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Highlights: 

•  A deep learning model to classify anomalies in optoelectronic wafers. 

• Defects and dirt accumulated in waveguide were the two anomalies investigated. 

• The deep learning approach combines CNN and WaferCaps by parallel decision 

fusion. 

• Image data for analysis were collected from laser manufacturer in Europe. 

• The results showed the importance of using the decision fusion approach. 
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Abstract

Growing demand for consumer electronic devices and telecommunications is

expected to drive the quantum cascade laser (QCL) market. The increase in

the production rate of QCLs increases the likelihood of production failures and

anomalies. The detection of waveguide defects and dirt using automatic optical

inspection (AOI) and deep learning (DL) is the main focus of this study. The

images samples of QCLs were collected from a laser manufacturing plant in

Europe. Due to the lack of sufficient dirt and defect samples, automatic and

manual data augmentation approaches were used to increase the number of

images. A combination of an improved capsule neural network (WaferCaps)

and convolutional neural network (CNN) based on parallel decision fusion is

used to classify the samples. The output of these classifiers were combined

based on rule-based selection algorithm that chooses the performance of the

best classifier according to the class. The proposed approach was compared with

the performance of standalone models, different state-of-the-art DL models such

as CapsNet, ResNet-50, MobileNet, DenseNet, Xception and Inception-V3 and
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decision tree, k-NN and Multi-layer Perceptron (MLP). The proposed approach

outperformed them all with a validation accuracy of 98.5%.

Keywords: Automatic optical inspection, capsule networks, convolutional

neural networks, deep learning, defect inspection, optoelectronic industry,

quantum cascade lasers

1. Introduction

High-performance indium phosphide (InP) quantum cascade lasers (QCLs)

play a key role in many optoelectronic applications in the mid to far infrared

(IR) regions such as IR imaging and spectroscopy (Razeghi, 2009). QCLs are

unipolar semiconductor lasers that emit in the range between 4 and 12 µm of5

wavelength. The first QCL was invented and experimented in 1994 at Bell labs

by (Faist et al., 1994). Since then and due to the extensive knowledge acquired

in the field of epi-material growth, wafer processing, and die packaging, QCLs

were developed rapidly (Figueiredo et al., 2017; Curl et al., 2010). Beside their

unique combination of compactness, room temperature operation, high power10

output and narrow linewidth, QCLs are well-known in their tuning abilities of

IR light (Villa et al., 2019). A typical QCL wafer (Figure 1) consists of multiple

laser devices and is made of a stack of InGaAs/AlInAs layers on InP substrate

using a series of chemical processes such as molecular beam epitaxy (MBE)

or metal-organic chemical vapour deposition (MOCVD) (Pecharroman-Gallego,15

2017). Like other semiconductor lasers, each QCL in the wafer consists of a

laser core, a waveguide (Figure 2), and a feedback mechanism (Razeghi, 2009).

Due to the complexity of the fabrication process, QCL wafers are prone to

multiple flaws. Where some of these malfunctions can only be detected using

special tests, a discontinuity in the waveguide of the QCL can be detected20

visually with the aid of microscope and digital camera. This defect occurs when

the hard-mask defining the waveguide is locally damaged and detaches during

the etching process of the waveguide. The detachment causes the waveguide

2
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Figure 1: Optoelectrnic wafer that contains multiple QCL devices.

to be damaged or interrupted. Another common problem is the settlement of

dirt over the waveguide of the QCL. Although dirt does not necessarily cause25

damage to the wavegiude, but the inspector should be alerted to this case since

a damage can happen beneath the dirt on the waveguide. Dirt inspection on

the waveguide is visually conducted using microscope and digital camera.

Waveguide--
--
>

--
--
>

Figure 2: A zoomed-in sample that illustrates the waveguide of QCL in optoelectronic wafer.

High-power QCL have cavity lengths between 6 and 9mm and the waveguide

needs to be in impeccable condition to ensure reliable operation. Therefore,30

quality monitoring of the waveguide is essential.

Defects and dirt detection on the waveguide in majority of cases are con-

ducted manually in small and make to order (low volume high variety) plants. In

3
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optical inspection (AOI) techniques can be utilized to automate and increase the35

accuracy of the inspection and quality control task (Abu Ebayyeh & Mousavi,

2020; Wang & Huang, 2004). Furthermore, AOI would reduce the rate of false

alarms caused by color perception induced human error (Kim et al., 2009). It

is therefore safe to claim that a bespoke robust high quality AOI system could

be a desirable tool for detection of anomalies for QCL wafers (Abu Ebayyeh &40

Mousavi, 2020; Edinbarough et al., 2005).

Conventional machine learning (ML) algorithms including supervised and

unsupervised have been widely used in many AOI tasks for identifying anoma-

lies in different industries such as food (Portalés & Ribes-Gómez, 2015), tiles

(Iglesias et al., 2018), metals (Cruz et al., 2021), medical analysis (Muzammal45

et al., 2020) and electronics (Abu Ebayyeh & Mousavi, 2020; Huang & Pan,

2015). Despite its powerful performance, conventional ML methods are only

limited to process structured data (e.g. images and natural language) in its

raw original form (Westphal & Seitz, 2021). The rise of computational power,

big data and graphical processing units (GPUs) brought the application of deep50

learning (DL) techniques to closer to solving actual and real manufacturing pro-

cess applications and replace conventional ML methods (Danishvar et al., 2021;

Sodhro et al., 2019). DL networks allows to process the raw data and per-

form feature extraction automatically due to the multiple and complex layers

that they have. Convolutional neural networks (CNNs), autoencoders and cap-55

sule networks (CapsNets) are well-know DL networks that are currently used

for AOI tasks due to their ability in processing complex and colored images

(Abu Ebayyeh & Mousavi, 2020; Westphal & Seitz, 2021).

In this study , a bespoke dedicated vision system equipped with a novel

DL solution that combines CNN and improved capusle network (WaferCaps) is60

proposed for classifying the waveguide anomalies. The solution is tested and

validated in an actual and real QCL wafers collected from a laser manfacturing

plant. In Section 2, the related work in this subject area is presented. In

Section 3, the image acquisition and preprocessing methods are discussed. For

4
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Figure 3: A detailed framework for the proposed approach in this study.

the purpose of classifying the images into three classes, namely, normal, dirt and65

defect, a data augmentation approach is proposed for upsampling the dataset

in order to utilize them in the training of the DL network. In Sections 4, the

outcomes of the proposed solution is discussed. The discussions are enriched

by comparing our main approach with alternative existing DL models. The

conclusions section (Section 5) conclude the article. This work could reduce the70

burden on human inspectors that usually use microscope to detect waveguide

anomalies of QCLs. The framework of the proposed approach can be illustrated

in Figure 3.

2. Related Work

Based on our literature review in public domain and limited interviews with75

industry experts we have not found dedicated research that has specifically

dealt with QCL anomalies using AOI techniques; nevertheless, the most relevant

research articles that used similar techniques in defect inspection are discussed.

5
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wafer surface defects; region-based CNN (R-CNN) and CNN with five convo-80

lutional layers. The dataset used were open source and is called WM-811k,

which contains eight defects patterns in binary image format (failed dies are

represented with logic 1 and normal dies with logic 0) and called wafer bin

maps (WBM). The performance of the two models was very close with a val-

idation of 95%. However, this study did not consider all type of defects such85

as mixed type defects. Furthermore, since binary images were considered, the

real defect pattern may not be accurate enough due to the information loss in

such images (Abdiyeva et al., 2020). Liu et al. (2019) proposed DL approach

based on U-shaped deep residual neural network (U-ResNet) to detect conduc-

tive particles in Thin Film Transistor Liquid Crystal Display (TFT-LCD). The90

images acquired were in micrometer scale and were divided into 3 datasets us-

ing 8-bit grayscale format. Despite of the considerably low computation time

(≤4s/product), the proposed algorithm performance was poor on the validation

dataset. Furthermore, the lack of high quality images of this study played a

vital role in the misclassification rate. Yu et al. (2019) proposed stacked con-95

volutional sparse denoising autoencoder (SCSDAE) for classifying WBM defect

patterns. The dataset used was divided into two types; simulated and industrial

in which the detection accuracy rate in this study was shown to be 95.13% in

the simulation case and 94.75% in the industrial case. However, the problem

of limited training data caused SCSDAE to overfit. Furthermore, due to la-100

beled data scarcity for some patterns in WBMs, it is a difficult for SCSDAE to

implement WMPR on imbalanced dataset. Mei et al. (2018) proposed multi-

scale convolutional denoising autoencoder (MSCDAE) model to detect texture

surface defects such as LCD panels, ceramic tiles, and textiles. The proposed

MSCDAE model applies a three-layer pyramid to perform multiscale defect in-105

spection. However, their approach requires a separate model to be trained and

tested for each layer; therefore, it is time-consuming and leads to excessive

memory consumption (Abu Ebayyeh & Mousavi, 2020). Furthermore, their ap-

proach achieved a reasonable recall but relatively low precision (Yang et al.,

6
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for classification of WBM pattern defects. In their approach, they first used

deep convolutional neural network (DCGAN) for increasing the dataset and

balancing them. Then they used WaferCaps for classifying the original and

augmented data. Their proposed approach achieved a relatively high accuracy

where the training, validation and test accuracies were 99.59%, 97.53%, and115

91.4% respectively.

In this research, the WaferCaps from (Abu Ebayyeh et al., 2022) were en-

hanced by combining its performance with a CNN model in a parallel decision

fusion approach and choosing the best predictions of both using rule-based se-

lection. Compared with the work conducted in (Abu Ebayyeh et al., 2022),120

the performance of the classifier where much improved. Furthermore, the val-

idation accuracy where enhanced compared with the other previous research

reviewed in this section that used semiconductor wafers. Hence, the data of this

research has not been used elsewhere and therefore, the comparison is based on

the detection accuracy only.125

To the best of our knowledge, there was not any research articles that tackled

QCL anomalies or any optoelectronic components. Therefore, motivated by the

lack of research in the area of identifying anomalies in QCLs, the main objective

of this research is to develop an accurate AOI system based on DL that can be

used to classify waveguide anomalies (i.e defect and dirt) of QCLs. One of the130

significant challenges faced on the development of this system is the lack of

enough samples to train the DL algorithm. Therefore, manual and automatic

data augmentation approaches were proposed to tackle this problem.

This paper’s primary contributions are as follows:

• Providing DL framework to assess the quality of the waveguide in QCLs.135

• Generating waveguide samples library by applying manual and automatic

augmentation approaches of the minority classes.

• Integrate the performance of CNN and an improved capsule network (Wafer-

Caps) using parallel decision fusion to deploy the classification of the

7
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• Compare the performance of the proposed approach with standalone mod-

els (without combination), several state-of-the-art DL algorithms such as

CapsNet (Sabour et al., 2017), ResNet50 (He et al., 2016), DenseNet

(Huang et al., 2017), MobileNet (Howard et al., 2017), Inception-V3 (Szegedy

et al., 2016), and Xception (Chollet, 2017) and other well-known ML al-145

gorithms such as support vector machine (SVM), decision tree, k-NN and

multi-layer perceptron (MLP).

3. Methodology

The data collected as well as the solution provided are implemented in laser

manufacturing plant in Europe where the inspection process of optoelectronic150

wafers was applied. The working stations include a cleaving station, a manual

die bonder, a facet inspection microscope, and various optical setups. In this

section, the process of automating the process is explained and described in

terms of the image acquisition procedure, image handling, image augmentation

and classification procedures are presented. The main focus is to classify the155

waveguide of QCL into three classes namely, normal, defect and dirt using DL

and computer vision techniques. Figure 3 demonstrate the complete framework

applied in this study.

3.1. Investigated Anomalies

Two commonly occurring types of anomalies in QCL wafer manufacturing160

are considered, defected waveguide and dirt. Defected waveguides can be recog-

nized visually by the discontinuity of the black lines that represent the waveguide

as in Figure 4. Dirt anomaly occurs when the waveguide is covered with external

material that are represented in the form of black clusters (Figure 5).

Figure 6 shows normal (non-defective) samples of waveguide. The DL al-165

gorithm used for detection will classify the sample images according to three

classes; Defect, Normal and Dirt.

8
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(a) (b) (c) (d)

Figure 4: Samples for waveguide defects in QCL wafer.

(a) (b) (c) (d)

Figure 5: Samples for dirt on waveguide in QCL wafer.

(a) (b) (c) (d)

Figure 6: Normal waveguide samples in QCL wafer.

9
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Images of the opto-electronic wafer are acquired at premises using a S-Neox

optical profilometer, by Sensofar, using a microscope and digital camera ob-170

jective with 5x magnification and white light illumination. For coverage of a

full 2′′ wafer, about 400 individual images are acquired in a raster-scan, while

adjusting for the image focus to compensate for wafer bending. The individual

images are subsequently stitched together into a single image, normalized to

20, 000 × 20, 000 pixels and manually corrected for rotation to obtain vertical175

waveguide using sensofar tool that has a controlled x-y table. This step is im-

portant in analyzing the waveguides while maintained in vertical position and is

illustrated in Figure 7 and Figure 1 shows the complete wafer image acquired.

Next step is automatic segmentation process. The images are broken down

into multiple segments such that each wafer will result into up to 430 images.180

In this study, three wafer images are segmented. These segmented images are

then labelled according to expert view as defect, dirt or normal. The observed

samples during the experiment contained 1,000 of normal, 36 defective and 240

dirt classes.

One of the main challenges of the deploying learning models is limitation185

of available data (analysis span) and lack of sufficient historical image library,

therefore risk of overfitting and low validation accuracy. In our case, this chal-

lenge is visible in the defect and dirt samples. One way to mitigate the situation

would be image augmentation. Augmentation involves creating new dataset

based on existing data for the purpose of increasing the number of samples.190

A combination of automatic and manual augmenting was implemented to in-

crease the number of dirt and defect samples to match the normal samples. In

the manual augmentation synthetic defect and dirt features were transposed on

the images (Figure 8). The large library of produced synthetic images were

validated and verified by experts on whether the could be realistic occurrences.195

The automatic augmentation approach applies different image transforma-

tion operations on the original and manually augmented images such as crop-

ping, flipping, scaling, mirroring and scaling to further increase the dataset for

10
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(a) Raster scan with sensofar tool (b) Stitching with stitching-tool provided by

sensofar

(c) Rotation of the image such that waveg-

uides are oriented vertically

(d) Cropping to 20, 000× 20, 000 pixels

Figure 7: Image acquisition approach.

11



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Manually augmented samples for defect and dirt anomalies.

training.

3.3. Networks Architecture200

In this section, the two network architectures used in this study are explained

as well as the proposed approach in integrating the performance of CNN and

the improved capsule network WaferCaps.

3.3.1. CNN

CNNs have been widely preferred in machine vision tasks due to their high205

image recognition capabilities (Abu Ebayyeh & Mousavi, 2020). Else than clas-

sification, CNNs can perform feature extraction on the target images via the

networks’ layers and topology. A typical CNN consists of different convolu-

tional, pooling and fully connected (FC) layers. Convolutional and pooling

layers distinguish a CNN from normal MLP, they are also responsible for the210

feature extraction part in the network. A convolutional layer performs element-

by-element multiplication between input matrix (image) and kernel (filter) of

different weights. The weights are randomly generated at the beginning of the

12
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to similar operations. The convolution process is explained in Figure 9(a).

1 0 2 1 1 0 1
3 1 0 3 2 1 0
0 0 2 2 0 1 2
0 0 1 1 3 0 1
1 0 1 2 1 0 0
0 0 0 1 2 1 1
1 0 2 1 0 2 1

×1

×0

×1

×0

×1

×0

×1

×0

×1 ⊗ 1 0 1
0 1 0
1 0 1

I
⊗

K

6 3 8 6 5

4 7 8 5 7
4 5 5 8 3
1 3 8 4 7
5 3 5 7 3

+ 1 =

7 4 9 7 6

5 8 9 6 8
5 6 6 9 4
2 4 9 5 8
6 4 6 8 4

I K I
⊗

K b (I
⊗

K) + b

Stride = 1

(a) Convolutional operation

1 0 2 1 1 0 1
3 1 0 3 2 1 0
0 0 2 2 0 1 2
0 0 1 1 3 0 1
1 0 1 2 1 0 0
0 0 0 1 2 1 1
1 0 2 1 0 2 1

1 0 2
3 1 0
0 0 2

MaxPool

3 3 2

2 3 3
2 2 2

I

Ip

Stride = 2

(b) Pooling operation

Figure 9: Convolution and pooling operations in CNNs.

215

A pooling layer is usually performed between two convolutional operations

to reduce the spatial size of the feature map which also reduces the computa-

tional time. Pooling layers are important for selecting the important features in

the image and discarding the redundant ones. Max pooling is popular method

in pooling, in which the maximum feature value is selected from the feature220

map according to the kernel size selected as shown in Figure 9(b). FC layers are

responsible in encoding the features from previous layers in order to come up

with relevant class and hence perform classification. In this research, the net-

work shown in Figure 10 was used to combine its performance with WaferCaps

as will be found in Section 3.3.3. This network consists of four convolutional225

13
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conv1
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pool1
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conv2
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pool2
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conv3
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pool3

(21, 21, 128)

conv4

(10, 10, 128)

pool4

1

2

3

512

Normal

Dirt

Defect

(200, 200, 3)
Input Image

Figure 10: A proposed CNN architecture for classification and decision fusion approach.

layer, four pooling layers and two FC layers. Dropout was used between the

final two FC layers. The basic idea behind dropout is to randomly disconnect

connections between neurons in connected layers according to specific dropout

rate. Therefore, by reducing coadaptations, a network can generalise training

examples more efficiently (Cha et al., 2017).230

3.3.2. CapsNet

CapsNet was proposed by (Sabour et al., 2017). It was originally used in

classifying handwritten digits of the popular MNIST dataset into ten classes (0 -

9). The architecture of the network has some similarities with CNN in terms of

the convolutional layers used. However, layer-based squashing, dynamic routing235

and lack of pooling layers are three main aspects that distinguish CapsNet

from CNN. CapsNet replaces the scalar-output feature detectors of CNNs with

vector-output capsules and replaces pooling with routing-by agreement. The

lack of pooling layers in CapsNets can be considered an advantage in terms of

preserving the features extracted in the image; however it comes with cost of240

increasing the computational time required. CapsNet replaces the scalar-output

feature detectors of CNNs with vector-output capsules and replaces pooling

operation with routing-by agreement. Each neuron in the capsule represents

various features in particular parts of an image, such that the spatial location

of the feature can be preserved. Figure 11 and Table 2 represent the original245

14
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decision fusion approach.

Layer Type Input Kernel Activation Dropout Output

Size Size / Stride Size

1 conv [200,200,3] 3/1 ReLU No [198,198,64]

2 pool [198,198,3] 2/1 - No [99,99,64]

3 conv [99,99,64] 3/1 ReLU No [97,97,64]

4 pool [97,97,64] 2/1 - No [48,48,64]

5 conv [48,48,64] 3/1 ReLU No [46,46,128]

6 pool [46,46,128] 2/1 - No [23,23,128]

7 conv [23,23,128] 3/1 ReLU No [21,21,128]

8 pool [21,21,128] 2/1 - No [10,10,128]

9 FC [10,10,128] - ReLU Yes [12800,]

10 FC [12800,] - Softmax No [3,]

CapsNet architecture as proposed by (Sabour et al., 2017).

Table 2: Layers of MNIST CapsNet proposed by (Sabour et al., 2017).

Layer Type Input Kernel Activation Dropout Output

Size Size / Stride Size

1 conv1 [28,28,1] 9/1 ReLU No [20,20,265]

2 PrimCaps [20,20,265] 9/2 ReLU No [6,6,8,32]

3 DigitCaps [6,6,8,32] - Squash No [16,10]

4 FC [16,10] - Softmax No [10,]

The first layers in the network is conventional convolutional layers as the

one in the CNN which performs convolution operation as described in Figure

9(a). In the second layer (PrimaryCaps), each capsule i of the 32 has an activity

vector ui that is used to represent spatial information in the form of instantia-

tion parameters. The output of ui is then passed to the next layer (DigitCaps),

15
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Figure 11: Originally proposed CapsNet for MNIST handwritten digit classification (Sabour

et al., 2017)

where each capsule j from the 16 per digit class receives ui and multiplies it

by the weight matrix Wij . As a result, the prediction vector ûj|i will be gen-

erated, indicating the amount of contribution for capsule i in the PrimaryCaps

on capsule j in the DigitCaps, as given by equation 1.

ûj|i = Wijui (1)

The predictions are then multiplied by a coupling coefficient c, which represents

the agreement between capsules. The coupling coefficients cij between each

capsule i in the PrimaryCaps and all the capsules j in the DigitCaps sum to

1 and are determined by a routing softmax function whose initial logits bij are

the log prior probabilities that capsule i should be coupled to capsule j. Hence,

cij is updated iteratively to enable the “Dynamic Routing” process. Equations

2-5 demostrate the previous operations.

aij = sj · ûj|i (2)

bij = bij + aij (3)

cij =
exp (bij)∑
k exp (bij)

(4)
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∑

i

cijûj|i (5)

where sj is weighted sum that is calculated to obtain the candidates for a squash-

ing function vj . The squashing operation is responsible for generating a nor-

malized vector based on the multiple neurons contained in the capsule. The

activation function used in this step is given by equation 6.

vj =
∥sj∥2

1 + ∥sj∥2
· sj
∥sj∥

(6)

A margin loss function is established to assist the classification process. The

function calculates the loss term from the output vector of DigitCaps. This will

help in deciding whether the selected digit capsule matches the real target value

of class k. The formula of the margin loss function is given by equation 7.

Lk = Tk max
(
0,m+ − ∥vk∥

)2
+ λ (1− Tk)max

(
0, ∥vk∥ −m−)2 (7)

Where Tk is a label (0 or 1) indicating whether a class k is present “1” or

not “0”. Terms m+ , m−, and λ are the hyperparameters of the model such

that m+ = 0.9, m− = 0.1 and λ = 0.5. The routing procedure can be further

described in Algorithm 1.250

The original CapsNet performed very well in classifying MNIST handwritten,

in which they have archived more than 99% classification accuracy. However, the

same network was tested on the well-known CIFAR-10 data and the accuracy

dropped down to 90%. The reason behind is these dataset are in RGB format

and have more complex background, unlike the simple MNIST data which are255

in grayscale format. Therefore, the amount of convolutional layers and hyper-

parameters used in the original CapsNet could not extract all the features in

such complex images. In this study, the performance of an improved CapsNet

(WaferCaps) that was used to classify WBM defect patterns in (Abu Ebayyeh

et al., 2022) will be tested and combine its performance with the CNN in Figure260

10. WaferCaps architecture is demonstrated using Figure 12 and Table 3. As

demonstrated in Figure 12, WaferCaps has two more convolutional layers and
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1: procedure Routing(ûj|i, r, l)

2: for all capsules i in layer l and capsule j in layer (l + 1): bij ← 0.

3: for r iterations do

4: for all capsule i in layer l: ci ← softmax(bi)

5: for all capsule j in layer (l + 1): sj ←
∑

i cijûj|i

6: for all capsule j in layer (l + 1): vj ← squash(sj)

7: for all capsule i in layer l and capsule j in layer (l + 1):

8: bij ← bij + ûj|i · vj

9: return vj

10: end for

11: end procedure

increased kernel size, which allows more extensive feature extraction process.

Furthermore, dropout layers were used after each convolutional layer to avoid

overfitting.265
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Figure 12: The proposed WaferCaps for classification and decision fusion approach

(Abu Ebayyeh et al., 2022).

3.3.3. WaferCaps+CNN

A lot of research indicates that a decision fusion approach improves classifi-

cation performance significantly (Singh & Majumder, 2020; Li et al., 2021; Arco

et al., 2021; Nguyen et al., 2020; Khaleghi et al., 2013; Al-Rakhami et al., 2021).
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and decision fusion approach.

Layer Type Input Kernel Activation Dropout Output

Size Size / Stride Size

1 conv1 [200,200,3] 15/1 ReLU Yes [50,50,256]

2 conv2 [50,50,256] 15/1 ReLU Yes [36,36,512]

3 conv3 [36,36,512] 15/1 ReLU Yes [22,22,1024]

4 PrimCaps [22,22,1024] 9/2 ReLU No [4,4,8,128]

5 WBMCaps [4,4,8,128] - Squash No [16,3]

6 FC [16,3] - Softmax No [3,]

Different classification techniques may have varying classification performances270

for the same problem. Fusion of decisions is a way of integrating the results

of multiple classifiers into a common conclusion about an event and has the

potential to integrate various decision rules in a fully tunable way. As a result

of the decision fusion, classification accuracy can be increased.

There are several types of decision fusion techniques, based on the fusion275

architecture used (Khaleghi et al., 2013; Chandola et al., 2021):

• Serial decision fusion: One way to implement serial decision fusion is by

arranging the classifiers one after another in a series; each classifier’s out-

put is used as an input to the next.

• Parallel decision fusion: Two or more classifiers work together in parallel280

to perform classification simultaneously, and then the classifiers combine

the results.

• Hybrid decision fusion: This refers to a hierarchical classification process.

In this study, a parallel decision fusion based approach is employed by com-

bining the performance of CNN in Figure 10 and WaferCaps. As will observed285

in Section 4 the reason of combining these two classifiers is that WaferCaps
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tected dirt samples more accurately. As a result, the decision fusion approach

will increase the final classification accuracy for all the classes. The combined

classifier consists of two main layers that are individual classifiers and selection290

rules.

In the first layer, two individual classifiers are settled, which are built using

the same training dataset. The second layer represents the selection methods

that receive all individual classifiers’ outputs and produces the final result. For

every input image, each classifier generates the output that represents the prob-295

ability of each class. The decimal numbers between 0 and 1 can be interpreted

as a percentage of confidence.

In our classifiers, p1, p2 and p3 are probabilities of Defect, Dirt and Nor-

mal classes, respectively and (pCaps
1 ,pCaps

2 ,pCaps
3 ) and (pCNN

1 ,pCNN
2 ,pCNN

3 )

are the outputs of classifiers in the first layers. On one side, the performances300

of individual classifiers show that WaferCaps classifier has higher sensitivity for

Defect and Normal classes than CNN classifier. Therefore, in the next layer,

more decision weight is given for WaferCaps when a decision is made for these

two classes. On the other side, CNN provides high sensitivity for the Dirt class,

thus CNN’s output is more reliable.305

In the second layer, the selection rules are described in Algorithm 2. Apply-

ing these rules to the output of the two classifiers merge the advantages of both

classifiers to achieve high accuracy.

4. Results & Discussion

In this section, the performance of our proposed combined “WaferCaps+CNN”310

is evaluated against using non-combined networks and other DL models. In our

evaluation, different metrices were used such as confusion matrices, accuracy,

recall, precision, and F1-score. Where the confusion matrix shows the measure

of the predicted classes against actual classes. The accuracy predicts how many

images were classified correctly. The precision measures the ratio of correctly315
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1: procedure Selection(pCaps
1 , pCaps

2 , pCaps
3 , pCNN

1 , pCNN
2 , pCNN

3 )

2:

(
pCaps
1 , pCaps

2 , pCaps
3

)
← probabilities of three classes in WaferCaps

3:
(
pCNN
1 , pCNN

2 , pCNN
3

)
← probabilities of three classes in CNN

4: if pCaps
1 > 0.8 OR pCNN

1 > 0.95 then

5: predicted class ← Defect

6: else if pCNN
2 > 0.95 then

7: predicted class ← Dirt

8: else if pCNN
3 > 0.95 then

9: predicted class ← Normal

10: else

11: predicted class← max(max(pCaps
1 , pCaps

2 , pCaps
3 ),max(pCNN

1 , pCNN
2 , pCNN

3 ))

12: end if

13: return predicted class

14: end procedure
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Figure 13: Architecture of the combined WaferCaps+CNN proposed approach for decision

fusion.
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a measure of the ratio of correctly classified positive samples to the all samples

in actual class. F1 Score is the weighted average of Precision and Recall.

For calculating the previous metrices, according to the confusion matrix, the

values of true positive (TP), true negative (TN), false negative (FN) and false320

positive (FP) should be used as shown in equations 8-11.

Accuracy =
TN + TP

TN + TP + FN + FP
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1− score =
2(Precision×Recall)

Precision+Recall
(11)

4.1. Experimental Data

All data were processed in RGB format with a dimension of 200 × 200 ac-

cording to three classes: normal, dirt and defect. The data were divided into

two categories; namely, training and validation. In order to investigate the per-325

formance of the tested networks, as well as the quality of the augmented data,

all of the real samples were used for the dirt and defect classes in the validation

dataset, while all the augmented data were used in the training of the networks.

The total data samples used were 1,000 images per class. Such that the training

dataset consisted of 800 samples, while the validation dataset consisted of 200330

samples.

4.2. Proposed method vs. standalone models

A series of experiments were conducted to investigate the performance of

using CNN and WaferCaps models separately and compare it with the perfor-

mance of using the proposed combined model “WaferCaps+CNN”. The results335
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14(b) and metrices in Table 4. It can be observed that CNN achieved higher

overall accuracy when compared to WaferCaps, and the performance of the dirt

classification was also remarkable in CNN; however, despite of the better overall

performance in CNN, WaferCaps achieved better classification results in both340

defect and normal classes. When both models’ performance is combined the

overall accuracy is further increased to 98.5%, and it also took the best classifi-

cation results for the normal and dirt class. However, the classification accuracy

for the defect class was slightly dropped when compared to the WafeCaps model
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Figure 14: Confusion matrix for the validation dataset for different network setups.

4.3. Proposed method vs. other DL models345

The proposed approach was further compared with relevant popular algo-

rithms such as CapsNet, ResNet50, DenseNet, Inception-V3, MobileNet, Xcep-

tion, decision tree, SVM, k-NN and MLP. The performance of these networks is

demonstrated in Figure 15 and Table 4. Comparing the six networks, ResNet50

achieved the best overall accuracy with 93.75%, followed by DenseNet with350

92.8%, followed by Inception-V3 with 90%, then Xception with 89.7%, then

MobileNet with 89.2%, then CapsNet with 77.2%, then k-NN with 61%, then

SVM with 60%, then decision tree with 55.8% and finally MLP with 51%. The

proposed approach of “WaferCaps+CNN” outperformed these networks. Figure

16 compares the proposed approach with all other models used in terms of the355

misclassified samples for each of them.
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Table 4: Metrics for evaluating the validation data against different DL networks.

Model Overall Metric Defect Dirt Normal

Accuracy

WaferCaps + CNN 0.985 Recall 0.96 0.995 1.0

(proposed) Precision 1.0 0.9803 0.9756

F1-score 0.9796 0.9876 0.9876

WaferCaps 0.93 Recall 0.97 0.82 1.0

Precision 0.9327 0.9939 0.8811

F1-score 0.951 0.8986 0.9368

CNN 0.972 Recall 0.93 0.995 0.99

Precision 1.0 0.9387 0.9802

F1-score 0.9637 0.966 0.9851

CapsNet 0.772 Recall 0.725 0.725 0.865

Precision 0.7214 0.8841 0.7362

F1-score 0.7232 0.7967 0.7954

ResNet50 0.9375 Recall 0.925 0.9 0.995

Precision 0.9788 0.9375 0.9087

F1-score 0.9512 0.9184 0.9499

DenseNet 0.928 Recall 0.875 0.91 1.0

Precision 1.0 0.9234 0.8772

F1-score 0.9333 0.9169 0.9346

Inception-V3 0.9 Recall 0.925 0.775 1.0

Precision 0.984 0.9226 0.8197

F1-score 0.9536 0.8424 0.901

Xception 0.897 Recall 0.845 0.895 0.95

Precision 0.8711 0.8364 0.9896

F1-score 0.8579 0.8647 0.9693

MobileNet 0.892 Recall 0.975 0.88 0.82

Precision 0.8125 0.9944 0.8962

F1-score 0.8864 0.9337 0.8564

k-NN 0.61 Recall 1.0 0.0 0.83

Precision 0.463 0.0 1.0

F1-score 0.633 0.0 0.9071

SVM 0.6 Recall 0.81 0.0 1.0

Precision 1.0 0.0 0.46

F1-score 0.9 0.0 0.63

Decision Tree 0.558 Recall 1.0 0.0 0.675

Precision 0.463 0.0 1.0

F1-score 0.633 0.0 0.806

MLP 0.51 Recall 0.68 0.66 0.19

Precision 0.4772 0.5176 0.6333

F1-score 0.5608 0.5802 0.2923
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Figure 15: Confusion matrix for the validation dataset for different network setups.
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Figure 16: Classified vs. misclassified samples for proposed approach against other models.
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Development of industry ready AOI solution to classify waveguide anomalies

in QCL wafers according to three classes (defect, dirt and normal) was the aim of

this research. In order to achieve this, a mechanism of image acquisition, data360

augmentation and DL classifier were proposed that combines two algorithms

(WaferCaps and CNN) using parallel decision fusion. The customized image

acquisition system consists of a microscope and camera. The wafer images were

then segmented into multiple samples, such that each sample has 200 × 200 of

size in RGB format. Data augmentation approach was then used to increase365

the samples of the dirt and defect anomalies in a way that 1,000 images were

used in each category. The total dataset was manually labelled by experts. All

the generated dataset was used for training, and the real samples were used for

validation.

The proposed DL classifier (WaferCaps+CNN) combines the performance370

of WaferCaps and CNN by rule-based selection of the predictions generated.

It showed accurate and robust capability to detect QCL anomalies with high

validation accuracy of 98.5%. The performance of the proposed solution was

compared with performance of using standalone CNN and WaferCaps as well as

with state-of-the-art DL such as CapsNet, ResNet-50, Inception-V3, DenseNet,375

MobileNet and Xception and other wel-known ML algorithms such as SVM,

decision tree, k-NN and MLP. It was proven that the overall performance of

WaferCaps+CNN outperformed them all.

Despite the remarkable achievement of identifying normal, dirt and defect

samples accurately, this research has some limitations. First, in case of the380

change of production methods, other possible anomalies and defects feature

may rise, which cannot be identified by our approach that is trained to classify

three classes. This may open the door on using uncertainty learning. Second,

augmenting samples manually is time consuming and may be not the best way

in dealing with big data. Therefore, more samples will be acquired in the future385

to use more effective methods in data augmentation such as DCGAN. Finally,
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the sample. In a future research, more samples will be used and a dedicated

algorithm to specify the location of the anomaly accurately will be proposed.
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