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Abstract

Cross-vendor Security Analysis of Android Unix Domain Sockets

Mounir Elgharabawy

The Android operating system is currently the most popular mobile operating system in

the world. Android is based on Linux and therefore inherits its features including its Inter-

Process Communication (IPC) mechanisms. These mechanisms are used by processes to

communicate with one another and are extensively used in Android. Although the Android-

specific IPC mechanisms have been studied extensively, Unix domain sockets have not been

studied as much despite playing a crucial role in the IPC of highly privileged system dae-

mons. In this thesis, we propose SAUSAGE, an efficient novel static analysis framework to

study the security properties of these sockets. SAUSAGE considers access control policies

implemented in the Android security model as well as authentication checks implemented

by the daemon binaries. It is a fully static large-scale analysis framework specifically de-

signed to analyze Unix domain socket usage in Android system daemons. We use this

framework to analyze 200 Android images across eight popular smartphone vendors span-

ning Android versions 7-9. As a result, we uncover multiple access control misconfigura-

tions and insecure authentication checks introduced by vendor customization. Our notable

findings include a permission bypass in highly privileged Qualcomm system daemons and

a vendor-specific daemon exposing an unprotected socket that allows an untrusted app to

set the scheduling priority of other processes running on the system.
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Chapter 1

Introduction

In this chapter, we introduce the reader to our problem area, by giving a brief overview of

Android and Unix domain socket usage. We then motivate our work, which is detailed in

this thesis, by providing examples of past vulnerabilities that arose due to the insufficient

protection of these sockets. We also point out the gap left by past research which we suc-

cessfully address in our work. Afterwards, we propose our analysis tool, SAUSAGE, which

performs Security Analysis of Unix domain Socket usage in Android. This is followed by

our most notable contributions and findings, and our responsible disclosure process. In the

final section, we provide an outline of the organization of the rest of the thesis.

1.1 Overview

Android is currently the most widely used Operating System (OS) in the world, occupying

around 43% of the OS global market share [8] and 73% of the mobile OS global mar-

ket share [7]. Android is developed and maintained by Google and is originally based on

Linux, inheriting many of its features. It is open-sourced under the Android Open-Source

Project (AOSP). One of the fundamental features any modern operating system provides

is Inter-Process Communication (IPC) mechanisms, a method of communication between
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processes to allow for more functionality on a system. Android is no different; it provides

a variety of Android-specific IPC mechanisms (e.g., Binder, Intents, Messenger) and also

inherits the traditional IPC mechanisms available in a Linux environment. Of these tradi-

tional Linux IPCs are Unix domain sockets. In Android, Unix domain sockets are primarily

used by native system services or daemons, processes that constantly run in the background,

as one of the main methods of communication with the Android Framework layer. These

daemons handle critical low-level tasks, such as performing Domain Name System (DNS)

queries or handling cellular communication, making them high-valued targets for exploita-

tion. Like any IPC, these sockets present potential attack vectors for confused deputy-like

attacks when used by a highly privileged process, and generally increase the process’s at-

tack surface. This is due to the fact that, aside from Android system services and apps,

third-party apps with the proper permissions can access Unix domain sockets.

1.2 Motivation

Multiple vulnerabilities and exploits arose due to the misuse of these sockets. One exam-

ple is CVE-2011-3918 [36] where an unprotected socket to the Zygote process could be

leveraged to perform a denial of service attack on a device running AOSP Android 4.0.3.

Another example is the “HTC WeakSauce” exploit which makes use of a socket connection

to the privileged dmagent system daemon to achieve privilege escalation to root [28]. CVE-

2013-4777 and CVE-2013-5933 [37, 38] are privilege escalation vulnerabilities affecting

Motorola devices, the root cause of which was an unprotected socket to the init process.

More recently, an information disclosure vulnerability was discovered on Huawei phones

which allows attackers to gather screenshots and kernel and system logs [26]. The vulner-

ability is exploited by sending commands via an exposed socket to a vendor-customized

version of the debuggerd daemon. These vulnerabilities indicate that unprotected sock-

ets can degrade the security of the system whether they originate in AOSP Android or in
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vendor customization. Unfortunately, previous research in the Android IPC domain has

mainly revolved around Android-specific IPCs such as Binder and Intents, leaving much to

be desired in the evaluation of traditional Linux IPCs such as Unix domain sockets.

This warrants a closer look to measure the prevalence and severity of this issue in An-

droid systems. Shao et al. [46] carried out the first study examining the misuse of Unix

domain sockets in Android. Their results indicate that inadequate protection of these sock-

ets is a common pitfall in both Android apps and system daemons. Their approach suc-

ceeded at statically analyzing Android apps at scale, but fell short in the case of system

daemons which are arguably much more valuable targets for exploitation. This shortcom-

ing is caused by their adoption of a dynamic analysis approach to avoid challenges such

as reasoning about the complex interaction of Android access control layers, extracting

firmware images from different vendors with different formats, and statically analyzing

system daemon ARM binaries accurately. As a consequence, their analysis requires access

to a running, rooted Android device, and thus only covers two vendors across three Android

versions.

1.3 Proposed Solution

To address the absence of a cross-vendor large-scale analysis tool for Unix domain sockets

in the literature, we propose SAUSAGE, a large-scale static analysis framework to identify

valid socket connections that untrusted apps can establish to system daemons on an An-

droid device, without the need of a running device. Given an Android firmware image, our

framework analyzes access control policies and performs static binary analysis on daemon

binaries to discover socket addresses that an untrusted app can connect to and any authen-

tication checks implemented in the binary. We overcome the challenge of reasoning about

Android access control policies by using a modified version of BIGMAC, a tool originally

developed by Hernandez et al. [25], and implement our own binary analysis component.
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The framework extracts the system’s SELinux policy, system daemon binaries and init

RC files from an Android firmware image. It analyzes the SELinux policy to determine

which system daemons an untrusted app can communicate with. By using inter-procedural

data-flow analysis, it then detects socket addresses, their access control credentials, and any

authentication checks in the system daemon binaries with high accuracy. SAUSAGE can do

this on a large scale as it fully analyzes a firmware image in around 13 minutes.

We used our framework to analyze 200 Android firmware images spanning eight dif-

ferent vendors and Android versions 7-9. The results of our analysis are worrisome; all

vendors except AOSP had access control issues that allow an untrusted app to communi-

cate to highly privileged daemons. These include HTC dmagent which has been previously

exploited in “HTC WeakSauce,” and Samsung’s Professional Audio service which in al-

lows any app to set its process scheduling priority. We also identify insecure authentication

practices used by these daemons, such as checks based on an app’s process name, which

can be trivially spoofed. Additionally, we demonstrate that our approach can uncover IPC

sockets that would have been missed by the dynamic analysis approach used by Shao et

al [46].

1.4 Contributions and Notable Findings

1.4.1 Contributions

1. We propose an access control-aware, fully static, large-scale framework to analyse

Unix domain socket usage in Android system daemons.

2. We use a novel methodology based on a modified version of BIGMAC to reason

about Android’s complex interaction of access control layers through static analysis.1

1We will publish the source of the binary analysis module to the community, as well as the modified
version of BIGMACwe use as part of our framework.
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3. Using this framework, we conduct an analysis of a dataset2 of 200 Android factory

images spanning versions 7.0-9.0 across 8 different vendors, including prominent

players such as Samsung and Xiaomi, which account for over a third of the mo-

bile vendor market share worldwide [48], and others such as Asus, Motorola, HTC,

Huawei, Asus and AOSP, to find system daemon sockets accessible to untrusted apps.

We use the term untrusted app to reference third-party applications a user can install.

We also compare our results to the ground truth from three running devices and find

that our framework achieves 100% accuracy in detecting socket addresses and their

MAC and DAC credentials.

4. We find multiple instances of unprotected Unix domain sockets to root processes that

could lead to exploits such as HTC WeakSauce [28].

5. Our approach detects Unix domain sockets that are created under certain conditions

and would not have been detected through past approaches relying dynamic analysis

alone.

Other works conducted during the tenure of this thesis were published in [10, 11, 12].

1.4.2 Notable Findings

1. We found two highly privileged Qualcomm system daemons, cnd and dpmd, where

a faulty authentication mechanism is used to authenticate the peer, relying only on

its process name. However, the process name can be easily spoofed in both cases.

Through static analysis, we infer that this allows clients to get/set network settings

such as WiFi AP, WiFi P2P, and Default Network settings, by sending the appropriate

command over the cnd socket.
2The framework itself is compatible with Android versions 7.0 and above, and is vendor-independent.

However, our evaluation dataset is limited by the firmware unpacking tool being used.
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2. In 25 Samsung Android 7.0-7.1 images, we found that the daemon apaservice listens

over a socket that can be used to request changing the scheduling priority for any

process to any priority. This can result in DoS of the Samsung audio subsystem,

as well as potentially arbitrary processes running on the device. Additionally, the

daemon is vulnerable to stack overflow, potentially leading to privilege escalation.

3. There are multiple instances of overly permissive SELinux policies in five of the eight

vendors we analyzed. These policies allow socket communication between untrusted

apps and highly privileged system daemons, weakening the system’s overall security

posture. Examples of these daemons include dumpstate and rild in HTC, and dpmd

in most vendors.

4. We discovered multiple instances of vendor customization of AOSP binaries that

expose additional unprotected sockets. One example is HTC rild where two custom

sockets were added that are configured to be accessible to an untrusted app.

We have also contacted the affected vendors as part of our responsible disclosure pro-

cess. Samsung acknowledged the vulnerability in apaservice and is currently working on a

patch. They also rewarded our findings through bug bounty program on Bugcrowd. Qual-

comm responded that the unprotected cnd socket is deprecated starting Android 8.0. Thus,

they will not be patching the affected systems, despite around 180 million users relying on

the affected Android versions (7.0-7.1) [6].

1.5 Outline

The rest of the thesis is organized as follows: Chapter 2 provides an overview of topics

relevant to our work, discussing the Android security model, BigMAC (the access control

policy analysis tool we use), native Android system daemons, Unix domain sockets, our
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analysis threat model, and a review of studies related to our project. In Chapter 3, we

describe the design and implementation details of our tool, SAUSAGE. Chapter 4 details

our findings and their security impact, and presents two case studies of vulnerabilities based

on our findings. In Chapter 5, we evaluate SAUSAGE’s performance and correctness against

the ground truth from real world Android device, and discuss our tool’s limitations. Finally,

in Chapter 6, we conclude our thesis and discuss future directions to improve our work.
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Chapter 2

Background, Threat Model and Related

Work

In this chapter, we start by giving an overview of the different layers of the Android Se-

curity model. Next, we discuss BIGMAC, a fine-grained SELinux policy analysis tool

for Android that serves as a core component in our analysis pipeline. This is followed by

a discussion of system daemons, and where they fit in the Android OS architecture. We

then examine the different types of Unix domain sockets available on Android and their

properties. Following, we define our study’s threat model. Finally, we review related work

spanning two broad research areas in Android security.

2.1 Background

2.1.1 Android Security Model

The Android security model implements various layers. Apps run in sandboxes defined by

the creation of a unique Linux User ID for each application at install time. Processes can

only communicate with one another via enforced Mandatory Access Control (MAC). This
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is a feature implemented in Security-Enhanced Linux (SELinux). Interested readers can

find a comprehensive discussion of the Android security model in [33]. In this section, we

explain the key concepts behind it that are relevant to our work.

Discretionary Access Control on Android

DAC is an access control model that is used by Linux. It is implemented in Android

by using a fixed set of user IDs (UID) and group IDs (GID) for system related purposes

and limiting a range of user IDs for dynamically installed applications. Android limits

the number of processes that can run as root, therefore a high privileged process would

typically run under the system UID, or another UID specific to execute the role intended for

the process (e.g. radio, bluetooth). This avoids granting more permissions than necessary

to a process which can inherently avoid security issues. Untrusted apps are assigned a

unique UID from a specified range of IDs that are available. This prevents the third-party

applications from having more access than necessary on any other files that are not included

in their installation.

SELinux

This is a set of kernel modifications and user-space tools that have been added to various

Linux distributions. It was introduced into the Android platform in 2013. SELinux contains

a set of rules that are based on file labels which contain information such as user, role, type,

and level. These rules determine what types and actions a process has access to and are

structured to group items together based on their accessibility. SELinux implements MAC

as a security module that uses the Linux Security Module framework. In Android, SELinux

is not only restricted to access control for files, but has been extended to manage access

control for IPC mechanisms such as Binder and Unix domain sockets. Thus, for processes

to communicate with one another, the communication must be explicitly allowed by the
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SELinux policy.

SELinux Policies are created by combining the core AOSP policy with device-specific

customization. Policies are a set of rules that guide the SELinux security engine. In it there

are types for file objects and domains for processes. The SELinux Policy uses roles to limit

the domains that can be accessed and has user identities to specify the roles that users can

have. New rules can be added into the SELinux Policy which is then preprocessed and built

into the policy.conf file. In this model, all third-party applications are assigned the same

untrusted_app SELinux domain.

The SELinux Policy is variable between different Android vendors and versions. An-

droid vendors often customize this policy to facilitate inter-operability between vendor-

specific components and apps, and pre-existing AOSP components, often to the detriment

of the system’s security posture [40, 25].

Supplementary Groups

Adding a supplementary group ID to an application will grant it all the privileges of the

specified group. The groups for an application are assigned within the manifest file. An

example of some supplementary groups would be the Bluetooth group or the Internet group.

The permissions of a supplementary group can be enforced at the kernel level or at the

Android Framework level depending on the functionality granted to the group.

Middleware Permissions

The Android middleware layer contains a reference monitor that mediates inter-component

communication [20]. Middleware permissions grant apps access to resources and services

that are provided by the Android operating system rather than the Linux kernel. Some of

these middleware permissions map to supplementary groups. Thus, an app with one of

these permissions has the same privilege as a process with the corresponding group ID.
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2.1.2 BigMAC

BIGMAC [25] is a fine-grained SEPolicy static analysis tool. In this section we will discuss

the process behind how BIGMAC works and what results can be generated. BIGMAC first

walks the filesystem of the unpacked image and extracts the files’ DAC file permissions,

SELinux labels and Linux capabilities. Then, it parses the system’s init scripts and simu-

lates commands that affect the filesystem (e.g., mkdir, chmod, etc.) as well as service

commands which execute service binaries. Performing boot emulation is required to create

files in the /sys, /dev and /data directories, which would not be present in a static

firmware image.

After the boot process is emulated, BIGMAC begins the Backing File Recovery step,

where it assigns the appropriate SELinux labels to all files in the extracted filesystem.This

is done by decompiling the extracted binary SEPolicy file to a multi-edge directional graph

via the Access Vector rules (AVrules). Afterwards, it correlates policy types to actual

files on the initialized filesystem. File objects are straightforward to correlate since their

SELinux labels are captured in the extraction step. For process subjects, Type Enforcement

rules related to process transitions are inverted and processed allowing for the correlation

of subject types and their executable binary backing files.

Using the full set of subject nodes, BIGMAC constructs a dataflow graph which sim-

plifies the SELinux policy’s access vectors into a read/write model. The dataflow graph

captures all data flows allowed by AVRules for all subjects and objects by considering vec-

tors that imply a read or a write. In the dataflow graph, objects can be one of two types: file

objects and IPC objects. As discussed in the previous step, file objects can contain multiple

backing files, each with its own MAC/DAC/CAP metadata. On the other hand, IPC objects

typically do not have any backing files and are tagged with the underlying AVClass. For

instance, all classes that derive from the socket class are tagged as IPC objects.

The recovered subject nodes are also used in the Process Inflation step. For each subject
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Figure 1: Android architecture [41]

node, BIGMAC attempts to match the subject node to a service definition by comparing the

subject’s backing file with the binary file in the service definition. If the service is enabled

and is not a one shot (transient) process, the service’s defined security options are assigned

to a new process. This process is then inserted into a concrete process tree.

The final step in the process is the attack graph instantiation. In this step, all file objects

within the dataflow graph are expanded, such that each file corresponds to one node in the

graph, encompassing all of this file’s MAC/DAC/CAP attributes. All of the edges to and

from the original file object are duplicated for each individual node. This expanded graph is

overlaid onto the concrete process tree, whereby, for each process in the process tree, all in-

and out-edges in the corresponding subject in the dataflow graph are copied to the process

tree. In the resultant graph, concrete processes have concrete edges to all the objects they

can read from or write to. BIGMAC then uses this graph to generate Prolog facts that can

be used for dataflow paths in that graph.
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2.1.3 System Daemons

A daemon is defined as a process that runs in the background without owning a GUI. In a

Unix environment, daemons are often started by the init process. Android is no different.

In Android, init starts daemons specified by service definitions in init RC files. Instead of

each daemon being started with the same credentials as init (root), each service definition

specifies the daemon’s desired DAC credentials. Figure 1 shows where these daemons are

positioned with respect to the entire Android architecture. Unmodified AOSP Android con-

tains daemons which provide services essential to the Android framework, such as logging,

DNS resolution, profiling and others. We refer to these daemons as "AOSP Daemons."

AOSP daemons are available in all Android systems as part of Vanilla Android. The AOSP

version of these daemons’ source code is made available by AOSP, although vendors might

make proprietary customizations to them in their own distributions of Android. These

daemons often purposefully expose sockets for communication with an untrusted app to

implement various functionalities. Additionally, hardware vendors, such as Qualcomm,

implement daemons to act as an interface to hardware peripherals. Custom daemons can

also be added by vendors, such as Samsung, to their custom Android distributions. We

term these daemons "Vendor-specific Daemons."

As an example, netd is an AOSP daemon which controls network interfaces, their con-

figuration, and other network-related functionality [31]. This daemon typically exposes

four sockets in the RESERVED namespace: netd, dnsproxyd, mdns and fwmarkd. Of these

sockets, only dnsproxyd and fwmarkd are accessible to untrusted apps with the INTERNET

permission. The dnsproxyd socket is used by all apps to perform DNS name resolution, a

crucial step need to contact a server by translating its domain name to an IP address. In

fact, this is the underlying mechanism for any process to perform DNS name resolution in

Android, as it is implemented in Android’s version of libc, Bionic. In Samsung Android

7, the AOSP netd daemon is modified, and a new RESERVED socket is added to netd
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with address napproxyd. This addition is part of Samsung’s Knox framework and allows

recording of the domain associated with network activities for the Knox NetworkAnalyt-

ics feature. Indeed, Samsung’s version of bionic hooks the connect, recvfrom and

accept functions to send this command before proceeding if the net.knox.nap system

property is set.

2.1.4 Unix Domain Sockets

A Unix domain socket is a communications endpoint for exchanging data between pro-

cesses on the same host operating system. It can also be referred to as an inter-process

communication socket. The main difference between Unix domain sockets and Internet

sockets is that a Unix domain socket is an IPC where all communication occurs strictly

within the operating system kernel. Internet sockets use an underlying network protocol for

communication. Unix domain sockets also have what is called a namespace, or a unique

identifier to an object of a certain kind, that is used to label the socket types. There are

three types of Unix domain socket namespaces in Android, as can be seen in Table 1.

Namespace SELinux Enforcement DAC Enforcement
IPC File Contexts File Permissions

RESERVED 3 3 3

FILESYSTEM 3 3 3

ABSTRACT 3 7 7

Table 1: Security enforcement corresponding to Android Unix domain socket namespaces

FILESYSTEM. Sockets with this namespace are associated with a file on the filesystem

and are created by a processes that needs them. Once a socket file is created it will be pro-

tected by the Discretionary Access Control (DAC), as well as the mandatory access control,

or the MAC. Only processes with the proper MAC and DAC credentials can communicate

with these socket files.

RESERVED. This namespace is introduced in Android and falls under the FILESYSTEM
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namespace and thus inherits its access control properties. These socket files are created

by init and are located under /dev/socket. The name indicates that these socket files

are reserved for system use. The socket file descriptors are made available to their owner

service daemon through an environment variable named ANDROID_SOCKET_<addr>

where <addr> is the address of the socket in the RESERVED namespace.

ABSTRACT. These sockets allow a program to bind a Unix domain socket to a name

without the name being created in the filesystem. The socket’s name begins with a null

byte which removes the need to create a filesystem path name for the socket.

There are three prerequisites for a process to be allowed to establish a connection to

a FILESYSTEM (or RESERVED) socket. First, the connecting process must be allowed

to communicate to the server process through the Unix domain socket IPC by SELinux.

Second, the connecting process must be allowed to write to the socket file, based on its

file context in SELinux. Third, the connecting process must have the appropriate UID or

GID to write to the socket file, depending on the socket file’s DAC file permissions. On the

other hand, only the first prerequisite is needed in the case of ABSTRACT sockets since

file-based access control policies are not applicable to them. As a result, ABSTRACT

sockets are the least secure of the three namespaces.

Furthermore, Unix domain sockets can only be bound by one process. Filesystem MAC

and DAC can restrict the creation of sockets under certain directories to a set of processes,

preventing untrusted apps from binding sockets used by system daemons. This does not

apply to ABSTRACT sockets, however, allowing a malicious app to DoS a system daemon

by occupying an ABSTRACT address if the app manages to bind the socket address before

the daemon. Daemons started by init at boot-time are always started before apps. However,

if at any point the daemon closes the socket bound to an ABSTRACT address or the daemon

itself restarts, a malicious app can bind that address and prevent the system daemon from

re-binding it, causing DoS of that daemon. Even further, the app can spoof the daemon and
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potentially receive privileged information through the Unix domain socket. This can only

happen if the sender is allowed to connect to untrusted apps by the SELinux policy.

2.2 Threat Model

Unix domain sockets can only be accessed from processes that have proper permissions

when checked by the MAC and DAC. Our threat model specifically focuses on untrusted

apps, labeled untrusted_app in SELinux. In our threat model, an app is allowed to

obtain middleware permissions that can be granted to any untrusted_app. Middleware

permissions are not part of the MAC or DAC, so they are not directly considered when a

socket is being accessed. However, the DAC supplementary groups assigned to a untrusted

app depend on the permissions it has.

There are four permissions that any untrusted app can request which map to supple-

mentary groups. The android.permission.INTERNET permission, which corre-

sponds to the inet group, allows the untrusted_app to perform network operations,

such as opening network sockets. The android.permission.BLUETOOTH_ADMIN

permission, which corresponds to net_bt_admin, allows applications to dis-

cover and pair Bluetooth devices. Similarly, the Bluetooth permission labeled

android.permission.BLUETOOTH permission, corresponding to net_bt, allows

applications to connect to paired Bluetooth devices. The final permission is the external

storage permission, android.permission.MANAGE_EXTERNAL_STORAGE, which

belongs to the external_storage group, allows an application a broad access to ex-

ternal storage in Scoped storage, a feature in Android allowing an application to only have

access to their application directory on external storage plus any media created by the

app [5].
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2.3 Related Work

In this section, we outline related studies to our research. We start by exploring past re-

search on Android IPC mechanisms, zooming in on the first and only study to examine

Unix domain socket usage in Android. In section 2.3.3, we review research on Android

access control policy analysis, since it plays a significant role in protecting IPC in Android.

Our work significantly relies on Android access control policy analysis and Android IPC

security analysis, and bridges both of these research areas together. By analyzing Android

MAC and DAC, we narrow down the attack surface exposed to our chosen threat model,

and exclusively analyze system services and IPC mechanisms that constitute this attack sur-

face. Since all Android IPC is governed by MAC (and sometimes by DAC), we believe that

our approach may serve as a good base for future work examining the security of Android

IPC mechanisms (especially statically).

2.3.1 Android IPC

Android IPC security has long been the focus of a large body of research. Most of this

research, however, centered on either the Binder IPC interface [22, 29, 53, 17, 52, 27], or

on Android Intents [24, 45]. Furthermore, the majority of these analyses are concerned

about Android application security rather than Android framework security.

Iannillo et al. [27] designed a gray-box fuzzer for system services. The fuzzer, Chizpur-

fle, discovers vendor-specific system service methods exposed through Binder IPC and runs

a fuzzing campaign on the identified methods. To do this, it queries the system for a list

of services and their methods. Based on the methods’ signatures, it provides initial inputs

for testing them, and mutates these inputs to produce additional test cases. Meanwhile, the

system services are instrumented to monitor the test coverage. Their approach uncovered

multiple bugs on a real-world Samsung phone. However, since it heavily relies on ana-

lyzing Java reflection by design, it is not applicable native system services and daemons.
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Liu et al. [53] overcome this limitation, and propose a fuzzing solution, FANS, which finds

vulnerabilities in native system services. However, they rely on white-box methods to dis-

cover interfaces exposed on Binder by analyzing AOSP source code. As a result, it achieves

high accuracy and correctness in terms of interface identification. However, this approach

renders it inapplicable to proprietary vendor-specific services where the source code is not

available. Zhang et. al. [52] proposed Invetter, an automated static analysis tool that

finds vulnerabilities in Android system services written in Java. It relies on machine learn-

ing to identify security-sensitive input validations, and uses static analysis to detect their

problematic uses. Nevertheless, it suffers from the the same limitation as Chizpurfle, which

is that it is not able to analyse native system services.

On one hand, these works clearly demonstrate their effectiveness in finding vulnera-

bilities in system services. On the other hand, these vulnerabilities are not coupled with

a clearly defined threat model where the malicious actor is positioned with respect to the

multi-layered Android security model. Thus, some of the reported vulnerabilities from

these works may require chaining with other privilege escalation exploits to interact with

privileged, but vulnerable Binder interfaces.

2.3.2 Unix Domain Sockets

Shao et al. [46] conducted the first study of Unix domain socket usage by both Android

apps and system daemons. To perform their analysis, they developed SInspector, which

identifies Unix domain socket addresses and detects authentication checks. SInspector ex-

clusively utilizes static techniques for apps, allowing for a large scale analysis of apps.

However, for system daemons, the tool needs to be run on a live, rooted Android sys-

tem. They cite multiple reasons for this limitation, including the difficulty of unpacking

Android factory images from different vendors, and the complexity of security enforce-

ment for sockets, which involves the interplay of SEAndroid and DAC file permissions.
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However, with the advent of new open-source tools such as the Android image unpacking

library [49], and BIGMAC [25], it is now feasible to tackle these challenges and develop

a fully static large-scale cross-vendor analysis framework for Unix domain socket usage in

system daemons. We use these tools to overcome the challenges faced by SInspector that

caused it to resort to dynamic analysis for system daemons.

2.3.3 Access Control Policy Analysis

A separate, growing body of work examines Android OS security from an access control

perspective [30, 25, 50, 51, 40]. Although at the first glance this area of research might

seem irrelevant, Android access control, especially SEAndroid, plays an essential role in

the bigger picture of securing IPC. All Android IPC mechanisms are protected by the SE-

Android policy and some are protected by DAC. Lee et al. [30] proposed a tool, PolyScope,

to vet Android filesystem access control policies. They define three possible patterns of in-

tegrity violations in access control policies and rely on AOSP documentation as well as the

integrity wall method to categorize process into different integrity levels. However, their

work also relies on having a rooted Android phone for dynamic analysis. Additionally,

their approach cannot determine which DAC UID corresponds to a process’s MAC label if

the process is not running. Possemato et. al. [40] conduct a longitudinal study of a large

dataset of Android ROMs up to Android 9.0. Their analysis focuses on Android vendor

customizations across multiple layers including SELinux policies and Android init scripts.

They evaluate these customizations against Google’s Compatibility Definition Document

(CDD) and find a worrying number of non-compliant Android ROMs, and suggest that

vendors often bypass or remove security measures added by Google in AOSP Android. Yu

et al. [51] developed SEPAL, a tool that analyses SELinux policies in vendor-customized

versions of Android. SEPAL uses machine learning to detect unregulated SELinux rules

that can cause security vulnerabilities. However, their analysis only considers the MAC
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layer. Thus, many of their alerts are unexploitable without totally compromising the DAC

layer. Hernandez et al. [25] proposed BIGMAC that combines DAC and MAC to construct

an attack graph representing allowed data-flows between subjects and objects in a running

system. Although BIGMAC serves to abstract away the complexity of the Android secu-

rity model, which was recently detailed by [33], it cannot detect DAC checks that occur

dynamically in a running process.

20



Chapter 3

Methodology

This chapter is divided into two sections. In the first section, we describe how SAUSAGE’s

analysis pipeline is designed, starting from Android firmware extraction, all the way to the

extraction of accessible sockets. In the second section, we discuss the specific implemen-

tation details of each step of the analysis pipeline.

3.1 Design

An overview of the architecture of the tool can be seen in Figure 1, we describe these steps

in further detail below. The tool begins with the firmware image extraction. The filesys-

tem is unpacked and extracted to acquire the SELinux policy, daemon binaries, and the init

RC scripts. The SELinux policy is analyzed using a modified version of BIGMAC [25] to

query the processes an untrusted app can communicate with via sockets. The results from

the analysis are then compiled into a list that is used to filter the daemon binaries and the

relevant service definitions we have been able to extract. The tool conducts binary analysis

to verify the socket address and find any security checks that may be in the binaries. Run-

ning in parallel is the Init RC Service Definition Analysis which will extract RESERVED
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socket addresses and their file permissions from the Init RC files. The output of the bi-

nary analysis is combined with the output of the Init RC Service Definition Analysis and

compiled into a list that can be used to filter for accessible sockets.

3.1.1 Image Extraction

The initial step of our tool is the firmware image extraction from a repository of firmware

images that we have collected. A majority of the images have either been downloaded

directly from the AOSP firmware images website [23], or from firmwarepanda [21]. The

image packing format varies by vendor, e.g., HTC required an RUU Decrypt tool to account

for the .exe format, while Samsung required LZ4 decompression. Thus, we have to rely

on existing tools that support each Android vendor and version to avoid developing our

own. We use a modified version of the ATextract tool1 to extract the files needed to analyze

the SELinux policies and native daemons from the firmware images. For Android versions

higher than 8.0, and for unsupported vendors, we use a modified version of a newly released

unpacking tool developed for [40].

Once the images are fully extracted, the tool walks the file system to extract the DAC file

permissions along with SELinux MAC labels and other Linux capabilities. The filesystem

metadata is also saved since this information is used when BIGMAC generates the graphs

through Init Boot Simulation and Backing File Recovery. The filesystem metadata includes

Android object SELinux associations such as services, properties, and apps. It also includes

the Android property list, the raw SEPolicy binary file, and the init system files which

contain useful DAC/MAC/CAP metadata along with a list of native daemons started at

boot.
1https://github.com/FICS/atcmd/tree/master/extract
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3.1.2 SELinux Policy Analysis

Following extraction, our framework reasons about the system’s access control policies

in order to determine which processes an untrusted app can connect to through Unix do-

main sockets. The Android security model is based on the complex interaction of multiple

security layers, including SEAndroid policies, Linux filesystem permissions and Linux ca-

pabilities. Thus, we use a modified version of BIGMAC to recreate the security state of the

running system. For a full discussion of BIGMAC, we refer readers to the original paper

by Hernandez et al. [25]. Once the modified version of BIGMAC finishes analyzing an

image and generating the attack graph, it provides a query engine that can be used to find

all the objects an untrusted app can write to. We filter the resultant list of objects to only

include IPC objects of the “socket” type. Each entry in the list corresponds to a process

that an untrusted app can communicate with using Unix domain sockets. Since each IPC

object holds a reference to its owner process, we extract the file path of the process’s binary

executable, effectively obtaining the list of daemon binaries we need to analyse. The next

steps of the analysis are then performed on these binaries.

3.1.3 Socket Address Extraction

Once we have the set of binary files for daemons that an untrusted app can communi-

cate with through Unix domain sockets, we can start to extract the socket addresses that

these processes are listening over. We employ two methods for each one of these daemon

binaries: init RC parsing and static binary analysis. Parsing init RC files guarantees all

RESERVED socket addresses will be recovered, and static binary analysis will recover all

three types of socket addresses that the binary might be listening over.
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service netd /system/bin/netd
...
socket dnsproxyd stream 0660 root inet
socket mdns stream 0660 root system
socket fwmarkd stream 0660 root inet

Figure 3: Service definition of netd showing the socket option in use

Init RC Service Definitions

For each one of these binaries, there exists one or more service definitions in the Android

system’s init RC files. These service definitions can have options which configure how and

when init runs these files. One of these options, socket,2 creates a socket file for the

service in the RESERVED namespace, creates a file descriptor for this socket and binds it

to the created socket file, and saves the socket’s file descriptor as an environment variable3

for later retrieval by the service process. Figure 3 shows an example of the service defini-

tion for netd. In that case, three sockets are created with addresses dnsproxyd, mdns and

fwmarkd with the specified DAC permissions. Therefore, it is straightforward to retrieve all

RESERVED socket addresses from service definitions, by finding and parsing the socket

options. However, this method does not capture socket addresses in other namespaces.

Static Binary Analysis

In the binary analysis module, we first construct the Control Flow Graph (CFG) of the bi-

nary and all externally linked objects, and identify all defined functions. We then perform

an inter-procedural dataflow analysis starting at the entry point of every function that calls

2The socket option follows the syntax: socket <name> <type> <perm> [ <user> [
<group> [ <seclabel> ] ] ] where <name> is the address of the socket, <perm>, <user> and
<group> are its credentials on the filesystem, and <seclabel> is its SELinux label

3This environment variable’s name is formatted as ANDROID_SOCKET_<address> where
<address> is the address of the socket in the reserved namespace

25



the bind system call in the binary. At the bind callsite, we extract the value of the ad-

dress argument. The address is checked to determine whether or not it is a Unix domain

socket address. If it is, we detect the namespace that the address belongs to by checking

the first character of that address. If it is a null byte, then it belongs to the ABSTRACT

namespace and no further analysis is needed. If the address starts with a directory separator

(’/’), then it belongs to the FILESYSTEM namespace, and we attempt to determine the

permissions the socket file is created with. This is done by detecting all preceding umask,

seteuid and setegid system calls in the binary and extracting their arguments. The

same process is carried out for subsequent chmod, fchmod, chown, and fchown calls.

Additionally, the static binary analysis module detects RESERVED socket addresses by

performing the same type of dataflow analysis for functions that call getenv. If the re-

quested environment variable name starts with the “ANDROID_SOCKET_” prefix, the rest

of the environment variable name is saved as a RESERVED socket address.

3.1.4 Peer Credential Check Extraction

The getsockopt system call [32], when invoked with a file descriptor sockfd, retrieves

the value of various options for the socket pointed to by sockfd. The option retrieved is

specified by the optname argument, which is an integer corresponding to a valid socket

option. The retrieved option is stored in the pointer specified by the optval argument. In

our case, we are mainly interested in getsockopt calls where the optname is specified

as SO_PEERCRED (0x11). In this case, the connected peer’s credentials are stored at the

optval pointer in a ucred struct. This struct contains three member variables: the

Process ID (PID), UID and GID of the connected peer.

Using the same CFG used in the Socket Address Extraction step, we perform another

dataflow analysis of every function that invokes the getsockopt system call. First, we

check the value of the option name (optname) argument. If the function is called with
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the SO_PEERCRED optname, we track all subsequent uses of the returned credentials in

the function and record which credentials are being used. We use the same categorization

used in [46]; UID- and GID-based checks are considered secure, while PID checks are

considered weak. Additionally, we attempt to detect and categorize uses of these creden-

tials. We have identified two types of uses: (1) Integer comparisons: We detect whenever

a credential is used in a comparison instruction and record the operand if it is a constant

integer, or “UNDEFINED” if it is not. (2) Function arguments: We detect whenever a

credential is used as a function argument and record the function address and name (if it

was not stripped). With this usage information, we can determine exactly what credentials

a connected peer needs to be able to communicate with the process through a given socket,

thus greatly aiding in further interpretation of the analysis result.

3.1.5 File Permission Analysis

Following the detection of all socket addresses and their filesystem permissions (if any), we

check whether an untrusted app with all possible permission-mapped GIDs can access the

socket file for each FILESYSTEM or RESERVED socket address. We use a modified ver-

sion of BIGMAC to reason about the MAC policy and determine whether an untrusted app

has access to a socket file. We also inspect the socket file’s permission bits, UID and GID

to determine access w.r.t. the DAC policy. This analysis is not applicable to ABSTRACT

socket addresses in our result set as they are fileless and are therefore accessible regardless.

3.2 Implementation

In this section, we discuss the implementation of the three most crucial parts of the frame-

work architecture, which includes the extension of BIGMAC to better serve our use case,

the static analysis of daemon binaries using angr [47], and the final step of filtering and
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categorizing accessible sockets.

3.2.1 Initial BigMAC Query

The first step following successful extraction of a firmware image is the SELinux policy

analysis. We implemented an easy-to-use API that exposes the most crucial functionalities

of BIGMAC to the developer. This API facilitates running the whole workflow of BIG-

MAC in a single call, and implements an interface to the prologue engine that facilitates

query operations on the generated Attack Graph. We use this API by specifying the path

of the extracted SELinux policy and running the attack graph instantiation. Using this at-

tack graph, we run the query: query(untrusted_app, _, 1) to retrieve all nodes

in the graph that an untrusted app can write/connect to. We then filter only socket objects

from the resultant list. Since socket objects are IPCNodes, they hold a reference to the

owning process. Thus, we can retrieve all the processes, and their executable binaries, that

an untrusted app can connect to through a Unix domain socket.

Additionally, we extended BIGMAC’s Init Boot Simulation step to handle socket

options under service definitions in init RC files. On encountering a socket entry under

a service definition, BIGMAC now creates the corresponding file in the simulated filesys-

tem as part of the boot process with the specified permissions. Additionally, it assigns the

correct SELinux context to the socket file based on the extracted filesystem contexts. This

addition is essential as BIGMAC removes filesystem contexts that do not have a back-

ing file from the attack graph which would have prevented us from querying whether an

untrusted app has access to these socket files.

3.2.2 Static Binary Analysis

Our static binary analysis implementation was implemented in ~2K LoC and contains three

modules. The Socket Address Extraction module extracts socket addresses that the binary
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Function Namespace Library
FrameworkListener RESERVED libsysutils.so
SocketListener RESERVED libsysutils.so
android_get_control_socket RESERVED libcutils.so
socket_local_server_bind Any libcutils.so
socket_local_server Any libcutils.so

Table 2: Android-specific bind APIs

is listening over by analyzing bind call sites. The DAC Check Extraction module de-

tects and analyzes DAC checks by performing data flow analysis after getsockopt calls

with the SO_PEERCRED argument as discussed in Section 3.1.4. Each daemon binary an

untrusted app can connect to is statically analyzed to retrieve all the Unix domain socket

addresses it listens on and the permissions they are created with, as well as detect any

hardcoded DAC checks in the binary.

We implement our static binary analysis using the angr framework [47]. We first

generate the CFG of the analyzed binary during which function prologues are detected

and stored in the angr project’s knowledge base. The dataflow analysis is implemented

by angr’s intra-procedural ReachingDefinitions analysis [15] and is used in both

socket address extraction and DAC check extraction. To make the analysis inter-procedural,

we implement a FunctionHandler which handles function calls by performing the

ReachingDefinitions analysis recursively based on [39].

Socket Address Extraction

First, we find all call sites to the bind system call. This is done by finding the bind func-

tion node in the CFG and listing all of its predecessor nodes where the connecting edge is of

type Ijk_Call, signifying a function call. For each one of these nodes, we find the func-

tion that it belongs to, and perform an inter-procedural data flow analysis on that function.

The FunctionHandler also simulates common libc string manipulation functions, such
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as strcpy, sprintf and others, in order to capture dynamically constructed socket ad-

dresses at the bind callsite. These string manipulation handlers are implemented in order

to avoid inaccuracies caused by the complex control flow structures associated with string

operations. Additionally, Android provides additional utility APIs for system daemons to

create, bind, and listen over local sockets. These functions are found in libcutils.so

and libsysutils.so and are detailed in Table 2. We perform the same analysis at the

call sites of these functions to recover socket addresses passed to these utility functions.

DAC Check Extraction

The same dataflow analysis implementation is used for DAC check extraction. We analyze

call sites of the getsockopt system call, and check its arguments. If the optname

argument is set to SO_PEERCRED, we track usages of the ucred struct, stored in the

pointer optval, by tainting its member variables. We record any variables used and

attempt to identify the type of usage as discussed in Section 3.1.4.

3.2.3 File Permission Analysis

We add additional functionality to BIGMAC allowing us to add previously undetected files,

e.g., files created dynamically by a running process. Following the recovery of FILESYS-

TEM socket addresses and their DAC metadata, we insert these filenames along with their

metadata into BIGMAC’s recovered filesystem, and rerun BIGMAC’s workflow. This will

assign the correct SELinux labels to these files in an automated manner, which allows us to

determine whether a socket file is accessible through simple queries of the Prolog engine.
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Chapter 4

Results

In this chapter, we first present our findings on accessible sockets, and security downgrade;

we then report on the performance measurements and ground truth comparison. The num-

ber of firmware images analyzed by vendor and version can be found in Figure 4. Acces-

sible sockets are the sockets that we have identified to be accessible for an untrusted app

without any prerequisites (following our threat model). For security downgrade, we con-

sider daemons that exist in AOSP Android but have weaker security protections due to ven-

dor customization of access control policies and customization of the daemons themselves.

Additionally, we discuss the insecure usage of ABSTRACT sockets we encountered in our

dataset. Lastly, we perform case studies of interesting findings uncovered by our analy-

sis that lead to the discovery of vulnerabilities. In Figure 4, we show the distribution of

Android versions and vendors in our dataset, and we present Figure 5 which displays the

different amounts of accessible system daemons by vendor.

4.1 Accessible Sockets

We identified 28 unique socket addresses that an untrusted app is allowed to connect to

by the access control policy in at least one of the firmware images analyzed. We present
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Address Namespace System Daemon Authentication Checks Vendor
logd RESERVED logd None All

logdr RESERVED logd None All

logdw RESERVED logd None All

dnsproxyd RESERVED netd None All

fwmarkd RESERVED netd None All

pdx/system/vr/display/client RESERVED surfaceflinger None All

pdx/system/vr/display/manager RESERVED surfaceflinger None All

pdx/system/vr/display/vsync RESERVED surfaceflinger None All

tombstoned_java_trace RESERVED tombstoned None All

traced_producer RESERVED traced None All

perfd RESERVED perfd None All

/dev/socket/nims FILESYSTEM cnd None Asus, HTC, Motorola, Xiaomi

cnd RESERVED cnd <GID>OR <AppName> Asus, HTC, Motorola, Xiaomi

qvrservice RESERVED qvrservice None Asus, HTC, Samsung, Xiaomi

seempdw RESERVED seempd None Asus, HTC, Xiaomi

@fmhal_sock ABSTRACT fmhal_service <UID> Asus, Motorola, Xiaomi

@qcom.dun.server ABSTRACT dun-server None Asus, Xiaomi

@cand.socket.ctrl ABSTRACT cand None HTC

@cand.socket.msg ABSTRACT cand None HTC

dmagent RESERVED dmagent None HTC

cfiat RESERVED rild UID HTC

kipc RESERVED rild UID HTC

/dev/socket/dpmwrapper FILESYSTEM dpmd None HTC, Xiaomi

@btloggersock ABSTRACT bt_logger None Motorola, Xiaomi

@dev/socket/jack/set.priority ABSTRACT apaservice None Samsung

napproxyd RESERVED netd None Samsung

tcm RESERVED dpmd None Xiaomi

dpmwrapper RESERVED dpmd None Xiaomi

Table 3: Socket addresses an untrusted app can connect to, their system daemons, authen-
tication checks they implement and the vendors where they were found to be accessible
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Total: 200

Alcatel: 6

AOSP: 28

Asus: 21

HTC: 14

Huawei: 19

Motorola: 28

Samsung: 51

Xiaomi: 33

7.0.0: 72

7.1.0: 14

7.1.1: 32

8.0.0: 18

9.0.0: 37

8.1.0: 27

Figure 4: Distribution of Android versions and vendors in our corpus

17 of these socket addresses and their daemons in Table 3. We also specify any authenti-

cation checks performed on the client after a connection is established, as well as the list

of vendors these socket addresses were detected on.1 In the following, we discuss each

daemon’s functionality and its accessible sockets. Information about proprietary daemons’

functionality is not publicly available. Therefore, we infer their functionality based on

static analysis of the binaries, as well as whatever information we can find online.

4.1.1 AOSP Daemons

AOSP daemons are available in all Android systems as part of AOSP Android. The AOSP

version of these daemons’ source code is made available by AOSP, although vendors might

make proprietary customizations to them in their own distributions of Android. These

daemons purposefully expose sockets for communication with an untrusted app to imple-

ment various functionalities. These sockets were detected consistently across our dataset,

confirming our tool’s reliability at detecting accessible sockets. Since these sockets are

1We only specify the vendors with firmware images where the system daemon that uses these sockets is
accessible. If the daemon exists in other vendors’ firmware images, we do not include it.
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Figure 5: Accessible system daemons by vendor in our corpus

intended to be accessed by untrusted apps, we omit these accessible sockets from Table 3,

and briefly discuss the daemons’ functionality instead.

The logd daemon is a centralized logger implementing all logging operations in An-

droid [31]. It utilizes three sockets, all of which are accessible to an untrusted app: logd,

logdr, and logdw. The netd daemon is responsible for managing network interface con-

figurations [?]. In AOSP Android, the netd daemon utilizes four socket addresses: netd,

dnsproxyd, mdns and fwmarkd. Of these sockets, dnsproxyd and fwmarkd are accessible

to an untrusted app with the INTERNET permission. The surfaceflinger daemon’s main

functionality is to compose and render multiple display surfaces onto the display [31]. In

Android 8.0+ images, we found three accessible RESERVED socket addresses from the

surfaceflinger daemon binary located in the pdx/system/vr/display/ directory and include

client, manager, and vsync. The tombstoned daemon was added in Android 8.0 and it plays

a role in capturing crash data from a system and storing it for further analysis. The traced

daemon is part of an open-source solution developed by Perfetto [9] and used in Android

34



for system profiling, app tracing and trace analysis. The perfd daemon collects information

to keep track of performance on the system.

4.1.2 Qualcomm Daemons

Qualcomm provides a wide range of hardware and peripherals on Android devices, such

as the processor and the Mobile Station on Modem (MSM) System on Chip (SoC). For in-

teroperability between these peripherals and the operating system, Qualcomm implements

daemons that bridge the communication between these devices and the rest of the Android

framework. These daemons were found to be accessible across multiple vendors’ images

in our dataset. In AOSP however, these daemons exist, but none of them are accessible to

an untrusted app. This discrepancy indicates that access control policies placed by AOSP

were relaxed by other vendors where these daemons were found to be accessible.

cnd. The cnd daemon manages Qualcomm Connectivity Engine which chooses between

3G/4G and Wi-Fi networks based on their performance for the specific application a user

is using [42]. It is a proprietary daemon, therefore its exact functionality is not pub-

licly known. In Android versions prior to 8.0, it uses the cnd RESERVED socket and a

FILESYSTEM socket located in /dev/socket/nims, both of which are accessible to an un-

trusted app with the INTERNET permission. The /dev/socket/nims socket was also found

to be world-accessible in some HTC, Motorola and Xiaomi images. It is unclear whether

this is a result of misconfiguration or a change of the socket’s functionality.

qvrservice. The qvrservice daemon is a proprietary daemon that manages Qualcomm VR

service. It exposes a world-accessible RESERVED socket qvrservice.

seempd. The seempd daemon is part of the Qualcomm Trusted Execution Environment

(QTEE) [43]. It exposes a world-writable DGRAM socket with address seempdw.

dpmd. The dpmd is a daemon which stands for Data Port Mapper, and is part of the
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QTI DPM Framework [4]. It is unclear what functionality it provides. This daemon uti-

lizes two sockets: a RESERVED socket with address dpmd and a FILESYSTEM socket

with address /dev/socket/dpmwrapper. The dpmd socket is configured to be inaccessible

to apps. In Android 8.0 images, it uses an additional RESERVED socket named tcm, and

the FILESYSTEM socket /dev/socket/dpmwrapper was changed to a RESERVED socket

“dpmwrapper”. The dpmwrapper and tcm RESERVED sockets require the INTERNET

permission to be able to connect.

dun-server. dun-server is a daemon that implements and manages Dial-Up Networking

over Bluetooth [3]. It listens over the @qcom.dun.server ABSTRACT socket address. It

contains no authentication check, allowing any client to connect to dun-server over this

socket.

fmhal_service. fmhal_service is an open-source daemon that manages FM radio on sup-

ported systems [2]. It exposes an ABSTRACT socket with address @fmhal_sock. Since

this socket is ABSTRACT, it is accessible by default. Thus, any app can establish a con-

nection to it. However, when a client connects, a UID check is performed to ensure that the

client’s UID is one of root, system or bluetooth.

bt_logger. bt_logger is an open-source daemon that has the ability to log Bluetooth traf-

fic [18]. It exposes an ABSTRACT socket with address @btloggersock with no authenti-

cation check, allowing any client to start/stop Bluetooth snooping.

4.1.3 Vendor-specific Daemons

Vendor-specific daemons are daemons that are developed by the Android device manu-

facturer and bundled with their operating system distribution. A daemon is classified as

vendor-specific if it is present in the Android images of a single vendor. In our results,

two out of three accessible vendor-specific daemons run as root, presenting valuable tar-

gets for exploitation. The third daemon provides an interface to a function available only
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to processes running privileged UIDs.

dmagent. HTC dmagent is a proprietary daemon that manages the Open Media Alliance

Device Management protocol. dmagent runs with UID root and listens over the RE-

SERVED socket address dmagent. The socket is configured to be accessible to applications

with the INTERNET permission. This socket has been previously used to issue copy file

command to the daemon which acts to copy files as root from arbitrary source to arbitrary

destination [28]. Our analysis shows that this socket remains unprotected by access control

policies or authentication checks, making it a prime target for exploitation of a root process.

cand. HTC cand is a proprietary daemon which runs as root and listens over two AB-

STRACT socket addresses: @cand.socket.ctrl and @cand.socket.msg. Through static anal-

ysis, we determined that the daemon serves as an interface to communicate over the CAN-

Bus, although the specific use case is not clear. Nevertheless, since it runs as root and

listens over unprotected ABSTRACT sockets, it may present another security risk much

like dmagent.

apaservice. The apaservice daemon is part of the Samsung Android Professional Audio

framework [34]. It runs as with a UID of “jack.” We found that it creates and listens

over one ABSTRACT socket address @dev/socket/jack/set.priority which is used as an

interface through which it calls android::requestPriority with the parameters it

receives. According to AOSP source code [13], this functionality should only be exposed

to processes with the audioserver, cameraserver and bluetooth UIDs.

4.2 Downgraded Security

A system daemon is considered to have downgraded security if the vendor relaxes SELinux

rules that would have prevented communication between the daemon and an untrusted app

in AOSP. To find these instances of downgraded security, we go over the list of daemons

an untrusted app can communicate with for each vendor. We then try to find each daemon

37



Figure 6: Comments in file_contexts in HTC Firmware show usage of the htc_dk
and htc_dlk sockets [16]

in that list and its service definition in the corresponding AOSP Android version. If the

service exists in AOSP and is enabled, but is not accessible by an untrusted app, then we

flag it is as a security downgrade.

HTC dumpstate. The dumpstate system daemon is an AOSP system daemon that can

generate logs that are used to collect details of device-specific issues; an untrusted app

is disallowed to communicate with this daemon in AOSP. HTC relaxed this restriction

and added two extra sockets to the daemon: htc_dk and htc_dlk. Untrusted app access

to these sockets is not allowed by both the MAC and DAC policies. However, as per

the comments of the file_contexts file shown in Figure 6, the htc_dlk socket sends

kernel log messages to a system app. This is a bad security practice as kernel logs can hold

sensitive information, and pre-installed apps packaged with vendor-customized firmware

have been shown to be insecure [19].

HTC rild. rild is the Radio Interface Layer daemon in Android [1, 14]. It provides an

abstraction layer between Android telephony services layer and the radio hardware layer

and handles all telephony operations such as call handling, SMS, and others. In Android

versions prior to 8.0, rild utilizes three sockets: rild, rild-debug and sap_uim_socket1.

In AOSP Android, communication with rild using Unix domain sockets is not allowed

for untrusted apps by the SELinux policy. In HTC images, our SELinux policy analysis

showed that the policy was relaxed and an untrusted app was allowed to communicate with

rild. Furthermore, we detected two vendor-specific sockets, kipc and cfiat, both of which

38



grant read and write access to an untrusted app with the INTERNET permission. These

socket addresses have only been detected on the HTC firmware images we analyzed, and

their file contexts are labeled htc_cfiat_socket and htc_kipc_socket, confirming that they

originate from an HTC-specific vendor customization of rild. We detected a UID-based

authentication check in the HTC rild binary, leaving these sockets potentially protected

only by a single post-connection DAC check. Therefore, if a malicious app changes its

UID through a privilege escalation exploit, it can gain access to these sockets, which would

not have been possible if the SELinux policy had not been relaxed.

cnd. The cnd daemon can be available in AOSP firmware images. In all of the AOSP

and Samsung images tested, an untrusted app does not have access to this daemon. On

the other hand, Asus, HTC, Motorola and Xiaomi firmware images allow an untrusted app

to communicate with this daemon. In this case, the daemon exposes two sockets: cnd and

/dev/socket/nims that are accessible to an untrusted app, one of which has no authentication

checks. Both require the app to have the INTERNET permission.

Asus mm-qcamera-daemon. In Asus Android images, mm-qcamera-daemon is al-

lowed to communicate with an untrusted app. It contains a socket named at address

/data/misc/camera/cam_socket in the FILESYSTEM namespace. The socket itself is in-

accessible by both the MAC and DAC policies.

4.3 Abstract Socket Denial of Service

Our analysis aims to find sockets accessible to untrusted apps. However, we report on the

ABSTRACT sockets in our results we found are vulnerable to DoS. ABSTRACT socket

addresses are vulnerable to DoS if the daemon closes the socket at any point in its operation,

or if the daemon exits for any reason. We detect the first case through manual static analysis

using Ghidra [35]. This is done by detecting close calls on the socket that was previously

bound to an ABSTRACT address. If close is called anywhere outside of a final cleanup
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of the daemons resources during termination, then we flag it as vulnerable to DoS.

As for the second case, we detect daemons which are started or stopped by property

triggers. Property triggers are defined in Init RC files, and are used to start/stop a service

daemon when the specified system property changes, depending on the value of the system

property. As a result, if a property trigger causes the system daemon to be stopped, a

malicious app can occupy the ABSTRACT address. When the daemon is restarted by

another property trigger, it fails to bind the socket to its ABSTRACT address.

Four of the ABSTRACT sockets we found are vulnerable to DoS as they match these

criteria: @dev/socket/jack/set.priority, @fmhal_service, @qcom.dun.server and @btlog-

gersock. @dev/socket/jack/set.priority is bound by apaservice and is triggered by a service

call to IAPAService::StartJackd. Therefore, a malicious app can occupy this AB-

STRACT socket address before another app makes the service call. When the service call is

made, apaservice would fail to bind the socket. However, this failure is handled gracefully

by apaservice so that its other functionalities would remain unaffected. @fmhal_service

and @btloggersock are bound by their system daemons on initialization, but the daemons

themselves are triggered by a property trigger in init RC files. A malicious app can bind

either of these addresses while the corresponding property is not set. When the property is

set and the daemons are started, they fail to bind the socket address and terminate due to

the resulting bind error. @qcom.dun.server is bound and closed repeatedly by dun-server

after every connection. Exploiting this DoS vulnerability would require a race-condition,

where a malicious app attempts to bind the @qcom.dun.server address before dun-server

re-binds it.

40



4.4 Case Studies

In this section, we focus on two interesting cases from our results that translate to vulnera-

bilities that a malicious app can potentially exploit. We discuss Samsung apaservice dae-

mon’s FILESYSTEM socket and how it can be used to request a priority for any process ID

or thread ID, a functionality only available to processes with the audioserver, cameraserver

or bluetooth UID. We discuss another potential permission bypass exploit in Qualcomm’s

cnd and dpmd daemons, both of which implement an identical check based on the connect-

ing process’s name.

4.4.1 Samsung apaservice

Our analysis indicates that Samsung’s apaservice daemon creates an ABSTRACT

socket with address @dev/socket/jack/set.priority. In our ground truth evaluation,

this socket was not found at first on the running device. We analyzed the apaser-

vice binary to determine the reason, and found that this socket is only created af-

ter calling APAService::startJackd. This method is exposed by the service

com.samsung.android.jam.IAPAService. After calling this method using the

service call command, the socket was created and appeared in the netstat output.

This demonstrates the effectiveness of our analysis in uncovering sockets which are cre-

ated only under certain conditions, as compared to dynamic analysis. Aside from the DoS

discussed in Section 4.3, this socket exposes two other, more critical vulnerabilities.

Authorization Bypass

The socket at @dev/socket/jack/set.priority is a DGRAM socket under apaservice that ac-

cepts messages from any client, with no DAC check after receiving a message. It receives

messages of the format “*4<pid>,<tid>,<priority>,” where <pid> is a process

ID, tid is a thread ID, and <priority> is the requested priority. These values are then
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passed to the function android::requestPriority, which requests the Schedul-

ingPolicyService to assign a priority to the requested process ID and thread ID. Although

this request is typically available to system processes running under the audioserver, cam-

eraserver and bluetooth UIDs, an untrusted app can set its own priority, or the priority of

any other process through this socket, effectively bypassing authorization checks.

Local Privilege Escalation

Additionally, through manual analysis, we discovered that

the function that handles messages received over this socket,

android::APAService::handlePriorityMessage, is vulnerable to buffer

overflow. By sending the correct preamble, “4*“, followed by 25 bytes of data, the apaser-

vice daemon crashes due to stack corruption. The backtrace logs show that the return

address was successfully overwritten. The impact of this buffer overflow vulnerability can

range from DoS of apaservice to local code execution as the “jack“ user in a less restrictive

SELinux context. We developed a Proof of Concept (PoC) and sent it to Samsung as part

of responsible disclosure. Our PoC crashes the daemon, achieving DoS. Achieving local

code execution would lead to the malicious application achieving local privilege escalation

to the apaservice SELinux context and the jack UID, which apaservice runs with.

However, this would require bypassing the buffer overflow protections compiled into the

daemon binary. Samsung confirmed this vulnerability and rewarded our findings through

its bug bounty program.

4.4.2 Qualcomm cnd and dpmd

In 18 Xiaomi and four HTC images analyzed, we found that dpmd implements an insecure

authentication check after a connection is established. The cnd daemon implements an

identical authentication check in 14 HTC images and 7 Motorola images. Both of these
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daemons are started by init with root UID, but later drop to system UID through a setuid

call. The authentication mechanism works as follows: after a connection with a new client

is established, the client’s DAC credentials are retrieved using a getsockopt call. First,

the GID is compared against a list of GIDs that are allowed by the daemon. If the GID does

not match any of the allowed GIDs, then the PID is used to retrieve the connecting client’s

process name by reading the /proc/<pid>/comm file for that process. In Unix systems,

this file exists for every process and contains the process name. The process name is then

compared to a list of allowed process names, and access is granted if a match is found. This

is however an insecure check, as any app can change its own process name dynamically,

even if a different process has the same name. Therefore, a malicious app can bypass this

check trivially by changing its name to that of an allowed process.

In the case of dpmd, this check is implemented for an inaccessible RESERVED socket

of the same name, “dpmd,” and an untrusted app is not allowed to connect to by both MAC

and DAC. On the other hand, cnd implements this check on its “cnd” RESERVED socket,

which is accessible to an untrusted app. Through static analysis, we infer that this socket

allows clients to get/set network settings such as WiFiAP, WiFi P2P, and Default Network

settings, by sending the appropriate command over the cnd socket.
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Chapter 5

Tool Evaluation and Limitations

In this chapter, we establish the correctness of SAUSAGE by comparing it to the ground

truth from three different physical Android devices. Moreover, we evaluate the tool’s per-

formance in terms of time taken per image or each vendor. Finally, we identify the limita-

tions and challenges we face in developing our tool and in applying it to a diverse dataset.

5.1 Ground Truth Evaluation

To confirm the correctness of our framework in detecting sockets and their access control

properties, we ran a ground truth evaluation on Samsung devices running Android 7.0 and

8.0, and a Motorola device running Android 7.1.1. The test was carried out by an app we

developed which obtains the permissions we listed in our threat model. The app runs the

netstat -xl command to list all the listening Unix domain sockets and their addresses.

The app then tries to connect to each socket address and displays a table containing the

socket addresses and the result of the connection attempt. However, this app is not part of

our framework and only serves to collect ground truth data for evaluation.

On all devices, the app successfully connected to the fwmarkd, dnsproxyd, logd,

logdr RESERVED socket addresses. On the Motorola device, the app also reported
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a connection to the perfd RESERVED socket address. All of these socket addresses

were accurately detected by our framework as accessible sockets. For the Samsung de-

vice, our analysis detected an ABSTRACT socket owned by the apaservice daemon at

@dev/socket/jack/set.priority which was not found on the running device. We later dis-

cover that the socket is created only after a Samsung-specific service is activated through a

Binder call and discuss the details in Section 4.4.1. This demonstrates the effectiveness of

our approach compared to dynamic analysis which may not detect sockets created condi-

tionally or in response to a trigger. Note that our ground truth evaluation app is a simplified

implementation of the Connection Tester dynamic analysis module used in [46]. Thus, we

claim that our approach achieves a better socket detection rate due to the higher coverage

inherent to static analysis.

5.2 Performance Evaluation

We ran our analysis on a PC with the Intel(R) Core(TM) i7-8700 CPU @3.20GHz and 16

GB RAM. On average, each firmware was analyzed in 770 seconds (~13 minutes). Figure 7

shows a box plot of the time taken for each firmware image. The static binary analysis takes

a majority of that time at an average of 736 seconds (~12 minutes), resulting in a large

variance for each image, depending on how many binaries are being analyzed, i.e., how

many service daemons are accessible to an untrusted app, and how complex their binaries

are. The remaining time is used in the initial and final steps in the instantiation and querying

of BIGMAC. Currently, our prototype does not implement obvious optimizations, such as

parallelization of the binary analysis step for each binary. We leave these engineering tasks

as future improvements to our framework. Based on monitoring the memory usage for our

analysis, parallelization would have resulted in a 3x speedup on the same PC.
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Figure 7: Analysis time for firmware images in our corpus

5.3 Limitations

Our analysis approach faces certain limitations. Firmware unpacking and extraction presents

the only obstacle to expanding our analysis to more recent Android versions and a wider

variety of vendors. Extending the current open-source toolset for Android image extraction

requires significant engineering effort, but can pave the way for similar large-scale analy-

ses. Additionally, we discuss the limitations inherent in our static binary analysis approach

that make the analysis of statically-linked stripped binaries difficult.

5.3.1 Firmware Unpacking and Extraction

Extracting and unpacking Android images is not trivial as the format of factory images

can vary greatly between different Android vendors and versions. Multiple tools have

been developed that facilitate the unpacking process or different stages of it. However, to
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our knowledge, there is no freely available unified factory image unpacking tool that can

unpack any firmware image across different versions and vendors, except for the ones we

used [49, 40]. These tools are outdated however, and only support Android versions 5-9

for AOSP, and 5-8 for other vendors. Furthermore, within these versions the unpacking

success rate is not perfect, and some filesystems may not be recovered. This limits the

operable dataset we can use in our analysis, and as the result extracted firmware might

have missing daemons or SELinux policy files.

5.3.2 Static Binary Analysis

Our implementation of the static binary analysis relies on detecting Android bind APIs

and string manipulation functions by their symbol name. This does not pose a problem in

the case of dynamically-linked binaries since external symbols are persevered for linking.

However, this becomes problematic in statically-linked stripped binaries. In our analy-

sis, we encountered three cases of statically-linked stripped binaries which we ultimately

skipped, namely: mcDriverDaemon, debuggerd and adbd. Additionally, we assume that if

a bind call exists in the binary with a Unix domain socket address parameter, then that

socket is bound at some point by the daemon of the daemon. We do not perform reachabil-

ity analysis to avoid the problem of inaccurately resolving indirect jumps.
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Chapter 6

Concluding Remarks and Future Work

In this work, we presented SAUSAGE, a static analysis framework to evaluate the security of

Unix domain sockets used in Android. Our approach combines fine-grained access control

policy analysis with static binary analysis techniques to comprehensively detect exposed

IPC sockets available to an untrusted app. We use this framework to analyze 200 Android

images from different vendors and Android versions, and uncover vulnerabilities and ac-

cess control misconfigurations, such as permission bypass and denial of service. Some

of these sockets would not have been discovered by previous work relying on dynamic

analysis.

For future work, we plan to use our framework to discover vulnerabilities stemming

from other types of misuse than misconfigured access control. For instance, the results

described in Section 4.3 are more prevalent than we expected even though they were not

the main focus of our analysis. Previous research [46] assumed that system daemons create

ABSTRACT sockets on initialization, and never close them as long as the system is run-

ning. Therefore, this issue was overlooked as a malicious app would not be able to occupy

the same ABSTRACT sockets. However, our findings show that some daemons do in fact

close these sockets or stop entirely in response to a property change, allowing a malicious

app to occupy the daemon’s ABSTRACT socket addresses. The impact of this misuse of

48



ABSTRACT sockets can range from DoS to a malicious application spoofing a system dae-

mon in confused deputy-like attacks. This provides a strong indication that repurposing our

framework to discover ABSTRACT sockets in general, and not only the ones accessible by

an untrusted app, will be fruitful.

Additionally, we plan to identify systematic methods of distinguishing between mis-

configured unprotected sockets and intended accessible sockets. This would allow for au-

tomatic labelling of vulnerable unprotected sockets and reduce the manual analysis effort.

To strengthen our vulnerability discovery component, we are considering adding a taint

analysis module, similar to the one used by Redini et al. [44], to discover memory corrup-

tion vulnerabilities exposed by sockets, such as the one described in Section 4.4.1. Alter-

natively, we can resort to fuzzing of exposed sockets after using SAUSAGE to discover their

addresses, adopting the same approach used by efforts studying the Binder IPC [27, 53].
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