: for each IoT device m ∈ E do

% E = {1, 2, . . . , S}
6: Execute IoTLocalUpdate(m,Wϕ)

% See Algorithm 7.2
7: end for
8: Wϕ = 1

n

S∑
m=1

nmwm

9: end for

We explain in Algorithms 7.1 and 7.2 the FL process we propose to recognize

COVID-19. In Algorithm 7.1, nm is the volume of the data that are available on IoT

device m, n is the volume of the overall data across all IoT devices, S is the total

number of selected IoT devices to participate in the FL process, ϕ is an index that

represents a training communication round and Wϕ is the set of global parameters at

training round ϕ.

The Stochastic Gradient Descent (SGD) algorithm is run by each IoT device

based on the obtained global gradient. The local loss function Lm(wm), which has to

be minimized on each device m, is calculated as shown in Equation (7.17):

Lm (wm) = 1
Nm

∑
(x,y)∈Dm

` (wm, x, y) (7.17)

where ` (wm, x, y) is the sample-level loss function that quantifies the prediction error

between the learning output (via the input x and parameter wm) and ground-truth

146

label y, and Nm is the number of data samples on device m. Each device attempts to

minimize this local loss function, thereby reducing the error of the training process.

The main objective of the global model at the ES level is to optimize the set of

parameters to minimize the global loss function L(W) using the SGD algorithm as

shown in Equation (7.18):

L(W) = 1∑S
m=1 Nm

S∑
m=1

NmLm(wm) (7.18)

Algorithm 7.2 IoT Local Training
1: IoTLocalUpdate(m,Wϕ)
2: wm = Wϕ

3: for each local iteration i = 1 to T do
4: wm = wm − η∇wmLm(wm, λm)

% η is the learning rate
5: end for
6: return wm to the ES

7.2.4 Inter-Edge Transfer Learning

Our solution includes a TL component to allow the ESs to share their knowledge with

one another, without revealing their raw data. Doing so is useful in many situations

such as:

• One ES is newly deployed, but another server has already explored some

knowledge.

• Some ESs do not have enough IoT devices in their vicinity or have IoT devices

that do not have enough data to obtain efficient learning.

• Some ESs couldn’t obtain enough knowledge for a given task compared to the

knowledge obtained by other servers.

147

Algorithm 7.3 ESs Knowledge Transfer
1: Input: E = {e1, e2, . . . , er}
2: Receive local model updates(wm)
3: for each round ϕ = 1, 2, . . . do
4: for each edge server e ∈ E do
5: Aggregate global parameters W e

ϕ

6: Calculate global loss function L
(
W e
ϕ

)
7: end for
8: Calculate the optimal Global Model over E:
9: W ∗ = arg min

W e
ϕ,∀e∈E

(L(W e
ϕ))

10: Send W ∗ to each selected IoT
11: end for

The intuition is that knowledge transferred among the aggregation servers can

boost the optimization on the edge. As such, we propose to transfer knowledge

bidirectionally. We explain in Algorithm 7.3 the TL process that is proposed to

share the knowledge among ESs. In this algorithm, each ES e ∈ E aggregates the

local models received from the selected IoTs (Algorithm 7.1) and then calculates the

global loss function (Equation (7.18)), where W e
ϕ is the global model Wϕ on the ES e.

The optimal global model W ∗ is calculated over all the ESs based on the minimum

loss function value (line 9) before sending it back to the selected IoT devices.

7.3 Experimental Results and Analysis

We explain in this section the environment employed to perform our experiments and

present and analyze the experimental results.

7.3.1 Experimental Setup

To carry out our experiments, we capitalize on the dataset1 which consists of

chest X-ray images for individuals infected with COVID-19, individuals with viral
1https://www.kaggle.com/tawsifurrahman/covid19-radiography-database

148

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database

Pneumonia, as well as normal images. In total, the dataset consists of 219 COVID-19

positive images, 1341 normal images and 1345 viral pneumonia images. The data

distribution is non-IID and unbalanced, reflecting the characteristics of real-world FL

scenarios.

We train a CNN model to determine our algorithm’s efficiency and effectiveness.

The CNN model used consists of six 3×3 convolution layers as follows: 32, 32, 64, 64,

128, 128. The Rectified Linear Unit (ReLU) activates each layer and normalizes the

batch. Every pair of convolution layers is followed by a 2× 2 max pooling layer, then

by three fully-connected layers (where each fully connected layer takes a 2D input

of 382 and 192 units) with ReLU activation and another 10 units activated by the

soft-max. We employ the TensorFlow Federated (TFF) platform, which provides an

open source framework for decentralized data learning. TFF facilitates a variety of

collaborative learning scenarios on a number of heterogeneous devices with different

resources. The SGD algorithm is used to train the model on IoT devices with a batch

size of 128 rows per IoT device for every training round. We distributed the training

data on 1000 IoT devices (i.e., |M | = 1000) of four various types:

• Type-1 with 1 CPU core and 1.75GB RAM,

• Type-2 with 2 CPU cores and 3.5GB RAM,

• Type-3 with 4 CPU cores and 7GB RAM, and

• Type-4 with 8 CPU cores and 14GB RAM.

The ES selects the top 50 IoT devices returned by the scheduling algorithm

(e.g., E = 50), at each iteration. Our program is written in Python 3 and executed

on a 64-bit Windows 7 threaded environment on an Intel Core i7 3.40 GHz CPU and

16 GB of RAM.

149

7.3.2 Experimental Results

In Fig. 7.2, we compare the accuracy of our solution under different combinations,

i.e., Trust, Deep Reinforcement learning, Federated and Transfer learning (TDRFT);

Trust, Deep Reinforcement learning, and Federated learning (TDRF); and Deep

Reinforcement learning, Federated and Transfer learning (DRFT). We also compare

these different combinations of our solution with two common scheduling approaches,

i.e., Round Robin (RR) and Random Scheduling (RS) while integrating our trust

establishment solution into them. The different approaches are executed at five

different ESs to closely inspect the accuracy values.

Figure 7.2: Comparison of accuracy of final global model at five different ESs

We notice from the figure that the accuracy obtained with TDRFT is higher

150

than that obtained with the other combinations and approaches. In particular, the

accuracy levels obtained with TDRFT varies between 97.2 and 99.1 across the five

edge servers. With TDRF, the accuracy level varies between 96.4 and 99.1. With

DRFT, the accuracy level varies between 93 and 97.7. With RR, the accuracy level

varies between 91.6 and 94.2. Finally, with RS, the accuracy level varies between 90.2

and 91.6. Thus, we conclude that our solution with all of its components improves the

accuracy of detecting COVID-19 cases. The reason is that it employs deep Q-learning

to select the IoT devices that achieve the best combinations in terms of resource

availability and trust maximization, and includes a TL component to compensate the

lack of learning from which some edge servers might suffer.

(a) 5 edge servers (b) 25 edge servers

(c) 50 edge servers

Figure 7.3: Average execution time of the proposed model phases

151

In Fig. 7.3, we measure the execution time of each single component of our

solution. To do so, we vary the number of IoT devices from 50 to 200, while also

varying the number of ESs from 5, to 25, to 50. The main observation that can be

drawn from this figure is that increasing the number of IoT devices leads to a modest

increase in the execution time, especially when it comes to the DRL phase. This can

be justified by the fact that having a larger number of IoTs to assign the tasks to

increases the search space of the most of the components, except for the TL phase,

which is independent from the number of IoT devices. The second observation is that

the increase in the number of the ESs leads to increasing the execution time of the

TL component, without having any significant impact on the other components. The

reason is that having more servers means that more TL processes might need to be

performed among these servers.

Figure 7.4: Comparison of average accuracy of final global model of varying number
of ESs

152

In Fig. 7.4, we provide experimental comparisons in terms of average accuracy

while varying the number of edge server between 5 and 50. Again, in this scenario, the

accuracy obtained with TDRFT is much higher than that obtained than the rest of the

compared approaches. In particular, the average accuracy obtained by the TDRFT,

TDRF, DRF, RR and RS approaches are 97.3−100, 96.4−98.8, 94.2−97.1 90−93.2

and 87.3−92.6, respectively. This means that the proposed TDRFT approach enables

the edge server to better learn and recognize COVID-19 by adopting our solution with

all of its components.

In Fig. 7.5, we measure the execution time of the different studied approaches,

while varying the number of IoT devices from 50 to 200 and varying the number of

servers from 5 to 100. The main observation that can be drawn from this simulation is

that increasing the number of IoT devices leads to a modest increase in the execution

time in our solution (i.e., TDRF) compared to the other models. This is because

our solution employs deep Q-learning to select the IoT devices that achieve the best

combinations in terms of resource availability and trust maximization. On the other

hand, increasing the number of ESs leads to a modest increase in the execution time

in all the studied approaches, even in our model as we use TL to exchange knowledge

among the servers.

153

Figure 7.5: Execution time: We study in this figure the impact of varying both the
number of IoT devices and number of ESs on the execution time

In Fig. 7.6, we measure the average accuracy of the CNN that was trained by

IoT devices selected by the TDRFL, TDRF, DRF, RR, and RS approaches. We ran

the experiments over 1000 iterations (i.e., T = 1000) to study the scalability of the

different considered solutions, while varying the number of ESs from 10 to 50 and also

varying the number of IoT devices from 50 to 150. The main observation that can be

drawn from this experiment is that our proposed solution, with all of its components,

achieves the highest accuracy level compared to the other approaches and exhibits a

better scalability to an increasing number of IoT devices and ESs. This is justified by

the fact that having a larger number of IoT devices to select from might increase the

probability of mistakenly assigning global learning to some inappropriate IoT devices.

154

(a) 10 Edge Servers (b) 20 Edge Servers (c) 30 Edge Servers

(d) 40 Edge Servers (e) 50 Edge Servers

Figure 7.6: Average accuracy values in TDRFT, TDRF, DRF, RR, and RS

Yet, the TL component that we integrate in our solution, which enables sharing the

knowledge among servers, leads to increasing the accuracy at the level of some servers

that might have made some poor selections in terms of IoT devices.

In Fig. 7.7, we provide experimental comparisons in terms of average reward.

We ran the experiments over 10000 (i.e., T = 10000) iterations. We observe from this

figure that the average rewards obtained by TDRF and DRF are much higher than

those obtained by the RR and RS approaches. This means that TDRF enables the

ES to better learn how to schedule the COVID-19 detection tasks in such a way that

best maximizes the reward in terms of minimizing the execution time and maximizing

the trust.

155

(a) 50 IoT Device (b) 75 IoT Devices (c) 100 IoT Devices

(d) 125 IoT Devices (e) 150 IoT Devices

Figure 7.7: Average reward values in TDRF, DRF, RR, and RS

7.4 Conclusion

In this chapter, we proposed a multi-faceted and comprehensive COVID-19 detection

approach called COVID-FED, that combines medical imaging, federated transfer

learning, trust management, DRL, IoT and edge computing. To the best of

our knowledge, no existing approach has yet considered the integration and

interconnection between all these technologies for COVID-19 detection. This makes

our approach the most holistic in the literature through considering the different

aspects that are necessary for COVID-19 detection such as health monitoring

and tracking (using IoT and edge devices), trust-aware participant selection and

job scheduling (using trust management and DRL), privacy-preserving machine

learning (using FL) and training time reduction (using TL). Experiments conducted

156

on a real-world COVID-19 dataset reveal that our solution achieves a good

trade-off between detection accuracy and model execution time compared to existing

approaches. The results show as well that the components of our solution are

important to the success of our approach.

157

Chapter 8

Conclusion

8.1 Summary and Discussion

In this thesis, we proposed a new automated scheduling approach in cloud and edge

computing environments using swarm intelligence and machine learning, in particular

deep, reinforcement and federated learning. We addressed the resource management

automation process in the cloud system and introduced intelligent techniques that

help cloud providers schedule tasks to the trusted IoT devices while minimizing

resources utilization and the overall cost. For each of our contributions, we conducted

an in-depth literature review to guarantee the originality of our solutions and their

effectiveness in filling the state-of-the-art research gaps.

First, we proposed a hybrid approach, called Multi Label Classifier Chains

Swarm Intelligence (MLCCSI) to find the optimal resource allocation for each task

in the dynamic cloud system. We conducted experiments using the ACO, ABC

and PSO algorithms and a new scheduling model that uses these three algorithms.

The experiments revealed that this solution improves the load balancing scheduling

performance and minimizes the average makespan by 75% compared to the ACO

158

algorithm, by 61% compared to the ABC algorithm, and by 53% compared to the

PSO algorithm.

Second, we elaborated a novel trust-aware scheduling solution for big data tasks

called BigTrustScheduling that consists of three stages: VMs’ trust level computation,

tasks priority level determination, and trust-aware scheduling. Experiments

conducted on a real Hadoop cluster environment using real-world datasets collected

from the Google Cloud Platform pricing and Bitbrains task and resource requirements

revealed that our solution minimizes the makespan up to 48% and reduces the

monetary cost by 58% compared to the state-of-the-art big data tasks scheduling

approaches.

Third, we advanced four automated task scheduling approaches in cloud

computing environments using deep and reinforcement learning, while reducing

both the resource consumption and task waiting time. Experiments conducted

using real-world dataset from GCP pricing and Google cluster resource and task

requirements revealed that this solution minimizes the CPU utilization cost up to

32%, and reduces the RAM utilization cost by 41% compared to the state-of-the-art

scheduling strategies.

Fourth, we developed a trust establishment technique for IoT devices to find

the optimal FL scheduling decisions while considering four aggregation approaches

namely, FedAvg, FedProx, FedShare, and FedSGD. We studied the accuracy of the

state-of-the-art models by implementing a CNN model in a federated fashion on

IoT devices and varying the aggregation approaches. Experiments conducted on the

CIFAR-10 real-world dataset revealed that our solution outperforms the baselines in

terms of accuracy and cumulative reward. Technically speaking, our model maximizes

the accuracy between 19% and 27% and the reward between 33% and 81%.

Finally, we applied our model in the context of a real health care case

159

(COVID-19). Experiments conducted on a concrete COVID-19 dataset showed that

our solution achieves a good trade-off between detection accuracy and model execution

time compared to relevant existing approaches.

8.2 Contributions

A summary of this thesis contributions is as follows:

1. We proposed a hybrid approach, called Multi Label Classifier Chains Swarm

Intelligence (MLCCSI). This approach is based on two strategies. The first

strategy is the swarm intelligence, which we applied on the Ant Colony

Optimization (ACO) algorithm, Artificial Bee Colony (ABC) algorithm and,

Particle Swarm Optimization (PSO) algorithm to find the optimal resource

allocation for each task in the dynamic cloud system. Then, the second strategy

is the application of the machine learning algorithm (Classifier Chains) on

the results from the three algorithms, which generates a new hybrid model

considering the size of the tasks and the number of the virtual machines.

2. We put forward a comprehensive inter-cloud trust-aware scheduling mechanism

to increase the performance of big data services execution. The proposed trust

framework combines performance information related to the average heartbeat

response time, average heartbeat frequency ratio, and VMs resources utilization

to derive trust values for each VM. To study the performance of our proposed

trust framework, we introduced four machine learning approaches for automated

task scheduling in cloud computing environments. We studied and compared

the performance of these approaches and identified the best one in terms of

minimizing the task execution cost and delay.

160

3. We designed a trust establishment technique for IoT devices. The algorithm

monitors the CPU and memory consumption of the IoT devices and employs

a modified Z-score statistical method to identify the devices that exhibit any

abnormal behavior in terms of over-consumption or under-consumption.

4. We introduced DDQN-Trust, an algorithm that enables the edge servers

to find the optimal scheduling decisions in terms of energy efficiency and

trustworthiness. The algorithm is designed to solve the optimization problem

while modeling the uncertainty that the server faces regarding the resource and

trust levels of the IoT devices. We integrated four aggregation approaches,

namely FedAvg, FedProx, FedShare and FedSGD into our DDQN-Trust solution.

This is important to broaden the applicability of our solution to a wider set of

federated learning scenarios.

5. We proposed a multi-faceted approach which integrates federated transfer

learning, IoT, edge computing, trust management and DRL. We considered

the integration and interconnection among all these technologies for COVID-19

detection.

The first and second contributions are proposed to answer our first research

objective (Objective 1), which aims to guide the cloud choose the scheduling

technique by using multi criteria decision to optimize the performance. The second

and third contributions are contributing to answer our second research objective

(Objective 2), which is about enabling the edge servers to find the optimal scheduling

decisions in terms of trustworthiness. The third and fourth contributions answer our

third research objective (Objective 3), which targets the long-term dependencies

in the process of automating the scheduling of large-scale workloads onto cloud

computing resources. Finally, the fourth and fifth contributions aim to answer the

161

fourth research objective (Objective 4), which is about building a distributed and

automated big data scheduling model in the edge computing environments.

8.3 Directions for Future Work

The above-discussed thesis contributions are effective in solving some interesting

research gaps in the literature. However, some points still need further study and

investigation. We summarize in the following list the main persisting gaps that we

believe, based on our literature reviews, are worth investigating in the future:

• There is a need to develop and study task optimization scheduling algorithms

with different challenges such as migration and quality of service constraints.

This study will include investigating several machine learning techniques to

handle multi-label data such as k-nearest neighbors, decision trees, and neural

networks with consideration of other relevant metrics such as the capacity of

CPU, RAM, and bandwidth.

• The current federated learning scheduling models disregard the combination

between cybersecurity and trust based resource-aware problem in the formation

process. This raises the need to develop some security and resource-aware

formation solutions that guide each cloud provider to decide about assigning

the learning model to the trusted IoT devices based on resource availability and

security.

• The existing trust models in the domain of cloud computing are focusing only

on the trust relationships between edge servers and IoT devices but disregard

the trust relationships among the edge cloud’s internal components and between

the IoT devices. In this thesis, we made a first step toward investigating the

162

intra-cloud trust relationships by exploring the trust connections between the

edge servers and IoT devices. However, further efforts are needed to investigate

the relationships among the other components of the cloud centers (e.g., servers,

IoT devices ,databases, etc.).

• There is a need to build smarter detection and scheduling strategies, including

specific threat detection of patterns such as attack networks and trust

IoT devices based-resource availability. Deep reinforcement learning for the

detection of malicious behaviors combined with federated learning for a

distributed scheduling is a potential investigation path.

163

Bibliography

[1] SP Abirami and Shalini Ramanathan. Linear scheduling strategy for resource

allocation in cloud environment. International Journal on Cloud Computing:

Services and Architecture (IJCCSA), 2(1):9–17, 2012.

[2] Ali Al Buhussain, E Robson, and Azzedine Boukerche. Performance analysis

of bio-inspired scheduling algorithms for cloud environments. In Parallel and

Distributed Processing Symposium Workshops, 2016 IEEE International, pages

776–785. IEEE, 2016.

[3] Tran The Anh, Nguyen Cong Luong, Dusit Niyato, Dong In Kim, and Li-Chun

Wang. Efficient training management for mobile crowd-machine learning: A

deep reinforcement learning approach. IEEE Wireless Communications Letters,

8(5):1345–1348, 2019.

[4] Ioannis D Apostolopoulos and Tzani A Mpesiana. COVID-19: automatic

detection from x-ray images utilizing transfer learning with convolutional neural

networks. Physical and Engineering Sciences in Medicine, 34(4):98–105, 2020.

[5] Wei Bao, Dong Yuan, Zhengjie Yang, Shen Wang, Wei Li, Bing Bing Zhou, and

Albert Y Zomaya. Follow me fog: Toward seamless handover timing schemes in

a fog computing environment. IEEE Communications Magazine, 55(11):72–78,

2017.

164

[6] Enda Barrett, Enda Howley, and Jim Duggan. Applying reinforcement learning

towards automating resource allocation and application scalability in the cloud.

Concurrency and Computation: Practice and Experience, 25(12):1656–1674,

2013.

[7] Sayantani Basu, Marimuthu Karuppiah, K Selvakumar, Kuan-Ching Li,

SK Hafizul Islam, Mohammad Mehedi Hassan, and Md Zakirul Alam Bhuiyan.

An intelligent/cognitive model of task scheduling for iot applications in cloud

computing environment. Future Generation Computer Systems, 2018.

[8] Ahmed Saleh Bataineh, Jamal Bentahar, Rabeb Mizouni, Omar Abdel Wahab,

Gaith Rjoub, and May El Barachi. Cloud computing as a platform for

monetizing data services: A two-sided game business model. arXiv preprint

arXiv:2104.12762, 2021.

[9] Ahmed Saleh Bataineh, Jamal Bentahar, Omar Abdel Wahab, Rabeb Mizouni,

and Gaith Rjoub. A game-based secure trading of big data and iot

services: Blockchain as a two-sided market. In International Conference on

Service-Oriented Computing, pages 85–100. Springer, 2020.

[10] Ahmed Saleh Bataineh, Rabeb Mizouni, Jamal Bentahar, and May El Barachi.

Toward monetizing personal data: A two-sided market analysis. Future

Generation Computer Systems, 2019.

[11] Ahmed Saleh Bataineh, Rabeb Mizouni, Jamal Bentahar, and May El Barachi.

Toward monetizing personal data: A two-sided market analysis. Future

Generation Computer Systems, 111:435–459, 2020.

165

[12] Ahmed Saleh Bataineh, Rabeb Mizouni, May El Barachi, and Jamal Bentahar.

Monetizing personal data: a two-sided market approach. Procedia Computer

Science, 83:472–479, 2016.

[13] Upendra Bhoi, Purvi N Ramanuj, et al. Enhanced Max-Min task scheduling

algorithm in cloud computing. International Journal of Application or

Innovation in Engineering and Management (IJAIEM), 2(4):259–264, 2013.

[14] William M Bolstad and James M Curran. Introduction to Bayesian statistics.

John Wiley & Sons, 2016.

[15] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence: from

natural to artificial systems. Number 1. Oxford university press, 1999.

[16] George Michailidis BoonyarithSaovapakhiran and Michael Devetsikiotis.

Aggregated-dag scheduling for job flow maximization in heterogeneous cloud

computing. In Proc. IEEE Global Telecommunication Conference, Houston,

2011.

[17] George EP Box and George C Tiao. Bayesian inference in statistical analysis,

volume 40. John Wiley & Sons, 2011.

[18] Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioannis Ch

Paschalidis, and Wei Shi. Federated learning of predictive models from

federated electronic health records. International journal of medical informatics,

112:59–67, 2018.

[19] Luca Brunese, Francesco Mercaldo, Alfonso Reginelli, and Antonella Santone.

Explainable deep learning for pulmonary disease and coronavirus COVID-19

detection from X-rays. Computer Methods and Programs in Biomedicine,

196:105608, 2020.

166

[20] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros. Modeling and

simulation of scalable cloud computing environments and the cloudsim toolkit:

Challenges and opportunities. In High Performance Computing & Simulation,

2009. HPCS’09. International Conference on, pages 1–11. IEEE, 2009.

[21] Yi Cai, Zhutian Chen, and Huaqing Min. Improving particle swarm optimization

algorithm for distributed sensing and search. In P2P, Parallel, Grid, Cloud and

Internet Computing (3PGCIC), 2013 Eighth International Conference on, pages

373–379. IEEE, 2013.

[22] Rodrigo N Calheiros, Rajiv Ranjan, César AF De Rose, and Rajkumar Buyya.

Cloudsim: A novel framework for modeling and simulation of cloud computing

infrastructures and services. arXiv preprint arXiv:0903.2525, 2009.

[23] Huangning Chen and Wenzhong Guo. Real-time task scheduling algorithm

for cloud computing based on particle swarm optimization. In International

Conference on Cloud Computing and Big Data in Asia, pages 141–152. Springer,

2015.

[24] Huankai Chen, Frank Wang, Na Helian, and Gbola Akanmu. User-priority

guided Min-Min scheduling algorithm for load balancing in cloud computing.

In 2013 National Conference on Parallel computing technologies, pages 1–8.

National Conference on Parallel Computing Technologies, 2013.

[25] Mingzhe Chen, Zhaohui Yang, Walid Saad, Changchuan Yin, H Vincent Poor,

and Shuguang Cui. A joint learning and communications framework for

federated learning over wireless networks. arXiv preprint arXiv:1909.07972,

2019.

167

[26] Yuxia Cheng, Zhiwei Wu, Kui Liu, Qing Wu, and Yu Wang. Smart dag

tasks scheduling between trusted and untrusted entities using the mcts method.

Sustainability, 11(7):1826, 2019.

[27] Rodrigo Fernandes de Mello, Luciano Jose Senger, and Laurence Tianruo Yang.

A routing load balancing policy for grid computing environments. In Advanced

Information Networking and Applications, 2006. AINA 2006. 20th International

Conference on, volume 1, pages 6–pp. IEEE, 2006.

[28] Canh T Dinh, Nguyen H Tran, Minh NH Nguyen, Choong Seon Hong,

Wei Bao, Albert Y Zomaya, and Vincent Gramoli. Federated learning over

wireless networks: Convergence analysis and resource allocation. IEEE/ACM

Transactions on Networking, 2020.

[29] Abhishek Dixit, Ashish Mani, and Rohit Bansal. CoV2-Detect-Net: Design of

COVID-19 prediction model based on hybrid DE-PSO with SVM using chest

X-ray images. Information Sciences, 2021.

[30] Tingting Dong, Fei Xue, Chuangbai Xiao, and Juntao Li. Task scheduling

based on deep reinforcement learning in a cloud manufacturing environment.

Concurrency and Computation: Practice and Experience, page e5654, 2020.

[31] Nagat Drawel, Jamal Bentahar, Amine Laarej, and Gaith Rjoub. Formalizing

group and propagated trust in multi-agent systems. In IJCAI, pages 60–66,

2020.

[32] Ke-Lin Du and MNS Swamy. Particle swarm optimization. In Search and

Optimization by Metaheuristics, pages 153–173. Springer, 2016.

168

[33] Amir Gandomi and Murtaza Haider. Beyond the hype: Big data concepts,

methods, and analytics. International journal of information management,

35(2):137–144, 2015.

[34] Abdullah Gani, Aisha Siddiqa, Shahaboddin Shamshirband, and Fariza Hanum.

A survey on indexing techniques for big data: taxonomy and performance

evaluation. Knowledge and information systems, 46(2):241–284, 2016.

[35] Seymour Geisser. Predictive inference. Routledge, 2017.

[36] Alan E Gelfand. Gibbs sampling. Journal of the American statistical

Association, 95(452):1300–1304, 2000.

[37] Einollah Jafarnejad Ghomi, Amir Masoud Rahmani, and Nooruldeen Nasih

Qader. Load-balancing algorithms in cloud computing: A survey. Journal of

Network and Computer Applications, 88:50–71, 2017.

[38] B Gomathi, Karthikeyan Krishnasamy, and B Saravana Balaji. Epsilon-fuzzy

dominance sort-based composite discrete artificial bee colony optimisation

for multi-objective cloud task scheduling problem. International Journal of

Business Intelligence and Data Mining, 13(1-3):247–266, 2018.

[39] David F Groebner, Patrick W Shannon, Phillip C Fry, and Kent D Smith.

Business statistics: A decision making approach. Prentice Hall/Pearson, 2011.

[40] Daniel Grzonka, Agnieszka Jakobik, Joanna Kołodziej, and Sabri Pllana. Using

a multi-agent system and artificial intelligence for monitoring and improving

the cloud performance and security. Future Generation Computer Systems,

86:1106–1117, 2018.

169

[41] Manish Gupta and Govind Sharma. An efficient modified artificial bee

colony algorithm for job scheduling problem. In International Journal of

Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-1, Issue6.

Citeseer, 2012.

[42] Ahmad Hammoud, Azzam Mourad, Hadi Otrok, Omar Abdel Wahab, and

Haidar Harmanani. Cloud federation formation using genetic and evolutionary

game theoretical models. Future Generation Computer Systems, 104:92–104,

2020.

[43] Yaojun Han and Xuemei Luo. An effective algorithm and modeling for

information resources scheduling in cloud computing. In Advanced Cloud and

Big Data (CBD), 2013 International Conference on, pages 14–19. IEEE, 2013.

[44] Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah

Mokhtar, Abdullah Gani, and Samee Ullah Khan. The rise of “big data”

on cloud computing: Review and open research issues. Information systems,

47:98–115, 2015.

[45] Hamdan Hejazi, Husam Rajab, Tibor Cinkler, and László Lengyel. Survey of

platforms for massive iot. In 2018 IEEE International Conference on Future

IoT Technologies (Future IoT), pages 1–8. IEEE, 2018.

[46] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D

Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for

fine-grained resource sharing in the data center. In NSDI, volume 11, pages

22–22, 2011.

[47] Chenghao Hu, Jingyan Jiang, and Zhi Wang. Decentralized federated learning:

A segmented gossip approach. arXiv preprint arXiv:1908.07782, 2019.

170

[48] Shihong Hu and Guanghui Li. Dynamic request scheduling optimization in

mobile edge computing for IoT applications. IEEE Internet of Things Journal,

7(2):1426–1437, 2019.

[49] Rob J Hyndman and Yanan Fan. Sample quantiles in statistical packages. The

American Statistician, 50(4):361–365, 1996.

[50] Boris Iglewicz and David Caster Hoaglin. How to detect and handle outliers,

volume 16. Asq Press, 1993.

[51] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition

letters, 31(8):651–666, 2010.

[52] Dervis Karaboga. An idea based on honey bee swarm for numerical optimization.

Technical report, Technical report-tr06, Erciyes university, engineering faculty,

computer engineering department, 2005.

[53] Dervis Karaboga and Bahriye Basturk. On the performance of artificial bee

colony (abc) algorithm. Applied soft computing, 8(1):687–697, 2008.

[54] Wazir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar Yaqoob, and Arif Ahmed.

Edge computing: A survey. Future Generation Computer Systems, 97:219–235,

2019.

[55] P Venkata Krishna. Honey bee behavior inspired load balancing of tasks in cloud

computing environments. Applied Soft Computing, 13(5):2292–2303, 2013.

[56] Dhinesh Babu LD and P Venkata Krishna. Honey bee behavior inspired load

balancing of tasks in cloud computing environments. Applied Soft Computing,

13(5):2292–2303, 2013.

171

[57] Suk Kyu Lee, Mungyu Bae, and Hwangnam Kim. Future of iot networks: A

survey. Applied Sciences, 7(10):1072, 2017.

[58] Lei Lei, Huijuan Xu, Xiong Xiong, Kan Zheng, and Wei Xiang. Joint

computation offloading and multiuser scheduling using approximate dynamic

programming in NB-IoT edge computing system. IEEE Internet of Things

Journal, 6(3):5345–5362, 2019.

[59] Jiayin Li, Meikang Qiu, Zhong Ming, Gang Quan, Xiao Qin, and Zonghua Gu.

Online optimization for scheduling preemptable tasks on iaas cloud systems.

Journal of Parallel and Distributed Computing, 72(5):666–677, 2012.

[60] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,

and Virginia Smith. Federated optimization in heterogeneous networks. arXiv

preprint arXiv:1812.06127, 2018.

[61] Yibin Li, Keke Gai, Longfei Qiu, Meikang Qiu, and Hui Zhao. Intelligent

cryptography approach for secure distributed big data storage in cloud

computing. Information Sciences, 387:103–115, 2017.

[62] Tianjun Liao, Thomas Stützle, Marco A Montes de Oca, and Marco Dorigo. A

unified ant colony optimization algorithm for continuous optimization. European

Journal of Operational Research, 234(3):597–609, 2014.

[63] Chun-Yan Liu, Cheng-Ming Zou, and Pei Wu. A task scheduling algorithm

based on genetic algorithm and ant colony optimization in cloud computing. In

Distributed Computing and Applications to Business, Engineering and Science

(DCABES), 2014 13th International Symposium on, pages 68–72. IEEE, 2014.

[64] Ning Liu, Zhe Li, Jielong Xu, Zhiyuan Xu, Sheng Lin, Qinru Qiu, Jian Tang,

and Yanzhi Wang. A hierarchical framework of cloud resource allocation and

172

power management using deep reinforcement learning. In Distributed Computing

Systems (ICDCS), 2017 IEEE 37th International Conference on, pages 372–382.

IEEE, 2017.

[65] Yongkui Liu, Xun Xu, Lin Zhang, Long Wang, and Ray Y Zhong.

Workload-based multi-task scheduling in cloud manufacturing. Robotics and

Computer-Integrated Manufacturing, 45:3–20, 2017.

[66] Manuel Lopez-Martin, Belen Carro, and Antonio Sanchez-Esguevillas.

Application of deep reinforcement learning to intrusion detection for supervised

problems. Expert Systems with Applications, 141:112963, 2020.

[67] Liuyang Lu, Yanxiang Jiang, Mehdi Bennis, Zhiguo Ding, Fu-Chun Zheng,

and Xiaohu You. Distributed edge caching via reinforcement learning in fog

radio access networks. In 2019 IEEE 89th Vehicular Technology Conference

(VTC2019-Spring), pages 1–6. IEEE 89th Vehicular Technology Conference

(VTC2019-Spring), 2019.

[68] Xin Lu and Zilong Gu. A load-adapative cloud resource scheduling model based

on ant colony algorithm. In 2011 IEEE International Conference on Cloud

Computing and Intelligence Systems, pages 296–300. IEEE, 2011.

[69] Fei Luo, Ye Yuan, Weichao Ding, and Haifeng Lu. An improved particle swarm

optimization algorithm based on adaptive weight for task scheduling in cloud

computing. In Proceedings of the 2nd International Conference on Computer

Science and Application Engineering, page 142. ACM, 2018.

[70] Juan Luo, Luxiu Yin, Jinyu Hu, Chun Wang, Xuan Liu, Xin Fan, and

Haibo Luo. Container-based fog computing architecture and energy-balancing

173

scheduling algorithm for energy IoT. Future Generation Computer Systems,

97:50–60, 2019.

[71] Siva Theja Maguluri, R Srikant, and Lei Ying. Stochastic models of load

balancing and scheduling in cloud computing clusters. In INFOCOM, 2012

Proceedings IEEE, pages 702–710. IEEE, 2012.

[72] Najme Mansouri, Behnam Mohammad Hasani Zade, and Mohammad Masoud

Javidi. Hybrid task scheduling strategy for cloud computing by modified particle

swarm optimization and fuzzy theory. Computers & Industrial Engineering,

130:597–633, 2019.

[73] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. Communication-efficient learning of deep networks from

decentralized data. In Artificial Intelligence and Statistics, pages 1273–1282.

PMLR, 2017.

[74] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K

Fidjeland, Georg Ostrovski, et al. Human-level control through deep

reinforcement learning. Nature, 518(7540):529–533, 2015.

[75] Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer,

2018.

[76] Huy T Nguyen, Nguyen Cong Luong, Jun Zhao, Chau Yuen, and Dusit Niyato.

Resource allocation in mobility-aware federated learning networks: A deep

reinforcement learning approach. arXiv preprint arXiv:1910.09172, 2019.

174

[77] Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with

heterogeneous resources in mobile edge. In IEEE International Conference on

Communications (ICC), pages 1–7, 2019.

[78] Liwei Ouyang, Yong Yuan, Yumeng Cao, and Fei-Yue Wang. A novel framework

of collaborative early warning for COVID-19 based on blockchain and smart

contracts. Information Sciences, 570:124–143, 2021.

[79] Chandrashekhar S Pawar and Rajnikant B Wagh. Priority based dynamic

resource allocation in cloud computing. In Cloud and Services Computing

(ISCOS), 2012 International Symposium on, pages 1–6. IEEE, 2012.

[80] Zhiping Peng, Jianpeng Lin, Delong Cui, Qirui Li, and Jieguang He. A

multi-objective trade-off framework for cloud resource scheduling based on the

deep Q-network algorithm. Cluster Computing, pages 1–15, 2020.

[81] Feng Qiu, Bin Zhang, and Jun Guo. A deep learning approach for vm

workload prediction in the cloud. In 2016 17th IEEE/ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD), pages 319–324. IEEE, 2016.

[82] Fahimeh Ramezani, Jie Lu, and Farookh Hussain. Task scheduling optimization

in cloud computing applying multi-objective particle swarm optimization.

In International Conference on Service-Oriented Computing, pages 237–251.

Springer, 2013.

[83] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier

chains for multi-label classification. Machine learning, 85(3):333–359, 2011.

[84] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Google cluster-usage

traces: format + schema. Technical report, Google Inc., Mountain View, CA,

175

USA, November 2011. Revised 2014-11-17 for version 2.1. Posted at https:

//github.com/google/cluster-data.

[85] John W Rittinghouse and James F Ransome. Cloud computing:

implementation, management, and security. CRC press, 2016.

[86] Gaith Rjoub and Jamal Bentahar. Cloud task scheduling based on swarm

intelligence and machine learning. In 2017 IEEE 5th International Conference

on Future Internet of Things and Cloud (FiCloud), pages 272–279. IEEE, 2017.

[87] Gaith Rjoub, Jamal Bentahar, Omar Abdel Wahab, and Ahmed Saleh Bataineh.

Deep and reinforcement learning for automated task scheduling in large-scale

cloud computing systems. Concurrency and Computation: Practice and

Experience, page e5919, 2020.

[88] Gaith Rjoub, Jamal Bentahar, and Omar Abdel Wahab. Bigtrustscheduling:

Trust-aware big data task scheduling approach in cloud computing

environments. Future Generation Computer Systems, 110:1079–1097, 2020.

[89] Gaith Rjoub, Jamal Bentahar, Omar Abdel Wahab, and Ahmed Bataineh. Deep

smart scheduling: A deep learning approach for automated big data scheduling

over the cloud. In 2019 7th International Conference on Future Internet of

Things and Cloud (FiCloud), pages 189–196. IEEE, 2019.

[90] Gaith Rjoub, Omar Abdel Wahab, Jamal Bentahar, and Ahmed Bataineh.

A trust and energy-aware double deep reinforcement learning scheduling

strategy for federated learning on iot devices. In International Conference on

Service-Oriented Computing, pages 319–333. Springer, 2020.

[91] Gaith Rjoub, Omar Abdel Wahab, Jamal Bentahar, and Ahmed Saleh Bataineh.

Improving autonomous vehicles safety in snow weather using federated yolo cnn

176

https://github.com/google/cluster-data
https://github.com/google/cluster-data

learning. In Mobile Web and Intelligent Information Systems, pages 121–134.

Springer International Publishing, 2021.

[92] Katty Rohoden, Rebeca Estrada, Hadi Otrok, and Zbigniew Dziong. Stable

femtocells cluster formation and resource allocation based on cooperative game

theory. Computer Communications, 134:30–41, 2019.

[93] Ola Salman, Imad Elhajj, Ali Chehab, and Ayman Kayssi. Iot survey: An sdn

and fog computing perspective. Computer Networks, 143:221–246, 2018.

[94] M Schroeck, R Shockley, J Smart, D Romero-Morales, and P Tufano. Analytics:

the real-world use of big data: How innovative enterprises extract value from

uncertain data, executive report. IBM Institute for Business Value and Said

Business School at the University of Oxford, 2012.

[95] S Selvarani and G Sudha Sadhasivam. Improved cost-based algorithm for task

scheduling in cloud computing. In Computational intelligence and computing

research (iccic), 2010 ieee international conference on, pages 1–5. IEEE, 2010.

[96] Mohit Sewak. Deep q network (dqn), double dqn, and dueling dqn. In Deep

Reinforcement Learning, pages 95–108. Springer, 2019.

[97] Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient

distributed optimization using an approximate newton-type method. In

International conference on machine learning, pages 1000–1008. PMLR, 2014.

[98] Usman Shaukat, Ejaz Ahmed, Zahid Anwar, and Feng Xia. Cloudlet deployment

in local wireless networks: Motivation, architectures, applications, and open

challenges. Journal of Network and Computer Applications, 62:18–40, 2016.

177

[99] Sukhpal Singh and Inderveer Chana. Qos-aware autonomic resource

management in cloud computing: a systematic review. ACM Computing Surveys

(CSUR), 48(3):42, 2016.

[100] A Sathya Sofia and P GaneshKumar. Multi-objective task scheduling to

minimize energy consumption and makespan of cloud computing using nsga-ii.

Journal of Network and Systems Management, 26(2):463–485, 2018.

[101] Binbin Song, Yao Yu, Yu Zhou, Ziqiang Wang, and Sidan Du. Host load

prediction with long short-term memory in cloud computing. The Journal of

Supercomputing, 74(12):6554–6568, 2018.

[102] Borja Sotomayor, Rubén S Montero, Ignacio M Llorente, and Ian Foster.

Virtual infrastructure management in private and hybrid clouds. IEEE Internet

computing, 13(5), 2009.

[103] J Angela Jennifa Sujana, M Geethanjali, R Venitta Raj, and T Revathi. Trust

model based scheduling of stochastic workflows in cloud and fog computing.

In Cloud Computing for Geospatial Big Data Analytics, pages 29–54. Springer,

2019.

[104] Yaohua Sun, Mugen Peng, and Shiwen Mao. Deep reinforcement learning-based

mode selection and resource management for green fog radio access networks.

IEEE Internet of Things Journal, 6(2):1960–1971, 2018.

[105] Richard S Sutton and Andrew G Barto. Reinforcement learning: An

introduction. MIT press, 2018.

[106] Mona Taghavi, Jamal Bentahar, and Hadi Otrok. Two-stage game theoretical

framework for iaas market share dynamics. Future Generation Computer

Systems, 102:173–189, 2020.

178

[107] Medhat A Tawfeek, Ashraf El-Sisi, Arabi E Keshk, and Fawzy A Torkey. Cloud

task scheduling based on ant colony optimization. In Computer Engineering &

Systems (ICCES), 2013 8th International Conference on, pages 64–69. IEEE,

2013.

[108] Preeti Thakur and Manish Mahajan. Different scheduling algorithm in cloud

computing: A survey. International Journal of modern computer science, 5(1),

2017.

[109] Evangelos Triantaphyllou. Multi-criteria decision making methods. In

Multi-criteria decision making methods: A comparative study, pages 5–21.

Springer, 2000.

[110] Jinn-Tsong Tsai, Jia-Cen Fang, and Jyh-Horng Chou. Optimized task

scheduling and resource allocation on cloud computing environment using

improved differential evolution algorithm. Computers & Operations Research,

40(12):3045–3055, 2013.

[111] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal,

Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,

Siddharth Seth, et al. Apache hadoop yarn: Yet another resource negotiator. In

Proceedings of the 4th annual Symposium on Cloud Computing, page 5. ACM,

2013.

[112] Omar Abdel Wahab, Jamal Bentahar, Hadi Otrok, and Azzam Mourad.

Optimal load distribution for the detection of vm-based ddos attacks in the

cloud. IEEE Transactions on Services Computing, (1):1–1, 2017.

179

[113] Omar Abdel Wahab, Robin Cohen, Jamal Bentahar, Hadi Otrok, Azzam

Mourad, and Gaith Rjoub. An endorsement-based trust bootstrapping approach

for newcomer cloud services. Information Sciences, 2020.

[114] Omar Abdel Wahab, Nadjia Kara, Claes Edstrom, and Yves Lemieux. MAPLE:

A machine learning approach for efficient placement and adjustment of virtual

network functions. Journal of Network and Computer Applications, 142:37–50,

2019.

[115] Omar Abdel Wahab, Azzam Mourad, Hadi Otrok, and Tarik Taleb. Federated

machine learning: Survey, multi-level classification, desirable criteria and future

directions in communication and networking systems. IEEE Communications

Surveys & Tutorials, 2021.

[116] Wei Wang, Guosun Zeng, Daizhong Tang, and Jing Yao. Cloud-dls: Dynamic

trusted scheduling for cloud computing. Expert Systems with Applications,

39(3):2321–2329, 2012.

[117] Tom White. Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.

[118] John Wilkes. More Google cluster data. Google research blog,

November 2011. Posted at http://googleresearch.blogspot.com/2011/11/

more-google-cluster-data.html.

[119] Chao-Tung Yang, Jung-Chun Liu, Ching-Hsien Hsu, and Wei-Li Chou. On

improvement of cloud virtual machine availability with virtualization fault

tolerance mechanism. The Journal of Supercomputing, 69(3):1103–1122, 2014.

[120] Chaowei Yang, Qunying Huang, Zhenlong Li, Kai Liu, and Fei Hu. Big data

and cloud computing: innovation opportunities and challenges. International

Journal of Digital Earth, 10(1):13–53, 2017.

180

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

[121] Hai Yang. Improved ant colony algorithm based on pso and its application on

cloud computing resource scheduling. In Advanced Materials Research, volume

989, pages 2192–2195. Trans Tech Publ, 2014.

[122] Jiachen Yang, Bin Jiang, Zhihan Lv, and Kim-Kwang Raymond Choo. A task

scheduling algorithm considering game theory designed for energy management

in cloud computing. Future Generation computer systems, 2017.

[123] Jiachen Yang, Bin Jiang, Zhihan Lv, and Kim-Kwang Raymond Choo. A task

scheduling algorithm considering game theory designed for energy management

in cloud computing. Future Generation Computer Systems, 105:985–992, 2020.

[124] Yuli Yang and Xinguang Peng. Trust-based scheduling strategy for workflow

applications in cloud environment. In P2P, Parallel, Grid, Cloud and

Internet Computing (3PGCIC), 2013 Eighth International Conference on, pages

316–320. IEEE, 2013.

[125] Dingdong Yi, Xinran Li, and Jun S Liu. Bayesian aggregation of rank data with

covariates and heterogeneous rankers. arXiv preprint arXiv:1607.06051, 2016.

[126] Lamia Youseff, Maria Butrico, and Dilma Da Silva. Toward a unified ontology of

cloud computing. In Grid Computing Environments Workshop, 2008. GCE’08,

pages 1–10. IEEE, 2008.

[127] Yanlong Zhai, Tianhong Bao, Liehuang Zhu, Meng Shen, Xiaojiang Du, and

Mohsen Guizani. Toward reinforcement-learning-based service deployment of

5g mobile edge computing with request-aware scheduling. IEEE Wireless

Communications, 27(1):84–91, 2020.

181

[128] Shaobin Zhan and Hongying Huo. Improved pso-based task scheduling

algorithm in cloud computing. Journal of Information & Computational

Science, 9(13):3821–3829, 2012.

[129] PeiYun Zhang and MengChu Zhou. Dynamic cloud task scheduling based on a

two-stage strategy. IEEE Transactions on Automation Science and Engineering,

15(2):772–783, 2018.

[130] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and

Vikas Chandra. Federated learning with non-iid data. arXiv preprint

arXiv:1806.00582, 2018.

[131] Gao Zhong-wen and Zhang Kai. The research on cloud computing resource

scheduling method based on time-cost-trust model. In Computer Science and

Network Technology (ICCSNT), 2012 2nd International Conference on, pages

939–942. IEEE, 2012.

[132] Zhou Zhou, Fangmin Li, Huaxi Zhu, Houliang Xie, Jemal H Abawajy, and

Morshed U Chowdhury. An improved genetic algorithm using greedy strategy

toward task scheduling optimization in cloud environments. Neural Computing

and Applications, pages 1–11, 2019.

[133] Xingquan Zuo, Guoxiang Zhang, and Wei Tan. Self-adaptive learning pso-based

deadline constrained task scheduling for hybrid iaas cloud. IEEE Transactions

on Automation Science and Engineering, 11(2):564–573, 2014.

182

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Context of Research
	Research Questions
	Research Objectives and Contributions
	Thesis Organization

	Research Background
	Background
	Literature Review and Discussions

	Cloud Task Scheduling based on Artificial Intelligence
	Swarm Intelligence
	Performance Evaluation
	Conclusion

	Trust-aware Big Data Task Scheduling Approach in Cloud Computing Environments
	An Overview of The Proposed Approach (BigTrustScheduling)
	Problem Definition
	BigTrustScheduling: Description of the Proposed Trust-Aware Scheduling Approach
	 Experiments and Empirical Analysis

	Deep and Reinforcement Learning for Automated Task Scheduling in Large-Scale Cloud Computing Systems
	An Overview of The Proposed Approach
	Experiments and Empirical Analysis
	Conclusion

	Trust-driven Reinforcement Selection Strategy for Federated Learning on IoT Devices
	Trust-Aware IoT Scheduling for Federated Learning
	Experimental Results and Analysis
	Conclusion

	COVID-FED: Applying Smart Scheduling Approach in the Healthcare Domain
	Problem Formulation
	COVID-FED Description
	Experimental Results and Analysis
	Conclusion

	Conclusion
	Summary and Discussion
	Contributions
	Directions for Future Work

	Bibliography

