

From System Architecting to System Design and
Optimization: A Link Between MBSE and MDAO

Jasper Bussemaker

German Aerospace Center (DLR)

Hamburg, Germany

+49 (0)40 2489 641327

jasper.bussemaker@dlr.de

Luca Boggero

German Aerospace Center (DLR)

Hamburg, Germany

+49 (0)40 2489 641338

luca.boggero@dlr.de

Pier Davide Ciampa

German Aerospace Center (DLR)

Hamburg, Germany

+49 (0)40 2489 641322

pier.ciampa@dlr.de

Copyright © 2022 by Jasper Bussemaker, Luca Boggero, and Pier Davide Ciampa. Permission granted to INCOSE to publish and use.

Abstract. Optimization of system architectures can help deal with finding better system architectures

in a large design space plagued by combinatorial explosion of alternatives. To enable architecture

optimization, the design space should therefore be formalized into a numerical optimization problem,

and it should be possible to quantitatively evaluate architecture alternatives. This paper presents a

methodology for generating and modeling architecture design spaces using the Architecture Design

Space Graph (ADSG), and using collaborative Multidisciplinary Design Analysis and Optimization

(MDAO) techniques to evaluate architectures. Collaborative MDAO leverages disciplinary expertise

while ensuring that analysis tools exchange data consistently and correctly using a central data

schema. The problem solved in this paper is the missing link between architecture optimization and

collaborative MDAO: the reflection of generated architectures in the central data schema. It is solved

by the authors by mapping architecture components and Quantities of Interest (QOIs) to the central

data schema using Data Schema Operations (DSOs). Such a mapping also assists the user in

identifying missing or unnecessary disciplinary analysis tools. Three web-based software tools

implementing the methodology are presented. Finally, the methodology and tools are demonstrated

using the design of a supersonic business jet as an example.

Introduction

The developments presented in this paper are part of the EU-funded AGILE4.0 project1, wherein the

German Aerospace Center (DLR) is leading the development of a Model-Based Systems Engineering

(MBSE) framework to enable the design of complex systems all the way from stakeholders and needs

to detailed design using collaborative MDAO (Ciampa & Nagel, 2021). The MBSE framework

developed in this context consists of the upstream architecting phase and the downstream product

design phase, visualized in Figure 1. The upstream architecting phase consists of activities like

identifying goals, specifying scenarios and requirements, and designing the system architecture.

1 https://www.agile4.eu/

mailto:jasper.bussemaker@dlr.de
mailto:luca.boggero@dlr.de
mailto:pier.ciampa@dlr.de
https://www.agile4.eu/

Typically, this phase is executed in a Model Based Systems Engineering (MBSE) context. The

downstream product design phase consists of the selection of disciplinary tools needed for the design

stage, the integration of these into a design process, and operation of the design system to design and

optimize the system. These steps are typically executed in a Multidisciplinary Design Analysis and

Optimization (MDAO) context.

Figure 1. The MBSE framework developed in the AGILE4.0 project, showing the different phases

and relation to systems engineering and MDAO. Reproduced from (Ciampa & Nagel, 2021).

The upstream architecting phase includes the design of the system architecture: a description of which

components a system consists of, and how they work together to fulfill the system functions

(Crawley, et al., 2015). The design of system architectures deals with an extremely large design space

due to a combinatorial explosion of alternatives (Iacobucci, 2012). One way of dealing with this is

by applying systematic design space exploration of system architectures, in practice meaning that

optimization techniques are applied to the search for the best system architecture(s). To achieve this,

the architecture design space should be modeled and formalized, and quantitative evaluation of

architecture alternatives should be available (Bussemaker, et al., 2021).

Further downstream in the design process more detailed analysis is performed to size and optimize a

design according to one or more design objectives. At this stage, the design of complex systems may

involve several interacting and often conflicting engineering disciplines that all have to be considered

to achieve at least a feasible design and at best an optimal design. Such disciplinary interactions can

be automated by using MDAO techniques. Using MDAO, all relevant disciplines are treated

simultaneously, ensuring that an analyzed design will be feasible between the disciplines (e.g. when

the results of two analyses depend on the results of the other) and a design with appropriate

compromises and synergies between the disciplines can be found (Sobieszczanski-Sobieski, et al.,

2015).

Organizational aspects pose a major challenge to applying MDAO to the design of complex systems,

especially when heterogeneous teams collaborate across organizational and even national boundaries

(Ciampa & Nagel, 2020). To achieve integration at this level it is necessary to solve two problems:

all disciplines should “speak the same language”, and it should be possible to exchange data across

organizational boundaries while respecting intellectual property rights. These problems are tackled

by the collaborative MDAO paradigm (see also Figure 2): a central data language (also known as

central product model) is established that all disciplinary tools use as their input and output formats,

and techniques are developed to enable data transfer using a central data server and requests for

execution. In aircraft design, the Common Parametric Aircraft Configuration Schema (CPACS)

represents such a central data language (Alder, et al., 2020).

Figure 2. Collaborative MDAO framework, showing distributed competences (both code and

expertise). Reproduced from (Ciampa & Nagel, 2016).

The core to enabling the interoperation of the upstream and downstream phases lies in bridging the

MBSE and MDAO activities. As identified in (Ciampa & Nagel, 2021), specifically two bridges need

to be established to do this:

1. MBSE Specification to MDAO: System requirements are related to the MDAO process.

2. MBSE Architecting to MDAO: Architecture components are related to the MDAO process.

The main function of both bridges is to verify that the developed MDAO design process sufficiently

covers the requirements and architectures so that a realistic and useful result can be obtained from it.

Additionally, these bridges can be used to automatically provide feedback as part of the architecture

optimization loop and automatically verify requirements for a given design solution, similar to the

strong coupling approach identified by (Chaudemar & de Saqui-Sannes, 2021).

The novel methodology presented in this paper focuses on the second bridge: linking MBSE

architecting to MDAO to enable architecture optimization. It must however be noted that the

architecting step builds on the requirements specification step, and therefore a large part of the

requirements validation can also be taken up by the architecting activity through the specification of

architecture properties and formulation of the architecture design problem. For example, performance

requirements can be used as optimization constraints.

The rest of the paper is structured in four sections: first the underlying methodology is discussed,

then the implemented tools for practically using this methodology are presented. Then, the

methodology and tools are demonstrated using an optimization of a supersonic business jet as an

example. Finally, the paper is concluded and an outlook is presented.

Methodology

To properly present the MBSE Architecting to MDAO bridging approach, first the architecting and

MDAO approaches are presented in more details. The architecting approach focuses on modeling the

function-based architecture design space for architecture optimization. The MDAO approach

implements the collaborative MDAO principle to leverage disciplinary expertise and implement

cross-organizational MDAO workflows.

Architecture Design Space Modeling

The first step to enabling architecture optimization is to model and formalize the architecture design

space. In the developed MBSE framework this is done using the Architecture Design Space Graph

(ADSG): a graph-based formulation mapping functions to components and in addition representing

component characterization and connection decisions. See Figure 3 for an example. It offers general

applicability to and compatibility with MBSE methods, and due to its function-based nature it offers

a method free of solution-bias for modeling architecture design spaces. Additionally, function-based

architecting offers a natural connection from system requirements.

Figure 3. Example Architecture Design Space Graph (ADSG). Directed edges indicate derivation,

decision nodes indicate a selection of mutually-exclusive options. Figure reproduced from

(Bussemaker, et al., 2020).

An ADSG is constructed from a database of components that specify which functions they fulfill and

which functions they need in order to do so (also known as function induction). Additionally,

concepts, decompositions, and incompatibility constraints can be used as complexity management

tools. Architectural decision nodes are automatically inserted for predefined patterns, for example if

multiple components fulfill a function. Components then can represent several characterization

choices: by number of instances and by attributes. Finally, component connection choices can be

modeled using ports and permutation decisions. For more information about all the modeling

elements and behavior of the ADSG, the interested reader is referred to (Bussemaker, et al., 2020).

An architecture optimization problem can be formulated from the ADSG by mapping decision nodes

to design variables. Objectives and constraints are defined using Quantities of Interest (QOIs):

values associated to functions or components that can serve different roles during an optimization

process. Next to objectives and constraints, QOIs can also be used as design variables (in addition to

design variables defined from decision nodes), input parameters, and output metrics. QOIs may refer

to performance requirements, thereby establishing a link between the requirements definition and

architecting activities.

In this section we have shown how the ADSG might be used to model and formalize function-based

architecture design spaces, and how an optimization problem can be formulated from it. The

evaluation of architecture instances needed for enabling architecture optimization is not prescribed

by the ADSG. In this paper an evaluation approach using collaborative MDAO will be presented,

however it must be noted that any evaluation method might be used (e.g. a set of custom Python

scripts), as long as it can correctly simulate relevant effects and return some numerical values for the

requested objectives and constraints given an architecture instance.

Collaborative MDAO

Collaborative MDAO encompasses several technologies needed for implementing an MDAO

workflow in a cross-organizational context. In this section, however, the focus will lie on the use of

a central data schema as this relates to how a product is parameterized and how disciplinary tools

exchange data to converge to a solution. In aircraft design an example of an established central data

schema is CPACS (Alder, et al., 2020). CPACS is XML-based and used by multiple research,

academic, and commercial organizations (Ciampa & Nagel, 2020).

The involvement of many different engineering disciplines results in different jargon, product

parameterizations, and units being used. The advantage of using a central data schema for product

representation forces everyone to “speak the same language”, thereby greatly reducing this problem.

Another advantages is the reduction in the number of data interfaces that need to be implemented

when creating an MDAO workflow (Alder, et al., 2020): from N(N-1) to 2N, where N is the number

of disciplinary tools (see Figure 4). As a result, the development of an MDAO workflow is made

truly collaborative as the data exchange at the tool level is managed by the owner of the disciplinary

tool, whereas the data exchange between tools can then be managed by the workflow integrator (i.e.

the person defining the workflow).

Figure 4. The use of a central data schema like CPACS reduces the number of implemented data

interfaces from N(N-1) to 2N. Reproduced from (Alder, et al., 2020).

Determining which tools needs what data at what time is a challenging task when done manually,

especially if the data also has to be guaranteed to be consistent in the presence of feedback loops.

This task can be partly automated by using a graph-based method where information on tool

interfaces (i.e. which subset of central data schema nodes are needed as input and provided as output)

is used to represent data flows between disciplinary tools and the nodes of the data schema (van Gent,

et al., 2017). This graph is used to query properties of the workflow, for example which data nodes

are inputs, outputs, or collisions. Such information is used to determine data couplings between tools

and the best order of execution for solving the workflow. Additional properties are specified to finally

transform it to an MDAO workflow, for example assigning design variables, objectives, and

constraints, and adding converger and optimizer elements.

The graph-based workflow model is then used to construct a workflow in a Process Integration and

Design Optimization (PIDO) environment. This principle has been demonstrated for RCE 2 ,

Optimus3, and OpenMDAO4 (van Gent, 2019). Although such PIDO environments also enable the

manual definition of MDAO workflows, the great advantage of using the graph-based MDAO

2 https://rcenvironment.de/
3 https://www.noesissolutions.com/our-products/optimus
4 https://openmdao.org/

https://rcenvironment.de/
https://www.noesissolutions.com/our-products/optimus
https://openmdao.org/

workflow modeling method is that it is much easier to modify the workflow (e.g. add tools, rearrange

tools) and to guarantee the correct data exchange at the same time.

In summary, the collaborative MDAO approach enables the integration of large-scale MDAO

processes involving many heterogeneous engineering disciplines, by exchanging data using a central

data schema. This forces all disciplines to speak the same language, results in the implementation of

less interfaces, and enables disciplinary experts to focus on their tool while the process integrator can

focus on the definition of the MDAO workflow. Collaborative MDAO can be a powerful method to

designing and optimizing complex engineering products, however research on how to use it for

architecture optimization is in its very early stages, see for example (Jeyaraj, et al., 2021).

Connecting Architecting and Collaborative MDAO

The previous sections have introduced the methodologies for architecture design space modeling and

optimization and for composing collaborative MDAO workflows. To apply the latter for evaluating

the performance of generated system architectures, it is needed to establish a two-way connection.

First of all, the connection from generated architectures to collaborative MDAO, the feed-forward

connection, should enable the synchronization between the architecture definition and the central

data schema instance. Then, after the MDAO workflow has analyzed a particular architecture, a

feedback connection should be established to extract performance data (i.e. optimization objectives

and constraints) from the central data schema and communicate them to the architecture optimizer.

Another function of the architecture-to-MDAO bridge is to support the selection of the disciplinary

tools during the workflow definition process (Ciampa & Nagel, 2021). From the architecture design

space model, it is known which components and associated Quantities of Interests (QOIs) the

architecture design space consists of. From the MDAO workflow model, it is known which

disciplines use which central data schema nodes as their input or provide them as their output. By

mapping the components and QOIs to the central data schema, it can then be deduced which

disciplines are associated to which architecture components. This knowledge can assist the system

integrator in several ways:

1. Verify that the selected disciplines sufficiently cover the architecture components.

2. Identify interchangeable (i.e. redundant) disciplinary tools: multiple tools associated to the

same set of components.

3. Identify missing disciplinary tools: components not associated to any disciplinary tools.

4. Identify unnecessary disciplinary tools: tools not associated to any component.

Together, these knowledge aspects help justify the inclusion of disciplinary tools and ensure that the

tools selected for evaluating architecture performance sufficiently cover the architecture elements.

Additionally, it provides a step towards building confidence in the evaluation process providing

useful and realistic results.

From the above discussion it can be seen that mapping components and QOIs to the central data

schema both assists the system integrator with the selection of the engineering disciplines and enables

the feed-forward connection of synchronizing architecture instances with the central data schema.

This mapping is established by defining a so-called Data Schema Operation (DSO) for each QOI

and/or component. An example can be writing (reading) a QOI value to (from) some data node.

Figure 5. Optimization loop with architecture evaluation: the design space explorer (i.e. optimizer)

suggests a design vector (x) that is converted into an architecture description. Generated

architectures are mapped to a central data schema instance (product_data) using the data schema

operation database (dso_db), which is then used to execute the collaborative MDAO toolchain.

Defining these data schema operations also enables integration into the architecture optimization

loop, as notionally shown in Figure 5. Collaborative MDAO for architecture evaluation is

implemented using four blocks:

1. Architecture generator: generates an architecture from the design vector (the vector of all

design variables, as suggested by the design space explorer), taking design variable hierarchy

into account (for more information, refer to (Bussemaker, et al., 2020)).

2. Architecture mapper: takes a generated architecture, an initial product model using the

central data schema, and the database of Data Schema Operations (DSO database), and

produces a product model representing the generated architecture.

3. MDAO toolchain: the actual collaborative MDAO workflow taking the product model as

input and producing an updated (i.e. analyzed) product model as an output.

4. Metrics extractor: reads relevant metrics from the product model according to the DSO

database and updates QOIs of the generated architecture to reflect MDAO output.

The end result of the architecture optimization loop then consists of an architecture instance with

correctly updated QOIs and data schema instance representing the same architecture. Due to the

automated mapping connections these two different system representations are guaranteed to be

consistent.

Integration of the architecture mapper and metrics extractor blocks in the MDAO workflow itself is

also possible, because each DSO knows which data schema node it affects: combining all DSOs

together then yields a complete view of all nodes affected by the architecture mapper and all nodes

needed for metrics extraction.

Implementation

This section presents the implementation as done by DLR in the EU-funded AGILE4.0 project. The

three elements needed for implementing the presented architecture optimization methodology are

implemented in three web-based software tools. Their backends are programmed in Python5, their

5 https://www.python.org/

https://www.python.org/

frontends are built using the Vue6 framework. Their web-based nature enables access without the

need for installing anything locally, and it enables automated synchronization with a central database

to store all relevant models and data for some design project.

Architecting Design Space Modeling: ADORE

The architecture design space modeling method based on the Architecture Design Space Graph

(ADSG) has been implemented in a tool called ADORE (Architecture Design and Optimization

Reasoning Environment) by the DLR. ADORE implements the following functionalities:

1. ADORE project file format for storing the design space definition, design problems, and

generated architecture instances;

2. Constructing an ADSG including architectural decisions from the design space definition;

3. Creating architecture instances from an ADSG by manually assigning an option to each

decision;

4. Defining design optimization problems from an ADSG and using this to generate

architectures from design vectors;

5. Interfaces to several optimization frameworks, including OpenMDAO and pymoo7;

6. Application Programming Interface (API) for implementing architecture evaluation.

This setup means that the user is not directly interacting with the ADSG while using ADORE. Rather,

the model being manipulated is the same as the ADORE project file format, where a project consists

of a DesignSpace, zero or more DesignProblem instances, and zero or more Architecture

instances. The detailed presentation of the ADORE project format is out of scope for this paper.

The architecture evaluation API enables custom evaluation code on a per-problem basis. The only

functionality to implement is to provide numerical values for requested QOIs for a given

Architecture instance. ADORE takes care of correctly generating architectures from the design

vector and feeding back the provided numerical values to the optimization algorithm as objectives

and constraints.

The graphical user interface of ADORE has been developed to enable interactive editing of the

architecture design space model, as shown in Figure 6. Feedback is provided continuously enabling

quick recovery of errors and greater insight into model behavior. A list of architectural decisions can

be viewed to verify that all decisions are implemented correctly. Design space model behavior can

be verified by manually creating architecture instances: options are selected for each architectural

decision, taking decision hierarchy into account (i.e. inactive decisions won’t be shown). The user

can then verify that by taking decisions indeed the expected architecture instances can be generated.

6 https://vuejs.org/
7 https://pymoo.org/

https://vuejs.org/
https://pymoo.org/

Figure 6. ADORE web-based graphical user interface showing the design space editing canvas.

The user interface also enables the formalized definition of design optimization problems:

architectural decisions are mapped to design variables, and QOIs are assigned roles including

additional design variables, objectives, and constraints. Design variables can be fixed to some

specific value to modify the size of the optimization design space, and the roles of objectives and

constraints can be modified to change optimization problem behavior. These features are useful to

for example define a simpler architecture optimization problem for testing the optimization toolchain,

or to try out different optimization objectives and compare their results.

Figure 7 shows a part of a design space model for a jet engine architecting problem. Derivation of

architectures starts at the boundary function “provide propulsive power”. Blue-dashed lines represent

architecture decisions, for example whether to add a fan or not, and whether to use a mixed nozzle

or not. Red lines represent incompatibility constraints, meaning that elements on both ends cannot

exist together in an architecture instance. This specific model has been used to solve a jet engine

architecting problem: engine performance was evaluated using the framework presented by

(Bussemaker, et al., 2021), which was connected to ADORE using the architecture evaluation API.

Figure 7. Partial view of a jet engine architecture design space model in ADORE.

MDAO Workflow Modeling: MDAx

MDAO workflows are modeled using MDAx (MDAO Workflow Design Accelerator), a tool

developed by the DLR. MDAx implements the previously presented collaborative MDAO workflow

modeling methodology, and does so using an interactive user interface. This makes it more intuitive

for users to create workflows, because they can see the immediate effect on data flow that

manipulations have, and also enables the use of the program in a more exploratory setting, for

example during workshops or for documentation of processes. For example, Figure 5 has been

created using MDAx. For more details regarding MDAx and its design philosophy, please refer to

(Page-Risueño, et al., 2020).

Due to brevity, no more details regarding MDAx will be included in this paper. Here it suffices to

mention that workflows modeled in MDAx can be exported to the CMDOWS format (van Gent, et

al., 2018) or directly to an executable RCE workflow for execution.

Linking Architecting to MDAO: MultiLinQ

As discussed before in the methodology section, it is clear that the two main functions of the tool

linking architecting to MDAO are to implement Data Schema Operations (DSOs) and to assist in

the selection and verification of disciplinary tools. These functions are implemented by the authors

in a tool called MultiLinQ. MultiLinQ enables the definition of components and QOIs and the

selection of multidisciplinary tools according to their input and output definitions.

One the one hand, MultiLinQ enables the definition of components and QOIs. QOIs may be

associated to components or they may be standalone QOIs, for example when directly associated to

some performance requirement. Components and QOIs may come from various sources; it is for

example possible to simply import an ADORE project and extract components and QOIs from there.

This way additionally the link between components and QOIs in the ADORE and MultiLinQ projects

are established which eases integration in the architecture optimization loop.

On the other hand, tool input and output definitions can be added to define the data schema and relate

nodes to disciplinary tools. Here too this data can come from multiple sources, for example from a

database of input and output definitions exported from MDAx.

To connect components and QOIs to the data schema, a DSO is configured for each component and

QOI which defines how it influences the data schema instance. Additionally, in case of the QOI it is

also specified whether it represents an input value or output value, which determines when it will be

applied: in the architecture mapper (for input) or in the metrics extractor (for output), see also Figure

5. Components and QOIs can exist in multiple instances in a generated architecture, which should

also be possible to be reflected in the central data schema. Table 1 shows possible DSOs for

components and QOIs and different number of instances.

Table 1: Possible Data Schema Operations (DSOs).

Architecture

Element

DSO [number of element instances]

[0] [1] [2 or more]

QOI (input)

Write empty value;

Remove node;

Do nothing

Write value to node
Write list of values;

Write to copied nodes

QOI (output) N/A Read value from node
Read from list;

Read from copied nodes

Component

Remove node;

Do nothing;

Write nr of instances

Create new node;

Write nr of instances

Copy (new) node;

Write nr of instances

The mapping from components and QOIs to disciplinary tools can be visualized in the Component-

Tool (CT) matrix. Figure 8 shows an example CT matrix. It can be seen how components and

associated QOIs are associated to disciplinary analysis tools, for example the “Reference area” QOI

of the “Wings” component is associated to the “Aerodynamics” and “Structures” tools. The CT

matrix also shows unmapped elements. In the presented example, it shows that the “Fuel price” QOI

of the “Fuel system” component is not mapped to any tool, indicating a missing tool. Also, the “Cost”

tool is not associated to any component or QOI, indicating an unnecessary tool for the problem at

hand.

Figure 8. Component-Tool (CT) matrix showing how components and QOIs are associated to

disciplinary analysis tools.

The main usage scenario of MultiLinQ is then to first define components, QOIs, tools, and DSOs,

which in practice will be an iterative process between ADORE, MultiLinQ and MDAx. Once that

has been completed, the architecture optimization can be started. This can either be done by giving

ADORE control over the optimization loop, or by integrating ADORE and MultiLinQ as executable

blocks inside the PIDO environment running the MDAO toolchain. The advantage of ADORE

control is that state-of-the-art optimization algorithms can be selected, and that the combination of

optimization algorithm, ADORE, and MultiLinQ can be executed on a different computer than the

MDAO workflow. This would enable a scenario where ADORE and MultiLinQ are offered as an

online service, so that users only have to concern themselves with running the MDAO workflow used

for architecture evaluation and nothing else.

Demonstration: Optimization of a Supersonic Business Jet

The presented methodology for performing architecture optimization using collaborative MDAO is

demonstrated using the supersonic business jet design problem from (Sobieszczanski-Sobieski, et al.,

1998). The collaborative MDAO implementation is provided here 8 , and includes both tool

implementations and associated input and output definitions.

The optimization problem represents a classical multidisciplinary aircraft design problem: a coupled

design of structures, aerodynamics, propulsion, and performance. The MDAx model is shown in

Figure 9 on the left: aerodynamics, propulsion, and structures are coupled due to feedback

connections, whereas the performance calculation is a post-processing tool that does not provide

8 https://github.com/DLR-SL-MDO/mdax-ssbj

https://github.com/DLR-SL-MDO/mdax-ssbj

feedback to any other tool. Design variables include wing planform parameters (aspect ratio,

reference area, sweep, etc.), mission parameters (cruise altitude, Mach number), and engine rated

thrust. Calculation outputs include weights (maximum take-off weight, fuel weight, engine weight,

etc.), cruise lift and drag, structural stresses, and wing twist. The performance tool calculates the

range and endurance, both calculated using the Breguet equations. The workflow is executed in RCE,

an open-source PIDO environment developed by the DLR. The right side of Figure 9 shows the

workflow as exported to RCE, ready for execution.

Figure 9. XDSM view (left) and RCE workflow (right) of the collaborative MDAO workflow for

analyzing one supersonic business jet configuration, modeled in MDAx.

The architecture design space model of the supersonic business jet consists purely of QOIs

representing design variables and calculation outputs of the original MDAO problem. It should be

noted, however, that the methodology presented in this paper also works for architectural choices

regarding the selection of components. The architecture design space model is shown in Figure 10.

It is built-up from the boundary function “Transport payload”, as would come from upstream

requirements. This function is decomposed into “Generate lift” and “Generate thrust”, which are

fulfilled by their respective components. QOIs are associated to the boundary function, representing

system-level QOIs, and to the components. For example, the right side of Figure 10 shows QOIs

associated to the “Engines” component. Not shown in the design space model visualization are QOI

roles: for example, design variable QOIs have bounds associated, input parameters have a static

value, and constraints have their reference value and a direction (i.e. greater than or lower than).

Figure 10. ADORE architecture design space model of the supersonic business jet, showing the

system overview on the left, and “Engines” component details view on the right.

At this point, it is clear that on the one side the MDAx MDAO workflow model enables the

quantitative evaluation of a supersonic business jet model, and that ADORE represents the system

architecture model as would come from upstream MBSE activities. To bridge this gap, MultiLinQ is

used to assign Data Schema Operations (DSOs) to QOIs. In this demonstration, only the reading and

writing of QOI values are used as DSO. The resulting CT matrix is shown in Figure 11. It shows that

all QOIs are mapped to an associated MDAO discipline, and that all disciplines are necessary. Many

QOIs only associate with one discipline (e.g. all engine-related QOIs), whereas some are associated

to multiple disciplines, for example because multiple disciplines need their value to do their

calculations.

Figure 11. MultiLinQ Component-Tool (CT) matrix for the supersonic business jet problem.

The optimization loop is executed under control of ADORE. In this case, the pymoo interface to

ADORE is used to connect an optimization algorithm. The control flow representing this

optimization loop is presented in Figure 12. It shows that ADORE is in charge of generating the

architecture, MultiLinQ is used for mapping the architecture to/from the input/output files (i.e.

implementing both the “architecture mapper” and “metrics extractor” steps), and RCE is used to

execute the collaborative MDAO workflow. Files are transferred from ADORE to RCE using a

custom server implementation by ADORE, here called “remote server”. Note that the optimization

framework (here: pymoo), workflow execution environment (here: RCE), and file transfer

mechanisms (here: remote server) are all interchangeable, for example by OpenMDAO, Optimus,

and Brics (Moerland, et al., 2020) respectively. This setup would also enable an architecture-

optimization-as-a-service setup, where the optimization algorithm, ADORE, and MultiLinQ run on

a server, sending input files to the user’s computer for evaluation.

Figure 12. Sequence diagram showing what happens when a design vector (x) is evaluated in the

optimization loop. The remote server implements the mechanism for sending the input file from

ADORE to RCE, where the collaborative MDAO workflow is executed.

The optimization problem is executed using a Surrogate-Based Optimization algorithm with a

Kriging surrogate model (Bussemaker, et al., 2021). A bi-objective formulation is used: both range

and L/D are attempted to be maximized. Figure 13 displays the resulting Pareto front, showing that

the presented framework can be used to solve a realistic architecting and collaborative MDAO

problem.

Figure 13. Pareto front of the multi-objective supersonic business jet optimization problem.

Conclusion and Outlook

A methodology for modeling and executing architecture optimization problems using collaborative

MDAO for architecture evaluation is presented. The methodology uses the Architecture Design

Space Graph (ADSG) for function-based modeling of the architecture design space and formulating

the associated hierarchical, mixed-discrete, multi-objective optimization problem. Collaborative

MDAO uses a central data schema to communicate data between disciplinary analysis tools, thereby

enabling the implementation of MDAO workflows leveraging diverse engineering expertise across

organizational boundaries. The architecture optimization method and collaborative MDAO are then

linked by mapping Quantities of Interest (QOIs) to the central data schema using Data Schema

Operations (DSOs). From this mapping a Component-Tool (CT) matrix can be generated, which

supports the user in justifying and selection of disciplinary tools for solving the architecture

optimization problem at hand.

The three elements of the methodology are implemented in three web-based tools: ADORE for

architecting, MDAx for collaborative MDAO workflow modeling, and MultiLinQ for linking

architecting and collaborative MDAO. MDAx is used to create workflows in RCE where it can be

guaranteed that data exchange happens exactly as specified in the workflow model. ADORE and

MultiLinQ are used to create an optimization problem and connect it to an optimization framework

of choice.

A supersonic business jet optimization problem is used to demonstrate the methodology. The

optimization loop is structured such that the chosen optimization framework has control over

execution, and the generated input file is sent to RCE using the remote server implementation of

ADORE. It is shown that the presented methodology and tools combine into a feasible and usable

methodology to create architecture optimization problems using collaborative MDAO for

architecture evaluation.

Next developments will mainly focus on further development of MultiLinQ and the underlying

methodology. It will be investigated whether the DSOs suggested in this publication will be sufficient

for enabling architecture optimization that also includes function fulfillment choices (i.e. whether

components will be included in the architecture or not), and component characterization and

connection choices.

The methodology will be applied to several industry-provided aircraft design application cases in the

context of the AGILE4.0 project, which includes application cases focusing on supply chain

management, electrification of an existing aircraft, retrofitting, and maintenance system design.

Design problems include MDO systems with up to ten coupled tools and tens of architectural

decisions (leading to millions of possible architectures).

Acknowledgments

Part of the research presented in this paper has been performed in the framework of the AGILE 4.0

project (Towards cyber-physical collaborative aircraft development) and has received funding from

the European Union Horizon 2020 Programme under grant agreement n. 815122. The authors are

grateful to the project partners for their insightful inputs and feedback about the developments

presented in this paper.

References

Alder, M., Moerland, E., Jepsen, J. & Nagel, B., 2020. Recent Advances in Establishing a Common

Language for Aircraft Design with CPACS. sl, sn

Bussemaker, J. H., Ciampa, P. D. & Nagel, B., 2020. System Architecture Design Space Exploration:

An Approach to Modeling and Optimization. sl, American Institute of Aeronautics and Astronautics.

———, 2021. Effectiveness of Surrogate-Based Optimization Algorithms for System Architecture

Optimization. sl, American Institute of Aeronautics and Astronautics.

———, 2021. System Architecture Design Space Modeling and Optimization Elements. Shanghai,

sn

———, 2021. System Architecture Optimization: An Open Source Multidisciplinary Aircraft Jet

Engine Architecting Problem. Virtual Event, American Institute of Aeronautics and Astronautics.

Chaudemar, J.-C. & de Saqui-Sannes, P., 2021. MBSE and MDAO for Early Validation of Design

Decisions: a Bibliography Survey. sl, IEEE.

Ciampa, P. D. & Nagel, B., 2016. Towards the 3rd Generation MDO Collaborative Environment.

Daejeon, sn, p. 1–12.

———, 2020. AGILE Paradigm: The next generation of collaborative MDO for the development of

aeronautical systems. Progress in Aerospace Sciences, November.Volume 119.

———, 2021. Accelerating the Development of Complex Systems in Aeronautics via MBSE and

MDAO: a Roadmap to Agility. Virtual Event, American Institute of Aeronautics and Astronautics.

Crawley, E., Cameron, B. & Selva, D., 2015. System architecture: strategy and product development

for complex systems. sl:Pearson Education.

Iacobucci, J. V., 2012. Rapid Architecture Alternative Modeling (Raam): a Framework for

Capability-Based Analysis of System of Systems Architectures, sl: sn

Jeyaraj, A. K., Tabesh, N. & Liscouet-Hanke, S., 2021. Connecting Model-based Systems

Engineering and Multidisciplinary Design Analysis and Optimization for Aircraft Systems

Architecting. sl, American Institute of Aeronautics and Astronautics.

Moerland, E. et al., 2020. Collaborative Architecture supporting the next generation of MDAO within

the AGILE paradigm. November, Volume 119, p. 100637.

Page-Risueño, A., Bussemaker, J. H., Ciampa, P. D. & Nagel, B., 2020. MDAx: Agile Generation of

Collaborative MDAO Workflows for Complex Systems. sl, American Institute of Aeronautics and

Astronautics.

Sobieszczanski-Sobieski, J., Agte, J. & Sandusky, R., 1998. Bi-level integrated system synthesis

(BLISS). Reston, American Institute of Aeronautics and Astronautics, p. 164–172.

Sobieszczanski-Sobieski, J., Morris, A. & van Tooren, M. J. L., 2015. Multidisciplinary Design

Optimization Supported by Knowledge Based Engineering. sl:John Wiley & Sons, Ltd.

van Gent, I., La Rocca, G. & Veldhuis, L. L., 2017. Composing MDAO symphonies: graph-based

generation and manipulation of large multidisciplinary systems. 18th AIAA/ISSMO Multidisciplinary

Analysis and Optimization Conference.

van Gent, I., La Rocca, G. & Hoogreef, M. F. M., 2018. CMDOWS: a proposed new standard to

store and exchange MDO systems. CEAS Aeronautical Journal, Volume 0, p. 0.

van Gent, I., 2019. Agile MDAO Systems: A Graph-based Methodology to Enhance Collaborative

Multidisciplinary Design, sl: sn

Biography

Jasper Bussemaker. Jasper received his MSc in Aerospace Engineering with

a focus on aircraft design and MDO from Delft University of Technology in

2018. Currently he researches system architecture optimization and MDO at the

DLR Institute of System Architectures in Aeronautics in Hamburg, Germany.

He is developing methods for modeling architecture design spaces, and for cou-

pling architecture optimization to collaborative MDO.

Luca Boggero. Luca obtained in 2018 his PhD in Aerospace Engineering at

Politecnico di Torino with a dissertation on Multidisciplinary Design and Opti-

mization (MDO), Model Based Systems Engineering (MBSE) and design of

aircraft subsystems. He now works as a Research Scientist at the DLR Institute

of System Architectures in Aeronautics in Hamburg, and he leads the System

Integration & MDO Group. He coordinates and is involved in research projects

within the context of MDO, Systems Engineering and MBSE.

Pier Davide Ciampa. Pier leads the MDO team at the DLR Institute of System

Architectures in Aeronautics. He is actively researching and leading projects in

the field of aircraft design and systems architecting, Multidisciplinary Design

and Optimization (MDO) and Model Based Systems Engineering (MBSE). In

2018 he received the ICAS Award for Innovation in Aeronautics for his work

in the AGILE project. Currently he coordinates the EU Horizon 2020 project

AGILE4.0.

