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[1] iata.org, IATA Technology Roadmap 4. Edition, June 2013

[2] ICAO-Resolution A39-3: Carbon Offsetting and Reduction Scheme for International Aviation

[3] www.iata.org/en/programs/environment/flynetzero/ 

4

Global Aviation Industry Response: IATA Technology Roadmap [1] extended [3] 



Global Aviation Industry Response: IATA Technology Roadmap [1]

PtX opportunities and challenges for aviation and beyond •  Ralph-Uwe Dietrich et. al •  June 1st, 2022 •  Aarhus PtXDLR.de  •  Chart 3

1

2

3

Forecasted CO2 emissions without reduction measures

Improvement of technologies, operations and airport infrastructure

CO2-certificates (e.g. ETS), other economic measures (CORSIA[2]) 

2016)Radical technology transitions and alternative fuels

C
O

2
 e

m
is

s
io

n
s

Planned Measures:

2010               2020                2030                2040                 2050

No action

3

Technology

1 2

Operations

Infrastructure

-50 % CO2

by 2050

Main goals:

Improvement of fuel 

efficiency about

1,5 % p.a. until 2020

Carbon-neutral growth  

from 2020 onwards

CO2 emissions reduction 

of 50 % by 2050

(2005 reference) 

2021 Update [3]:

Fly net-zero by 2050

[1] iata.org, IATA Technology Roadmap 4. Edition, June 2013

[2] ICAO-Resolution A39-3: Carbon Offsetting and Reduction Scheme for International Aviation

[3] www.iata.org/en/programs/environment/flynetzero/ 

4

4

Global Aviation Industry Response: IATA Technology Roadmap [1] extended [3] 



Global Aviation Industry Response: IATA Technology Roadmap [1]

PtX opportunities and challenges for aviation and beyond •  Ralph-Uwe Dietrich et. al •  June 1st, 2022 •  Aarhus PtXDLR.de  •  Chart 4

1

2

3

Forecasted CO2 emissions without reduction measures

Improvement of technologies, operations and airport infrastructure

CO2-certificates (e.g. ETS), other economic measures (CORSIA[2]) 

2016)Radical technology transitions and alternative fuels

C
O

2
 e

m
is

s
io

n
s

Planned Measures:

2010               2020                2030                2040                 2050

No action

3

Technology

1 2

Operations

Infrastructure

EU27 aviation fuel demand 

2019:  48.2 Mt/a[4]

-50 % CO2

by 2050

Main goals:

Improvement of fuel 

efficiency about

1,5 % p.a. until 2020

Carbon-neutral growth  

from 2020 onwards

CO2 emissions reduction 

of 50 % by 2050

(2005 reference) 

2021 Update [3]:

Fly net-zero by 2050

[1] iata.org, IATA Technology Roadmap 4. Edition, June 2013

[2] ICAO-Resolution A39-3: Carbon Offsetting and Reduction Scheme for International Aviation

[3] www.iata.org/en/programs/environment/flynetzero/ 

4

4

Global Aviation Industry Response: IATA Technology Roadmap [1] extended [3] 

EU27 2025:  

55.5 Mt/a[5] ?

EU27 2030:  

63 Mt/a[5] ?

[4] ec.europa.eu/eurostat/databrowser/view/NRG_BAL_C 

EU27 2050:  

?? Mt/a

[5] theicct.org, Estimating sustainable aviation fuel feedstock availability to meet growing European Union demand, 08 MAR 2021
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[1] ASTM International, „ASTM D7566-21 Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons“, 2021
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[1] ASTM International, „ASTM D7566-21 Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons“, 2021

[2] UK Ministry of Defense, „DEF STAN 91-91: Turbine Fuel, Kerosene Type, Jet A-1“, UK Defense Standardization, 2011

[3] theicct.org, Estimating sustainable aviation fuel feedstock availability to meet growing European Union demand, 08 MAR 2021

[4] European Environment Agency, “Europe's onshore and offshore wind energy potential,” 2009.

Fischer-Tropsch synthesis
• Large scale, commercial technology

• Based on synthesis gas

(Available from almost any green

carbon and hydrogen source)

• Fully synthetic kerosene achievable [2] 

Potential for Europe? – e.g. wind power

• Example jet fuel consumption: 63 Mt/a [3]

• Power demand for exclusively power based kerosene 

in Europe:  ≈ 1,600 TWhe

• European wind power potential[4]: 12,200 – 30,400 TWhe

≈ 5 - 13 % for power based kerosene?
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Goal: CO2 reduction @ minimized GHG-Abatement cost, 

either by reducing GHG footprint or costs!

Standardized methodology for LCA and TEA required!  
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[1]

[3]

[1] Albrecht et al. (2016) - A standardized methodology for the techno-economic evaluation of alternative fuels – A case study, Fuel, 194: 511-526
[2] Mutel (2017) - Brightway: An open source framework for Life Cycle Assessment, Journal of Open Source Software, 2(12): 236
[3] Wernet, G et al. (2016) – The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21(9): 1218–1230. 
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General Plant Assumptions

Plant capacity 6.05 t/h H2 input

Full load hours 8,000 hours/a

Operating time of plant y 20 years

Interest rate IR 7 %

Base year 2019

Location Germany

Site Brownfield

Hydrogen Cost Cases [2]

Low 2.3 €/kgH2

Base 4.1 €/kgH2

High 7.6 €/kgH2

[1] Adelung, S. et al., Impact of the reverse water-gas shift  operating conditions on the Power-to-Liquid fuel production cost, Fuel, Vol. 317, 2022, 123440
[2] Bertuccioli, L., et al., Development of Water Electrolysis in the European Union. 2014, Fuel Cells and Hydrogen Joint Undertaking: Lausanne.
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FCI: 136 M€2019

and H2 cost of 4.1 €2019/kg
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Process electricity Other

• Transportation: truck (size: >32 t / 16-32 t)

- 100 km biomass (90.9 gCO2-eq./(t*km) [2])

- 200 km FT-products (166.8 gCO2-eq./(t*km) [2])

• Biomass: Harvesting woody residues 

(bark, saw dust, wood chips) (13.8 gCO2-eq./kg [2])

• Electricity: Finnish onshore wind energy

(17.2 gCO2-eq./kWh [2])

Conclusion

• REDII target accomplished @ Finnish

FLEXCHX base case assumptions

Life Cycle Assessment Example Results

Global warming potential in FLEXCHX cases BtL and PBtL (50 MWth)
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[1] European Union (2018) “Directive 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast)”, Official Journal of the European Union

[2] Wernet, G et al. (2016) – The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21(9): 1218–1230. 

[3] Online https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-6 [Accessed 14.9.21]

FlexCHX project has received funding from the European 

Union’s Horizon 2020 research and innovation Programme 

under Grant Agreement No 763919

Fossil fuel reference [1]

RED II 65 % limit [1]
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Transport Biomass supply Electrolyzer electricity

Process electricity Other

• Transportation: truck (size: >32t / 16-32t)

- 100 km biomass (90.9 gCO2-eq./(t*km) [2])

- 200 km FT-products (166.8 gCO2-eq./(t*km) [2])

• Biomass: Harvesting woody residues 

(bark, saw dust, wood chips) (13.8 gCO2-eq./kg [2])

• Electricity: Finnish onshore wind energy

(17.2 gCO2-eq./kWh [2])

• Electricity: Finnish grid mix (86 gCO2-eq./kWh [3])

Conclusion

• REDII target accomplished @ Finnish

FLEXCHX base case assumptions

• REDII target only slightly accomplished 

for PBtL @ Finnish grid mix electricity

Life Cycle Assessment Example Results

Global warming potential in FLEXCHX cases BtL and PBtL (50 MWth)
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[1] European Union (2018) “Directive 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast)”, Official Journal of the European Union

[2] Wernet, G et al. (2016) – The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21(9): 1218–1230. 

[3] Online https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-6 [Accessed 14.9.21]

FlexCHX project has received funding from the European 

Union’s Horizon 2020 research and innovation Programme 

under Grant Agreement No 763919

Fossil fuel reference [1]

RED II 65 % limit [1]
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Life Cycle Assessment Example Results

Global warming potential in FLEXCHX case PBtL (50 MWth) w. national grid power
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PtX beyond aviation: New fuels for sustainable transport?

Beniver - Scientific supervision  of „Energy transition in the transport sector (EiV)”
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• EiV: funding 99 Mio. €  | 16 projects  | 100+ partner

• Renewable electricity based fuels for air, road and maritime transport

• BEniVer – Scientific supervision

• BEniVer funding - 9 Mio. € (8 partner)

• Goal: Multicriterial assessment of different 

options for GHG abatement in transport



Conclusions: PtX opportunities and challenges for aviation and beyond?

• Opportunity 1: Promised enormous increase in renewable energy generation 

• German coalition agreement (government): +300 - 350 TWh renewable electricity by 2030

• New RE capacity implementation: 35 - 40 TWh p.a.?

• 10 % for aviation: 3.5 – 4.0 TWh  +100 - 200 kt/a SAF addition each year?

• Opportunity 2: Promised short term SAF pull (aviation industry) and push (expected deployment policies)

• Immediate utilization of „low hanging fruits“: e.g. stop burning industrial H2, explore cheap green carbon

• Challenge 1: underdeveloped European SAF industry (compared to GWP saving request)

• Mandatory: reliable, permanent market for SAF – e.g., year-on-year growth rate of blending until 2030?

• Investor certainty crucial
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Promise 100 % SAF within 3 decades?

Fair share: 33 % supply in this decade?

 ⅓ of 63 Mt/a [1]
 21 Mt/a SAF by 2030 !!!

[1] theicct.org, Estimating sustainable aviation fuel feedstock availability to meet growing European Union demand, 08 MAR 2021
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