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Excited-state quantum phase transitions extend the notion of quantum phase transitions beyond the
ground state. They are characterized by closing energy gaps amid the spectrum. Identifying order
parameters for excited-state quantum phase transitions poses, however, a major challenge. We introduce a
topological order parameter that distinguishes excited-state phases in a large class of mean-field models and
can be accessed by interferometry in current experiments with spinor Bose-Einstein condensates. Our work
opens a way for the experimental characterization of excited-state quantum phases in atomic many-body
systems.
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Quantum phase transitions (QPTs) are sudden changes in
the ground-state properties of a system. The ground-state
energy and wave function behave nonanalytically, and the
energy gap between the ground state and the first excited
state closes when, at zero temperature, a control parameter
is adiabatically varied across a critical value [1]. The
recently introduced excited-state quantum phase transitions
(ESQPTs) [2–4] extend the concept of QPTs beyond the
ground state. A particularly prominent signature of
ESQPTs is given by closing gaps between excited states
or, more generally, by singularities in the density of states
(DOS). Typically, the critical energy is a continuous
function of a control parameter. Thus, ESQPTs can be
crossed both by varying a control parameter at constant
energy and by varying the energy at fixed parameters.
ESQPTs have been theoretically studied in a large variety

of many-body quantum systems [3,5,6], including the
Lipkin-Meshkov-Glick (LMG) model [7], the Dicke and
Jaynes-Cummings models [8–10], the interacting boson
model [2,3,11], molecular bending transitions [12,13], and
the quasienergy spectrum of driven systems [14]. Signatures
of ESQPTs have been predicted, e.g., in time-averaged
expectation values [15] and in the many-body dynamics after
a quench [8,16,17]. However, order parameters for ESQPTs
have been identified only in a very few cases [9,18,19],
which limits our understanding of the excited-state phases.
Experiments on ESQPTs have so far focused on the

singular behavior of the DOS in microwave Dirac billiards
[20] and molecular bending transitions [21,22]. Exploring
the impact of ESQPTs on the quantummany-body dynamics

requires experimental platforms with flexible control over
initial states and system parameters. Spinor Bose-Einstein
condensates (BECs) [23,24] offer precisely such a high
degree of control and provide access to the entire mean-field
phase space [25]. Theoretical [23,26] and experimental
[25,27,28] investigations of the mean-field dynamics of
spinor BECs have revealed a separatrix characterized by
diverging oscillation periods. These features are often linked
to ESQPTs, suggesting spinor BECs as an exceptional
platform for studies of ESQPTs. Ground-state QPTs in
spinor BECs have been extensively studied [23,24,29–32].
Recently, quench dynamics revealed a dynamical QPT that
has been attributed to a phase transition in the highest energy
level [33,34]. In contrast, ESQPTs—i.e., phase transitions of
intermediate excited states—and excited-state phases have
not yet been investigated in spinor BECs.
In this Letter, we introduce an interferometrically acces-

sible order parameter of ESQPTs in spinor BECs, which is
based on the topology of mean-field phase-space trajecto-
ries. The proposed interferometric scheme distinguishes
between adjacent excited-state phases and is suitable for
existing experimental setups. Beyond spinor BECs, our
results are relevant for a large variety of models that share
the same mean-field limit. Hence, our work constitutes an
important step toward the characterization of excited-state
quantum phases and the systematic exploration of ESQPTs
with controllable quantum many-body systems.
Ground-state quantum phases.—We consider a ferro-

magnetic spin-1 BEC of N atoms with three spin states
m ¼ �1, 0. We assume a sufficiently weak external
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trapping of the BEC such that, to a good approximation, all
spin states share a common spatial mode (single-mode
approximation). The spin degrees of freedom are then well
described by the Hamiltonian density [23]

ĥ¼ q
2N

ðN − 2N̂0Þ

þ c
N2

�
â†1â

†
−1â

2
0þ â†20 â1â−1þ N̂0

�
N − N̂0þ

1

2

�
þ D̂2

2

�
;

ð1Þ

where â†m and âm are the bosonic creation and annihilation
operators for state m, N̂m ≡ â†mâm with

P
m N̂m ¼ N, and

D̂≡ N̂1 − N̂−1 is the magnetization. The interaction
strength c depends on the spatial wave function and on
the mass and scattering lengths of the atoms. A ferromag-
netic BEC is characterized by c < 0 [23]. The effective
quadratic Zeeman shift q incorporates microwave dressing
and thus may be both positive and negative [28]. The linear
Zeeman effect has been eliminated by moving to a rotating
frame. The Hamiltonian density, Eq. (1), conserves D̂ and
the parity Î ¼ ð−1ÞN̂0. Recently, the ground-state QPTs in
the eigenspace of D̂ with eigenvalue D ¼ 0 have been both
theoretically [31,35] and experimentally [36,37] investi-
gated. Depending on the ratio ξ≡ q=ð2jcjÞ, one can
distinguish the Twin-Fock (TF) phase for ξ < −1, the
Polar (P) phase for ξ > 1, and the Broken-Axisymmetry
(BA) phase for jξj < 1.
Excited-state quantum phases.—We focus on a ferro-

magnetic spin-1 BEC with zero magnetization. Strict
definitions of phase transitions always refer to infinite
systems. In the N → ∞ limit [38–41], the spin degrees
of freedom are described in terms of the classical,
coherent states jα; Ni≡ ðPm αmâ

†
mÞN j0i=

ffiffiffiffiffiffi
N!

p
, where

α≡ ðα1; α0; α−1Þ, αm ≡ ffiffiffiffiffiffi
nm

p
eiϕm , nm ≥ 0, ϕm ∈ ½0; 2πÞ,

and
P

m nm ¼ 1. The coherent states with hD̂i=N ¼ n1 −
n−1 ¼ 0 yield the mean-field Hamiltonian [23,26,41]

hmfðαÞ
jcj ¼ 1

jcj limN→∞
hα; Njĥjα; Ni

¼ ξð1 − 2n0Þ − 2n0ð1 − n0Þ cos2 ϕ; ð2Þ
where ϕ≡ ϕ0 − ðϕ1 þ ϕ−1Þ=2. Note that parity conserva-
tion results in hmfðϕþ πÞ ¼ hmfðϕÞ. The mean-field
dynamics is governed by the equations of motion
[23,26,41]

d
dτ

n0 ¼
∂
∂ϕ

hmf

jcj ;
d
dτ

ϕ ¼ −
∂
∂n0

hmf

jcj ; and

d
dτ

ðϕ1 − ϕ−1Þ ¼ 0 ð3Þ

with τ≡ jcjt=ℏ. The mean-field limit of the DOS ν0ðηÞ in
the D ¼ 0 subspace can be computed according to [41]

lim
N→∞

ν0ðηÞ
N

¼
Z

Dα δðn1 − n−1Þ δ
�
hmfðαÞ
jcj − η

�
: ð4Þ

Here, η denotes the energy divided by Njcj, Dα≡Q
m dnmdϕm δðPl nl − 1Þ=ð2πÞ3 comes from the resolu-

tion of the identity in terms of coherent states, and
δðn1 − n−1Þ restricts the DOS to the D ¼ 0 subspace.
Below we employ Eqs. (3) and (4) to study signatures
of ESQPTs.
Extending the ground-state phase diagram to the entire

energy spectrum, we identify three excited-state phases in
the ξ-η plane: the TF0 phase for η > −jξj and ξ < 0, the P0
phase for η > −jξj and ξ > 0, and the BA0 phase for
η < −jξj. The phases are indicated in Fig. 1(a), where we
have subtracted η0ðξÞ ¼ − 1

2
ðξ2 þ 1Þ, which corresponds to

the ground-state energy in the mean-field limit, from η. The
excited-state phases are separated by ESQPTs at η� ¼ −jξj
with 0 < jξj < 1. In the limit jξj → 0, η� hits the maximum
of hmf=jcj. As jξj approaches 1, the ESQPTs evolve into the
known ground-state QPTs.
Signatures of ESQPTs.—As expected for ESQPTs

[2,3,46], the DOS, Eq. (4), diverges at η�ðξÞ. Figure 1(a)
displays the mean-field DOS as a function of ξ and η − η0.
Furthermore, it shows that in a finite-size system the
ESQPTs reveal themselves by a sequence of avoided
crossings in the energy spectrum [2]. The divergence of
the DOS is due to stationary points of hmf. At a stationary
point, ∂ϕhmf ¼ ∂n0hmf ¼ 0 causes the integrand in Eq. (4)
to become singular. There are three stationary points at each
0 < jξj < 1: a saddle point at η� and two minima at η0. The
saddle point is located at n0 ¼ 0 for ξ < 0 or at n0 ¼ 1 for
ξ > 0, and the minima are at n0 ¼ ðξþ 1Þ=2 and
cos2ðϕÞ ¼ 1 [see Fig. 1(b)]. Note that these stationary
points do not depend on the restriction to coherent states
with hD̂i ¼ 0, which further justifies our focus on zero
magnetization.
The phase-space trajectories [41] of hmf provide further

signatures of the ESQPTs. The classical phase space
is a sphere with z coordinate n0 and azimuthal angle ϕ.
Figure 1(b) shows exemplary trajectories for ξ ¼ 0.5. The
trajectories reflect the symmetry hmfðϕþ πÞ ¼ hmfðϕÞ.
Since hmfðξ; n0;ϕÞ ¼ hmfð−ξ; 1 − n0;ϕÞ, for ξ < 0 the
phase space would appear upside down. As in the LMG
model [47], the sets of trajectories at fixed ξ and η (the
energy hypersurfaces) change topology at η�ðξÞ—at the
critical energy hypersurfaces called separatrices. For
η > η�, i.e., in the TF0 and P0 phases, there is only one
trajectory per ξ and η. By contrast, for η < η�, i.e., in the
BA0 phase, the evolution can follow one of two discon-
nected trajectories. Each of these trajectories breaks the
classical symmetry hmfðϕþ πÞ ¼ hmfðϕÞ. Note, however,
that the corresponding quantum symmetry I cannot be
broken in the D ¼ 0 subspace, where all states belong to a
single eigenspace of I.
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Order parameter.—All solutions n0ðtÞ and ϕðtÞ of the
classical equations of motion, Eq. (3), that do not have
minimal, maximal, or critical energy density are periodic
[23,26,41]. In the TF0 and P0 phases, the phase-space tra-
jectories encircle the n0 axis [green curves in Fig. 1(b)]—
clockwise in the TF0 phase and counterclockwise in the
P0 phase. By contrast, the trajectories in the BA0 phase do
not enclose the n0 axis (yellow curves). We define our order
parameter w as the winding number of the classical
trajectories with respect to the n0 axis such that w ¼ −1
in the TF0, w ¼ 1 in the P0, and w ¼ 0 in the BA0 phase. We
observe that w can be expressed in a particularly simple
form. Let us denote the period of n0ðtÞ at fixed ξ and η by T.
In the BA0 phase, the periods of ϕðtÞ and n0ðtÞ coincide
and, thus, ϕðtþ TÞ ¼ ϕðtÞ. In the TF0 and P0 phases,
however, ϕðtþ TÞ ¼ ϕðtÞ � π. Hence,

w ¼ 1

π
½ϕðTÞ − ϕð0Þ�: ð5Þ

The winding number w is an order parameter that
qualitatively distinguishes the excited-state phases by
the dynamics of coherent states. It is defined for all energy
densities except for the lowest, highest, and critical ones.
In the following, we present an interferometric scheme

that extracts p≡ cosðπwÞ and therefore distinguishes
between neighboring excited-state phases. To measure p,
first, an initial point (n0ð0Þ;ϕð0Þ) on a trajectory at the ξ
and η of interest is selected. Then the corresponding
coherent state with ϕ1 ¼ ϕ−1, jψð0Þi, is prepared at
q ¼ 2jcjξ. The state freely evolves for the time T. Next,
the spin states m ¼ 0 and m ¼ �1 are coupled

by the internal-state beam splitter exp½−iðπ=2ÞŜθ̃� with
Ŝθ ≡ 1

2
ðe−iθâ†0ĝþ eiθĝ†â0Þ, ĝ≡ ðâ1 þ â−1Þ=

ffiffiffi
2

p
, and θ̃≡

π=2 − ϕð0Þ. Finally, the expectation value of N̂0=N is
measured. In the mean-field limit, this yields [41]

lim
N→∞

1

N
hψðTÞjeiðπ=2ÞŜθ̃N̂0e−iðπ=2ÞŜθ̃ jψðTÞi ¼

1 − Vp
2

; ð6Þ

where we have introduced the visibility V ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n0ð0Þ

p ffiffiffiffiffiffiffiffiffiffiffi
n0ð0Þ

p
.

Experimental realization.—We detail the measurement
of p for 87Rb atoms in their hyperfine ground state [32,48].
However, most of our discussion applies to any ferromag-
netic spin-1 BEC. We assume that, initially, the condensate
is in the state â†N0 j0i= ffiffiffiffiffiffi

N!
p

. Then a coherent state charac-
terized by n0ð0Þ, ϕð0Þ, and ϕ1 ¼ ϕ−1 can be obtained by
applying expð−iχŜθ̃Þ with cos2ðχ=2Þ ¼ n0ð0Þ. Thus, both
the state preparation and the beam splitter are generated by
Ŝθ̃ and can be implemented by a sequence of a detuned 2π
microwave pulse yielding the phase shift expðiθ̃N̂0Þ, a
radio-frequency pulse expð−iζŜ0Þ with ζ ¼ χ or ζ ¼ π=2,
respectively, and another microwave pulse expð−iθ̃N̂0Þ
[49,50]. Since we aim at the expectation value in Eq. (6),
the first step of the state preparation and the last one of the
beam splitter can be omitted. N0 can be measured, e.g., by
applying a magnetic-field gradient that spatially separates
the different spin states and subsequent absorptive imaging.
Reliably distinguishing p ¼ �1 requires a large visibil-

ity V, which can be maximized by choosing n0ð0Þ as close
to 1=2 as possible. The optimal n0ð0Þ, nopt, is [41]

(a) (b)

FIG. 1. Excited-state quantum phases of a ferromagnetic spin-1 BEC with zero magnetization. (a) DOS in the mean-field limit as a
function of ξ and η − η0 with η0ðξÞ ¼ − 1

2
ðξ2 þ 1Þ. The ESQPTs at η� ¼ −jξj (black) divide the ξ-η plane into three phases: the TF0

phase, the P0 phase, and the BA0 phase. The DOS diverges at the ESQPTs. The inset shows the DOS along lines of constant ξ ¼ −0.2
(red, dashed) and η − η0 ¼ 0.2 (orange, solid). The spectrum of a BEC of N ¼ 100 atoms (gray, every third eigenvalue) exhibits avoided
crossings at the ESQPTs. (b) Classical phase space and trajectories for ξ ¼ 0.5. The separatrix (black) separates trajectories in the P0
phase (η > η�, green) with winding number w ¼ 1 from trajectories in the BA0 phase (η < η�, yellow) with w ¼ 0. Stationary points of
hmf are marked in red.

PHYSICAL REVIEW LETTERS 126, 230602 (2021)

230602-3



nopt ¼

8>>>><
>>>>:

1
2

�
1þ ξ − ξ

jξj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ηþ ξ2

p �
for η < − 1

2

1
2

for − 1
2
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2

�
1 − η

ξ

�
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ð7Þ

A corresponding ϕð0Þ, ϕopt, is obtained from

cos2 ϕopt ¼
ξð1 − 2noptÞ − η

2noptð1 − noptÞ
: ð8Þ

Figure 2(a) shows that the optimized visibility is large
throughout the vast majority of the phase diagram.
The coherence time in typical BEC experiments is

limited to a few seconds. This constrains the accessible
periods T. It is known [23,26,41] that

jcj
ℏ
T ¼

	
y−1=2Kðx=yÞ for η < η�
x−1=2Kðy=xÞ for η > η�

; ð9Þ

where Kðk2Þ ¼ R π=2
0 dγð1 − k2sin2γÞ−1=2 is the complete

elliptic integral of the first kind, x ¼ jξj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2 þ 2η

p
, and

y ¼ ðx − ξ2 − ηÞ=2. T diverges at the ESQPTs. Figure 2(b)
displays T for the typical interaction strength jcj=ℏ ¼
2π × 4 Hz. Fortunately, T exceeds a moderate value of,
e.g., 0.3 s only in the immediate vicinity of the ESQPTs.
So far we have considered only the mean-field limit

N → ∞. To study the impact of a finite system size, we

simulate a measurement of p for N ¼ 100 bosons by exact
diagonalization of the Hamiltonian density (1) (see Fig. 3).
The jump discontinuities signaling the ESQPTs in the
mean-field limit are, as expected, smoothed at finite N.
However, the BA0 phase can still be clearly distinguished
from the TF0 and P0 phases. In typical experiments, N is of
the order of 104 and, thus, a much further convergence to
the mean-field limit can be expected.

(a) (b)

FIG. 2. Measuring p ¼ cosðπwÞ to distinguish adjacent excited-state quantum phases requires a large optimal visibility Vopt and a
short periodicity T. (a) Vopt is large throughout the vast majority of the phase diagram. (b) T for jcj=ℏ ¼ 2π × 4 Hz. A moderate value of
0.3 s (gray) is surpassed only at the immediate vicinity of the ESQPTs. (a), (b) Black lines mark the ESQPTs. The insets show Vopt and T
along lines of constant ξ ¼ −0.2 (red, dashed) and η − η0 ¼ 0.2 (orange, solid).

FIG. 3. Simulated measurement of p for N ¼ 100 atoms. The
finite-size results closely resemble the mean-field limit, where
p ¼ 1 in the BA0 phase and p ¼ −1 in the TF0 and P0 phases.
Black lines mark the ESQPTs. The inset shows p along lines of
constant ξ ¼ −0.2 (red, dashed) and η − η0 ¼ 0.2 (orange, solid).
The shaded regions indicate the standard deviation.
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Conclusions.—We have shown that ESQPTs in spinor
BECs can be characterized by an interferometrically
accessible order parameter, which distinguishes the
excited-state quantum phases by the topology of mean-
field trajectories. Unlike in the Tavis-Cummings model [9],
the local order parameter N̂0=N that characterizes the
relevant ground-state QPTs in spinor BECs [31,32] cannot
be directly generalized to excited states. Moreover, in
contrast to order parameters based on long-term quench
dynamics [18,19], our approach does not depend on a
quantum symmetry breaking at the ESQPT.
Our findings apply to any of the numerous quantum

systems with the same mean-field limit, including bosonic
two-level pairing models at zero generalized angular
momentum [3]. Our theoretical treatment of ESQPTs
complements previous studies for the opposite sign of
interaction [3]. Bosonic two-level pairing models comprise,
e.g., the LMG model, the vibron model for molecules, and
the interacting boson model for nuclei.
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Ertmer, C. Lisdat, L. Santos, A. Smerzi, and C. Klempt,
Improvement of an Atomic Clock Using Squeezed Vacuum,
Phys. Rev. Lett. 117, 143004 (2016).

[50] D. A. Steck, Quantum and atom optics, available online at
http://steck.us/teaching (revision 0.13.4, 2020).

PHYSICAL REVIEW LETTERS 126, 230602 (2021)

230602-6

https://doi.org/10.1103/PhysRevA.72.013602
https://doi.org/10.1038/nphys153
https://doi.org/10.1103/PhysRevA.89.023608
https://doi.org/10.1103/PhysRevLett.102.125301
https://doi.org/10.1103/PhysRevLett.107.195306
https://doi.org/10.1103/PhysRevLett.111.180401
https://doi.org/10.1103/PhysRevLett.111.180401
https://doi.org/10.1126/science.aag1106
https://doi.org/10.1126/science.aag1106
https://doi.org/10.1103/PhysRevLett.124.043001
https://doi.org/10.1103/PhysRevLett.124.043001
https://doi.org/10.1103/PhysRevA.97.023603
https://doi.org/10.1103/PhysRevLett.123.260403
https://doi.org/10.1103/PhysRevLett.123.260403
https://doi.org/10.1073/pnas.1600267113
https://doi.org/10.1073/pnas.1600267113
https://doi.org/10.1073/pnas.1715105115
https://doi.org/10.5169/seals-116175
https://doi.org/10.5169/seals-116175
https://doi.org/10.1142/S0129055X92000108
https://dx.doi.org/10.1142/9789814537452
https://dx.doi.org/10.1142/9789814537452
https://dx.doi.org/10.1142/9789814537452
https://dx.doi.org/10.1142/9789814537452
https://dx.doi.org/10.1142/9789814537452
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.230602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.230602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.230602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.230602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.230602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.230602
https://dx.doi.org/10.1007/978-1-4939-6795-7
https://dx.doi.org/10.1007/978-1-4939-6795-7
https://dx.doi.org/10.1007/978-1-4939-6795-7
https://dx.doi.org/10.1007/978-1-4939-6795-7
https://dx.doi.org/10.1007/3-540-35077-2
https://dx.doi.org/10.1007/3-540-35077-2
https://dx.doi.org/10.1007/3-540-35077-2
https://dx.doi.org/10.1007/3-540-35077-2
https://dx.doi.org/10.1007/3-540-35077-2
https://dx.doi.org/10.1007/978-3-658-00317-3
https://dx.doi.org/10.1007/978-3-658-00317-3
https://dx.doi.org/10.1007/978-3-658-00317-3
https://dx.doi.org/10.1007/978-3-658-00317-3
https://dx.doi.org/10.1007/978-3-658-00317-3
https://doi.org/10.1103/PhysRevA.97.032339
https://doi.org/10.1103/PhysRevA.97.032339
https://doi.org/10.1016/j.physleta.2016.06.031
https://doi.org/10.1103/PhysRevE.78.021106
https://doi.org/10.1126/science.1208798
https://doi.org/10.1103/PhysRevLett.117.143004
http://steck.us/teaching
http://steck.us/teaching

