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A B S T R A C T   

This paper introduces a method for estimating a series of sea state parameters from satellite-borne synthetic 
aperture radar (SAR). The method was realized in a near real time (NRT) application which allows for the 
processing of data from different satellites and modes. The algorithm estimates the total significant wave height 
Hs, dominant and secondary swell and windsea wave heights, first, and second moment wave periods, the mean 
wave period and the period of wind sea. The algorithm was applied to the Sentinel-1 (S1) C-band Interferometric 
Wide Swath Mode (IW), Extra Wide (EW) and Wave Mode (WV) Level-1 (L1) products and also extended to X- 
band TerraSAR-X (TS-X) StripMap (SM) products. The scenes are processed in raster and result in continuous sea 
state fields, with the exception of S1 WV, where averaged values for sea state parameters for along-orbit 
imagettes of 20 km × 20 km are presented. 

The developed empirical algorithm consists of two parts: a first CWAVE_EX (extended CWAVE) part, based on 
a linear regression approach, and a subsequent machine learning part using the support vector machine (SVM) 
technique. A series of new data preparation steps (i.e. filtering, denoising) and new features estimated from SAR 
images are also introduced. The algorithm was tuned and validated using two independent global wave model 
hindcasts, WaveWatch-3 and MFWAM as well as National Data Buoy Center (NDBC) measurements. The ach
ieved root mean squared errors (RMSE) for CWAVE_EX for the total Hs are 0.60 m for low-resolution modes S1 IW 
(10 m pixel) and EW (40 m pixel) and 0.35 m for S1 WV and TS-X SM (pixel spacing ca.1–4 m) in comparison to 
model predictions. The RMSEs of the retrieved wave periods are in the range of 0.45–0.90 s for all of the satellites 
and models considered. Similarly, the dominant and secondary swell, and wind sea wave height RMSEs are in the 
range of 0.35–0.80 m. The SVM postprocessing improves the accuracy of the initial results of CWAVE_EX for Hs 
and reaches an RMSE of 0.25 m for S1 WV. Comparisons to 64 NDBC buoys, collocated at distances shorter than 
50 km to S1 WV imagettes worldwide, result in an RMSE of 0.41 m. All results and the methods presented are 
novel in terms of the accuracy achieved, combining the classical approach with machine learning techniques, and 
performing an automatic NRT processing of multiparametric sea state fields from L1 data with automatic 
switching for different satellites and modes. 

The complete archive of S1 WV L1 Single Look Complex products from December 2014 until February 2021 
was processed to create a sea state parameter database and validated using model hindcast and buoy mea
surements. The derived parameters are available to the public within the scope of the European Space Agency's 
Climate Change Initiative.   

1. Introduction 

This paper introduces an algorithm and processor for meteo-marine 
parameter estimation for near real time (NRT) applications. The paper is 
structured as follows: in the current Section 1, general background and 
methodology are reviewed. Section 2 is dedicated to the data used and 
Section 3 deals with the features extracted from radar images. Section 4 

presents the results and cross-validation by applying linear regression. 
In Section 5 further algorithm improvement using machine learning is 
elaborated. The summary in Section 6 finalises the paper. 

1.1. Applications of SAR imagery for meteo-marine parameters 

In recent years, the ongoing development of spaceborne synthetic 
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aperture radar (SAR) together with corresponding data transfer and data 
processing infrastructures has made a series of oceanographic applica
tions possible in near real time (NRT) (Schwarz et al., 2015; Pleska
chevsky et al., 2016; Pleskachevsky et al., 2019). Several minutes after 
image acquisition, the acquired scene can be processed and all derived 
meteo-marine parameters are transferred to weather services that can 
use these products for forecast validations and to support marine traffic. 
In turn, sea state or sea ice information, for instance, can also be sent 
directly to a ship's bridge in order to optimise the ship routing (Frost 
et al., 2018). Oceanographic products, such as significant wave height 
and surface wind speed fields, ice coverage maps, oil spill locations, etc., 
can be processed in parallel from the same satellite image or from 
different satellites (Lehner et al., 2013) and combined to support 
Maritime Situational Awareness (MSA) by fusing data from various 
sources based on remote sensing, in situ measurements, forecast 
modelling and communication systems (Voinov et al., 2020). One 
essential data source for MSA is weather and sea state information with 
high spatial resolution, which can be measured only by remote sensing 
in most areas of the globe, especially in the open ocean and in polar 
regions. Furthermore, the fusion of oceanographic parameters not only 
generates additional value for MSA, but can also be applied for forecast 
model assimilation and to gain insights into the underlying physics. For 
instance, ship motion information from the Automatic Identification 
System (AIS) and background sea state information retrieved from SAR 
were combined in ship detectability models to connect the probability of 
SAR ship detection with the actual wind and sea state conditions (Tings 
et al., 2018a, 2018b, 2019; Tings, 2021). 

1.2. Approaches to estimating maritime parameters from SAR 

Traditionally, for estimating the sea state parameters from SAR im
agery, the scenes or subscenes were converted into an image spectrum 
using, for example, the Fast Fourier Transformation (FFT). Two basic 
classical approaches have been considered for sea state parameter 
estimation:  

- Transfer functions, which convert the image spectrum into a wave 
spectrum with a subsequent estimation of the integrated sea state 
parameters (e.g. Alpers and Rufenach, 1979; Hasselmann et al., 
1996)).  

- Empirical functions, which estimate the sea state parameters directly 
from features derived from the SAR scene, including parameters 
estimated from the image spectrum without its transformation into a 
wave spectrum (e.g. the CWAVE approach by Schulz-Stellenfleth 
et al., 2007; Lehner et al., 2012; Bruck, 2015). 

The advantage of the first methods is that the resulting wave spec
trum can be assimilated into a forecast system. Such assimilations have 
been practiced for the past decades (e.g. Abdalla et al., 2006, 2010). 
Nevertheless, for meaningful spectral transformations only acquisitions 
where pronounced wave patterns are imaged in SAR scenes can be used. 
This is usually associated with wavelengths exceeding the so-called 
cutoff for SAR wave imaging (Alpers and Rufenach, 1979; Holt, 2004). 
This method is particularly well suited to the open ocean with dominant 
long swell waves. However, in coastal areas, where most of Sentinel-1 
(S1) Interferometric Wide Swath Mode (IW) scenes are acquired, this 
method can only be applied to about 30% of all scenes. Firstly, the waves 
are often too short in these areas and fall under the cutoff. Secondly, the 
SAR signal from the ocean waves is frequently distorted by a series of 
artefacts (e.g. ships, ship wakes, oil spills, etc.). All of these distortions 
and conditions result in a very noisy SAR image spectrum where wave- 
generated peaks are practically undiscernible. However, for estimating 
the sea state integrated parameters, the empirical functions are appli
cable to around 99% of all S1 IW as the image spectrum is com
plemented by a series of additional SAR features including texture 
analysis, e.g. grey level co-occurrence matrix (Pleskachevsky et al., 

2019). The empirical approach allows for fast and robust processing of 
SAR scenes in NRT. A series of empirical algorithms for retrieving sea 
state parameters from SAR imagery have been constantly improved over 
the past few years (e.g. Stopa and Mouche, 2017; Rikka et al., 2018; Li 
and Huang, 2020). 

Since the launch of the Sentinel-1 satellites in 2014 and 2016 (ESA, 
2022b, Sentinel-1), a series of investigations for S1 SAR imagery have 
been carried out worldwide for different S1 modes. For example, an 
iterative nonlinear algorithm to estimate phase-resolved deterministic 
maps of wave-induced orbital velocities, from which elevation spectra 
were derived over ice-covered regions for S1 Wave Mode (WV), was 
demonstrated by Ardhuin et al., 2016. In Sun et al., 2018 a data 
assimilation for a spectral wave model using the S1 WV is presented. A 
semi-empirical algorithm for Hs and mean wave period retrieval from S1 
StripMap were also reported by Shao et al., 2016. 

In the past few years, machine learning techniques have taken a 
leading position in science, as their results are superior to those of 
analytical and simple empirical solutions when sufficiently large data
bases are available. Even though in their early stages, machine learning 
did not noticeably provide more accurate solutions than the classical 
approaches, today they already exceed them: in 2017, the accuracy of Hs 
obtained by applying neural networks (NN) in comparison to a tradi
tional CWAVE method had not significantly improved the RMSE of ca. 
0.50 m for S1 WV (Stopa and Mouche, 2017), whereas by using a deep 
learning technique in 2020 (Quach et al., 2020) the accuracy had 
significantly been improved to an RMSE of around 0.30 m. 

The methods presented above are mostly concentrated on different 
SAR modes with different resolution for estimating individual parame
ters with a focus on significant wave height. In individual publications, 
in addition to wave height, the wave periods are estimated. In this paper 
an extended method, applicable for different modes and estimating 
multiparametric sea state fields reflecting a series of integrated sea state 
parameters has been considered. 

1.3. Algorithm definition, specific points and objective of the study 

Commonly, the estimation of a parameter from data is based on 
model functions which are only a part of the processing procedure. 
However, even the most optimal function will not be able to provide 
high accuracy for all cases without additional operations dedicated to 
data preparation such as filtering and denoising and control of results. In 
this paper, the term “algorithm” means the complete processing chain, 
with a series of steps each needed to reach high accuracy: 

- data (subscenes) preparation and denoising: pre-filtering image ar
tefacts, resampling, smoothing, etc.  

- SAR features estimation and control 
- empirical model function (EMF) for estimation of sea state parame

ters from SAR features  
- control of results using filtering procedures 

It is important to note that, although the algorithms are developed 
within scientific studies, they are aimed at practical applications. In this 
regard, some points impose boundary conditions for the algorithm's 
development. For algorithm applicability, not only the accuracy in terms 
of root mean square error (RMSE) and bias (BIAS) is to be considered, 
but also the percentage of rejected values and the processing speed are 
optimization parameters. In general, the uncertainty of measurements 
increases with the magnitude of the measured variable (e.g. Hs). This 
noise represents the distribution of the error across the variable domain 
and results not only from the inherent accuracy of the SAR methods, but 
is also related to a growing uncertainty in ground truth data (i.e. model 
or buoy) especially under storm conditions. Filtering out the ambiguous 
data on the one hand helps to improve the total accuracy, but on the 
other hand this operation increases the percentage of non-valid data. 
Therefore, not only the model function's accuracy in terms of RMSE, but 
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also filtering and outlier detection must be optimized. 
The objective of this study was the development and technical 

realization of an algorithm to estimate a series of integrated sea state 
parameters under the following conditions:  

- Fast automatic processing to allow working on massive archives of 
original Level-1 (L1) satellite SAR data with high-accuracy  

- Uniform modular architecture to make the algorithm applicable to 
various satellites and modes  

- Applicability for Near Real Time services by simple integration of the 
algorithm into the existing Sea State Processor (SSP) infrastructure. 

While each step of the algorithm was developed in a series of itera
tions with testing different approaches, filtering and denoising proced
ures, SAR-features, etc., the material is presented in the final version 
implemented in an operational near real time service. The developments 
consist of two significant parts: a first part, based on a linear regression 
approach with tuning of coefficients by an analytical solution, and a 
subsequent machine learning part with model trainings. As the amount 
of data used are on the order of millions of samples, rounded values are 
given in the text; the exact values can be found in the Appendix in the 
corresponding tables Table A3 and Table A4. 

2. Data and sea state parameters 

In this work, first the ESA Sentinel satellites S1 were used. Then the 
improved method was adopted also for TerraSAR-X (TS-X). As ground 
truth, National Data Buoy Center (NDBC, 2022) buoy measurements and 
two independent hindcast models were applied. 

2.1. SAR satellites and modes used 

The Copernicus C-band satellites Sentinel 1-A (S1-A) and Sentinel 1- 
B (S1–B) operate at an altitude of 704 km with a ground speed of 6.8 
km•s− 1 and a radar wavelength of 5.6 cm, corresponding to a frequency 
of 5.4 GHz. The twin X-band satellites TerraSAR-X (TS-X, launched in 
2007) and TanDEM-X (TD-X, launched in 2009) operate from a height of 
514 km with a ground speed of 7 km s− 1 and a radar wavelength of 3.1 
cm, corresponding to a frequency of 9.6 GHz. 

S1 WV (wave mode) acquires two parallel tracks with incidence 
angles of around 23◦ (wv1) and around 36◦ (wv2) with imagettes (small 
images with an approximate footprint of 20 km × 20 km, (ESA, 2022f, 
S1-WV) acquired every 200 km along each wv1 and wv2 track with a 
100 km offset and distance of 100 km between wv1 and wv2 tracks. 
Using both wv1 and wv2 this means along-track imagettes each 100 km. 
The length of a track (relative orbit with ID) varies from around 1000 km 
(10 imagettes) to 12,000 km (120 imagettes). The nominal spatial pixel 
resolution of S1 WV is around 3 m depending on the local incidence 
angle. The scenes can be acquired in vertical (VV) or horizontal (HH) co- 
polarization. However, >95% of the data were acquired in VV polari
zation. In the context of this work, the method was designed and trained 
for calibrated S1 WV Single Look Complex (SLC) products (ESA, 2022c, 
manual). Each day, around 60 S1 WV products (ascending or descending 
tracks) each with around 120 individual imagettes for both S1-A and 
S1–B are acquired. From a technical point of view, the large file size of 
each individual S1 WV product of 2–10 GB in size (ca. 5 TB/month), 
each including hundreds of compressed individual imagettes, makes the 
downloading, unpacking and processing a real challenge and requires 
separate consideration. 

S1 IW mode combines a large swath width with a moderate geo
metric resolution (ESA, 2022e, S1-IW). The individual IW images cover 
approximately 200 km in azimuth and 250 km in the range direction 
with a pixel spacing of 10 m. The original GRDH (Ground Range 
Detected High resolution) L1 products are available in single (HH or VV) 
or dual polarization (HH + HV or VV +VH). For sea state estimation, the 
VV or HH polarization data were used, with priority given to VV 

products. 
S1 EW (Extra Wide) mode is similar to the IW mode, but the EW 

mode acquires data over a wider area than for IW mode using five sub- 
swaths. The EW mode acquires data over 400 km swath width with a 
coarser pixel spacing of 40 m (ESA, 2022d, S1-EW). Both IW and EW 
images with corresponding swaths of around 250 km and 400 km were 
mostly acquired in strips of up to 2000 km covering the ocean surface. 

While WV imagettes and IW/EW images are taken a hundred times 
per day, the StripMap (SM) mode has been rarely acquired with only a 
few images per day and has not been considered in this study. Fig. 1 
shows an example of the daily acquisitions by S1-A and S1–B for 2020- 
09-01. As can be seen, during one day the following images were 
acquired:  

- 54 S1 WV tracks/orbits with 6480 individual imagettes,  
- 894 S1 IW individual images,  
- 229 S1 EW individual images,  
- 10 S1 SM individual images 

TS-X SM (StripMap) data used for this study are Multi-Look Ground 
Range Detected (MGD) standard products with ca. 30 km × 50 km swath 
size and ca. 3 m pixel spacing (ESA, 2022g, TS-X). The TS-X StripMap are 
mostly acquired in coastal areas. Compared to S1, the TS-X archive is 
rather limited with a few thousand acquisitions; each TS-X acquisition 
must be ordered by a user, there is no general acquisition schedule as for 
S1. 

2.2. Wave model hindcast 

As ground truth data, two independent spectral wave models were 
employed:  

- WaveWatch-3 (WW3) model with a resolution of 0.5 degrees (NOAA, 
2022), spatially interpolated on 0.25 degrees (ca. 20–25 km, which 
corresponds to the S1 WV imagette size, data available for the entire 
S1 mission).  

- Météo-France WAve Model (MFWAM) runs (CMEMS, 2022; Ardhuin 
et al., 2010) with a spatial resolution of 1/12 degrees (data available 
from April 2016 onwards). 

The model results, provided in 3-hourly steps, are temporally inter
polated. The following model data filtering was applied: 

- Land filtering: only data where at least one model grid point sepa
rates a SAR subscene from the land was used, which means the data 
points are around 25 km away from the land. 

- Ice filtering: only model data for − 60◦ < latitude<60◦ were origi
nally used in order to avoid ice coverage. This filtering corresponds 
to the setup used by Stopa and Mouche (2017) and was applied to the 
ESA Round-Robin competition dataset (see Section 2.5). After 
detailed investigations, the area south of − 55◦ was also excluded due 
to high ice content. 

2.3. Tuning, training and validation SAR data sets 

All collected SAR data were divided into tuning, training and vali
dation sets. Detailed information with data set names is given in Ap
pendix Table A3 (S1 WV) and in Table A4 (S1 IW, S1 EW, TS-X SM). 
Considering different satellites, modes, polarization, training, valida
tion, etc., a total of eleven data sets are used. 

S1 WV. The S1 WV orbits collocated with NDBC buoys from 2015 to 
2017 were applied for tuning using ground truth from WW3 and 
MFWAM (Table A3: S1-WV_LR_TUN), the 2018 orbits were used for 
validations (Table A3: S1-WV_LR_VAL). Additionally, the data from 
2019 were used for an independent validation (RoundRobin; Table A3: 
S1-WV_LR_RR) for comparison of different algorithms (linear and 

A. Pleskachevsky et al.                                                                                                                                                                                                                         



Remote Sensing of Environment 280 (2022) 113200

4

machine learning approaches in this study). For 2015–2017, the number 
of samples is not large in comparison to the full data archive, as at the 
beginning of the studies the data were downloaded as individual prod
ucts from the ESA DataHub considering only S1 WV orbits collocating 
with stationary buoys. Worldwide, 64 NDBC buoys were found to be 
collocated closer than 50 km to the border of the S1 WV (ca. 60 km to 
imagette center) with 61 S1 WV orbits which build the first tuning data 
set. The distance of 50 km was chosen as an optimal trade-off between 
having a larger number of collocations and maintaining acceptable local 
sea state variations (in fact, worldwide only 15 buoys are collocated 
closer than 20 km). Each S1 WV orbit/product can be acquired 2–3 times 
per month for both S1-A and S1–B (ca. 150 orbits/month from a total of 
ca. 2000 orbits/month). Later an automatic download of the S1 archive 
was organized for all S1 WV data. In this way, the machine learning data 
sets for training and validation are an order of magnitude larger 
(Table A3: S1-WV_SVM_TR, S1-WV_SVM_VAL). 

S1 IW. A data pool with around 1700 S1 IW images was collected for 
the period from 2016 to 2020. The IW scenes were processed using a 10 
km raster. Each IW image covers an area of around 250 km × 200 km, 
which results in around 500 samples. However, as many images are 
acquired in coastal areas and the relatively coarse grid resolution of the 
used models required an additional distance of around 15–20 km from 
the coastline (at least more than one grid point from land), only around 
60% of all potential subscenes could be used for tuning/validation. The 
data cover different regions and sea state conditions including strong 
storms and hurricanes, for instance hurricane “Irma” in 2017. The data 
includes acquisitions in the North, Baltic, Black, and Mediterranean 
Seas, North Atlantic, the USA/Canada west and east coasts, including 
the Aleutian Islands and Hawaii, Australian coasts. Finally, around 
520,000 samples were collected and randomly divided into a tuning 
data set with 300,000 samples (Table A4: S1-IW_TUN) and a validation 
set with around 220,000 samples (Table A4: S1-IW_VAL). 

S1 EW. Similar to IW, EW images were processed with a raster. EW 

images are rarely acquired near the coast and more often taken in polar 
regions where sea ice is present. However, a large number of S1 EW 
images were still acquired in ice-free regions and even around the 
equator. To completely eliminate the influence of sea ice, the colloca
tions for − 55◦ < latitude<60◦ were used. The processing with a raster of 
20 km resulted in around 400 collocated samples per EW image. Around 
2000 S1 EW images were collected, which resulted in around 1.2 Mio 
samples. Similar to the IW mode, the data were divided into 800,000 
tuning (Table A4: S1-EW_TUN) and around 360,00 validation samples 
(Table A4: S1-EW_VAL). 

TS-X SM. For this study, the collected archive of the TerraSAR-X SM 
data with around 2000 scenes was used. The TS-X SM images were ac
quired in VV, HH and also in dual polarization (both HH and VV im
ages). Around 60% of all pooled TS-X SM data had dual polarization. As 
the function was tuned for each polarization individually, the dual- 
polarization products allowed to extend the number of samples for 
each polarization. Each scene covers an area of around 30 km × 50 km, 
however, TS-X scenes are usually acquired near the coast and over 
harbours, so only around 20% of the images covered ocean surface. 
Processed with a raster step of 1.5 km, the collected TS-X SM images 
resulted in around 220,000 model collocations divided into 120,000 
collocations for tuning and the rest for validation. Names of four TS-X 
datasets (tuning and validation for each VV and HH) see in Table A4. 

2.4. In-situ measurements 

Observations from in situ buoys were used as independent data for 
validations. Measurements from different providers were used with 
focus on NDBC, Environment and Climate Change Canada (ECCC, 2022) 
and European Marine Observation and Data Network (EMODNET, 
2022). A detailed list can be seen in Pleskachevsky et al., 2019. 

The stationary NDBC buoys provide mostly hourly measurements. 
However, only around 30% of all NDBC stations provide significant 

Fig. 1. An example of S1-A and S1–B worldwide acquisitions on 2020-09-01 (ESA). There are 54 S1 WV tracks (red), 894 S1 IW images (green), 229 S1 EW images 
(grey) and 10 StripMap images (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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wave height. Worldwide, 64 NDBC buoys were found to be collocated 
closer than 50 km to the border of the S1 WV orbits. For validations, the 
data for each buoy are temporally interpolated, data with a measure
ment time gap of over 6 h were excluded. Optimally, for S1 WV around 
2000 collocations would be possible every year. However, in reality only 
around 1500 collocations per year can be pooled, as will become 
apparent from this work. There are two main sources for loss of potential 
collocations:  

- Time gap between buoy measurements of above 6 h (or a buoy has 
failed for months). Some buoys were taken out of service (e.g. NDBC- 
43010 since 2018).  

- S1 orbit was not completely acquired. This mostly concerns the 
ascending orbits longer than 12,000 km with >120 imagettes, 
starting in the Antarctic and collocating with buoys at the Aleutian 
Islands. 

2.5. Sea state parameters considered, ground truth and round-Robin 
dataset 

In this work, eight integrated sea state parameters are considered 
(Copernicus Resources, 2022; NOAA Manual, 2022). 

In the study three different ground truth data sources were consid
ered: MFWAM, WW3, and NDBC. An example for comparison of all three 
ground for location NDBC-46001 (56.304◦N; 147.920◦W) for February 
2018 is shown in Appendix Fig.A1. The Hs comparison resulted into an 
RMSE = 0.26 m for MFWAM/NDBC and RMSE = 0.23 m for MFWAM/ 
WW3 at NDBC buoy locations. Generally, in terms of Hs, the ground 
truth uncertainty can be assessed to around 0.25 m. 

For the entire tuning, trainings and validations of Hs only MFWAM 
data were selected. This selection was a consequence of a cross- 
validation using three independent ground truth datasets built using 
WW3, MFWAM and mixed MFWAM/WW3 data: Hs estimated using the 
model function tuned with only MFWAM data resulted in higher accu
racy than when tuned using WW3 and mixed MFWAM/WW3 datasets by 
comparison to the NDBC measurements. The details of this cross- 
validation will be presented in Section 4.3. However, not all parame
ters are included into the MFWAM results. The mean period Tm0, first 
moment wave period Tm1, and second moment period Tm2 were tuned 
and validated with WW3 data. 

In the scope of the ESA CCI Round-Robin (RR) competition, different 
algorithms were compared and a uniform ground truth validation RR 
dataset was created using MFWAM model data (Table A3: S1-WV_RR). 
This dataset includes MFWAM-Hs corresponding to imagettes from 61 S1 
WV orbits collocated to NDBC buoys under 50 km distance for 2019; the 
collocated buoys-Hs are also collected in the RR data set with 2004 
measurements. 

3. Method and SAR features 

The following chapter describes the processing method, filtering and 
denoising procedures and SAR features. 

3.1. Sea state processor extensions 

The Sea State Processor (SSP) for SAR data processing was developed 
originally for TerraSAR-X StripMap (Pleskachevsky et al., 2016) and 
later extended to the S1 IW mode (Pleskachevsky et al., 2019). The SSP 
was designed in a modular architecture for different satellite modes. The 
Ground Station Neustrelitz (German Aerospace Center DLR) applies the 
SSP as part of its NRT demonstrator service that involves a fully auto
mated daily provision of surface wind and sea state parameters from S1 
IW images in the North and Baltic Seas. 

Within the scope of this work, the SSP was extended for S1 WV and 
S1 EW. A series of improvements in terms of accuracy, SAR image error 
corrections and processing speed were made (Pleskachevsky et al., 

2022). Due to implemented parallelization, a fine raster can be pro
cessed: for example, a S1 IW image (~200 km × 250 km) can be pro
cessed with a 1 km raster (~50,000 subscenes) in one minute. The 
maritime environment and ship detection products are combined in 
layers (an example screen is given in Appendix Fig.A2). 

The processing starts with SAR scene reading and calibration (ESA 
manual) followed by filtering of NRCS outliers. Then, depending on the 
SAR mode used, different kinds of smoothing and denoising are per
formed. As a next step, the relevant SAR features are estimated. After the 
features are extracted and controlled, the corresponding model func
tions (S1 WV, S1 IW, S1 EW, TS-X) are applied and then the results are 
controlled and stored. The detailed descriptions of the procedures are 
given in Pleskachevsky et al. (2019). 

3.2. Subscenes preparation prefiltering and denoising 

In a classic way, the estimation of sea state parameters is based on an 
NRCS analysis of subscenes. The main difference in processing the 
various SAR modes are:  

- S1 IW, S1 EW and TS-X SM scenes were processed to sea state fields 
(raster). The raster step (distance between analysed subscenes) may 
differ.  

- S1 WV imagettes are processed to one value for every along-track 
imagette (along-track points). 

Direct application of the model function to a image features of a 
subscene can lead to inaccuracies in the range of meters in terms of Hs 
(outliers). The sources of these errors are both natural and man-made 
SAR image artefacts: ships and ship wakes, large wind farm construc
tions, current boundaries, wind streaks, oil and algae films, atmospheric 
fronts, etc. Thus, as a first step, the selected subscenes are pre-filtered for 
extreme values both significantly higher and lower than the average 
NRCS. To do this, a simple outlier detection applying a sliding window 
(sub-subscenes) of 150 m × 150 m for each subscene has been applied. 
The statistics for a subscene and its sub-subscenes identifies the pixels 
with extreme values in a sub-subscenes, which are then reset to the mean 
value of the subscene. The details can be found in Pleskachevsky et al., 
2016, 2019. 

S1 WV: For the WV mode, imagettes are processed initially in a 
raster, each subscene with 1024 × 1024 pixels covers an area of around 
4.6 km × 4.6 km. Furthermore, an average value for each feature from 
valid subscenes using filtering based on min/max values for the features 
has been implemented (more details can be found in the next section 
“Features” and in Appendix, Table A1 “Criteria for validity of sub
scenes”). If all subscenes are recognized as non-valid, the complete 
imagette is marked as non-valid. After processing the entire WV archive, 
it could be concluded that around 18% of all imagettes have at least one 
non-valid subscene and ca. 1.2% of the imagettes were recognized as 
completely non-valid. For this work, different steps for the sliding 
window were tested, yielding a varying number of subscenes per 
imagette. For the final constellation, nine subscenes per imagette (3 × 3 
= 9 for range×flight directions) was found to be optimal. A test with 25 
subscenes per imagette (5 × 5 = 25) did not result in a better RMSE for 
Hs, but increased the processing time by about 15%. 

S1 IW and S1 EW: After a series of tests with different setups, a 
denoising operation using smoothing for the subscenes was employed, 
significantly improving the results for these coarse modes. For an initial 
subscene of 256 × 256 pixels, a resampling with a factor of four (each 
pixel is divided into 4 × 4 = 16 pixels with the same NRCS value and 
with a size of 1/4 of the original spacing) followed by two-dimensional 
Gaussian smoothing has been applied. The resulting subscene is 1024 ×
1024 pixels, whereby the modified pixel resolution is 2.5 m for IW (the 
subscene covers an area of 2560 m × 2560 m) and 10 m for EW (the 
subscene covers an area of 10,240 m × 10,240 m). By applying this 
operation, the improvement to RMSE~30 cm for Hs was reached 
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(Pleskachevsky et al., 2019). The next operation that improves the result 
is a smoothing for each SAR image estimated feature for each grid point 
with neighbor points to remove each feature's outliers. It was found out 
experimentally that for optimal smoothing, the scene should be pro
cessed with a raster step (distance between subscenes) between 1/4 and 
twice the subscene size. 

TS-X SM/SL: For retuning the algorithm for TS-X SM data, all set
tings used for S1 IW and S1 EW excluding the resampling were applied. 

3.3. SAR features systematization 

All features estimated from a SAR subscene are summarized in 
Table 2 and separated into three groups, depending on their application 
and publication status: 

Group-1: Features introduced in the original CWAVE (Schulz-Stel
lenfleth et al., 2007) and extended by Stopa and Mouche, 2017 (skew
ness, kurtosis). 

Group-2: Features not used in the original CWAVE but already 
published and applied in other scientific branches, for example Grey 
Level Co-occurrence Matrices (GLCM) for ice coverage classification (e. 
g. Ressel et al., 2015) and for oil detection (e.g. Singha et al., 2013). 
These features are summarized in Pleskachevsky et al., 2019. In addition 
to these features, two further features used in this study and applied to 
the image spectrum are:  

- Longuet-Higgins parameter PLH represents spectral width (Longuet- 
Higgins, 1984).  

- Goda peakedness parameter PG represents spectrum narrowing 
(Goda, 1970). 

PLH and PG parameters were introduced initially to evaluate the wave 
spectra and are based on combinations of different statistical moments 
of the image spectrum and integrated spectrum energy. 

Group-3: New features introduced and tested within the framework 
of this study. 

SAR features are also classified into five different types: 
Type-1: NRCS and NRCS statistics (variance, skewness, kurtosis, 

etc.). 
Type-2: Geophysical parameters (wind speed using CMOD-5 algo

rithms for C-band (Hersbach, 2008) and XMOD-2 for X-Band (Li and 
Lehner, 2014). 

Type-3: GLCM parameters (entropy, correlation, homogeneity, 
contrast, dissimilarity, energy, etc.). 

Type-4: Spectral parameters, based on image spectrum integration 
of different wavelength domains (0–30 m, 30–100 m, 100–400 m, etc.) 
and spectral width parameters (PLH and PG). 

Type-5: Spectral parameters using products of normalized image 
spectrum with orthonormal functions and cutoff wavelength estimated 
using autocorrelation function (ACF). 

3.4. Image spectrum and integration 

One of the basic variables represents the SAR image spectrum ISP(kx, 
ky) obtained using FFT applied to the radiometrically calibrated, 
filtered, land-masked and normalized subscenes with a size of 1024 ×
1024 pixels in wave number domain k with a direction x for satellite 
range and y for flight direction as introduced in Pleskachevsky et al., 
2019. For the estimation of CWAVE parameters, the normalized ISP is 
applied. The products of the normalized ISP with orthonormal functions 
then results in a series of features, 5.1–5.20 (Schulz-Stellenfleth et al., 
2007) (Type-5, Group-1) in Table 2. 

The whole 2-D image spectrum integration results into EISP and is 
limited by kx

max = ky
max = 2π/Lmin (rad/m), where Lmin is the pixel spacing 

of the subscene and kx
min = ky

min = 2π/Lmax, where Lmax is the subscene 
size (the subscene resolution in x and y directions are equal). 

Within the frame of this work, we named feature 4.3 after Wolfgang 

Rosenthal (RIP 2016), who suggested to introduce this parameter. The 
Rosenthal-parameter ER indicates the image spectrum energy integrated 
with additional scaling of 1/k, gained from kx and ky components as 
follows: 

ER =

∫∫ kmax
x kmax

y

kmin
x kmin

y

ISP
(
kx, ky

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k2

x + k2
y

√ dkxdky (1) 

In contrast to a direct integration EISP, the ER integration amplified 
the longer wavelength signals by 1/k-weighting. In this way, objects 
such as ships or ship wakes in a subscene significantly increase the value 
of ER and can thus be filtered out. 

Note that using only a few basic features, such as NRCS, nv (Mean 
Intensity and Normalized variance, see Table 2), local surface wind U10, 
and the integrated image spectrum energy EISP, are sufficient to estimate 
Hs with a low accuracy of around 80 cm. In this study, an additional 22 
first-order features introduced in Schulz-Stellenfleth et al., 2007, three 
additional features introduced in Stopa and Mouche, 2017 (cutoff 
(Kerbaol and Chapron, 1998), skewness, kurtosis), as well as several 
newly introduced additional features are applied. Each addition slightly 
improves the resulting accuracy by 0.1–3.0 cm with an accumulative 
improvement of around 15 cm (ca. 30%) in comparison to the accuracy 
achieved by Stopa and Mouche, 2017 (RMSE~50 cm using CWAVE and 
WW3 hindcast). 

Since all features are in fact connected, the RMSE improvement of 
each feature depends on the selected ensemble of features. The largest 
contribution can be gained using E100 and E400 (features 4.5, 4.6 in 
Table 2) by direct spectrum integration. E.g., using only E100, in addition 
to established CWAVE, an improvement of ca. 5 cm can be reached. A 
comparable improvement can be reached also using E400. However, 
when used together, the total improvement is only around 7 cm. Also, 
contrary to expectations, using λc (cutoff) instead of E100 or E400 brought 
only a weak improvement in the order of 1 cm. 

3.5. Newly introduced SAR features 

The new features tested in this study belong to two types (see 
Table 2). From all tested features, only those improving the results in 
term of Hs by at least 1 mm were applied in two subgroups: 

Subgroup-A: features 1.7, 1.8, 1.9 (Type-1, NRCS and NRCS 
statistics). 

Subgroup-B: features 4.15, 4.16 (Type-4, spectral). 
The newly introduced features of type-1 (Subgroup-A) are based on 

using the Complementary Cumulative Distribution Function (CCDF) of 
NRCS in a subscene, which is equal to “1-CDF” (Cumulative Distribution 
Function). The parameter CCDF has been discretely calculated for the 
series of NRCS-bins while the number of NRCS values exceeding the 
predefined thresholds-bins (see Appendix Table A2) are accounted for. 
In this way, CCDF is a decreasing curve representing the cumulative 
probability distribution of the pixels' brightness. For example, in case of 
bin NRCS = 0, the value of the CCDF is equal to the number of all pixels 
in a subscene (NRCS≥0 for all pixels in a valid subscene). An example of 
a CCDF for three typical cases for low, middle, and high sea state can be 
seen in Fig.A3. 

Using a weighting for the bins, amplifying the signal for high NRCS 
values, the parameters are introduced using an integration of the CCDF 
curve: 

INT =
∑nbins

n=1
CCDFn⋅Gn (2)  

INT LOG =
∑nbins

n=1
log(CCDFn)⋅Gn (3) 

where Gn is a weighting factor of each NRCS-bin n, CCDFn represents 
the number of pixels with an NRCS exceeding the n-bin NRCS value, nbins 
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= 21 is the total number of bins (see Table A4). The INT_LOG additional 
amplifies the contribution of high NRCS. 

An additional simple parameter NHV representing one bin of the 
CCDF for very high values of NRCS for outlier pixels (experimentally set 
to NRCS = 1500 for S1 wv1 and NRCS = 500 for S1 wv2) was also 
introduced (Type-4, subgroup-b). For low sea state NHV is usually zero 
and generally grows with increased wave height. 

The newly introduced features of Type-4 (Subgroup-b) are based on 
the cumulative projection curves ISPkx and ISPky of the 2-D image 
spectrum on the kx (range direction) and ky (flight direction) axes, 
respectively: 

ISPkxj =
∑nmax

i=1
ISP(j, i), ISPkyi =

∑nmax

j=1
ISP(j, i) (4)  

where the i = 1,2… nmax and j = 1,2… nmax are the corresponding bin 
numbers of the 2-D image spectrum ISP in x (range) and y (flight) di
rection. The projections have the same dimension nmax = 1024 (size of 
FFT-box and spectrum for both x and y directions). The dky = dkx = const 
are reduced by integration. An example of both curves is shown in Ap
pendix Fig.A4. Both curves are compared and combined in various ways: 

REL- ratio between integrated square for each projection curve, 
weighted by actual kx and ky (Eq. 5). 

Syx- ratio between integrated squares for positive and negative dif
ferences of the curves taken for the same numbers i = j (kx = ky) (Eq. 6). 

CONV - convolution of both curves (Eq. 7) 

REL =
∑nmax

j=1

(
1
/

kxj

)
ISPkxj

/
∑nmax

i=1

(
1
/

kyi

)
ISPkyi (5)  

Syx =
DIFF−

DIFF+ where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

DIFF− =

⃒
⃒
⃒
⃒
⃒

∑nmax

ji=1

(
ISPkxji − ISPkyji

)
⃒
⃒
⃒
⃒
⃒

for ISPkxji < ISPkyji

DIFF+ =
∑nmax

ji=1

(
ISPkxji − ISPyxji

)
for ISPkxji > ISPkyji

(6)  

CONV = ISPky *ISPkx (7)  

where ji = 1,2…nmax is the uniform numbering of kx and ky bins by 
comparisons of the curves. The idea behind introducing these parame
ters was to incorporate the nonlinearity of the SAR imaging mechanism, 
where the image spectrum reflects cutoff effects and differs in its shape 
from a wave spectrum. Under a stronger cutoff effect, the shape of the kx 
and ky image spectrum projections are more different (the y-curve has a 
stronger peak in comparison to the x-curve, see Fig.A4). However, where 
the image spectrum is close to the shape of a wave spectrum (more linear 
imaging), the shapes of both projections are more similar, and the fea
tures in Eq.5–7 are closer to 1. 

The features selected for testing the validity of the subscenes are 
summarized in Table A1 “Criteria for subscenes validity”. 

4. Linear regression application 

The following chapter deals with the implementation of the SAR 
features in the linear regression function, followed by validation for 
eight sea state parameters. 

4.1. Applying the CWAVE linear regression, extended algorithm 
CWAVE_EX 

In the original CWAVE approach (Schulz-Stellenfleth et al., 2007), 
the primary features extracted from the SAR image are supplemented 
with secondary features. The secondary features are combinations of 
primary features in quadratic form. In the present work, in addition to 
these multiplication products, the inverse features were also added, 
improving the results by around 2 cm for Hs in case of S1 WV. The 

number of all possible quadratic combinations is very high. However, in 
the final algorithm, only 77 secondary features (27 quadratic and 50 
inverse) were added, each improving the resulting RMSE by at least 0.5 
mm by addition of a feature to the already created feature-ensemble; the 
final feature matrix includes 131 features. 

Since the SAR features differ by orders of magnitude, their use in a 
linear combination leads to an underestimation of the information for 
parameters with small values. After testing different normalization 
methods, the normalization using the mean (MEAN) and standard de
viation (STD) was applied, improving the original CWAVE (uses partial 
normalization of individual feature components) by a further ca. 3 cm 
for Hs. In the work below, the model function CWAVE extended with the 
newly introduced features is denoted as CWAVE_EX (CWAVE Extended). 

4.2. Cross validations 

In order to define the optimal constellation of the ground truth data, 
a cross validation was carried out for Hs. The cross validations were 
completed using MFWAM, WW3, buoy data and S1 WV (Table A3: S1- 
WV_TUN, S1-WV_VAL). The model function was tuned independently 
using three setups with: 

Setup-1: MFWAM collocated Hs used for tuning. 
Setup-2: WW3 collocated Hs used for tuning. 
Setup-3: MFWAM+WW3 collocated mixed Hs-dataset used for 

tuning. 
At first, the direct validations were carried out with modelled Hs, i.e. 

MFWAM-tuned with MFWAM, WW3-tuned with WW3, 
MFWAM+WW3-tuned with MFWAM+WW3. Then, the coefficients for 
all three setups were swapped, so that the results gained by using the 
model function tuned with one ground truth were compared with 
another ground truth. Finally, all three variants were validated with 
NDBC buoys. Table 3 presents the results of this cross validation. Eight 
results (wv1/wv2) represent different combinations of different ground- 
truth-source for tuning (models) and different ground-truth for valida
tion (models and NDBC). As can be seen, for buoy validation, an optimal 
RMSE = 42 cm is achieved when using only the MFWAM model data in 
the tuning step. The more accurate results gained using only MFWAM 
data can be explained by differences in the models' spatial resolutions: 
the WW3 spatial resolution is around 50 km and more than twice the 
dimensions of one S1 WV imagette covering around 20 km. 

4.3. Results for linear regression function CWAVE_EX 

The model function CWAVE_EX was tuned and validated for eight 
parameters (Table 1) and for four described satellite modes (datasets 
Table A3 and Table A4). The resulting total RMSE for all sea state 
conditions are summarized in Table 4. 

Fig. 2 shows the CWAVE_EX validation with hindcast data (Table 1) 
for S1 WV mode for two of the most important parameters Hs and Tm2, 
used for a series of technical applications. The results for wv1 and wv2 
imagettes are plotted separately. Fig. 3 presents the scatterplots for Hs 
and Tm2 for S1 IW, S1 EW and TS-X. The scatterplots for other 

Table 1 
Sea state parameters considered and ground truth source.  

N◦ Parameter Units Symbol in text Source 

1 significant wave height m Hs MFWAM 
2 mean wave period s Tm0 WW3 
3 first moment wave period s Tm1 WW3 
4 second moment wave period s Tm2 WW3 
5 wave height swell dominant system m Hs

swell-1 MFWAM 
6 wave height swell secondary system m Hs

swell-2 MFWAM 
7 significant wave height windsea m Hs

wind MFWAM 
8 mean period windsea s Twind MFWAM  
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parameters are presented in the appendix: Tm0 and Tm1 in Fig.A5, Hs
swell-1 

and Hs
swel-2 in Fig.A6, and Hs

wind and Twind in Fig.A7. 
All validations are performed using MFWAM monthly data blocks. In 

the scatterplots, only active point pairs are presented, the detected “bad 
values” are flagged out. For a month, the number of active points for the 
partially integrated parameters, e.g. for Hs

swell-1 is lower (for Hs
swell-2 even 

lower) than for total integrated Hs due to a high percentage of Hs
swell =

0 in ground truth. Note that, as the primary objective of this work was 
improving the main sea state parameter Hs, more data were used espe
cially for this parameter. Despite these differences, for all parameters, 
validations were performed with a data amount three times exceeding 
the required minimum of ca. 20,000 collocations. 

The S1 WV function was designed for VV polarization. The HH 

polarization data of around 5% of all acquisitions, validated separately, 
resulted in an RMSE ca. 10% lower than for VV data. 

Each S1 IW and EW are acquired either in HH or VV polarization, 
distributed evenly. The accuracy of the developed universal model 
function is ca. 10 cm higher for VV than for HH polarization data. Since 
this effect was observed on both S1 IW and S1 EW, this shows that 
obviously at coarse resolution more sea state information is lost in SAR 
imagery in HH polarization compared to VV. 

For TS-X data, the distribution between HH and VV polarization was 
around 60/40%. Based on S1 IW and S1 EW results, the algorithm was 

Table 2 
First-order SAR features.  

Feature type Feature description Symbol Feature 
group 

1. NRCS and NRCS statistics  1.1. Mean Intensity of subscene scaled MI 2  
1.2. STD of NRCS STD 2  
1.3. Normalized variance nv 1  
1.4. Variance of normalized NRCS Nv 2  
1.5. Skewness skew 1  
1.6. Kurtosis kurt 1 
1.7. Accounting for high values of NRCS in subscene NHV 3 
1.8. Integral over NRCS CCDF distribution INT 3 
1.9. Integral over NRCS CCDF distribution, logarithmic scale. INT_LOG 3 

2. Geophysical 2.1. Wind using CMOD5 (Sentinel-1) and XMOD2 (TerraSAR-X) U10 1 
3. GLCM, (grey level co-occurrence matrix) feature 

analysis 
3.1. GLCM-mean GLCMM 2 
3.2. GLCM-variance VAR 2 
3.3. GLCM-entropy ENTROPY 2 
3.4. GLCM-correlation, CORR 2 
3.5. GLCM-homogeneity HOMOGEN 2 
3.6. GLCM-contrast CONTRAST 2 
3.7. GLCM-dissimilarity DISSIMIL 2 
3.8. GLCM-energy ENERGY 2 

4. Spectral-A 4.1. Integrated Energy for k-domain ~0.01–0.21 corresponds to wavelength ~10–2000 m 
(dependent on mode) 

EISP 2 

4.2. Energy integrated with noise deduction (No Noise) ENN 2 
4.3. Rosenthal parameter (Energy integrated, scaled by 1/k) ER 2 
4.4. Integrated Energy of a spectrum for wavelength 0–30 m E30 2 
4.5. Integrated Energy of a spectrum for wavelength 30–100 m E100 2 
4.6. Integrated Energy of a spectrum for wavelength 100–400 m E400 2 
4.7. Integrated Energy of a spectrum for wavelength 400–600 m E600 2 
4.8. Integrated Energy of a spectrum for wavelength 6000–2000 m E2000 2 
4.9. Integrated Energy of a spectrum for wavelength > 2000 m E>2000 2 
4.10. Spectrum Noise inside of cut-off domain of the spectrum NS

in 2 
4.11. Spectrum Noise outside of cut-off domain of the spectrum NS

in 2 
4.12. Energy max in the spectrum EMAX 2 
4.13. Longuet-Higgins spectral width parameter PLH 2 
4.14. Goda peakedness parameter PG 2 
4.15. Convolution of energy ky and kx axes projection CONV 3 
4.16. Relation between positive and negative spectrum 
projection's differences 

REL 3 

4.17. Relation between integrated energy ky and kx projection Syx 3 
5. Spectral-B 5.1–5.20. 20 parameters as product of normalized image spectrum and 20 orthonormal 

functions 
S1– S20 1 

5.21. Cutoff by ACF (Auto-Correlation-Function) λc 1  

Table 3 
Cross validation of total significant wave height Hs using different combinations 
of ground truth data sources for tuning and validation. RMSE in meters is given 
for wv1/wv2 imagettes.  

Tuning data source (setup) Validation data source 

MFWAM WW3 BUOYS 

MFWAM 0.33 / 0.38 0.35 / 0.40 0.42 / 0.44 
WW3 0.34 / 0.39 0.34 / 0.39 0.44 / 0.46 
MFWAM&WW3 0.34 / 0.39 0.43 / 0.45  

Table 4 
CWAVE_EX RMSE for eight integrated sea state parameters compared to model 
hindcasts.  

N◦ Parameter Unit Satellite-mode 

S1 IW S1 EW S1 WV (wv1/wv2) TS-X SM 

1 Hs m 0.57 0.61 0.34 / 0.38 0.36 
2 Tm0 s 0.91 0.86 0.46 / 0.51 0.72 
3 Tm1 s 0.97 0.84 0.51 / 0.56 0.59 
4 Tm2 s 0.82 0.86 0.46 / 0.51 0.51 
5 Hs

swell-1 m 0.68 0.63 0.42 / 0.47 0.33 
6 Hs

swel-2 m 0.38 0.44 0.41 / 0.46 0.27 
7 Hs

wind m 0.77 0.66 0.43 / 0.46 0.37 
8 Twind s 0.97 0.95 0.62 / 0.67 0.71  
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tuned for VV and HH polarization independently, resulting in an accu
racy that was nearly identical for both polarizations. 

The RMSE distribution for Hs and for different sea state domains is 
presented in Table 5. As can be seen, the distribution of wave heights is 
different for each mode. This is a consequence of differences in the area 
of the acquisitions for the modes. So, despite the huge database, not a 
single case with waves exceeding 6 m was collected for TS-X, acquired 
exclusively in coastal areas. 

In the results, the accuracy decreases generally with increasing Hs 
values. This is connected to both: the accuracy of the SAR method and to 
the increased uncertainty in the ground truth data. However, the scatter 
index SI for each domain remains at around 10–15% if the local RMSE is 
connected with the mean value for this sea state domain. For low sea 
state, some difficulties can be seen for Hs < 1.5 m, where the accuracy 
does not follow the explanation above. This effect is related to the spe
cialty of SAR imaging of the sea surface: the short and small waves 
cannot be imaged individually, but are only visible as image noise. 
Although it is possible to derive their characteristics from the SAR image 
noise, the accuracy is slightly lower than for more developed sea states. 

5. Further algorithm improvement by machine learning 

The following chapter deals with the further improvement of the sea 
state parameter estimation by applying machine learning techniques to 
S1 WV data. 

5.1. Machine learning: Function and features 

The fact that allowed machine learning to be used in the framework 
of this study was the access to the entire S1 WV Level-l archive. For 
earlier works with linear regression only individual S1 overflights in the 

order of one hundred thousand samples could be stored and considered, 
while for machine learning, the whole S1 WV archive with millions of 
samples was processed (see Table A3 data sets N◦ 4–8). 

After a series of experiments with different machine learning ap
proaches and also using knowledge gained in works performed on the 
same data (Stopa and Mouche, 2017; Quach et al., 2020), the support 
vector machine (SVM) technique was applied using the regression ν-SVR 
(Support Vector Regression nu-SVR, Chang and Lin, 2002) with a radial 
basis function as kernel-type. This function was chosen as the most 
suitable in terms of Hs-RMSE for the features and ground truth used, as a 
result from the testing of several different machine learning approaches 
with different kernel functions (e.g. epsilon-SVR, linear and sigmoid 
kernel types) applied to a relatively small number of collocations 
(100,000 samples). The SVR hyperparameters, which control the 
learning process, are: the cost regularization parameter C, the exponent 
degree in the radial basis function g (gamma) and the parameter ν (nu) 
which determines the proportion of the number of support vectors to 
keep in the solution with respect to the total number of samples in the 
dataset (0 ≤ ν ≤ 1, ν = 0.5 was implemented). For the tolerance of the 
termination criterion, which defines how close the compared models 
should be reached by the next iteration, the optimal value of e = 0.01 
was found experimentally, then used for all trainings. 

For practical applications, the high-performance ThunderSVM 
(TSVM) library was applied that runs an order of magnitude faster than 
the standard LibSVM (Wen et al., 2018). Using TSVM allows training of 
large datasets with millions of samples. 

For training, all first-order normalized SAR features are applied. The 
feature normalization procedure was tested again using different 
methods. The optimal normalization method was found to be the same 

Table 5 
CWAVE_EX RMSE distribution (noise) for different sea state conditions for Hs.  

Sea state domain, Hs (m) Satellite-mode 

S1-IW S1-EW S1-WV averaged wv1-wv2 TS-X SM 

Fraction (%) RMSE (m) Fraction (%) RMSE (m) Fraction (%) RMSE (m) Fraction (%) RMSE (m) 

0.0–1.5 28 0.42 10 0.60 11 0.38 60 0.32 
1.5–3.0 36 0.44 54 0.42 63 0.29 34 0.38 
3.0–6.0 29 0.72 32 0.82 24 0.44 6 0.55 
6.0 < 7 1.31 4 1.48 2 0.93 0 – 
Total 100 0.57 100 0.61 100 0.35 100 0.36  

Table 6 
Total accuracy reached for Hs using the machine learning approach SVM relative 
to model and NDBC.  

Data source Total RMSE, m Total BIAS, m Non-valid images, % 

wv1 wv2 wv1 wv2 wv1 wv2 

MFWAM 0.245 0.273 − 0.01 − 0.01 1.9 1.4 
NDBC 0.415 0.412 − 0.10 − 0.09 1.8 2.3  

Table 7 
Accuracy distribution (uncertainty) for Hs using the machine learning approach SVM for different sea state domains and in total compared with hindcast model data.  

Hs domain (m) Hs fraction (%) SVM RMSE (m) SVM BIAS (m) SVM improvements against CWAVE_EX, averaged wv1/wv2 

wv1 wv2 wv1 wv2 RMSE (cm) |BIAS| (cm) 

0.0–1.5 11 0.280 0.342 − 0.07 − 0.11 6.9 10.5 
1.5–3.0 62 0.196 0.227 − 0.01 − 0.01 7.9 5.0 
3.0–6.0 24 0.304 0.332 − 0.01 0.02 12.2 1.3 
6.0 < 2 0.519 0.558 0.03 0.02 39.2 16.1 
Total 100 0.245 0.273 ¡0.01 ¡0.01 9.1 4.5  

Table 8 
Accuracy distribution (uncertainty) for Hs using the machine learning approach 
SVM for different sea state domains and in total compared with NDBC buoy 
measurements averaged for S1 wv1 and wv2.  

Hs domain (m) N collocations Hs fraction (%) RMSE (m) BIAS (m) 

0.0–1.5 2539 29.0 0.39 − 0.25 
1.5–3.0 4431 50.6 0.36 − 0.09 
3.0–6.0 1637 18.7 0.48 0.07 
6.0 < 151 1.7 0.93 0.57 
Total 8757 100 0.41 − 0.09  
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as for linear regression (using MEAN and STD, see section 4.1 “Applying 
the CWAVE linear regression”). After a series of experiments, in order to 
improve the resulting accuracy and to shorten the training time, some 
additional features were included in the list of primary SAR features 
used for the linear regression approach before:  

- first-guess Hs from linear regression solution CWAVE_EX.  
- precise incidence angle (degree with accuracy of third decimal 

place).  
- flag identifying the satellite (S1-A or S1–B). 

5.2. Hyperparameters tuning 

As a first step, the hyperparameters were tuned for a series of values 
of the cost parameter C in the range [25; 200] and gamma g in range 
[0.0010; 0.0100]. The hyperparameters' trainings were all carried out 
using the same data: 500,000 samples for each wv1 and wv2 for training 
(Table A3: S1-WV_SVM_HP) and ca. 300,000 samples for each wv1 and 
wv2 for test validation (Table A3: S1-WV_SVM_TEST). 

The training consists of 20 independent trainings with different 

combinations of C and g (C = {25; 35; 55; 100; 200}, g = {0.0010; 
0.0050; 0.0075; 0.0100}) where the resulting Hs-RMSE and training 
time are the output parameters. Fig. 4 displays the hyperparameters 
training results; the optimum combination found is C = 55 and g =
0.0075 (marked with a red circle). This combination was applied further 
for the final trainings of the model functions. 

5.3. Training SVM models 

For the final training of the SVM models (independently for wv1 and 
wv2), the optimal hyperparameters are applied. The training data con
sists of around one million samples for each of wv1 and wv2 (all data 
from June 2016 until December 2017, dataset S1-WV_SVM_TR), with all 
of the remaining data from Dec. 2018 until Feb. 2021 (ca. 4.3 million in 
total for both wv1 and wv2) used for the final validation (dataset S1- 
WV_SVM_VAL). The trainings were made in parallel for the wv1 and 
wv2 model functions SVM_SWH_wv1 and SWM_SWH_wv2 and took ca. 
two months. It is important to note that increasing the numbers of data 
samples increases the training time exponentially. 

Fig. 2. CWAVE_EX results for S1 WV for Hs (first row) and Tm2 (second row). The results are plotted separately for wv1 (left) and wv2 (right) imagettes.  
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Fig. 3. CWAVE_EX results: Hs (left column) and Tm2 (right column) for S1 IW (first row), S1 EW (second row) and TS-X (last row). In the 30 km × 50 km TS-X 1.5 km 
raster results the local distribution by comparison to coarse model grid points is visible. 
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5.4. Sentinel-1 wave mode SVM results and comparison to CWAVE_EX 

Applying the trained SVM model functions SVM_SWH_wv1 and 
SVM_SWH_wv2 to the validation data set S1-WV_SVM_VAL shows a 
total RMSE improvement of around 10 cm in comparison to the linear 
regression CWAVE_EX applied to the same data. The Hs accuracies 
reached RMSE = 0.245 m for wv1 imagettes and RMSE = 0.273 m for 

wv2 imagettes, when validated with model data (CMEMS, 2022). The 
improvements bring the accuracy of the results to the magnitude of the 
ground truth data uncertainty (around 25 cm, see ground truth com
parisons in Section 2.5. and Fig.A1). 

Fig. 5 shows the results for the Hs validation for the RR-2019 dataset 
(Table A3: S1-WV_RR) using the linear approach CWAVE_EX (left) and 
using the SVM technique (right). It is important to note that a series of 
outliers with overestimation of Hs for the model domain 0 < Hs < 3 m 
was found to be a consequence of sea ice occurrence in the Antarctic 
region at latitude<− 55◦. In the following validations for the complete 
S1 WV archive, after excluding this area, such outliers are not present. 

5.5. Processing the S1 WV archive in the scope of the ESA climate change 
initiative CCI 

Until this section, only S1 WV orbits collocating with buoys were 
considered, which are around 5% of all acquired data. Using the SSP, the 
complete archive of S1 WV from December 2014 until February 2021 
was processed. All processed S1 WV data including derived sea state 
parameters, imagette information (geo-location, time, ID, orbit number, 
etc.) and corresponding accuracy are stored both as ascii and in netcdf 
format for convenient use. The data is made available to the public 
within the scope of ESA's climate change initiative (CCI). Fig. 6 shows an 
example of Sentinel-1 Wave Mode WV archive processing for one day 
(right half) and one month (left half). 

The validation of the whole archive (dataset S1-WV_ARCHIVE, 
Table A3) using hindcast model data (CMEMS, 2022) for latitudes of 
− 55◦ < latitude<60◦ (avoiding ice coverage) resulted in an RMSE of 
0.245/0.273 m for wv1/wv2 imagettes, respectively. The comparisons 
using NDBC buoys for 2017–2020 with almost 9000 collocations 
resulted in an RMSE = 0.41 m averaged over wv1 and wv2. 

Table 6 presents the accuracy reached for Hs using SVM compared 
with model data and buoy measurements. Table 7 displays the details of 
the RMSE and BIAS distribution for different sea state domains and a 
comparison (improvements) to the accuracy of CWAVE_EX linear 
regression results. 

Fig. 7 shows the SVM results for Hs validation for all S1 WV data since 

Fig. 4. Training of hyperparameters C (cost) and g (gamma) for nu-SVR 
regression with radial basis function kernel-type. The results present 20 inde
pendent trainings with different combinations of C and g; outputs are 20 pairs of 
Hs-RMSE and training time (axes). Each colour-line corresponds to one value of 
g and a series of C. The optimum in terms of accuracy and training time for the 
combination {g = 0.0075; C = 55} is marked by a red circle and used for the 
final trainings. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 5. Hs validation for the Round-Robin dataset (S1 WV buoy collocated orbits for 2019) with around 275,000 collocations using the linear approach CWAVE_EX 
(left) and the improved method using machine learning SVM (right). 
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Fig. 6. Example of Sentinel-1 Wave Mode WV archive processing. On the right half of the globe only one-day of acquisitions is displayed, on the left half all data 
acquired during February 2021. 

Fig. 7. TSVM Hs validation for all acquired S1 WV archive Jan. 2017 – Feb. 2021. NDBC buoys with almost 9000 collocations (left) and for MFWAM model (CMEMS, 
2022) and with around 5 million collocations (right). The statistics is presented averaged for wv1 and wv2 imagettes. 
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2017 for NDBC buoys (left) and for model data (right). Fig. 8 shows the 
histogram for Hs (SVM) and Tm2 (CWAVE_EX) distributions. It is 
important to note that, despite minor differences, there are no domains 
where the SAR-estimated Hs was smoothed in PDF in comparison to the 
ground truth. This is an important result showing that new SAR methods 
work for all sea state domains quite accurately, especially for Hs under 1 
m. Together with satellite altimeter, which is “affected by inadequate 
sampling of the signal at low sea states and is less accurate and is noisier 
particularly below 0.75 m” (Dodet et al., 2020), this allows to the study 
of the global sea state on a new qualitative level. 

The resulting RMSE distribution (Table 7) across Hs domain 
SWH_RMSE (m) can be linearly approximated as: 

SWH RMSE = 0.20+ 0.036 Hs (8) 

As can be seen in Table 7, compared to the linear regression approach 
(Table 5), a significant improvement of around 40 cm in RMSE was 
reached for high sea state (Hs > 6 m). 

When studying statistical means, in comparison to model data 
(CMEMS, 2022), BIAS = 0.001 m is quite accurate. However, in com
parison to NDBC, the BIAS shows an overestimation of around 10 cm 
(BIAS = Ground_Truth – Estimated). For each domain, BIAS has the 
same sign by comparisons with buoys and model, however, for buoys the 
values are higher. The resulting BIAS = -0.09 m is dominated by the 
overestimation for middle sea state under 3 m (see Table 8). 

6. Summary 

This chapter summarizes the main findings in terms of accuracy 
improvements and method implementation. 

6.1. General conclusions in terms of methods 

The series of additional processing operations and new features 
significantly increases the accuracy of the Hs estimation compared to the 
original CWAVE. It also allows estimating wave periods, partial swell, 
and windsea parameters even for low-resolution SAR modes. The studies 
with a series of modifications conducted in this work show that the 
cumulative improvement in Hs-RMSE reached around 15 cm in com
parison to CWAVE applied to the same S1 WV data and ground truth 
(Stopa and Mouche, 2017, RMSE~50 cm). This cumulative effect is 
composed as follows, sorted according to processing/implementation:  

- Pre-filtering of artefacts (ships, slicks, etc) for all satellites and 
modes, improving the RMSE significantly in coastal areas by around 
30 cm and slightly in the open ocean by around 1 cm (see Section 3.3. 
“Subscenes preparation”) for all considered sensors.  

- A cutting of the S1 WV imagette into subscenes and excluding non- 
valid subscenes improves the results by around 4 cm. Adding >9 
subscenes (3 × 3, range×flight) does not result in further RMSE 
improvements (see Section 3.3. “Subscenes preparation”).  

- The resampling and smoothing of subscenes for low-resolution 
modes S1 IW and EW improves the RMSE by around 20 cm (see 
Section 3.3. “Subscenes preparation”). 

- The additional features introduced in the study result in an addi
tional RMSE improvement of around 5 cm (Section 3.5. “Image 
spectrum and integration” and 3.6. “New features”).  

- Using additional inverse features within linear regression results in 
an additional improvement of around 3 cm (Section 4.1. “Applying 
the CWAVE linear regression function, extended algorithm 
CWAVE_EX”).  

- The SAR feature normalization results in an additional improvement 
of around 3 cm (Section 4.1. “Applying CWAVE linear regression 
function, extended algorithm CWAVE_EX”) 

It also became obvious that although the linear regression approach 
reaches a high accuracy with an RMSE~35 cm for Hs, further im
provements by introducing additional features into CWAVE can hardly 
be achieved. The next step for accuracy improvement is machine 
learning, whereby the solution of the linear regression can be used as a 
first guess and applied as an additional feature for training. This 
approach slightly improves the results and shortens the training time. 

In this work, the support vector machine (SVM) technique improves 
the Hs results by a further 10 cm compared to the CWAVE_EX (around 
10%). A limited test for the Tm2 period, performed with 100,000 wv1 
samples, resulted in a comparable improvement (RMSE = 0.39 s against 
current value of 0.46 s). 

6.2. Accuracy for different satellites and modes 

The studies and comparisons conducted for S1 and TS-X show that 
the method tuned for different satellites and modes reaches an accuracy 
which depends more on the SAR image pixel resolution than on the 
radar band (C-band for S1 and X-band for TS-X) or satellite altitude (ca. 
700 km for S1 and ca. 500 km for TS-X): An RMSE of around 0.35 m was 

Fig. 8. Histograms Hs (TSVM) and Tm2 (CWAVE_EX).  
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reached for both S1 WV and TS-X SM which have similar pixel spacing 
(2–4 m dependent on product and incidence angle), and an RMSE of 
around 0.60 m was achieved for the lower resolution S1 IW and S1 EW 
(pixel spacing of 10 m and 40 m, respectively). A small validation case 
study conducted for TS-X ScanSAR (SC, pixel spacing 10 m), using 150 
TS-X SC images, also showed an RMSE of ca. 0.60 m. 

6.3. Linear regression and machine learning capabilities 

The advantage of the empirical approaches based on linear regres
sion model (LRM) in comparison to machine learning model (MLM) is 
that an analytical solution exists. The function coefficients can be tuned 
comparatively quickly, extensive machine learning training is not 
necessary. Although the linear solution is inferior in accuracy to that 
obtained by adding machine learning, this solution is already stable with 
around 1/10 samples needed for machine learning in case of a distri
bution of the values in the dataset (see sea state fractions in Table 7) near 
to the normal distribution. In the scope of this study, it was found that 
for a stable solution valid for worldwide applications, the linear 
regression approach CWAVE_EX needs around 70,000 random samples 
for tuning, if all 131 features are used, achieving an RMSE of 0.34 m. 
Only when using this number of samples, additional data included into 
the tuning does not affect the accuracy by validation. For the machine 
learning SVM approach with the more complex model, this amount 
needs to be larger with at least 600,000 samples reaching an RMSE of 
0.24 cm. 

However, the developed MLM is many orders of magnitude larger 
than LRM (list of coefficients). Its practical application is outperformed 
by a linear application in terms of parsing speed of the model, which is 
important for near real-time services. In addition to the training time 
(can take months), it takes longer to read and apply the MLM to the 
estimated SAR features. This point is important, as a migration of the sea 
state processing for direct installation on a satellite for on-board- 
processing has been developed (Wiehle et al., 2022). In this case, no 
huge SAR data will be transferred from a satellite to earth, where the 
processing has to be done, but only processed sea state parameters in 
NRT. This technology will significantly simplify the data transfer and 
reduces the time gap between acquisition and receiving the processed 
sea state products at e.g. a ship bridge. 
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Appendix A. Appendix   

Fig. A1. Example comparison for Hs conducted for NDBC-46001 (56.304 N 147.920 W), MFWAM, and WW3 models for February 2018.   
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Fig. A2. Screenshot of the demonstrator for NRT services at Ground Station Neustrelitz. The demonstrator runs daily for Sentinel-1 IW in Southern North Sea and 
Western Baltic Sea. The actual processing raster is 3 km, the wave-detection layer shows wave height (colored) and period (in circles: Hs above, Tm2 below). Data for 
all eight sea state parameters can be downloaded as Google Earth kmz file. The wind-detection layer shows the wind speeds estimated from the SAR image.  

Table A1 
SAR feature's criteria for validity of subscenes.  

Feature Satellite-mode 

S1 IW S1 EW S1 WV TS-X SM 

MI >0.100000 >0.100000 >0.100000 >0.100000 
EISP > 0.000500 > 0.000500 > 0.000500 > 0.000500 
E75 > 0.000005 > 0.000005 > 0.000005 > 0.000005 
E390 > 0.000100 > 0.000100 > 0.000100 > 0.000100 
E600 > 0.000500 > 0.000500 > 0.000500 > 0.000500 
nv > 1 > 1 > 1 > 1 
EMAX <500 <500 <1000 <1000 
CONTRAST > 0.000010 > 0.000010 > 0.000010 > 0.000010 
ER <3000 <3000 <5000 <850 
LANDMASK Land pixels<20% Land pixels<20% Land pixels<20% Land pixels<20%   
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Fig. A3. An example of the probability distribution (Complementary Cumulative Distribution Function CCDF) of NRCS (S1 WV wv1) in subscenes for three typical 
cases: low sea state Hs = 1.2 m, medium sea state Hs = 3.1 m, and high sea state Hs = 8.2 m (left), and the same on a logarithmic scale (right).  

Table A2 
Weighting factor G for CCDF function with 21 bins.  

NRCS value (bin number i) Weighting factor Gi 

50(1) 50 
100(2), 200(3), 300(4), 400(5) 100 
500(6), 1000(7), 1500(8), 2000(9), 2500(10), 3000(11) 500 
4000(12), 5000(13), 6000(14), 7000(15), 8000(16), 9000(17), 10,000(18) 1000 
12,000(19), 15,000(20) 2000 
20,000(21) 5000   

Fig. A4. An example of 1-D accumulative projections of a 2-D image spectrum onto ky and kx axes. Due to the cutoff effect, the peak in ky-protection is stronger.   
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Table A3 
Data processed for tuning, training and validation of S1 WV.  

N◦ Data set name N◦ ID scenes ground truth N◦ of imagettes Note 

Data set description wv1 wv2 Total 

1 S1-WV_LR_TUN 2409 MFWAM, WW3 109,693 112,930 222,623 linear CWAVE_EX tuning 
NDBC collocated orbits 2015–2017 

2 S1-WV_LR_VAL 2489 MFWAM, WW3 137,780 136,431 222,623 linear CWAVE_EX validation 
NDBC collocated orbits 2018 

3 S1-WV_RR (RoundRobin) 2430 MFWAM, WW3 135,967 138,099 274,066 CWAVE_EX TSVM validation 
NDBC collocated orbits 2019 NDBC 1041 963 2004 CWAVE_EX TSVM validation 

4 S1-WV_SVM_HP 23,780 MFWAM 500,000 500,000 1000,000 SVM hyper parameters training 
whole archive 06.2016–06.2017 

5 S1-WV_SVM_TEST 18,890 MFWAM 300,000 300,000 600,000 SVM test 
whole archive 06.2017–12.2017 

6 S1-WV_SVM_TR 37,690 MFWAM 1,080,496 1,065,639 2,146,135 SVM training 
whole archive 06.2016–12.2017 

7 S1-WV_SVM_VAL 76,320 MFWAM 2,133,062 2,135,326 4,268,388 SVM validation 
whole archive 12.2018–02.2021 

8 S1-WV_ARCHIVE 161,923 – 6,7 Mio 6,7 Mio 13,4 Mio sea state parameters archive 
Whole S1 WV archive 12.2014–02.2021 MFWAM05.2016–0.22021 2,524,250 2,789,962 5,314,212 archive validation MFWAM 

NDBC 01.2017–12.2020 4302 4406 8757 archive validation NDBC   

Table A4 
Data processed for tuning and validation of S1 IW, EW and TS-X SM, ground truth MFWAM.  

Used data No. of products No. of collocated subscenes total No. of collocated subscenes tuning 
Data set name 

No. of collocated subscenes validation 
Data set name 

S1 IW 1762 517,289 300,000 
S1-IW_TUN 

217,289 
S1-IW_VAL 

S1 EW 2093 1,162,492 800,000 
S1-EW_TUN 

362,492 
S1-EW_VAL 

TS-X SM 2047 216,938 (HH pol.) 120,000 (HH pol.) 
TS-X_HH_TUN 

96,938 (HH pol.) 
TS-X_HH_VAL 

138,885(VV pol.) 120,000 (VV pol.) 
TS-X_VV_TUN 

18,885 (VV pol.) 
TS-X_VV_VAL   
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Fig. A5. CWAVE_EX: scatterplots for periods Tm0 (left column) and Tm1 (right column) for S1 WV including both wv1 and wv2 (first row), S1 IW (second row), S1 EW 
(third row) and TS-X (last row). In the 30 km × 50 km TS-X 1.5 km raster results the local distribution by comparison to coarse model grid points is visible.  
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Fig. A6. CWAVE_EX: scatterplots for partially integrated dominant swell Hs
swell-1 (left column) and Hs

swel-2 (right column) for S1 WV including both wv1 and wv2 
(first row), S1 IW (second row), S1 EW (third row) and TS-X (last row). In the 30 km × 50 km TS-X 1.5 km raster results the local distribution by comparison to coarse 
model grid points is visible.  
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Fig. A7. CWAVE_EX: scatterplots for partially integrated wind-sea wave height Hs
wind (left column) and wind-sea wave period Twind (right column) for S1 WV 

including both wv1 and wv2 (first row), S1 IW (second row), S1 EW (third row) and TS-X (last row). In the 30 km × 50 km TS-X 1.5 km raster results the local 
distribution by comparison to coarse model grid points is visible.  
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