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Abstract

The Painlevé II hierarchy : geometry and applications

Sofia Tarricone, Ph.D.
Concordia University, 2021

The Painlevé II hierarchy is a sequence of nonlinear ODEs, with the Painlevé II equation
as first member. Each member of the hierarchy admits a Lax pair in terms of isomonodromic
deformations of a rank 2 system of linear ODEs, with polynomial coefficient for the
homogeneous case. It was recently proved that the Tracy-Widom formula for the Hastings-
McLeod solution of the homogeneous PII equation can be extended to analogue solutions
of the homogeneous PII hierarchy using Fredholm determinants of operators acting through
higher order Airy kernels. These integral operators are used in the theory of determinantal
point processes with applications in statistical mechanics and random matrix theory. From
this starting point, this PhD thesis explored the following directions. We found a formula
of Tracy-Widom type connecting the Fredholm determinants of operators acting through
matrix-valued analogues of the higher order Airy kernels with particular solution of a matrix-
valued PII hierarchy. The result is achieved by using a matrix-valued Riemann-Hilbert
problem to study these Fredholm determinants and by deriving a block-matrix Lax pair for
the relevant hierarchy. We also found another generalization of the Tracy-Widom formula,
this time relating the Fredholm determinants of finite-temperature versions of higher order
Airy kernels operators to particular solutions of an integro-differential Painlevé II hierarchy.
In this setting, a suitable operator-valued Riemann-Hilbert problem is used to study the
relevant Fredholm determinant. The study of its solution produces in the end an operator-
valued Lax pair that naturally encodes an integro-differential Painlevé II hierarchy. From
a more geometrical point of view, we analyzed the Poisson-symplectic structure of the
monodromy manifolds associated to a system of linear ODEs with polynomial coefficient, also
known as Stokes manifolds. For the rank 2 case, we found explicit log-canonical coordinates
for the symplectic 2-form, forming a cluster algebra of specific type. Moreover, the log-
canonical coordinates constructed in this way provide a linearization of the Poisson structure
on the Stokes manifolds, first introduced by Flaschka and Newell in their pioneering work of
1981.
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Abbasso il nove

Uno scolaro faceva le divisioni:
- Il tre nel tredici sta quattro volte con l’avanzo di uno. Scrivo quattro al
quoto. Tre per quattro dodici, al tredici uno. Abbasso il nove...
- Ah no, - gridò a questo punto il nove.
- Come? - domandò lo scolaro.
- Tu ce l’hai con me: perché hai gridato «abbasso il nove»? Che cosa ti
ho fatto di male? Sono forse un nemico pubblico?
- Ma io...
- Ah, lo immagino bene, avrai la scusa pronta. Ma a me non mi va giù lo
stesso. Grida «abbasso il brodo di dadi», «abbasso lo sceriffo», e magari
anche «abbasso l’aria fritta», ma perché proprio «abbasso il nove»?
- Scusi, ma veramente...
- Non interrompere, è cattiva educazione. Sono una semplice cifra, e
qualsiasi numero di due cifre mi può mangiare il risotto in testa, ma anch’io
ho la mia dignità e voglio essere rispettato. Prima di tutto dai bambini che
hanno ancora il moccio al naso. Insomma, abbassa il tuo naso, abbassa
gli avvolgibili, ma lasciami stare.
Confuso e intimidito, lo scolaro non abbassò il nove, sbagliò la divisione e
si prese un brutto voto. Eh, qualche volta non è proprio il caso di essere
troppo delicati.

(Gianni Rodari, Favole al telefono.)
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Chapter 1

Introduction

Painlevé equations arose more than one century ago as the solution of a classification problem
in ODE theory first posed by Picard ([95]). His aim was to describe all second order
ordinary differential equations of a certain prescribed form, for which the solutions have no
movable critical points. This property, also known as the Painlevé property, allows indeed to
define new functions as the general solutions of these differential equations. The subsequent
studies of Painlevé, Fuchs and Gambier ([94, 42, 44]) finally produced a compact list with
only six equations satisfying the required properties and for which the general solutions
cannot be written in terms of known special functions. All the other equations fulfilling
Picard’s requirements were shown to be either solvable in terms of known special functions
or reduced to one among the six in the list. Nowadays, we call this list of second order
nonlinear ordinary differential equations the Painlevé equations, see equations (2.1.1)-(2.1.6).
Their solutions, called Painlevé transcendents, are classified as new nonlinear transcendental
functions and added to the list of the classical special functions (together with the Bessel,
Airy, hypergeometric, elliptic functions etc.). The study of their properties increased together
with their appearance in different domains involving nonlinear phenomena. During the last
fifty years Painlevé equations have been found in connection with many different areas
of mathematics and physics thus stimulating their study from many different points of
view. Among the physical literature, Painlevé equations appeared in different models of
statistical mechanics and quantum field theory ([9, 65, 25] some classical examples and
[81, 75] more recent ones particularly related to this thesis). In mathematics, new connections
with orthogonal polynomials ([108] a classical reference), random matrices ([102, 104] and
subsequent literature) and random growth models (e.g. [41, 5]) are discovered still these
days.
Going back in time, one of the first aspects of Painlevé equations to be studied was the
dependence of their solutions on the parameters appearing in the coefficients of the equations.
It is worth to notice that each of the six equations, apart from the first one, actually depend
on some complex parameters (and up to 4 independent ones). For particular choices of
the values of these parameters, it is actually possible to construct explicit solutions of the
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Painlevé equations in terms of known special or elementary functions. Take the simplest
scenario, when there is only one extra parameter. This is indeed realized by our case of
interest, the Painlevé II equation

d2w

dz2 = 2w3 + wz + α, for w = w(z), α ∈ C. (1.0.1)

It was first shown by Airault in [4] that for nonzero integer values and semi-integer values of
α, the Painlevé II equation admits respectively rational solutions and solutions in terms of the
classical Airy function (her results are written in Theorem 2.1.1, 2.1.2). Intriguingly enough,
the case α = 0 does not fit in either of these classes of solutions. This special case was first
handled by Hastings and McLeod in [56] together with specific boundary conditions. The
solution of their boundary value problem, known as the Hastings-McLeod solution (details
are written in Theorem 2.1.5), appeared some years later in relation with random matrix
theory (in the same paper [102] cited above). This result (stated in Theorem 2.1.7), that
goes under the name of the Tracy-Widom formula, is just one example among many others
describing connections between Painlevé transcendents and the theory of determinantal point
processes (that in this specific case applies to random matrix theory). The proof of their
formula followed from a study of the properties of the well known Airy kernel. In particular,
they proved that the Fredholm determinant of the integral operator acting through the Airy
kernel is expressed in terms of the Hastings-McLeod solution of the Painlevé II equation. This
Fredholm determinant was already known to express the edge scaling limit of the probability
distribution of the largest eigenvalue for the Gaussian Unitary Ensamble (e.g. [40]), thus
providing the bridge between random matrix theory and Painlevé transcendents.
Among the many interesting aspects of the Painlevé II equation, in this work we will be
particularly interested in these two: its relation with the modified Korteg-De Vries equation
and its isomonodromic representation. In a certain way, the first one defines the object
at the basis of our study, namely the Painlevé II hierarchy, and the second one gives us
the main tool to handle it. The link between the Painlevé II hierarchy and isomonodromic
deformations theory was deeply studied in the two subsequent papers of Flaschka and Newell
[36, 37] in the eighties, and their work provides in some sense the basis of our work, from
both an analytical and a geometrical point of view.
Painlevé equations in general are known to be reduction of integrable (and non) PDEs [1]
such as the Korteg De Vries equation, the nonlinear Schroedinger equation and the sine-
Gordon equation just to cite some of them. As for the Painlevé II equation, it is obtained
as self-similarity reduction of the modified Korteg De Vries equation. This means that while
seeking for solutions of the modified KdV equation

vt + vxxx − 6v2vx = 0, (1.0.2)

2



of the type
v(t, x) := w(z)

(3t) 1
3

with z := x

(3t) 1
3
, (1.0.3)

one obtains exactly that w(z) solves the Painlevé II equation (1.0.1) with α determined as
constant of integration (for more details see [1]). This connection is particularly relevant
since it allows to define the so called higher order analogues of the Painlevé II equation.
Indeed, in the study of integrable PDEs, for which the most prominent example is indeed
the Korteg De Vries equation, one can often construct in natural way higher order equations
that commute among themselves (see [89] for the KdV case). The sequence of equations
obtained in this way is the hierarchy associated to the relevant PDE. In our case of interest,
starting from the modified KdV hierarchy (2.2.12), which construction is induced by the
one of the KdV hierarchy (2.2.8) via a Miura transformation, one can apply a self-similarity
reduction (similar to the one defining the reduction of the modified KdV equation to the
Painlevé II equation) to all the other members of the modified KdV hierarchy. This procedure
results in a sequence of nonlinear ordinary differential equations of increasing order, the first
being the Painlevé II equation (1.0.1). Their collection is called the Painlevé II hierarchy
(and it is compactly written in equation (2.2.22)).
The relation between Painlevé equations and isomonodromic deformations was first
investigated in great generality by the Japanese school in a series of papers [66, 63, 64]
and, almost simultaneously, but with specific focus on the Painlevé II case by Flaschka and
Newell in [36, 37]. Essentially, isomonodromic deformations describes (for generic rank N)
all possible linear system of ODEs

dΨ
dλ

= A(λ)Ψ (1.0.4)

with A(λ) a rational matrix with fixed number of poles each one with fixed multiplicity,
sharing the same set of essential monodromy data. This set of data is composed by some
matrices that partially describes the local behaviors of the solution Ψ near the singularities
of the matrix coefficient A(λ). It turned out that this description can be made by looking at
the coefficient matrix A(λ) as depending on certain extra parameters A(λ, s)∗, and studying
the variations w.r.t. these parameters that preserve the required set of data. One of the main
results proved in [66] was that these monodromy preserving deformations are equivalent to
some nonlinear equations that the entries of the matrix coefficient A(λ) should solve, w.r.t.
the deformation parameters. For certain specific cases (choosing number and type of poles),
these nonlinear equations coincide with the Painlevé equations. In the modern language, this
result is usually stated as the fact that Painlevé equations admit Lax pair representations in
terms of isomonodromic deformations. This means that for each of them there exist a pair
of matrices A(λ, s), L(λ, s) such that the compatibility condition of the system

dΨ
dλ

= A(λ, s)Ψ, dΨ
ds

= L(λ, s)Ψ, (1.0.5)

∗In general s could be either a scalar or a finite dimensional vector of independent parameters.
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i.e. the equation obtained by cross-differentiation

dA

ds
− dL

dλ
+ [A,L] = 0, (1.0.6)

is equivalent to the relevant Painlevé equation. The existence of Lax pairs for the Painlevé
equations allows from a certain perspective to put them into the wide framework of Integrable
Systems.
For what concerns the Painlevé II equation (1.0.1), there are actually two independent† rank
two Lax pairs: one with only one irregular singularity at ∞ and a regular one at 0 (the
Flaschka-Newell Lax pair [36]) and one with only one irregular singularity at ∞ (the Jimbo-
Miwa-Ueno Lax pair [66]). Some years ago, the work [30] proved that every higher order
analogue of the Painlevé II equation admits an isomonodromic Lax pair, that generalizes the
Flaschka-Newell one. This is indeed very useful in our studies.
With this panorama in mind, the thesis explored the following directions. On the one hand,
we found generalizations of the Tracy-Widom formula for some solutions of new Painlevé
II equations, in particular matrix-valued and integro-differential higher order analogues, in
correspondence with the Fredholm determinants of higher order, matrix-valued and finite-
temperature, generalizations of the Airy kernel. Motivations include, but they are not
limited to, the fact that these generalizations of the Airy kernel can be used in the theory
of determinantal point processes (e.g. [16]), and also in statistical mechanics and random
matrix theory (e.g. [81, 5, 68]). The detailed results are stated in Corollary 6.0.2 in Chapter 6
for the matrix-valued case and in Theorem 7.0.7 in Chapter 7 for the finite-temperature case.
In order to obtain both of these results, the existence of a Lax pair for the matrix-valued
and the integro-differential Painlevé II hierarchies, studied in Chapter 6 and 7 respectively,
is fundamental. Their Lax representations are indeed the keys to pass from the study of the
relevant generalizations of the Airy kernel, via a Riemann-Hilbert approach, to the definition
of some particular solutions of the Painlevé II hierarchy involved. The methodology used
in both cases is very similar, even though the one in Chapter 7 is more technical than the
one in Chapter 6, and it relies on the well known theory of IIKS integrable operators [60].
This theory can be indeed used or generalized for the study of the Fredholm determinants of
the higher order, matrix-valued and finite temperature, analogues of the Airy kernel we are
interested in. The fundamental idea is to associate a parametric Riemann-Hilbert problem
to the prescribed operator and to study its Fredholm determinant through it. At the same
time, the solution of the relevant Riemann-Hilbert problem can also be used to provide the
Lax pairs, in our specific case isomonodromic ones, that will be indeed behind the Painelvé
II hierarchies of interest. The most prominent difference between Chapter 6 and Chapter
7 is then on the type of Riemann-Hilbert problem that will be associated to the relevant
operator: in the first case a standard matrix-valued Riemann-Hilbert problem while in the

†Here independent means that the sets of essential monodromy data of the two systems are not
isomorphic, thus there exist no gauge transformation that send one system into the other.
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second case an operator-valued one.
However, we notice that the original Tracy-Widom formula was obtained by the authors [103]
through a totally different procedure. Other authors later re-derived their formula by using
the Riemann-Hilbert approach (e.g. [71]) and this approach has been used in order to derive
analogue Tracy-Widom formula for some (scalar) higher order Painlevé II transcendents,
in the recent work [26]. For this reason we adopted the same method for our purposes in
Chapter 6 and 7.
On the other hand, we studied the Poisson-symplectic structure of the monodromy manifold
associated to a system of linear ODEs with polynomial matrix coefficient (thus having only
an irregular singularity at ∞), originally introduced by Flaschka and Newell in [37]. This
case is indeed underlying the Painlevé II hierarchy (at least the homogeneous one). This
particular case of monodromy manifold, called Stokes manifold, is the simplest example
of what is known now as a wild character variety. For the case of regular singularities,
the geometry of monodromy manifolds is encoded by character varieties of (appropriately)
punctured Riemann spheres. The character varieties of Riemann surfaces in general are
known to be Poisson manifolds, thanks to Goldmann work [49]. Instead, the monodromy
manifolds associated to systems carrying on irregular singularities are more complicated,
because of the presence of the Stokes phenomenon around each irregular singularity. During
the last decades, they were studied in great generality and with particular focus on their
Poisson structure by Boalch [17, 18, 19]. In Chapter 8 we prove that this particular
case of monodromy manifold, the Stokes manifold, is indeed a symplectic manifold, see
Theorem 8.1.5. Moreover, in Lemma 8.2.7 we provide explicit log-canonical coordinates for
the symplectic-Poisson structure, that are shown to linearize the original Flaschka-Newell
Poisson structure, as follows from Theorem 8.4.3. The log-canonical variables used in this
context are related to a cluster algebra of a certain type. Relations between cluster algebras
and character varieties, are known and have been largely studied by Fock and Goncharov
[38] but without specific reference to monodromy manifolds. Recently, their formalism was
also used to find log-canonical coordinates for the Goldmann Poisson structure of character
varieties of arbitrary punctured Riemann surfaces [14]. Also, cluster algebras were already
known to be connected with the Stokes phenomenon, but the one arising in WKB analysis
[72] (not the classical one that we are going to treat here). For all these reasons, cluster
algebras were in some way expected to appear also in the context of wild character varieties,
such as our Stokes manifolds.

Outline
The thesis is essentially divided in two parts. The first part is composed by the first four
chapters which are devoted to introduce the basic objects of the study and to motivate
it, to review the fundamental results that relate these objects and to recall the classical
methods used to achieve these classical results. The second part contains instead the original
contributions obtained in the works [101, 24, 15], that are distributed in the last three
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chapters. In particular the thesis is organised as follows:

(1) In Chapter 1 we explain how the scalar Painlevé II hierarchy is constructed and we
review the Tracy-Widom formula and its generalization for the higher order members
of the hierarchy, concerning some Hastings-McLeod type solutions of the hierarchy.
In Chapter 2 we summarise some basic facts about the theory of determinantal point
processes, with particular focus on its application in random matrix theory. This will be
done in order to finally explain how the Tracy-Widom formula relates some Painlevé
II transcendent to random matrix theory. These two chapters together essentially
introduce the objects we want to study and the main motivations.

(2) Chapters 3, 4 are focused on the classical techniques that we are going to use or
generalize in the chapters thereafter in order to achieve our results. Specifically,
Chapter 3 introduces Riemann-Hilbert problems with particular focus on the ones
appearing in relation with integrable operators of IIKS type. Chapter 4 is instead a
compact review of some results in the theory of isomonodromic deformations. The
aim of the chapter is twofold: one is to explain how the Painlevé II hierarchy can be
deduced as isomonodromic deformation of certain types of systems, the other is to
review the concepts of monodromy data that will be used in Chapter 8 to construct
the Stokes manifolds.

(3) In Chapter 6 we give the proof of the result contained in [101]: a generalization of
the Tracy-Widom formula relating the Fredholm determinants of matrix-valued higher
order Airy kernels analogues to some particular solutions of a matrix-valued Painlevé
II hierarchy.

(4) In Chapter 7 we go through the proof of the main result of [24]: this time we obtain
a generalization of the Tracy-Widom formula for a finite temperature version of the
higher order Airy kernels together with a particular solutions of an integro-differential
Painlevé II hierarchy. Even though the results of this chapter and the previous one are
comparable, the proof of the second one requires more complicated techniques. Indeed
in this case, matrix-valued Riemann-Hilbert problems are replaced by operator-valued
ones. Part of the work is then devoted to establish the existence, uniqueness and other
properties of their solutions (well-known for the matrix-valued case).

(5) Finally in Chapter 8 we explain most of the content of [15]. We prove that the Stokes
manifold associated to a polynomial system of ODEs of generic degree K and rank 2 is
indeed a symplectic manifold. In particular we find log-canonical coordinates for the
induced Poisson structure, that provide a linearization of the Flaschka-Newell Poisson
structure originally discovered on this manifold. The relation with a cluster algebra of
A2K type is also discussed.
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Chapter 2

The Painlevé II hierarchy

The starting point of our study is the scalar Painlevé II hierarchy, that in this chapter we are
going to introduce. Indeed, the construction of the scalar Painlevé II hierarchy will inspire
in Chapters 6 and 7 the one of some new Painlevé II hierarchies, analogue of the classical
one described in this chapter, but in a matrix context and in an integro-differential context
respectively. To start with, we first briefly recall who are the so called Painlevé equations.
Then we are going to focus on the second Painlevé equation and after a brief study of its
properties, we are going to see how, thanks to its relation with the modified KdV equation,
the Painlevé II hierarchy is defined.

2.1 The Painlevé II equation

2.1.1 Introduction to the Painlevé equations
With Painlevé equations we refer to the following list of six nonlinear ordinary differential
equations (following [39]) for a certain function w = w(z)

PI w′′ = 6w2 + z, (2.1.1)
PII w′′ = 2w3 + zw + α, (2.1.2)

PIII w′′ = (w′)2

w
− w′

z
+ αw2 + β

z
+ γw3 + δ

w
, (2.1.3)

PIV w′′ = (w′)2

2w + 3
2w

3 + 4zw2 + 2(z2 − α)w + β

w
, (2.1.4)

PV w′′ =
(︃ 1

2w + 1
w − 1

)︃
(w′)2 − w′

z
+ (w − 1)2

z2

(︄
αw + β

w

)︄
+ γw

z
+ δw(w + 1)

w − 1 , (2.1.5)

PVI w′′ = 1
2

(︃ 1
w

+ 1
w − 1 + 1

w − z

)︃
(w′)2 −

(︃1
z

+ 1
z − 1 + 1

w − z

)︃
w′

+ w(w − 1)(w − z)
z2(z − 1)2

(︄
α + βz

w2 + γ(z − 1)
(w − 1)2 + δz(z − 1)

(w − z)2

)︄
, (2.1.6)
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where we used the notation ′ = d

dz
and α, β, γ, δ are constant parameters. These equations

result as the solution of a classification problem in ODE theory, that was first posed more
than one century ago in [95]. The problem was to find all the second order ordinary
differential equations of the form

w′′ = F (w,w′, z) (2.1.7)

with the function F (w,w′, z) being rational in w,w′ and analytic in z and with solutions
satisfying the so called Painlevé property. A function w, solution of a certain ordinary
differential equation, is said to have the Painlevé property, if it does not have movable
critical points. This means essentially that the critical points of the solution, if any, only
depend on the equation itself and not on the initial or boundary conditions. From another
point of view, the Painlevé property allows to construct new special functions as solution of
specific second order nonlinear ODEs, as it is done for many special functions coming from
linear ODEs, as the Bessel and the hypergeometric functions.
Painlevé first and then Fuchs and Gambier ([94, 42, 44]) studied this problem and concluded
that, up to Möbius transformations, there were just fifty equations corresponding to such
requests. Furthermore, they proved that these fifty equations can be either integrated in
terms of known special functions or reduced to one of the six equations in the list above.
The six new nonlinear ordinary differential equations arising out in this way are then called
the Painlevé equations. Their solutions, the Painlevé transcendents, are considered as new
transcendental functions (for more details we refer to the monograph [57]).
Even though the Painlevé equations arose in the context of a very analytical problem, they
appeared then in many other fields of applied mathematics such as statistical mechanics,
quantum field theory and nonlinear waves. In particular some of the Painlevé equations
were found in connection with partial derivative equations solvable through inverse scattering
method ([1] for a classical reference). In the specific case of the Painlevé II equation (2.1.2),
that will be our case of study, the relevant PDE is the modified KdV equation. As we will
see in the next section, the relation between the modified KdV equation and the Painlevé
II equation is indeed the key to construct the Painlevé II hierarchy. But this is far from
being an isolated case, and the study of links between Painlevé equations and PDEs is still
very popular. Indeed, there is still an open conjecture among Painlevé type equations and
integrable PDEs saying that (quoting from [1] pg. 362)
“Every ODE which arises as similarity reduction of a completely integrable PDE is of
Painlevé type, up to transformation of variables”.
One of the first properties of Painlevé transcendentes to be discovered, was that even though
the general solutions of the Painlevé equations are transcendental, some particular solutions
can be written explicitly. Notice that in every equation (2.1.2)-(2.1.6) there is at least
one parameter. Choosing particular values for these parameters it is possible to find rational
solutions, or other solutions in terms of known special functions for all the Painlevé equations
from II to VI. The presence of these parameters in the Painlevé equations is actually even
more relevant. Given a solution of a Painlevé equation for fixed values of the parameters, one

8



can generate other solutions of the same equation with different values of the parameters, or
even solutions of a different Painlevé equation, starting from the given one. This phenomenon
is usually referred as the Bäcklund transformations of the Painlevé equations, and it is a very
useful tool to generate sequences of solutions. These transformations were already discovered
by Painlevé and Gambier in the first works on Painlevé equations ([57, 44]) and then studied
in the following years. We refer to [39] (Part I, Chapter 6) for a compact review on the subject
using the formalism of Lax pairs of Painlevé equations and Schlesinger transformations.

2.1.2 Known solutions of the Painlevé II equation
We are now going to focus on the Painlevé II equation and we start by listing its known
solutions. The Painlevé II equation admits two types of Bäcklund tranformations for integer
or semi-integers values of the parameter α. These transformations generate respectively
sequences of rational solutions and Airy type solutions (that are obtained as ratio of the
Airy function and its derivatives). The main results, that were first proven by Airault in [4],
are resumed in the following theorems.
For the rational solutions corresponding to integer values of the parameter α the statement
is as follows.

Theorem 2.1.1 (Theorem 2 [4]). The Painlevé II equation (2.1.2) has rational solution if
and only if α is an integer, in particular for α = 0 this solution is trivial. Then for n ≥ 1,
equation (2.1.2) admits a solution wn with α = n that is written as

wn = −u′
n

un
+ u′

n−1
un−1

, (2.1.8)

where the functions un are obtained through the following recursion

un+1un−1 = C(−2 d
2

dz2 log un + z)u2
n, (2.1.9)

with initial conditions u0 = 1 and u1(z) = z. Finally, when α = −n then w−n = −wn.

For the Airy type solutions corresponding instead to semi-integers values of α, we have
the following statement. Notice that here the Airy function is defined as a particular solution
γ(z) of the equation γ′′ = − z

2γ.

Theorem 2.1.2 (Theorem 3 [4]). In the case where α is a semi integer, there is a solution
of equation (2.1.2) that is a rational function of the Airy function γ and its derivatives. In
particular

• for α = −1
2 then w0 = d

dz
log γ;

• for α = −1
2 + n then wn = u′

n−1
un−1

− u′
n

un
;
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• for α = 1
2 − n then w−(n−1) = −wn.

Here the functions un are obtained from the same recursive equation (2.1.9) but with initial
conditions u0 = exp

(︂
z3

24

)︂
and u1 = γu0.

These results were proved again some years later through a totally different method by
Flaschka and Newell in [36]. Their new procedure is called isomonodromy method and
it is perhaps the most powerful tool that has been developed in order to study Painlevé
transcendents, as the monograph [39] largely shows. This method is based on the fact that
the Painlevé II equation has Lax pairs in terms of isomonodromic deformations of certain
rank 2 systems of linear ODEs in the complex plane. The precise meaning of that will be
discussed in Chapter 5. Using this method, Flaschka and Newell were able to recover the
rational and the Airy type solutions found by Airault and they expressed them as finite-size
determinants. Their result, first proved in Sec. 3F (iii) of [36] for the rational solutions of
the Painlevé II equation (2.1.2), can be rewritten as follows.

Theorem 2.1.3 (Theorem 2.4 [29]). Let pk(z) be the polynomial defined by

∞∑︂
k=0

pk(z)λk = exp
(︃
zλ− 4

3λ
3
)︃
, with pk(z) = 0 for k < 0

and let τn be the n× n determinant

τn(z) :=

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓
pn(z) pn+1(z) . . . p2n−1(z)
pn−2(z) pn−1(z) . . . p2n−3(z)

... ...
p−n+2(z) p−n+3(z) . . . p1(z)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓ .

Then for α = n, n ≥ 1 the rational solutions of (2.1.2) are written as in the form

wn(z) = d

dz
log τn−1(z)

τn(z) . (2.1.10)

This result was also proved later in [70], exploiting the relation between the Painlevé II
and the KdV equation.
Instead, for the Airy type solutions of equation (2.1.2) the result proved by [36] (Sec. 3F
(iv)) can be formulated as follows.

Theorem 2.1.4 (Theorem 2.5 [29]). Let τn be the n× n determinant

τn(z) := det
[︄
dj+k

dzj+k
γ(z)

]︄n−1

j,k=0
, n ≥ 1 and τ0(z) = 1.

Then for α = n− 1
2 and n ≥ 1 the Airy type solutions of the Painlevé II equation (2.1.2) are
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written in the form
wn(z) = d

dz
log τn−1(z)

τn(z) . (2.1.11)

The original works done in this thesis and contained in Chapter 6 and 7, are based indeed
on the isomonodromy method. However, these original results generalize (to a matrix-valued
and integro-differential case) the existence of a third type of solution of the Painlevé II
equation, different from the two family of solutions introduced until now. Consider the
homogeneous Painlevé II equation (2.1.2)

w′′ = 2w3 + zw (2.1.12)

i.e. the special case α = 0 in equation (2.1.2). It was first discovered in [56] that this
equation together with a boundary condition admits a particular solution, nowadays known
as the Hastings-McLeod solution. Their main result is resumed in the following theorem.

Theorem 2.1.5 (Theorem 1 [56]). Consider the homogeneous Painlevé II equation (2.1.12)
together with the boundary condition

w(z) → 0 for z → +∞. (2.1.13)

Then

1. any solution of the boundary problem (2.1.12), (2.1.13) is asymptotic to kAi(z) at
z → +∞, for some k ∈ R.

2. Conversely, for any k there is a unique solution of (2.1.12) which is asymptotic to
kAi(z).

Furthermore, for |k| < 1 the solution which has asymptotic kAi(z) exists for every z and as
z → −∞ it behaves as

w(z) ∼ d|z|−
1
4 sin

(︃2
3 |z|

3
2 − 3

4d
2 log |z| − c

)︃
(2.1.14)

for some constants c, d depending on k.

Remark 2.1.6. In the statement of Theorem 2.1.5 and below we denote by Ai(z) the Airy
function but with a slightly different convention w.r.t. the function γ(z) defined previously.
Here Ai(z) is intended as a particular solution of ϕ′′ = zϕ.

These solutions were not known to admit a (Fredholm) determinantal representation until
the work of Tracy and Widom [103]. They proved indeed that also these solutions can be
written in terms of certain determinants, but in a very different sense than the determinants
for the rational and the Airy type solutions. They proved in [103] that the Hastings-McLeod
solution of the Painlevé II equation (2.1.12) with asymptotic w(z) ∼ Ai(z) is related to the
Fredholm determinant of the Airy kernel. Their result is resumed in the following theorem.

11



Theorem 2.1.7 ([103]). The Hastings-McLeod solution of the homogeneous Painlevé II
equation (2.1.12), i.e. its distinguished solution with asymptotic behavior w(z) ∼ kAi(z),
is written through the formula

d2

dz2 log det(1 − k2KAiry|(z,∞)) = −w2(z). (2.1.15)

where KAiry|(z,∞) is considered as the integral operator acting on L2((z,+∞)) with kernel

KAiry(x, y) :=
∫︂ +∞

0
Ai(x+ t)Ai(y + t)dt. (2.1.16)

We will discuss again about this result at the end of Chapter 3 and there we will explain
the reason why this result is so interesting from the point of view of applications.
Nevertheless, formula (2.1.15) is exactly the one we have generalized in Chapters 6 and 7 for
certain solutions of a matrix and an integro-differential Painlevé II hierarchy, with prescribed
asymptotic behavior in terms of generalized Airy functions.

Remark 2.1.8. We stress, again, that the procedure used by Tracy and Widom in [103] does
not make use of the Lax pair representation of the Painlevé II equation at all. Nevertheless,
the extension of their result to certain solutions of the Painlevé II hierarchy, that was studied
in [26] and that we will discuss thereafter, deeply rely on the isomonodromic representation
of the hierarchy and the theory of integrable operators of IIKS type. And so also our
generalizations discussed in Chapters 6 and 7 do. However, a proof of the Tracy-Widom
result based on this technique was already given in some previous papers [71, 55].

2.2 Construction of the Painlevé II hierarchy
In this section we are going to define the classical scalar Painlevé II hierarchy. In order to do
that, we first need to establish the relation between the Painlevé II equation and the modified
KdV equation. We will see that the definition of the Painlevé II hierarchy then follows in a
very natural way, once that the definition of the modified KdV hierarchy is established.

2.2.1 Self-similarity reduction of mKdV equation
We start by introducing the KdV equation. Given a function of two variables u = u(t, x),
the KdV equation is the following nonlinear partial differential equation

ut + 6uux + uxxx = 0, (2.2.1)

where subscripts denote partial differentiation. This equation was derived from the physical
description of the evolution of long, one dimensional, surface waves propagating in shallow
waters with small amplitude by Korteweg and De Vries in [74]. One of the scope of their
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work was to find wave equations admitting solitary wave solutions, i.e. waves preserving their
own form and propagating with uniform velocity, first observed and then studied by Russel
[98]. The KdV equation has been largely studied in the years after its discovery and a lot of
interesting mathematical properties were proved, here we cite only few of them. The KdV
equation is the prototype of PDE solvable through the Inverse Scattering Method, it admits
solitonic solutions (solitary waves solutions that do not change their shape and velocity after
interaction with other solitary waves), it has infinitely many commuting symmetries and it
is perhaps the main example of infinite dimensional integrable Hamiltonian system.
While studying some remarkable transformation of the KdV equation in the paper [89],
Miura discovered the modified KdV equation. This equation is defined for a function of two
variables v = v(t, x) as the following partial derivative equation

vt + vxxx − 6v2vx = 0. (2.2.2)

We say that the modified KdV equation and the KdV equation are related through a Miura
transformation. More precisely, this relation means that for any solution v of the modified
KdV equation one can define the Miura transform u := vx − v2, and verify that the function
u now solves the KdV equation (2.2.1).

Remark 2.2.1. By direct computation, replacing u = vx − v2 in the KdV equation (2.2.1)
then we get the following equation(︄

∂

∂x
− 2v

)︄(︂
vt − 6v2vx + vxxx

)︂
= 0. (2.2.3)

And this is of course an identity since v solves the modified KdV equation (2.2.2). This
means that from a solution of the modified KdV equation we can always construct a solution
of the KdV equation, but the converse is not true (see also [1] pg. 23). In particular, not all
the solutions of the KdV equation are obtained from solutions of the modified KdV equation
(for more details, have a look at [2]).

Now we are going to show that the Painlevé II equation can be obtained by self-similarity
reduction of the modified KdV equation. Indeed, consider a solution v of the modified KdV
equation, having the following form

v(t, x) := w(z)
(3t) 1

3
with z := x

(3t) 1
3
. (2.2.4)

Then the modified KdV equation solved by this v(t, x) is reduced to an ordinary differential
equation for w w.r.t. the new variable z. In particular it coincides with

wzzz − zwz − w − 6w2wz = 0 (2.2.5)

that is exactly the derivative of the Painlevé II equation. Thus we conclude that the
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function w defined in (2.2.4) solves the Painlevé II equation (2.1.2) with α being an arbitrary
integration constant.

Remark 2.2.2. There is another similarity reduction that relates directly the KdV equation
to an equation solvable in terms of solutions of the Painlevé II equation (see [1], pg. 99, for
more details), but for the definition of the Painlevé II hierarchy is easier to proceed with the
relation between the Painlevé II equation and the modified KdV equation.

2.2.2 The KdV and modified KdV hierarchy
The KdV hierarchy is an infinite set of PDEs for a function depending on infinitely-many
parameters u = u(x = −t1, t = t2, t3, t4, . . . ). With this notation, the first member of the
hierarchy is an identity and the second one coincides with the KdV equation itself. These
PDEs have the fundamental property to commute one with another, giving a system of
compatible equations. We remark that this is also equivalent to say that the KdV equation
admits infinitely many commuting symmetries. Even though the classical definition of
the KdV hierarchy requires the introduction of the algebra of pseudo-differential operators
(following the classical reference here [90]), we are going to take a shortcut and give an
equivalent definition that involves the Lenard recursion, as introduced in [80], [89].

Definition 2.2.3. The sequence of Lenard recursion operators acting on a function u is
obtained through the following recursion⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂

∂x
Ln+1 [u] =

(︄
∂3

∂x3 + 4u ∂
∂x

+ 2ux
)︄

Ln [u] , n ≥ 0

L0 [u] = 1
2 .

(2.2.6)

The quantities Ln [u] generated from this recursion relation are all differential polynomials
in u and its x-derivatives until order 2n − 2. The proof of this fact is based on the use of
the conserved quantities for the KdV equation (see Theorem 3.1 in [80] for more details).

Example 2.2.4. Here is a list of the differential polynomials Ln [u] for the first few values
of n, setting all the constants of integration to zero.

n = 1 : L1 [u] = u,

n = 2 : L2 [u] = uxx + 3u2,

n = 3 : L3 [u] = uxxxx + 10uuxx + 5u2
x + 10u3,

(2.2.7)

Using Definition 2.2.3 we can finally construct the KdV hierarchy as follows

utn+1 + ∂

∂x
Ln+1 [u] = 0, n ≥ 0, (2.2.8)

where the subscript tn+1 indicates the partial derivation w.r.t. tn+1.
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Example 2.2.5. Here is a list of the first members of the KdV hierarchy. For n = 0 we have
a trivial identity, with t1 = −x, and for n = 1 we recover the KdV equation, with t2 = t.

n = 0 : ut1 + ux = 0, (2.2.9)
n = 1 : ut2 + 6uux + uxxx = 0, (2.2.10)
n = 2 : ut3 + uxxxxx + 20uxuxx + 10uuxxx + 30u2ux = 0. (2.2.11)

The modified KdV hierarchy is then constructed from the KdV hierarchy through the
same Miura transformation introduced before, i.e. by taking u = vx − v2, and looking at the
equation for v. Indeed, the modified KdV hierarchy is defined as follows

vtn+1 + ∂

∂x

(︄
∂

∂x
+ 2v

)︄
Ln

[︂
vx − v2

]︂
= 0, n ≥ 1, (2.2.12)

where for n = 1 the modified KdV equation (2.2.2) is recovered.

Remark 2.2.6. Consider the Miura transformation u = vx − v2 and replace it into the
definition of the differential operator of order 3 appearing in the Lenard recursion (2.2.6),
namely

H := ∂3

∂x3 + 4u ∂
∂x

+ 2ux. (2.2.13)

By direct computation, one can check that under the Miura transformation, H is factorized
in the following way

H =
(︄
∂

∂x
− 2v

)︄
∂

∂x

(︄
∂

∂x
+ 2v

)︄
. (2.2.14)

Thus, when we replace the Miura transformation in the definition of the KdV hierarchy
(2.2.8) we obtain, generalizing what was observed in Remark 2.2.1, that the n-th member of
the KdV hierarchy is transformed into(︄

∂

∂x
− 2v

)︄(︄
vtn+1 + ∂

∂x

(︄
∂

∂x
+ 2v

)︄
Ln

[︂
vx − v2

]︂)︄
= 0, (2.2.15)

where we only used the property (2.2.14). As a byproduct we conclude that, given a solution
v of the n-th member of the modified KdV hierarchy then u = vx− v2 solves the n-th member
of the KdV hierarchy, but the converse, again, is in general not true.

Example 2.2.7. The first members of the modified KdV hierarchy are as follows

n = 1 : vt2 + vxxx − 6v2vx = 0, (2.2.16)
n = 2 : vt3 + vxxxxx − 10v2vxxx − 40vxvxx − 10v3

x + 30v4vx = 0, (2.2.17)
n = 3 : vt4 + vxxxxxxx − 14v2vxxxxx − 84vvxvxxxx − 140vvxxvxxx

− 126v2
xvxxx − 182vxv2

xx + 70v4vxxx + 560v3vxvxx + 420v2v3
x − 140v6vx = 0

(2.2.18)
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2.2.3 The Painlevé II hierarchy
We are now ready to define the Painlevé II hierarchy. We will first follow the construction
done in [78] and in the end we will briefly see another construction already given by [4]. In
order to do that we will consider an appropriate self-similarity reduction for each member of
the modified KdV hierarchy (2.2.12), analogue to the one we considered for the case n = 1
in (2.2.4).
For every n ≥ 1, we define v a solution of the n-th member of the modified KdV hierarchy,
of the following form

v(x, tn+1) := w(z)
((2n+ 1)tn+1)

1
2

with z := x

((2n+ 1)tn+1)
1
2
. (2.2.19)

We also define for every n ≥ 0 the quantities L̂n [w], as the differential polynomials in w

obtained by the same recursion relation (2.2.6) but replacing the variable x with the variable
z.
One can prove by induction over n (see Proposition 2.2 in [78]) the following equality

Ln

[︂
vx − v2

]︂
= 1

((2n+ 1)tn+1)
2n

2n+1
L̂n

[︂
wz − w2

]︂
for every n ≥ 1. (2.2.20)

By replacing in the n-th member of the modified KdV equation (2.2.12) the form (2.2.19) of
v and by using the relation (2.2.20), this equation is transformed into an ordinary differential
equation for the function w(z) that is

− zwz − w + d

dz

(︄
d

dz
+ 2w

)︄
L̂n

[︂
wz − w2

]︂
= 0, (2.2.21)

that corresponds indeed to the derivative of(︄
d

dz
+ 2w

)︄
L̂n

[︂
wz − w2

]︂
= zw + αn, (2.2.22)

where αn is an arbitrary constant of integration.

Definition 2.2.8. The Painlevé II hierarchy is the infinite set of ODEs given by equation
(2.2.22) for any n ≥ 1, obtained after integration of the self-similarity reduction of the
modified KdV hierarchy.

We underline that the n-th member of the Painlevé II hierarchy (2.2.22) is a 2n order
nonlinear ODE for the function w(z). The first member of the hierarchy, as it is shown in
the example that follows, coincides with the Painlevé II equation (2.1.2).
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Example 2.2.9. The first members of the Painlevé II hierarchy (2.2.22) are given by

n = 1 : wzz − 2w3 = zw + α1, (2.2.23)
n = 2 : wzzzz − 10ww2

z − 10w2wzz + 6w5 = zw + α2, (2.2.24)
n = 3 : wzzzzzz − 14w2wzzzz − 56wwzwzzz − 70w2

zwzz − 42ww2
zz + 70w4wzz

+ 140w3w2
z − 20w7 = wz + α3. (2.2.25)

The definition of the Painlevé II hierarchy through equation (2.2.22) completely relies
on the definitions of the KdV and modified KdV hierarchies as given in (2.2.12), (2.2.12).
But the formalism given by the Lenard recursion operators is not the only one that is
used to describe the KdV and consequently the modified KdV hierarchies. In the following
paragraph, we are going to introduce an alternative formalism.

An alternative definition of the PII hierarchy Here we are going to define the Painlevé
II hierarchy through the formalism used by Airault in [4]. In this other formalism, introduced
by [91], [3], one defines the following pseudo-differential operator of order 2

Sw := 4w2 + 4wz
(︄
d

dz

)︄−1

w − d2

dz2 (2.2.26)

where
(︄
d

dz

)︄−1

stands for the formal z-antiderivative, such that
(︄
d

dz

)︄−1
d

dz
(f) = f for every

function f .
The Painlevé II hierarchy is then defined in [4] by the following sequence of equations

(︄
d

dz

)︄−1

Sn−1
w [wz] + zw + δn−1 = 0, n ≥ 2 (2.2.27)

where δk are arbitrary constants of integration.

Remark 2.2.10. One can check that the first members of the Painlevé II hierarchy obtained
through the definition (2.2.22) and computed in the Example 2.2.9 coincide with the ones
obtained through the definition of the hierarchy (2.2.27).

The procedure followed to obtain this alternative definition of the Painlevé II hierarchy
is similar to the previous one, but it starts from a different definition of the KdV hierarchy.
Given a function u, define the following pseudo-differential operator

Ru :=
⎛⎝2

⎛⎝u+ ∂

∂x
u

(︄
∂

∂x

)︄−1
⎞⎠− ∂2

∂x2

⎞⎠ (2.2.28)
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One can then define the KdV hierarchy, as Airault did in [4], through the following equations

(2m− 1)utm = Rm−1
u [ux] , m ≥ 2. (2.2.29)

By looking for self-similarity solutions of the form u(tm, x) := t
− 2

2m−1
m q(z) where z := xt

− 1
2m−1

m

similarly to (2.2.19), one can reduce the above equation to an ODE for q. In particular, it
follows that q solves

Rm−1
q [qz] + 2q + q′z = 0,

where now Rq is intended as the same operator given in (2.2.28) but replacing x by z and
u by q. Finally, using the Miura transformation at this level and writing q := wz + w2, the
function w is then shown to satisfy equation (2.2.27).

Remark 2.2.11. Using the operator Ru one can define the following sequence

Xm [u] = RuXm−1 [u] , m ≥ 2 with X1 [u] = ux. (2.2.30)

Up to changing the sign of the term of order 3 in the differential operator H used in the Lenard
recursion (2.2.6), we actually have that the recursion for the operators Xm in (2.2.30) is a
sort of integrated version of (2.2.6). This follows from the bi-Hamiltonian structure of the
KdV hierarchy for which the equality above can be continued into

Xm [u] = RuXm−1 [u] = ∂

∂x
(δHm) (2.2.31)

and where δHm are the Hamiltonian functionals of the KdV hierarchy and they are (up to
the sign) the Lenard differential polynomials. The equivalence between the two definitions of
the Painlevé II hierarchy (2.2.22) and (2.2.27) is then explained.

Even though the two different definitions of the Painlevé II hierarchy give rise to the
same infinite set of ODEs, they are quite different in their usage. We wanted to introduce
both of these formalism, since they both will inspire our constructions in the next chapters.
In Chapter 6 we consider a matrix Painlevé II hierarchy, that is obtained as a matrix
generalization of equation (2.2.22). We introduce a noncommutative version of the Lenard
recursion (2.2.6) and we use it to define the new hierarchy. In Chapter 7 instead we define
an integro-differential Painlevé II hierarchy that is a generalization of equation (2.2.27). In
particular, in this last definition the recursion operator is written as the composition of two
pseudo-differential operators of order 1 that reduces to the operator Sw in (2.2.26) in the
case where all the variables commute.

Solutions of the Painlevé II hierarchy The study of solutions of higher order Painlevé
II transcendents is in general much more complicated since it requires to solve 2n-order
ODEs. One can ask for instance, whether the known solutions of the Painlevé II equation,
the rational, the Airy type and the Hastings-McLeod ones extend in some way to solutions
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of the entire Painlevé II hierarchy (2.2.22). One answer was recently given in the papers
[81, 26] concerning the Hastings-McLeod type solutions. In particular, in the last paper
the authors explicitely construct solutions for each member of the homogeneous Painlevé II
hierarchy (2.2.22) in relation to the Fredholm determinants of the generalized Airy kernels.
The explicit formula describing these solutions recovers the Tracy-Widom formula (2.1.15)
for the first member of the hierarchy. Furthermore, the authors of [26] were able to compute
the asymptotic behavior of these solutions at ±∞, in terms of the generalized Airy function
Ai2n+1(z), defined as the real solution with rapid decaying at +∞ of the 2n-order ODE

d2n

dz2nϕ = (−1)n+1zϕ. (2.2.32)

Their result can be thus interpreted as an extension of the Tracy-Widom result cited before
in Theorem 2.1.7 to all members of the Painlevé hierarchy and it is resumed in the following
statement.

Theorem 2.2.12 (Theorem 1.1 [26]). For every n ≥ 1 and 0 < ρ ≤ 1, there is a real solution
w of the n-th member of the homogeneous Painlevé II hierarchy (2.2.22) which satisfies

− w2(z; ρ) = d2

dz2 log det
(︂
1 − ρKAi2n+1|(z,∞)

)︂
, (2.2.33)

where KAi2n+1|(z,∞) is considered as the integral operator acting on L2((z,+∞)) with kernel

KAi2n+1(x, y) :=
∫︂ +∞

0
Ai2n+1(x+ t)Ai2n+1(y + t)dt. (2.2.34)

Furthermore, its asymptotic behavior for z → +∞ is given by w(z; ρ) ∼ √
ρAi2n+1(z).

As already underlined for ρ = 1, n = 1 this result recovers the one of Tracy and Widom
resumed in Theorem 2.1.7. Nevertheless, the authors of [26] used a completely different
procedure, that essentially relies on the isomonodromic reprensentation of the Painlevé
II hierarchy (2.2.22), that was first described in [30]. This procedure, also known as the
Riemann-Hilbert approach, is in principle the same procedure we will use in Chapter 6 and
7. For this reason, we resume the fundamental concepts of their proof in the following
paragraph. The starting point is that the Fredholm determinants of the Airy kernels KAi2n+1

are equal to the ones of some integral operators in Fourier spaces that are integrable, in the
sense of the IIKS operators [34], [60]. Essentially, this implies that the existence of their
resolvent operators is equivalent to the solvability of a certain Riemann-Hilbert problem. As
a byproduct, their Fredholm determinants can be expressed in terms of a quantity related to
the solution of the relevant Riemann-Hilbert problem. These classical facts will be reviewed
with more details in Chapter 4.
Finally, the last element of the proof is provided by the fact that the solution of the Riemann-
Hilbert problem, after some manipulation and rescaling operations, solves two differential
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equations w.r.t. the parameters involved in the Riemann-Hilbert problem itself. This system
actually coincides with the isomonodromic Lax pair for the PII hierarchy (2.2.22) (the one
found in [30]).

Remark 2.2.13. Notice that, prior to [26], the work [81] gave a similar formula for the
Fredholm determinants of the higher order Airy kernels. In that case, the functions w in
the left hand side of equation (2.2.33) are shown to solve a system of hamiltonian equations
that coincide for the first values of n with the first members of the Painlevé II hierarchy.
However, the precise equivalence between their system and the Painlevé II hierarchy (2.2.22)
still has to be proved.

Remark 2.2.14. Theorem 2.2.12 is just a part of the results contained in [26]. There
the authors studied in detail also the asymptotic behavior of these solutions at −∞. As a
byproduct they were able to describe the asymptotic behavior at −∞ of the corresponding
Fredholm determinants of the higher order Airy kernels. This estimate is also known as
large gap asymptotics, and it is in general much more complicated to obtain than the one at
+∞, since it involves a strong use of nonlinear steepest descent method.

In order to obtain the generalizations of Theorem 2.2.12 for the case of a matrix and
then an integro-differential Painlevé II hierarchy, in Chapters 6 and 7, we will implement
the analogue procedure of [26], resumed in the paragraph above. Respectively, we will deal
with a block-matrix and an operator-valued Riemann-Hilbert problem instead of a classical
2 × 2 matrix-valued Riemann-Hilbert problem. Finally, in these noncommutative contexts
we did not try to study the asymptotic behavior at −∞ of the relevant solutions of these
hierarchies, so this computation is left as an open problem.
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Chapter 3

Determinantal point processes

In this chapter we recall the notion of determinantal point processes (that we denote
with the abbreviation DPP from now on). DPP appear in many different fields of
mathematics and mathematical physics, such as orthogonal polynomials, number theory,
random permutations, random growth models, random matrix theory and statistical
mechanics. The main motivation to study DPP is given indeed by their appearance in all
these fields of study. In a nutshell, DPP can be intended as spatial random processes (there
is no notion of time) which can be entirely described through their correlation functions,
which have the peculiarity to be written as finite dimensional determinants involving the
kernel of some integral operators. The integral operators are not generic and have to
satisfy certain requirements. The integral operator defined through the Airy kernel, that
we already introduced in Theorem 2.2.12 at the end of the previous chapter, is an example
of such operators. As a byproduct the Fredholm determinants of these operators have
an interpretation in terms of relevant probabilistic quantities describing the DPP. This is
perhaps the main reason why results such as Theorem 2.1.7 and Theorem 2.2.12 are highly
considered: in both cases the integral operators involved actually define DPP. Furthermore,
the relevant DPP appear in random matrix theory and statistical mechanics respectively.
This kind of results allows to build a bridge between the probabilistic world of DPP and
the integrable systems world of Painlevé equations, and this is a powerful motivation to go
deeper in this study. While the Fredholm determinant in Theorem 2.1.7 was known to be
connected to random matrix theory [103] since the early ’90, the one in Theorem 2.2.12
has appeared recently in a model for non-interacting fermions in anharmonic potential first
studied in [81]. Also, all the other integral operators studied in chapters 6, 7 of the thesis
define DPP. Moreover, the finite temperature higher order Airy kernel studied in Chapter
7 has been found in relation to the finite temperature version of the same fermionic model
described above and also appeared in [81].
The Chapter is organized in two section: in the first one we start with an intuitive example
of DPP and then we go through the basic definitions and the main results of DPP theory.
In the second section we introduce random matrices, focusing in particular on the Gaussian

21



Unitary Ensemble. We will show how to compute the main relevant quantities such as
correlation functions, distributions functions and gap probabilities for the eigenvalues of this
ensemble emphasising the determinantal character of some of these quantities. In the end,
we will finally introduce the Tracy-Widom distribution and we briefly re-discuss Theorem
2.1.7, that is our “model” of result, under this new point of view. The main references for
the DPP theory are the classical review articles [100, 20, 67], and this very nice introductory
paper [52]. For the random matrix theory we refer essentially to the monograph [88], and to
the books [53, 8]. Finally for the Tracy-Widom result we recall that even though the original
proof was first given from the authors in [103], we found other useful explanations in [106].

3.1 Basic knowledge on DPP

3.1.1 An introductory example
Inspired by [52], we start our discussion on DPP by treating a very nice example of
determinantal point process that is called the descent point process (for more details, we
refer to Sec.1 of [52]). Even though it is mathematically simple, it is very useful to explain
the basic ideas and concepts behind DPP.
The descent point process is defined as follows: consider a column of digits S0, . . . , Sn
independent and identically distributed on [[0, 9]]. For each line i = 1, . . . , n then consider
the random variables

Xi := χ{Si<Si−1} =

⎧⎨⎩1 if Si < Si−1,

0 otherwise.
(3.1.1)

The descent point process is given by all the possible random sequences of natural numbers
i for which Xi = 1 in the integer segment i ∈ [[1, n]], namely

Dn := {i ∈ [[1, n]] | Xi = 1} (3.1.2)

To visualize that, we can put on the right of the column of values Si a black dot for each line
i ∈ [[1, n]] for which the condition Xi = 1 is satisfied. In this way the descent point process
is described by all the possible configurations of the black dots in the segment [[1, n]] . See
Figure 3.1 for an example.

In order to know the process in exhaustive way, one should be able to compute the
probability of each possible configuration of black points or sequences of numbers in [[1, n]],
i.e.

P(ℓ ⊂ Dn), for any ℓ ⊂ [[1, n]] . (3.1.3)

In general, higher is the cardinality of the subset ℓ and more complicated is to compute the
correspondent probability. If k is the cardinality of ℓ then ℓ = {s1, . . . , sk} and we denote the
probability of ℓ being in Dn as ρk(ℓ); in this case, it will be also the k-correlation function
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i Si Xi

0 2
1 4 0
2 9 0
3 7 • 1
4 6 • 1
5 9 0
6 1 • 1
7 5 0

Figure 3.1: An example of configuration of the descent point process for n = 7 given by
{3, 4, 6}.

of the process. The distinguished character of determinantal point process is that all the
correlation functions of each order are actually written in terms of a single function of two
variables, that is called the kernel of the process. If we start computing the correlation
function for k = 1 in the descent process, we have

ρ1({s}) = P({s} ⊂ Dn) = P(Xs = 1) = P(Ss < Ss−1) = 1
102

(︄ 9∑︂
k=1

k

)︄
= 1

102

(︄
10
2

)︄
= 9

20 .

Then for k = 2, the computation is a little more delicate. Indeed, if we consider ℓ = {s, s+1},
then

P({s, s+ 1} ⊂ Dn) = P(Ss+1 < Ss < Ss−1) = 1
103

(︄ 8∑︂
k=1

k

)︄
= 1

103

(︄
10
3

)︄
= 3

25 <
(︃ 9

20

)︃2
.

Instead, if we take the generic subset ℓ = {s, t} with t ̸= s+ 1, then

P({s, t} ⊂ Dn) = P(Ss+1 < Ss)P(St+1 < St) =
(︃ 9

20

)︃2
.

Thus in the case of cardinality k = 2 the correlation function is defined by cases

ρ2({s, t}) =

⎧⎨⎩
3
25 if |t− s| = 1,(︂

9
20

)︂2
otherwise.

In general, we can prove that for any subset ℓ given by k ≥ 3 consecutive numbers in [[1, n]] ,
then

P(ℓ ⊂ Dn) = 1
10k+1

(︄
10
k + 1

)︄
.

Otherwise, the computation is done by following this idea: first one can split the subset
ℓ = ℓ1 ∪ ℓ2 in such a way that ℓ1 and ℓ2 have distance more than 1. Then one uses that
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ρk(ℓ) = ρk1(ℓ1)ρk2(ℓ2) where ki are the cardinalities of ℓi respectively for i = 1, 2.
A compact way to write down ρk(ℓ) for any number k ∈ [[1, n]] and any sequence ℓ =
{s1, . . . , sk} ⊂ [[1, n]] (with si ̸= sj for any i ̸= j) was found in [21] and it is realized as
follows. Consider the two variables function K(i, j) : [[1, n]]2 → R such that

K(i, j) := κ(j − i), with
∑︂
m∈Z

κ(m)zm = 1
1 − (1 − z)10 .

Then the k-correlation function of the descent process is then given by

ρk({s1, . . . , sk}) = det(K(si, sj))ki,j=1.

For this reason the descent process is a determinantal point process on Z (actually on the
segment [[1, n]] of Z).

3.1.2 Generalities of DPP theory
With this example in mind, we can now give the general definition of point processes and
then we restrict to the study of determinantal ones (for this section we mainly follow the
classical references [100, 67]). We consider E = R (or a finite product of disjoint copies of R)
and X = Conf(E) the space of all possible finite configurations of particles on E. Notice that
one can replace R by Z (as we actually did in the previous section) or by another discrete
space and the theory of DPP on that space similarly follows, see also [20]. We restrict our
discussion on the case E = R just because the applications we are interested in, actually fit
in this case.
A formal definition of point process is given as follows. On X one can construct a σ-algebra
of measurable sets, in the following way. First construct the cylinder sets, for any Borel
subset B ⊂ E and any n ∈ N

CB
n := {X ∈ X s.t. #B(X) := |X ∩B| = n}, (3.1.4)

and then consider B the σ-algebra generated by these CB
n on X .

Definition 3.1.1. A point process on E is given by a probability measure P on (X ,B).

The way to construct a probability measure on the space of configurations (X ,B) was
studied in particular by Lenard in a series of papers [82, 83, 84]. The main idea is that
the construction can be reduced to the determination of the joint probability distributions
of the random variables #D for D some simple subsets of E. This procedure allowed the
author to go further and prove the relation between the existence of a probability measure
on (X ,B) and the existence of the k-point correlation functions for the random variables #B,
for any B Borel subset of E. It turned out that a point process is uniquely identified by its
correlation functions if and only if the probability distribution of the random variables #A
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is determined by its moments. For more details about the construction of a point process
from its correlation functions, see Theorem 1 in [100].
In this general (continuous) context, the k-correlation functions are defined as follows.

Definition 3.1.2. For any k ∈ N, we define the k-point correlation function of the point
process (X ,B, P ) as the locally integrable function ρk : Ek → R+, such that for any collection
of different and disjoint Borel subset Ai ⊂ E, i = 1, . . . , k then

E

⎛⎝ m∏︂
j=1

#Aj

⎞⎠ =
∫︂
A1×...×Ak

ρk(x1, . . . , xk)dx1 . . . dxk, (3.1.5)

where E denotes the mathematical expectation.

As we saw in the introductory example, the k-point correlation function has a meaningful
probabilistic interpretation : for the descent process ρk(x1, . . . , xk) was exactly the
probability of having particles at the points xi in N. But this was because the process
was defined on (a subset of) E = Z. In the continuous case (e.g. E = R) we can think
to ρk(x1, . . . , xk)dx1 . . . dxk as the probability to find a particle in each infinitesimal box
[xi, xi + dxi] for i = 1, . . . , k. In this way, formula (3.1.5) actually gives the expectation
value of finding a configuration X = {x1, . . . , xk} ∈ X with xi ∈ Ai for every i = 1, . . . , k.

Remark 3.1.3. For k = 1 we have that ρ1(x) is the density of particles, indeed

E(#A) =
∫︂
A
ρ1(x)dx,

for any bounded borel subset A ⊂ E.

Definition 3.1.4. A point process (on E = R or Rd) is called determinantal if its k-point
correlation functions, for every k ≥ 1, is written as

ρk(x1, . . . , xk) = det (K(xi, xj))ki,j=1 , (3.1.6)

with K a trace-class integral operator on L2(R) with kernel K(x, y) in case E = R and
matrix-valued kernel (Krs(x, y))dr,s=1 if E ∼= Rd.

By using the Lenard result about the existence of point process through their correlation
functions, one can find necessary and sufficient conditions for a kernel K(x, y), (x, y) ∈ E2,

to uniquely define a DPP. The result is as follows.

Theorem 3.1.5 (Theorem 3 [100]). Every hermitian, locally trace-class operator K on L2(E)
uniquely defines a determinantal point process if and only if 0 ≤ K ≤ 1.

We will apply this result in Chapter 6 and 7 in order to prove that the matrix-valued
Airy kernels and the finite temperature Airy kernels respectively define DPP on Rr and R.
There exists also a weak convergence criteria for DPP.
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Theorem 3.1.6 (Theorem 5 in [100]). Consider P, Pn probability measures on (X ,B) for
some determinantal point processes with kernels respectively K,Kn. Suppose that

• Kn ⇀ K in the weak operator topology for n → ∞;

• Tr(χBKnχB) → Tr(χBKχB) for n → ∞ and for any Borel subset B ⊂ E;

then the probability measure Pn converges to P weakly on the cylinder sets.

This result will be useful in the next section, where we are going to compute some scaling
limits of certain relevant quantities in DPP arising in some random matrix model.
Knowing the k-point correlation functions of a DPP is fundamental in order to compute
other relevant quantities for the process. We are in particular interested in the computation
of the so called gap probabilities, i.e. the probabilities that no particles lie in a certain subset
of E. The computation required is based on the following result.

Proposition 3.1.7 (Proposition 2.2 of [67]). Consider a point process with existing k-point
correlation functions and let ϕ be a mesurable, bounded, complex-valued function with bounded
support on E. Also, supposing that supp(ϕ) ⊂ B for B a Borel subset of E, assume that

∞∑︂
k=0

||ϕ||k∞
k!

∫︂
Bk
ρk(x1, . . . , xk)dx1dxk < ∞. (3.1.7)

Then we have

E

⎛⎝#B∏︂
j=1

(1 + ϕ(xj))
⎞⎠ =

∞∑︂
n=0

1
n!

∫︂
Ek

n∏︂
k=1

ϕ(xk)ρk(x1, . . . , xk)dx1 . . . dxk. (3.1.8)

Consider now B a bounded Borel subset of E and χB its characteristic function.
Replacing ϕ = −χB in the above formula we get

P (no particles in B) = E

⎛⎝∏︂
j

(1 − χB(xj))
⎞⎠ =

∞∑︂
n=0

(−1)n
n!

∫︂
Bn
ρk(x1, . . . , xn)dx1 . . . dxn,

(3.1.9)
the gap probability distribution. In particular, looking at a point process on R we can
consider B = (t,∞). Supposing that there exist a t̃ for which #(t̃,∞) < ∞, then we can say
that for every t the property holds (since for every finite subset it is always true). We order
then the particles in the interval (t,∞) as x1 < · · · < x#(t̃,∞) = xmax and we want to study
the probability distribution of the largest particle, namely P(xmax ≤ t).

Proposition 3.1.8 (Proposition 2.4 of [67]). Consider a point process on R for which all
k-point correlation functions exist and respect the condition

∞∑︂
n=0

1
n!

∫︂
(t,∞)n

ρn(x1, . . . , xn)dx1 . . . dxn < ∞ (3.1.10)
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for any t ∈ R. Then the process has a last particle and

P(xmax ≤ t) =
∞∑︂
n=0

(−1)n
n!

∫︂
(t,∞)n

ρn(x1, . . . , xn)dx1 . . . dxn. (3.1.11)

When the point process is determinantal with kernelK(x, y) defining a trace-class integral
operator on L2(R), the proposition above becomes even more explicit. In fact the right hand
side of equation (3.1.11) is written as Fredholm determinant of the operator K.

Corollary 3.1.9 (Proposition 2.9 of [67]). Consider a determinantal point process on R with
hermitian kernel K(x, y) such that: it defines a trace-class integral operator K on L2((t,∞))
for any t ∈ R and so that ∫︂ ∞

t
K(x, x)dx < ∞. (3.1.12)

Then the process almost surely has a largest particle and

P(xmax ≤ t) = det
(︂
1 −K|(t,∞)

)︂
. (3.1.13)

This last corollary gives a first connection between the first and the second chapter
of the thesis. Indeed certain Painlevé trascendents such as the ones found in Theorem
2.1.7 and Theorem 2.2.12 for the Painlevé II equation and hierarchy, are expressed as
Fredholm determinants of the Airy kernels given in equation (4.2.4). For each n, these
operators actually satisfy the hypothesis of Theorem 3.1.5 and thus uniquely define some
DPP. As a byproduct the relevant Painlevé trascendents can be related to the largest particle
distribution of the correspondent DPP. Moreover, in the case n = 1 the DPP associated to the
Airy kernel corresponds to a certain limit of the DPP describing the eigenvalue distribution
of a distinguished random matrix model : the Gaussian Unitary Ensemble, that we are going
to treat in the next section.

Remark 3.1.10. In analogue way, the new Painlevé trascendents that we are going to study
in Chapters 6, 7 will also be related to the largest particle probability distribution of some
DPP defined through a matrix-valued analogue of the Airy kernels and to a finite temperature
versions of the Airy kenrels respectively.

3.2 Random matrices and DPP
This section aims to introduce some random matrix models and to see how DPP arise out
in this context. In particular, we are going to focus on the Gaussian Unitary Ensemble
with the ultimate goal to study the probability distribution of the eigenvalues of matrices in
this ensemble in some specific large N limit, N being the size of the matrices in the model.
Indeed it is in this case that the relation to the Painlevé trascendents introduced in Theorem
2.1.7 emerged first.
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We start by defining the Gaussian Unitary Ensemble, GUE from now on. Recall that the
vector space (over R) of hermitian matrices, namely

HN := {H ∈ Mat(N ×N,C) | H = H†}

has real dimension N2. In particular we can take as coordinates the N diagonal entries Hii

(that are real) and the real and imaginary part respectively of the upper triangular entries
RHjk, IHjk (that are exactly N2 −N). Now, an element of GUE is essentially an hermitian
matrix H whose entries Hii for i = 1, . . . , N and RHjk, IHjk for j, k = 2, . . . , N are random
variables, specifically independent identically distributed (i.i.d.) normal random variables.
More precisely GUE is built as follows.

Definition 3.2.1 (Definition 2.5.1 [88]). The Gaussian Unitary ensemble is defined taking
the space of hermitian matrices equipped with a probability measure P (H)dH such that

1. the probability P (H)dH of being in the volume element

dH :=
N∏︂
i=1

dHii

∏︂
j<k

dRHjkdIHjk (3.2.1)

is invariant under conjugation by unitary elements, i.e.

P (H) = P (U−1HU) (3.2.2)

for every unitary matrix U ;

2. all the linearly independent entries of an element H are also statistically independent,
i.e. the function P (H) is a product of independent functions, each of them depending
on one of the linearly independent coordinates

P (H) =
N∏︂
i=1

fi(Hii)
∏︂
j<k

fjk(RHjk)f̃jk(IHjk). (3.2.3)

These two requirements together fix in some sense the function P (H). In particular, we
have the following result.

Theorem 3.2.2 (Theorem 2.6.3 [88]). The only possibility for the form of the function P (H)
is restricted to

P (H) = exp
(︂
−aTrH2 + bTrH + c

)︂
(3.2.4)

where a ∈ R+ and b, c ∈ R.

In particular the standard choice for GUE is to consider P (H) = exp (− TrH2) , since
up to rescaling operations and origin translation every choice of a, b, c can be reduced to this
one. Now, for any given random matrix ensemble, one fundamental point to develop is to
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study the probabilistic behavior of the spectra of the elements of the given ensemble. For
GUE the classical result is as follows.

Theorem 3.2.3 (Theorem 3.3.1 [88]). The joint probability density function of the
eigenvalues for GUE is given by

P (x1, . . . , xN) = CN,2 exp
(︄

−
N∑︂
i=1

x2
i

)︄ ∏︂
j<k

(xj − xk)2 (3.2.5)

where the constant CN,2 is taken in such a way that∫︂
R
· · ·

∫︂
R
P (x1, . . . , xN)dx1 . . . dxN = 1.

Remark 3.2.4. For the other classical ensembles: the Gaussian Orthogonal one and
the Gaussian Symplectic one Theorem 3.2.2 also holds exactly with the same statement,
while Theorem 3.2.3 holds with some little changements. The form of the joint probability
distribution function in those cases has the same form of (3.2.5) but the constant in front of
the argument of the exponential function and the power of the second factor change as well
as the constant CN,2.

We are now going to see that the probabilistic behavior of the eigenvalues of GUE is
indeed a DPP on R. To do this, we need the definition of the n-point correlation functions
for the eigenvalues of GUE.

Definition 3.2.5 ([35, 88]). The n-point correlation function for the eigenvalues of GUE is
defined as

ρn(x1, . . . , xn) = N !
(N − n)!

∫︂
R
· · ·

∫︂
R
P (x1, . . . , xN)dxn+1 . . . dxN , (3.2.6)

where P (x1, . . . , xN) is given in (3.2.5).
The function ρn(x1, . . . , xn) indicates the probability denisity of finding n eigenvalues around
x1, . . . , xn with the position of the remaining N − n left unknown.

The probability density function P (x1, . . . , xN) is a symmetric function, thus it can be
associated to a point process over R. The n-point correlation functions of the relevant process
can be taken exactly as (3.2.6) with P (x1, . . . , xN) given in (3.2.5) (see also Example 2.6 of
[67]). The process is then shown to be determinantal.

Theorem 3.2.6 ([88]). For every n = 1, . . . , N − 1 the correlation functions (3.2.6) are
given by

ρn(x1, . . . , xn) = det (KN(xi, xj))ni,j=1 (3.2.7)

where

KN(xi, xj) =
N−1∑︂
k=1

ϕk(xi)ϕk(xj), with ϕk(x) = 1√︂
2kk!

√
π

exp
(︄

−x2

2

)︄
Hk(x) (3.2.8)
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and Hk(x) being the k-th Hermite polynomial.

We recall that Hermite polynomials {Hk(x)}k∈N are a family of orthogonal polynomials
over R with respect to the weight function exp (−x2). They can be written as

Hk(x) = exp
(︂
x2
)︂(︄

− dk

dxk

)︄
exp

(︂
−x2

)︂
= k!

[k/2]∑︂
j=0

(−1)j (2x)k−2j

j!(k − 2j)! , k ∈ N. (3.2.9)

A proof of Theorem 3.2.6 can be found in Section 6.2 of [88]. To summarise, it essentially
follows by observing that the joint probability distribution function P (x1, . . . , xN) given in
(3.2.5) contains a Vandermonde determinant squared and then by performing row or column
operations one gets

P (x1, . . . , xN) = 1
N ! det(ϕj−1(xi))2 = 1

N ! det(KN(xi, xj))Ni,j=1 (3.2.10)

with KN(xi, xj) given as in (3.2.8). Then one can integrate over the N−n required variables
and apply Theorem 5.1.4 of [88] to conclude. For an alternative proof see e.g. Section 3.2 of
[53].

Remark 3.2.7. We underline that in the definition of the kernel KN in equation (3.2.8)
there is an explicit dependence on N the size of the random matrices we are analyzing.

Gap probabilities Doing similar computations, one can compute other interesting
quantities of the process like the gap probabilities. For a given interval J ⊂ R we denote
by E(n, J) the probability that J contains exactly n eigenvalues, so that E(0, J) is the
probability that there are no eigenvalues in J . As we saw in the previous section for general
DPP and for J = (s,∞), the quantity E(0, J) is expressed in terms of a certain Fredholm
determinant

E(0, J) = det(1 −KNχJ) (3.2.11)

where χJ denotes the characteristic function of the interval J and KN is the kernel written
above in (3.2.8). Otherwise, one can directly compute this quantity as done in e.g. Section
3.2 of [53] for a generic interval J . In the following, we summarise the principal ideas
contained there. Indeed, one can see

E(0, J) = E
(︄
N∏︂
i=1

(1 + f(λi))
)︄

= cN,2

∫︂
R
· · ·

∫︂
R

∏︂
j<k

(xj−xk)2∏︂
i

exp
(︂
−x2

i

)︂
(1+f(xi))dx1 . . . dxN

with f(λ) = −χJ(λ). But the last integral can be explicitly computed by using the Andreief
identity, namely∫︂

R
· · ·

∫︂
R

det(fi(xj)) det(gi(xj))dν(x1) . . . dν(xN) = N ! det
(︃∫︂

R
fi(x)gj(x)dν(x)

)︃
. (3.2.12)
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Again, in our case, by recognizing a squared Vandermonde determinant in the last integral
above and by defining fi(x) = xi = gi(x) and dν(xi) = exp(−x2

i )dxi, we have that

E
(︄
N∏︂
i=1

(1 + f(λi))
)︄

= C̃N,2 det
(︃∫︂

R
xi+j(1 + f(x)) exp(−x2)dx

)︃
= C̃N,2 det

(︃
δij +

∫︂
R
ϕi(x)ϕj(x)f(x)dx

)︃
(3.2.13)

where the last identity is obtained by performing row and columns operations, in order to
replace the monomials xk with the orthogonal family ϕk(x) w.r.t. exp(−x2). Finally, one can
manipulate the last determinant in (3.2.13) in the following way. Construct the two integral
operators

A : L2(R) → RN , s.t. (Af)i :=
∫︂
R
A(i, x)f(x)dx =

∫︂
R
ϕi(x)f(x)dx, for f ∈ L2(R)

(3.2.14)
and

B : RN → L2(R) s.t. (Bv)(x) :=
N∑︂
j=1

B(x, j)vj =
N∑︂
j=1

ϕj(x)vj for v ∈ RN . (3.2.15)

In this way the last determinant in equation (3.2.13) is det(1+AB). By applying the Sylvester
identity (see for instance equation (5.9) of Chapter VI in [48]) i.e. det(1+AB) = det(1+BA),
we conclude

E
(︄
N∏︂
i=1

(1 + f(λi)
)︄

= det(1 +KNf),

and so for f = −χJ the wanted result follows.
Of course, there are many other interesting quantities to study but since our focus will be
on the gap probabilities and their relation with the Painlevé II trascendents, we do not go
any further in this discussion.

Limiting behaviors As underlined before, the determinantal form of the n-points
correlation functions ρn as well as the one of the gap probabilities E(0, J) is written in
terms of a kernel operator depending on the parameter N , which is the size of the matrices
in the ensemble. A natural question is then to study the limiting behavior of these quantities
for N → ∞. Thanks to their determinantal form, this essentially reduces to the study of
the limiting behavior of the kernel KN(x, y) themselves, in some appropriate scaling. In
particular, the so called edge scaling limit (the limit at the edge of the spectra) for the
kernel KN(x, y) is computed as (see e.g. [40])

lim
N→∞

1
21/2N1/6KN

(︃√
2N + x

21/2N1/6 ,
√

2N + y

21/2N1/6

)︃
→ KAiry(x, y) (3.2.16)

the convergence being in trace norm on every bounded (from below) subsets of R. We
highlight that the proof of this result relies on the use of the Christoffel-Darboux formula,
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that allows to rewrite the kernel KN(x, y) as

KN(x, y) =
(︃
N

2

)︃1/2 ϕN(x)ϕN−1(y) − ϕN(y)ϕN−1(x)
x− y

(3.2.17)

and then the large-N asymptotics for the Hermite polynomials which enters in the wave
functions ϕN as defined in (3.2.8). Notice that in this context the Airy kernel KAiry is
considered as

KAiry(x, y) := Ai(x)Ai′(y) − Ai′(x)Ai(y)
x− y

(3.2.18)

which is, by the way, equivalent to the definition given in (2.1.16). As a byproduct one can
write the edge scaling limit of the probability distribution of the largest eigenvalue in GUE
as

lim
N→∞

P
(︃
λmax ≤

√
2N + s

21/2N1/6

)︃
= det(1 −KAiryχ(s,∞)) := FTW (s) (3.2.19)

that is also known as the Tracy-widom distribution.

Remark 3.2.8. Notice that Theorem 3.1.6 applied to this case says that the probability
measures PN of the DPP describing the positions of the eigenvalues of GUE with size N

through correlation functions (3.2.6), converges for N → ∞ to the probability measure of the
DPP on R with kernel the Airy kernel.

The Tracy-Widom distribution and the Painlevé II transcendent Theorem 2.1.7
assumes now new significance, since the Fredholm determinant of the Airy kernel is
interpreted as the edge scaling limit of the probability distribution of the largest eigenvalue in
GUE, as shown above in equation (3.2.19). In particular, one can express the Tracy-Widom
distribution in terms of the Hastings-McLeod Painlevé II transcendents u(t) as

FTW (s) = exp
(︃∫︂ ∞

s
(t− s)u2(t)dt

)︃
, (3.2.20)

which is just the integrated version of the formula given in Theorem 2.1.7.
As previously announced in the Introduction and also in Chapter 2, it is on this type of
result that we will be interested in: results that relate the integrable systems world, in this
specific case Painlevé equations, with the determinantal point processes, that in this case
appear in random matrix theory.
The next two chapters aim thus to introduce the two main tools that can be used to achieve
this kind of results, and that will be used in Chapters 6, 7. First the Riemann-Hilbert
problems for the class of integrable operators (in which the Airy kernel fit in) and second
the isomonodromic representation of the Painlevé equations.
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Chapter 4

Integrable operators and
Riemann-Hilbert problems

Riemann-Hilbert problems are the protagonists of this chapter, in particular the ones
connected with a class of integral operators. This class of operators is known in literature
as integrable operators of IIKS type, since they were first studied using a Riemann-Hilbert
approach in [60]. These operators have kernels of a particular form and their resolvents,
whether they exist, have kernels of the same form. In particular, the expression for their
resolvent is directly related to the solution of a certain Riemann-Hilbert problem. As a
byproduct the Fredholm determinants of these integrable operators can be expressed in
terms of quantities related to the solution of the Riemann-Hilbert problem. Many integral
operators appearing in random matrix theory or statistical mechanics fit in this class of
operators, or are in some way related to them, and can be thus treated with this approach.
This allows to find more information about their Fredholm determinants that have in these
contexts interesting probabilistic interpretation, as underlined in the previous chapter. For
us, the interesting case of study will always be given by the Airy kernel and its higher order
generalizations, in scalar, matrix-valued and finite temperature versions. As we already
underlined in Chapter 3 and we will underline thereafter, the Fredholm determinants of
these Airy kernels describe interesting quantities in random matrix models ([103, 51, 68]) in
the study of the KPZ universality class ([5, 31]) and in models for non interacting fermions
([81, 85, 32]). Nevertheless there are other popular integrable operators involved in these
applications, like the sine kernel and the Bessel kernels, studied for example in [40, 104, 47].
In conclusion, Riemann-Hilbert problems give a powerful tool to study certain integral
operators defining determinantal point processes with applications in many different fields.
Moreover, the Riemann-Hilbert problems build the bridge between integral operators and
integrable systems. Starting from the solution of a given Riemann-Hilbert problem, one can
construct Lax pairs for ordinary or partial differential equations, difference equations and
hierarchies in a standard way. In our case of study, we will always be interested in recovering
the isomonodromic Lax pair for the Painlevé II hierarchy, described at the end of Chapter
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5, and its generalizations.
The Chapter is organized as follows: after a brief introduction on generic Riemann-Hilbert
problems, we are going to review the standard results of the IIKS theory for integrable
operators. Then, we are going to review as this theory can be extended to the case of
matrix-valued integral operators, resuming the work [13]. The results contained in this
section will be largely used in Chapter 6 in order to achieve the original results about the
matrix Painlevé II hierarchy. In Chapter 7 instead, in order to study the finite-temperature
version of the Airy kernels, we will need to introduce the theory of operator-valued Riemann-
Hilbert problems, as we did in the paper [24]. In the last decades, examples of this kind
of problems can be found in only a few papers, e.g. [61, 62]. Very recently the paper [22]
re-introduced operator-valued Riemann-Hilbert problem, with the aim to develop a rigorous
and quite general theory to treat them. Following this method, we will see in section 7.2 how
the operator-valued Riemann-Hilbert problem can be formulated and solved in our specific
case. From that, we will recover an operator-valued isomonodromic Lax pair for the integro-
differential Painlevé II hierarchy. Of course, results and methods in Chapter 7, are strongly
inspired by the classical theory that we are going to review in this chapter.

4.1 Introduction to Riemann-Hilbert problems
In this section we are going to introduce the Riemann-Hilbert formalism and the main results
about the existence of a solution for a given Riemann-Hilbert problem. This first section
is mainly inspired from Chapter 5 of the monograph [53] and we refer to that for further
details and proofs.
A very nice introduction to this topic and its relation to integrable systems is also given in
[58]. The main idea of a Riemann-Hilbert problem is to reconstruct a matrix-valued function
defined on the complex plane and having prescribed discontinuities. These discontinuities
are given in form of jump equations along certain curves, that the boundary values of the
function have to satisfy. Thus, from a practical point of view, a Riemann-Hilbert problem
is essentially defined through a pair of data: a contour and a matrix-valued function defined
on it. Here are the requirements that this pair has to satisfy.

• Let Σ be any oriented contour in the complex λ-plane. One can allow Σ to have a finite
number of self-intersection points, even though in our cases of study in Chapter 6 and
7 there are no such points. Also, Σ can count a finite number of connected components
and this is indeed the case in both our works in Chapter 6 and 7.

• Let G : Σ → GL(p,C) be a map defined all along the contour Σ and taking values in
the set of p× p invertible matrices, p ≥ 1. We call G the jump matrix.

Within the orientation of the contour Σ, we denote by + and − respectively the part of the
plane that stands on the left and respectively on the right hand side of the contour. Finally,
given a pair (Σ, G), the correspondent Riemann-Hilbert problem is settled as follows.
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Riemann-Hilbert Problem 4.1.1. Find a p × p matrix-valued function Y with the
following properties.

(1) Y is analytic on C \ Σ;

(2) For any λ ∈ Σ, the function Y has continuous boundary values Y±, denoting respectively
the boundary value of Y for λ ∈ Σ while approaching Σ respectively from the left (+) or
from the right (−) nontangentially. Moreover Y± satisfy the following jump condition

Y+(λ) = Y−(λ)G(λ) λ ∈ Σ; (4.1.1)

(3) The funtion Y satisfies the asymptotic condition

Y (λ) ∼ Ip for |λ| → ∞, (4.1.2)

where Ip denotes the identity matrix of dimension p.

Remark 4.1.2. One can add more requirements to the pair (Σ, G), for example asking
for G to have constant determinant equal 1 and to decay along all the infinite branches of
Σ exponentially fast. Further requirements can be added on the jump matrices along the
connected components of Σ when there are self intersection points, around each one of them.

The solvability of Riemann-Hilbert problem 4.1.1 essentially relies on the Plemelj-
Sokhotskii formula. This formula actually gives the solution for a scalar Riemann-Hilbert
problem with jump function being Hölder continuous, in terms of a contour integral of
Cauchy type. Then, for matrix Riemann-Hilbert problems there are some particular case in
which the Plemelj-Sokhotskii formula still describes at least some of the entries of the matrix
solution. This happens in the so called abelian cases, when the jump matrix G(λ) commutes
with itself when computed at different values of λ. In the general case, the solution of a
matrix Riemann-Hilbert problem can be still written as a contour integral but in terms of
the boundary values of the function itself. We resume all these results in the following pages,
for the proofs and more details we refer to [96, 43].

Theorem 4.1.3 (Theorem 5.1.3 [53]). Let Σ be an oriented smooth and closed contour and
let g(λ) be a Hölder continuous function defined on Σ. Define the function y(λ) defined as
the contour integral of Cauchy type

y(λ) := 1
2πi

∫︂
Σ

g(ζ)
ζ − λ

dζ = (Cg) (λ), (4.1.3)

where we denoted by C the Cauchy transform.
The function y(λ) has the following properties.

1. It is analytic in C\Σ and its boundary values y±(λ) are continuous up to the boundary
Σ.
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2. limλ→+∞ y(λ) = 0.

3. The boundary values y±(λ) satisfy the following formulae (Plemelj-Sokhotskii)

y±(λ) = ±1
2g(λ) + 1

2πiP
∫︂

Σ

g(ζ)
ζ − λ

dζ, for λ ∈ Σ (4.1.4)

where P stand for the principal value of the integral that follows, i.e.

P
∫︂

Σ

g(ζ)
ζ − λ

dζ := lim
ϵ→0

∫︂
Σϵ

g(ζ)
ζ − λ

dζ (4.1.5)

where the contour Σϵ is taken as Σϵ = Σ \ {Σ ∩ |ζ − λ| < ϵ}, for any λ ∈ Σ.

From equation (4.1.4) directly follows that the boundary values of y satisfy for every
λ ∈ Σ the following relation

y+(λ) = y−(λ) + g(λ) (4.1.6)

that can be thought as an additive jump relation. Thus one concludes that the Cauchy
transform of g(z) actually gives a solution solution for an additive Riemann-Hilbert problem,
as follows.

Corollary 4.1.4 (Corollary 5.1.5 [53]). Let Σ and g being as in Theorem 4.1.3. Then
the Cauchy transform of g, namely y(λ) = (Cg) (λ) defined in (4.1.3), solves the additive
Riemann-Hilbert problem for a function defined through the three conditions

1. y(λ) is analytic for λ ∈ C \ Σ;

2. the boundary values of y satisfies y+(λ) = y−(λ) + g(λ) for any λ ∈ Σ;

3. y(λ) → 0 for λ → ∞.

It directly follows that the classical Riemann-Hilbert problem defined in 4.1.1 in the
scalar case (for p = 1) and for (Σ, G) satisfying the hypothesis of Theorem 4.1.3, admits the
explicit solution

Y (λ) = exp (C lnG) (λ), (4.1.7)

just by applying the logarithm to the jump condition (4.1.1) and then applying the corollary
above. The existence of this solution is guaranteed provided that G(λ) ̸= 0.

Remark 4.1.5. Theorem 4.1.3 can be extended to cases where the contour Σ and the function
g are more general than in the hypothesis above. In particular one can consider Σ as a piece-
wise smooth contours having endpoints and g as a generic function in some Lp-space.

For p > 1, the same formula (4.1.7) holds for the solution of a matrix Riemann-Hilbert
problem (4.1.1) with a jump matrix G such that

[G(λ1), G(λ2)] = 0, for any λ1, λ2 ∈ Σ,

36



while seeking for a solution Y (λ) in the same multiplicative subgroup. This particular case
is also known as the Abelian case. Here is an explicit example.

Example 4.1.6. Consider the case of the Riemann-Hilbert problem 4.1.1 with p = 2 and
the jump matrix G takes the form

G(λ) =
(︄

1 g(λ)
0 1

)︄
.

Its solution can be still written as the contour integral (4.1.7) and can be further simplified
to the following form

Y (λ) =
(︄

1 Cg(λ)
0 1

)︄
.

Notice that the Riemann-Hilbert problems that we are going to study in Chapters 6 and 7
will have jump matrices that have this form on every connected component of the contour Σ.

For the general case, where the jump matrix G does not satisfy the Abelian condition
(4.1), the integral representation of the solution of the Riemann-Hilbert problem (4.1.1) is
more complicated. The result is resumed in the following theorem.

Theorem 4.1.7 (Corollary 5.1.2 [53]). The Riemann-Hilbert problem 4.1.1 admits solution
represented through the following contour integral

Y (λ) = Ip + 1
2πi

∫︂
Σ

ρ(ζ)(G(ζ) − Ip)
ζ − λ

dζ, for λ ∈ C \ Σ, (4.1.8)

where ρ(λ) := Y−(λ) satisfies the integral equation

ρ(λ) = Ip + (C− (ρ(G− Ip)) (λ), λ ∈ Σ (4.1.9)

and C± denote the boundary values of the Cauchy transform while approaching λ ∈ Σ from
its left and right hand side, namely

(C±f) (λ) = lim
η→λ±

1
2πi

∫︂
Σ

f(ζ)
ζ − η

dζ (4.1.10)

where the limit is taken nontangential.

The idea of the proof is to rewrite equation (4.1.8) modifying its right hand side in this
equivalent way

Y (λ) = Ip + 1
2πi

∫︂
Σ

Y+(ζ) − Y−(ζ)
ζ − λ

dζ, λ ∈ C \ Σ (4.1.11)

and then use the Cauchy theorem and the asymptotic condition (4.1.2) to show that this
last identity actually holds for every λ ∈ C \ Σ. Furthermore, the proof can be done for any
contour Σ, once that Σ has been transformed (through orientation changes, addition of extra
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contours carrying the identity as jump matrix ) into a contour such that Σ = ∂Ω+ = −∂Ω−

with Ω± disjoint open subsets covering C \ Σ. The proof of the theorem is explained in
Chapter 5 of [53] (pages 364 – 368) and recovered by steps. First the proof is given for the
simple case where Σ is a closed simple contour, then for the case where Σ is an unbounded
piece-wise smooth contour and finally for the general case described above.

Remark 4.1.8. Formula (4.1.8) will be used in Chapter 6 to study the asymptotic behavior
of the solutions of the homogeneous matrix Painlevé II hierarchy, in a similar way of what
was done in the work [26] and in many others for the same kind of question.

We are going to conclude this section by stating the so called small norm theorem for
Riemann-Hilbert problems. This result is fundamental in the study of asymptotic properties,
and we will use it indeed in the end of Chapter 6 to find the asymptotic behavior of the
solutions of the matrix Painlevé II hierarchy studied there. The idea of this result can be
resumed as follows: first, assume that the jump matrix G for the Riemann-Hilbert problem
4.1.1 depends on some extra parameter G = G(λ, s). This is indeed the case in every problem
that we will treat in Chapter 6, 7 and 8 and generally speaking in most of the applications.
The point is that, if the jump matrix G approximate the identity matrix in a certain matrix
norm and for s → ∞, then also the norm of the quantity Y − Ip can be estimated in the
same regime for s.

Theorem 4.1.9 (Theorem 5.1.5 [53]). Suppose that we have the following estimate on the
jump matrix G

||G− Ip||L2(Σ)∩L1(Σ) <
C

sϵ
, for s ≥ s0, ϵ > 0. (4.1.12)

for C some positive constant. Then, for s sufficiently large there is a unique solution Y =
Y (λ, s) of the Riemann-Hilbert problem 4.1.1 with the above jump matrix G, and it is such
that

||Y (λ, s) − Ip||L2(Σ)∩L1(Σ) ≤ C

(1 + |λ| 1
2 )sϵ

, for λ ∈ K, s ≥ s0 (4.1.13)

where K is a closed subset of C \ Σ satisying dist(λ,Σ)
1+|λ| ≥ c(K) for every λ ∈ K.

Notice that the last estimate can be improved if the estimate on the jump matrix G is
improved (for example if G decays exponentially in s we expect Y to decay at the same
way). The proof of this result strongly rely on the formula given in Theorem 6.1.11 for the
solution of the Riemann-Hilbert problem 4.1.1 and on the fact that the Cauchy transform,
appearing in that formula, is L2-bounded. This and some other useful properties of the
Cauchy transform are stated in Thoerem 5.1.4 of [53] (proofs can be found in [28, 86]).

Remark 4.1.10. We largely discussed the question of finding a solution for the Riemann-
Hilbert problem 4.1.1 and which form and properties this solution has. Although, the question
of uniqueness of the solution was left open. One can prove that by fixing the determinant
of the jump matrix detG = 1 one fixes also the solution of the Riemann-Hilbert problem.
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Essentially, one first proves that the function d(λ) := det(Y (λ)) is actually constant and
equal to 1 and then show by contradiction that there is only one solution to the Riemann-
Hilbert problem with such a jump matrix. If the determinant of the jump matrix is not
constant, then the uniqueness of the solution should be discussed case by case.

4.2 Riemann-Hilbert problems and IIKS integrable
operators

In the previous section we introduced the Riemann-Hilbert problems in the most general
setting, and we studied the basic properties of their solutions. In this section we are going
to study a specific Riemann-Hilbert problem that is related to the integrable operators, first
introduced in [60]. Here the solution of this Riemann-Hilbert problem plays a central role
in the construction of the resolvents of these operators. This is particularly useful when the
kernel of the relevant operator and thus the associated Riemann-Hilbert problem depend
on some further parameters. Then one can express the logarithmic derivative (w.r.t. these
parameters) of the Fredholm determinants of such integrable operators, in terms of the
asymptotic coefficients of the solution of the Riemann-Hilbert problem. In the following we
review the main results of [60, 34, 54] and we refer to these paper for their proofs.

4.2.1 Integrable operators: definitions and examples
To start with, we introduce the two r × p matrices f and g with entries that are smooth
functions defined on the connected components of the contour Σ (considered as in the
previous section). We also assume that these matrices f ,g satisfy the diagonal condition

fT (λ)g(λ) = 0.

Definition 4.2.1. An integral operator K acting on Cp-valued functions h(λ) as

Kf(λ) =
∫︂

Σ
K(λ, µ)h(µ)dµ,

is called integrable if its kernel has the form

K(λ, µ) = fT (λ)g(µ)
λ− µ

. (4.2.1)

Remark 4.2.2. Thanks to the diagonal condition, the kernel K(λ, µ) is nonsingular along
the diagonal and there it should be considered as K(λ, λ) = (f ′)T (λ)g(λ) = −fT (λ)g′(λ).

Example 4.2.3. There are many scalar integral kernels (the case p = 1, r = 2) that appear
in random matrix theory and statistical mechanics taking this integrable form. Here is a list
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of the most popular ones.

• The sinus kernel acts on L2(Σ) with Σ a disjoint union of a finite number of intervals
on R, through the kernel

Ksinus(λ, µ) := 1
π

sin(λ− µ)
λ− µ

(4.2.2)

is indeed an integrable operator, with f(λ) =
(︂
eiλ, e−iλ

)︂
and g(λ) = 1

2πi

(︂
e−iλ,−eiλ

)︂
.

This kernel appears in the bulk scaling limit for GUE [88], and was studied by many
different authors, e.g. [110, 34].

• The Bessel kernels act on L2(R) through the kernel

KBessel(λ, µ) :=
Jα(

√
λ)√µJ ′

α(√µ) −
√
λJ ′

α(
√
λ)Jα(√µ)

2(λ− µ) (4.2.3)

where Jα is the Bessel function of order α. Taking for example f(λ) =
1
2

(︂
Jα(

√
λ),−

√
λJ ′

α(
√
λ)
)︂

and g(λ) = 1
2

(︂√
λJ ′

α(
√
λ), Jα(

√
λ)
)︂

one recognizes the
integrable structure of this kernel, but this is not the only way to see that. This appears
in some scaling limit for the LUE or JUE and was first studied in e.g. [104, 40].

• The Airy kernel acts on L2(R+) through the kernel

KAiry(λ, µ) := Ai(λ)Ai′(µ) − Ai′(λ)Ai(µ)
λ− µ

(4.2.4)

where Ai is the Airy function, that we already met in Chapter 2 and 3. Writing the
kernel in this way, one can take f(λ) := (Ai(λ),−Ai′(λ)) and g(λ) := (Ai′(λ),Ai(λ)) to
see the integrability structure. Althought, this is not the only way to see that. Indeed,
using the alternative description given in (2.1.16) for the kernel, one can found another
integrable structure for the Airy kernel by passing in Fourier coordinates (as done in
[26]). In Chapter 6 and 7 we will follow this second procedure for the study of both
the matrix and the finite temperature generalizations of the higher order Airy kernels.
Anyway, as already said in the previous chapters, the Airy kernel appears in the edge
scaling limit for GUE [103, 88].

All these kernels can be also found in relation to many different models in statistical
mechanics that were studied for instance in [81, 33, 79].

The first interesting property of the integrable operators is that their resolvents, whenever
they exist, they are integrable too. This was first observed and proved in [60] and the result
is resumed in the following lemma.

Definition 4.2.4. For an integral operator K as in Definition 4.2.1, the correspondent
resolvent operator is defined as R := (1 − K)−1K, when 1 − K is invertible.
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Lemma 4.2.5 ([54]). Consider K an integrable operator with kernel (4.2.1) and suppose
that (1 − K)−1 exist. Then the resolvent R is an integrable operator with kernel given by

R(λ, µ) = FT (λ)G(µ)
λ− µ

(4.2.5)

where the matrix-valued functions F,G are recovered through

FT (λ) = (1 − K)−1fT , G(λ) = (1 − KT )−1g. (4.2.6)

In particular the diagonal condition holds also for the resolvent, i.e. FT (λ)G(λ) = 0.

4.2.2 The Riemann-Hilbert problem associated to integrable
operators

Given an integrable operator K as in Definition 4.2.1, the associated Riemann-Hilbert
problem of the form 4.1.1 is defined through the pair (Σ, G) where Σ is the contour where
the integral in the definition of Kf(λ) is computed and the jump matrix G is defined as the
r × r matrix

G(λ) := Ir − 2πif(λ)gT (λ). (4.2.7)

The solution Y of the Riemann-Hilbert problem constructed in this way is then used to
recover the kernel of the resolvent of K. The result is resumed in the following theorem.

Theorem 4.2.6 ([54]). Given the integrable operator K, the operator (1 − K)−1 exists if
and only if the Riemann-Hilbert problem 4.1.1 defined through the pair (Σ, G) related to K
(described just above) is solvable. In particular, the functions F,G defining the kernel of the
resolvent R are obtained in terms of the solution Y of the Riemann-Hilbert problem as

F(λ) = Y (λ)f(λ), G(λ) = (Y T (λ))−1g(λ) (4.2.8)

and the solution Y of the Riemann-Hilbert probelm 4.1.1 for the pair (Σ, G) has integral
reprensentation given by

Y (λ) = Ir −
∫︂

Σ
Y−(ζ)f(ζ)gT (ζ)

ζ − λ
dζ. (4.2.9)

In general, the integrable operators we are interested in will have kernels dependending
on some auxiliary parameters. Thus, their Fredholm determinats (whether well defined)
are functions of these parameters and their dependence on them should then be studied.
Moreover, for the operators satisfying Theorem 3.1.5, the Fredholm determinants are
interpreted as relevant probabilistic quantities in relation to the DPP defined through the
operator, as stated in Proposition 3.1.9. Finding the explicit dependence on the parameters
for these Fredholm determinants becomes even more crucial. The Riemann-Hilbert approach
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is indeed useful in this sense : it allows to derive a formula for the logarithmic derivative
of these Fredholm determinants in terms of certain quantities related to the solution of
the relevant Riemann-Hilbert problem. This essentially follows from the application of the
Jacobi formula, namely

δ log det(1 − K) = − Tr((1 − K)−1 δK), (4.2.10)

where δ denotes the variation with respect to the parameters on which K depends on, together
with Theorem 4.2.6. Having explicit expression for the Fredholm determinant can be then
used for example to study the asymptotic behavior of them.

4.3 Riemann-Hilbert problems and Hankel integral
operators

There are cases in which we are interested in Fredholm determinants of operators that are
not of integrable form but that can be proved to be equal, after some manipulations, to
Fredholm determinants of operators of integrable type. For example, consider the Hankel
matrix-valued operators C acting on L2(R+,Cr) as

(Cϕ) (x) =
∫︂
R+

C(x+ y)ϕ(y)dy, ϕ ∈ L2(R+,Cr) (4.3.1)

with C a matrix-valued function having form

C(z) := −i
∫︂
γ+
eizµr(µ)dµ (4.3.2)

where r(µ) is an integrable function and γ+ is some curve in the upper complex plane. In [13]
the authors proved that this kind of operators can be treated through a Riemann-Hilbert
approach too. In this section we will go through the fundamental results obtained in that
paper, and we will use them in Chapter 6 in order to relate the Fredholm determinants of a
matrix-valued analogue of higher order Airy kernels to certain solutions of a matrix Painlevé
II hierarchy.
The first step, is to prove that the Fredholm determinant of these Hankel operators coincides
indeed with the Fredholm determinant of some operator on the space L2(γ+,Cr), as explained
in the following statement.

Theorem 4.3.1 (Corollary 2.1 [13]). The Hankel operators C of type (4.3.1), (4.3.2), with
the function r(µ) := E1(µ)ET

2 (µ) and Ej ∈ L2 ∩ L∞(γ+,Mat(r × r)) are trace class on
L2(R+,Cr) and their Fredholm determinants are such that

det(1 + C|L2(R+,Cr)) = det(1 + K|L2(γ+,Cr)), (4.3.3)
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where K : L2(γ+,Cr) → L2(γ+,Cr) are integral operators with kernel

K(λ, µ) = ET
1 (λ)E2(µ)
λ+ µ

. (4.3.4)

Remark 4.3.2. Integral operators with kernels of type (4.3.4) for some specific choice of the
functions Ei(λ) acting on L2((0,∞)) were previously studied by Tracy and Widom in [105],
in relation with some integrable hierarchies.

The proof is based on the use of the Fourier-Plancherel transform. The conjugation of C
by this transform gives indeed an integral operator that shares its Fredholm determianant
with C and that can be proven to be trace class on the correspondent Hardy space. This last
result comes from the fact that the relevant operator can be seen as composition of Hilbert-
Schmidt operators defined on appropriate functional spaces. By exchanging the order of the
composition, one obtain exactly the operator K on L2(γ+,Cr) in the statement above, that
still shares its Fredholm determinant with the operator C thanks to the Sylvester identity
(cfr. [99, 48]).

Remark 4.3.3. The operator K with kernel given in (4.3.4) is not exactly of the integrable
form (4.2.1), because of its denominator. Nevertheless, it was proven in [13] that also these
operators K and K2 can be studied through a Riemann-Hilbert problem, extending in some
way the theory of standard IIKS operators of [60]. Since in Chapter 6 we will be interested
just into the square of some particular operator K, in the following we will focus on the
results that only concerns the squared operator.

The relevant Riemann-Hilbert problem (Σ, G) of the form 4.1.1 for a function Y (λ) with
values in GL(2r) is built by taking as contour Σ the union of the two disjoint contours

Σ := γ+ ∪ γ− (4.3.5)

where γ− := −γ+, and as jump matrix

G(λ) :=
[︄

Ir −2πir(λ)χγ+(λ)
−2πir(−λ)χγ−(λ) Ir

]︄
. (4.3.6)

Based on the IIKS theorem, the authors of [13] proved the following result about relating
the solution of the Riemann-Hilbert problem for Y (λ) and the operator 1 − K2.

Theorem 4.3.4 (Theorem 3.1 [13]). The resolvent operator R := K2(1−K2)−1 on L2(γ+,Cr)
has kernel R(λ, µ) expressed in terms of the solution Y of the Riemann-Hilbert problem (Σ, G)
defined in (4.3.5), (4.3.6), as follows

R(λ, µ) =
[︂
ET

1 (λ) 0r
]︂ Y T (λ)Y −T (µ)

λ− µ

[︄
0r

E2(µ)

]︄
. (4.3.7)
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The solution Y of the Riemann-Hilbert problem (Σ, G) exists if and only if 1−K2 is invertible.
Now, suppose that the operators C and thus K depend on some auxiliary parameters. As

a byproduct the jump matrix G and the solution Y of the Riemann-Hilbert problem (Σ, G)
associated to these operators also depends on these auxiliary parameters. Denoting by δ the
variation with respect to these parameters, the authors of [13] expressed the variation of the
Fredholm determinant of K2 in the following way.
Theorem 4.3.5 (Theorem 4.1 [13]). We have that

δ log det(1 − K2) = 1
2πi

∫︂
Σ

Tr
(︂
Y −1

− Y ′
−δGG

−1
)︂
dλ, (4.3.8)

where the ′ denotes the derivative w.r.t. the parameter λ.
The main ingredient for the proof of this result is the application of the formula (4.2.10)

to the relevant IIKS operator acting on L2(Σ) ≃ L2(γ+)⨁︁L2(γ−) that is related to
the Riemann-Hilbert problem (Σ, G) defined through (4.3.5), (4.3.6). This operator has
Fredholm determinant that coincides with the one of K2 by the very construction, and thus
the proof follows.
This is exactly the result that we need in Chapter 6 in order to find the formula that express
the Fredholm determinant of the matrix analogue of the higher order Airy kernels, in terms
of some distinguished solutions of the matrix Painlevé II hierarchy.
Remark 4.3.6. Relation (4.3.8) allows to explicitely compute the logarithmic derivative of
the relevant Fredholm determinants. Indeed, the dependence of the jump matrix G on the
auxiliary parameters is explicit thus the quantity inside the integral on the right hand side
δGG−1 is explicit too and so does the entire integral. A very important example of dependence
(this is indeed the case we have to deal with in Chapter 6) is when the jump matrix can be
factorized as

G(λ, T⃗ ) = eT (λ,T⃗ )G0(λ)e−T (λ,T⃗ ),

where T (λ, T⃗ ) = ∑︁m
j=0 Tjλ

j is a matrix depending on the diagonal matrices Tj that are
considered here as the deformation parameters.
Remark 4.3.7. For every parametric family of Riemann-Hilbert problems 4.1.1 depending in
a sufficiently smooth way on the auxiliary parameters and having Σ with no self-intersections,
one can always define the integral in the right hand side of equation (4.3.8). Over the space
of deformations of these Riemann-Hilbert problems this quantity is interpreted as a 2-form

ΘY
M(δ) := 1

2πi

∫︂
Σ

Tr
(︂
Y −1

− Y ′
−δGG

−1
)︂
dλ,

and whether it is closed, one can defined up to a constant, its correspondent tau function in
such a way that δτY = ΘY

M(δ). For more details on this topic we refer to [13, 11] and to the
previous series of works of the Japanese school [66, 63, 64]. We will use this 2-form (for
another specific Riemann-Hilbert problem) in Chapter 8.
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Chapter 5

Isomonodromic deformations as Lax
pairs

The aim of this chapter is to introduce the theory of isomonodromic deformations focusing in
particular on its relation with the Painlevé II equation (2.1.2). All the six equations (2.1.1)
– (2.1.6), indeed, admit (at least) a Lax pair representation given by the isomonodromic
deformations of a specific 2 × 2 linear ODEs system with rational coefficients. This general
result was first proven in the works [66, 63, 64]. For the Painlevé II equation specifically
the works of Flaschka and Newell [36, 37] investigated alternative connections between the
Painlevé II equation and the theory of isomonodromic deformations. The Flaschka-Newell
Lax pair for the Painlevé II equation, given by equations (3.2a,b), (3.3a,b) in [36], was then
generalized to a Lax pair for the all members of the Painlevé II hierarchy (2.2.22) in [30].
The construction of analogue Lax pairs for the matrix and then integro-differential Painlevé
II hierarchy, that we are going to study respectively in Chapters 6, 7, will be a fundamental
element in the proof of our results generalizing the Tracy-Widom formula.
Generally speaking, the existence of isomonodromic Lax pairs for the Painlevé equations
has been very useful to study remarkable properties, asymptotics in particular, of certain
Painlevé trascendents. Many results have been collected and proved in details in the
monograph [39], that will be indeed the main reference for this chapter.
From another point of view, the isomonodromic representation of Painlevé equations opened
the way to a new, more geometrical, field of study: the Painlevé monodromy manifolds (see
e.g. [27] and references therein). Given a linear system of ODEs with rational coefficients,
its monodromy manifold is the space of its monodromy data considered together with
eventual algebraic relations between them. For the case of regular singularities (as for
the isomonodromic Lax pair for the PVI equation (2.1.6)) the monodromy manifold is
related to some character variety of the Riemann sphere with prescribed punctures (for
PVI, the SL2(C) character variety of the Riemann sphere with 4 punctures). For systems
carrying irregular singularities (as all the isomonodromic Lax pairs for the remaining Painlevé
equations, including PII), as we will see, the set of monodromy data is more complicated
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mainly because of the presence of Stokes phenomena. Thus the geometrical description
of the corresponding monodromy manifolds cannot simply be done in terms of character
varieties. Their corresponding generalizations are now known under the name of wild
character varieties, terminology born in [87] and consolidated by Boalch. One of the major
aspects in the study of monodromy manifolds is their Poisson (symplectic) structure, in
relation with the Poisson-Lie structure on the rational matrices (coefficients of the relevant
ODEs) through the monodromy map. The first papers that studied this problem are [37, 107]
where the authors focused on monodromy manifolds for some specific systems of ODEs. Some
years later, the series of papers [17, 18, 19] by Boalch investigated the problem in greater
generality. In Chapter 8 we are going to study the symplectic structure of the monodromy
manifolds of a rank 2 polynomial equation, i.e. with only one irregular singularity of arbitrary
Poincaré rank at ∞ (which underlies for odd Poincaré ranks the case of the Lax pair for the
homogeneous Painlevé II hierarchy [30]), the case studied by Flaschka and Newell [37].
The Chapter is organized as follows: in the first section we are going to review the
fundamental results on the theory of linear system of ODEs in the complex plane and we
are going to define the main concepts of monodromy data and monodromy map. In the
second section we are going to give the definition of isomonodromic deformation and finally
in the third section we will see the isomonodromic Lax pairs for the Painlevé II equation
and hierarchy.

5.1 System of ODEs with rational coefficients
In the following two sections we are going to resume the main concepts and results of the
theory of linear ODEs in the complex plane, contained in Chapters 1 – 4 of [39]. For more
details and for the proofs of the statements, we refer thus to them (and references therein).
Let us consider M(λ) a N ×N matrix-valued rational function, with N > 1 and λ ∈ C. We
are interested in finding a N ×N matrix-valued solution Ψ(λ) of the linear ODE

dΨ
dλ

= M(λ)Ψ. (5.1.1)

5.1.1 Description of local solutions
For a given λ0 ∈ CP1, the behavior of a local solution Ψ in a neighborhood of λ0 is essentially
determined by the behavior of the coefficient matrix M(λ) at the given point λ0. Given that
M(λ) is rational in λ we only have three possibilities : λ0 is a regular point for the differential
M(λ)dλ, or it is a simple pole or it is a pole of greater order (we say that it has Poincaré
rank r > 0 at λ0, meaning that the Laurent series of M(λ)dλ at λ0 has nonzero coefficient up
to the power −r−1 in the local coordinate near λ0). In each of these possible configurations
we have different local behaviors of Ψ, as described by the following results.

Theorem 5.1.1 ([39]). Consider λ0 ∈ CP1 and a given N ×N invertible matrix Ψ0. If the
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matrix coefficient M(λ)∗ is holomorphic in a disk Bλ0 centered in λ0, then there is a unique
solution of the ODE (5.1.1) holomorphic in the same disk and satisfying the initial condition
Ψ(λ0) = Ψ0.

Thus, as far as we look for solutions of the equation (5.1.1) near points that are regular
for the matrix coefficient M(λ), we get local solutions that are smooth too.
Consider now the case where M(λ)dλ has an isolated simple pole at the given point λ0 ∈ CP1.
For ζ being the local parameter near λ0 (ζ = λ−λ0 in case λ0 is finite, ζ = 1

λ
in case λ0 is ∞),

we can then write in a punctured disk centered at λ0, Bλ0 \{λ0}, the following representation

M(λ)dλ =
∞∑︂

k=−1
Mk+1ζ

kdζ, M0 ̸= 0. (5.1.2)

The behavior of Ψ near λ0 is then uniquely determined, up to the spectral properties of the
matrix M0, as follows.

Theorem 5.1.2 ([39]). Given the previous hypothesis on M(λ)dλ, suppose that the
coefficient M0 is diagonalizable, namely M0 = PT0P

−1 with T0 a diagonal matrix (called
the formal monodromy exponent). Also, suppose that M0 has nonresonant eigenvalues† (i.e.
the difference of each couple of distinct eigenvalues is not an integer). Then the ODE (5.1.1)
has a fundamental solution Ψ near λ0 of the form

Ψ(λ) = Ψ̂(λ)ζT0 , (5.1.3)

with Ψ̂(λ) holomorphic and invertible in Bλ0 and uniquely determined by the value of Ψ̂(λ0) =
P.

Notice that it is equivalent to say that in the disk Bλ0 the solution Ψ is in the form

Ψ(λ) = P

(︄ ∞∑︂
k=0

Ψkζ
k

)︄
ζT0 , Ψ0 = IN (5.1.4)

where the power series is convergent. This is indeed the main difference between the behavior
of a local solution near a simple pole and near a higher order pole of M(λ)dλ, as we are
going to explain. Consider now the case where λ0 ∈ CP1 is a pole of Poincaré rank r > 0 for
the differential M(λ)dλ, namely we can write in the punctured disk Bλ0 \ {λ0}, using the
local coordinate ζ near λ0, the following representation

M(λ)dλ =
∞∑︂

k=−r−1
Mk+1ζ

kdζ, M−r ̸= 0. (5.1.5)

∗or equivalently the differential M(λ)dλ is holomorphic in the same disk.
†In the cases where M0 is not diagonalizible or it is so but it does have resonant eigenvalues the statement

is adapted with a slightly different behavior of Ψ.
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Assume again that the leading coefficient M−r is diagonalizable, namely

M−r = PT−rP
−1 (5.1.6)

with T−r a diagonal matrix, that has all distinct nonzero eigenvalues αi, i = 1, . . . , N .

Theorem 5.1.3 ([39]). In the above hypothesis for the differential M(λ)dλ, there is a unique
formal fundamental solution of the ODE (5.1.1) in the punctured disk Bλ0 \ {λ0} and it is
written in the form

Ψf (λ) = P

(︄ ∞∑︂
k=0

Ψkζ
k

)︄
exp

(︃
T−r

−r
ζ−r + · · · + T−1

−1 ζ
−1 + T0 ln ζ

)︃
, Ψ0 = IN (5.1.7)

with Tk all diagonal matrices for k = −r, . . . , 0. Both the coefficients Ψj, j ≥ 0, and the
exponents Tk, k = −r, . . . , 0 are determined recursively as polynomials of the coefficients Mk

in (5.1.5).

The solution Ψ is called formal since typically the series in (5.1.7) does not converge.
It turns out that Ψ as in (5.1.7) is actually only the asymptotics (for λ approaching the
irregular singularity λ0) of a genuine fundamental solution of (5.1.1) uniquely defined in
a certain sector of the punctured disk Bλ0 \ {λ0}. These sectors are also known as Stokes
sectors, and they are defined as the sectors of the disk Bλ0 containing exactly one of the lines
defined as ℓ(i,j)

m := {ζ| |ζ| < ρ, arg ζ = 1
r

arg(αi − αj) + π
r

(︂
m+ 1

2

)︂
}, m = 0, . . . , 2r− 1 and

i, j = 1, . . . , N with i < j.‡ More precisely the result reads as follows.

Theorem 5.1.4 ([39]). In the hypothesis above, inside any Stokes sector contained in the
disk Bλ0 there exists a unique fundamental solution Ψ(λ) of the ODE (5.1.1) such that

Ψ(λ) ∼ Ψf (λ) for λ → λ0, (5.1.8)

where Ψf (λ) is given as in (5.1.7) and the branch of the logarithm in that formula is chosen.

Notice that the Stokes sectors can be defined in a canonical way, so that Bλ0 \ {λ0} is
always covered by 2r of them. For δ > 0 sufficiently small, consider the sector

S := {ζ ∈ C| 0 < |ζ| < ρ, θ1 < arg ζ < θ1 + π

r
+ δ}. (5.1.9)

Then S is a Stokes sector. With that in mind, one constructs

Sn := ei
π
r

(n−1)S, n = 1, . . . , 2r. (5.1.10)

All Sn defined in this way are Stokes sectors; moreover, they cover the punctured disk and
they are such that S1 = S = S2r+1. It follows from Theorem 5.1.4 that we can define 2r

‡This condition follows while looking for the uniqueness of a fundamental solution of (5.1.1) near a higher
order pole, with asymptotics given by (5.1.7).
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canonical solutions Ψn(λ) near λ0 a higher order pole of M(λ)dλ, each one of them uniquely
defined by the asymptotic condition (5.1.7) in the correspondent Stokes sector Sn.
From this construction follows the definition of the Stokes matrices

Sn := Ψ−1
n (λ)Ψn+1(λ), λ ∈ Sn ∩ Sn+1, n = 1, . . . , 2r. (5.1.11)

These matrices can be shown to be constant upper or lower triangular matrices, with unit
diagonals. Together with the exponents Tk, k = −r, . . . , 0 the Stokes matrices uniquely
determine, up to gauge transformations, the system (5.1.1) having at λ0 an irregular singular
point (for more details on this topic, also known as the Stokes phenomena, see Theorem 5.1
of [39]).

From local to global With these four results in mind, one can construct a local solution
of the ODE (5.1.1) starting at any point of the punctured Riemann sphere. But what about
global solutions? The answer to this question is given by the following Monodromy Theorem.

Theorem 5.1.5 ([39]). Let mi ∈ CP1, i = 1, . . . , n be the isolated poles of the coefficient
matrix M(λ) of the ODE (5.1.1) and let γ : [0, 1] → CP1 \ {mi}ni=1 a curve. Consider the
germ of a solution of (5.1.1) at the (regular) point γ(0), namely

Ψ(λ) =
∞∑︂
k=0

Ψkζ
k, ζ the local coordinate near γ(0). (5.1.12)

Then Ψ(λ) admits analytic continuation all along the path γ to the point γ(1). Furthermore,
its analytic continuation only depends on the homotopy class of γ.

This result gives the recipe to construct global solutions of the ODE (5.1.1) starting
from any point of the punctured Riemann sphere : just consider any local solution and
then perform analytic continuation. In a certain way, the construction of global solutions
essentially relies on the representation of local solutions. The behavior of local solutions was
given by formulae (5.1.4), (5.1.7), in which the main ingredients are the formal monodromy
exponent T0 and the exponents Tk, k = −r, . . . , 0, together with the Stokes matrices (5.1.11)
respectively. This set of data, should be then completed with the description of the passage
from one local representation to the other: all together they form a set of global monodromy
data that allows us to completely determine the ODE (5.1.1).

5.1.2 Monodromy data of ODEs
We are now going to describe two sets of data: the global monodromy data and the essential
monodromy data. Suppose that among the poles mν of M(λ)dλ we have simple poles for
ν = 1, . . . , p ≤ m and then for ν = p+ 1, . . . ,m we have higher order poles, of Poincaré rank
rν , ν = p+ 1, . . . ,m. From the previous discussion, we first collect the following data
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• T
(ν)
0 for ν = 1, . . . , p;

• T
(ν)
k with k = −rν , . . . , 0 for ν = p+ 1, . . . ,m, together with S(ν)

l for l = 1, . . . , 2rν and
ν in the same range.

These data describe the local behavior of solutions Ψ(ν) near all the simple poles {mν}pν=1 of
M(λ)dλ, and solutions {Ψ(ν)

l }2rν
l=1 in the canonical Stokes sectors near its higher order poles

{mν}nν=p+1. Consider now a generic fundamental solution of (5.1.1) at a point m0 ∈ CP1 \
{mi}ni=1, determined by initial condition Ψ(m0) = Ψ0, for Ψ0 any invertible matrix. Each
local solution Ψ,Ψ(ν),Ψ(ν)

l , thanks to Theorem 5.1.5, can be analytically continued along
every path contained in the punctured Riemann sphere, giving back global solution of the
same ODE (5.1.1). Thus, every two of these solutions can only differ by right multiplication
by a constant matrix, called the connection matrix. In particular, one defines

Ψ(λ) = Ψ(ν)(λ)Eν , and Ψ(λ) = Ψ(ν)
1 (λ)Eν , (5.1.13)

for ν = 1, . . . , p and ν = p + 1, . . . ,m respectively. The matrices Eν exactly describe the
passage from a local solution to the other, and thus conclude the global picture we needed
for the complete description of the solutions of the ODEs (5.1.1).
The global monodromy data set is then defined as the following collection

M := {m1, . . . ,mn, T
(1)
0 , . . . , T

(p)
0 , (T (ν)

k , S
(ν)
l )ν=p+1,...,m

k=−rν ,...,0, l=1,...,2rν
, E1, . . . , Em}. (5.1.14)

As shown in Proposition 2.2 of [39], this collection of data uniquely defines the ODE (5.1.1)
with M(λ)dλ having exactly m poles with fixed Poincaré rank rν , ν = 1, . . . ,m (meaning
rν = 0 for ν = 1 . . . , p). This is no longer true when we restrict the set of global monodromy
data to the essential monodromy data, i.e. we eliminate from M the positions of the poles
and the coefficients T (ν)

k for k = −rν , . . . , 1 and ν = p + 1, . . . ,m. This restricted subset,
defined as the set of essential monodromy data, it is explicitly given by the collection

m := {T (ν)
0 , S

(µ)
l , Eν}ν=1,...,m

l=1,...,2rν ,µ=p+1,...,m. (5.1.15)

In particular, we have that the monodromy map

{M(λ)dλ with m poles of fixed multiplicities rν} → {m, sets of essential monodromy data}

is no longer one-to-one. The problem of describing the subset of rational matrices M(λ),
coefficient of (5.1.1), sharing the same set of essential monodromy data m is exactly what
isomonodromy deformations are about.

Remark 5.1.6. The monodromy manifold for a given linear system of ODEs can be defined
as the space of its Stokes / connection matrices together with eventual constraints among
them. The constraints will change from case to case. In Chapter 8 we will study a specific
example of monodromy manifold, called Stokes manifold, that is associated to a polynomial
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linear ODE. As we will see, in this case the monodromy manifold is simply given by the
collection of some Stokes matrices. Although they are not independent, they should satisfy
an algebraic equation (corresponding to the canonical relation in the fundamental group of
CP1 \ {poles}).

5.2 Isomonodromic deformations
The study of isomonodromic deformations can be formalised as follows: suppose that the
coefficient matrix of the ODE (5.1.1) now depends holomorphically on some extra complex
parameters t1, . . . , tK , namely

M(λ) = M(λ, t1, . . . , tK) = M(λ, t). (5.2.1)

Definition 5.2.1. An isomonodromy deformation is given by a holomorphic family of
rational matrices as in (5.2.1) which is an admissible deformation and preserves the set
of essential monodromy data of M(λ, t = 0). More specifically the family (5.2.1) has to
satisfy the following requirements:

1. the number n of poles does not depend on ti, i = 1, . . . , K. Moreover there exist some
disks Bν, ν = 1, . . . , n such that each pole mν ∈ Bν for all values of the parameters ti
and Bν ∩Bµ is the empty set for all ν ̸= µ;

2. the spectral properties of the leading coefficients of the Laurent series of M(λ)dλ at
each singular point do not depend on ti;

3. for all the poles mν(t) with Poincaré rank rν > 0 the Stokes sectors in the punctured
disk centered at the corresponding pole mν(t) are t-independent under translation λ →
λ−mν(t);

4. canonical solutions of the ODE (5.1.1) are holomorphic w.r.t. t and for local solutions
near irregular points, their asymptotic behavior (5.1.7) holds uniformly in t;

5. (isomonodromic condition) all the formal monodromy exponents T
(ν)
0 , the Stokes

matrices S(µ)
l and the connection matrices Eν, ν = 1, . . . , n, µ = p + 1, . . . ,m, l =

1, . . . , rν are t-independent.

The list of requirements in the definition above can actually be translated into the fact
that the entries of the matrix coefficient M(λ) should solve some further system of nonlinear
differential equations (w.r.t. the deformation parameters ti). This result is obtained by
looking at the following differential

Ξ(λ, t) := dΨΨ−1 =
K∑︂
j=1

∂Ψ
∂tj

dtjΨ−1, (5.2.2)
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that, thanks to the last requirement in the above definition, is actually a single-valued
analytic function in CP1 \ {mν}nν=1. Studying its behavior near the poles mν , using the
formulae (5.1.4), (5.1.7) for the local solutions of the ODE (5.1.1) near these points and the
fact that the essential monodromy data are t-independent, more can be said about Ξ(λ, t).
This study was first done in [66] and in the following we cite one of their main results.
Main assumption Assume that the pole mn(t) = ∞ for all t and that the leading coefficient
of the Laurent series of M(λ)dλ at ∞ is already diagonal. Also, assume that the essential
monodromy data of (5.1.1) are defined by taking as basic fundamental solution Ψ the local
solution near mn = ∞ (the canonical solution Ψ(n) if mn = ∞ is a simple pole, the canonical
solution in the first Stokes sector Ψ(n)

1 if mn = ∞ is of higher order).

Theorem 5.2.2 ([66]). The differential Ξ(λ, t) is a rational matrix-valued function in λ

with poles coinciding with m1, . . . ,mn−1,mν = ∞ and with the same Poincaré rank rν , ν =
1, . . . , n of M(λ). In particular, Ξ(λ) can be explicitly and uniquely determined in terms of
the coefficients of the Laurent series of M(λ) near each one of its singular points. Namely

Ξ(λ) = Ξ(λ, {M (ν)
k }, {mν}), (5.2.3)

with M (ν)
k defined from the principal part decomposition of M(λ)

M(λ) = M (∞)(λ) +
n−1∑︂
ν=1

M (ν)(λ),

M (ν)(λ) =
rν+1∑︂
j=1

(λ−mν)−jM
(ν)
−j+1, ν = 1, . . . , n− 1,

M (∞)(λ) = −
r∞−1∑︂
j=0

λjM
(∞)
−j−1, if r∞ > 0, M (∞)(λ) = 0, otherwise.

(5.2.4)

This result allows us to rewrite equation (5.2.2) as a differential equation that the function
Ψ should satisfy w.r.t. the parameters ti, i = 1, . . . , K. Namely it reads as

dΨ = Ξ(λ)Ψ i.e. ∂Ψ
∂tj

= Ξj(λ)Ψ, with Ξ(λ) =
K∑︂
j=1

Ξj(λ)dtj, and j = 1, . . . , K. (5.2.5)

In conclusion, assuming that M(λ) = M(λ, t) is an isomonodromic deformation (respecting
the main assumption written above) one obtains the coupled overdetermined system⎧⎨⎩

∂Ψ
∂λ

= M(λ)Ψ,
dΨ = dΞ(λ)Ψ.

(5.2.6)

Its cross-differentiation gives rise to the following differential equation for the matrix
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coefficient M(λ), namely the compatibility condition,

dM = ∂Ξ
∂λ

+ [M,Ξ] , (5.2.7)

that holds identically in λ. This equation becomes then a system of nonlinear differential
equations for the coefficients M (ν)

k illustrated above. We say that the system (5.2.6) is
a Lax pair for the equation (5.2.7). Choosing appropriately the type of isomonodromic
deformations for N = 2 to look at, namely the number of poles of M(λ) and their Poincaré
ranks, one obtains that equation (5.2.7) gives respectively one of the six Painlevé equations
(2.1.1)–(2.1.6) and thus the corresponding system (5.2.6) is the Lax representation of the
relevant Painlevé equation.

Remark 5.2.3. Notice that there is also a converse of the previous result, meaning that
equation (5.2.7) is also a sufficient condition to describe an isomonodromic deformation of
a rational matrix-valued function M(λ, t) with fixed number of poles and Poincaré ranks,
described as in (5.2.4). For more details we refer to Theorem 4.1 in [39] (see also [66]).

5.3 Isomonodromic representations of the Painlevé II
equation and hierarchy

In this last section we are only going to collect well known results about the isomonodromic
Lax pair representation of the Painlevé II equation and hierarchy. These representations were
indeed fundamental in the papers [71] and [26] in order to re-prove and extend to the all
Painlevé II hierarchy the Tracy-Widom result (given in Theorems 2.1.7, 2.2.12 respectively)
about the Hastings-McLeod solutions of the Painlevé II equation. For the same reason,
it will be fundamental in Chapter 6, 7 to construct an analogue Lax pair for the matrix
and integro-differential Painlevé II hierarchies. In the following σi, i = 1, 2, 3 denotes the
standard Pauli’s matrices, while σ± are 2 × 2 matrices having as unique nonzero entry 1 at
(1, 2) and (2, 1) respectively.

Theorem 5.3.1 (Appendix I, [36]). The Painlevé II equation (2.1.2) for the function u(t)
follows from the compatibility condition of the 2 × 2 system

∂Ψ
∂λ

= MΨ, with M(λ, t) = −i(4λ2 + t+ 2u2)σ3 +
(︃

4λu+ α

λ

)︃
σ1 − 2utσ2

∂Ψ
∂t

= LΨ, with L(λ, t) = −iλσ3 + uσ1,

(5.3.1)

describing isomonodromic deformations of a rank 2 ODE with one irregular singularity of
Poincaré rank 3 at ∞ and a simple pole at 0.

The above system is known as the Flaschka-Newell Lax pair for the Painlevé II equation.
This Lax pair is the one used in [71], in order to recover the Tracy-Widom result (Theorem
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2.1.7) for the Hastings-McLeod solution of the Painlevé II equation through the Riemann-
Hilbert approach. Another Lax pair was discovered by Jimbo and Miwa and it is reported
in the following.

Theorem 5.3.2 (Appendix C, [63]). The Painlevé II equation (2.1.2) for the function y(t)
follows from the compatibility condition of the 2 × 2 system§

∂Ψ
∂λ

= UΨ, with U(λ, t) =
(︃
λ2 + t

2 + z
)︃
σ3 + (u(λ− y))σ+ − 2

u
(λz + yz − α + 1

2)σ−

∂Ψ
∂t

= VΨ, with V (λ, t) = λ

2σ3 + u

2σ+ − z

u
σ−,

(5.3.2)
describing isomonodromic deformations of a rank 2 ODE with a degree 2 polynomial matrix
coefficient.

Notice that the Jimbo-Miwa Lax pair was already known by Garnier [45] in an equivalent
form. Also, the Lax pairs written above in equations (5.3.1) and (5.3.2) are really
independent since their respective set of essential monodromy data are not isomorphic.
Therefore, there is no gauge transformation that allows to pass from one to the other. Notice
that there exists a third rank 2 Lax pair for the Painlevé II equation, known as the Harnad-
Tracy-Widom Lax pair, but it is shown to be gauge equivalent to the Flaschka-Newell Lax
pair (for more details see Proposition 5.2 of [39]). Actually, there exists also another Lax pair
for the Painlevé II equation, of rank 3, and we refer to the article [69] for more details about
that. In the same work the authors also describe the relation between the Jimbo-Miwa Lax
pair and the Harnad-Tracy-Widom one in terms of the generalized Laplace transform.
In the paper [30] the authors extended the Flaschka-Newell isomonodromic Lax pair for the
entire Painlevé II hierarchy as defined in equation (2.2.22). In particular, the n-th member
of the hierarchy has a Lax pair representation given by the isomonodromic deformations of
a rank 2 linear ODE having a pole at ∞ of Poincaré rank 2n+ 1 and a simple pole at 0.

Theorem 5.3.3. [Section 3, [30]] The n-th member of the Painlevé II hierarchy (2.1.2) for
the function u(t) follows from the compatibility condition of the 2 × 2 system

∂Ψ
∂λ

= M (n)Ψ, with M (n) =
⎛⎝ 2n∑︂
j=0

Aj(iλ)j − it

⎞⎠σ3 +
⎛⎝2n−1∑︂

j=0
Bj(iλ)j

⎞⎠σ+ +
⎛⎝2n−1∑︂

j=0
Cj(iλ)j

⎞⎠σ− + αn
λ
σ1

∂Ψ
∂t

= LΨ, with L = −iλσ3 + uσ1

(5.3.3)
where the coefficients Aj, Bj, Cj for every j are differential polynomials in u, described by
closed formulae involving the Lenard recursion operators (2.2.6). For their precise form see

§The compatibility condition actually gives a system of three differential equations of first order, for
u, z, y that are all functions of t. Differentiating again the equation for u and eliminating the variables y, z
and their derivatives one obtains equation (2.1.2), with actually a minus sign in front of the constant term
α.
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equations (17a)–(17g) in [30].

This Lax pair is the one used in the paper [26] in order to achieve the proof of Theorem
2.2.12. In Chapter 6 we are going to construct a Lax pair for a r × r matrix Painlevé II
hierarchy, that can be thought as a block-matrix generalization of the above Lax pair.
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Chapter 6

The matrix Painlevé II hierarchy

The results contained in the article [101] will be discussed in this chapter. The aim of
this paper is to relate a family of solutions of a noncommutative version of the Painlevé II
hierarchy to Fredholm determinants of a matrix version of the n-th higher order Airy kernels.
The scalar versions of these operators have been recently studied in [81], in relation with
non-interacting fermionic models (as already discussed in the previous chapters).

In order to construct our matrix analogue, we first define a matrix-valued version of the
n-th Airy function, in the following way

Ai2n+1(x, s⃗) :=
(︂
cj,kAi2n+1(x+ sj + sk)

)︂r
j,k=1

, cj,k ∈ C, x ∈ R, (6.0.1)

where Ai2n+1(x+sj+sk) is a shift of the n-th scalar Airy function, for some real parameters sl,
l = 1, . . . , r. We recall that the n-th scalar Airy function, Ai2n+1(x), is defined as a particular
solution of the n-th generalized Airy equation, written in (2.2.32) in Chapter 2, for every
n ≥ 1. In this paper we will consider these functions Ai2n+1(x) as contour integrals

Ai2n+1(x) :=
∫︂
γn

+

1
2π exp

(︄
iµ2n+1

2n+ 1 + ixµ
)︄

dµ, x ∈ R,

for γn+ an appropriate curve, which we will specify later on.
With the matrix-valued Airy functions Ai2n+1(x, s⃗) defined in (6.0.1), the matrix Airy

Hankel operators Ai2n+1 are defined in the standard way

(Ai2n+1f) (x) :=
∫︂
R+

Ai2n+1(x+ y, s⃗)f(y) dy, (6.0.2)

for any f = (f1, . . . , fr)T ∈ L2
(︂
R+,Cr

)︂
. It is actually on the square of this sequence of

operators that we focused our study, and in particular on the Fredholm determinants defined
as

F (n)(s1, . . . , sr) := det
(︂
IdR+ − Ai22n+1

)︂
, (6.0.3)
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that are well defined since the operators Ai2n+1 are trace-class on L2
(︂
R+,Cr

)︂
(as follows

from Proposition 4.3.1, i.e. Corollary 2.1 in [13]).
The core of this work is devoted to establish a relation between the Fredholm

determinants (6.0.3) and some solution of a noncommutative Painlevé II hierarchy. In
particular, the results resumed in Section 4.3 and originally obtained in [13], where the
authors extend the theory of integrable operators of Its–Izergin–Korepin–Slavnov [60], can be
directly applied to the matrix operators Ai2n+1 defined in (6.0.2). As byproduct, an equality
between the Fredholm determinants F (n)(s1, . . . , sr) and those of certain integrable operators
can be established. Following the Riemann-Hilbert approach introduced in Section 4.3 we
will study these integrable operators through Riemann-Hilbert Problem 6.1.5, from which
we will deduce the isomonodromic Lax pair of the noncommutative Painlevé II hierarchy,
that we are going to define as follows.

We start defining a matrix-valued analogue of the standard Lenard recursion, through
the relations written below. In the following, U , W are functions depending on all the
parameters sl, l = 1, . . . , r with values in Mat(r × r,R). The symbols [ , ] and [ , ]+ indicate
respectively the standard commutator and anti-commutator between two matrices, since
differential polynomials in U are noncommutative quantities.

Then each differential polynomial Ln[U ] is defined by the following recursive relation

L0[U ] = 1
2Ir,

d
dSLn[U ] =

(︄
d3

dS3 + [U, ·]+
d

dS + d
dS [U, ·]+ + [U, ·] d

dS

−1
[U, ·]

)︄
Ln−1[U ], n ≥ 1, (6.0.4)

where the differential operator d
dS is defined as

d
dS :=

r∑︂
k=1

∂

∂sk
, (6.0.5)

and d
dS

−1 in intended as the corresponding formal antiderivative. The recursive relation for
the noncommutative version of the Lenard operators Ln, n ≥ 1, is related to the recursion
operator for the noncommutative KdV equation, introduced in [92]. There the authors
already conjectured about the locality of these operators computed in U , but the formal
proof of that was done some years later in [93] (Theorem 6.2 in this last paper).

Finally we define our noncommutative Painlevé II hierarchy as follows

PII(n)
NC :

(︄
d

dS + [W, ·]+
)︄

Ln[U ] = (−1)n+14n[S,W ]+, (6.0.6)

where U := d
dSW−W 2 is the Miura transform of W and the variable S is the diagonal matrix

S := diag(s1, . . . , sr) so that the anti-commutator in the right hand side is needed (also notice
that d

dSS = Ir). For this reason we refer to our hierarchy as a fully noncommutative one,
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since in its definition (6.0.6) also the independent variable S is noncommutative. A matrix
Painlevé II hierarchy, constructed by using a noncommutative version of Lenard operators as
in (6.0.4), was recently studied in [50] but in this paper the independent variable is a scalar.

In this work, first of all, we found out that the hierarchy (6.0.6) admits an isomonodromic
Lax pair with Lax matrices that are block-matrices of dimension 2r. Furthermore, they are
explicitly written in terms of the matrix-valued Lenard operators defined in (6.0.4). The
result proved in Section 6.3 is summarized in the following proposition.

Proposition 6.0.1. For each fixed n there exist two polynomial matrices in λ, namely L(n),
M (n), respectively of degree 1 and 2n, such that the following system

d
dSΨ(n)(λ, s⃗) = L(n)(λ, s⃗)Ψ(n)(λ, s⃗),
∂

∂λ
Ψ(n)(λ, s⃗) = M (n)(λ, s⃗)Ψ(n)(λ, s⃗) (6.0.7)

is an isomonodromic Lax pair for the n-th equation of the matrix Painlevé II hierarchy
(6.0.6).

In particular the matrices L(n), M (n) have the following forms

L(n)(λ, s⃗) =
(︄

iλIr W (s⃗)
W (s⃗) −iλIr

)︄
,

and
M (n)(λ, s⃗) =

(︄
A(λ, s⃗) + iS iG(λ, s⃗)
−iG(λ, s⃗) −A(λ, s⃗) − iS

)︄
+
(︄
E(λ, s⃗) F (λ, s⃗)
F (λ, s⃗) E(λ, s⃗)

)︄
,

where

A(λ, s⃗) =
n∑︂
k=0

i
2λ

2n−2kA2n−2k(s⃗), with A2n = Ir,

G(λ, s⃗) =
n∑︂
k=1

i
2λ

2n−2kG2n−2k(s⃗),

E(λ, s⃗) =
n∑︂
k=1

i
2λ

2n−2k+1E2n−2k+1(s⃗),

F (λ, s⃗) =
n∑︂
k=1

i
2λ

2n−2k+1F2n−2k+1(s⃗).

All the coefficients A2n−2k, G2n−2k, E2n−2k+1, F2n−2k+1 are expressed in terms of the Lenard
operators through the formulae (6.3.4).

This result can be thought as the noncommutative analogue of the well known
isomonodromic Lax pair for the scalar Painlevé II hierarchy studied in [30], and resulting
from a self-similarity reduction of the Lax pair for the modified KdV hierarchy.
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A solution Ψ(n) for the Lax pair (6.0.7) is constructed, by using the solution of the
Riemann-Hilbert Problem 6.1.5 involved in the study of the integrable operators associated
to the matrix operators squared Ai22n+1.

As a byproduct, we obtain the following relation between some solutions of the
hierarchy (6.0.6) and the Fredholm determinants (6.0.3). This is indeed the final result
of this work and it is proved at the end of Section 6.3.

Corollary 6.0.2. There exists a solution W of the n-th member of the matrix PII
hierarchy (6.0.6), that is connected to the Fredholm determinant of the n-th Airy matrix
Hankel operator through the following formula

− Tr
(︂
W 2(s⃗)

)︂
= d2

dS2 ln
(︂
F (n)(s1, . . . , sr)

)︂
.

Defining s := 1
r

∑︁r
j=1 sj, and δj := sj−s, this solution W in the regime s → +∞ with |δj| ≤ m

for every j, has asymptotic behavior (W )rk,l=1 ∼ −2(cklAi2n+1(sk + sl))rk,l=1.

We remark that in [13] the above result was actually proved for the first equation of the
hierarchy, i.e., for the case n = 1. The result above is a generalization of Theorem 2.1.7
(for n = 1) and Theorem 2.2.12 (for the generic n case) to the matrix-valued case. We
recall that the scalar Airy kernels involved in the Theorem 2.1.7 and 2.2.12 define DPP on
R with applications in random matrix theory (n = 1) and statistichal mechanics (generic
n). In this work, we see that the matrix Airy Hankel operators squared Ai22n+1 can actually
be interpreted as kernels for determinantal point processes on the space of configuration
{1, . . . , r} × R (under certain assumptions on the matrix C = (cj,k)rj,k=1), and it would be
interesting to study whether they describe phenomena in random matrix theory or statistical
mechanics.

Here is a more precise list of what it is done in this work.

• In Section 6.1 the general theory developed in [13], and recalled in Section 4.3, is applied
to the operators Ai22n+1, in order to associate the Fredholm determinants (6.0.3) to the
ones of certain integrable operators. The most important consequence of this study is
indeed Theorem 6.1.9, that establishes a relation between Fredholm determinant (6.0.3)
and the solution of Riemann-Hilbert Problem 6.1.5. Furthermore, in this section it is
provided in which hypothesis the solution exists (Theorem (6.1.11)), and so the relation
for the Fredholm determinants found in Theorem 6.1.9 holds.

• In Section 6.2 the fully noncommutative Painlevé II hierarchy is introduced and the
first equations are explicitly written.

• In the first part of Section 6.3, the proof of Proposition 6.0.1 is given and the
construction of the solution Ψ(n) of the isomonodromic Lax pair (6.0.7) for the
hierarchy (6.0.6) is implemented. Finally in the end of Section 6.3, Corollary 6.0.2
is proved, by using Theorem 6.1.9 and the properties of the solution Ψ(n) of the
isomonodromic Lax pair (6.0.7).

59



6.1 Riemann Hilbert problems associated
to the matrix Airy operators

To start with, we recall some basic fact about the scalar generalized Airy functions Ai2n+1.
As already anticipated in the introduction, for each n ∈ N, we consider these functions
Ai2n+1 as the contour integrals

Ai2n+1(x) :=
∫︂
γn

+

1
2π exp

(︄
iµ2n+1

2n+ 1 + ixµ
)︄

dµ, x ∈ R, (6.1.1)

where γn± are curves in the upper (lower) complex plane with asymptotic rays at ±∞ that
are ϕn± := π

2 ± πn
2n+1 , and such that γn− = −γn+. An example of these curves for n = 1 is given

in Fig. 6.1 (but there are also other possible choices for the curve, as we will see in Chapter
7).

Definition 6.1.1. Recall that as we saw in the introduction, the n-th matrix-valued Airy
function is defined as

Ai2n+1(x, s⃗) :=
(︂
cj,kAi2n+1(x+ sj + sk)

)︂r
j,k=1

, x ∈ R.

Here C = (cj,k)rj,k=1 ∈ Mat(r × r,C) and the parameters sl ∈ R, l = 1, . . . , r.

With these functions we construct the matrix-valued operators we are going to study in
the following.

Definition 6.1.2. We consider {Ai2n+1}n∈N the sequence of matrix Hankel operators acting
on any f = (f1, . . . , fr)T ∈ L2

(︂
R+,Cr

)︂
s.t.

(Ai2n+1f)(x) :=
∫︂
R+

Ai2n+1(x+ y, s⃗)f(y) dy. (6.1.2)

Component wise the n-th Hankel operator Ai2n+1, reads as

(Ai2n+1f)j (x) =
r∑︂

k=1
cj,k

∫︂
R+

Ai2n+1(x+ y + sj + sk)fk(y) dy, j = 1, . . . , r. (6.1.3)

Remark 6.1.3. One can equivalently define the matrix-valued generalized Airy functions as
contours integrals, in the following way. For each n ∈ N

• we take s1, . . . , sr real parameters and S := diag(s1, . . . , sr) and we define the matrix-
valued complex function

θ2n+1(µ, s⃗) := iµ2n+1

2(2n+ 1)Ir + iµS, (6.1.4)

where Ir is the identity matrix of dimension r.
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γ3
+

γ3
−

ϕ3
+

Figure 6.1: These are the contours γ3
± for the integral representation (6.1.1) of the Airy

function Ai3 (case n = 1). Their asymptotics at ±∞ are ϕ3
± := π

6 ,
5π
6 .

• Then, we take the matrix C = (cj,k)rj,k=1 ∈ Mat(r × r,C) we define the matrix-valued
function

r(n)(λ, µ, s⃗) := 1
2πi exp(θ2n+1(λ, s⃗))C exp(θ2n+1(µ, s⃗)). (6.1.5)

• Finally, we can define the generalized matrix Airy function as

Ai2n+1(x, s⃗) =
∫︂
γn

+

ir(n)(µ, µ, s⃗) exp(ixµ) dµ,

where the integral is computed entry by entry.

We are now going to define a sequence of Riemann-Hilbert problems related to the matrix-
valued analogue of the higher order Airy kernels, obtained as Ai22n+1. From the solution of
these Riemann-Hilbert problems we will deduce the relation between Fredholm determinants
of operators Ai22n+1 and our noncommutative Painlevé II hierarchy.

Remark 6.1.4. From now on, in order to simplify the notation, the dependence on s⃗ in
the quantities (6.1.4), (6.1.5) will be omitted and we will use the abbreviation r(n)(λ, λ, s⃗) =
r(n)(λ).

Riemann-Hilbert Problem 6.1.5. Find a (λ)-analytic matrix-valued function

Ξ(n)(λ) : C \
(︂
γn+ ∪ γn−

)︂
→ GL(2r,C),

admitting continuous extension to the contour γn+ ∪ γn− from either side and such that it
satisfies the following two conditions:
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• the jump condition for each λ ∈ γn+ ∪ γn−

Ξ(n)
+ (λ) = Ξ(n)

− (λ)
(︄

Ir −2πir(n)(λ)χγn
+
(λ)

−2πir(n)(−λ)χγn
−

(λ) Ir

)︄
:=J(n)(λ,s⃗)

, (6.1.6)

where we denote by Ξ(n)
± the boundary values of Ξ(n) for λ ∈ γ

(n)
+ ∪ γ

(n)
− , approaching

the boundary from the left (+) and the right (−) nontangentially.

• the asymptotic condition for |λ| → ∞

Ξ(n)(λ) ∼ I2r +
∑︂
j≥1

Ξ(n)
j

λj
. (6.1.7)

Remark 6.1.6. In the following we are going to use the Pauli’s tensorized matrices, that
have the same property as the ones in the usual Clifford algebra. In particular we denote the
tensorized matrices by

σ̂1 = σ1 ⊗ I2r, σ̂2 = σ2 ⊗ I2r, σ̂3 = σ3 ⊗ I2r,

where
σ1 =

(︄
0 1
1 0

)︄
, σ2 =

(︄
0 i

−i 0

)︄
, σ3 =

(︄
1 0
0 −1

)︄
.

Then the standard relations hold also in this case:

[σ̂1, σ̂2] = −2iσ̂3, [σ̂1, σ̂3] = 2iσ̂2, [σ̂2, σ̂3] = −2iσ̂1, σ̂2
i = I2r, ∀ i.

The following symmetry property will be useful in the next computations.

Corollary 6.1.7. The asymptotic coefficients appearing in equation (6.1.7) have the
following form

Ξ(n)
2j = α

(n)
2j ⊗ I2 + β

(n)
2j ⊗ σ1,

Ξ(n)
2j−1 = α

(n)
2j−1 ⊗ σ3 + β

(n)
2j−1 ⊗ σ2, j ≥ 1. (6.1.8)

Here α(n)
l , β(n)

l for every l ≥ 1 correspond to the r×r matrices in the entries (1, 1) and (1, 2)
of the block matrix Ξ(n)

l .
An analogue statement is true for the asymptotic coefficients of the inverse of the solution

of the Riemann-Hilbert Problem 6.1.5, namely Θ(n) :=
(︂
Ξ(n)

)︂−1
.

Proof. We first prove the symmetry condition for the asymptotic coefficients of Ξ(n). We
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start observing that the jump matrix J (n) for λ ∈ γn+ ∪ γn− has the following symmetry

σ̂1J
(n)(λ, s⃗)σ̂1 = J (n)(−λ, s⃗),

just using the definition of γn− = −γn+. This directly implies that also the solution of the
Riemann-Hilbert Problem 6.1.5 has the same symmetry property. Thus for any λ we have
that

Ξ(n)(−λ) = σ̂1Ξ(n)(λ)σ̂1.

Computing the asymptotic expansion at ∞ of both sides of this equation, we have that
(−1)kΞ(n)

k = σ̂1Ξ(n)
k σ̂1. This directly implies the two equations (6.1.8) for k = 2j or k = 2j−1.

Concerning the statement for the asymptotic coefficients of the inverse of Ξ(n), namely
Θ(n), the proof follows by the fact that Θ(n) solves another Riemann-Hilbert problem,
with same symmetry for the jump matrix. Indeed, consider the following problem for a
function Θ(n):

• Θ(n) is a (λ-)analytic matrix-valued function on C \
(︂
γn+ ∪ γn−

)︂
admitting continuous

extension from either side to γn+ ∪ γn−;
• it has a jump condition for each λ ∈ γn+ ∪ γn−

Θ(n)
+ (λ) =

(︄
Ir 2πir(n)(λ)χγn

+
(λ)

2πir(n)(−λ)χγn
−

(λ) Ir

)︄
:=H(n)(λ,s⃗)

Θ(n)
− (λ);

• it has the asymptotic condition for |λ| → ∞

Θ(n)(λ) ∼ I2r +
∑︂
j≥1

Θ(n)
j

λj
.

The function Θ(n) with these properties is the inverse of the solution of Problem 6.1.5.
Indeed: the functions Θ(n)Ξ(n)(λ), and Ξ(n)Θ(n) have no jumps along γn+ ∪ γn− and they both
behave like the identity matrix at ∞. Thus by the generalized Liouville theorem, they both
have to coincide with the identity matrix.

We then observe that the jump matrix H(n) here has the same symmetry property of
J (n), i.e., σ̂1H

(n)(λ, s⃗)σ̂1 = H(n)(−λ, s⃗), for each λ ∈ γn+ ∪ γn−. Thus, exactly as before, even
the function Θ(n) has the same property:

σ̂1Θ(n)(λ, s⃗)σ̂1 = Θ(n)(−λ, s⃗).
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We conclude then that the asymptotic coefficients of Θ(n) have the same form of the Ξk, i.e.,

Θ(n)
2j = α̃

(n)
2j ⊗ I2r + β̃

(n)
2j ⊗ σ1,

Θ(n)
2j−1 = α̃

(n)
2j−1 ⊗ σ3 + β̃

(n)
2j−1 ⊗ σ2, j ≥ 1, (6.1.9)

where, as before, α̃(n)
l and β̃

(n)
l for every l ≥ 1 correspond to the r × r matrices in the

entries (1, 1) and (1, 2) of the block matrix Θ(n)
l . ■

We are now ready to state the fundamental result that connects the matrix Airy Hankel
operators to these Riemann-Hilbert problems.

Supposing that the solutions of the Riemann-Hilbert Problem 6.1.5 and its inverse exist,
we have the following result.

Remark 6.1.8. Existence conditions for Ξ(n) (and thus Θ(n)) are given at the end of the
section (see Theorem 6.1.11).

Theorem 6.1.9. For each n ∈ N, consider Ξ(n) the solution of the Riemann-Hilbert
Problem 6.1.5 and its inverse Θ(n) :=

(︂
Ξ(n)

)︂−1
. Then the following identities hold

d
dS ln

(︂
F (n)(s1, . . . , sr)

)︂
=
∫︂
γn

+∪γn
−

Tr
(︄

Θ(n)
−

(︂
Ξ(n)

−

)︂′ d
dSJ

(n)
(︂
J (n)

)︂−1
)︄

dλ
2πi

= −2i Tr
(︂
α

(n)
1

)︂
, (6.1.10)

where in the integral in the middle we indicate with ′ the derivation w.r.t. the complex parame-
ter λ and the differential operator d

dS is defined as in (6.0.5).

Proof. The proof follows as an application to this very specific case of some general results
obtained in [13] (and written in Section 4.3). We split the proof in two parts, one for each
equality in (6.1.10).

In order to obtain the first equality we need essentially two results. The first one
establishes the relation between Fredholm determinant of the Airy matrix operator and
Fredholm determinant of certain integral kernel operator, thanks to Theorem 4.3.1. In
particular, we first get that the Fredholm determinants of {Ai2n+1}n∈N are equal to the ones
of the integral operators acting on L2

(︂
γ

(n)
+ ,Cr

)︂
with kernels

K(n)(λ, µ) = r(n)(λ, µ)
λ+ µ

, (6.1.11)

with r(n)(λ, µ) defined as in (6.1.5).
As by product we then have that

F (n)(s1, . . . , sr) = det
(︂
Id
γ

(n)
+

−
(︂
K(n)

)︂2)︂
.
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The second result needed comes from the study of matrix integral kernels of type (6.1.11),
through Riemann-Hilbert problems. Indeed, it allows to compute the Fredholm determinants
of these integrable operators in terms of the solution of Riemann-Hilbert Problem 6.1.5. In
particular, by applying Thorem 4.3.5, we have that

∫︂
γn

+∪γn
−

Tr
(︄

Θ(n)
−

(︂
Ξ(n)

−

)︂′ d
dSJ

(n)
(︂
J (n)

)︂−1
)︄

dλ
2πi = d

dS ln det
(︂
I
γ

(n)
+

−
(︂
K(n)

)︂2)︂
.

Thus the first identity in the statement holds.
For what concerns the second identity of the statement, we proceed by direct computation

of the integral ∫︂
γn

+∪γn
−

Tr
(︂
Θ(n)

−

(︂
Ξ(n)

−

)︂′ d
dSJ

(n)
(︂
J (n)

)︂−1)︂ dλ
2πi . (6.1.12)

First of all, we observe that the jump matrix J (n)(λ, s⃗) that appears in the jump
condition (6.1.6), admits the factorization

J (n)(λ, s⃗) = exp
(︂
θ(n)(λ, s⃗) ⊗ σ3

)︂
J

(n)
0 exp

(︂
−θ(n)(λ, s⃗) ⊗ σ3

)︂
,

with J
(n)
0 the constant matrix given by

J
(n)
0 =

(︄
Ir C

C Ir

)︄
.

Thus we can easily compute the second factor appearing under the trace in the
integral (6.1.12): (︄

d
dSJ

(n)
)︄(︂

J (n)
)︂−1

= iλσ̂3 − J (n)
(︂
iλσ̂3

)︂(︂
J (n)

)︂−1
. (6.1.13)

We are now going to show that the integral in (6.1.12) is actually just the formal residue
at ∞ of a certain function. Furthermore in this particular case, due to the form of the
matrix J (n), the residue can be explicitly computed using equation (6.1.13).

To start with, we consider the following function

Tr
(︄

Θ(n)
(︂
Ξ(n)

)︂′ d
dS
(︂
θ(n) ⊗ σ3

)︂)︄
= Tr

(︂
Θ(n)

(︂
Ξ(n)

)︂′
iλσ̂3

)︂
. (6.1.14)

Its formal residue at ∞ can be computed as

− Resλ=∞ Tr
(︂
Θ(n)

(︂
Ξ(n)

)︂′
iλσ̂3

)︂
= lim

R→∞

∫︂
|λ|=R

Tr
(︂
Θ(n)

(︂
Ξ(n)

)︂′
iλσ̂3

)︂ dλ
2πi .

Now, this counterclockwise circle for R → ∞, can be deformed like γ
(n)
+ ∪ γ

(n)
− . As a

byproduct, the formal residue of (6.1.14) can be rewritten, taking into account the boundary
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values of Θ(n) and
(︂
Ξ(n)

)︂′
along the curves γ(n)

± , as follows

∫︂
γn

+∪γn
−

Tr
(︂(︂

−Θ(n)
+

(︂
Ξ(n)

+

)︂′
+ Θ(n)

−

(︂
Ξ(n)

−

)︂′)︂
iλσ̂3

)︂ dλ
2πi .

Now, from the jump condition (6.1.6), by deriving w.r.t. λ, we deduce that all along the
curves γ(n)

± we have the relation
(︂
Ξ(n)

+

)︂′
=
(︂
Ξ(n)

−

)︂′
J (n) +

(︂
Ξ(n)

−

)︂(︂
J (n)

)︂′
.

Thus replacing it in the first integral above we get
∫︂
γn

+∪γn
−

Tr
(︂(︂

−Θ(n)
+

(︂
Ξ(n)

+

)︂′
+ Θ(n)

−

(︂
Ξ(n)

−

)︂′)︂
iλσ̂3

)︂ dλ
2πi

= −
∫︂
γn

+∪γn
−

Tr
(︂(︂(︂

J (n)
)︂−1

Θ(n)
−

(︂(︂
Ξ(n)

−

)︂′
J (n) + Ξ(n)

−

(︂
J (n)

)︂′)︂
− Θ(n)

−

(︂
Ξ(n)

−

)︂′
iλσ̂3

)︂)︂ dλ
2πi

= −
∫︂
γn

+∪γn
−

Tr
(︂(︂(︂

J (n)
)︂−1

Θ(n)
−

(︂
Ξ(n)

−

)︂′
J (n) +

(︂
J (n)

)︂−1
J ′ − Θ(n)

−

(︂
Ξ(n)

−

)︂′)︂
iλσ̂3

)︂ dλ
2πi

= −
∫︂
γn

+∪γn
−

Tr
(︂
Θ(n)

−

(︂
Ξ(n)

−

)︂′(︂
J (n)iλσ̂3

(︂
J (n)

)︂−1
− iλσ̂3

)︂)︂ dλ
2πi

=
∫︂
γn

+∪γn
−

Tr
(︄

Θ(n)
−

(︂
Ξ(n)

−

)︂′ d
dSJ

(n)
(︂
J (n)

)︂−1
)︄

dλ
2πi ,

where in the last passages we used the invariance of the trace by conjugation and the fact
that the quantity

(︂
J (n)

)︂−1(︂
J (n)

)︂′

iλσ̂3 is trace free.
Finally, using the asymptotic expansion at ∞ given in (6.1.7), we get that

Resλ=∞ Tr
(︂
Θ(n)

(︂
Ξ(n)

)︂′
iλσ̂3

)︂
= −2i Tr

(︂
α

(n)
1

)︂
,

and this concludes the proof. ■

Remark 6.1.10. In the study of isomonodromy deformations, the quantity
∫︂
γn

+∪γn
−

Tr
(︄

Θ−Ξ′
−

d
dSJ

(n)
(︂
J (n)

)︂−1
)︄

dλ
2πi

is associated to the isomonodromic tau function τΞ(n) related to the Riemann-Hilbert
Problem 6.1.5 depending on the parameters {sk}rk=1, through the formula

d
dS ln τΞ(n) =

∫︂
γn

+∪γn
−

Tr
(︄

Θ−Ξ′
−

d
dSJ

(n)
(︂
J (n)

)︂−1
)︄

dλ
2πi .

This notion was first introduced in [66], and then generalized for example in [11]. With
Theorem 6.1.9 we recover for any Airy matrix Hankel operator (6.1.2) the relation between
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the Fredholm determinant F (n)(s1, . . . , sr) and the isomonodromic tau function associated to
the Riemann-Hilbert Problem 6.1.5, that was proved in Theorem 4.1 of [13] for Fredholm
determinants of generic matrix Hankel operators.

Finally, in order to use the formula (6.1.10) for the logarithmic derivative of
F (n)(s1, . . . , sr), we need to find out whether the solution Ξ(n) of the Riemann-Hilbert
Problem 6.1.5 exists or not. In particular, we are going to see that under certain assumptions
on the constant matrix C, the existence of Ξ(n) is assured. The following result is indeed
a generalization of Theorem 5.1 in [13], for the generalized Airy matrix operators defined
in (6.1.2), i.e. the case n > 1.

Theorem 6.1.11. Let the matrix C be Hermitian, then the solution Ξ(n) of the Riemann-
Hilbert Problem 6.1.5 exists if and only if the eigenvalues of C lay in the interval [−1, 1].

Before starting the proof of Theorem 6.1.11, we state the following lemma. For n = 1 the
result is known from [10, 56]. In the following we adapted the proof to the case of generic n.
For finite z ∈ R, we introduce the operator

(︂
Φz

Ai2n+1f
)︂
(x) =

∫︂ +∞

z
Ai2n+1(x+ y)f(y) dy, f ∈ L2(R).

Lemma 6.1.12. For any n ∈ N we consider the Airy transform ΦAi2n+1 acting on f ∈
L2(R) ∩ L1(R) as

(ΦAi2n+1f)(x) = lim
z→−∞

(︂
Φz

Ai2n+1f
)︂
(x) = lim

z→−∞

(︃∫︂ +∞

z
Ai2n+1(x+ y)f(y) dy

)︃
. (6.1.15)

Then lim
z→−∞

⃓⃓⃓⃓⃓⃓
Φz

Ai2n+1f
⃓⃓⃓⃓⃓⃓

= ||f || for the L2(R)-norm, and thus for any finite z the inequality⃓⃓⃓⃓⃓⃓⃓⃓⃓
Φz

Ai2n+1

⃓⃓⃓⃓⃓⃓⃓⃓⃓
≤ 1 holds for the L2((z,+∞)) operator norm.

Proof. We consider ΦAi2n+1 the Airy transform acting as defined in (6.1.15), where inside the
integral we have the scalar Airy function Ai2n+1 defined in (6.1.1), without any shift and
for real values of x. We introduce the Fourier transform F and its inverse F−1 defined on
L2(R)∩L1(R) (and extended to L2(R) by continuity and density argument), in the standard
way as

(Fh)(x) := 1√
2π

∫︂
R
h(λ) exp(−ixλ) dλ, F−1 := FI = IF,

where (Ih)(x) = h(−x), and the multiplication operator by exp
(︂

ix2n+1

2n+1

)︂
, denoted by Mn.

Then we observe that the Airy transform ΦAi2n+1 can be rewritten as the composition of
these operators, in such a way that

ΦAi2n+1 = F−1MnF
−1 = FIMnIF = FM−1

n F = Φ−1
Ai2n+1 .
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This implies that

lim
z→−∞

⃓⃓⃓⃓⃓⃓
Φz

Ai2n+1f
⃓⃓⃓⃓⃓⃓

= lim
z→−∞

(︃∫︂
R

⃓⃓⃓
Φz

Ai2n+1f(y)
⃓⃓⃓2

dy
)︃ 1

2

=
(︄∫︂

R

⃓⃓⃓⃓∫︂
R

Ai2n+1(y + u)f(u)du
⃓⃓⃓⃓2

dy
)︄ 1

2

= ||f ||, (6.1.16)

the norms being in L2(R).
Now we prove by contradiction the last inequality

⃓⃓⃓⃓⃓⃓⃓⃓⃓
Φz

Ai2n+1

⃓⃓⃓⃓⃓⃓⃓⃓⃓
≤ 1 for the L2((z,+∞))

operator norm. Suppose that there exist a scalar µ and an eigenfunction gz ∈ L2((z,+∞))
such that Φz

Ai2n+1g
z = µgz and |µ| > 1. Then we can define g ∈ L2(R) as

g(y) =

⎧⎨⎩g
z(y), for y ≥ z,

0, for y < z,

and we obtain for z̃ ≤ z that Φz̃
Ai2n+1g(y) = Φz

Ai2n+1g
z(y) = µgz(y) = µg(y) for y ≥ z. Finally,

since |µ| > 1, we have⃓⃓⃓⃓⃓⃓
Φz̃

Ai2n+1g
⃓⃓⃓⃓⃓⃓
L2(R)

≥
⃓⃓⃓⃓⃓⃓
Φz̃

Ai2n+1g
⃓⃓⃓⃓⃓⃓
L2((z,+∞))

= |µ|||g||L2((z,+∞)) > ||g||L2(R)

and this is in contradiction with equation (6.1.16). ■

We can finally provide a complete proof of Theorem 6.1.11.

Proof. By applying Theorem 4.3.4 (i.e. Theorem 3.1 of [13], which generalizes the
fundamental result obtained first in [60]) to the sequence of operators

(︂
K(n)

)︂2
, n ≥ 1, we

have that the solution Ξ(n) of the Riemann-Hilbert Problem 6.1.5 exists if and only if the
operator Id −

(︂
K(n)

)︂2
is invertible. This is guaranteed by the non vanishing condition of

the quantity det
(︂
Id −

(︂
K(n)

)︂2)︂
= det

(︂
Id − Ai22n+1

)︂
(the equality follows as before from

Theorem 4.3.1 i.e. Corollary 2.1 of [13]) that is verified if the operators Ai2n+1 are such that
|||Ai2n+1||| < 1. Here and in the following, ||| · ||| stands for the operator norm induced from
the L2-norms on the domain and codomain of the relevant operator.

Supposing that the eigenvalues of C are in the interval [−1, 1], we are going to show that
the inequality for the operator norm of Ai2n+1 holds. Since the operators Ai2n+1 defined
in (6.1.2), are constructed by shifting by some component of s⃗ the Airy function, we first
observe that:

|||Ai2n+1||| =
⃓⃓⃓⃓⃓⃓⃓⃓⃓

PsAi0⃗2n+1Ps

⃓⃓⃓⃓⃓⃓⃓⃓⃓
,

where Ai0⃗2n+1 is the operator without any shift, namely

Ai0⃗2n+1f(x) :=
∫︂
R+

Ai2n+1(x+ y, 0⃗)f(y) dy.
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considered from and to the space ⨁︁r
k=1 L

2([sk,+∞),C) and Ps is the orthogonal projection

Ps : L2
(︂
R,Cr

)︂
−→

r⨁︂
k=1

L2([sk,+∞),C)

acting diagonally as Ps := diag(χ[sk,+∞))rk=1. From equation (6.1.3), we can see the matrix
operators Ai2n+1 written in terms of the scalar operators Φz

Ai2n+1 through tensor product. In
particular, when there is no shift we simply have

Ai0⃗2n+1 = C ⊗ Φ0
Ai2n+1 .

Finally, using the property of the scalar operator Φz
Ai2n+1 proved in Lemma 6.1.12, we

conclude that ⃓⃓⃓⃓⃓⃓⃓⃓⃓
Ai0⃗2n+1

⃓⃓⃓⃓⃓⃓⃓⃓⃓
= |||C|||

⃓⃓⃓⃓⃓⃓⃓⃓⃓
Φ0

Ai2n+1

⃓⃓⃓⃓⃓⃓⃓⃓⃓
≤ |||C|||,

where the matrix norm of C above is induced by the 2-norm on Cr, i.e., it corresponds to
the spectral radius of C. Then we have

|||Ai2n+1||| ≤ |||Ps|||
⃓⃓⃓⃓⃓⃓⃓⃓⃓

Ai0⃗2n+1

⃓⃓⃓⃓⃓⃓⃓⃓⃓
|||Ps||| < |||C||| ≤ 1,

and this concludes the proof of one of the implications in the statement.
In order to prove the other implication, we suppose that there exists λ0 eigenvalue of C

such that |λ0| > 1, with corresponding eigenvector v0 ∈ Cr. In this case, we will be able to
construct a nonzero function fs(x) such that there exist a value s0 for which

Ai22n+1fs0(x) = fs0(x),

so we have that the operator Id − Ai22n+1 is not invertible and thus the solution of the
Riemann-Hilbert Problem 6.1.5 does not exist.

Indeed, consider f(x) := v0f(x), for any scalar function f ∈ L2(R). Then applying the
operator Ai22n+1 with a shift s⃗ = (s, . . . , s) for a certain s ∈ R we have

Ai22n+1f(x) = λ2
0v0

∫︂
R+
KAi2n+1(x+ s, y + s)f(y) dy,

where KAi2n+1 is the n-th generalized scalar Airy kernel (cfr. equation (2.2.34)). The
corresponding kernel operator is self-adjoint, trace-class and in particular compact, acting on
L2([s,∞)) (see e.g. [26]). We consider its maximum eigenvalue µ(s) and the corresponding
eigenfunction fs(x). Finally by taking fs(x) = v0fs(x) we get

Ai22n+1fs(x) = λ2
0µ(s)fs(x).

Since λ2
0 > 1 and µ(s) is a continuous function such that µ(s) → 1 for s → −∞ and µ(s) → 0
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for s → +∞, there exist a value s0 ∈ R for which the above equation reads as

Ai22n+1fs0(x, s⃗0) = fs0(x).

And this completes the proof. ■

Remark 6.1.13. As a byproduct of the theorem above, we have that the operator Ai22n+1 is
bounded from above by the identity. We can actually show that Ai22n+1 is also limited from
below: indeed they are all totally positive on C := {1, . . . , r}×R (for n = 1 [13] already proved
it, and here we extend the proof for all n). The main idea to show this is to interpret Ai22n+1
as a scalar function on C ×C, in this way: for any couple (ξ1, ξ2) = ((j1, x1), (j2, x2)) ∈ C ×C
we have

Ai22n+1(ξ1, ξ2) =
r∑︂

k=1
cj1,kck,j2

∫︂
R+

Ai2n+1(x1 + z + sj1 + sk)Ai2n+1(x2 + z + sj2 + sk) dz.

In this way the claim is proved if we prove that for any natural L, the quantity

det
(︂
Ai22n+1(ξa, ξb)

)︂
a,b≤L

is positive.
In order to do this, we first rewrite Ai22n+1(ξ1, ξ2) using the product measure dµ(ξ) on C

given by the product of the counting measure on {1, . . . , r} and the Lebesgue measure on R.
Thus

Ai22n+1(ξa, ξb) =
∫︂

C+
F2n+1(ξa, ζ)F2n+1(ζ, ξb) dµ(ξ), (6.1.17)

where we defined the function F2n+1(ξa, ζ) = cja,kAi2n+1(x1 + z + sja + sk). In this way we
can determine the sign of the determinant, indeed

det
(︂
Ai22n+1(ξa, ξb)

)︂
a,b≤L

= det
(︄∫︂

C+
F2n+1(ξa, ζ)F2n+1(ζ, ξb) dµ(ξ)

)︄
a,b≤L

= 1
L!

∫︂
CL

+

det(F2n+1(ξa, ξc)) det(F2n+1(ξc, ξa))
L∏︂
c=1

dµ(ξc)

= 1
L!

∫︂
CL

+

| det(F2n+1(ξa, ξc))|2
L∏︂
c=1

dµ(ξc) > 0,

where in the first passage we used a general property in measure theory, the Andreief identity
(see here [8] for details), and in the last one we used the fact that C is hermitian.

In conclusion, by taking C an hermitian matrix with eigenvalues laying in the interval
[−1, 1], any Ai22n+1 is hermitian and thanks to Theorem 6.1.11 and the previous remark,
we can say that any Ai22n+1 defines a determinantal point processes on that space of
configuration C (directly by applying Theorem 3.1.5). In particular this implies that the

70



Fredholm determinants F (n)(s1, . . . , sr) are the joint probability of the last points for some
multi-process on R (by Corollary 3.1.9), namely

F (n)(s1, . . . , sr) = P
(︂
xmax
i < si, i = 1, . . . , r

)︂
.

6.2 Matrix Painlevé II hierarchy
In this section, we are finally going to define our noncommutative Painlevé II hierarchy.
In the following, we will consider U(s⃗), W (s⃗) as functions depending on the parameters
s1, . . . , sr with values in Mat(r × r,C).

In this context we will use the standard notation for the commutator and anticommutator
between two matrices:

[A, ·] = A · − · A and [A, ·]+ = A · + · A.

In order to define a fully noncommutative version of the PII hierarchy, as already anticipated
in the introduction, we first define a sequence of differential polynomials Ln[U ] through a
matrix version of the Lenard operators. Following [50]:

L0[U ] = 1
2Ir,

d
dSLn[U ] =

(︄
d3

dS3 + [U, ·]+
d

dS + d
dS [U, ·]+ + [U, ·] d

dS

−1
[U, ·]

)︄
Ln−1[U ], n ≥ 1. (6.2.1)

Here Ir denotes the identity matrix, d
dS denotes the differential operator defined in (6.0.5)

and d
dS

−1 denotes the corresponding formal antiderivative. The locality of these operators
computed in U follows from Theorem 6.2 in [93].

Example 6.2.1. The first of the differential polynomials in U given by the recursive
formula (6.2.1) read as follows:

L1[U ] = U,

L2[U ] = U2S + 3U2,

L3[U ] = U4S + 5[U,U2S]+ + 5U2
S + 10U3.

From n ≥ 3 the “noncommutative” character of these operators appears in form of
anticommutators.

Remark 6.2.2. In the example above and in the following we use the shorter notation(︂
d

dS

)︂n
U = UnS for any n ∈ N.

71



Definition 6.2.3. We define a matrix PII hierarchy as follows

PII(n)
NC [αn] :

(︄
d

dS + [W, ·]+
)︄

Ln[U ] = (−1)n+14n[S,W ]+ + anIr, (6.2.2)

where U is as in the scalar case, the Miura transform of the function W , i.e., U := d
dSW−W 2,

and an are scalar constants.

In particular we will study the homogeneous hierarchy, setting an = 0 for each n.

Remark 6.2.4. It is also possible to define a more general hierarchy, in the following way

PII(n)
NC[αn] :

(︄
d

dS + [W, ·]+
)︄

Ln[U ] +
n−1∑︂
l=1

tl

(︄
d

dS + [W, ·]+
)︄

Ll[U ]

= (−1)n+14n[S,W ]+ + anIr,

for some scalars t1, . . . , tn−1. We recover the hierarchy (6.2.2) setting up these scalars to 0.
Another matrix hierarchy was introduced in [50], but there the time variable is a scalar.

Example 6.2.5. Here are the first three equations of the homogeneous hierarchy (6.2.2).

• For n = 1 we obtain the noncommutative analogue of the homogeneous PII equation:

PIINC : W2S = 2W 3 + 4[S,W ]+. (6.2.3)

This coincides with the homogeneus version of the fully noncommutative PII equation
studied in [97], in a more general context of any noncommutative algebra with
derivation.

• For n = 2 we have the 4-th order equation:

PII(2)
NC : W4S = 6W 5 + 4

[︂
W 2,W2S

]︂
+

+ 2WW2SW + 2
[︂
W 2
S ,W

]︂
+

+ 6WSWWS − 42[S,W ]+.
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• For n = 3 we have the 6-th order equation:

PII(3)
NC : W6S = 20W 7 − 15

[︂
W2S,W

4
]︂

− 20W 2W2SW
2 − 10

[︂
WW2SW,W

2
]︂

+

− 10
[︂
W 2
S ,W

3
]︂

+
− 15

[︂
WW 2

SW,W
]︂

+
− 20WSW

3WS

− 25
[︂
WSWWS,W

2
]︂

+
− 5

[︂
WSW

2WS,W
]︂

+
− 10WWSWWSW

+ 6
[︂
W4S,W

2
]︂

+ 2WW4SW + 4(WSW3SW + +WW3SWS)

+ 9(WWSW3S +W3SWSW ) + 15(WSWW3S +W3SWWS)
+ 25

[︂
W2S,W

2
S

]︂
+

+ 20WSW2SWS

+ 11
[︂
W 2

2S,W
]︂

+
+ 20W2SWW2S + 43[S,W ]+.

A fundamental property of matrix Lenard operators (that we are going to use in the
next section in order to find the Lax pair for the hierarchy (6.2.2)) is given by the following
formula (see [50]).

Proposition 6.2.6. For each n ∈ N the matrix-valued Lenard operator acting on the Miura
transform factorizes like

d
dSLn+1[U ] =

(︄
d

dS − [W, ·]+
)︄(︄

d
dS − [W, ·] d

dS

−1
[W, ·]

)︄(︄
d

dS + [W, ·]+
)︄

Ln[U ]. (6.2.4)

This formula is achieved by the direct computation of the recursive formula for the
noncommutative Lenard operators computed in the Miura transform U = WS − W 2. It is
exactly the analogue of the factorization formula (2.2.14) that we described in the scalar
case treated in Chapter 2.

6.3 The isomonodromic Lax pair
In this section we are finally going to find out a Lax pair for the noncommutative
hierarchy (6.2.2), making use of the Riemann-Hilbert Problem 6.1.5 introduced in Section 6.1.

To start with, we consider a new sequence of functions, defined using the solution of the
Riemann-Hilbert Problem 6.1.5.

Definition 6.3.1. For each n ∈ N, we construct

Ψ(n)(λ, s⃗) := Ξ(n)(λ) exp
(︂
θ(n)(λ) ⊗ σ3

)︂
.

It is easy to check that these functions
{︂
Ψ(n)

}︂
n∈N

actually solve a new sequence of
Riemann-Hilbert problems, with constant jump conditions. Namely, the following problems.
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Riemann-Hilbert Problem 6.3.2. Find a (λ-)analytic matrix-valued function

Ψ(n)(λ) : C \
(︂
γn+ ∪ γn−

)︂
→ GL(2r,C)

admitting continuous extension to the contour γn+ ∪ γn− from either side and such that it
satisfies the following two conditions:

• the jump condition for each λ ∈ γn+ ∪ γn−

Ψ(n)
+ (λ) = Ψ(n)

− (λ)
(︄

Ir Cχγn
+
(λ)

Cχγn
−

(λ) Ir

)︄
:=K(n)

;

• the asymptotic condition for |λ| → ∞

Ψ(n)(λ) ∼

⎛⎝I2r +
∑︂
j≥1

Ξ(n)
j

λj

⎞⎠ exp
(︂
θ(n)(λ) ⊗ σ3

)︂
.

As it is standard in the theory of isomonodromic deformations, we deduce the Lax pair for
the noncommutative PII hierarchy (6.2.2) from the Riemann-Hilbert problems with piecewise
constant jumps solved by Ψ(n). The main idea is the following: using the fact that each Ψ(n)

has constant jump condition (i.e., the jump matrix K(n) does not explicitly depend on the
spectral parameter λ or the deformations parameters si, i = 1, . . . , r), we can thus conclude
that the quantities

d
dSΨ(n)

(︂
Ψ(n)

)︂−1
=: L(n) and ∂

∂λ
Ψ(n)

(︂
Ψ(n)

)︂−1
=: M (n) (6.3.1)

are matrix-valued polynomials in λ.
Remark 6.3.3. Here the inverse of Ψ(n) is simply given by

(︂
Ψ(n)

)︂−1
(λ) = exp

(︂
−θ(n)(λ) ⊗ σ3

)︂
Θ(n)(λ).

Furthermore, by using the symmetries of the Riemann-Hilbert Problem 6.1.5, we can
compute the exact form of the coefficients of these polynomials L(n), M (n).

The final result is summarized in the proposition below.
Proposition 6.3.4. There exist two polynomial matrices in λ, which we denote with L(n)

and M (n), respectively of degree 1 and 2n, such that the following system of differential
equations is satisfied:

d
dSΨ(n)(λ, s⃗) = L(n)(λ, s⃗)Ψ(n)(λ, s⃗),

∂λΨ(n)(λ, s⃗) = M (n)(λ, s⃗)Ψ(n)(λ, s⃗). (6.3.2)
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Moreover, L(n) and M (n) have the following forms

L(n)(λ, s⃗) =
(︄

iλIr W (s⃗)
W (s⃗) −iλIr

)︄
, with W (s⃗) = 2β(n)

1 (s⃗),

and
M (n)(λ, s⃗) =

(︄
A(λ, s⃗) + iS iG(λ, s⃗)
−iG(λ, s⃗) −A(λ, s⃗) − iS

)︄
+
(︄
E(λ, s⃗) F (λ, s⃗)
F (λ, s⃗) E(λ, s⃗)

)︄
,

where

A(λ, s⃗) =
n∑︂
k=0

i
2λ

2n−2kA2n−2k(s⃗), with A2n = Ir,

G(λ, s⃗) =
n∑︂
k=1

i
2λ

2n−2kG2n−2k(s⃗),

E(λ, s⃗) =
n∑︂
k=1

i
2λ

2n−2k+1E2n−2k+1(s⃗),

F (λ, s⃗) =
n∑︂
k=1

i
2λ

2n−2k+1F2n−2k+1(s⃗).

Proof. We start computing the logarithmic derivative of Ψ(n) w.r.t. S, namely the quantity
that we defined in (6.3.1) as

d
dSΨ(n)

(︂
Ψ(n)

)︂−1
:= L(n).

The matrix-valued function L(n) is entire in λ, since it has no jumps along γn+ ∪ γn−.

Furthermore, its asymptotic behavior at infinity is given by a matrix polynomial of degree 1
in λ. Thus, by the generalized Liouville theorem, we conclude that L(n) is exactly a matrix
polynomial of degree 1 in λ.

In particular from the asymptotic expansion at ∞, we find an explicit form of its matrix
coefficients. Here and in the following series expansions in powers of λ we will use the
notation [ ]≥0 to indicate that we are taking only the powers λr with r ≥ 0.

L(n)(λ) = d
dSΨ(n)

(︂
Ψ(n)

)︂−1
=
⎡⎣⎛⎝I2r +

∑︂
j≥1

Ξ(n)
j

λj

⎞⎠ iλσ̂3

⎛⎝I2r +
∑︂
j≥1

Θ(n)
j

λj

⎞⎠⎤⎦
≥0

= iλσ̂3 + i
(︂
Ξ(n)

1 σ̂3 + σ̂3Θ(n)
1

)︂
= iλσ̂3 + i

[︂
Ξ(n)

1 , σ̂3
]︂

= iλσ̂3 + 2β(n)
1 ⊗ σ1,

where in the last two passages we used the fact that Θ(n)
1 = −Ξ(n)

1 and then the
symmetry (6.1.8).

We can then consider the second quantity defined in (6.3.1), namely

∂

∂λ
Ψ(n)

(︂
Ψ(n)

)︂−1
=: M (n).

75



We use the same argument as for L(n). Indeed, also M (n) is entire in λ, since it has no
jumps along γn+ ∪ γn−. Its asymptotic behavior at infinity is given by a matrix polynomial of
degree 2n in λ. We thus conclude, by the generalized Liouville theorem, that M (n) is exactly
a matrix polynomial in λ of degree 2n. In particular from the asymptotic expansion at ∞
we can find an explicit form of this matrix:

M (n)(λ) = ∂λΨ(n)
(︂
Ψ(n)

)︂−1

=
⎡⎣⎛⎝I2r +

∑︂
j≥1

Ξ(n)
j

λj

⎞⎠(︄(︄ iλ2nIr
2 + iS

)︄
⊗ σ3

)︄⎛⎝I2r +
∑︂
j≥1

Θ(n)
j

λj

⎞⎠⎤⎦
≥0

= iλ2n

2 σ̂3 + iS ⊗ σ3 +
2n∑︂
l=1

iλ2n−l

2

⎛⎝Ξ(n)
l σ̂3 + σ̂3Θ(n)

l +
∑︂

j : j+k=l
Ξ(n)
j σ̂3

(︄
l−1∑︂
k=1

Θ(n)
k

)︄⎞⎠
=M(n)

2n−l

.

In order to obtain the remaining part of the statement, we use the following lemma.

Lemma 6.3.5. The coefficient of the term λ2n−l in the matrix M (n) is such that:

• if l = 2m, then
M

(n)
2n−2m = A2n−2m(s⃗)σ̂3 +G2n−2m(s⃗)σ̂2;

• if instead l = 2m− 1, then

M
(n)
2n−2m+1 = E2n−2m+1(s⃗) ⊗ I2r + F2n−2m+1(s⃗)σ̂1.

Proof. The proof is a direct consequence of the symmetry property that the asymptotics
coefficients of Ξ(n), Θ(n) have. We start with the even case l = 2m. The coefficient of the
term λ2n−2m in the matrix M (n) is given by the following sum:

M
(n)
2n−2m =

⎛⎝Ξ(n)
2mσ̂3 + σ̂3Θ(n)

2m +
∑︂

j : j+k=2m
Ξ(n)
j σ̂3

(︄2m−1∑︂
k=1

Θ(n)
k

)︄⎞⎠ ,
where in the last sum all the terms are of type

Ξ(n)
2s σ̂3Θ(n)

2(m−s) or Ξ(n)
2s−1σ̂3Θ(n)

2(m−s)+1.

Using the symmetries (6.1.8) and (6.1.9), a direct computation shows that these terms are
always linear combinations of the Pauli’s matrices σ̂2, σ̂3.

So we can conclude that

M
(n)
2n−2m = A2n−2m(s⃗)σ̂3 +G2n−2m(s⃗)σ̂2.

where the functions A2n−2m(s⃗), G2n−2m(s⃗) depend on the asymptotic coefficients of Ξ(n),
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Θ(n).
We work in the same way for the odd case, l = 2m − 1. The coefficient of λ2n−2m+1 is

given by the same formula

M
(n)
2n−2m+1 =

⎛⎝Ξ(n)
2m−1σ̂3 + σ̂3Θ(n)

2m−1 +
∑︂

j : j+k=2m−1
Ξ(n)
j σ̂3

(︄2m−2∑︂
k=1

Θ(n)
k

)︄⎞⎠ ,
where in the last sum there are just terms of the two following types

Ξ(n)
2s σ̂3Θ(n)

2(m−s)−1 or Ξ(n)
2s−1σ̂3Θ(n)

2(m−s).

In both of the cases, always replacing the symmetries (6.1.8) and (6.1.9), they result to be
linear combinations of I2r, σ̂1. Thus we can finally conclude that

M
(n)
2n−2m+1 = E2n−2m+1(s⃗) ⊗ I2r + F2n−2m+1(s⃗)σ̂1. ■

Thanks to this lemma, the form of the matrix M (n) is exactly the one of the statement
and the proposition is completely proved. ■

Remark 6.3.6. The system (6.3.2) for Ψ(n) describes the isomonodromic deformations w.r.t.
the deformation parameters si, i = 1, . . . , r, of the linear differential equation

∂

∂λ
Ψ(n)(λ, s⃗) = M (n)(λ, s⃗)Ψ(n)(λ, s⃗),

that has only one irregular singular point at ∞ of Poincaré rank r = 2n + 1, and in the
special case of symmetry

−σ̂1M
(n)(λ, s⃗)σ̂1 = M (n)(−λ, s⃗).

We can finally state that the system (6.3.2) is an isomonodromic Lax pair for the matrix
PII hierarchy (6.2.2).

Proposition 6.3.7. For each fixed n, the compatibility condition of the system (6.3.2), i.e.,
the equation

∂

∂λ
L(n)(λ, s⃗) − d

dSM
(n)(λ, s⃗) +

[︂
L(n)(λ, s⃗),M (n)(λ, s⃗)

]︂
= 0 (6.3.3)

is equivalent to the following equation(︄
d

dS + [W, ·]+
)︄

Ln[U ] = (−1)n+14n[S,W ]+,

Furthermore, the coefficients of the matrix M (n) are written in terms of the matrix Lenard
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operators in the following way

A2n−2k(s⃗) = −1
2

(︃
−1

4

)︃k−1(︄
Lk[U ] −

(︄
d

dS − [W, ·] d
dS

−1
[W, ·]

)︄(︄
d

dS + [W, ·]+
)︄

Lk−1[U ]
)︄
,

G2n−2k(s⃗) = i
2

(︃
−1

4

)︃k−1 (︄(︄ d
dS − [W, ·] d

dS

−1
[W, ·]

)︄(︄
d

dS + [W, ·]+
)︄

Lk−1[U ]
)︄
,

E2n−2k+1 (s⃗) = −i
(︃

−1
4

)︃k−1 d
dS

−1 (︄
[W, ·]

(︄
[W, ·]+ + d

dS

)︄
Lk−1[U ]

)︄
,

F2n−2k+1 (s⃗) = −i
(︃

−1
4

)︃k−1 (︄(︄
[W, ·]+ + d

dS

)︄
Lk−1[U ]

)︄
, for k = 1, . . . , n. (6.3.4)

In other words the system (6.3.2) is a Lax pair for the matrix Painlevé II hierarchy (6.2.2).

Proof. We first rewrite the compatibility condition (6.3.3) as the following system of
differential equations for the coefficients A, F , G, E:

d
dSE(λ, s⃗) = [W,F (λ, s⃗)],

d
dSA(λ, s⃗) = −i[W,G(λ, s⃗)]+,

d
dSF (λ, s⃗) = −2λG(λ, s⃗) + [W,E(λ, s⃗)],

d
dSG(λ, s⃗) = 2λF (λ, s⃗) + i[W,A(λ, s⃗)]+ − [S,W ]+.

These equations must be satisfied identically in λ. Thus, by the polinomiality of the
coefficients A, F , G, E, this system is equivalent to the following one

d
dSE2n−2k+1(s⃗) = [W,F2n−2k+1(s⃗)],

d
dSA2n = 0,

d
dSA2n−2k(s⃗) = −i[W,G2n−2k(s⃗)]+,

G2n−2k(s⃗) = 1
2

(︄
− d

dSF2n−2k+1(s⃗) + [W,E2n−2k+1(s⃗)]
)︄
,

F2n−1(s⃗) = − i
2 [W,A2n]+ ,

F2n−2k−1(s⃗) = 1
2

(︄
d

dSG2n−2k(s⃗) − i[W,A2n−2k(s⃗)]+
)︄
,

i
2

d
dSG0(s⃗) = −[S,W ]+ − 1

2[W,A0(s⃗)]+ for k = 1, . . . , n. (6.3.5)

In order to prove the statement, we are going to prove by induction over l = 2n − j that
each coefficient A2n−2k, E2n−2k+1, G2n−2k, F2n−2k+1 is given by the formulae (6.3.4) and that
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this implies that the last equation in the system (6.3.5) is exactly the n-th member of the
PII hierarchy (6.2.2).

We first check that for l = 2n − 1, 2n − 2 the formulae (6.3.4) are solutions of the
equations (6.3.5), i.e., the coefficients F2n−1, E2n−1, G2n−2, A2n−2, are given by these
formulae.

Since A2n = Ir, the equation
d

dSA2n = 0

is satisfied. Then, the equation for F2n−1 will be satisfied for

F2n−1 = −iW,

that is exactly the result of the formula in (6.3.4) for k = 1, since

−i
(︃

−1
4

)︃0 (︄(︄
[W, ·]+ + d

dS

)︄
L0[U ]

)︄
= −iW.

As a consequence, the equation for the coefficient E2n−1 in the system (6.3.5) becomes

d
dSE2n−1(s⃗) = 0,

thus E2n−1 is constant w.r.t. the variable S and it is in particular E2n−1 = 0, because of the
asymptotics of Ψ(n). This is also what is given by the formula for k = 1:

−i
(︃

−1
4

)︃0 d
dS

−1 (︄
[W, ·]

(︄
[W, ·]+ + d

dS

)︄
L0[U ]

)︄
= 0.

We can then compute the term G2n−2 for which the equation in (6.3.5) is now

G2n−2 = −1
2

d
dS (−iW ) = i

2WS,

that coincides with the formula

i
2

(︃
−1

4

)︃0 (︄(︄ d
dS − [W, ·] d

dS

−1
[W, ·]

)︄(︄
d

dS + [W, ·]+
)︄

L0[U ]
)︄

= i
2

d
dSW.

Finally, we can compute the term A2n−2. It is supposed to satisfy, from the system (6.3.5),
the equation

d
dSA2n−2 = −i[W,G2n−2]+ = 1

2[W,WS]+.

Integrating and taking the constant of integration another time equal 0 (for the same reason
used above) we get

A2n−2 = 1
2W

2.
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The same that is given by the formula

−1
2

(︃
−1

4

)︃0 (︄
L1[U ] −

(︄
d

dS − [W, ·] d
dS

−1
[W, ·]

)︄(︄
d

dS + [W, ·]+
)︄

L0[U ]
)︄

= −1
2
(︂
WS −W 2 −WS

)︂
.

Thus for k = 1 the formulas in (6.3.4) gives solutions of the system (6.3.5).
Now we proceed by induction: supposing that for l = 2n−2k+1 the coefficients E2n−2k+1,

F2n−2k+1 are given by the formulas (6.3.4), we will find that then also the coefficients for
l = 2n− 2k and l = 2n− 2k − 1 have the form given by the formulas (6.3.4). Indeed, from
the equations in (6.3.5), we have

G2n−2k(s⃗) = 1
2

(︄
− d

dSF2n−2k+1(s⃗) + [W,E2n−2k+1(s⃗)]
)︄

= −1
2

(︄
−i
(︃

−1
4

)︃k−1 d
dS

(︄(︄
[W, ·]+ + d

dS

)︄
Lk−1[U ]

)︄)︄

+ 1
2

(︄
[W, ·]

(︄
−i
(︃

−1
4

)︃k−1 d
dS

−1 (︄
[W, ·]

(︄
[W, ·]+ + d

dS

)︄
Lk−1[U ]

)︄)︄)︄

= i
2

(︃
−1

4

)︃k−1 (︄(︄ d
dS − [W, ·] d

dS

−1
[W, ·]

)︄(︄
d

dS + [W, ·]+
)︄

Lk−1[U ]
)︄

that is exactly the formula in (6.3.4) for this coefficient. Then we can compute

A2n−2k(s⃗) = −i d
dS

−1
[W,G2n−2k(s⃗)]+ = 1

2

(︃
−1

4

)︃k−1 d
dS

−1
[W, ·]+

×
(︄(︄

d
dS − [W, ·] d

dS

−1
[W, ·]

)︄(︄
d

dS + [W, ·]+
)︄

Lk−1[U ]
)︄

= −1
2

(︃
−1

4

)︃k−1(︄
Lk[U ] −

(︄
d

dS − [W, ·] d
dS

−1
[W, ·]

)︄(︄
d

dS + [W, ·]+
)︄

Lk−1[U ]
)︄
,

where in the last passage we have integrated (taking the integration’s constant 0) after having
applied formula (6.2.4). Then the equation for F2n−2k−1(s⃗) reads as

F2n−2k−1 = 1
2

(︄
d

dSG2n−2k(s⃗) − i [W,A2n−2k(s⃗)]+

)︄

= 1
2

(︄
d

dS
i
2

(︃
−1

4

)︃k−1 (︄(︄ d
dS − [W, ·] d

dS

−1
[W, ·]

)︄(︄
d

dS + [W, ·]+
)︄

Lk−1[U ]
)︄)︄

− i
2

⎛⎝[W, ·]+
1
2

(︃
−1

4

)︃k−1
⎛⎝Lk[U ] −

(︄
d

dS − [W, ·] d
dS

−1
[W, ·]

)︄

×
(︄

d
dS + [W, ·]+

)︄
Lk−1[U ]

⎞⎠⎞⎠ = −i
(︃

−1
4

)︃k (︄ d
dS + [W, ·]+

)︄
Lk[U ],

80



where in the last line we used another time property (6.2.4) of the matrix Lenard operators.
Finally, the formula for E2n−2k−1 directly follows from the equation above and taking the
integration contant equal 0, while integrating the equation (6.3.5).

In the end, when we replace the formulas for G0, A0 in the last equation of the system
(6.3.5), namely

i
2

d
dSG0(s⃗) = −[S,W ]+ − 1

2[W,A0(s⃗)]+,

using another time the property (6.2.4) we get the n-th member of the Painlevé II hierarchy:(︄
[W, ·]+ + d

dS

)︄
Ln[U ] = (−1)n+14n[S,W ]+. ■

Remark 6.3.8. The matrices L(n), M (n) obtained here, are the analogue of the Lax pair
for the scalar homogeneous Painlevé II hierarchy obtained in [30], written in Theorem 5.3.3,
with W (s⃗) given by

2β(n)
1 (s⃗) = −2i lim

|λ|→∞

(︂
λΞ(n)(s⃗)

)︂
1,2

:= W (s⃗).

Also, the proof by induction previously done, it is inspired by the technique used in [30].

We can then state and prove the final result of this study, that links solutions of the
homogeneus matrix Painlevé II hierarchy (6.2.2) to Fredholm determinants of the matrix
Airy operators.

Corollary 6.3.9. There exists a solution W of the n-th member of the PII hierarchy (6.2.2)
connected to Fredholm determinant of the n-th Airy matrix operator (6.0.3) through the
following formula

− Tr
(︂
W 2(s⃗)

)︂
= d2

dS2 ln
(︂
F (n)(s1, . . . , sr)

)︂
. (6.3.6)

This solution W has boundary behavior (W )rk,l=1 ∼ −2(cklAi2n+1(sk + sl))rk,l=1 in the regime
s → +∞ with |δj| ≤ m for every j, where s := 1

r

∑︁r
j=1 sj is the baricenter of the variables sj,

and δj := sj − s.

Proof. We first prove the formula (6.3.6). The statement is achieved by Theorem 6.1.9 and
the relation between α

(n)
1 , β(n)

1 given by

d
dSα

(n)
1 = −2i

(︂
β

(n)
1

)︂2
. (6.3.7)

This relation holds for each n and it is obtained by looking at the coefficient of the term λ−1

in the asymptotic expansion at ∞ of

d
dSΨ(n)

(︂
Ψ(n)

)︂−1
,

and recalling that it must be 0. Indeed, from the asymptotic expansion of Ψ(n) we have that
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the power λ−1 coming from the formal asymptotic expansion of d
dSΨ(n)

(︂
Ψ(n)

)︂−1
is∗

[︄
d

dSΨ(n)
(︂
Ψ(n)

)︂−1
]︄

−1
=
⎡⎣⎛⎝I2r +

∑︂
j≥1

Ξ(n)
j

λj

⎞⎠ iλσ̂3

⎛⎝I2r +
∑︂
j≥1

Θ(n)
j

λj

⎞⎠⎤⎦
−1

= i
λ

(︄
Ξ(n)

2 σ̂3 + σ̂3Θ(n)
2 + Ξ(n)

1 σ3Θ(n)
1 + d

dSΞ1

)︄
.

And replacing in the coefficient of λ−1 the relations between the asymptotic coefficients of
Θ(n) and the ones of Ξ(n), namely

Θ(n)
1 = −Ξ(n)

1 , Θ(n)
2 =

(︂
Ξ(n)

1

)︂2
− Ξ(n)

2

the result is exactly the relation (6.3.7).
Now we are going to prove the second part of the statement. We define the scalar variables

s := 1
r

∑︁r
j=1 sj and δj := sj − s for any j = 1, . . . , r.

We are now going to study the behavior of the solution W for

s → +∞ and |δj| ≤ m ∀ j. (6.3.8)

First, we rewrite the jump matrix J (n)(λ, s⃗) of Riemann-Hilbert Problem 6.1.5 in terms of
the rescaled complex parameter zs 1

2n = λ.
In particular we obtain that the jump matrices along γn+ and along γn−, are factorized

in a product of commuting matrices, written in terms of the rescaled parameter z and the
variables s, δj. Namely,

I2r − 2πir(n)
(︂
±zs 1

2n

)︂
⊗ σ±χγn

±

(︂
zs 1

2n

)︂
=

r∏︂
k,l=1

(︄
I2r + ckle

±is
2n+1

2n

(︂
z2n+1
2n+1 +z

(︂
2+ δk+δl

s

)︂)︂
Ek,l ⊗ σ±χγ̃n

±
(z)
)︄
, (6.3.9)

where Ek,l are the elementary matrices and σ+ = ( 0 1
0 0 ), σ− = ( 0 0

1 0 ) and γ̃n± are the
transformed contours under the scaling λ = zs 1

2n .
Now, we are going to show that each matrix in the factorization (6.3.9), that we denote

by F±
kl , is close to the identity matrix I2r in the regime fixed in (6.3.8). Remark that every

F±
kl has 2n critical points, corresponding to

zh0 = d
1

2n
kl ei π

2n
(2h+1), h = 0, . . . , 2n− 1,

where dkl = 2 + δk+δl

s is real, positive and bounded, while looking at the regime (6.3.8).
We can then split the curves γ̃n± respectively in the curves γ̃n±,kl one for each factor F±

kl

appearing in the factorization (6.3.9). The curves γ̃n±,kl pass respectively through the points
∗Here the notation [ ]−1 indicates that we only take the term λ−1 in the relevant formal series.
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zh0 with h = 0, . . . , n− 1 (in the upper plane) and h = n, . . . , 2n− 1 (in the lower plane).
In this way, we can then evaluate the ∞-norm of each term F±

kl − I2r and we have

⃓⃓⃓⃓⃓⃓
F±
kl − I2r

⃓⃓⃓⃓⃓⃓
∞

= |ckl| sup
z∈γ̃n

±,kl

e∓s
2n+1

2n ℑ
(︂

z2n+1
2n+1 +zdkl

)︂
= |ckl|e∓ 2n

2n+1 (sdkl)
2n+1

2n sin(± π
2n) → 0

for s → +∞ and |δj| ≤ m ∀ j.
We can conclude that the rescaled jump matrix itself J (n)

(︂
s 1

2n z
)︂

is close to the identity
matrix in the regime (6.3.8), since each factor F±

kl in its factorization shares this property.
Consider now the rescaled function X(n)(z) := Ξ(n)

(︂
zs 1

2n

)︂
. By using Riemann-Hilbert

Problem 6.1.5 solved by Ξ(n), we have that

• X(n) is analytic on C\ γ̃n+ ∪ γ̃n− and it admits continuous extension to these curves from
either side;

• its boundary values X±(z) while approaching γ̃n+ ∪ γ̃n− from the left and respectively
from the right, are related through the jump condition (6.1.6) but with the rescaled
jump matrix computed in (6.3.9);

• for |z| → +∞ we have X(n) ∼ I2r +∑︁
j≥1

X
(n)
j

zj .

Remark that we have X(n)
1 = s− 1

2n Ξ(n)
1 .

By applying the small norm theorem (one version was stated in Theorem 4.1.9, i.e.
Theorem 1.5.1 in [59]), we conclude that the function X(n)(z) behaves as

X(n)(z) = I2r + O
(︂
z−1e−Cs

2n+1
2n
)︂
, s → +∞, |δj| ≤ m ∀ j, (6.3.10)

for a certain value C > 0.
Now, using the integral formula [60] for the rescaled solution of the Riemann-Hilbert

Problem 6.1.5, namely X(n)(z), we have that

X(n)(z) = I2r −
∫︂
γ̃n

+

X
(n)
− (w)r(n)

(︂
ws 1

2n

)︂
⊗ σ+

w − z
dw −

∫︂
γ̃n

−

X
(n)
− (w)r(n)

(︂
−ws 1

2n

)︂
⊗ σ−

w − z
dw,

and thus we recover the following expression for the first asymptotic coefficient
(︂
X

(n)
1

)︂
1,2

=
∫︂
γ̃n

+

X
(n)
− (w)r(n)

(︂
ws 1

2n

)︂
dw.

Finally, by recalling the definition of W and using (6.3.10) we conclude that

W = −2i
(︂
Ξ(n)

1

)︂
1,2

= −2is 1
2n

∫︂
γ̃n

+

X
(n)
− (w)r(n)

(︂
ws 1

2n

)︂
dw ∼ −2(cklAi2n+1(sk + sl))rk,l=1,

in the regime (6.3.8). ■
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Remark 6.3.10. Relation (6.3.6) can be thought as the noncommutative analogue of the
results proved in [103] for the Painlevé II equation and in [26, 81] for the scalar Painlevé II
hierarchy, connecting the theory of Painlevé trascendents to the determinantal point processes
theory. For the noncommutative Painlevé II equation (6.2.3), i.e n = 1, this link was
already established in [13] and here we actually extended that result to the noncommutative
hierarchy (6.2.2).
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Chapter 7

The integro-differential Painlevé II
hierarchy

The aim of this chapter is to prove the main result contained in the joint work with Thomas
Bothner and Mattia Cafasso [24]. This paper is devoted to study the Fredholm determinants
of a finite temperature version of the Airy kernels previously introduced in Chapter 2, through
equation (2.2.34). Specifically, their finite temperature version is defined for any n ∈ N and
for a given weight function w satisfying the requirements written below.

Definition 7.0.1. We consider a weight function w : R → R+ as any positive, strictly
increasing and differentiable function, such that for some ω, x0 > 0,

lim
x→+∞

w(x) = 1, lim
x→−∞

w(x) = 0 and 0 < w′(x) ≤ e−ω|x| ∀ |x| ≥ x0. (7.0.1)

For any fixed weight function with the above properties, we construct the following
operators.

Definition 7.0.2. The finite temperature higher order Airy kernels are integral operators
Kt,n : L2(R+) → L2(R+) acting through the kernel

Kt,n(x, y) :=
∫︂
R

Ai2n+1(x+ z + t)Ai2n+1(z + y + t)w(z) dz, t ∈ R. (7.0.2)

These operators Kt,n are proved to be trace class on L2(R+) so that their Fredholm
determinants

Dn(t, λ) := det(1 − λKt,n) (7.0.3)

are well defined for any (t, λ, n) ∈ R × C × N. As it happens in the scalar case for the
Airy kernels (2.2.34), and in the matrix-valued generalization for the square of the Hankel
Airy operators defined in (6.1.2), also in this finite temperature case the operators λKt,n

define uniquely a determinantal point process for every (t, λ, n) ∈ R × [0, 1] × N, so that
the Fredholm determinants Dn(t, λ) are the distribution functions of the last particle in this
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process. In this specific case, the interest in the study of the Fredholm determinants Dn(t, λ)
is moreover given by the applications that they have in statistical mechanics. Indeed, they
were used in the paper [81] to describe some statistical quantities related to a model of
free fermions in anharmonic traps at finite temperature. More specifically, in this paper the
authors explained how Dn(t, 1), when the weight function w is chosen to be the Fermi factor,
is equal to the edge scaling limit of the probability distribution of the largest momenta in this
specific fermionic model. This was indeed the main motivation for us to study the Fredholm
determinants Dn(t, λ). For other occurences of these Fredholm determinants see for instance
[5, 68]. In particular, our first aim was to find a Tracy-Widom type formula relating the
Fredholm determinants Dn(t, λ) to some distinguished Painlevé II trascendents of some kind,
generalizing the classical result of Tracy and Widom [102]. The process that allowed us to
achieve this result has two new remarkable features: the usage of operator-valued Riemann-
Hilbert problems to study the Fredholm determinants Dn(t, λ) and the definition of an
integro-differential Painlevé II hierarchy. The definition of this new hierarchy though, does
not use any more the Lenard recursion as in the scalar classical case and in the matrix-valued
generalization treated in the previous chapter. It uses instead some recursion operators Lu

±
that remind of the Airault’s construction [4] of the Painlevé II hierarchy that we saw in
equation (2.2.27).

Definition 7.0.3. Given a function R2 ∋ (t, x) ↦→ f(t|x), we denote by Dt the ordinary
t-derivative and by D−1

t the t-antiderivative, so that (D−1
t Dtf)(t|x) = f(t|x). Now define,

for given u = u(t|x),

(Lu
+f)(t|x) := i(Dtf)(t|x) − i

⟨︂
(D−1

t {u, f})(t|x, ·), u
⟩︂

− 2i
(︂
D−1
t ⟨u, f⟩

)︂
u(t|x),

(Lu
−f)(t|x) := i(Dtf)(t|x) + i

⟨︂
(D−1

t [u, f ])(t|x, ·), u
⟩︂
,

where the rank two integral operators [α, β] := α ⊗ β − β ⊗ α and {α, β} := α ⊗ β + β ⊗ α

have kernels

[α, β](t|x, y) = α(t|x)β(t|y) − β(t|x)α(t|y), {α, β}(t|x, y) = α(t|x)β(t|y) + β(t|x)α(t|y),

and ⟨·, ·⟩ denotes the weighted bilinear form

⟨f, g⟩ :=
∫︂
R
f(t|x)g(t|x)w′(x) dx, w′(x) = dw

dx (x).

The relevant integro-differential Painlevé II hierarchy is then defined as a sequence of
integro-differential equations through the recursion operators Lu

± in the following way.

Definition 7.0.4. For each n ∈ N, the n-th member of the integro-differential Painlevé II
hierarchy is defined, for a function u = u(t|x), as

− (t+ x)u(t|x) =
(︂
(Lu

+Lu
−)nu

)︂
(t|x) (7.0.4)
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In particular, using the shorthand

u = u(t|x), u′ = (Dtu)(t|x), u′′ = (D2
t u)(t|x), u′′′ = (D3

t u)(t|x), . . .

the first three members read as

n = 1 : (t+ x)u = u′′ − 2u⟨u, u⟩, (7.0.5)
n = 2 : −(t+ x)u = u′′′′ − 4u′′⟨u, u⟩ − 8u′⟨u′, u⟩ − 6u⟨u, u′′⟩ − 2u⟨u′, u′⟩ + 6u⟨u, u⟩2,

(7.0.6)
n = 3 : (t+ x)u = u′′′′′′ − 6u′′′′⟨u, u⟩ − 8u⟨u′′′′, u⟩ − 24u′′′⟨u′, u⟩ − 19u′⟨u, u′′′⟩ − 13u⟨u′′′, u′⟩

− 31u′′⟨u′′, u⟩ − 11u⟨u′′, u′′⟩ − 25u′′⟨u′, u′⟩ − 45u′⟨u′′, u′⟩ + 15u′′⟨u, u⟩2

+ 55u⟨u, u⟩⟨u′′, u⟩ + 60u′⟨u′, u⟩⟨u, u⟩ + 25u⟨u′, u′⟩⟨u, u⟩ + 55u⟨u′, u⟩2 − 20u⟨u, u⟩3.

(7.0.7)

We observe that for the choice of the weight function w′(x) = δ0(x) (the delta function at
x = 0) the classical equations (2.2.23), (2.2.24) and (2.2.25) are recovered from the above
ones, at least formally.
Remark 7.0.5. Even though the operators Lu

± involves t-antiderivatives, the members of the
hierarchy (7.0.4) are always local. Indeed all the terms involving D−1

t , are shown to be local.
Remark 7.0.6. The choice of the weight function w enters in the definition of the recursion
operators Lu

± and thus of the hierarchy (7.0.4) and its solution u(t|x). But the dependence
on w of u(t|x) is not underlined in our notation.

Even though the definition of this integro-differential Painlevé II hierarchy is new,
equations (7.0.5) and (7.0.6) already appeared in different papers. With w being the Fermi
factor, equation (7.0.5) appeared in [5], while both equations (7.0.5), (7.0.6) appeared in
this recent work [75] where the author was studying the Fredholm determinants Dn(t, 1) in
relation to some Painlevé II trascendents but without the underlying Lax pairs. The main
statement of this chapter, Theorem 1.2 of [24], is as follows.
Theorem 7.0.7. For every (t, λ, n) ∈ R × D1(0) × N, with the closed unit disk D1(0) :=
{λ ∈ C : |λ| ≤ 1},

Dn(t, λ) = exp
[︃
−
∫︂ ∞

t
(s− t)

(︃∫︂
R
u2(s|x)w′(x) dx

)︃
ds
]︃
, (7.0.8)

where u(t|x) ≡ u(t|x;n, λ) is the unique solution of the boundary value problem

− (t+ x)u(t|x) =
(︂
(Lu

+Lu
−)nu

)︂
(t|x), u(t|x) ∼ λ

1
2 Ai2n+1(t+ x), t → +∞. (7.0.9)

The mapping t ↦→ u(t|x;n, λ) is smooth for any (x, λ, n) ∈ R × D1(0) × N, the asymptotic
expansion in (7.0.9) holds pointwise in x ∈ R and we choose an arbitrary fixed branch for
λ

1
2 .
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Remark 7.0.8. Our Theorem 7.0.7 recovers for n = 1, λ = 1 Proposition 1.2 of [5]. Although
the method used in that paper is completely different from the method we are going to use
here. The same result for that particular choice of the parameters was proved again in [22]
using operator-valued Riemann-Hilbert technique, and this is indeed the paper that mostly
inspired our methodology here. However, we notice that the Riemann-Hilbert problem used
in [22], for the case n = 1, λ = 1, is different from the one used here.

The rest of the Chapter is devoted to the proof of Theorem 7.0.7. This requires essentially
four steps, each one treated in the following sections.

• In Section 7.1 we prove the main properties of the finite temperature higher order Airy
kernels on L2(R+). After that, by using a Fourier technique we prove that the Fredholm
determinants Dn(t, λ) are equals to the ones of some new integral operators acting on
a bigger space L2(Σ), with Σ the contour introduced in (7.1.27). In particular these
new operators can be considered as an infinite dimensional versions of the standard
integrable operators. This kind of operators can be studied through operator-valued
Riemann-Hilbert problems, and this is done in Section 7.2.

• In Section 7.3 we deduce an operator-valued system of differential equations, w.r.t.
the complex parameter ζ and the deformation parameter t, starting from the solution
X(ζ) of the Riemann-Hilbert problem 7.2.6. The main ingredient in this computation
is the relation proved in Corollary 7.2.14. Moreover, we prove that this system is an
operator-valued Lax pair for a coupled system of Painlevé II type equations, involving
the operators U, V defined in (7.2.40) in Section 7.2.

• Finally in Section 7.4 we prove that the Lax pair deduced in the previous section,
yields the integro-differential Painlevé II hierarchy (7.0.4). This is obtained from the
reduction of the coupled systems of differential equations for the operators U, V , by
looking at their kernels.

Remark 7.0.9. In the work [24] we also derived an expression for the Fredholm determinants
Dn(t, λ) similar to equation (7.0.8) but involving instead of u(t|x) another function
v(t1, t2n+1|x) that turns out to be a distinguished solution of an integro-differential modified
KdV hierarchy. The result is obtained exactly in the same way as Theorem 7.0.7, but in the
case where the weight function w actually depends on a positive real parameter α. Defining
the new variables depending on α, n, t as

t1 := αt ∈ R, t2n+1 := α2n+1

2n+ 1 ∈ R+, (7.0.10)

this new integro-differential modified KdV hierarchy is then defined as

∂v

∂t2n+1
(t1, t2n+1|x) =

(︄
(Lv

−Lv
+)n ∂v

∂t1

)︄
(t1, t2n+1|x), (t1, t2n+1, x) ∈ R × R+ × R. (7.0.11)
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The first equation of the hierarchy is written as

∂v

∂t3
= −∂3v

∂t31
+ 3 ∂v

∂t1
⟨v, v⟩ + 3v

⟨︄
∂v

∂t1
, v

⟩︄
, (7.0.12)

where ⟨·, ·⟩ denotes the weighted bilinear form as defined previously in Definition 7.0.3. For
the exact statement and its proof we refer to Section 7 of [24].

7.1 Manipulating the finite temperature Airy kernels
First of all, we verify that the Fredholm determinant of the higher order finite temperature
Airy kernels defined in (7.0.8) are well defined on L2(R+). This is obtained through a classical
argument : we prove that the operator Kt, is obtained as a composition of Hilbert-Schmidt
operators on L2(R+) for every (t, n) ∈ R × N.

Lemma 7.1.1. The operator Kt,n is trace-class on L2(R+) for every (t, n) ∈ R × N.

Proof. Recall the definition of the kernel of the operator Kt,n given in (7.0.3). We can directly
see that the composition of the two operators Mt,n : L2(R) → L2(R+) and Nt,n : L2(R+) →
L2(R) acting as

(Mt,nf) (x) =
∫︂
R+

√︂
w(x)Ai2n+1(x+y+t)f(y)dy and (Nt,ng) (x) =

∫︂
R

Ai2n+1(x+y+t)g(y)
√︂
w(y)dy

(7.1.1)
gives exactly the operator Kt,n = Nt,nMt,n. It remains then to prove that the operators
Nt,n,Mt,n are both Hilbert-Schmidt. In both cases, we need the following condition to hold∫︂

R

∫︂
R+

|Ai2n+1(x+ y + t)|2w(x)dydx < ∞. (7.1.2)

The estimate above is essentially obtained by splitting the external integral along R and by
using the asymptotic properties of the n-th Airy function (see for instance equation (30) in
[24]). Also, recall the properties of the weight function w(x) given in Definition 7.0.1. In
particular, we use here the fact that w(x) ≤ 1 for every x ∈ R and the exponential decay
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w(x) ≤ ĉeωx for all (−x) ≥ x0 > 0, with ĉ > 0. We have

∫︂
R

(︄∫︂
R+

⃓⃓⃓
Ai2n+1(x+ y + t)

⃓⃓⃓2
dy
)︄
w(x) dx

=
∫︂
R+

(︄∫︂
R+

⃓⃓⃓
Ai2n+1(x+ y + t)

⃓⃓⃓2
dy
)︄
w(x) dx+

∫︂
R+

(︄∫︂
R+

⃓⃓⃓
Ai2n+1(−x+ y + t)

⃓⃓⃓2
dy
)︄
w(−x) dx

≤ c
∫︂
R+

∫︂
R+

e− 4n
2n+1 (x+y+t) dy dx+

∫︂
R+

(︃
c+

∫︂ x

0

⃓⃓⃓
Ai2n+1(−x+ y + t)

⃓⃓⃓2
dy
)︃
w(−x) dx

≤ c

[︄
1 +

∫︂
R+

(︂
1 + x

1
2n

)︂
w(−x) dx

]︄
.

(7.1.3)
Remark that the constant c appearing in the passages above changes from line to line and
also it depends on the parameters t, n. ■

7.1.1 Some properties of Kt,n

We are now going to prove a couple of properties of the operator Kt,n that will be useful in
the following. Notice that these properties were proved also in the previous chapter for the
matrix-valued analogue of higher order Airy kernels. In particular we have that

1. the operator Kt,n is self-adjoint and such that 0 < Kt,n ≤ 1;

2. 1 − λKt,n is invertible on L2(R+) for every λ ∈ D1(0).

The first property yields a probabilistic interpretation for the Fredholm determinants
Dn(t, λ). Indeed, it directly implies (always by applying Theorem 3.1.5 and then Corollary
3.1.9) that for every λ ∈ [0, 1] the operators λKt,n uniquely defines a determinantal point
process and the Fredholm determinant Dn(t, λ) describes the probability distribution of the
last particle in this determinantal point process. The second property is instead fundamental
from a technical point view. Indeed, it assures the solvability of the Riemann-Hilbert problem
7.2.6, as we discuss in Section 7.2.

Lemma 7.1.2. For every (t, n) ∈ R × N the operator Kt,n is self-adjoint and it satisfies
0 < Kt,n ≤ 1. Moreover, 1 − λKt,n is invertible on L2(R+) for all λ ∈ D1(0).

Proof. The self-adjointness directly follows from the definition of the kernel of Kt,n in (7.0.3).
We have then to prove the chain of inequality satisfied by Kt,n. To do that, we start by
rewriting the kernel of Kt,n, using the following trick.
From the properties of the weight function w(z) in Definition 7.0.1 and the asymptotic
properties of the n-th Airy function again, we get

dKt,n

dt
(x, y) = −

∫︂
R

Ai2n+1(x+ z + t)Ai2n+1(y + z + t)dσ(z), (7.1.4)

90



where we just integrated by parts and used the properties recalled above. Here dσ(z) =
w′(z)dz and it is a probability measure. With this in mind, by applying first dominated
convergence theorem and then Fubini’s theorem we can finally express Kt,n(x, y) in this new
fashion

Kt,n(x, y) = −
∫︂ ∞

t

dKs,n

ds
(x, y)ds =

∫︂
R

∫︂
R+

Ai2n+1(y+ z + t+ s)Ai2n+1(x+ z + t+ s)dsdσ(z).
(7.1.5)

Using this formulation we see that for every f ∈ L2(R+), by denoting f+(x) = f(x)χR+(x)
then

⟨f,Kt,nf⟩L2(R+) =
∫︂
R

[︄∫︂ ∞

z+t

⃓⃓⃓⃓∫︂
R

Ai2n+1(x+ s)f+(x) dx
⃓⃓⃓⃓2

ds
]︄

dσ(z) ≥ 0, (7.1.6)

thus the first inequality for Kt,n holds. For the other one, we start by replacing in
the computation above the integral representation of the n-th Airy function with R as
domain of integration. Then by denoting with f̌+(y) := 1√

2π
∫︁
R e

−ixyf+(x)dx and by

g(y) = ei
y2n+1
2n+1 f̌+(−y) we get

∫︂
R

Ai2n+1(x+ s)f+(x)dx = 1√
2π

∫︂
R

exp
(︄
i

(︄
y2n+1

2n+ 1 + sy

)︄)︄
f̌(−y)dy = ǧ(−s). (7.1.7)

Thus we can replace this computation inside the integral in (7.1.6) and then

⟨f,Kt,nf⟩L2(R+) =
∫︂
R

[︃∫︂ ∞

z+t
|ǧ(−s)|2 ds

]︃
dσ(z) ≤

∫︂
R

[︃∫︂
R

|ǧ(−s)|2 ds
]︃

dσ(z) = ||ǧ||2L2(R) = ||g||2L2(R)

= ||f̌+||2L2(R) = ||f+||2L2(R) = ⟨f, f⟩L2(R),
(7.1.8)

where we used multiple times the Plancharel’s theorem and that dσ is a probability measure.
Therefore, also the second inequality for Kt,n holds. Furthermore, this implies that in the
L2(R+) operator norm we also have that ||Kt,n|| ≤ 1. This last condition also assures the
invertibility on L2(R+) of 1 − λKt,n for any λ having |λ| < 1.
For the case in which |λ| = 1, we proceed by contradiction. Suppose that there exists a
nonzero function f ∈ L2(R+) such that λKt,nf = f for λ = eiθ and some θ ∈ [0, 2π) . In turn
we have

e−iθ⟨f,Kt,nf⟩L2(R+) = ⟨f, eiθKt,nf⟩L2(R+) = ||f ||L2(R+) > 0 (7.1.9)

thus θ is forced to be zero. Furthermore, the equations above imply that all the sequence in
(7.1.8) is actually composed by identities. In particular∫︂

R

[︃∫︂ ∞

z+t
|ǧ(−s)|2 ds

]︃
dσ(z) = ||ǧ||L2(R) =

∫︂
R

|ǧ(−s)|2ds, (7.1.10)
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that yields
∀ t ∈ R :

∫︂
R

[︃∫︂ z+t

−∞
|ǧn(−s)|2 ds

]︃
dσ(z) = 0. (7.1.11)

Since dσ is an absolutely continuous positive Borel measure, this implies automatically that∫︂ y

−∞
|ǧn(−s)|2 ds = 0 a.e.. (7.1.12)

Thus ǧ(−y) = 0 a.e. and by recalling the definition of the function ǧ(y) we obtain

ǧ(−y) =
∫︂
R

Ai2n+1(x+ y)f(x)dx = 0 a.e.. (7.1.13)

Since the integral in the left hand side of the above equation is a continuous function in y and
as a byprouduct an entire function. Hence we conclude that ǧ(z) = 0 for every z ∈ C and
this implies that f ≡ 0 in L2(R). This contradicts the initial assumption, and thus we have
that 1 − λKt,n is injective for λ with unitary norm. By Fredholm alternative then 1 − λKt,n

is invertible in the same range of the parameter λ. ■

Corollary 7.1.3. For every (t, λ, n) ∈ R × [0, 1] × N there exists a unique determinantal
point process with correlation kernel λKt,n and the distribution function of the last particle
in this process equals Dn(t, λ).

As underlined before, this follows directly from Lemma 7.1.2, together with the classical
results recalled in Chapter 3, namely Theorem 3.1.5 and Corollary 3.1.9.

7.1.2 From L2(R+) to L2(Σ)
This last subsection is perhaps the core of the entire section, since we are going to explain
how to associate an operator-valued Riemann-Hilbert problem to the higher order finite
temperature Airy kernels Kt,n. The main idea is to manipulate the kernel of Kt,n through
the conjugation of bounded invertible operators, in order to obtain a new integral operator
on an enlarged space L2(Σ) that has the same Fredholm determinant Dn(t, λ) of Kt,n.

Here are resumed the fundamental steps of this procedure

1. First, we consider the operator λKt,nχR+ on L2(R), which has Fredholm determinant
Dn(t, λ). Moreover, this operator is shown to be equal, up to conjugation by the Fourier
transform and a multiplication operator, to another trace-class operator called λJt,n

on L2(R). Thus we also have that the Fredholm determinant of this new operator Jt,n

is expressed by Dn(t, λ).

2. The operator Jt,n is explicitly factorized in two Hilbert-Schmidt operators At,n,Bn on
L2(R).

3. We can then consider Jt,n as an operator J ◦
t,n on L2(Γα) for Γα some line in the complex

plane parallel to the real line and sufficiently closed to it. The factorization of Jt,n is in
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some way preserved for J ◦
t,n on L2(Γα), through operators A◦

t,n,B◦
n properly redefining

domain and codomain of the operators At,n,Bn. Again, λJ ◦
t,n is trace-class and its

Fredholm determinant coincides with Dn(t, λ).

4. Finally all these operators J ◦
t,n,A◦

t,n,B◦
n can be extended on a bigger space L2(Σ) for Σ a

prescribed contour on the complex plane containing the line Γα, as J ext
t,n ,Aext

t,n ,Bext
n . On

L2(Σ) the operator J ext
t,n is still trace-class and factorized through the Hilber-Schmidt

operators Aext
t,n ,Bext

n . But now these last two operator are trace-class too on L2(Σ) with
zero operator trace and they are also nilpotent.

5. With these properties of Aext
t,n ,Bext

n , we can directly conclude the aimed relation

Dn(t, λ) = det(1 − λ
1
2Ct,n), (7.1.14)

for Ct,n = Aext
t,n + Bext

n . The operator Ct,n obtained in this way has kernel explicitly
written in equation (7.1.32), in an infinite dimensional integrable form.

The starting point of all these manipulations is, again, the integral representation of the n-th
Airy function, that we already used during some proofs in the previous chapter. In this case
we are going to use both its integral representations

Ai2n+1(x) = 1
2π

∫︂
Γα

eiψn(x) = 1
2π

∫︂
Γβ

e−iψn(x), with ψn(x) = λ2n+1

2n+ 1 + λx (7.1.15)

where Γα, resp. Γβ, denotes any smooth contour oriented from ∞eia to ∞eib, resp. ∞eic to
∞eid, with

a ∈
(︃ 2nπ

2n+ 1 , π
]︃

and b ∈
[︃
0, π

2n+ 1

)︃
, resp. c ∈

(︄
π,

(2n+ 2)π
2n+ 1

)︄
and d ∈

(︄
(4n+ 1)π

2n+ 1 , 2π
)︄
,

such that 0 < ℑ(α− β) < ω
2 and ℑβ < 0 is satisfied for α ∈ Γα and β ∈ Γβ with ω > 0 as in

(7.0.1), see Figure 7.1 below for a possible choice. These constraints for the contours implies
in turn from (7.0.1) that

∀ (α, β) ∈ Γα × Γβ : lim
z→+∞
z∈R

eiz(α−β)w(z) = 0, lim
z→−∞
z∈R

eiz(α−β)w(z) = 0.

We now replace the integral representation of the n-th Airy function inside the definition
(7.0.3) of the kernel of Kt,n.

Kt,n(x, y) = 1
(2π)2

∫︂
Γα

∫︂
Γβ

ei(ψn(α,x+t)−ψn(β,y+t))
[︃∫︂

R
eiz(α−β)w(z) dz

]︃
dβdα

= i
(2π)2

∫︂
R

[︄∫︂
Γα

∫︂
Γβ

eiψn(α,x+z+t)e−iψn(β,z+y+t) dβ dα
α− β

]︄
dσ(z)
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ℜz

ℑz π
2n+1

2nπ
2n+1Γα

Γβ

Figure 7.1: An admissible (and very simple) choice for the integration paths Γα and Γβ in
(7.1.15), ensuring throughout 0 < ℑ(α− β) < ω

2 and ℑβ < 0 for (α, β) ∈ Γα × Γβ.

where in the last passage we integrated by parts and we used the asymptotic behaviors of
the n-th Airy function. Now, as previously explained we are going to consider the operator
Kt,nχR+ on L2(R), keeping in mind that

Dn(t, λ) = det(1 − λKt,nχR+|L2(R)). (7.1.16)

Using the following integral identity (see also Lemma 2.2 in [7] for a similar one)

− 1
2πi

∫︂
R

e−iy(γ−β) dγ
γ − β

= χR+(y), for β ∈ Γβ, y ∈ R \ {0} (7.1.17)

inside the computation for Kt,n(x, y), choosing Γα = R, we obtain

Kt,n(x, y)χR+(y) =
∫︂
R

∫︂
R

eixα
√

2π

[︄
1

(2π)2

∫︂
R

∫︂
Γβ

eiψn(α,z+t)e−iψn(β,z+t)

(α− β)(β − γ) dβ dσ(z)
]︄

=:Lt,n(α,γ)

e−iyγ
√

2π
dα dγ,

(7.1.18)
just by using Fubini’s theorem. Thus we conclude that FKt,nχR+F−1 = Lt,n where Lt,n is
the integral operator on L2(R) with kernel Lt,n denoted above and F is the standard Fourier
transform extended unitarly to L2(R).

Remark 7.1.4. The operator Lt,n is trace-class on L2(R) through general trace ideal
properties.

Definition 7.1.5. We consider the multiplication operator Pn : L2(R) → L2(R) that acts by
multiplying by the function e− i

2ψn(α,0).

This multiplication operator is used in order to construct another integral operator from
Lt,n as follows.

Definition 7.1.6. We consider the integral operator Jt,n : L2(R) → L2(R) defined by
conjugation for Pn of Lt,n, namely

Jt,n := PnLt,nP−1
n (7.1.19)
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By abstract trace ideal reasoning, since the operator Pn is bounded in L2(R) we can
conclude that the operator Jt,n is trace-class on L2(R). We can then state and prove the
following proposition about the Fredholm determinant Dn(t, λ).

Proposition 7.1.7. For every (t, λ, n) ∈ R × C × N, on L2(R),

1 − λKt,nχR+ = F−1P−1
n (1 − λJt,n)PnF ,

with the bounded linear operators F ,Pn and Jt,n on L2(R) defined as above. In particular
we record the determinant identity

Dn(t, λ) = det(1 − λJt,n|L2(R)). (7.1.20)

Proof. The operator identity as been proved with the reasoning above. The determinant
identity (7.1.20) is obtained by using the operator identity and by applying the Sylvester’s
identity (see for instance equation (5.9) of Chapter IV in [48]). ■

Before to go ahead, we need some other property of the integral operator Jt,n. In
particular, we see that this operator is explicitly factored in two Hilbert-Schmidt operators.

Proposition 7.1.8. The integral operator Jt,n is factored as Jt,n = At,nBn where At,n :
L2(Γβ) → L2(R), and Bn : L2(R) → L2(Γβ) have kernels

At,n(α, β) := 1
2π

e i
2ψn(α,2t)− i

2ψn(β,2t)

α− β

[︃∫︂
R

eiz(α−β) dσ(z)
]︃
, Bn(β, γ) := 1

2π
e− i

2ψn(β,0)+ i
2ψn(γ,0)

β − γ
.

(7.1.21)

Proof. Recall that Jt,n = PnLt,nP−1
n and that Lt,n has kernel

Lt,n(α, γ) = 1
(2π)2

∫︂
R

∫︂
Γβ

eiψn(α,z+t)e−iψn(β,z+t)

(α− β)(β − γ) dβ dσ(z). (7.1.22)

Thus we can write down the kernel of Jt,n as

Jt,n(α, γ) = 1
(2π)2

∫︂
Γβ

e i
2ψn(α,2t)− i

2ψn(β,2t)

α− β

[︃∫︂
R

eiz(α−β) dσ(z)
]︃ e− i

2ψn(β,0)+ i
2ψn(γ,0)

β − γ
dβ, (7.1.23)

so that Jt,n = At,nBn with At,n,Bn having kernels as in (7.1.21). ■

We are now ready to construct the extension of the operator Jt,n on some bigger space
L2(Σ). To start with, we first look at the operator J ◦

t,n as an operator on L2(Γα), for Γα
some line in the upper complex plane parallel to the real line. This leaves untouched the
Fredholm determinant.
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2ω

Figure 7.2: Our choice for Γα,β with 0 < ∆ = dist(Γα,R) = dist(Γβ,R) < ω
2 .

Proposition 7.1.9. Let Γα denote the reflection of Γβ across the real axis fixing Γβ := R−i∆
with 0 < ∆ < ω

2 . Now define J ◦
t,n : L2(Γα) → L2(Γα) as

(J ◦
t,nf)(ξ) :=

∫︂
Γα

Jt,n(ξ, η)f(η) dη, f ∈ L2(Γα),

with kernel Jt,n(ξ, η) given in (7.1.23). Then J ◦
t,n is trace class on L2(Γα) and we have the

equality

Dn(t, λ) = det(I − λJ ◦
t,n|L2(Γα)), (t, λ, n) ∈ R × C × N. (7.1.24)

Proof. First notice that the operator J ◦
t,n is well defined on L2(Γα) since Γα ∩ Γβ = ∅.

Moreover, we can re-define operators A◦
t,n : L2(Γβ) → L2(Γα) and B◦

n : L2(Γα) → L2(Γβ)
having the same kernels (7.1.21) and they are still Hilbert-Schmidt operators. We also have
J ◦
t,n = A◦

t,nB◦
n so that J ◦

t,n is still trace-class on L2(Γα).
Finally in order to obtain the identity for the Fredholm determinant Dn(t, λ), we observe
that for every m ∈ N

Tr
L2(R)

Jm
t,n = Tr

L2(Γα)
Jm
t,n. (7.1.25)

Since Jt,n(α, γ) is analytic in a neighborhood of (α, γ) ∈ Γα × Γα, and

Tr
L2(R)

Jm
t,n =

∫︂
R

· · ·
∫︂
R
Jt,n(ζ1, ζ2) · . . . · Jt,n(ζm−1, ζm)Jt(ζm, ζ1) dζ1 · · · dζm (7.1.26)

we can recursively replace Γα instead of R in each one of the integrals above and conclude
(7.1.25). By using the Plemelj-Smithies formula (see for instance Theorem 3.1 in Chapter II
of [48]) the identity (7.1.24) then holds. ■

We now fix the contour Σ in the complex plane as the disjoint union of the horizontal
lines, namely

Σ := R ⊔ Γβ ⊔ Γα (7.1.27)

where Γβ := R − i∆, with 0 < ∆ < ω
2 , and Γα is the reflection of Γβ upon the real line, as

in Figure 7.2. Since Σ contains in particular the line Γα, we can extend the operator J ◦
t,n to
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the bigger space L2(Σ). We define

J ext
t,n : L2(Σ) → L2(Σ), (J ext

t,n f)(ξ) =
∫︂

Σ
Jext
t,n (ξ, η)f(η) dη, Jext

t,n (ξ, η) := Jt,n(ξ, η)χΓα(ξ)χΓα(η),
(7.1.28)

Remark that, again, the extension leaves Dn(t, λ) invariant, so that we have

Dn(t, λ) = det(1 − λJ ext
t,n |L2(Σ)). (7.1.29)

Also remark that J ext
t,n can be factored in a similar way as before J ext

t,n = Aext
t,nBext

n , where now

Aext
t,n : L2(Σ) → L2(Σ), (Aext

t,nf)(ξ) =
∫︂

Σ
Aext
t,n (ξ, η)f(η) dη, Aext

t,n (ξ, η) := At,n(ξ, η)χΓα(ξ)χΓβ
(η),

Bext
n : L2(Σ) → L2(Σ), (Bext

n g)(η) =
∫︂

Σ
Bext
n (η, ζ)g(ζ) dζ, Bext

n (η, ζ) := Bn(η, ζ)χΓβ
(η)χΓα(ζ).

Moreover, thanks to their construction the operators Aext
t,n ,Bext

n on L2(Σ) gain many
properties, listed below, with respect to their previous versions.
Lemma 7.1.10. The operators Aext

t,n , B
ext
n : L2(Σ) → L2(Σ) have the following properties

1. they are trace class on L2(Σ) for every (t, n) ∈ R × N;

2. they have zero operator trace;

3. they are nilpotent.
Proof. We prove the first property first. To see that Aext

t,n ,Bext
n are both trace-class on L2(Σ)

we find for both a factorization in terms of Hilbert-Schmidt operators. For what concerns
Bn, we use the following trick. By residue theorem, for every (γ, β) ∈ Γα × Γβ, we have

− 1
2πi

∫︂
R

dδ
(γ − δ)(δ − β) = 1

γ − β
.

Replacing it in the kernel of Bn using (7.1.21) we get

Bext
n (β, γ) = − i

(2π)2

∫︂
R

e− i
2ψn(β,0)+ i

2ψn(γ,0)

(γ − δ)(δ − β) dδ χΓβ
(β)χΓα(γ). (7.1.30)

and this can seen as the composition Bext
n = Bext

n,1Bext
n,2 where Bext

n,j : L2(Σ) → L2(Σ) have
Hilbert-Schmidt kernels

Bext
n,1(β, δ) := − i

2π
e− i

2ψn(β,0)

β − δ
χΓβ

(β)χR(δ), Bext
n,2(δ, γ) := 1

2π
e i

2ψn(γ,0)

δ − γ
χR(δ)χΓα(γ).

For what concerns Aext
t,n instead, just integrating by parts (7.1.21) we get

Aext
t,n (α, β) = − i

2π

∫︂
R

e i
2ψn(α,2t)− i

2ψn(β,2t)eiz(α−β)w(z) dz χΓα(α)χΓβ
(β)
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and thus Aext
t,n = Aext

t,n,1Aext
t,n,2 where Aext

t,n,j : L2(Σ) → L2(Σ) have Hilbert-Schmidt kernels

Aext
t,n,1(α, z) := − i

2π e i
2ψn(α,2t)+izα

√︂
w(z)χΓα(α)χR(z), Aext

t,n,2(z, β) := e− i
2ψn(β,2t)−izβ

√︂
w(z)χR(z)χΓβ

(β).

Finally the last two properties directly comes from the fact that Γα ∩ Γβ = ∅. Indeed, the
operator traces are computed as

Tr
L2(Σ)

Aext
t,n =

∫︂
Σ
Aext
t,n (z, z) dz = 0, Tr

L2(Σ)
Bext
n =

∫︂
Σ
Bext
n (z, z) dz = 0.

And we have that for every (ξ, ζ) ∈ Σ × Σ
(︂
Aext
t,n

)︂2
(ξ, ζ) = At,n(ξ, η)χΓα(ξ)χΓβ

(η)At,n(η, ζ)χΓα(η)χΓβ
(ζ) = 0 thus

(︂
Aext
t,n

)︂2
= 0 on L2(Σ),

and the same is true for Bext
n . ■

Lemma 7.1.11. For every (t, λ, n) ∈ R × C × N, we have on L2(Σ),(︂
I + λ

1
2 Aext

t,n

)︂(︂
I − λ

1
2 (Aext

t,n + Bext
n )

)︂(︂
I + λ

1
2 Bext

n

)︂
= I − λAext

t,nBext
n = I − λJ ext

t,n ,

with an arbitrary, but throughout fixed, branch for λ 1
2 .

Proof. By direct computation, using the nilpotency of the operators Aext
t,n ,Bext

n . ■

With this operator identity in mind, we can finally prove the final result of this section.
We are going to express Dn(t, λ) as the Fredholm determinant of a suitable operator on
L2(Σ), that is the operator Ct,n with kernel written in equations (7.1.32), (7.1.33).

Proposition 7.1.12. For every (t, λ, n) ∈ R × C × N,

Dn(t, λ) = det(I − λ
1
2Ct,n|L2(Σ)), (7.1.31)

where Ct,n := Aext
t,n + Bext

n : L2(Σ) → L2(Σ) is trace class and has kernel of the form

(ξ − η)Ct,n(ξ, η) =
∫︂
R

(︃
k1(ξ|z)m1(η|z) + k2(ξ|z)m2(η|z)

)︃
dσ(z), (7.1.32)

where ki,mi for i = 1, 2 are the functions parametrically depending on ζ ∈ Σ, defined as

k1(ζ|y) := 1
2π e i

2ψn(ζ,2t+2y)χΓα(ζ), k2(ζ|y) := 1
2π e− i

2ψn(ζ,0)χΓβ
(ζ), m1(ζ|x) := e− i

2ψn(ζ,2t+2x)χΓβ
(ζ),

m2(ζ|x) := e i
2ψn(ζ,0)χΓα(ζ),

(7.1.33)
and with ψn(ζ, z) := ζ2n+1

2n+1 + zζ, as before.
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Proof. First of all, notice that Ct,n is trace-class on L2(Σ) since it is the sum of two trace-
class operators on the same space. Then, by using properties 1, 2 of Lemma 7.1.10 and the
Plemelj-Smithies formula we compute the following determinant

det(1 + λAext
t,n |L2(Σ)) = exp

(︄
−

∞∑︂
k=1

(−1)kλ
k

k
Tr
L2(Σ)

(Aext
t,n )k

)︄
= 1. (7.1.34)

With the same reasoning, we obtain also det(1 + λBn|L2(Σ)) = 1. Finally, by using the
factorization identity ((3.10) in [99]) and recalling (7.1.29), identity (7.1.31) is obtained. ■

We finally proved the relation between the Fredholm determinant of the finite
temperature n-th order Airy kernel Dn(t, λ) and the Fredholm determinant of the operator
Ct,n, that can be thought as an infinite dimensional version of an integrable operator. Indeed,
compare the equation describing the kernel of Ct,n (7.1.32) with the classical one for IIKS
integrable operators (4.2.1): the structure is the same but an integral now replaces the
symbol of summation in the right hand side.

7.2 Finite temperature operators and operator-valued
Riemann-Hilbert problems

In this section we introduce the main tool to handle the Fredholm determinant of operators as
Ct,n: the operator-valued Riemann-Hilbert problems. In the present literature there are just
a few examples of studies involving operator-valued Riemann-Hilbert problems. They can
be found in the two papers [61, 62] and then they were used very recently in the review [22],
where the author recovered, through a Riemann-Hilbert approach, the Tracy-Widom formula
for the finite temperature Airy kernel with n = 1, previously discovered in [5]. Following
this approach, we define and study some operator-valued Riemann-Hilbert problems that
are now related to the operators Ct,n.

7.2.1 First definitions and statement of the relevant operator-
valued Riemann-Hilbert problem

Essentially, an operator-valued Riemann-Hilbert problem is determined as before by a pair
(Σ, G) where now the jump matrix G(ζ) is a matrix whose entries take values in a particular
operator space for any value ζ ∈ Σ. To start with, we are going to define the operator space
that is relevant in this case, thus we first have to introduce the following functional space.
Recall that we fixed a weight function w as in Definition 7.0.1, so that dσ(x) = w′(x)dx, is
a probability measure on the real line.
In the following definition we adopt the same notation of [22].
Definition 7.2.1. Let p ≥ 1. We use the below abbreviations for the relevant functional and
operator spaces.
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1. The Hilbert space

Hp :=
p⨁︂
j=1

L2(R, dσ) =
{︂
f = (f1, . . . , fp)⊤ ∈ Cp×1 : fj ∈ L2(R, dσ)

}︂

equipped with its standard inner product and associated norm.

2. The space L2(R, dσ;Cp×p) of p × p matrix-valued functions with entries in L2(R, dσ),
equipped with the induced Frobenius integral norm.

3. The space I(Hp) of Hilbert-Schmidt integral operators on Hp of the form

(Kf)(x) =
∫︂
R

K(x, y)f(y) dσ(y),

with kernel K(x, y) ∈ L2(R2, dσ ⊗ dσ;Cp×p).

The operator space of interest for our Riemann-Hilbert problem is the space of integral
operators I(H2). This means that we can also see both the jump matrix and the solution
of this Riemann-Hilbert problem as 2 × 2 matrices with entries that are integral operators
acting on H1 with kernels in the functional space L2(R2, dσ ⊗ dσ).
We are now going to state the operator-valued Riemann-Hilbert problem that is related to
our infinite dimensional integrable operator, i.e. the operator Ct,n acting on L2(Σ) with
kernel of the form (7.1.32), (7.1.33).

Remark 7.2.2. The structure of the Riemann-Hilbert problem stated below, i.e. its jump
condition and its asymptotic condition could be used also in order to study other integral
operators having kernel of the same form of Ct,n but with different functions ki,mi and
different contour Σ. Moreover, in the forthcoming work [23], the author intends to show that
there is an entire class of suitable weighted Hankel composition operators (in which Kt,n fits)
that can be studied through Riemann-Hilbert problems of the same type of the following.
This “canonical” association to Riemann-Hilbert problems will no longer depend on the
“integrable” shape that the kernel of the operator should have (even after proper manipulation
as conjugation by bounded invertible operators, as we did for Kt,n in the previous section).

We first construct the operator-valued jump matrix that will be used in the Riemann-
Hilbert problem, building it up entry by entry.

Definition 7.2.3. For i, j = 1, 2 let Mi(ζ) ⊗ Kj(ζ) ∈ I(H1), denote the Σ ∋ ζ-parametric
family of rank one integral operators with kernels(︂

Mi(ζ) ⊗Kj(ζ)
)︂
(x, y) := mi(ζ|x)kj(ζ|y), x, y ∈ R,

defined in terms of the Σ ∋ ζ-parametric family of functions ki,mi defined in (7.1.33).

Remark 7.2.4. We underline the following three facts, that will be used later on.
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• All the operators Mi(ζ) ⊗Kj(ζ) also depend on the parameters (t, n) ∈ R × N, but we
do not highlight this in our notation.

• These integral operators acts on some function f ∈ H1 as follows: by multiplying by
the correspondent functions mi(η|x) and by integrating f(y) against the kernel kj(ζ|y).

• Since the contours Γα and Γβ are disjoint, it follows by (7.1.33) that the kernels

M1(ζ) ⊗K1(ζ)(x, y) = 0 = M2(ζ) ⊗K2(ζ)(x, y), (7.2.1)

thus the correspondent operators are zero too.

The analogue of the jump matrix G involved in the standard Riemann-Hilbert problem
4.1.1 is replaced here by the following operator G.

Definition 7.2.5. The integral operator G(ζ) acting on H2 is defined for every ζ ∈ Σ as

G(ζ) = I2 + 2πiλ 1
2

⎡⎣M1(ζ) ⊗K1(ζ) M1(ζ) ⊗K2(ζ)
M2(ζ) ⊗K1(ζ) M2(ζ) ⊗K2(ζ)

⎤⎦ = I2 + G0(ζ), (7.2.2)

where I2 denotes the identity operator on H2, and the branch of λ 1
2 is fixed.

Finally we consider the below I(H2)-valued Riemann-Hilbert problem, the central
operator-valued Riemann-Hilbert problem of this work.

Riemann-Hilbert Problem 7.2.6. Given (t, λ, n) ∈ R×D1(0) ×N, determine an integral
operator X(ζ) = X(ζ; t, λ, n) such that

(1) X(ζ) = I2 + X0(ζ) and X0(ζ) ∈ I(H2) with kernel X0(ζ|x, y) analytic in C \ Σ.

(2) X0(ζ) admits continuous boundary values X0±(ζ) ∈ I(H2) on Σ, oriented as shown in
Figure 7.2, such that X±(ζ) = I2 + X0±(ζ) satisfy

X+(ζ) = X−(ζ)G(ζ). (7.2.3)

(3) There exists c = c(n, t) > 0 such that for ζ ∈ C \ Σ,

∥X0(ζ|x, y)∥ ≤
c
√︂

|λ|
1 + |ζ|

∆− 1
4n e− (−1)n∆

2(2n+1) ∆2n

e∆(|x|+|y|+|t|), ∆ := dist(Γα,R) = dist(Γβ,R) > 0,

(7.2.4)
uniformly in (x, y) ∈ R2 and λ ∈ D1(0).

We notice that the structure of the Riemann-Hilbert problems 4.1.1 and 7.2.6 are exactly
the same, with the only difference that in the last one we specified the asymptotic condition
X(ζ) ∼ I2 for |ζ| → ∞ by requiring a particular condition on the operator norm of the
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operator X0.

While for the standard matrix-valued Riemann-Hilbert problems 4.1.1 the request of finding
a matrix-valued function analytic outside the prescribed contour and with continuous
boundary values along the contour itself does not need further explanation, for the operator-
valued Riemann-Hilbert problem 7.2.6 the same requests are demanded now for an operator-
valued function X(ζ) ∈ I(H2) and we need to revise their precise meaning. In the following
definitions we adopt the same notation of [22].

Definition 7.2.7. We say that an operator K(ζ) ∈ I(H2) with kernel K(ζ|x, y) is analytic
in ζ ∈ Ω a subset of C, if

1. for any (x, y) ∈ R2, the map ζ ↦→ K(ζ|x, y) is analytic in Ω.

2. for any ζ ∈ Ω, the map (x, y) ↦→ K(ζ|x, y) is in L2(R2, dσ ⊗ dσ;C2×2).

Furthermore, if Σ ⊂ Ω ⊂ C is an oriented contour consisting of a finite union of smooth
oriented curves in CP1 with finitely many self-intersections (as it is indeed the case for us),
then the continuity of the boundary values of K(ζ) along Σ is defined as follows.

Definition 7.2.8. We say that an analytic in ζ ∈ Ω \ Σ operator K(ζ) ∈ I(Hp) admits
continuous boundary values K±(ζ) ∈ I(Hp) on Σ with kernels K±(ζ|x, y) if

(1) for any (x, y) ∈ R2, the map ζ ↦→ K±(ζ|x, y) is continuous on Σ.

(2) for any (x, y) ∈ R2, the non-tangential limits

lim
λ→ζ

K(λ|x, y) = K±(ζ|x, y), λ ∈ ± side of Σ at ζ

exist.

With these two last definitions in mind, the statement of the Riemann-Hilbert problem
7.2.6 is now clarified and the next step is to find out whether a solutions exists and whether
it is unique.

7.2.2 Existence and uniqueness of the solution of the Riemann-
Hilbert problem

In the following we are going to prove that the solution of the Riemann-Hilbert problem 7.2.6
exists and is unique. Furthermore, we are going to prove that it has an integral representation
very similar to the one that is known for the generic matrix-valued Riemann-Hilbert problem
4.1.1 from Theorem 4.2.6. We start with the proof of uniqueness of the solution of the
Riemann-Hilbert problem 7.2.6. We anticipate that the technique used reminds of the one
used in the standard matrix case. Also, notice that the third point in Remark 7.2.4 will be
fundamental in the proof.
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Theorem 7.2.9. Whether the solution of the Riemann-Hilbert problem 7.2.6 exists, it is
unique.

Proof. Suppose that a solution X(ζ) = I2 + X0(ζ) ∈ I2 + I(H2) of the Riemann-Hilbert
problem 7.2.6 exists. We start by proving that the solution is invertible. To do that, consider
on the space H2 the following Fredholm determinant

d(ζ) := det(I2 + X0(ζ)), ζ ∈ C \ Σ. (7.2.5)

For ζ in this domain the Fredholm determinant is well-defined (thanks to the asymptotic
condition (7.2.4)) and also analytic in ζ, since we required X0(ζ) to be analytic away from
Σ. For ζ ∈ Σ we can use the continuous boundary values of the solution X(ζ) in order to
define the non-tangential boundary values of the function d(ζ)

d±(ζ) = det(X±(ζ)), ζ ∈ Σ. (7.2.6)

We can do the same construction for the operator-valued jump matrix G(ζ) = I2 + G0(ζ),
defined for ζ ∈ Σ. Indeed, G0(ζ) ∈ I(H2) is trace class and its operator norm can be
estimated as follows

∥G0(ζ|x, y)∥ ≤ c
√︂

|λ| e− (−1)n∆
2n+1 ∆2ne∆(|x|+|y|+|t|), c = c(n) > 0. (7.2.7)

Thus by the Hadamard’s inequality, the Fredholm determinant g(ζ) := det(I2 +G0(ζ)) exists
for ζ ∈ Σ. Moreover, by using Remark 7.2.4 we conclude that

Tr
H2

G0(ζ) = 0 and (G0(ζ))2 = 0. (7.2.8)

Thus, expressing g(ζ) through the Plemelj-Smithies formula (see for instance Theorem 3.1
in Chapter II of [48]) we conclude that g(ζ) = 1 for all ζ ∈ Σ. Finally, the multiplicativity
of Fredholm determinants applied on the jump condition (7.2.3) yields

d+(ζ) = d−(ζ), ζ ∈ Σ. (7.2.9)

that assures that the function d(ζ) is actually entire. Moreover, since d(ζ) → 1 for ζ → ∞
from the asymptotic condition (7.2.4), we conclude by the generalized Liouville theorem that
d(ζ) ≡ 1. In particular X(ζ) is invertible for ζ ∈ C \ Σ and so are their boundary values
X±(ζ) for ζ ∈ Σ.
Suppose now that there are two solutions X1(ζ),X2(ζ) of the Riemann-Hilbert problem
7.2.6. We can then consider the following integral operator on H2

Y(ζ) := X1(ζ)(X2(ζ))−1, ζ ∈ C \ Σ. (7.2.10)

For ζ in this domain the operator is analytic and for ζ ∈ Σ it admits continuous boundary
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values Y±(ζ). Moreover for ζ ∈ Σ we actually have that Y+(ζ) = Y−(ζ), meaning that
the kernel of this operator Y(ζ) is actually an entire function in ζ. Finally, by using that
Y(ζ) → I2 for ζ → ∞, again thanks to the Liouville theorem we conclude that Y(ζ) ≡ I2,
i.e. X1(ζ) = X2(ζ) identically in ζ. ■

We are now going to prove that a solution for the Riemann-Hilbert problem 7.2.6 exists
and it admits a convenient contour integral representation. As it arose out in Theorem 4.2.6
for the matrix-valued case, also in this operator-valued case the existence of the solutions
X(ζ) completely relies on the invertibility of the operator 1 − λ

1
2Ct,n on L2(Σ). This last

condition indeed holds for any (t, λ, n) ∈ R × D1(0) × N and the proof follows from Lemma
7.1.2 together with Proposition 7.1.12 both proved in the previous section.

Theorem 7.2.10. For every (t, λ, n) ∈ R × D1(0) × N consider the integral operator on H2

X(ζ) = I2 + λ
1
2

∫︂
Σ

⎡⎣N1(η) ⊗K1(η) N1(η) ⊗K2(η)
N2(η) ⊗K1(η) N2(η) ⊗K2(η)

⎤⎦ dη
η − ζ

, ζ ∈ C \ Σ, (7.2.11)

where Ni(η) are the operators on H1 which multiply by the functions ni(η|x) determined via
the integral equation on L2(Σ)(︂

I − λ
1
2C∗

t,n

)︂
ni(·|x) = mi(·|x), i = 1, 2, (7.2.12)

with x ∈ R and the real adjoint C∗
t,n of Ct,n.

Then (7.2.11) solves the Riemann-Hilbert problem 7.2.6.

Proof. As noticed before, the right hand side of (7.2.11) exists if and only if the solution of
the integral equation (7.2.12) exists. This is indeed the case as it follows from Lemma 7.1.2
together with Proposition 7.1.12. With this in mind, we prove that the right hand side of
(7.2.11) actually satisfies the three requests in the Riemann-Hilbert problem 7.2.6.
For the first request: we start by observing that each entry of the operator X0(ζ) in the
right hand side of (7.2.11) is an integral operator with nontrivial kernel

X ij
0 (ζ|x, y) = λ

1
2

∫︂
Σ
ni(η|x)kj(η|y) dη

η − ζ
, (x, y) ∈ R2, ζ /∈ Σ. (7.2.13)

In order to prove the first condition of the Riemann-Hilbert problem 7.2.6, we have to prove
that these kernels are analytic for ζ /∈ Σ and that (x, y) → X ij

0 (ζ|x, y) is in L2(R2, dσ ⊗ dσ)
(following Definition 7.2.7).
For the second part, remark that

∥ni(·|x)∥L2(Σ) ≤ c∥mi(·|x)∥L2(Σ), c = c(n, t) > 0, i = 1, 2, (7.2.14)

thanks to the fact that the resolvent operator is bounded. Thus, by using the definition of
the functions mi, kj in (7.1.33), the definition of the contour Σ and the Cauchy-Schwartz
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inequality we estimate

⃓⃓⃓
X ij

0 (ζ|x, y)
⃓⃓⃓
≤

c
√︂

|λ|
dist(ζ,Σ)∆− 1

4n e− (−1)n∆
2(2n+1) ∆2n

e∆(|x|+|y|+|t|), c = c(n, t) > 0, i, j = 1, 2.

(7.2.15)
Therefore (x, y) → X ij

0 (ζ|x, y) is indeed in the space L2(R2, dσ ⊗ dσ) for every ζ /∈ Σ. For
what concerns the analyticity property: we first observe that for every (x, y) the function
η → ni(η|x)kj(η|y) is Holder continuous and thus its Cauchy transform, by the Plemelji-
Sokhotoski theorem, is analytic for ζ /∈ Σ and so it is X ij

0 (ζ) for each i, j = 1, 2. Thus the
first condition of Riemann-Hilbert problem 7.2.6 is satisfied by the right hand side of formula
(7.2.11). Thanks to estimate (7.2.15) also the asymptotic condition (7.2.4) is satisfied by the
right hand side of formula (7.2.11).
We only have to prove that the jump condition (7.2.3) is satisfied by the right hand side of
formula (7.2.11). First of all, remark that the boundary values X±(ζ) exist and are Holder-
continuous for ζ ∈ Σ, thanks to the properties of the Cauchy transforms, and they are both
in the space I2 + I(H2). In order to check that X±(ζ) satisfies the jump condition (7.2.3),
we start by applying the property of the Cauchy transform ( C+ − C− = Id ) to (7.2.11) and
we deduce

X+(ζ) − X−(ζ) = 2πiλ 1
2

⎡⎣N1(ζ) ⊗K1(ζ) N1(ζ) ⊗K2(ζ)
N2(ζ) ⊗K1(ζ) N2(ζ) ⊗K2(ζ)

⎤⎦ , ζ ∈ Σ. (7.2.16)

We then compute the composition of operators X−(ζ)G(ζ) by using their definitions (7.2.11),
(7.2.2)

X−(ζ)G(ζ) = X−(ζ)
⎛⎝I2 + 2πiλ 1

2

⎡⎣M1(ζ) ⊗K1(ζ) M1(ζ) ⊗K2(ζ)
M2(ζ) ⊗K1(ζ) M2(ζ) ⊗K2(ζ)

⎤⎦⎞⎠
= X−(ζ) + 2πiλ 1

2

⎛⎝I2 + λ
1
2

∫︂
Σ

⎡⎣N1(η) ⊗K1(η) N1(η) ⊗K2(η)
N2(η) ⊗K1(η) N2(η) ⊗K2(η)

⎤⎦ dη
η − ζ−

⎞⎠
◦

⎡⎣M1(ζ) ⊗K1(ζ) M1(ζ) ⊗K2(ζ)
M2(ζ) ⊗K1(ζ) M2(ζ) ⊗K2(ζ)

⎤⎦ .
(7.2.17)

Now, looking at the definition of the kernel of the operator Ct,n in equation (7.1.32) and
using general theory of rank 1 integral operators we have that⎡⎣N1(η) ⊗K1(η) N1(η) ⊗K2(η)

N2(η) ⊗K1(η) N2(η) ⊗K2(η)

⎤⎦⎡⎣M1(ζ) ⊗K1(ζ) M1(ζ) ⊗K2(ζ)
M2(ζ) ⊗K1(ζ) M2(ζ) ⊗K2(ζ)

⎤⎦
= (η − ζ)Ct,n(η, ζ)

⎡⎣N1(η) ⊗K1(ζ) N1(η) ⊗K2(ζ)
N2(η) ⊗K1(ζ) N2(η) ⊗K2(ζ)

⎤⎦ , (η, ζ) ∈ Σ × Σ,
(7.2.18)
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thus we can rewrite the quantity above describing X−(ζ)G(ζ) as follows

X−(ζ)G−(ζ) = X−(ζ) + 2πiλ 1
2

⎡⎣M1(ζ) ⊗K1(ζ) M1(ζ) ⊗K2(ζ)
M2(ζ) ⊗K1(ζ) M2(ζ) ⊗K2(ζ)

⎤⎦
+ 2πiλ

∫︂
Σ
Ct,n(ζ, η)

⎡⎣N1(η) ⊗K1(η) N1(η) ⊗K2(η)
N2(η) ⊗K1(η) N2(η) ⊗K2(η)

⎤⎦ dη.
(7.2.19)

Now notice that the integral equation (7.2.12) for the operators Ni(ζ),Mi(ζ) reads as

Ni(ζ) − λ
1
2

∫︂
Σ
Ct,n(η, ζ)Ni(η) dη = Mi(ζ), ζ ∈ Σ, (7.2.20)

and thus by replacing it above and by using equation (7.2.16) we finally obtain that

X−(ζ)G(ζ) = X−(ζ) + 2πiλ 1
2

⎡⎣N1(ζ) ⊗K1(ζ) N1(ζ) ⊗K2(ζ)
N2(ζ) ⊗K1(ζ) N2(ζ) ⊗K2(ζ)

⎤⎦ = X+(ζ). (7.2.21)

This means that also the jump condition (7.2.3) is satisfied by the right hand side of formula
(7.2.11) and thus the proof is completed. ■

So far, we proved that the solution of the Riemann-Hilbert problem 7.2.6 exists and it
is unique. Moreover, we explicitly constructed an integral contour representation for the
solution X(ζ) for any ζ /∈ Σ and we know that the solution X(ζ) is invertible on H2 from
Theorem 7.2.9. As a byproduct, it follows that the operator X(ζ)−1 has an analogue integral
representation.

Corollary 7.2.11. For every (t, λ, n) ∈ R × D1(0) × N the inverse on H2 of the solution
X(ζ) of the Riemann-Hilbert problem 7.2.6 has the following integral representation

(X(ζ))−1 = I2 − λ
1
2

∫︂
Σ

⎡⎣M1(ζ) ⊗ L1(ζ) M1(ζ) ⊗ L2(ζ)
M2(ζ) ⊗ L1(ζ) M2(ζ) ⊗ L2(ζ)

⎤⎦ dη

η − ζ
, ζ ∈ C \ Σ, (7.2.22)

where Li(η) are integral operators on H1 with kernel ℓi(t|y) determined from the L2(Σ)
integral equation

(I − λ
1
2Ct,n)ℓi(·|y) = ki(·|y), i = 1, 2. (7.2.23)

Remark 7.2.12. Notice again that the right hand side of equation (7.2.22) exists because
the integral equation (7.2.23) admits solution, for the same reason explained before.

Proof. It is enough to prove that the right hand side of equation (7.2.22), that we will denote
by Y(ζ) in the following, it is the actual right inverse of X(ζ). We start by computing

X(ζ)Y(ζ) = I2 + λ
1
2

∫︂
Σ

(︂
X(η) − Y(η)

)︂ dη
η − ζ

− λ
∫︂

Σ

∫︂
Σ

X(η1)Y(η2)
dη1

η1 − ζ

dη2

η2 − ζ
, ζ /∈ Σ,

(7.2.24)
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where we denoted by X(ζ),Y(ζ) the finite rank integrand appearing in the right hand side
of (7.2.11) and (7.2.22) respectively. The aim is now to prove that the sum of the last two
terms in the equation above is zero (the zero operator on H2).
To start with, notice that by the definition of the kernel of the operator Ct,n we have that

X(η1)Y(η2) = (η1 − η2)Ct,n(η1, η2)
⎡⎣N1(η1) ⊗ L1(η2) N1(η1) ⊗ L2(η2)
N2(η1) ⊗ L1(η2) N2(η1) ⊗ L2(η2)

⎤⎦ . (7.2.25)

Replacing this equation in the double integral term appearing above, we can compute it as

∫︂
Σ

∫︂
Σ

X(η1)Y(η2)
dη1

η1 − ζ

dη2

η2 − ζ
=
∫︂

Σ

∫︂
Σ
Ct,n(η1, η2)

⎡⎣N1(η1) ⊗ L1(η2) N1(η1) ⊗ L2(η2)
N2(η1) ⊗ L1(η2) N2(η1) ⊗ L2(η2)

⎤⎦ dη1
dη2

η2 − ζ

−
∫︂

Σ

∫︂
Σ
Ct,n(η1, η2)

⎡⎣N1(η1) ⊗ L1(η2) N1(η1) ⊗ L2(η2)
N2(η1) ⊗ L1(η2) N2(η1) ⊗ L2(η2)

⎤⎦ dη2
dη1

η1 − ζ

= −
∫︂

Σ
Y(η2)

dη2

η2 − ζ
+
∫︂

Σ
X(η1)

dη1

η1 − ζ
(7.2.26)

where in the last passage we used both the integral equations (7.2.12), (7.2.23). This
concludes the proof. ■

Remark 7.2.13. The main ideas in the construction of the Riemann-Hilbert problem 7.2.6
and the proofs of the theorems for its solution have been already developed in [22], and they
are indeed due to the work of Thomas Bothner.

From the construction of the integral representation of X(ζ) and its inverse given in
Theorem 7.2.10 and Corollary 7.2.11 one can deduce a relation among the multiplication
operators on H1 called Ni(ζ),Mi(ζ) for i = 1, 2, the integral operators Li(ζ), Ki(ζ) for
i = 1, 2 and the solution X(ζ) of the Riemann-Hilbert problem 7.2.6. The derivation of a
Lax pair from the solution X(ζ), that will be treated in the following section, completely
relies on this relation. In order to express it in a compact form, we define the following
vector-valued operators on H2

N(ζ) :=
[︂
N1(ζ), N2(ζ)

]︂⊤
, M(ζ) :=

[︂
M1(ζ),M2(ζ)

]︂⊤
, L(ζ) :=

[︂
L1(ζ), L2(ζ)

]︂
,

K(ζ) :=
[︂
K1(ζ), K2(ζ)

]︂
.

(7.2.27)

Corollary 7.2.14. For every ζ ∈ Σ, independently on the choice of the boundary values of
X(ζ) we have that

N(ζ) = X(ζ)M(ζ), L(ζ) = K(ζ)(X(ζ))−1. (7.2.28)

Proof. Here we are going to prove only the first equation, since it is the only one that is
actually needed in the derivation of the Lax pair. The second one is obtained in a similar
way and we refer to the proof of Corollary 4.11 in [24] for the details.
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Recall that we proved in the last passages of proof of Theorem 7.2.10 the following identity

X−(ζ)G(ζ) = X−(ζ) + 2πiλ 1
2

⎡⎣N1(ζ) ⊗K1(ζ) N1(ζ) ⊗K2(ζ)
N2(ζ) ⊗K1(ζ) N2(ζ) ⊗K2(ζ)

⎤⎦ . (7.2.29)

On the other hand, since G(ζ) is invertible on H2 with inverse

(︂
G(ζ)

)︂−1
= I2 − 2πiλ 1

2

⎡⎣M1(ζ) ⊗K1(ζ) M1(ζ) ⊗K2(ζ)
M2(ζ) ⊗K1(ζ) M2(ζ) ⊗K2(ζ)

⎤⎦ , ζ ∈ Σ, (7.2.30)

we can then compute in a similar way the quantity X+(ζ)
(︂
G(ζ)

)︂−1
and it follows that

X+(ζ)
(︂
G(ζ)

)︂−1
= X+(ζ) − 2πiλ 1

2

⎡⎣N1(ζ) ⊗K1(ζ) N1(ζ) ⊗K2(ζ)
N2(ζ) ⊗K1(ζ) N2(ζ) ⊗K2(ζ)

⎤⎦ . (7.2.31)

Finally, combining (7.2.29), (7.2.31), the definitions of G(ζ) and its inverse yields

X±(ζ)
⎡⎣M1(ζ) ⊗K1(ζ) M1(ζ) ⊗K2(ζ)
M2(ζ) ⊗K1(ζ) M2(ζ) ⊗K2(ζ)

⎤⎦ =
⎡⎣N1(ζ) ⊗K1(ζ) N1(ζ) ⊗K2(ζ)
N2(ζ) ⊗K1(ζ) N2(ζ) ⊗K2(ζ)

⎤⎦ , ζ ∈ Σ,

(7.2.32)
from which N(ζ) = X(ζ)M(ζ) directly follows. ■

On the asymptotic expansion of the solution X(ζ) In this paragraph we are going
to discuss some technicalities about the asymptotic representation of X(ζ) and (X(ζ))−1.
In particular we prove two symmetry properties and an estimate on the operator norm of
the asymptotic coefficients. These results are technical, but they are crucial in order to
explicitly recover the Lax pair from relation (7.2.28). Nevertheless, while the statement of
the Riemann-Hilbert problem 7.2.6 and the results about its solution X(ζ) contained in the
previous section can be extended to an arbitrary operator of the same kind of Ct,n, the
statements in this paragraph strictly depend on the exact definition of Ct,n.
To start with, we recall for every k ≥ 1 the following formula

1
η − ζ

= −1
ζ

k−1∑︂
j=0

(︄
η

ζ

)︄j
+ ηk

ζk(η − ζ) for ζ ̸= η. (7.2.33)

By replacing this formula in the integral representation of the solution X(ζ) and its inverse,
for |ζ| → ∞, we obtain their asymptotic representation. In particular we have respectively

X(ζ) = I2−
k−1∑︂
j=1

Xj

ζj
+O(ζk), and (X(ζ))−1 = I2+

k−1∑︂
j=1

Yj

ζj
+O(ζk), for ζ ∈ C\Σ (7.2.34)
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with Xj = {Xml
j }m,l=1,2,Yj = {Y ml

j }m,l=1,2 that are integral operators on H2 not depending
any more on the complex parameter ζ, given by

Xml
j =

∫︂
Σ
Nm(η) ⊗Kl(η)ηj−1dη, Y ml

j =
∫︂

Σ
Mm(η) ⊗ Ll(η)ηj−1dη j ≥ 1, m, l ∈ {1, 2}.

(7.2.35)

Corollary 7.2.15. For every i, j ∈ {1, 2} we have on H1 the following identities∫︂
Σ
Mi(η) ⊗ Lj(η)dη =

∫︂
Σ
Ni(η) ⊗Kj(η)dη, (7.2.36)

and also∫︂
Σ
Mi(η) ⊗ Lj(η)ηdη =

∫︂
Σ
Ni(η) ⊗Kj(η)ηdη + λ

1
2

(︃∫︂
Σ
Ni(η) ⊗Kj(η)dη

)︃2
. (7.2.37)

Proof. During the proof of Corollary 7.2.11 we proved the following identity

λ
1
2

∫︂
Σ

(︂
X(η) − Y(η)

)︂ dη
η − ζ

− λ
∫︂

Σ

∫︂
Σ

X(η1)Y(η2)
dη1

η1 − ζ

dη2

η2 − ζ
= 0, ζ /∈ Σ. (7.2.38)

Replacing in both terms formula (7.2.33) for k = 2, and collecting the powers 1, 2 of ζ−1 as
|ζ| → ∞ gives exactly the two identity stated. ■

Equivalently the asymptotic coefficients of X(ζ) and (X(ζ))−1 are related in the following
way

Y ml
1 = Xml

1 , Y ml
2 = Xml

2 +
(︂
Xml

1

)︂2
, m, l ∈ {1, 2}. (7.2.39)

Remark 7.2.16. One could in principle replace formula (7.2.33) for k > 2 and obtain
more complicated relations for the higher order asymptotic coefficients Xml

i , Y ml
j . But for

our future scopes the two relations above are sufficient.

We are now going to prove another important symmetry relation, this time at the level
of the kernels of some operators on H1. In particular, we are going to consider the operators
filling the off-diagonal entries of the first asymptotic coefficient of X(ζ), and we denote them
as follows

U := λ
1
2

∫︂
Σ
N1(η) ⊗K2(η)dη = X12

1 , V := λ
1
2

∫︂
Σ
N2(η) ⊗K1(η)dη = X21

1 . (7.2.40)

Proposition 7.2.17. For every (t, λ, n) ∈ R×D1(0) ×N and for every (x, y) ∈ R2, we have
that

U(x, y) = V (y, x). (7.2.41)

In order to prove this statement, we need to review some of the properties of the operator
Ct,n, defined in (7.1.32), (7.1.33). Recall that the operator Ct,n on L2(Σ) is defined as the
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sum of two operators on the same space acting with the following kernels

(ζ − η)Aext
t,n (ζ, η) =

∫︂
R
k1(ζ|z)m1(η|z)dσ(z), (ξ − η)Bext

n (ξ, η) =
∫︂
R
k2(ξ|z)m2(η|z)dσ(z).

(7.2.42)
These operators are both nilpotent on L2(Σ), thanks to equation (7.1.33), as proved in
Lemma 7.1.10. Also, thanks to the symmetry Γβ = Γα and to the fact that λ → ψn(λ, ·) is
odd, we have that Bext

n (−ξ,−η) = Bext
n (η, ξ) for every (ξ, η) ∈ Γα × Γβ and Aext

t,n (−η,−ζ) =
Aext
t,n (ζ, η) for every (η, ζ) ∈ Γβ × Γα. Using the nilpotency of the operators Aext

t,n ,Bext
n the

powers of the operator Ct,n are computed as

Ck
t,n =

⎧⎪⎨⎪⎩
(Aext

t,nBext
n )mAext

t,n + (BextAext
t,n )mBext, k = 2m+ 1

(Aext
t,nBext)m + (BextAext

t,n )m, k = 2m
. (7.2.43)

Finally, using the properties of the kernels of At,n,Bn we conclude that

C2m+1
t,n (−ξ,−η) = 0, C2m

t,n (−ξ,−η) = C2m
t,n (η, ξ), for any (ξ, η) ∈ Γα × Γα, (7.2.44)

thus for any k ∈ N we have that Ck
t,n(−ξ,−η) = Ck

t,n(η, ξ), for every (ξ, η) ∈ Γα × Γα.
Having this property of the operator Ct,n in mind, we can finally give the proof of the above
proposition.

Proof. In order to prove the proposition, we start by computing the left hand side of equation
(7.2.41).

U(x, y) = λ
1
2

∫︂
Σ

(︂
N1(η) ⊗K2(η)

)︂
(x, y) dη =

∫︂
Σ
n1(η|x)k2(η|y) dη

= 1
2π

∫︂
Γβ

[︄∫︂
Γβ

(I − λ
1
2Ct,n)−1(ξ, η) e− i

2ψn(ξ,2t+2x) dξ
]︄

e− i
2ψn(η,0) dη

= 1
2π

∫︂
Γα

[︃∫︂
Γα

(I − λ
1
2Ct,n)−1(−ξ,−η) e i

2ψn(ξ,2t+2x) dξ
]︃

e i
2ψn(η,0) dη,

where we used equations (7.1.33), (7.2.12) and the conjugation symmetry Γβ = Γα. Now, by
rewriting the operator (I − λ

1
2Ct,n)−1 with its Neumann series expansion, and by using that

for all k ∈ N Ck
t,n(−ξ,−η) = Ck

t,n(η, ξ) for every (ξ, η) ∈ Γα × Γα we can conclude that

U(x, y) = 1
2π

∫︂
Γα

[︃∫︂
Γα

(I − λ
1
2Ct,n|L2(Σ))−1(η, ξ) e i

2ψn(ξ,2t+2x) dξ
]︃

e i
2ψn(η,0) dη

=
∫︂

Σ
ℓ1(η|x)m2(η|y) dη =

∫︂
Σ

(︂
M2(η) ⊗ L1(η)

)︂
(y, x) =

∫︂
Σ

(︂
N2(η) ⊗K1(η)

)︂
(y, x) dη,

(7.2.45)
where in the last passages we used the integral equation (7.2.23) and the symmetry condition
(7.2.36). ■

The last technical property of the asymptotic coefficients of the solution X(ζ) is given in
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the following statement.

Corollary 7.2.18. Let i, j ∈ {1, 2} and m ∈ Z≥0. Then∫︂
Σ
Ni(η) ⊗Kj(η) ηm dη → 0 and

∫︂
Σ
Mi(η) ⊗ Lj(η) ηm dη → 0 (7.2.46)

exponentially fast as t → +∞ in operator norm on H1.

For the proof, we refer to the proof of Corollary 4.14 in [24].
The machinery of operator-valued Riemann-Hilbert problem 7.2.6 associated to the

operator Ct,n can then be used to study properties of Dn(t, λ), and this is what we are
going to do. Let summarise what we have proved until now: the unique solution of the
Riemann-Hilbert problem 7.2.6 is denoted by X(ζ), ζ ∈ C and it is an integral operator
acting on the space H2 with kernel being in the functional space L2(R2, dσ ⊗ dσ;C2×2).
Moreover, X(ζ) admits the integral representation (7.2.11) for every ζ /∈ Σ, with continuos
boundary values from both sides of Σ. Finally, from Corollary 7.2.14, this solution X(ζ)
satisfies for every ζ ∈ Σ and independently on the choice of its boundary value, the following
identity

N(ζ) = X(ζ)M(ζ), (7.2.47)

with N(ζ),M(ζ) some vector-valued multiplication operators on H2, defined in (7.2.27).
This equation above, together with all the other properties of the solution X(ζ) of Riemann-
Hilbert problem 7.2.6 will be largely used in the following section, in order to deduce a Lax
pair.

7.3 The Lax pair for an operator-valued Painlevé II
hierarchy

The main ingredient, in order to deduce the Lax pair, is the relation between
N(ζ),M(ζ),X(ζ) in (7.2.47). We recall the definition of the vector-valued operators
M(ζ),N(ζ)

N(ζ) :=
[︂
N1(ζ), N2(ζ)

]︂⊤
, M(ζ) :=

[︂
M1(ζ),M2(ζ)

]︂⊤
,

where Mi(ζ), Ni(ζ) are multiplication operators on H1, that multiply respectively by the
functions mi(ζ|x) defined in (7.1.33) and ni(ζ|x) defined through the integral equation
(7.2.12). Given that, we can also interpret these operators Mi, Ni as integral operators
on H1 with distributional kernels given by

mi(ζ|x) ↦→ mi(ζ|x, y) :=mi(ζ|x)δ(x− y)(w′(y))−1,

ni(ζ|x) ↦→ ni(ζ|x, y) :=ni(ζ|x)δ(x− y)(w′(y))−1,
(7.3.1)

for any (x, y) ∈ R2.
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Remark 7.3.1. We recall that by definition,∫︂ ∞

−∞
δ(x− y)(w′(y))−1f(y) dσ(y) := f(x), f ∈ H1,

so that (Mif)(x) = mi(ζ|x)f(x) and (Nif)(x) = ni(ζ|x)f(x) for any f ∈ H1.

The aim is to prove that the vector-valued operator N(ζ) satisfies a couple of operator-
valued differential equations w.r.t. the complex parameter ζ and the real parameter t, by
using relation (7.2.47). Thus we are going to need the computation of the derivative w.r.t
ζ and t of M(ζ), written below. Recalling the definition of the functions mi(ζ|x) given in
(7.1.33), we find the kernel identity

∂

∂ζ
M(ζ|x, y) =

⎡⎣−i(1
2ζ

2n + t+ x) 0
0 i

2ζ
2n

⎤⎦M(ζ|x, y), (ζ, x, y) ∈ Σ × R2,

or equivalently the operator identity

∂

∂ζ
M(ζ) =

(︂
ζ2nA0 +ˆ︂A2n

)︂
M(ζ), ζ ∈ Σ, (7.3.2)

where the operators A0,ˆ︂A2n : H2 → H2 are ζ-independent and have kernels

A0(x, y) := δ(x− y)1
2

⎡⎣−i 0
0 i

⎤⎦ (︂w′(y)
)︂−1

, ˆ︂A2n(x, y) := δ(x− y)
⎡⎣−i(t+ x) 0

0 0

⎤⎦ (︂w′(y)
)︂−1

.

(7.3.3)
Similarly,

∂

∂t
M(ζ) =

(︂
ζB0

)︂
M(ζ), ζ ∈ Σ, (7.3.4)

where B0 : H2 → H2 has kernel

B0(x, y) := δ(x− y)
⎡⎣−i 0

0 0

⎤⎦ (︂w′(y)
)︂−1

. (7.3.5)

With this in mind, we now proceed through the following steps
1. we first prove that N(ζ) solves linear differential equations w.r.t. both ζ and t with

operator-valued coefficients A(ζ), B(ζ) that are analytic operator-valued functions in
ζ;

2. we prove then that A(ζ), B(ζ) are actually polynomials in ζ of degree 2n and 1 with
operator-valued coefficients;

3. by exploiting the compatibility condition of the system for N(ζ), we prove that all the
coefficients of the operator-valued polynomials A(ζ), B(ζ) are determined in terms of
U, V the integral operators on H1 defined in (7.2.40) and their t-derivatives;
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4. we finally conclude that the system of differential equations for N(ζ) is a Lax pair for
a coupled operator-valued PII hierarchy involving the operators U and V.

Proposition 7.3.2. There exist (t, λ, n)-dependent, analytic in ζ ∈ C integral operators
A(ζ),B(ζ) on H2 such that for every ζ ∈ Σ and (t, λ, n) ∈ R × D1(0) × N,

∂N
∂ζ

(ζ) = A(ζ)N(ζ), ∂N
∂t

(ζ) = B(ζ)N(ζ). (7.3.6)

Proof. We ζ-differentiate the first identity in (7.2.47)

∂N
∂ζ

(ζ) =
(︄
∂X
∂ζ

(ζ)
(︂
X(ζ)

)︂−1
+ X(ζ)

(︂
ζ2nA0 +ˆ︂A2n

)︂(︂
X(ζ)

)︂−1
)︄

=:A(ζ)

N(ζ). (7.3.7)

Here, A(ζ) is an integral operator acting on H2 by Theorem 7.2.10, Corollary 7.2.11, and
A(ζ) is analytic for ζ ∈ C \ Σ with continuous boundary values A±(ζ) on Σ by the same
reasoning. Recalling (7.2.3) we then compute on Σ,

A+(ζ) =
[︄
∂X−

∂ζ
(ζ)G(ζ)+ X−(ζ)∂G

∂ζ
(ζ)
]︄(︂

G(ζ)
)︂−1(︂

X−(ζ)
)︂−1

+ X−(ζ)G(ζ)
(︂
ζ2nA0 +ˆ︂A2n

)︂(︂
G(ζ)

)︂−1(︂
X−(ζ)

)︂−1
, (7.3.8)

and with (7.2.2),(7.3.3) we derive for ζ ∈ Σ,

∂G
∂ζ

(ζ|x, y) =
∫︂ ∞

−∞

{︃(︂
ζ2nA0(x, z)+ˆ︂A2n(x, z)

)︂
G0(ζ|z, y)−G0(ζ|x, z)

(︂
ζ2nA0(z, y)+ˆ︂A2n(z, y)

)︂}︃
dσ(z).

Here we abbreviate, as in the definition of G(ζ) given in (7.2.2), G(ζ) = I2 + G0(ζ). Notice
that the last kernel identity is equivalent to the operator commutator identity

∂G
∂ζ

(ζ) =
[︂
ζ2nA0 +ˆ︂A2n,G(ζ)

]︂
∈ I(H2), ζ ∈ Σ. (7.3.9)

Inserting (7.3.9) into (7.3.8) we find at once

A+(ζ) = ∂X−

∂ζ
(ζ)
(︂
X−(ζ)

)︂−1
+ X−(ζ)

(︂
ζ2nA0 +ˆ︂A2n

)︂(︂
X−(ζ)

)︂−1
= A−(ζ), ζ ∈ Σ,

i.e. A(ζ) extends analytically across Σ. In turn, A(ζ) is analytic for every ζ ∈ C given
that (x, y) ↦→ A(ζ|x, y) is in L2(R2, dσ ⊗ dσ;C2×2) for every ζ ∈ C by construction. This
proves our first identity and the reasoning for the second one is analogous: first differentiate
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(7.2.28) using (7.3.4),

∂N
∂t

(ζ) =
(︄
∂X
∂t

(ζ)
(︂
X(ζ)

)︂−1
+ X(ζ)

(︂
ζB0

)︂(︂
X(ζ)

)︂−1
)︄

=:B(ζ)

N(ζ). (7.3.10)

Since B(ζ) is an integral operator on H2 and B(ζ) is analytic for ζ ∈ C \ Σ with continuous
boundary values B±(ζ) on Σ, again from Theorem 7.2.10 and Corollary 7.2.11, we simply
compute for ζ ∈ Σ

B+(ζ) =
[︄
∂X−

∂t
G(ζ) + X−(ζ)∂G

∂t
(ζ)
]︄ (︂

G(ζ)
)︂−1(︂

X−(ζ)
)︂−1

+X−(ζ)G(ζ)
(︂
ζB0

)︂(︂
G(ζ)

)︂−1(︂
X−(ζ)

)︂−1
.

(7.3.11)
But from (7.2.3), (7.3.5),

∂G
∂t

(ζ|x, y) =
∫︂ ∞

−∞

{︃(︂
ζB0(x, z)

)︂
G0(ζ|z, y) − G0(ζ|x, z)

(︂
ζB0(z, y)

)︂}︃
dσ(z),

leading to the following operator commutator identity

∂G
∂t

(ζ) =
[︂
ζB0,G(ζ)

]︂
∈ I(H2), ζ ∈ Σ.

Once substituted back into (7.3.11) we find at once B+(ζ) = B−(ζ) for ζ ∈ Σ, i.e. B(ζ) is
analytic for ζ ∈ C. This concludes our proof. ■

The next step is to prove that the coefficient operators A(ζ),B(ζ) introduced in Proposition
7.3.2 are actually polynomials in ζ and to express their coefficients in terms of quantities
related to the solution of Riemann-Hilbert problem 7.2.6.

Proposition 7.3.3. We have

B(ζ) = ζB0 + B1, A(ζ) = ζ2nA0 +
2n∑︂
k=1

Akζ
2n−k +ˆ︂A2n, (7.3.12)

where Bj : H2 → H2 are the ζ-independent integral operators with kernels written in (7.3.5)
and (7.3.13) below. Likewise, Aj : H2 → H2 are ζ-independent, the kernels of A0 and ˆ︂A2n

are written in (7.3.3) and the entries of Ak are polynomials in the asymptotic coefficients of
X(ζ) introduced in (7.2.35), namely

∫︁
Σ Ni(η) ⊗ Kj(η)ηmdη and

∫︁
Σ Mi(η) ⊗ Lj(η)ηmdη with

m ∈ Z≥0, i, j ∈ {1, 2}.

Proof. Recall the definition of the operator-valued function A(ζ),B(ζ) given during the
previous proof. The main idea is to replace in them the asymptotic representations of X(ζ)
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and X(ζ)−1 that we gave in equations (7.2.34), (7.2.35) for k = 2n. In particular we have

X(ζ) = I2 − λ
1
2

2n∑︂
k=1

1
ζk

∫︂
Σ

⎡⎣N1(η) ⊗K1(η) N1(η) ⊗K2(η)
N2(η) ⊗K1(η) N2(η) ⊗K2(η)

⎤⎦ ηk−1 dη + O(ζ−2n−1) ζ /∈ Σ

and

(︂
X(ζ)

)︂−1
= I2+λ

1
2

2n∑︂
k=1

1
ζk

∫︂
Σ

⎡⎣M1(η) ⊗ L1(η) M1(η) ⊗ L2(η)
M2(η) ⊗ L1(η) M2(η) ⊗ L2(η)

⎤⎦ ηk−1 dη+O(ζ−2n−1), ζ /∈ Σ.

Replacing these formulae in the definition of B(ζ) given in (7.3.10) and applying the
generalized Liouville theorem, we conclude that

B(ζ) = ζB0 + B1, ζ ∈ C,

with B0 the integral operator on H2 with distributional kernel (7.3.5) and B1 the integral
operator on H2 with kernel B1(x, y) =

[︂
Bij

1 (x, y)
]︂2
i,j=1

and

B11
1 (x, y) = B22

1 (x, y) = 0, B12
1 (x, y) = −iU(x, y), B21

1 (x, y) = iV (x, y), (7.3.13)

where we U(x, y) and V (x, y) are the kernels of U = λ
1
2
∫︁

Σ N1(η) ⊗ K2(η)dη and V =
λ

1
2
∫︁

Σ N2(η) ⊗ K1(η)dη, as defined in (7.2.40). In the same way, we replace the asymptotic
representations of X(ζ), (X(ζ))−1 in the definition of A(ζ) given in (7.3.7) and we apply the
generalized Liouville theorem, concluding that

A(ζ) = ζ2nA0 +
2n∑︂
k=1

Akζ
2n−k +ˆ︂A2n, ζ ∈ C

with A0, Â2n operators on H2 with kernels as in (7.3.3). ■

This last result does not determine explicitly the coefficients Ak for k = 1, . . . , 2n.
Nevertheless, by looking at the compatibility condition of the system (7.3.6), namely the
operator identity

A(ζ)B(ζ) − B(ζ)A(ζ) = ∂B
∂ζ

(ζ) − ∂A
∂t

(ζ), ζ ∈ C, (7.3.14)

we can see that the entries of Ak for any k are recursively determined in terms of the
operators U, V and their t-derivatives. This first result is resumed in the following lemma.

Lemma 7.3.4. Recall U, V : H1 → H1 in (7.2.40) and introduce the integral operator
Mt : H1 → H1 with distributional kernel Mt(x, y) := (t+x)δ(x− y)(w′(y))−1. Then (7.3.14)
is equivalent to the operator-valued system (7.3.15), (7.3.16) and (7.3.17) written out below
where Aijk are the entries of Ak in (7.3.12).
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Proof. The polynomial equation (7.3.14) yields at once (given that B0 and A0 as well as B0

and ˆ︂A2n commute)

2n∑︂
k=1

∂Ak

∂t
ζ2n−k =

[︂
B1,A2n +ˆ︂A2n

]︂
+

2n−1∑︂
k=0

(︃[︂
B0,Ak+1

]︂
+
[︂
B1,Ak

]︂)︃
ζ2n−k, ζ ∈ C,

and therefore, after matching powers in ζ, first to order O(ζ2n),

A12
1 = −iU, A21

1 = iV, (7.3.15)

followed by all orders O(ζ2n−k) for k = 1, . . . , 2n− 1,
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂A11

k

∂t
= −i(UA21

k + A12
k V ), ∂A12

k

∂t
= −i(A12

k+1 + UA22
k − A11

k U)

∂A22
k

∂t
= i(V A12

k + A21
k U), ∂A21

k

∂t
= i(A21

k+1 + V A11
k − A22

k V )
, (7.3.16)

and finally the order O(ζ0),
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂A11

2n
∂t

= −i(UA21
2n + A12

2nV ), ∂A12
2n

∂t
= −i(UA22

2n − A11
2nU + iMtU)

∂A22
2n

∂t
= i(V A12

2n + A21
2nU), ∂A21

2n
∂t

= i(V A11
2n − A22

2nV − iVMt)
. (7.3.17)

This completes our proof of the Lemma. ■

Notice that equations (7.3.16) together with the initial condition (7.3.15), allows to
compute recursively the entries Aijk for k = 1, . . . , 2n (or 2n−1 for the diagonal entries). For
each k, first t-integrating the equations for the diagonal entries Aiik from the equations on
the left and then using them to compute the off-diagonal entries Aijk+1 with i ̸= j from the
equations on the right of (7.3.16). The first system in (7.3.17) is used to determine the last
diagonal entries Aii2n. Instead, the second system in (7.3.17) gives a further condition that
Aij2n, U, V should satisfy.
Remark 7.3.5. As explained above, the diagonal entries Aiik are obtained by t-integrating
some equations. The constant of integration in this procedure is fixed to zero thanks to
Lemma 7.3.4 and Corollary 7.2.18. The fact that the integration gives always local terms is
shown through the following lemma, for which the proof relies on a technique used in [109].

Lemma 7.3.6. We have on H1 for k = 1, 2, . . . , 2n,

A11
k = −i

k−1∑︂
j=1

(︂
A11
j A

11
k−j + A12

j A
21
k−j

)︂
and A22

k = i
k−1∑︂
j=1

(︂
A22
j A

22
k−j + A21

j A
12
k−j

)︂
,

and thus in particular A11
1 = A22

1 = 0.

116



Proof. We start by computing the composition operator C(ζ) = A(ζ)A(ζ) on H2 from
(7.3.12),

C(ζ) =
4n∑︂
k=0

(︄
k∑︂
j=0

AjAk−j

)︄
ζ4n−k +

2n∑︂
k=0

(︂
Ak
ˆ︂A2n +ˆ︂A2nAk

)︂
ζ2n−k +ˆ︂A2n

ˆ︂A2n ≡
4n∑︂
k=0

Ckζ
4n−k,

(7.3.18)
and then use the compatibility constraint (7.3.14),

∂C
∂t

(ζ) =
{︂
A(ζ),B0

}︂
+
[︂
B(ζ),C(ζ)

]︂
, (7.3.19)

where the curly brackets indicate the anticommutator. Matching powers O(ζ4n−k) for k =
0, . . . , 2n− 1 in (7.3.19) while using (7.3.18) and (7.3.12) yields at once
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂C11

k

∂t
= −i(UC21

k + C12
k V ), ∂C12

k

∂t
= −i(C12

k+1 + UC22
k − C11

k U)

∂C22
k

∂t
= i(V C12

k + C21
k U), ∂C21

k

∂t
= i(C21

k+1 + V C11
k − C22

k V )
, k = 0, . . . , 2n− 1,

(7.3.20)
and

∂C11
2n

∂t
= −i(B11

0 + UC21
2n + C12

2nV ), ∂C22
2n

∂t
= i(V C12

2n + C21
2nU), (7.3.21)

for some of the coefficient operator entries of Ck with k = 0, 1, . . . , 2n. In turn, system
(7.3.20) shows that the operators Ck are trivial for k = 1, . . . , 2n− 1 and

C12
2n = C21

2n = C22
2n = 0.

Indeed, using (7.3.15),(7.3.16) and Corollary 7.2.18 we find that A11
1 = A22

1 = 0 on H1 and
so by direct computation from (7.3.20),

C1 =
1∑︂
j=0

AjA1−j = 0 on H2,

where we just replaced equations (7.3.3) and (7.3.17). Hence, proceeding inductively and
assuming Cj = 0 for all j = 1, . . . , k with arbitrary k ∈ {1, . . . , 2n − 2} we first use the
off-diagonal equations in (7.3.20) to conclude that

C12
j+1 = i

∂C12
j

∂t
− UC22

j + C11
j U = 0, C21

j+1 = −i
∂C21

j

∂t
− V C11

j + C22
j V = 0,

by induction hypothesis. Hence, again by (7.3.20), this time through the diagonal equations,

∂C11
j+1

∂t
= −i(UC21

j + C12
j V ) = 0,

∂C22
j+1

∂t
= i(V C12

j + C21
j U) = 0,
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yielding C11
j+1 = C22

j+1 = 0 on H1 by Corollary 7.2.18 and Proposition 7.3.3 since Ck =∑︁k
j=0 AjAk−j for k = 1, . . . , 2n−1 by (7.3.18) vanishes uniformly as t → +∞. Moving ahead

the proclaimed vanishing of C12
2n, C

21
2n and C22

2n follows now from the off-diagonal equations in
(7.3.20) as well as the second equation in (7.3.21). We are now prepared to prove the stated
formulæ for A11

k and A22
k . First, from (7.3.18),

C2n =
2n−1∑︂
j=1

AjA2n−j + A0(A2n +ˆ︂A2n) + (A2n +ˆ︂A2n)A0,

Ck =
k−1∑︂
j=1

AjAk−j + A0Ak + AkA0, k = 2, . . . , 2n− 1,

so reading off (22)-entries, with the aforementioned fact that C22
k = 0 for k = 1, . . . , 2n and

with (7.3.3),

0 = C22
k =

k−1∑︂
j=1

(︂
A22
j A

22
k−j + A21

j A
12
k−j

)︂
+ iA22

k , k = 2, . . . , 2n. (7.3.22)

Combined with the (22)-equation in (7.3.16), identity (7.3.15) and again Corollary 7.2.18,
(7.3.22) yields the desired equation for A22

k , k = 1, . . . , 2n. By similar logic

0 = C11
k =

k−1∑︂
j=1

(︂
A11
j A

11
k−j + A12

j A
21
k−j

)︂
− iA11

k , k = 2, . . . , 2n− 1; ∂A11
1

∂t
= 0

which confirms the stated equation for A11
k provided k = 1, . . . , 2n − 1 after another

application of Corollary 7.2.18. The A11
2n formula has to be treated slightly different since by

(7.3.21), after our above workings,

∂C11
2n

∂t
= −iB11

0 ,

and in addition
C11

2n =
2n−1∑︂
j=1

(︂
A11
j A

11
2n−j + A12

j A
21
2n−j

)︂
− iA11

2n − i ˆ︁A11
2n.

However ∂
∂t
ˆ︁A11

2n = B11
0 , so the last two identities yield

0 = ∂

∂t

⎡⎣2n−1∑︂
j=1

(︂
A11
j A

11
2n−j + A12

j A
21
2n−j

)︂
− iA11

2n

⎤⎦
and hence after t-integration and an application of Corollary 7.2.18 indeed the stated identity
for A11

2n. This concludes our proof of the Lemma. ■

We can finally resume all the results found until now in the following corollary, that
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gives a recursive recipe to find all the coefficients Ak for k = 1, . . . , 2n in terms of U, V and
their t-derivatives and to write in a compact fashion the last two differential equations of
the compatibility condition at the level ζ0.

Corollary 7.3.7. On H2,

A1 =
⎡⎣ 0 −iU
iV 0

⎤⎦ , Ak+1 =
⎡⎣A11

k+1 A12
k+1

A21
k+1 A22

k+1

⎤⎦ , k = 1, . . . , 2n− 1, (7.3.23)

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A12
k+1 = i∂A

12
k

∂t
− UA22

k + A11
k V

A21
k+1 = −i∂A

21
k

∂t
− V A11

k + A22
k V

,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
A11
k+1 = −i

k∑︂
j=1

(A11
j A

11
k+1−j + A12

j A
21
k+1−j)

A22
k+1 = i

k∑︂
j=1

(A22
j A

22
k+1−j + A21

j A
12
k+1−j)

.

(7.3.24)
Moreover,

∂A12
2n

∂t
= −i(UA22

2n − A11
2nU + iMtU), ∂A21

2n
∂t

= i(V A11
2n − A22

2nV − iVMt), (7.3.25)

and (7.3.23),(7.3.24),(7.3.25) combined together yield the following (2n)-th order coupled,
operator-valued system for U and V ,

D2n
[︄
−iU

iV

]︄
=
[︄

iMtU

−iVMt

]︄
, D

⎡⎣A
B

⎤⎦ :=
⎡⎣ i∂A

∂t
− iUD−1

t (V A+BU) − iD−1
t (UB + AV )U

−i∂B
∂t

+ iV D−1
t (UB + AV ) + iD−1

t (V A+BU)V

⎤⎦
(7.3.26)

where D acts entrywise on operators A and B on H1 and D−1
t denotes the formal t-

antiderivative.

Proof. The only thing that is actually left to prove is that equations (7.3.25) can be rewritten
by using equations (7.3.24) and the operator D as (7.3.26). To see this, we first rewrite the
recursion for the off-diagonal entries of Ak by using the operator D. By (7.3.16) and (7.3.24),

D

⎡⎣A12
k

A21
k

⎤⎦ =
⎡⎣A12

k+1

A21
k+1

⎤⎦ , k = 1, . . . , 2n− 1 (7.3.27)

since D−1
t (V A12

k +A21
k U) = −iA22

k and D−1
t (UA21

k +A12
k V ) = iA11

k . Likewise, by (7.3.25) and
(7.3.15),

D

⎡⎣A12
2n

A21
2n

⎤⎦ =
⎡⎣ iMtU

−iVMt

⎤⎦ , (7.3.28)

where we use D−1
t (V A12

2n +A21
2nU) = −iA22

2n and D−1
t (UA21

2n +A12
2nV ) = iA11

2n. Hence, iterating
(7.3.27),(7.3.28) with the initial data (7.3.23) we arrive at the desired system (7.3.26) which
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does not contain any antiderivative terms because of the iterative formulæ for A11
k and A22

k

written in (7.3.24). ■

In this section we proved that the system solved by N(ζ) given in (7.3.6) can be seen
as the Lax pair for a coupled system of differential equations of order 2n for the operators
U, V . These equations can be seen as a noncommutative (operator-valued) coupled analogue
of the Painlevé II hierarchy. We write the equations for the first values of n in the example
below.

Example 7.3.8. For n = 1 the coupled system of differential equations for the operators
U, V on H1 given in (7.3.26) reads as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2U
∂t2

= (2UV +Mt)U,

∂2V
∂t2

= V (2UV +Mt).

While for n = 2 it reads as⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂4U
∂t4

= −6UV UV U + 4∂2U
∂t2
V U + 4UV ∂2U

∂t2
+ 2U ∂2V

∂t2
U + 2∂U

∂t
∂V
∂t
U + 2U ∂V

∂t
∂U
∂t

+ 6∂U
∂t
V ∂U

∂t
+MtU,

∂4V
∂t4

= −6V UV UV + 4∂2V
∂t2

UV + 4V U ∂2V
∂t2

+ 2V ∂2U
∂t2
V + 2∂V

∂t
∂U
∂t
V + 2V ∂U

∂t
∂V
∂t

+ 6∂V
∂t
U ∂V

∂t
+ VMt.

In order to see that the system (7.3.6) is actually the Lax pair for the integro-differential
Painlevé II hierarchy, we still have some work to do.

7.4 The derivation of the integro-differential Painlevé
II hierarchy

In this last section we are first going to show that the Lax pair (7.3.6) naturally encodes
the integro-differential Painlevé II hierarchy introduced at the beginning of the chapter in
(7.0.4). After that, we finally complete the proof of Theorem 7.0.7.
In order to recognize the integro-differential Painlevé II hierarchy behind the compatibility
condition (7.3.14), the idea is simply to look at the compatibility condition (7.3.14) at the
level of the kernels of the operators involved U, V,Aijk , instead of the operators themselves.
In doing so, we can prove a fundamental symmetry property of the kernels of the off-diagonal
operators Aijk .

Lemma 7.4.1. Let k ∈ {1, . . . , 2n}, then A12
k (x, y) and A21

k (y, x) are y-independent and we
have

A12
k (x, y) = (−1)kA21

k (y, x), (x, y) ∈ R2. (7.4.1)
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Proof. We have A12
1 (x, y) = −iU(x, y) and A21

1 (y, x) = iV (y, x) by (7.3.23). Using
Proposition 7.2.17, we thus obtain (7.4.1) for k = 1 and since

U(x, y) = λ
1
2

∫︂
Σ
n1(η|x)k2(η|y) dη,

the y-independence of A12
1 (x, y) directly follows from the definitions of the functions n1, k2,

see (7.1.33). But U(x, y) = V (y, x), so the y-independence of A21
1 (y, x) follows similarly.

Proceeding inductively, we assume that the claims have been proven for k ∈ {1, . . . ,m} and
some 1 ≤ m ≤ 2n− 1. Since by (7.3.27),

A12
k+1(x, y) = i∂A

12
k

∂t
(x, y) − i

∫︂
R
U(x, z)

∫︂ t∫︂
R

(︂
V (z, w)A12

k (w, y) + A21
k (z, w)U(w, y)

)︂
dσ(w)dt dσ(z)

− i
∫︂ t∫︂

R

∫︂
R

(︂
U(x, z)A21

k (z, w) + A12
k (x, z)V (z, w)

)︂
U(w, y) dσ(z)dσ(w)dt

we see that A12
k+1(x, y) is y-independent by the induction hypothesis and base case. Moreover,

using explicitly the induction hypothesis in the form A12
k (x, y) = (−1)kA21

k (y, x), we obtain

A12
k+1(x, y) = (−1)k+1

[︄
− i∂A

21
k

∂t
(y, x) + i

∫︂
R
U(x, z)

∫︂ t∫︂
R

(︂
V (z, w)A21

k (y, w) + A12
k (w, z)U(w, y)

)︂
×

(7.4.2)

× dσ(w)dt dσ(z) + i
∫︂ t∫︂

R

∫︂
R

(︂
U(x, z)A12

k (w, z) + A21
k (z, x)V (z, w)

)︂
U(w, y) dσ(z)dσ(w)dt

]︄
.

On the other hand, (7.3.27) also says

A21
k+1(x, y) = − i∂A

21
k

∂t
(x, y) + i

∫︂
R
V (x, z)

∫︂ t∫︂
R

(︂
U(z, w)A21

k (w, y) + A12
k (z, w)V (w, y)

)︂
dσ(w)dt dσ(z)

+ i
∫︂ t ∫︂

R

∫︂
R

(︂
V (x, z)A12

k (z, w) + A21
k (x, z)U(z, w)

)︂
V (w, y) dσ(w)dσ(z)dt,

and thus A21
k+1(x, y) is x-independent by the induction hypothesis and base case. Finally,

relabelling the integration variables z ↔ w in the last equality and using the induction base
case six times in the form U(x, y) = V (y, x) we see at once that with (7.4.2),

A21
k+1(x, y) = (−1)k+1A12

k+1(y, x), (x, y) ∈ R2.

■

This Lemma is the key to simplify the equations given from the compatibility condition
and resumed in Corollary 7.3.7. Indeed, by defining the following functions

u(t|x) := U(x, x) = U(x, y) = V (y, x) = V (x, x),
ak(t|x) := A12

k (x, x) = (−1)kA21
k (x, x),

(7.4.3)
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for all (t, x) ∈ R2, the recursion for the operators A12
k given in (7.3.16) becomes

ak+1(t|x) =

⎧⎪⎨⎪⎩
(Lu

+ak)(t|x), k ≡ 0 mod 2

(Lu
−ak)(t|x), k ≡ 1 mod 2

, k = 1, 2 . . . , 2n− 1; a1(t|x) := −iu(t|x)

(7.4.4)
where the recursion operators L±

u are given in Definition 7.0.3. Furthermore, the coupled
system of differential equations for U, V , that was given in (7.3.26), actually coincides with
a unique equation that is now rewritten as

− (t+ x)a1(t|x) = (Lu
+a2n)(t|x). (7.4.5)

Thus iterating backward the right hand side through (7.4.4) we get

−(t+ x)a1(t|x) =
(︂
(Lu

+Lu
−)na1

)︂
(t|x)

and replacing the initial condition for a1(t|x), the last equation of the compatibility condition
is exactly

(t+ x)u(t|x) = −
(︂
(Lu

+Lu
−)nu

)︂
(t|x)

that is the n-th member of the integro-differential Painlevé II hierarchy.
We are now ready to prove the formula that expresses the Fredholm determinant Dn(t, λ) in
terms of distinguished solution of the integro-differential Painlevé II hierarchy (7.0.4). We
are going to prove it in two steps: first we have this lemma.

Lemma 7.4.2. For every (t, λ, n) ∈ R × D1(0) × N,

∂

∂t
lnDn(t, λ) = −iλ 1

2 Tr
H1

∫︂
Σ
N1(ξ) ⊗K1(ξ) dξ,

followed by
∂2

∂t2
lnDn(t, λ) = − Tr

H1
(UV )

Proof. We start by computing the first t-derivative of the logarithm of Dn(t, λ). To do that,
we recall equation (7.1.31) and we apply the Jacobi formula

∂

∂t
lnDn(t, λ) = ∂

∂t
ln det(I − λ

1
2Ct,n|L2(Σ)) = −λ

1
2 Tr
L2(Σ)

[︄
(I − λ

1
2Ct,n|L2(Σ))−1 ∂

∂t
Ct,n

]︄
.

(7.4.6)
Then by using the definition of the operator Ct,n given in (7.1.32) we get the kernel derivative

∂

∂t
Ct,n(ξ, η) = i

2π

∫︂
R

e i
2 (ψn(ξ,2t+2z)−ψn(η,2t+2z))χΓα(ξ)χΓβ

(η) dσ(z) = i
∫︂
R
k1(ξ|z)m1(η|z) dσ(z),
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where in the last passage we just replaced (7.1.33). Hence back in (7.4.6),

∂

∂t
lnDn(t, λ) = −λ

1
2

∫︂
Σ

∫︂
Σ
(I − λ

1
2Ct,n)−1(η, ξ) ∂

∂t
Ct,n(ξ, η) dξ dη

= −iλ 1
2

∫︂
R

[︃∫︂
Σ

(︂
N1(ξ) ⊗K1(ξ)

)︂
(z, z) dξ

]︃
dσ(z) = −iλ 1

2 Tr
H1

∫︂
Σ
N1(ξ) ⊗K1(ξ) dξ,

where in the second passage we just used the integral equation (7.2.23). Thus the first
identity in the statement holds. We notice that in its right hand side we actually have a
multiple of the H1-trace of the (1, 1)-entry of the first asymptotic coefficient of the solution
of the Riemann-Hilbert problem 7.2.6 X(ζ). For the second identity in the statement we
need then the t-derivative of this quantity. This is obtained in a classical way, revisiting our
proof of Proposition 7.3.3 and explicitly computing the O(ζ−1) correction when inserting
the asymptotic representations of X(ζ) and (X(ζ))−1 into the defining equation of B(ζ) in
(7.3.10). The same O(ζ−1) correction has to vanish identically by generalized Liouville’s
theorem and this yields the operator commutator identity

(X1)t = [B0,X2] − X1[B0,X1],

where B0 is written in (7.3.5). Taking the entry (1, 1) of the above identity and using the
symmetries proved in Corollary 7.2.15 yields in particular

∂

∂t

(︃
λ

1
2

∫︂
Σ
N1(ξ) ⊗K1(ξ) dξ

)︃
= −iλ

∫︂
Σ

∫︂
Σ

(︂
N1(η) ⊗K2(η)

)︂(︂
N2(ξ) ⊗K1(ξ)

)︂
dη dξ = −iUV

where in the last passage we just split the double integral and recognize the definition of U, V
as in (7.2.40). Therefore the second identity holds once derived the first one and replaced
the above relation. ■

The last step essentially just require to actually compute the operator trace appearing
in the second equation of the above lemma and to compute the asymptotic behavior of the
solution u(t|x) of the n-th member of the integro-differential Painlevé II hierarchy (7.0.4).

Lemma 7.4.3. For every (t, λ, n) ∈ R × D1(0) × N,

Dn(t, λ) = exp
[︃
−
∫︂ ∞

t
(s− t)

(︃∫︂
R
u2(s|x)dσ(x)

)︃
ds
]︃
. (7.4.7)

where u(t|x) ≡ u(t|x;n, λ) solves the dynamical system (7.0.4) and it is such that u(t|x) ∼
λ

1
2 Ai2n+1(t+ x) as t → +∞, pointwise in x ∈ R.

Proof. By Lemma 7.4.2,

∂2

∂t2
lnDn(t, λ) = − Tr

H1
(UV ) = −

∫︂
R

∫︂
R
U(x, y)V (y, x) dσ(y) dσ(x) = −

∫︂
R

∫︂
R
U2(x, y) dσ(x)dσ(y)

= −
∫︂
R

∫︂
R
U2(x, x) dσ(x)dσ(y) = −

∫︂
R
u2(t|x) dσ(x), (7.4.8)
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where we used the symmetry condition given in Proposition 7.2.17, the definition of u(t|x)
and its y-independence and the fact that dσ is a probability measure. However,

u(t|x) = λ
1
2

∫︂
Σ
n1(η|x)k2(η|x) dη = λ

1
2

2π

∫︂
Γβ

e−iψn(η,t+x) dη + λ
∫︂

Σ

(︂
C∗
t,nm1(·|x)

)︂
(η)k2(η|x) dη

+ λ
1
2

∫︂
Σ

[︃
n1(η|x) −m1(η|x) − λ

1
2
(︂
C∗
t,nm1(·|x)

)︂
(η)
]︃
k2(η|x) dη,

so by using the integral representation of the n-th Airy function, indeed u(t|x) ∼ λ
1
2 Ai2n+1(t+

x) as t → +∞ once we estimate the two remaining integrals involving m1(·|x) as in our proof
of Corollary 7.2.18 (cfr. [24]). All together, (7.4.7) follows from (7.4.8) after integration since
u(t|x) ∼ λ

1
2 Ai2n+1(t + x) yields

∫︁
R u

2(t|x)dσ(x) → 0 exponentially fast as t → +∞ because
of the asymptotic properties of the n-th Airy function and of the weight function w. This
completes our proof of the Lemma. ■

Theorem 7.0.7 is finally proved.
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Chapter 8

Stokes manifolds and cluster algebras

In this last chapter we discuss some of the original results contained in the joint work with
Marco Bertola [15]. The aim of this work is to study the symplectic-Poisson structure of
certain Stokes manifolds defined as the monodromy manifolds of a linear system of ODEs
with polynomial (slN -valued) coefficient of generic degree. In particular, for the case N = 2
we found explicit log-canonical coordinates for the symplectic two from, and we studied
their relation with the emergent field of cluster algebras. The induced Poisson structure in
these coordinates turns out to be the linearization of the Flaschka-Newell Poisson structure,
defined almost 40 years ago in their paper [37], where the first concrete example of wild
character variety was introduced.
The adjective wild here is used to underline the difference with the classical character
varieties, involved in the study of the monodromy map for ODEs having only simple poles.
Indeed, the monodromy map connects the space of rational matrices, giving the coefficient of
a linear system of ODEs, to some representations of the fundamental group of the punctured
Riemann sphere. Looking at ODEs with only simple poles, this connection is explained
in terms of character varieties of the punctured Riemann sphere. Instead, if the ODEs
matrix coefficient has higher order poles, the Stokes phenomena makes the set of monodromy
data more complicated, thus complicating the studying of the monodromy map. The new
geometrical object arising in this study goes under the name of wild character variety. The
interest in its Poisson structure comes naturally from the following fact. On the side of the
ODEs, there is a well known Lie-Poisson structure defined on the space of coefficient matrices.
It seems natural to ask whether and how the monodromy map “transfers” this structure on
the relevant monodromy manifold. The pioneering works addressing this question were first
the already cited [37] and then the one of Ugaglia [107], who studied the case of rank N

ODEs with a simple pole at 0 and a pole at ∞ with Poincaré rank 2. Concerning the
general Fuchsian case, it was shown in [73] that the Lie-Poisson structure on the space of
coefficient matrices induces the Goldmann Poisson structure (the classical Poisson structure
on character varieties [49]) on the space of monodromy matrices. For what concerns the
irregular case instead, it was the series of papers of Boalch [17, 18, 19] that provided in very
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a general setting, the description of the Poisson-symplectic structure on the space of extended
monodromy data (and re-derived the cases studied by Flaschka-Newell and Ugaglia).
For us, the Stokes manifold of interest SK , is the following algebraic variety

SK =
{︄(︄

1 s1

0 1

)︄(︄
1 0
s2 1

)︄
. . .

(︄
1 s2K+1

0 1

)︄(︄
1 0

s2K+2 1

)︄
λσ3 = 1 with si ∈ C, λ ∈ C×

}︄
(8.0.1)

of complex dimension 2K, for every K ≥ 1. We proved in two different ways that SK is
indeed a symplectic manifold, with symplectic 2-form given by

WK := 1
2

2K+3∑︂
ℓ=1

Tr
(︄
H−1
ℓ dHℓ ∧ S−1

ℓ dSℓ
)︄
, Hℓ := S1 · · ·Sℓ, S2K+3 := e2iπL, (8.0.2)

where Sℓ, for ℓ = 1, . . . , 2K + 2 denote the upper and lower triangular matrices with unit
diagonal, appearing in equation (8.0.1), and e2iπL = λσ3 , for the rank 2 case. In one way,
we proved that the 2-form (8.0.2) has pull-back (via the monodromy map) that coincides
with the “universal symplectic structure” of Krichever and Phong [77], [76], (induced by
the Poisson-Lie structure on the space of coefficient matrices over its symplectic leafs) thus
providing that WK is symplectic. In the other one way we built, for the case of rank N = 2,
explicit coordinates yi, i = 1, . . . , 2K that parametrize the Stokes manifolds SK as (see
Lemma 8.2.5)

s1 = −y−2
1 , s2k+1 = −(1 + y2

2k+1)
∏︂

1≤j≤2k+1
y

(−1)j2
j , k = 1, . . . , K − 1, s2K+1 = −

∏︂
1≤j≤2K

y
(−1)j2
j ,

s2k = (1 + y2
2k)

∏︂
1≤j≤2k

y
(−1)j+12
j , k = 1, . . . , K, s2K+2 = y2

1

(︂
1 + y2

2

(︂
. . .
(︂
1 + y2

2K

)︂
. . .
)︂)︂ K∏︂

j=1
y−4

2j ,

λ = (−1)K
K∏︂
j=1

y2
2j.

As a byproduct the form WK is expressed in log-canonical form within these variables and
it is in particular non-degenerate. Moreover, its associated Poisson bracket (Lemma 8.2.7)
is described by this constant coefficient matrix (for the logarithms of the coordinates yi)

PK = 1
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 . . . 0
−1 0 1 0 0 . . . 0
0 −1 0 1 0 . . . 0
... . . . . . . . . . ...
... . . . . . . . . . ...
0 0 . . . −1 0 1
0 0 . . . 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8.0.3)
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The construction of the log-canonical variables yi is based on the choice of a certain
triangulation of a 2(K + 1) regular polygon, in a way similar to the one used for the
Grasmannian of 2-planes (in [46], Chapter II). The explicit computation of the 2-form WK

follows instead the techniques developed in the recent work [14], relying on the theory of
standard 2-forms associated to oriented graph with connection. The connection with cluster
algebras comes from the simple observation that the matrix PK is (up to a constant factor)
the matrix representing the simple quiver of type A2K (with prescribed orientation); this
means that the variables y2

j form a seed for the cluster algebra of type A2K . To complete the
picture we need to show that different choices of triangulations of the regular (2K + 2)–gon
yield parametrizations of the Stokes’ data that are obtained from the initial seed by applying
a suitable sequence of mutations, i.e. simple birational maps from one chart to another (see
the subsection 8.3.1). The appearance of cluster algebras in this kind of context is not
surprising: in the last decades the works of Fock and Goncharov [38] already shown the deep
connection between cluster algebras and the geometry of character varieties. Thus similar
connections should be expected to appear also in the context of wild character varieties.
Finally, the Flaschka-Newell Poisson bracket defined for the original monodromy parameters
describing SK , namely{︃

sj, sl

}︃
F N

= δj,l−1 − δj,1δl,2K+2

λ2 + (−1)j−l+1sjsl, j < l.{︃
sj, λ

}︃
F N

= (−1)jsjλ. (8.0.4)

is showed to coincide with the Poisson bracket described above in Theorem 8.4.3, under the
parametrization given in (8.0.3). All these results can be resumed in the following compact
statement

Theorem 8.0.1. The wild character variety of an sl2 polynomial connection of degree K

on the Riemann sphere is a cluster manifold of type A2K with one frozen variable. The
log–canonical Poisson (symplectic) structure on this cluster variety coincides with the push–
forward by the monodromy map of the Lie-Poisson structure.

The Chapter is organized as follows: in the first section we describe the symplectic
structure on the space of rational polynomial matrices, and we prove its relation with the
symplectic structure on the Stokes manifolds. In the second section we analyze the rank
2 case and we construct the log canonical coordinates for the symplectic 2-form on the
Stokes manifolds. In the third section we study the connection between these log-canonical
coordinates and cluster algebras. Finally the last section is devoted to recover the original
Flaschka-Newell Poisson structure from the linearized one in the coordinates yi for the Stokes
manifold.
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8.1 Symplectic structure on the Stokes matrices
Consider a polynomial ODE of the form

dΨ
dλ

= A(λ)Ψ, A(λ) :=
K∑︂
j=1

Ajλ
j. (8.1.1)

For the sake of this discussion we can consider the case of N × N matrices (without real
loss of generality, we consider the slN case with Tr(A(λ)) ≡ 0). Keeping in mind that all
the results can be extended to an arbitrary semisimple Lie algebra. We assume that AK
has simple eigenvalues (i.e. it is regular semisimple). Under this hypothesis, using Theorem
5.1.3, one can find a solution in the class of formal series of the form

Ψform(λ) = ˆ︁Y (λ)λ−LeT (λ), ˆ︁Y (λ) := G0

(︄
1 +

∑︂
j≥1

Yj
λj

)︄
∈ SLN [[λ−1]], (8.1.2)

where G0 is a chosen diagonalizing matrix for AK and L, T (λ) are diagonal traceless matrices.
In this case, the entries of L are the formal monodromy exponents and the matrix T is a
polynomial of the form

T (λ) = TK+1
λK+1

K + 1 + · · · + T1λ, Tj ∈ h, (8.1.3)

where h denotes the Cartan subalgebra of slN , namely diagonal traceless matrices. The
coefficients of T (λ) are the (higher formal) Birkhoff invariants. The matrix TK+1 is the
diagonal form of the leading coefficient AK , so that

AK = G0TK+1G
−1
0 . (8.1.4)

Poisson structure on the space of matrices A(λ). The Lie-Poisson structure on the
set of rational matrices can be expressed as (for a review see [6])

{A(λ) ⊗, A(µ)} =
[︄

Π
λ− µ

,
1
A(λ) +

2
A(µ)

]︄
(8.1.5)

where A1(λ) := A(λ) ⊗ 1, A2(µ) := 1 ⊗ A(µ) and Π : Cn ⊗ Cn → Cn ⊗ Cn is the tensor
effecting the flip:

Π(v ⊗ f) = f ⊗ v, v, f ∈ Cn. (8.1.6)

It can be explicitly written as Π = ∑︁n
k,j=1 Ek,j ⊗ Ej,k, with Eij the elementary matrices. In

our case A(λ) is a polynomial; the matrix AK is easily seen to consist entirely of Casimir
functions for this Poisson structure. The symplectic leaves are thus described; let G(λ) be
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the matrix of eigenvectors for A(λ) of the form

G(λ) = G0

(︄
1 +

∑︂
j≥1

Bj

λj

)︄
. (8.1.7)

(The Laurent series has a finite radius of convergence). Then

A(λ) = G(λ)D(λ)G(λ)−1, D(λ) = TK+1λ
K + · · · + T1 − L

λ
+ . . . (8.1.8)

where the matrices Tj are all diagonal traceless matrices; as the choice of letters suggests,
they coincide (a simple exercise) with the Birkhoff invariants and the exponents of formal
monodromy, while the rest of the Laurent tail plays no role in our present considerations.
Then the Casimir functions are T1, . . . , TK+1 and AK = G0TK+1G

−1
0 (see also [6], Ch. III).

On the symplectic leaves, the Poisson structure (8.1.5) has the form of the “universal
symplectic structure” of Krichever and Phong [77], [76]:

ω
KK

= − res
λ=∞

Tr
(︄
D(λ)G(λ)−1δG(λ) ∧G(λ)−1δG(λ)

)︄
dλ

= − res
λ=∞

Tr
(︄
A(λ)δG(λ)G(λ)−1 ∧ δG(λ)G(λ)−1

)︄
dλ (8.1.9)

The two-form is invariant under gauge action of right multiplication ofG by diagonal matrices
of the form

F (λ) = 1 +
∑︂
j≥1

Fj
λj

∈ h[[λ−1]]. (8.1.10)

To see this we introduce the symplectic potential

θ := res
λ=∞

Tr
(︄
D(λ)G(λ)−1δG(λ)

)︄
(8.1.11)

which has the property that δθ = ω
KK

. Now observe that under the gauge transformation
G(λ) ↦→ G(λ)F (λ) we have

θ ↦→ θ + res
λ=∞

Tr
(︄
D(λ)F−1(λ)δF (λ)

)︄
dλ. (8.1.12)

In the latter term, since F (λ) = 1+O(λ−1) only the non-negative powers of D(λ) contribute
(since F−1(λ)δF (λ) = O(λ−1)). Given that the parameters T1, . . . , TK+1 in (8.1.8) are
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constants, we can express the last term in (8.1.12) as the total derivative of the function

res
λ=∞

Tr
(︄
D(λ)F−1(λ)δF (λ)

)︄
dλ = δ res

λ=∞
Tr
(︄
D(λ) lnF (λ)

)︄
dλ, (8.1.13)

which implies that ω
KK

= δθ is indeed invariant. It is also invariant under left multiplication
G(λ) ↦→ HG(λ) with H a constant (in λ): indeed, the left multiplication by a constant
matrix H leaves θ completely invariant:

θ ↦→ θ + res
λ=∞

Tr
(︄
G(λ)D(λ)G−1(λ)H−1δH

)︄
dλ = θ (8.1.14)

where we have used that G(λ)D(λ)G−1(λ) = A(λ) is a polynomial.
The core of the idea of the “extended coadjoint orbit” of [19] is the following: while AK =

G0TK+1G
−1
0 is a Casimir for the KKS symplectic structure, G0 itself is not because right

multiplications by a constant diagonal matrix do not leave the symplectic form invariant.
Thus we allow G0 to be kinematical variables: fix the Birkhoff invariants T (λ) =∑︁K+1

j=1 Tjλ
j/j (i.e. the diagonal traceless matrices T1, . . . , TK+1) and consider the set

ˆ︁OT :=
{︄

(G0, A(λ)) ∈ SLN × AK : G−1
0 AKG0 = TK+1, (G(λ)−1A(λ)G(λ))+ = T ′(λ)

}︄
,

(8.1.15)

where ()+ denotes the Taylor part of a Laurent series (here is a polynomial part).
The dimension of ˆ︁OT is

dimC

(︂ ˆ︁OT

)︂
= (K + 1)(N2 − 1) + (N − 1) − (K + 1)(N − 1) = KN(N − 1) +N2 − 1

(8.1.16)

The extended orbit ˆ︁OT carries the following SLN–action:

(G0, A(λ)) ↦→ (HG0, HA(λ)H−1), H ∈ SLN . (8.1.17)

Then the quotient ˆ︃OT/SLN is a symplectic manifold of dimension KN(N − 1) = dimC SK .

In order to connect the Lie–Poisson structure with the Flaschka–Newell structure on the
Stokes’ matrices we need first a lemma and to justify the definition of Stokes manifolds given
in (8.0.1).

Lemma 8.1.1. The first K + 1 coefficient matrices Y1, . . . , YK+1 in the expansion of the
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formal solution Ψform (8.1.2) coincide with the expansion of the eigenvector matrix, to wit

ˆ︁Y (λ) := G0

⎛⎝1 +
∑︂
j≥1

Yj
λj

⎞⎠ = G(λ) + O(λ−K−2). (8.1.18)

Proof. The formal series ˆ︁Y satisfies the ODE

ˆ︁Y ′(λ) + ˆ︁Y (λ)
(︃
T ′(λ) − L

λ

)︃
= A(λ) ˆ︁Y (λ), (8.1.19)

where we abbreviated with ′ the derivation w.r.t. λ. Since ˆ︁Y ′(λ) = O(λ−2), the matrices
T (λ), L are diagonal and since the degree of A is K we deduce that ˆ︁Y matches the Laurent
expansion of the eigenvector matrix G(λ) up to the indicated order. ■

Description of the Stokes manifolds. Recall the results stated in Section 5.1 about the
behavior of local solutions of linear ODEs near singular points, in particular Theorem 5.1.4.
In our case of study, namely equation (8.1.1), there is only one pole at ∞ of Poincaré rank
K + 1 for each K ≥ 1. Thus the complex plane can be partitioned into 2K + 2 canonical
Stokes sectors of equal angular width Sµ, arranged in counterclockwise order. Within each
such sector, Theorem 5.1.4 assures that there exists a unique analytic solution Ψµ(λ) to the
ODE (8.1.1) such that

Ψµ(λ) ≃ Ψform(λ), |λ| → ∞, arg λ ∈ Sµ, (8.1.20)

with Ψform given in (8.1.2). In these asymptotics, the determination of the matrix of formal
exponents λL is the same, –say– the principal one. In this setting, we have then 2K + 2
Stokes’ matrices Sµ as defined in (5.1.11); if the entries t1, . . . , tn of TK+1 are arranged in
increasing order of ℜ(tjeθ0) (for a generic θ0 so that this order is unique), then the Stokes’
matrices are all triangular matrices with unit diagonal, namely they belong to N± ⊂ SLn.
Specifically, they alternate the triangularity as we move counterclockwise.

The entries of these matrices are not independent; they must satisfy the monodromy
relation

S1S2 · · ·S2K+2e2iπL = 1 (8.1.21)

which is a consequence of the fact that the ODE has no singularities in the finite part of the
plane and therefore each of the solutions Ψµ extends uniquely to an entire matrix–valued
function. We thus define the Stokes’ manifold as the set of these data:

Definition 8.1.2. The Stokes’ manifold is the following set

SK :=
{︄

(S1, . . . , S2K+2, L) ∈ (N+ ×N−)K+1 × h : S1 · · ·S2K+2e2iπL = 1.
}︄

(8.1.22)
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where N± denote the solvable subgroups of upper/lower triangular matrices with ones on the
diagonal and h denotes the subalgebra of diagonal traceless matrices. The dimension of this
manifold is

dimC(SK) = KN(N − 1). (8.1.23)

It is apparent that the dimension is even; in fact Boalch [19] shows that these type of
manifolds are symplectic. We are going to give a self–contained description, adapted to this
case, of this structure. In particular, in the next paragraph we are going to prove that for
the general N case, the 2-form WK defined in (8.0.2) has (up to a constant factor) pull-back
that coincides with the symplectic form ωKK written in (8.1.9). Thus implying that SK

equipped with WK is a symplectic manifold. Then in the next sections, we will treat the
case N = 2 finding explicit log-canonical coordinates in which WK is in non-degenerate form
and proving that the induced Poisson bracket indeed coincide with the Flaschka-Newell one,
written in equation (8.0.4).

The Malgrange form associated to an analytic family of Riemann Hilbert
problems. We describe here the gist of [11, 12]. Suppose that Σ ⊂ C is a collection
of oriented smooth arcs (intersecting transversally) and J : Σ → SLN a smooth matrix–
valued function (the “jump matrix”) depending analytically on parameters that we denote
collectively by s. As discussed in Section 4.1, this pair of data defines a family of Riemann-
Hilbert problems (s depending). In case the contours Σ has some self-intersections, the
matrix J(z; s) must satisfy suitable assumptions (see [12] for details). The most important
one for the description here is the “local monodromy free” condition: let v be a “vertex”
of the graph, namely, a point of intersection of the smooth arcs of Σ. Let e1, . . . en be the
sub-arcs of Σ entering a small disk Dv centered at v and enumerated counterclockwise from
an arbitrarily chosen one. We denote by

Jℓ(v; s) = lim
λ→v
λ∈eℓ

J±1(λ; s), (8.1.24)

where the power is +1 if the edge eℓ is oriented away from v and −1 viceversa. Then the
matrices must satisfy

J1(v; s) · · · Jn(v; s) = 1 (8.1.25)

for all the vertices v of Σ, identically with respect to the deformation parameters s. Suppose
now that there exists (generically with respect to s) the solution of the Riemann–Hilbert
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problem∗

Γ+(λ; s) = Γ−(λ; s)J(z; s), z ∈ Σ, Γ(∞; s) ≡ C0. (8.1.26)

The normalization condition at λ = ∞ is usually taken to be the identity, but it will be
convenient to consider a more general one. Then we recall the definition anticipated at the
end of Chapter 4.

Definition 8.1.3. The Malgrange form is defined by the formula

ΘM :=
∫︂

Σ
Tr
(︄

Γ−1
− (λ; s)Γ′

−(z; s)Ξ(λ; s)
)︄

dλ
2iπ (8.1.27)

where Ξ(λ; s) := δJ(λ; s)J−1(λ; s) is the Maurer–Cartan form, the prime denotes the
differentiation w.r.t. λ and δ is the total differential in the deformation parameters s.

We observe that the Malgrange form ΘM is independent of the normalization at λ = ∞,
which corresponds to a left multiplication of Γ by a λ–independent matrix. Then one has

Theorem 8.1.4 (Thm. 2.1 in [12]). The exterior derivative of the Malgrange form ΘM is

δΘM = −1
2

∫︂
Σ

dλ
2iπ Tr (Ξ′(λ) ∧ Ξ(λ)) − 1

4iπ
∑︂

v∈V(Σ)

nv∑︂
ℓ=1

Tr
(︄
H−1
ℓ (v)δHℓ(v) ∧ J−1

ℓ (v)δJℓ(v)
)︄

(8.1.28)

where Hℓ(v) = J1(v) · · · Jℓ(v) and the matrices Jℓ(v) are defined prior to (8.1.25).†

We now come to the main statement of the section.

Theorem 8.1.5. The following two-form is a (complex) symplectic structure on SK:

WK := 1
2

2K+3∑︂
ℓ=1

Tr
(︄
H−1
ℓ dHℓ ∧ S−1

ℓ dSℓ
)︄
, Hℓ := S1 · · ·Sℓ, S2K+3 := e2iπL. (8.1.29)

Its pull-back by the (extended) monodromy map coincides with the Lie–Poisson structure
(8.1.9) times −2iπ.

Before discussing the proof, we point out that this form is written in a different way
from [19] (Thm 5, formula (7)) and rather reflects the general theory of “canonical form
associated to a graph” developed in [14]. The two expressions (a posteriori) can be verified
to give the same two-form when restricted to the constraint (8.1.21). In principle, in our
explicit computation in Section 8.2 for the SL2 case, this theorem is verified ex post facto.

∗To simplify the mental picture, the reader may assume here that Σ is compact: if some rays extend to
infinity, the assumption is that J(λ) tends to the identity matrix faster than any power of λ−1 as λ → ∞,
λ ∈ Σ, so that the RHP can be posed consistently. Details are in [12].

†In loc. cit. the form is presented in a different, but equivalent, way.
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z−L

e2iπL
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ϖ
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ϖ
2

K
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z = 1 S1

S2

S2K+2

Figure 8.1: An example of Stokes’ graph Σ used in Theorem 8.1.5.

Proof. We show that the symplectic form (8.1.9) coincides with the pull-back by the
monodromy map of the form WK in (8.0.2) and hence showing that the latter is also
symplectic (or, to put it more plainly, we write (8.1.9) in the coordinates provided by the
Stokes’ matrices). The proof here is completely different from [19]; rather than computing the
two-form WK in the coordinates of the Stokes’ matrices, we directly compute the symplectic
potential (8.1.11).

Let Σ be graph indicated in Fig. 8.1: the vertex of the star is at λ = 1 and the small circle
is centered at the origin λ = 0. The Stokes’ rays are the lines ϖ1, . . . ϖ2K+2 issuing from λ = 1
and extending to infinity along the Stokes’ directions. In the Fig. 8.1 we have drawn them
for the case K = 3 under the assumption that the real parts ℜ(itj) are ordered increasingly,
so that the Stokes’ rays ϖℓ have asymptotic directions arg λ = iπ

2(K+1) + iπ
K+1(ℓ− 1) and the

Stokes’ matrix S1 is then upper triangular.
We now define a piecewise analytic function Γ in each of the connected components of

C \ Σ; in the sector S1, Γ is given by

Γ(λ) = Γ1(λ) := Ψ1(λ)e−T (λ)+T (1)λL, (8.1.30)

where the determination of λL is the principal one. In the other unbounded components
(including the one that contains the disk Dr) the matrix Γ is defined by multiplying Γ1(λ)
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by the jump matrices

Jℓ(λ) := eT (λ)−T (1)λ−LSℓλ
Le−T (λ)+T (1), λ ∈ ϖℓ. (8.1.31)

The triangularity of Sℓ is such that Jℓ(λ) = 1 + O(λ−∞) as |λ| → ∞, λ ∈ ϖℓ. Within the
disk Dr we define

Γ(λ) = Γ0(λ) := Γj0(λ)λ−L = Ψj0(λ)eT (1)−T (λ), (8.1.32)

where j0 is the index of the sector containing Dβ. Note that Γ0 is locally analytic near λ = 0.
In the sector containing the disk Dβ the matrix Γ does not have a jump on the ray

(−∞,−β] because of the monodromy relation (8.1.21) and combined with the monodromy of
the factor λL. There is, however the jump Λ = e2iπL on the segment [β, 1]. A straightforward
exercise shows that the piecewise analytic matrix function Γ satisfies a RHP on the graph Σ
shown in Fig. 8.1:

Γ+(λ) = Γ−(λ)J(λ), λ ∈ Σ, Γ(λ) ≃ eT (1) ˆ︁Y (λ), |λ| → ∞, (8.1.33)

where ≃ denotes the asymptotic equivalence in the Poincaré sense, ˆ︁Y (λ) is the formal series
as in Lemma 8.1.1 and the jump matrix J(λ) is given by

J(λ) =
{︄
Jℓ(λ) λ ∈ ϖℓ (see (8.1.31))
λ−L λ ∈ ∂Dβ.

(8.1.34)

The jump matrix on ∂Dβ is the function λ−L and the determination is (recall that β ∈ R+)
with arg λ ∈ [0, 2π), which is not the same used earlier but we do not want to overload the
notation by using a different symbol for the power. Using Lemma 8.1.1 we can write the
symplectic potential (8.1.11) as the formal residue

θ = res
λ=∞

Tr
(︄
A(λ)δG(λ)G−1(λ)

)︄
dλ = “ res

λ=∞
′′ Tr

(︄
A(λ)δ ˆ︁Y (λ) ˆ︁Y −1(λ)

)︄
dλ =

= res
λ=∞

Tr
(︄
A(λ)δΓ(λ)Γ−1(λ) − Γ−1(λ)A(λ)Γ(λ)δT (1)

)︄
dλ. (8.1.35)

Since the expansion at ∞ of Γ coincides with that of the eigenvectors up to order λ−K−1

(included), the second term in the residue yields (recall that resλ=∞ extracts the coefficient
of λ−1 with a minus sign)

− res
λ=∞

Tr
(︄(︃

T ′ − L

λ

)︃
δT (1)

)︄
dλ = − Tr(LδT (1)). (8.1.36)

The first term in (8.1.35) is a formal residue and can be realized as the following limit of an
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actual integral

lim
r→∞

∮︂
|λ|=r

dλ
2iπ Tr

(︄
A(λ)δΓΓ−1

)︄
(8.1.37)

where the contour runs counterclockwise. Note that the integrand is actually an analytic
function defined piecewisely for each sector. Applying Cauchy’s theorem, we can reduce the
integration along the support of the jumps of Γ and we obtain

θ =
∫︂

Σ

dλ
2iπ Tr

(︄
A(λ)∆Σ(δΓΓ−1)

)︄
− Tr

(︂
LδT (1)

)︂
(8.1.38)

where ∆Σ is the jump operator ∆ΣF (λ) = F+(λ) − F−(λ), λ ∈ Σ. Now observe that

Γ+ = Γ−J ⇒ δΓ+ = δΓ−J + Γ−δJ ⇒ δΓ+Γ−1
+ = δΓ−Γ−1

− + Γ−δJJ
−1Γ−1

− .

(8.1.39)

and hence we have

∆Σ(δΓΓ−1) = Γ−δJJ
−1Γ−1

− . (8.1.40)

Plugging (8.1.40) into (8.1.38) gives

θ =
∫︂

Σ

dλ
2iπ Tr

(︄
Γ−1

− AΓ−δJJ
−1
)︄

− Tr
(︂
LδT (1)

)︂
. (8.1.41)

The above expression suggest a relationship with the Malgrange form ΘM in Def. 8.1.3 which
we now investigate. Using the definition Γ(λ) = Ψ(λ)eT (1)−T (λ)λL (piecewise sectorially), we
find that

A(λ)Γ(λ) = Ψ′(λ)eT (1)−T (λ)λL = Γ′(λ) + Γ
(︃
T ′(λ) − L

λ

)︃
. (8.1.42)

Thus the expression (8.1.41) is recast into:

θ =
∫︂

Σ

dλ
2iπ Tr

(︄
Γ−1

− Γ′
−δJJ

−1
)︄

+
∫︂

Σ

dλ
2iπ Tr

(︄(︃
T ′(λ) − L

λ

)︃
δJJ−1

)︄
− Tr

(︂
LδT (1)

)︂
(8.1.43)

The integrand in the second integral is zero on each of the Stokes’ rays ϖℓ because the
matrices δJℓJ−1

ℓ are strictly triangular (upper or lower), with zeros on the diagonal and
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L, T ′ are diagonal, so that the product is diagonal-free. Thus the second integral reduces to
∫︂

Σ

dλ
2iπ Tr

(︄(︃
T ′(λ) − L

λ

)︃
δJJ−1

)︄
=

=
∫︂ βe2iπ

β

dλ
2iπ Tr

(︄(︃
T ′(λ) − L

λ

)︃(︃
− δT (1) − δL ln λ

)︃)︄
+
∫︂ β

1

(︄(︃
T ′(λ) − L

λ

)︃
δL

)︄
dλ =

= −
K+1∑︂
j=1

Tr(TjδL)
2iπ

(︄
ln λ
j

− 1
j2

)︄
λj
⃓⃓⃓⃓
⃓
βe2iπ

β

+ δTr(L2)
4iπ

(ln z)2

2

⃓⃓⃓⃓
⃓
βe2iπ

β

+ Tr
(︃
LδT (1)

)︃

+ Tr
(︄(︂
T (β) − T (1)

)︂
δL− δ

(︄
L2

2

)︄
ln β

)︄
=

= − Tr
(︂
T (1)δL

)︂
− iπ

2 δTr
(︂
L2
)︂
. (8.1.44)

Thus we have shown that

θ = ΘM − Tr
(︂
T (1)δL

)︂
− 2iπδTr

(︂
L2
)︂

− Tr
(︂
LδT (1)

)︂
= ΘM − δTr

(︃
T (1)L+ iπ

2 L
2
)︃
.

(8.1.45)

This means that the Kirillov-Kostant form θ coincides with the Malgrange form up to an
exact differential. We now compute the exterior derivative of θ using Theorem 8.1.4. It is
clear that the last term in (8.1.45) does not contribute to the exterior differentiation because
it is an exact form. The integral in (8.1.28) has no contribution because

- on the rays ϖℓ the integrand is traceless (given the triangularity of the jump matrices
(8.1.31));

- on the segment issuing from λ = 1 and directed to the disk, the matrix Ξ is constant
in λ;

- on the boundary of the disk Ξ′(λ) ∧ Ξ(λ) = lnλ
λ
δL ∧ δL = 0 since L is diagonal.

Thus we are left only with the contributions from the two vertices of the graph in Fig. 8.1,
which are v0 = β and v = 1. At v0 we have three incident edges and the matrices J1, J2, J3

are J1 = e2πL, J2 = βL, J3 = β−Le−2iπL. Since they commute, it is easy to see that there is
no contribution (each term contains δL∧ δL, which vanishes identically since L is diagonal).

Thus the only contribution comes from v = 1; here the jumps are:

Jℓ(v) = Sℓ, ℓ = 1, . . . , 2K + 2 (8.1.46)

and J2K+3 = e−2iπL. Then the Theorem 8.1.4 gives precisely (8.0.2) divided by −2iπ. Thus
we conclude that WK in (8.0.2) is a symplectic form. ■

Remark 8.1.6. To be explicit, the coordinates on the quotient of the extended orbit (8.1.15)
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are as follows; one writes

G = G0 exp
(︃
H1

z
+ H2

z2 + · · · + HK

zK
+ O(z−K−1)

)︃
(8.1.47)

where H1, . . . , HK can be chosen diagonal free (i.e. with zeros on the diagonal), using the
gauge freedom (8.1.12). Then the KN(N − 1) entries of H1, . . . , HK are the coordinates.

8.2 Stokes manifolds for n = 2
Our goal now is twofold:

1. provide explicit parametrization in terms of patches of free coordinates for the complex
manifold SK (8.1.22);

2. show that the coordinates introduced above are log–canonical for the two-form (8.0.2).

We recall here the terminology; a coordinate system (x1, . . . , x2n) on a symplectic manifold
(M, ω) is called log-canonical if the symplectic form is expressed as follows in the coordinate
system

ω(x) =
∑︂
i<j

ωij
dxi
xi

∧ dxj
xj

(8.2.1)

with ωij constants. If Pij denotes the inverse transposed of the matrix ωij then the Poisson
brackets read

{xi, xj} = Pijxixj (no summation), (8.2.2)

namely the logarithms of the coordinates have constant Poisson brackets amongst themselves
(whence the terminology). At this point the problem of finding Darboux coordinates reduces
to a simple problem of linear transformation in the logarithmic coordinates to find the
canonical symplectic matrix for the Poisson brackets.

We are going to carry out the two steps above in the case of SL2, which corresponds to
the historically first case ever studied in [37]. The higher case can be handled in a similar
way but we defer the computation to a later work since it would unnecessarily obfuscate the
computation behind a plethora of indices.

As anticipated in the introduction, the Stokes’ manifold (8.1.22) specializes for any K ≥ 1
and N = 2 to the following

SK =
{︄(︄

1 s1

0 1

)︄(︄
1 0
s2 1

)︄
. . .

(︄
1 s2K+1

0 1

)︄(︄
1 0

s2K+2 1

)︄
λσ3 = I2 with si ∈ C, λ ∈ C×

}︄
.

(8.2.3)
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We will denote by S2l−1 the upper triangular matrices and by S2l the lower triangular matrices
appearing in the equation above for l = 1, . . . , K + 1.

Remark 8.2.1. The matrix equation in (8.2.3) is equivalent to three algebraically
independent scalar equations for the Stokes parameters sj and the formal monodromy
exponent α so that dim (SK) = 2(K + 1) + 1 − 3 = 2K, as it follows from (8.1.23) for
N = 2.

8.2.1 Construction of the log-canonical coordinates
We consider on SK the 2-form (8.0.2). Following [14] we introduce some basic definitions
and properties of the 2-form associated to a graph embedded in a surface, and we will see
that the Stokes 2-form can be conveniently interpreted within that formalism. This is indeed
the key in order to compute it explicitly and find the log-canonical coordinates.

Graph theory We briefly recall the definition of the standard 2-form associated to an
oriented graph on a surface (we refer to Section 2 of [14] for more details). Let Σ be an
oriented graph on a surface, we denote with V(Σ) the set of its vertices, E(Σ) the set of its
edges and F(Σ) the set of its faces. A “jump matrix” J is a map from E(Σ) to SLn with the
properties that:

1. for any edge e ∈ E(Σ) we have

J(−e) = J(e)−1 (8.2.4)

with −e denoting the same edge e with opposite orientation;

2. for any vertex v ∈ V(Σ) of valence nv we have that the ordered counterclockwise
product of the matrices associated to each edge oriented away from v is the identity.
Namely:

J(e1) . . . J(env) = In, (8.2.5)

where we ordered the edges e1, . . . , env incident at v then counting them
counterclockwise.

To the pair (Σ, J), we can then associate the standard 2-form Ω(Σ) defined hereafter.

Definition 8.2.2. The standard 2-form Ω(Σ) associated to the graph Σ is defined as follows
(we omit explicit reference to the dependence on J from the notation)

Ω(Σ) :=
∑︂

v∈V(Σ)

nv−1∑︂
ℓ=1

Tr
(︃(︂
H

(v)
[1:ℓ]

)︂−1
dH(v)

[1:ℓ] ∧
(︂
J

(v)
ℓ

)︂−1
dJ (v)

ℓ

)︃
. (8.2.6)

where in this formula for any vertex v ∈ V(Σ) we have taken the incident edges e1, . . . , env

oriented away from v and enumerated in counterclockwise order, starting from any of them.
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Here H(v)
[1:ℓ] = J1 . . . Jℓ with Ji = J(ei) for i = 1, . . . , nv. Thanks to the property (8.2.5), this

2-form is well defined, namely, independent of the choice of first edge in the cyclic order at
each vertex.

S2

S5

S1

S6ΛS4

S3

Ψ1

Ψ2Ψ3

Ψ4

Ψ5 Ψ6

v

Σ(2)

Figure 8.2: The Stokes graph Σ(2).

The form Ω(Σ) in Def. 8.2.2 is shown to be invariant under certain transformations
(Σ, J) ↦→ (Σ′, J ′) (called moves, see Section 2 of [14]); these moves consist in the self–
describing titles of

1. edge contractions;

2. merging edges;

3. attaching edges to vertices (and the converse)

The star-graph for the Stokes’ phenomenon. Given the formula (8.0.2) we surmise
that the form WK can be represented as 2WK = Ω(Σ⋆) where Σ⋆ (the “star-graph”) is
simply the collection of 2K + 3 rays, each carrying the matrices J1 := S1, . . . , J2K+2 :=
S2K+2, J2K+3 := Λ = e2iπL as jumps. We can actually merge the last two rays and
corresponding jump matrices to obtain a simpler star-graph Σ(K) indicated by the way
of example in Fig. 8.2 for K = 2. This is not quite one of the generally allowed
moves listed in [14] but we now verify directly that it leaves the form invariant. Let thus˜︁Jℓ = Jℓ, ℓ = 1, . . . , 2K + 1 and ˜︁J2K+2 := J2K+2J2K+3 = S2K+2Λ. Recall that S2K+2 ∈ N−

and Λ is diagonal. Note that Hℓ = ˜︂Hℓ up to ℓ = 2K + 1, while ˜︂H2K+2 = H2K+2Λ = 1. Then
the difference between the two-forms is

Ω(Σ⋆) − Ω(Σ(K)) = Tr
(︂
H−1

2K+2dH2K+2 ∧ S−1
2K+2dS2K+2

)︂
. (8.2.7)

Since H2K+3 = H2K+2Λ = 1 we must have that H2K+2 = Λ−1, namely, it is diagonal. But
S2K+2 is unipotent triangular and hence S−1

2K+2dS2K+2 is strictly lower triangular, so that
the matrix in (8.2.7) is diagonal–free and the trace gives zero. Thus, in conclusion, we only
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v5

v1

v4 v6

v3

Figure 8.3: The modified graph Σ(2)
0 . Here we take the triangulation T0 of the hexagon that

connects any of its vertices to v6.

need to analyze the two-form associated to the graphs of the form Σ(K) depicted in Fig. 8.2,
since we proved that

2WK = Ω(Σ(K)). (8.2.8)

The idea is to realize the simple graph Σ(K) as the complete contraction of all the (finite
length) edges of another graph with explicit, simple jump matrices that depend on free
parameters (contrary to the Stokes’ parameter that are subject to algebraic relations).

Consider the graph Σ(K)
0 , exemplified in Figure 8.3 for K = 2: then it is apparent that

Σ(K) is the total contraction of Σ(K)
0 . The jump matrices for this graph are described in the

following paragraph. The key fact is that the computation of the symplectic form associated
to Σ(K)

0 is then a straightforward exercise.
Since the graphs Σ(K)

0 and Σ(K) are related by the “moves” hinted before and described in
[14], the corresponding associated forms coincide: Ω

(︂
Σ(K)

0

)︂
= Ω

(︂
Σ(K)

)︂
. Then, by using the

definition of the 2-form associated to a graph, we will compute explicitly the Stokes form,
showing directly that it is indeed symplectic.

The graph Σ(K)
0 and its jump matrices. The graph Σ(K)

0 (see Fig. 8.3 for the example
with K = 2) is the graph consisting of 2(K+1) infinite rays emanating from the vertices of a
regular 2K + 2–gon. The polygon is subdivided into triangles with a common vertex v2K+2.
We denote by T0 this precise triangulation of the polygon. Inside each triangle we have a
vertex zj and three edges from the three vertices bounding the triangle to the vertex zj. We
describe the jump matrices for T0 with the understanding that, mutatis mutandis, the same
matrices are defined for an arbitrary triangulation. To each oriented edge of Σ(K)

0 we associate
a matrix that is constant or depends on complex parameters yj ∈ C∗, j = 1, . . . , 2K. The
orientation is defined as follows: the perimeter of the polygon is oriented counterclockwise
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and as for the vertices zj, each edge is oriented towards the vertex zj. The internal diagonals
of the triangulation are oriented in such a way that for every even perimetric vertex the
internal diagonal is exiting from the vertex v2K+2 and for every odd vertex the internal
diagonal is instead entering in the vertex v2K+2. The Stokes rays are kept with the same
orientation as in the Stokes graph. The matrices for each edge are defined as follows:

• on the perimetric edges connecting v2k → v2k+1 for k = 1, . . . K and v2K+2 → v1 ∼
v2K+3 (the blue edges in Figure 8.3), we take diagonal matrices of the form

D (x2k) :=
(︄
x−1

2k 0
0 x2k

)︄
, (8.2.9)

where xl is the following product of yj’s variables

xl := y1
∏︂

2≤k≤l

∏︂
dj⊥vk

y
(−1)k+1

j , l = 2, . . . , 2K + 1, x2K+2 := y1
∏︂
dj⊥v1

y−1
j (8.2.10)

• on the perimetric edges connecting v2k+1 → v2k+2 (the green edges in Figure 8.3), we
take off-diagonal matrices of the form

V
(︂
x−1

2k+1

)︂
:=
(︄

0 −x−1
2k+1

x2k+1 0

)︄
, (8.2.11)

and along the edge v1 → v2 we impose the jump matrix V (y−1
1 );

• on the three edges incident to zj (each of the dashed lines in Figure 8.3) we associate
the constant matrix

A :=
(︄

0 1
−1 −1

)︄
, (8.2.12)

that has the property A3 = 1.

Remark 8.2.3. In the SLn case, the matrix A would be replaced by matrices A1,2,3

that depend on (n− 1)(n− 2)/2 additional parameters for each triangle.

• on each internal diagonal edge dj for j = 2, . . . , 2K defining the original triangulation
T0, we associate off-diagonal matrices of the form V (yj) given by

V (yj) :=
(︄

0 −yj
y−1
j 0

)︄
(8.2.13)

for j = 2, . . . , 2K (these are the red edges of Figure 8.3). In this way each internal
diagonal dj is uniquely associated to the free variable yj, for j = 2, . . . , 2K.

Remark 8.2.4. In this construction one among the boundary edges plays a distinguished
role, namely, the one laying to the left of the first Stokes ray. Indeed, the matrix associated
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to this edge is of the same type of the matrices associated to the internal diagonal edges of
the triangulation T0 and it depends only on y1. It would be possible to choose an arbitrary
distinguished boundary edge for our variable y1, while retaining the same triangulation. Then
one may verify (but we do not report the details here) that the new distiguished variable ˜︁y1

is a monomial containing y1, while the other variables are unchanged.

8.2.2 Computation of WK

The Stokes’ matrices Sj on the unbounded rays are then uniquely determined in terms of
the remaining ones by the condition (8.2.5) at the corresponding vertex vj. In this way each
Sj is expressed in terms of the yj variables. Of course, for each triangulation, we will obtain
different parametrization of the Stokes parameters and the transformation of coordinates
will be investigated later.

The initial triangulation Consider now the triangulation T0, underlying the graph Σ(K)
0 ,

where the last vertex v2K+2 is connected to each other vertex starting from v2, and with
alternated orientation of the internal diagonals (as in Figure 8.3 for the case K = 2). Then
the Stokes matrices are given by

S1 =
(︂
V (y−1

1 )AD(y1)−1
)︂−1

S2 =
(︂
D(x2)AV (y2)−1AV (y−1

1 )−1
)︂−1

,

S2k =
(︂
D(x2k)AV (y2k)−1AV (x−1

2k−1)−1
)︂−1

, k = 2, . . . , K

S2k+1 =
(︂
V (x−1

2k+1)AV (y2k+1))AD(x2k)−1
)︂−1

, k = 1, . . . , K − 1

S2K+1 =
(︂
V (x−1

2K+1)AD(x2K)−1
)︂−1

S2K+2Λ =
⎛⎝D(y1)

2K∏︂
j=2

(︂
AV (yj)(−1)j

)︂
AV (x−1

2K+1)−1

⎞⎠−1

.

(8.2.14)

The choice of the triangulation of the polygon also defines the variables xl. According to the
general rule (8.2.10) with the triangulation T0 fixed here, this definition reduces to

xl :=
l∏︂

j=1
y

(−1)j+1

j l = 2, . . . , 2K, x2K+1 = x2K , x2K+2 := y1. (8.2.15)

These considerations are summarized in the following lemma.

Proposition 8.2.5. The Stokes parameters are written in terms of the yj variables, w.r.t.
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the fixed triangulation T0 described above, as follows

s1 = −y−2
1

s2k = (1 + y2
2k)

∏︂
1≤j≤2k

y
(−1)j+12
j , k = 1, . . . , K

s2k+1 = −(1 + y2
2k+1)

∏︂
1≤j≤2k+1

y
(−1)j2
j , k = 1, . . . , K − 1

s2K+1 = −
∏︂

1≤j≤2K
y

(−1)j2
j ,

s2K+2 = y2
1

(︂
1 + y2

2

(︂
. . .
(︂
1 + y2

2K

)︂
. . .
)︂)︂ K∏︂

j=1
y−4

2j ,

λ = (−1)K
K∏︂
j=1

y2
2j. (8.2.16)

Proof. Just computing explicitly the parametrizations given from equations (8.2.14) and
using the definition of the variables x2k, x2k+1 given in (8.2.15). ■

With this parametrization of the Stokes matrices we can then proceed to the computation
of the Stokes form.

Proposition 8.2.6. The 2-form associated to the graph Σ(K)
0 coincide with

Ω
(︂
Σ(K)

0

)︂
= +8

K∑︂
j=1
l≥j

d log y2j−1 ∧ d log y2l. (8.2.17)

In particular it is symplectic.

Proof. The fact that the form is symplectic follows from Theorem 8.1.5 and the fact that
the contraction of Σ(K)

0 coincides with the graph ΣK (see Fig. 8.2); however the explicit
expression (8.2.17) is manifestly a nondegenerate form and so it could be used directly as a
proof. By using the definition of the 2-form (8.2.6), we have to compute the contributions
coming from each vertex vj, j = 1, . . . 2K+2 in the graph Σ(K)

0 . The vertices zj, j = 1, . . . , 2K
do not give any contribution since all their incident edges carry constant matrices.
We start with the vertex v1. Since the valence of v1 is 4 and A is a constant matrix, there
is only one contribution to take into account from v1, and it is

Tr

⎛⎜⎜⎜⎝(︂V (y−1
1 )AD(y1)−1

)︂−1
d
(︂
V (y−1

1 )AD(y1)−1
)︂

=S1d(S−1
1 )

∧
(︂
D(y1)dD(y1)−1

)︂
=−d log y1σ3

⎞⎟⎟⎟⎠ = 0 (8.2.18)

that turns out to be also zero, thanks to the form of the Stokes matrices given in (8.2.14).
Thus the total contribution of the vertex v1 is actually zero.
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Since the vertex v2K+1 is in the same configuration of v1, but replacing D(y1) by D(x2K),
by the same reasoning we can conclude that its contribution is also zero.
Now we compute the contributions of the vertices v2k for k = 1, . . . , K. For each of them
there is only one nonzero contribution and it is coming from the term

Tr

⎛⎜⎜⎜⎝
(︃(︂
D(x2k)AV (y2k)−1

)︂−1
d
(︂
D(x2k)AV (y2k)−1

)︂)︃
−d log(x2k−1)+E21f(y⃗)dy⃗

∧
(︂
V (y2k)d(V (y2k)−1)

)︂
=−d log y2kσ3

⎞⎟⎟⎟⎠ =

= 2d log x2k−1 ∧ d log y2k =

= 2d log
⎛⎝2k−1∏︂

j=1
y

(−1)j+1

j

⎞⎠ ∧ d log y2k =

= 2d log y1 ∧ d log y2k+2
k∑︂
l=2

d log y2l−1 ∧ d log y2k−2
k−1∑︂
l=1

d log y2l ∧ d log y2k.

(8.2.19)

Notice that for the case k = 1 we only have the term 2d log y1 ∧ d log y2.
A similar computation shows that the only nonzero contribution for the vertices v2k+1 for
k = 1, . . . , K − 1 is given by

Tr

⎛⎜⎜⎜⎝
(︃(︂
V (x−1

2k+1)AV (y2k+1)
)︂−1

d (D(x2k+1)JAV (y2k+1))
)︃

=d log x2kσ3+E21g(y⃗)dy⃗

∧
(︂
V (y2k+1)−1d(V (y2k+1))

)︂
=−d log y2k+1

⎞⎟⎟⎟⎠ =

= −2d log x2k ∧ d log y2k+1 =

= −2d log
⎛⎝ 2k∏︂
j=1

y
(−1)j+1

j

⎞⎠ ∧ d log y2k+1 =

= −2d log y1 ∧ d log y2k+1−2
k∑︂
j=2

d log y2j−1 ∧ d log y2k+1+2
k∑︂
j=1

d log y2j ∧ d log y2k+1.

(8.2.20)
It only remains to compute the contribution of the vertex v2K+2. The internal diagonals
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carrying the variables y2k for k = 1, . . . , K give the contribution

C1 :=
K∑︂
k=1

Tr

⎛⎜⎝(︂V (y2k)−1d(V (y2k))
)︂

∧

⎛⎝D(y1)
2k∏︂
j=2

A (V (yj))(−1)j

⎞⎠−1

d

⎛⎝D(y1)
2k∏︂
j=2

A (V (yj))(−1)j

⎞⎠
⎞⎟⎠ =

=
K∑︂
k=1

Tr
⎛⎝−d log y2kσ3 ∧

⎛⎝−d log y1 −
2k∑︂
j=2

d log yj

⎞⎠σ3

⎞⎠ =

= −2
K∑︂
k=1

d log y1 ∧ d log y2k + 2
K∑︂
k=1
j≤k

(d log y2k ∧ d log y2j + d log y2k ∧ d log y2j−1) .

(8.2.21)
The internal diagonals carrying on the variables y2k+1 give instead the contribution

C2 :=
K−1∑︂
k=1

Tr

⎛⎜⎝
⎛⎝D(y1)

2k+1∏︂
j=2

A (V (yj))(−1)j

⎞⎠−1

d
⎛⎝D(y1)

2k+1∏︂
j=2

A (V (yj))(−1)j

⎞⎠ ∧
(︂
V (y2k+1)d(V (y2k+1)−1)

)︂⎞⎟⎠ =

=
K−1∑︂
k=1

Tr
⎛⎝⎛⎝−d log y1 −

2k+1∑︂
j=2

d log yj

⎞⎠σ3 ∧ (−d log y2k+1σ3)
⎞⎠ =

= 2
K−1∑︂
k=1

d log y1 ∧ d log y2k+1−2
K−1∑︂
k=2
j≤k

(d log y2k+1 ∧ d log y2j + d log y2k+1 ∧ d log y2j−1) .

(8.2.22)
Finally the last edge on the right of the Stokes ray of v2K+2 also gives a nonzero contribution,
that is

C3 := Tr
(︂
(S2K+2Λ)d(S2K+2Λ)−1 ∧

(︂
V (x−1

2K+1)d(V (x−1
2K+1)−1)

)︂)︂
=

= Tr
⎛⎝(︄2

K∑︂
l=1

d log y2l

)︄
σ3 ∧

⎛⎝−d log y1 +
K∑︂
j=1

(−d log y2j+1 + d log y2j)
⎞⎠σ3

⎞⎠ =

= 4
K∑︂
l=1

d log y1 ∧ d log y2l+4
K∑︂
j=2

d log y2j−1 ∧
K∑︂
l=1

d log y2l−4
K∑︂
j=1

d log y2j ∧
K∑︂
l=1

d log y2l

=0

=

= 4
K∑︂
l=1

d log y1 ∧ d log y2l+4
K∑︂
j=2

d log y2j−1 ∧
K∑︂
l=1

d log y2l

(8.2.23)
where in the last equality we used the skew-symmetry of the wedge product. Now we can
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sum up all the nonzero contributions coming from vl, l = 2, . . . , 2K + 2 and we obtain

Ω
(︂
Σ(K)

0

)︂
= 2

K∑︂
k=1

d log y1 ∧ d log y2k+2
K∑︂

2≤l≤k
k=2

d log y2l−1 ∧ d log y2k−2
K∑︂

1≤l≤k−1
k=2

d log y2l ∧ d log y2k

−2
K−1∑︂
k=1

d log y1 ∧ d log y2k+1−2
K−1∑︂

2≤j≤k
k=2

d log y2j−1 ∧ d log y2k+1+2
K−1∑︂

1≤j≤k
k=1

d log y2j ∧ d log y2k+1

+2
K∑︂
k=1

d log y1 ∧ d log y2k−2
K∑︂
k=1
j≤k

(d log y2k ∧ d log y2j + d log y2k ∧ d log y2j−1) (8.2.24)

+2
K−1∑︂
k=1

d log y1 ∧ d log y2k+1−2
K−1∑︂
k=2
j≤k

(d log y2k+1 ∧ d log y2j + d log y2k+1 ∧ d log y2j−1)

(8.2.25)

+4
K∑︂
l=1

d log y1 ∧ d log y2l+4
K∑︂
j=2

d log y2j−1 ∧
K∑︂
l=1

d log y2l (8.2.26)

= −8
K∑︂
k=1
j≥k

d log y2k−1 ∧ d log y2j (8.2.27)

■

By using relation (8.2.8), we can finally conclude that the Stokes 2-form WK is written
in terms of these yj variables as

WK = 1
2Ω

(︂
Σ(K)

)︂
= 1

2Ω
(︂
Σ(K)

0

)︂
= 4

K∑︂
k=1
j≥k

d log y2k−1 ∧ d log y2j, (8.2.28)

and since it has maximal rank, it is a symplectic 2-form.
The Poisson structure induced by the the symplectic structure in the same variables will be
then written as

{yi, yj} = Pij
Kyiyj (8.2.29)

where PK = Ω−t
K and ΩK is the matrix of coefficient of the Stokes 2-form w.r.t. the

logarithmic variables log yl.
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y1 y2 y3 y4A4

Figure 8.4: The Dynkin diagram associated to the 4 × 4 matrix B2. This quiver can also be
obtained following the construction described in the paragraph below with the triangulation
of the hexagon fixed to be T0.

Lemma 8.2.7. The matrix PK is the 2K × 2K tridiagonal matrix given by

PK = 1
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 . . . 0
−1 0 1 0 0 . . . 0
0 −1 0 1 0 . . . 0
... . . . . . . . . . ...
... . . . . . . . . . ...
0 0 . . . −1 0 1
0 0 . . . 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.2.30)

8.3 Comparison between PK and Poisson structure on
Y -cluster manifold

Let focus our attention on the matrix BK := 4PK .

Definition 8.3.1. Given a quiver Q with labeled vertices qi, i = 1, . . . ,#V(Q), we call B its
adjacency matrix the skew-symmetric, integer-valued square matrix, of dimension #V(Q),
given by

Bkl := # {edges oriented from qk to ql} − # { edges oriented from ql to qk} (8.3.1)

for k, l = 1, . . . ,#V(Q).

Then the matrix BK can be identified as the directed adjacency matrix of a Dynkin graph
of type A2K with specified orientation. An example for K = 2 is given in Figure 8.4. There
is a classical way to associate a directed graph to a triangulation of a given polygon (see for
instance paragraph 2.1 of [46]). We slightly modify this construction, taking into account
the fact that there is an edge along the perimeter of the polygon (the edge at the left of
the first Stokes ray) that has a distinguished role in our case. We end up with the following
graph Q(T ) for a given triangulation T of the polygon:

• the vertices of Q(T ) are defined one for each of the following edges of T : the edge along
the perimeter at the left of the first Stokes ray and every internal diagonal edge of the
triangulation T ;

• the edges of Q(T ) are are build between each pair of vertices that lies on edges of the
triangulation T that share one of the endpoints and are immediately adjacent;
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Figure 8.5: Here the triangulation T0 of the hexagon and the variables yj assigned to the
relevant edges induce the Dynkin diagram with variables y1, y2, y3, y4 in blue.

• the orientation of the edges of Q(T ) is defined as follows: an edge connecting the
vertices qi and qj on the adjacent edges of T di and dj is oriented qi → qj if the edge di
immediately precedes dj counting counterclockwise the edges incident to their common
endpoint. Otherwise it is oriented in the opposite way. For the vertex y1 along the edge
on the right of the first Stokes ray (since on this edge we actually used the variable
y−1

1 ) we reverse the orientation of all the edges of Q(T ) that have y1 as endpoint.

With this construction, we obtain that for the initial triangulation T0 underlying Σ(0)
K the

quiver Q(T0) is a Dynkin graph of type A2K with the orientation induced from T0 (but each
orientation of the same type of Dynkin graph is mutation equivalent, see Theorem 3.29 of
[46]).
The matrix BK gives a compatible Poisson structure on the Y -cluster manifold which is
defined by the ring of functions that are polynomials in all of the seeds obtained by subsequent
mutations (of Y -type), defined below.

Definition 8.3.2. A mutation µk(Q) w.r.t. a vertex qk ∈ V(Q) of the quiver Q is a new
quiver defined by

• the same set of vertices, namely V(Q) = V(µk(Q));

• the set of edges constructed as follows

1. for any sequence qi → qk → ql add an edge qi → ql,

2. reverse any edge having source or end in the vertex qk,

3. remove every 2-cycle if any.
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Equivalently we can define the mutation µk(Q) of Q through its adjacency matrix µk(B)
that is given by the following equations

µk(B)st =

⎧⎨⎩−Bst,

Bst + sign(Bsk) [Bsk, Bkt]+ ,
for s = k or s = t,

otherwise.
(8.3.2)

In our case of study, a set of variables yi ∈ C∗ one of each vertex qi is associated to the
quiver, for i = 1, . . . , 2K. To each mutation µk(Q) of the quiver is then associated a new
set of variables µk(y⃗) following the equations in the definitions that we recall below (see also
(1.30) in e.g. [46]).

Definition 8.3.3. A Y -mutation for the variables yi of the couple (Q, y⃗) is a new set of
variables (µk(y⃗))2K

i=1 , for i = 1, . . . 2K defined as rational functions of the yi in the following
way

y′
i := (µk(y⃗))i =

⎧⎪⎨⎪⎩
y−1
k ,

yi
y

[Bik]+
k

(1+yk)Bik
,

for i = k,

otherwise.
(8.3.3)

Every new pair µk(y⃗, Q) = (y⃗′, Q′) obtained by an allowed mutation is called a seed. In
our case, we have that the initial quiver Q(T ) is the Dynkin graph of A2K-type (for every
n ≥ 1) that is related to the triangulation T of the polygon in Σ(K)

0 . The allowed mutations
in this case are with respect to all the vertices with variables y2, . . . , y2K (the ones associated
to the internal diagonals of the triangulation T of the polygon).

Definition 8.3.4. Given a pair (y⃗, Q) where Q is a quiver with labeled vertices qi, i =
1, . . . ,#V(Q) and the variables yi ∈ C∗ are associated to each qi, we call the Y -cluster
algebra AY (Q) the sub-ring of all polynomials in yi and all their possible seeds µk(y⃗, Q)
where µk is a mutation w.r.t. the vertex qk with assigned variable yk.

Definition 8.3.5. Given a Y -cluster algebra, its correspondent Y -cluster manifold is defined
as the smooth part of Spec(AY (Q)).

Denoting by AY,i ̸=1(A2K) the Y -cluster algebra described above for our case, then on its
correspondent Y -cluster manifold M := Spec(AY,i ̸=1(A2K)) there is a compatible Poisson
structure having the form

{yi, yj} = BKyiyj. (8.3.4)

Therefore we reach the conclusion that the Poisson structure (induced by the symplectic
2-form WK) on the Stokes manifold (SK ,PK) coincides with the Poisson structure of
(M,BK), up to a constant multiplicative factor.

8.3.1 Flipping the edges
In the previous section we have established how to define the matrices and the variables
yj, xl associated to each edge of a given triangulation, in order to get a parametrization of
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the Stokes matrices. We also computed the Stokes matrices and the Stokes 2-form for a
fixed triangulation, seeing that its matrix coefficient is related to the matrix coefficient of
the Poisson structure of the Y -cluster manifold of A2K-type.
We are now going to show that the y-variables associated to two triangulations T and T̃

that are related by a single flip of one of their internal diagonal edges dj, are related by the
rules of the mutation of seed variables (Def. 8.3.3). Subsequent flips give different systems
of equations for the variables, so we are going to study separately all the possible cases of
flip. The equations between the old and the new y variables are obtained by requiring that
the Stokes matrices remain the same, independently of the triangulation.
Consider a generic triangulation of the 2(K + 1)-gon, and consider any quadrilateral inside
the triangulation consisting of two triangles sharing an edge. For the case K ≥ 2 we have
the following possibilities for the sides of the quadrilateral:

1. three sides lie along the perimeter of the polygon, one side is an internal diagonal;

2. two sides lie along the perimeter of the polygon and two sides are internal diagonals;

3. one side is along the perimeter and the three others are internal diagonals;

4. all the four sides are internal diagonals.

With the two last cases only occurring for K > 2. Moreover, the number of yj variables
directly and nontrivially involved in the flip is equal to the number of sides of the quadrilateral
that are internal diagonals. We are going to analyze the flip for each case. After the flip,
we define some new variables associated to each edge of the new triangulation and we find
the corresponding parametrizations of the Stokes matrices in these new variables denoted
ỹj. Finally, by imposing the equality between these Stokes matrices, the ones parametrized
w.r.t. the first triangulation and the other ones, we obtain an over-determined but compatible
system of equations for the old variables and the new ones, yj and ỹj. Indeed, notice that the
yj variables are always 2K and we have an equation for each Stokes matrix, thus we have a
system of 2K+2 equations in 2K variables. We will see that this system is equivalent to the
y-mutation correspondent to the vertex on the flipped edge, in the quiver Q(T ) associated
with the triangulation T .

Case 1. This is the case where three edges of the quadrilateral are along the perimeter.
This means that we have only two variables y that are directly and nontrivially involved in
the flip. We can suppose that the first vertex, denoted by v2i (in even position, the odd case
is analogous) have valence only 6 and that the last one have valence 9, see Figure 8.6. Every
other case can be reduced to this one after an appropriate simplification in the equations we
are going to obtain. We denote by Sj the Stokes matrices obtained through the triangulation
T and by S̃j the ones obtained by the flip of T .
First, we observe that for every j ≤ 2i the Stokes matrices are parametrized exactly in the
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Figure 8.6: A flip of a quadrilateral inside the triangulation T with 3 sides along the perimeter
of the polygon and the new triangulation T̃ obtained in this way.

same way w.r.t. the yj variables and the ỹj. Thus the equations Sj(yk) = S̃j(ỹk) tell us that
yk = ỹk for every k that is not incident to v2i, v2i+1, v2i+2. As a byproduct also the variables
xl = x̃l for every l ≤ 2i they remain invariant.
We focus on the equations Sj(yk) = S̃j(ỹk) for k = 2i, 2i + 1, 2i + 2, 2i + 3. We obtain an
over-determined system of four equations from the following four matrix equations

D(x2i)AV (yj)−1AV (x−1
2i−1)−1 = D(x̃2i)AV (ỹj+1)−1AV (ỹj+1)−1AV (x−1

2i−1)−1

V (x−1
2i+1)AV (yj+1)AD(x2i)−1 = V (x̃−1

2i+1)AD(x̃2i)−1

D(x2i+2)AV (x−1
2i+1)−1 = D(x̃−1

2i+1)AV (ỹj+1)−1AV (x̃2i+2)−1

V (x−1
2i+3)AV (yj−1)−1AV (yj)AV (yj+1)−1AD(x2i+2)−1 = V (x̃−1

2i+3)AV (ỹj−1)AV (ỹj)AD(x̃2i+2)−1

(8.3.5)
It follows then the following relations between the old and the new variables must hold

ỹ2
j = (1 + y2

j+1)y2
j , ỹ2

j+1 = 1
y2
j+1

(8.3.6)

where yj is the variable on the diagonal v2i−v2i+3 and yj+1 is the one on the diagonal v2i+1 −
v2i+3 as show in Figure 8.6. One obtains these results from the second and third equation
directly, then the other equations are automatically satisfied replacing these relations.

Case 2. Now we consider the case where there are two edges of the quadrilateral on the
perimeter of the polygon, and the other two edges are internal diagonals. We can suppose as
before that the first vertex is even v2i. Also, we can assume that v2i, v2i+4 both have valence
8 and v2i+3 has valence 4. Then all the other cases (when the valences of these vertices
are higher) can be reduced to this one, after appropriate simplification. In this case three
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Figure 8.7: A flip of a quadrilateral inside the triangulation T with 2 sides along the perimeter
of the polygon and the new triangulation T̃ obtained in this way.

variables y are directly involved in the flip. Indeed, by the fact that Sj(yk) = S̃j(ỹk) for every
j, we obtain that yl = ỹl for any index l that is not incident to v2i, v2i+1, v2i+2, v2i+3 and also
for all the variables that stay on the right of the yj diagonal, see Figure 8.7. Furthermore,
by looking at j = 2i, 2i+ 1, 2i+ 2, 2i+ 3 we obtain the following over-determined system of
four equations, from the four matrix equations

D(x2i)AV (yj+1)AV (yj)−1AV (x−1
2i−1)−1 = D(x̃2i)AV (ỹj)AV (x̃−1

2i−1)−1

V (x−1
2i+1)AV (yj+2)AD(x2i)−1 = V (x̃−1

2i+1)AV (ỹj+2)AV (ỹj+1)AD(x̃2i)−1

D(x2i+2)AV (x2i+1)−1 = D(x̃2i+2)AV (x̃2i+1)−1

V (x−1
2i+3)AV (yj+1)−1AV (yj+2)−1AD(x2i+2)−1 = V (x̃−1

2i+3)AV (ỹj+2)AD(x̃2i+2)−1.

(8.3.7)

In particular, from the first three equations we obtain the following relations between the
old and the new variables

ỹ2
j = y2

j

y2
j+1

1 + y2
j+1

, ỹ2
j+1 = 1

y2
j+1

, ỹ2
j+2 = y2

j+2(1 + y2
j+1), (8.3.8)

and all the other equations are then satisfied by replacing these quantities (included the
equation for j = 2i+ 4).

Case 3. Here we consider the case where three edges of the quadrilateral are internal
diagonals of the polygon and only one edge is on its perimeter. Notice that this means that
there are four variables y that are nontrivially involved in the flip. We suppose as before that
the first edge considered is even v2i and that all the vertices involved in the quadrilateral
and their adjacent vertices have minimal valence, as in Figure 8.8. As in the previous cases,
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Figure 8.8: A flip of a quadrilateral inside the triangulation T with only 1 side along the
perimeter of the polygon and the new triangulation T̃ obtained in this way.

the equations Sl(yk) = S̃l(ỹk) for the indices l ̸= 2i, . . . , 2i+4 give that the variables yk = ỹk
for the k that are not incident to the vertices v2i, . . . , v2i+4. Then looking at the matrix
equations for l = 2i, . . . 2i+ 3 we have the four matrix equations

D(x̃2i)AV (ỹj)AV (x̃−1
2i−1) = D(x2i)AV (yj+1)AV (yj)−1AV (x−1

2i−1)

V (x̃2i+1)AV (ỹj+2)AV (ỹj+1)AD(x̃2i)−1 = V (x−1
2i+1)AV (yj+2)AD(x2i)−1

D(x̃2i+2)AV (x̃−1
2i+1)−1 = D(x2i+2)AV (x−1

2i+1)−1

V (x̃−1
2i+3)AV (ỹj+3)−1AV (ỹj+2)−1AD(x̃2i+2)−1 = V (x−1

2i+3)AV (yj+3)−1AV (yj+1)−1AV (yj+2)−1AD(x2i+2)−1.
(8.3.9)

From these equations we obtain that the old variables and the new variables are related
through the following relations

ỹ2
j = y2

j+1
y2
j

1 + y2
j+1

, ỹ2
j+1 = 1

y2
j+1

, ỹ2
j+2 = y2

j+2
y2
j+1

1 + y2
j+1

, ỹ2
j+3 = y2

j+3(1 + y2
j+1) (8.3.10)

and all the other equations (included for the vertices v2i+4, v2i+5) are identically satisfied
once we replace the relations above.

Case 4. Here we consider the case where all the sides of the quadrilateral are internal
diagonals. We suppose, as always, to have the first vertex that is even v2i and that each
vertex has minimal valence, as in Figure 8.9. Every other case, with higher order valence
for the vertices involved, can be reduced to this one after appropriate simplification. In
this case, we have five variables y directly involved in the flip, thus we will have one more
equation than in the other cases.
By looking at the equations Sl(yk) = S̃l(ỹk) for l ̸= 2i, . . . , 2i + 5, we get that yk = ỹk for
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•ỹj+1

•
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Figure 8.9: A flip of a quadrilateral inside the triangulation T with no sides along the
perimeter of the polygon and the new triangulation T̃ obtained in this way.

every index k that is not adjacent to the flipped edge with coordinate yj+4. Then by looking
at the equations for l = 2i, . . . , 2i+ 4 we have the following matrix-valued system

D(x2i)AV (yj)AV (yj+1)−1AV (yj+3)AV (x2i−1)−1 = D(x̃2i)AV (ỹj)AV (ỹj+3)AV (x̃2i−1)−1

V (x2i+1)AD(x2i)−1 = V (x̃2i+1)AD(x̃2i)−1

D(x2i+2)AV (yj+1)AV (yj)−1AV (x2i+1)−1 = D(x̃2i+2)AV (ỹj+1)AV (ỹj+4)AV (ỹj)−1AV (x̃2i−1)−1

V (x2i+3)AD(x2i+2)−1 = V (x̃2i+3)AD(x̃2i+2)−1

D(x2i+4)AV (yj+2)−1AV (yj+4)AV (yj+1)−1AV (x2i+3)−1 = D(x̃2i+2)AV (ỹj+2)AV (ỹj+1)−1AV (x̃2i+3)−1.
(8.3.11)

This system is solved through the following relations between the old and the new variables

ỹ2
j = y2

j (1+y2
j+4), ỹ2

j+1 = y2
j+1

y2
j+4

1 + y2
j+4

, ỹ2
j+2 = y2

j+2(1+y2
j+4), ỹ2

j+3 = y2
j+3

y2
j+4

1 + y2
j+4

, ỹ2
j+4 = 1

y2
j+4

(8.3.12)
and they also satisfy the equations for l = 2i+ 5, 2i+ 6.

Notice that in each case we obtained that the system of equations for the old and new y

variables obtained from the matrix equations Sl(yk) = S̃l(ỹk) is solved by some y-mutation
relations of the Dynkin diagram of A2K-type, as in equation (8.3.3). In particular, every
set of equations (8.3.6), (8.3.8), (8.3.10), (8.3.12) coincide with the y-mutation w.r.t. the
vertex yl associated to the flipped edge of the triangulation T of the polygon, of the Dynkin
diagram of A2K-type associated to the triangulation T for the square of its variables.

Remark 8.3.6. For what concerns the flip of the internal diagonal of the triangulation T0

associated to the variable y2, analogue considerations hold. In particular, by looking at the
equations Sl(yk) = S̃l(ỹk) for l = 1, 2, 3, one obtains that the squares of the variables yk and
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ỹk for k = 1, 2, 3‡ are related by the Y -mutation relations for the mutation of the quiver
Q(T0) of type A2K with respect to the vertex y2. The other equations Sl(yk) = S̃l(ỹk), l > 3
directly implies that all the other variables yk, k ̸= 1, 2, 3 do not change under this flip.

8.3.2 Example: the case K = 2
We work out on the case K = 2, i.e. the case of the hexagon. In particular, we are going to
take the fixed triangulation T0 of the hexagon (e.g. the one in Figure 8.5), and we consider
the variables and the matrices associated to each edge of the graph in the common way
explained before. We compute then the Stokes matrices and the Stokes 2-form W2 in these
variables.
Then, we consider all the possible flip of this triangulation, w.r.t. the edges with variables
y2, y3, y4 as in Figure 8.10, and we perform the same computations above with the new
variables associated to each new triangulation obtained in that way. We will see that in each
case, the inverse of the matrix coefficient of the Stokes 2-form is, up to the same factor 1

4 the
adjacency matrix of a certain mutation of the A4 Dynkin diagram, the one given in Figure
8.4.

• For the triangulation T1 the variables xl are

x2 = y1y
−1
2 , x3 = y1y

−1
2 y3, x4 = y1y

−1
2 y3y

−1
4 , x5 = x4, x6 = y1. (8.3.13)

The 2-form W2
T1 is log-canonical in the variables yi and such that its matrix coefficient

has inverse

PT1
2 = 1

4

⎛⎜⎜⎜⎜⎝
0 1 0 0

−1 0 1 0
0 −1 0 1
0 0 −1 0

⎞⎟⎟⎟⎟⎠ = 1
4AdjA4 . (8.3.14)

• For the triangulation T2 the variables xl are

x2 = u1, x3 = u1u2u3, x4 = u1u2u3u
−1
4 , x5 = u1u2u3u

−1
4 , x6 = u1u

−1
2 . (8.3.15)

The 2-form W2
T2 is log-canonical in the variables yi and such that the inverse of its

coefficient matrix, namely PT2
2 gives

PT2
2 = 1

4

⎛⎜⎜⎜⎜⎝
0 −1 0 0
1 0 −1 0
0 1 0 1
0 0 −1 0

⎞⎟⎟⎟⎟⎠ = 1
4Adjµ2(A4).

‡The correct Y -mutation formula is actually obtained for y−1
1 , y2, y3 and ỹ−1

1 , ỹ2, ỹ3, but this is just a
matter of notation, due to the fact that we associated the matrix V (y−1

1 ) to the edge v1 → v2 in the graph
Σ(K)

0 .
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Figure 8.10: The 4 triangulations considered are T1 and then all the others obtained from
T1 by a flip of one of the diagonals dj for j = 2, 3, 4.

• For the triangulation T3 the variables xl are

x2 = w1w
−1
2 w−1

3 , x3 = x2, x4 = w1w
−1
2 w−2

3 w−1
4 , x5 = x4, x6 = w1. (8.3.16)

The 2-form W2
T3 is such that the inverse of its coefficient matrix, namely PT3

2 gives

PT3
2 = 1

4

⎛⎜⎜⎜⎜⎝
0 1 0 0

−1 0 −1 1
0 1 0 −1
0 −1 1 0

⎞⎟⎟⎟⎟⎠ = 1
4Adjµ3(A4).

• For the triangulation T4 the variables xl are

x2 = t1t
−1
2 , x3 = t1t

−1
2 t3t4, x3 = t4, x5 = t1t

−1
2 t3t

2
4. (8.3.17)

The 2-form W2
T4 is such that the inverse of its coefficient matrix, namely PT4

2 gives

PT4
2 = 1

4

⎛⎜⎜⎜⎜⎝
0 1 0 0

−1 0 1 0
0 −1 0 −1
0 0 1 0

⎞⎟⎟⎟⎟⎠ = 1
4Adjµ4(A4).
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Furthermore the equations Si(y⃗) = S̃i(u⃗) that impose the Stokes equations parametrized in
the 2 triangulations T1 and Tj to be equal, give exactly that u2

i , w
2
i or t2i respectively for

j = 2, 3, 4 are y-mutation of y2
i related to A4 w.r.t. the vertices y2, y3, y4.

8.4 Computation of the Poisson brackets for the
original monodromy parameters

In the previous sections we have parametrized the Stokes manifold SK of dimension 2K,
by using the variables yj for j = 1, . . . , 2K of the A2K cluster algebra type. Using this
parametrization, explicitly computed in Lemma 8.2.5, we also proved that the two-form WK

defined on SK is symplectic and that the variables yj are log-canonical for this two-form.
We also computed the Poisson brackets PK induced by the symplectic structure WK on SK .
Now, we want to compute these Poisson brackets PK on the parametrization of the original
monodromy parameters sj, for j = 1, . . . , 2K + 2 and λ describing SK . In particular, we
are going to show that the Poisson brackets PK for the yj defined in (8.2.29) are a log-
canonical formulation of the following bracket, called Flaschka-Newell Poisson bracket in the
introduction.

Definition 8.4.1. Consider the nonlinear Poisson bracket on C2K+2 × C∗ with coordinates
(s1, . . . , s2K+2, λ) given by

{︃
sj, sl

}︃
F N

= δj,l−1 − δj,1δl,2K+2

λ2 + (−1)j−l+1sjsl, j < l.

{︃
sj, λ

}︃
F N

= (−1)jsjλ.

(8.4.1)

These Poisson structure first appeared in [37] (see section 3, 5).

Proposition 8.4.2. Let

F = FK =
(︄

1 s1

0 1

)︄(︄
1 0
s2 1

)︄
. . .

(︄
1 s2K+1

0 1

)︄(︄
1 0

s2K+2 1

)︄
λσ3 . (8.4.2)

Let σ3, σ+, s− be the matrices

σ3 =
(︄

1 0
0 −1

)︄
, σ+ =

(︄
0 1
0 0

)︄
, σ− =

(︄
0 0
1 0

)︄
(8.4.3)
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(1) The matrix F satisfies

{s1, F}
F N

= s1

2 [σ3, F ] + [σ−, F ]

{s2K+2, F}
F N

= s2K+2

2 [F, σ3] + 1
λ2 [σ+, F ]

{sℓ, F}
F N

= (−1)ℓ[F, σ3], 2 ≤ ℓ ≤ 2k + 1

{λ, F}
F N

= 1
2[σ3, F ]. (8.4.4)

(2) The unique Casimir function for the bracket (8.0.4) is C = Tr(F );
(3) The sub-varieties SK = {FK = 1} are Poisson sub-varieties.

We defer the proof to the Appendix of the paper [15].

Theorem 8.4.3. The parametrization given in Lemma 8.2.5 for the Stokes parameters
sj, j = 1, . . . , 2K + 2 and the formal monodromy exponent λ transforms the Poisson bracket
(8.4.1) in the bracket (8.2.29).

Proof. We start by observing that the bracket (8.2.29) is such that all even-indexed variables
commute amongst themselves, and so do the odd ones. We now verify that the bracket
(8.2.29) yields the bracket (8.4.1) under the map (8.2.16). We will verify some of the brackets
explicitly and leave the rest of the verification to the reader. Let us start with the case
{s2k+1, λ} for k < K: since λ is a function of only the even variables it commutes with the
even ones and we can write

{s2k+1, λ} = −
k∏︂
j=1

y2
2j

⎧⎨⎩
k−1∏︂
j=0

y−2
2j+1 +

k∏︂
j=0

y−2
2j+1, (−1)K

K∏︂
j=1

y2
2j

⎫⎬⎭ . (8.4.5)

This computation is easily done by passing to the logarithms of the variables yj’s, in which
the Poisson bracket (8.2.29) is constant: thus both terms inside the bracket are log–canonical.
Then one observes that the bracket above involves a telescopic sum and only the term y1

yields a contribution and we obtain

{s2k+1, λ} = −s2k+1λ. (8.4.6)

The case {s2K+1, λ} is handled similarly. Consider now an even variable s2k for k < K; since
λ is a function of only the even variables we can write

{s2k, λ} = (1 + y2
2k)∏︁k

j=1 y
2
2j

⎧⎨⎩
k−1∏︂
j=0

y2
2j+1, (−1)K

K∏︂
j=1

y2
2j

⎫⎬⎭ = s2kλ, (8.4.7)

where we have used the same telescopic-sum argument. Again, the case {s2K+2, λ} is handled
similarly observing that s2K+2 = y2

1 times a function of only even variables.
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Let us now consider the bracket {sa, sb}; suppose both a = 2k, b = 2l are even.⎧⎨⎩(1 + y2
2k)∏︁k

j=1 y
2
2j

k∏︂
j=1

y2
2j−1,

(1 + y2
2l)∏︁l

j=1 y
2
2j

l∏︂
j=1

y2
2j−1

⎫⎬⎭ = (1 + y2
2k)∏︁k

j=1 y
2
2j

⎧⎨⎩
k∏︂
j=1

y2
2j−1,

(1 + y2
2l)∏︁l

j=1 y
2
2j

⎫⎬⎭
l∏︂

j=1
y2

2j−1

+
k∏︂
j=1

y2
2j−1

⎧⎨⎩(1 + y2
2k)∏︁k

j=1 y
2
2j
,

l∏︂
j=1

y2
2j−1

⎫⎬⎭ (1 + y2
2l)∏︁l

j=1 y
2
2j
.

(8.4.8)

The computation relies on the following simple observation, which can be used for both
terms by interchanging the roles of k and l:

⎧⎨⎩
k∏︂
j=1

y2
2j−1,

1∏︁l
j=1 y

2
2j

⎫⎬⎭ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−
∏︁k

j=1 y
2
2j−1∏︁l

j=1 y
2
2j

k ≤ l

0 k > l.

(8.4.9)

Now let k ≤ l − 1: then the second bracket in (8.4.8) is zero and the first yields back s2ks2l

which is consistent with (8.4.1). The odd-odd case is similarly handled.
We still have to check the case even-odd. For that, consider the case {s2k, s2l+1} for k ≤ l:⎧⎨⎩(1 + y2

2k)∏︁k
j=1 y

2
2j

k∏︂
j=1

y2
2j−1,−

(1 + y2
2l+1)∏︁l

j=0 y
2
2j+1

l∏︂
j=1

y2
2j

⎫⎬⎭ =

= −(1 + y2
2k)∏︁k

j=1 y
2
2j

⎧⎨⎩
k∏︂
j=1

y2
2j−1,

l∏︂
j=1

y2
2j

⎫⎬⎭ (1 + y2
2l+1)∏︁l

j=1 y
2
2j+1

−
k∏︂
j=1

y2
2j−1

{︄
(1 + y2

2k)∏︁k
j=1 y

2
2j
,
(1 + y2

2l+1)∏︁l
j=0 y

2
2j+1

}︄
l∏︂

j=1
y2

2j.

(8.4.10)
The first bracket in (8.4.10) gives ∏︁k

j=1 y
2
2j−1

∏︁l
j=1 y

2
2j and hence

{s2k, s2l+1} = s2ks2l+1 −
k∏︂
j=1

y2
2j−1

{︄
(1 + y2

2k)∏︁k
j=1 y

2
2j
,
(1 + y2

2l+1)∏︁l
j=0 y

2
2j+1

}︄
l∏︂

j=1
y2

2j. (8.4.11)

The several contributions in (8.4.11) can all be accounted for by the formula (8.4.9): if
l ≥ k + 1 then one sees immediately that all terms in the bracket in (8.4.11) vanish. The
only case when the bracket gives a nonzero contribution is for k = l:{︄

(1 + y2
2k)∏︁k

j=1 y
2
2j
,
(1 + y2

2k+1)∏︁k
j=0 y

2
2j+1

}︄
=
{︄

1∏︁k
j=1 y

2
2j
,

1∏︁k−1
j=0 y

2
2j+1

}︄
= − 1∏︁k

j=1 y
2
2j

1∏︁k−1
j=0 y

2
2j+1

. (8.4.12)

Combining this with (8.4.11) gives finally

{s2k, s2l+1} = 1+s2ks2l+1 (8.4.13)
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To complete the verification remains only to check the case

{s1, s2K+2} =
{︄

−y−2
1 ,

K∑︂
l=1

y2
1∏︁K

j=1 y
2
2j
∏︁K
j=l y

2
2j

}︄
= −

K∑︂
l=1

y2
1

{︄
y−2

1 ,
1∏︁K

j=1 y
2
2j
∏︁K
j=l y

2
2j

}︄
=

= −
K∑︂
l=1

y2
1

{︄
y−2

1 ,
1∏︁K

j=1 y
2
2j

}︄
1∏︁K

j=l y
2
2j

−
K∑︂
l=1

y2
1

{︄
y−2

1 ,
1∏︁K

j=l y
2
2j

}︄
1∏︁K

j=1 y
2
2j
.

(8.4.14)

In the second sum only the term l = 1 contributes and the result of this is 1
λ2 ; the first sum

instead contributes −s1s2K+2 and in total we find

{s1, s2K+2} = − 1
λ2 +s1s2K+2. (8.4.15)

The verification is thus complete. ■
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