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A B S T R A C T   

Identifying sea ice types in the early stages of development from L-band SAR imagery remains an active research 
area during the Arctic freeze-up period. We used ScanSAR C- and L-band imagery from RADARSAT-2, ALOS 
PALSAR and ALOS-2 PALSAR-2, to identify ice types in the North Water Polynya (NOW) and Victoria Strait (VS) 
region of the Canadian Arctic. We investigated the HH-polarized microwave backscatter coefficient (σHH

0 ) and its 
GLCM texture parameters for six ice classes and open water. We found very low σHH

0 for nilas at both C- and L- 
band. Although similar σHH

0 found for grey ice at both frequencies, σHH
0 decrease with increasing ice thickness at 

L-band from grey ice, whereas, at C-band, σHH
0 increases from grey to grey-white ice and then decreases as the ice 

grows. GLCM texture parameters show lower values for L-band than C-band; however, separability among classes 
was found only for a few selected parameters. We used the support vector machine (SVM) algorithm for ice type 
classification from SAR scenes using σHH

0 and GLCM texture statistics. Due to overlapping σHH
0 signatures at C- 

band, early-stage ice classes were substantially misclassified. L-band identified early-stage ice classes with higher 
accuracy compared to C-band but misclassified thicker ice types and open water. L-band alone provided very 
good classification results (~80% accuracy) and combining L- and C-band (i.e., dual-frequency approach) further 
increased accuracy to >90%. C-band alone resulted in the lowest accuracy of <60%. We acknowledge that 
developing a universal ice classification is still a challenge and requires some manual supervision to adopt 
variable ice conditions into the classification method. However, a dual-frequency approach can achieve higher 
classification accuracy than conventionally used single-frequency approaches. This research highlights the value 
of upcoming L-Band SAR missions to improve sea ice classification in regions where a variety of ice types exist, 
including many thinner types, which are now dominating an increasingly warming Arctic.   

1. Introduction 

Due to anthropogenic warming, significant changes in the Arctic 
climate system have been observed (Jansen et al., 2020). These changes 
have resulted in a new Arctic sea ice regime where a substantial 
reduction in Arctic sea ice extent, thickness and concentration are 
apparent along with an extended melt season (Stroeve and Notz, 2018). 
In addition, the pre-dominant Arctic sea ice type has transitioned from 
thicker multiyear ice (MYI) to a new regime consisting of thinner first- 
year ice (FYI) (Comiso, 2012; Kwok, 2018). Model simulations indi
cate that the expanding coverage of open water will continue (Barnhart 
et al., 2016; Crawford et al., 2021). Therefore, the continued monitoring 

of sea ice conditions and variability are critical for understanding the 
coupled ocean-sea-atmosphere (OSA) system. 

Active microwave remote sensing has proven to be an effective 
technology for sea ice monitoring in the Arctic due to its 24-h high- 
resolution imaging capability under all-weather conditions. Space
borne synthetic aperture radar (SAR) systems, operating at a wide range 
of frequencies, have demonstrated their utility to detect and charac
terize sea ice dynamic and thermo-dynamic changes (Tucker et al., 
1992; Cavalieri, 1994; Barber et al., 1995; Yackel and Barber, 2000; 
Kwok et al., 1998; Scharien et al., 2010; Ochilov and Clausi, 2012; 
Mahmud et al., 2016; Howell et al., 2018; Murashkin et al., 2018). C- 
band SAR satellites, such as ERS-1/2, ENVISAT-ASAR, RADARSAT-1/2, 
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Sentinel 1A/B have been used extensively for operational Arctic sea ice 
monitoring. The choice of C-band as a preferred frequency was estab
lished in the late 1980s when thick and old MYI dominated the Arctic sea 
ice. However, in the new Arctic regime, thinner and younger sea ice has 
become the dominant ice type. As a result, recent studies have demon
strated L-band SAR imagery with its longer wavelength provides more 
robust estimates of Arctic sea ice over the annual cycle compared to C- 
band. For example, Casey et al. (2016) demonstrated improved sea ice 
separability between early to advanced melt seasons, using L-band SAR, 
compared to C-band. Mahmud et al. (2020) found more robust micro
wave backscatter signatures during melt onset and break-up for FYI at L- 
band compared to C-band. However, sea ice signatures during freeze-up 
were contaminated since the floes were mobile after break-up and the 
algorithm did not track individual floes, which warrants detailed detail 
investigation of new ice signatures from SAR frequencies. Howell et al. 
(2018) compared sea ice motion from C- and L-band SAR imagery and 
found L-band provided more sea ice motion vectors. L-band SAR also 
showed utility in characterizing sea ice roughness characterization 
during winter and melt seasons (Cafarella et al., 2019; Dierking and Dall, 
2008; Johansson et al., 2017 and 2018). Given the existing (e.g., ALOS- 
2, SAOCOM), forth-coming (e.g., NISAR) and approved (e.g., ROSE-L) L 
-band SAR missions, there is a growing shift towards using L-band SAR 
for sea ice monitoring in the new Arctic. While previous studies have 
shown L-band SAR’s ability to provide more robust estimates of Arctic 
sea ice, the freeze-up period, when the ice begins to grow, has received 
less attention. The thickness of sea ice influences heat exchange, espe
cially when sea ice is thin (Maykut, 1982). Therefore, monitoring the 
formation and distribution of early-stage sea ice is critical for small to 
large-scale heat exchange estimates and for identifying frost flowers on 
new ice, which affect air/ice CO2 exchange (Else et al., 2007) among 
other chemical and biological processes. Numerous studies have 
demonstrated that early-stage sea ice is better detected at L-band than C- 
band because of its greater penetration depth and reduced sensitivity to 
small-scale roughness (Arkett et al., 2008; Dierking and Busche, 2006; 
Johansson et al., 2018; Toyota et al., 2020). 

Arctic sea ice classification has always been an active research area, 
given the complexity and variability of sea ice type distribution and 
thickness. Zakhvatkina et al. (2019) provided an overview of SAR data- 
based methods to identify sea ice classes. While a limited number of 
studies used machine learning approaches, the majority of these studies 
focused on lead, ice and open water (OW) identification only by using 
dual- and fully-polarimetric C- and X-band SAR datasets (Geldsetzer and 
Yackel, 2009; Keller et al., 2020; Liu et al., 2015; Ressel et al., 2015, 
2016). Aldenhoff et al. (2018) demonstrated the utility of a Neural 
Network (NN) classifier using C- and L-band dual-polarimetric SAR and 
one grey level co-occurrence matrix (GLCM) texture parameter to 
separate ice-class from OW. This study also showcased the superiority of 
L-band SAR to identify calm water/thin ice compared to C-band. How
ever, identifying new ice within regions of young or FYI is more complex 
(Dierking, 2010). Singha et al. (2018) demonstrated Arctic sea ice 
classification performance using fully-polarimetric multi-frequency 
SAR. They reported that L-band SAR imagery could better discriminate 
between new ice and older types. However, an integrated approach 
combining L- and C-band SAR signatures, GLCM texture parameters and 
a machine learning approach has not been explored to identify newly 
formed ice classes during sea ice freeze-up. 

This paper is outlined as follows. First, we investigate and analyze 
SAR signatures of open water, newly-formed Arctic sea ice with varied 
thickness classes. Next, we discuss the variability in C- and L-band SAR 
signatures. Then, we investigate and discuss the GLCM texture param
eters derived from C- and L-band SAR imagery for each ice class. We also 
use a machine-learning algorithm to classify C- and L-band SAR imagery 
to identify ice classes and open water in two different regions. Finally, 
we analyze the classification performance. 

2. Study area and data 

2.1. Study area 

This study examined two regions in the Canadian Arctic to capture a 
variety of sea ice conditions. First, we investigated the North Water 
Polynya (NOW) region between Greenland and Ellesmere Island (Fig. 1). 
The NOW polynya is a region of dynamic ice movement throughout 
much of the year and is formed and maintained through a combination 
of latent and sensible heat mechanisms (Barber et al., 2001). This region 
experiences a southward flow of water and sea ice from the Arctic ocean 
(Melling et al., 2001; Moore et al., 2021). Locally formed new and young 
ice types can be closely associated with imported thicker and older ice 
(Mundy and Barber, 2001). During freeze-up, the NOW region is 
extensively covered by open water areas; however, it becomes pre- 
dominantly ice-covered by the end of the fall season (Mundy and 
Barber, 2001). Open water is dominant on the eastern coast, whereas ice 
concentration is higher on the west coast due to coastal downwelling 
and southward ice and ocean velocities (Melling et al., 2001; Moore 
et al., 2021). 

We also investigated the Victoria Strait (VS) region in the southern 
part of the Canadian Arctic Archipelago (CAA) (Fig. 1). Sea ice in this 
region is typically landfast from November to July. Both MYI and a 
variety of FYI classes are found in this region. MYI found in this region is 
formed locally via FYI aging and advected from north (Melling, 2002; 
Howell et al., 2008). As a result, MYI in this region often contains a mix 
of MYI that has survived several melt seasons and ablated and broken up 
while in transit moving southward through the CAA. Therefore, the MYI 
found in Victoria Strait is more deteriorated than the MYI found in the 
NOW region. 

2.2. Data 

2.2.1. Synthetic aperture radar (SAR) 
We used two pairs of SAR imagery in this study. For the first pair, C- 

and L-band ScanSAR imagery were acquired from dual-polarized (HH +
HV) RADARSAT-2 and Advanced Land Observation Satellite (ALOS)-2 
PALSAR-2 sensors (hereafter, referred to as ALOS-2), respectively. Im
agery from both sensors was acquired on December 19, 2016 over NOW 
(Fig. 1c). The time difference between acquisitions is 3 h and 23 min. 
The center frequencies for RADARSAT-2 are 5.405 GHz and 1.2 GHz for 
ALOS-2. ScanSAR imagery from RADARSAT-2 has a pixel spacing of 50 
m covering a 500 × 500 km2 area. The incidence angle varies from 20 to 
49◦ from near to far range. RADARSAT-2 data can be ordered from 
Natural Resources Canada (https://www.eodms-sgdot.nrcan-rncan.gc. 
ca/). ScanSAR imagery from ALOS-2 has a pixel spacing of 25 m and 
covers 350 × 355 km2 area, and incidence angle ranges from 26 to 49◦. 
Both the scenes consist of HH and HV bands. However, the HV band in 
the ALOS-2 scene had azimuth scalloping; therefore, we use only the HH 
channel for analysis. ALOS-2 data can be ordered from https://alos-p 
asco.com/. 

For the second pair, we used HH-polarized ScanSAR C-band and L- 
band SAR imagery over VS on November 1, 2009, acquired from 
RADARSAT-2 and ALOS PALSAR (hereafter, referred to as PALSAR) 
sensors (Fig. 1b). In ScanSAR mode, PALSAR acquires data at 100 m 
pixel spacing covering a similar area as PLASAR-2. The center frequency 
for PALSAR is 1.27 GHz. The image acquisition time difference was 4 h 
27 min for the second pair. PALSAR dataset was acquired from Alaska 
Satellite Facility Distributed Active Archive Centers (https://asf.alaska. 
edu/). 

2.2.2. Canadian Ice Service Digital Achieve (CISDA) 
We used the Canadian Ice Service Digital Archive (CISDA) to obtain 

ice type information in the NOW and VS regions on December 19, 2016, 
and November 2, 2009, respectively (Fig. 1. CISDA is a collection of 
daily and weekly ice charts prepared by the Canadian Ice Service (CIS) 
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since 1968. A variety of sea ice information acquired from satellite- 
based monitoring, ship-based observation, and operational models are 
used to prepare the ice chart. Ice chart provides information on-ice 
development, total concentration, partial concentration, and floe size 
distribution. These charts are available at https://iceweb1.cis.ec.gc.ca/. 
A detailed description of the CIS ice chart is provided by Tivy et al. 
(2011). 

2.2.3. Soil Moisture and Ocean Salinity (SMOS) 
The Soil Moisture and Ocean Salinity (SMOS) is a spaceborne L-band 

(1.4 GHz) radiometer capable of retrieving sea ice thickness (SIT) 
(Kaleschke et al., 2012; Tian-Kunze et al., 2014). 

We used the SMOS-derived SIT and surface air temperature (SAT) 
from NCEP reanalysis (included as an auxiliary data in the SMOS 
product) of the NOW region acquired on December 19, 2016, to only aid 
our ice-class selection process (Fig. 1d and e). The maximum retrievable 
SIT from SMOS is 50 cm, making it an independent validation dataset for 
SIT during freeze-up (Kaleschke et al., 2012). SMOS provides daily 
coverage of the polar region at 35 km × 35 km resolution. Derived SMOS 
products can be downloaded freely from https://data.seaiceportal.de/ 
(Grosfeld et al., 2016). 

3. Methods 

3.1. SAR image processing 

C- and L-band imagery were obtained in level-1 and level-1.5 for
mats. After calibrating the SAR scenes, HH-polarized intensity images 
were converted into sigma naught backscatter coefficient (σHH

0 in dB). At 
level-1.5, ALOS-2 images were already converted from slant range to 
ground range and ellipsoid corrected upon data delivery. To maintain 
consistency between the SAR images, we geo-registered and projected to 
WGS84 Canada Polar Stereographic (ESPG: 5937). No speckle filter was 

applied since the speckle effect was considered minimal on mean σHH
0 

when a homogeneous region of interest was used to aggregate the data 
(Ulaby et al., 1981). ScanSAR imagery had reduced speckle through 
multi-looking and resampling. The image pair had different orbit di
rections, with descending orbit for RADARSAT-2 and ascending orbit for 
ALOS-2. To reduce the incidence angle induced variation in σHH

0 , we 
applied a frequency-specific incidence angle normalization technique on 
both image pairs, developed by Mahmud et al. (2018). We used a linear 
scaling of − 0.22 dB/1

◦

for C-band and − 0.21 dB/1
◦

for L-band scenes to 
normalize the scenes to 35

◦

. Also, we resampled the ALOS-2 scene over 
NOW to 50 m using the bilinear sampling technique, leading to consis
tent pixel spacing with RADARSAT-2. For VS image pair, we resampled 
the RADARSAT-2 scene to 100 m leading to consistent 100 m pixel 
spacing with the PALSAR image. 

3.2. Ice class selection 

We used CIS ice charts to characterize sea ice types and distribution 
in the study areas. First, we extracted σHH

0 from ice chart polygons at 
both C- and L-band but found that σHH

0 statistics from each polygon were 
similar to each other. This is because CIS ice chart polygons are not 
homogeneous and contain different ice classes, resulting from placement 
limitations on the number of egg codes used on the ice chart by CIS. 
Therefore, we only discuss σHH

0 statistics from selected sites as identified 
in Figs. 2 and 3. For NOW, the ice chart on December 19, 2016, revealed 
five different ice types in the region, namely: nilas, grey, grey-white 
(gWhite), thin first-year ice (tFYI), medium first-year ice (mFYI) and 
multiyear ice (MYI) (Fig. 1c). We visually inspected σHH

0 variability in 
RADARSAT-2 and ALOS-2 SAR scenes and corresponding ice charts. 
Since we do not have in-situ measurements of SIT, we used SMOS to 
understand SIT distribution in the NOW region(Fig. 1d). For example, 
we found variability in SAT at tFYI and mFYI locations (Fig. 1e)) because 
thicker ice increasingly prevents heat exchange from the ocean to the 

Fig. 1. Study sites are shown in an inset map (a). Victoria Strait (VS) and North Water (NOW) Polynya are shown in (b) and (c), respectively. The color-coded 
polygons in (b) and (c) denote different major ice types based on the Canadian Ice Service weekly ice chart on November 2, 2009, and December 19, 2016, 
respectively. For example, grey, gWhite, mFYI, tFYI, and MYI refer to grey ice, grey-white ice, medium first-year ice, thin first-year ice, and multiyear ice. The grey 
and black rectangles on (b) and (c) show the extent of L-band and C-band SAR imagery, respectively. SMOS-derived sea ice thickness (SIT) and surface air tem
perature (SAT) from NCEP reanalysis are shown in (d) and (e) for NOW only since data is not available for VS. The land areas are masked and shown as white. 
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atmosphere compared to thinner ice. The SMOS data also confirmed our 
interpretations from CIS ice analysts to finalize our selection of different 
ice classes. We also identified wind roughened open water areas in the 
SAR scenes. Similarly, the ice chart over VS denoted nilas, gWhite, tFYI 

and MYI in the region on November 2, 2009 (Fig. 1b). Upon checking the 
time series of CIS ice charts in the VS region, we noticed that a few 
polygons in the region were prematurely identified as gWhite instead of 
grey, which was considered while selecting ROIs (Fig. 3). Finally, we 

Fig. 2. The NOW region’s L- and C-band imagery was acquired on December 19, 2016, from ALOS-2 (top) and RADARSAT-2 (bottom). The color-coded small boxes 
denote ROI from each ice type (e.g., nilas, grey, gWhite, tFYI, mFYI, MYI) and open water (OW). Each box is 1 × 1 km. The highlighted ROI areas are alpha- 
numerically coded (e.g., L1, C1). Transects lines (T1-T3) are shown in red, and land is outlined in white. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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selected nilas, grey, gWhite, tFYI, mFYI, MYI and open water for NOW, 
and nilas, grey, gWhite and MYI for VS for further analysis. A description 
of different ice classes is reported in Table 1. 

We carefully selected a 1 × 1 km homogeneous region of interest 
(ROI) for each ice class. Each ROI (consisting of 100 pixels in VS and 400 
pixels in NOW) was sufficient to derive necessary statistics and signa
tures for pixel-based analysis in the classification framework. After 
identifying ROIs for different ice classes on C-band scenes, we manually 
identified these locations in the L-band scenes considering the ice drift. 
The center of the ROIs was selected at least 3 km away from land to 
avoid any potential land contamination. We also assigned three transect 
lines over the sea ice area from west to east on the imagery to capture the 
variability of ice-class distribution in the region (Figs. 2 and 3). The 
transect lines (T1-T6) capture both homogeneous and mixed ice types in 

Fig. 3. The VS region’s L- and C-band im
agery was acquired on November 2, 2009, 
from ALOS PALSAR (top) and RADARSAT-2 
(bottom). The color-coded small boxes 
denote ROI from each ice type (e.g., nilas, 
grey, gWhite, MYI). Each box is 1 × 1 km. 
The highlighted ROI areas are alpha- 
numerically coded (e.g., L1, C1). Transects 
lines (T4-T6) are shown in red, and land is 
outlined in white. (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   

Table 1 
Ice terminology used in this study (adapted from Canadian ice Service).  

Ice class Thickness (in 
cm) 

Characteristics 

Nilas < 10 Collective term for thin elastic-like newly formed ice 
types representing grease, light or dark Nilas. 

Grey 10–15 Ice could be covered with moist and slushy snow. 
Grey- 

White 
15–30 Ice could be covered with frost flower or brine- 

wetted snow. 
Thin FYI 30–70 Thin first-year ice with different roughness 

characteristics. 
Medium 

FYI 
70–120 Medium first-year ice. 

MYI >200 Second-year or older ice.  
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the regions to investigate the separability of the ice classes. 

3.3. Grey-level co-occurrence matrix (GLCM) 

The utility of grey-level co-occurrence matrix (GLCM) texture 
parameter has been proven to be a compelling probability statistic for 
image analysis and improved image classification accuracy in sea ice 
applications (Barber and Ledrew, 1991.; Clausi, 2002; Liu et al., 2015; 
Shokr, 1991). Using first- and second-order texture statistics, improved 
ice separability can be achieved from SAR image analysis. GLCM also 
shows a tabulation of how often a different combination of pixel in
tensities (a specific grey level) co-occur in an image or image section. 
The GLCM texture parameter calculations use the contents of GLCM to 
measure intensity variation at a given pixel. We calculated GLCM pa
rameters by computing the joint probability density of a pair-wise 
combination of intensity values in a spatial window using displace
ment and orientation (Table 2). After a thorough review of Clausi (2002) 
and Scharien et al. (2017), we used 9 × 9 sliding windows at 64 grey- 
level quantization schemes at 4 inter-pixel distances by averaging all 
orientation angles. Six GLCM bands were created: Contrast (CON), 
Correlation (COR), Dissimilarity (DIS), Entropy (ENT), homogeneity 
(HOM), and angular second moment (ASM) (Table 2). The GLCM texture 
parameter was calculated from calibrated, log-scaled SAR scenes before 
applying incidence angle normalization. We did not apply any incidence 
angle normalization on new texture parameter bands since the incidence 
angle dependency value was negligible (Scharien and Nasonova, 2020) 
compared to the calculated textural parameter values and range found in 
this study. We also indicated overlapping coefficient (OVL) to discuss 
the GLCM texture area under two probability distribution functions 
simultaneously (Inman and Bradley Jr (1989). The higher OVL denotes a 
larger overlap in distribution, which leads to ‘look-alike’ signatures 
resulting in misclassification of ice classes. 

3.4. New ice image classification and validation 

SAR imagery is often the only information source available for 
operational sea ice monitoring. Based on the SAR data types (e.g., single- 

, dual- or fully-polarimetric), several sea ice classification algorithms 
have been developed and operationally used to monitor Arctic sea ice, as 
summarized in Zakhvatkina et al. (2019). We used a support vector 
machine (SVM) algorithm for image classification. This machine- 
learning algorithm uses supervised learning models for image classifi
cation by modelling nonlinear decision boundaries through kernel 
functions (Vapnik et al., 1994). In addition to σHH

0 , we used GLCM pa
rameters (Section 3.3) as a classification input to the SVM framework. 
The training datasets were built by visual inspection of the imagery (as 
outline in Section 3.2) with additional sites. With the σHH

0 and selected 
GLCM texture features as inputs, a decision tree was developed, and the 
SVM was implemented using a standard ‘libsvm’ library. We chose to use 
Radial Basis Function (RBF) as the kernel type along with ‘gamma’ 
(kernel parameter) value of 0.5 and ‘cost’ (penalty parameter) value of 
10. For the RBF based kernel type the recommended range for ‘gamma’ 
value is in between 0.0001 and 10 and for the recommended value for 
‘cost’ is in between 0.1 and 100. We used a grid search approach to tune 
these parameters. The initial training dataset were randomly divided 
into training (80%) and validation (20%) dataset and tuned the gamma 
value based on the resulting cross-validation accuracy. The value for 
‘gamma’ and ‘cost’ remains same for all classified images. A detailed 
description of the classification algorithm can be found in Liu et al. 
(2015). We used open water (OW), nilas, grey, gWhite, FYI and MYI 
categories in the classification. Since the mFYI class covers <5% (by sea 
ice area) in the study region, we merged tFYI and mFYI types and 
considered them FYI in the classification scheme. 

Next, we developed and applied a novel ‘dual-frequency classifier’ 
where both C- and L-band imagery were used. We used the same SVM 
classifier for the dual-frequency approach, which was embedded within 
rule-based decisions with conditional operators. Rule-based decisions 
were based on backscatter responses from different ice classes. First, we 
used the C-band image for NOW and applied the SVM algorithm to 
detect OW, MYI and ‘other’ classes. If a classified pixel falls under the 
‘other’ class, the classifier runs the SVM with L-band imagery to assign a 
thinner ice class to that pixel. The decision to identify OW and MYI at the 
beginning from C-band was based on the distinct signature of OW and 
MYI to avoid confusion with ‘other’ ice classes. Given the similarity of C- 
band backscatter signatures for gWhite and MYI in VS, we updated the 
order of the rule-based decisions to improve our classification perfor
mance in VS. For example, we used L-band SAR at the beginning to 
identify gWhite and ‘other’ classes followed by C-band SAR to identify 
MYI from the ‘other’ pixels. Afterward, we used L-band to classify ‘other’ 
into nilas and grey ice classes. Finally, all classes were combined to 
produce the final classified map. We did not put C- and L-band imagery 
and associated GLCM texture parameters into SVM as combined 
parameter sets since each of them adds additional uncertainty to the 
individual ice class. 

We used two techniques to validate the classification outputs. First, 
we identified OW and ice classes on three transect lines. Then, we 
segmented the transect lines based on dominant ice classes and showed 
major classes based on the total number of pixels on the transect seg
ments. These ice classes are identified from visual inspection, as stated in 
Section 3.2. Similarly, we extracted ice classes from classified images 
and showed major ice classes to compare against the visual inspection 
supported by SMOS-derived SIT of the NOW region. Secondly, we 
assessed the classified images’ accuracy and present class-based and 
overall accuracy. Although areas from each ice class are not equal, we 
selected 100 pixels from each ice class and OW to understand the clas
sifier’s performance using a single frequency approach (e.g., only C- or 
L-band) and a dual-frequency approach (both C- and L-band). 

Table 2 
Grey-level co-occurrence-based texture statistics equations.  

Parameters Derivation 

Contrast (CON) ∑Ng − 1
n=0 n2

{
∑Ng

i=1
∑Ng

j=1p(i, j) |[i − j] = n

}

Correlation (COR) 
∑

i

∑

j
(ij)p(i, j) − μxμy

σxσy 

Dissimilarity (DIS) 
∑

i

∑

j
|i − j|.p(i, j)

Homogeneity (HOM) ∑

i

∑

j

1
1 + (i − j)2 p(i, j)

Angular Second Moment (ASM) ∑

i

∑

j
{p(i, j) }2 

Entropy (ENT) −
∑

i

∑

j
p(i, j) log(p(i, j) )

where Ng is the number of distinct grey levels in the quantized SAR image. The 
GLCM information is denoted by the matrix of relative frequencies p(i, j) with 
two neighbour pixels, one with grey level i, while the other with grey level j. p(i, 
j) is the (i, j)th entry in a normalized GLCM. μx, μy, σx, σy are the mean and 
standard deviations of the rows and columns of the image matrix. The GLCM 
equations are adopted from Haralick et al. (1973) and Soh and Tsatsoulis (1999). 
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4. Results and discussion 

4.1. C- and L-band backscatter variability during the freeze-up period 

Fig. 4 illustrates the variability in σHH
0 from both C- and L-band im

agery for open water and ice classes. Nilas has the lowest σHH
0 at both L- 

and C-bands. σHH
0 for nilas is − 30.1 ± 1.2 dB at L-band and − 27.2 ± 1.6 

dB at C-band for NOW, and − 24.3 ± 2.3 dB at L-band and − 24.01 ±
1.5 dB at C-band for VS. σHH

0 for nilas in NOW fall below the ALOS-2 
noise floor of − 26 dB (Kankaku et al., 2009) and close to RADARSAT- 
2 noise floor of − 28 dB (Caves and Williams, 2015). The very low σHH

0 

suggests specular scattering from a relatively smooth ice surface. 
Isleifson et al. (2010) reported similar σHH

0 from homogeneous nilas 
acquired from a ship-based C-band polarimetric radar sin the Cape 
Bathurst polynya in the southeastern Beaufort Sea. 

As the ice thickens, an increase in σHH
0 from grey to gWhite ice can be 

found at C-band. However, the opposite is true for L-band σHH
0 for both 

regions. In NOW, σHH
0 for grey is − 16.8 ± 1.1 dB at L-band and − 17.1 ±

1.8 dB at C-band, where a decrease of 2.1 dB is observed at L-band (i.e., 
− 18.57 ± 1.3 dB), and an increase of 2.76 dB is observed at C-band for 
gWhite (i.e., − 14.3 ± 1.7 dB). Similarly, in VS, σHH

0 for grey is − 14.2 ±
1.6 dB at C-band, which is increased by 2.3 dB for gWhite (i.e., − 16.5 ±
1.5 dB). At L-band, the 2.7 dB decrease in σHH

0 from grey (i.e., − 16.38 ±
1.8 dB) to gWhite (i.e., − 19.1 ± 1.9 dB) is similar to NOW region. The 
presence of brine-rich and radar-rough rime/frost flowers and/or brine- 

wetted snow (due to snow brine wicking from frost flowers or ice sur
face) on gWhite ice may have caused enhanced surface scattering, 
resulting in a stronger C-band σHH

0 (Onstott, 1992; Isleifson et al., 2010, 
2014; Nghiem et al., 1997). Although we do not have in-situ observa
tions, small-scale roughness features such as frost flowers, with their 
associated high salinity lumps, and snow accumulation followed by 
brine wicking from frost flowers could have been a major distinctive 
surface characteristic difference between grey and gWhite ice (Onstott, 
1992; Nghiem et al., 1997). 

As the ice becomes thicker, a decrease in σHH
0 is found for tFYI and 

mFYI for both C- and L-band. L-band σHH
0 for tFYI and mFYI are − 22.4 ±

1.7 dB and − 26.3 ± 1.2 dB, respectively. With increasing FYI ice 
thickness, desalinization allows greater L-band penetration into the ice 
volume (Dierking and Dall, 2007), resulting in lower σHH

0 , likely due to 
increased loss. The standard deviation for tFYI is the highest at L-band 
compared to other ice classes. C-band σHH

0 for tFYI and mFYI become 
increasingly lower with thickness with σHH

0 of − 18.5 ± 2.2 dB and −
23.2 ± 1.5 dB, for tFYI and mFYI, respectively. The desalinization with 
increasing thickness may also allow increasing penetration of C-band 
causing it to decrease (Barber and Nghiem, 1999), again, likely due to 
increased loss. However, an accumulating snow cover may also develop 
at this stage, which can wick brine from the ice surface into the snow 
volume, creating a brine-wetted snow layer leading to enhanced ab
sorption/scattering of C-band microwaves,reducing backscatter from 
the underlying ice surface (Onstott, 1992). 

Fig. 4. Box plots of σHH
0 at both C- and L-band for open water (OW) and different ice types. The median lines are shown in black. The color-coded box plots 

correspond to the site locations in Figs. 2 and 3. For VS and NOW, each box plot consists of 100 and 400 pixels, respectively for each ice class. 
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For MYI, L-band σHH
0 is − 17.1 ± 1.9 dB and − 15.9 ± 1.8 dB in NOW 

and VS, respectively, that is similar to the young ice signatures (i.e., grey 
and gWhite). MYI is usually rougher than tFYI and mFYI; therefore, 
surface scattering for MYI will be higher than for tFYI and mFYI. 
Moreover, L-band penetrates deeper into the MYI structure due to its 
lower dielectrics at this frequency, contributing volume scattering and 
further increasing MYI σHH

0 compared to tFYI and mFYI (Dierking et al., 
1999; Dierking and Dall, 2007). σHH

0 of − 11.7 ± 1.9 dB and − 12.7 ± 1.5 
dB are found for MYI at C-band for NOW and VS, respectively, which is 
higher than other ice classes observed in this study. σHH

0 for MYI found in 
this study is typical for the Canadian Arctic as reported in previous 
studies at this time of the year (Howell et al., 2019; Mahmud et al., 2018 
& 2016). At L- and C-band, surface scattering becomes increasingly 
dominant over volume scattering as the MYI ice surface roughness in
creases. Volume scattering is only dominant for C-band if a MYI surface 
is radar smooth (i.e., refrozen melt pond) (Kim et al., 1984), however, 
ice volume scattering contribution at L-band cannot be ruled out. A MYI 
surface appears smoother at L-band given its longer wavelength; 
therefore, surface scattering is higher for C-band. The upper layers of 
MYI contain entrapped air inclusions that are relatively small at L-band 
wavelengths, but larger at C-band wavelengths, adding additional vol
ume scattering at C-band (Winebrenner et al., 1994). Therefore, MYI 
backscatter is generally lower for L-band compared to C-band, as seen in 
Fig. 4. 

Based on this comparison, we can make the following deductions. 
First, although nilas shows very low σHH

0 , σHH
0 increases for grey in both 

C- and L-band with increasing SIT. While σHH
0 increases from grey to 

gWhite ice at C-band followed by a dip in tFYI, L-band shows a 
continuous decrease in σHH

0 from grey to mFYI with the increasing 
thickness (Fig. 4). The observable difference in C-band σHH

0 for grey and 
gWhite may indicate the presence of brine-rich frost flowers and/or 
saline snow that caused an increase in σHH

0 for gWhite ice as reported in 
previous studies (Isleifson et al., 2010, 2014; Nghiem et al., 1997; 
Onstott, 1992). σHH

0 continuously decreases as microwave signal at L- 
band penetrates more into the ice volume. If frost-flowers are indeed 
present, surface roughness should have minimal impact on σHH

0 at L- 
band, in contrast to C-band. 

Secondly, the variability of σHH
0 (i.e., standard deviation) is higher in 

C-band than L-band for all ice types in the NOW region. The opposite is 
true for L-band since sea ice roughness features are more dominant in VS 
(Cafarella et al. (2019)). At C-band, a distinct increase in σHH

0 is found for 
MYI, which is higher by 2.6 dB compared to other ice types; however, at 
L-band, σHH

0 for MYI falls within the range of Grey and gWhite ice 
(Fig. 4). Furthermore, the highest variability in C-band σHH

0 is found for 
tFYI and MYI compared to other ice types. Owing to its longer wave
length, L-band exhibits lower σHH

0 for MYI compared to C-band, mainly 
due to its reduced microwave interactions with small-scale roughness, 
air bubbles and brine inclusions within the ice volume (Dierking and 
Dall, 2007; Winebrenner et al., 1994). The σHH

0 for OW is only repre
sentative of the wind conditions present at each satellite acquisition 
time, and can therefore not be generalized since OW’s true range of C- 
and L-band backscatter is much larger. 

4.2. Sea ice GLCM textural parameter characteristics 

Six co-occurrence texture parameters are investigated to understand 
GLCM statistics of different ice types and aid SVM classification (please 
see the Introduction of how the six GLCM parameters are chosen). These 
parameters explain the different pixel-to-pixel relationships for different 
parts of the images representing different ice types. Given the similarity 

of the distribution in both regions, we only show the distribution of σHH
0 

and selected GLCM texture parameters for NOW in Fig. 5. 
For Contrast (CON), L-band shows lower values for most classes than 

C-band, which means more intensity contrast among each class is found 
at C-band than L-band. For grey, both the frequencies show similar 
distributions. All classes show leptokurtic distributions at L-band, with 
most values concentrated near the mean. For nilas and grey, we find 
significantly lower values. Grey ice is more separable from other new ice 
classes at CON; however, it overlaps with MYI (OVL is 0.67). MYI shows 
the highest CON value among all classes, which indicates that MYI pixels 
are more diverse in intensity. At C-band, nilas, grey, gWhite and mFYI 
exhibit normal distributions, tFYI a platykurtic distribution, and MYI 
show a positively skewed distribution. 

Similarly, C-band shows greater dissimilarity (DIS) for all classes 
than L-band, which means a larger dissimilarity (or linear contrast) 
among similar pixels within the ice classes. All classes show leptokurtic 
distributions at L-band, and only gWhite and OW show leptokurtic 
distribution at C-band. While mFYI shows the lowest DIS value at C- 
band, OW shows the lowest value at L-band. Most of the classes overlap 
at C-band, except for tFYI, which is separable from other classes (OVL for 
MYI and mFYI is 0.34). At L-band, ice classes are overlapped in two 
groups (e.g., tFYI and MYI in one group, and Nilas, grey, gWhite, OW, 
mFYI in another group). 

For entropy (ENT), Nilas shows the lowest, and tFYI shows the 
highest value at C-band. Although most classes show leptokurtic dis
tributions at C-band, they overlap each other (e.g., OVL for grey and 
gWhite is 0.87). ENT is lower at L-band than C-band, meaning within 
class pixels are more random at C-band than L-band. Looking at sepa
rability, it can be noticed that two groups of classes overlap each other at 
L-band where tFYI and MYI are in a group. Distribution of gWhite has 
the highest kurtosis at L-band, where OW shows the highest kurtosis at 
C-band. 

In contrast to other texture parameters, homogeneity (HOM) at C- 
band is lower than L-band. A wider distribution of HOM is found at both 
frequencies for each class, and most classes have overlapping HOM at 
both C- and L-band. For example, OVL for grey and gWhite is 0.67 and 
0.73 at C- and L-band, respectively. 

GLCM texture parameters show diversified distributions for some ice 
classes at both C- and L-band, which can be useful for classification, 
where ice-class separability plays a critical role in classification perfor
mance. For example, ENT could separate thicker ice classes at L-band, 
where DIS shows better separability for thicker ice at C-band. This in
formation will likely aid the classification algorithm to maximize the 
performance. Additionally, we looked at the correlation coefficients 
between σHH

0 and GLCM texture parameters (not shown). The correlation 
coefficient is statistically significant, however, not strong (<0.4). We 
couldn’t compare these relationships with previous studies (Scharien 
and Nasonova, 2020; Shokr, 1991), since they focused on winter sea ice 
conditions. 

4.3. Sea ice classification 

SVM classification results for the C-band and L-band SAR imagery are 
presented in Figs. 6-9, which are based on variability in σHH

0 and six 
GLCM texture parameters. Additionally, we used both C- and L-band 
imagery as input to the classifier and resulted from the dual-frequency 
classifier are presented in Figs. 10 and 11. 

At C-band, nilas and gWhite ice types dominate NOW (Fig. 6a), and 
MYI and grey are the dominant ice classes in VS (Fig. 7a). OW is well 
detected in NOW by the SVM algorithm mainly due to its unique 
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Fig. 5. Distribution of σHH
0 and selected GLCM texture parameters for different ice types in NOW. The texture statistics are based on ROIs that contain 100 and 400 

pixels for VS and NOW, respectively. 
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response in σHH
0 . Of course, OW classification is limited to its wind 

conditions at acquisition; further study is needed to evaluate the ability 
of the SVM algorithm to classify OW at other wind speeds and directions. 
While grey and gWhite are found sparsely in the SAR scenes, a very small 
amount of FYI is identified in NOW. In VS, grey is misclassified as 
gWhite and MYI (Fig. 7c). Figs. 6b and 7d are occupied mainly with MYI 
floes, where large floes are identified well in NOW; however, smaller 
floes are mixed with gWhite in both regions. Notably, grey ice located in 
the bottom part of the VS imagery is misclassified as a mixture of gWhite 

and MYI due to the ‘look-alike’ signature of these ice classes, as shown in 
Fig. 4. MYI is misclassified as gWhite and grey in NOW and VS, 
respectively, due to the closeness of backscatter and GLCM signatures at 
the C-band for these classes. New ice areas between MYI floes are well 
identified in the classified image in both regions. Fig. 6b and 7e shows 
that grey ice is mixed with gWhite and MYI, respectively. Wind- 
roughened OW is identified as expected with new ice in the middle of 
the OW region (Fig. 6c). A region dominated with gWhite ice is shown in 
Fig. 6e, where gWhite is the dominant ice class in the classified image. 

Fig. 6. Color coded-classified image from C-band SAR in North Water (NOW) is shown in (a). To demonstrate classification performance in different regions, 
highlighted areas are shown in b-e. Calibrated SAR scene are shown in the background (a), and beside highlighted areas (b-e). 
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However, many gWhite pixels are classified as MYI due to their smaller 
separability. Close to the land, nilas in NOW is identified in the classified 
image as found in visual inspection. However, it seems like the nilas 
class is over-estimated where gWhite and FYI are classified as nilas. 
Similar misclassification is also located in the north-western part of the 
image where the only mFYI (shows as FYI in classification) is found, 
leading to the ice being classified as nilas. Similarity in σHH

0 and GLCM 
texture parameters result in misclassification of these two ice types. 
Since we do not have any FYI in VS, nilas is detected in an elongated 

pattern as expected in the C-band image (Fig. 6e). 
Nilas and grey are reasonably identified at L-band in the classified 

imagery, except for MYI, which is over-estimated in NOW (Fig. 8a) and 
under-estimated in VS (Fig. 9a). Fig. 8b shows sea ice areas dominated 
by gWhite and MYI, where large MYI floes are reasonably-identified; 
however, many gWhite areas are misclassified as MYI, which results in 
MYI over-estimation. Smaller nilas areas within the MYI floes are also 
identified (Fig. 8e). The classifier could not differentiate well between 
MYI, grey and gWhite at L-band mainly due to the similar response in 

Fig. 7. Same as Fig. 6, but for C-band in Victoria Strait (VS).  
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Fig. 8. Same as Fig. 6, but for L-band in the North Water (NOW) region.  
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σHH
0 and GLCM texture parameters in both regions as shown in Figs. 4 

and 5. Areas with OW are well classified with nilas within (Fig. 8c). 
However, OW area with a high wind causes higher σHH

0 Are classified as 
MYI. Grey ice is captured well in addition to gWhite and nilas ice 
(Figs. 8e and 9d). Coastal areas are reasonably classified for nilas, grey 
and gWhite ice; however, a significantly smaller region is classified as 
MYI, which belongs to the gWhite ice-class (Fig. 8d). Overall, thinner ice 
classes are classified as expected. L-band identifies all classes in a region 
mixed with various ice classes (Figs. 8e and 9d). Although nilas, grey 
and FYI are appropriately identified, many gWhite areas are classified as 

MYI (Fig. 8b) and vice versa (Fig. 9e). 
Overall, we found contrasting performance in identifying ice classes 

using the SVM classifier. At C-band, MYI floes in NOW are well identified 
with minimal conflict with other ice classes; however, an opposite result 
is found at L-band, where MYI is largely misclassified as gWhite and vice 
versa. However, in VS, grey, gWhite and MYI signatures at C-band are 
very close to each other. However, L-band shows improved identifica
tion of nilas, grey and gWhite compared to C-band. Improved OW in 
NOW identification is found at C-band compared to L-band, also re
ported in Dabboor et al. (2017). Therefore, we use C- and L-band by 

Fig. 9. Same as Fig. 6, but for L-band in the Victoria Strait (VS) region.  

M.S. Mahmud et al.                                                                                                                                                                                                                            



Remote Sensing of Environment 279 (2022) 113129

14

using C-band to identify OW and MYI and L-band to identify other 
thinner ice classes. Initially, we applied the same order of rule-based 
decisions in VS, similar to NOW. The classifier underperformed, where 
MYI was substantially over-estimated from grey and gWhite classes due 
to ‘look-alike’ backscatter and GLCM texture signatures (not shown). 
Therefore, we used a slightly different order of rule-based decisions in a 
dual-frequency classifier for VS (see Section 3.4) and found improved 
classification performance in VS. We also applied the modified algo
rithm in NOW; however, we did not find any significant improvement in 
classification performance (not shown). 

Figs. 10 and 11 show results from the dual-frequency classifier, and it 

is visually apparent the classification results improved substantially 
compared to the single frequency classifiers. For instance, OW is well 
defined with minimal misclassification compared to Figs. 6 and 7. MYI 
floes are well defined, which substantially improves C-band classifica
tion. Previously, MYI areas were mixed with gWhite in the C-band 
classification (Figs. 6 and 7) and extensive gWhite areas were classified 
as MYI at L-band (Figs. 8 and 9). gWhite is classified as expected with 
minimal misclassification with MYI. Grey ice areas are identified 
correctly among gWhite and Nilas ice areas. Looking closely at more 
complex sea ice areas (Figs. 7b-c and 8d-e), nilas is found within MYI, 
which is challenging to identify as reported in Dierking (2010). With 

Fig. 10. Classified image from a combination of L- and C-band SAR in NOW. The image extent corresponds to the overlapping areas from C- and L-band imagery. 
Calibrated L-band SAR scene is shown in the background (a). A comparison of classification performance from C + L, L- and C-band is shown in b-d. Land is outlined 
in black. 
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higher accuracy, the dual-frequency classifier identifies MYI floes within 
newly formed ice areas (e.g., nilas, grey, gWhite). gWhite and MYI are 
identified accurately in the dual-frequency classifier, unlike C- or L-band 
only classifications. For areas with mixed ice classes, a single frequency 
classification could not identify all classes. Based on our classification 
results and visual inspection of SAR imagery, we conclude that the dual- 
frequency classification approach identifies OW and all ice classes more 
reasonably compared to only C- or L-band outputs. 

4.4. Validation and accuracy assessment 

We used six transect lines and extracted ice classes for each pixel on 
transect lines from four classified images and visual inspections to 
investigate classification performance. The dominant ice classes for 
different segments on the transect line are shown in Fig. 12. 

Transect analysis shows that thinner ice classes (i.e., nilas, grey, 
gWhite) agree more with visual inspections at L-band than C-band. 
While L-band captures thinner ice classes in T1e, C-band only identifies 

Fig. 11. Same as Fig. 10, but in the Victoria Strait (VS) region.  
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nilas. We also find additional MYI identification at L-band at the same 
segment, which perhaps is misclassified from gWhite. Grey in T1c is 
reasonably identified at L-band, where grey is misclassified as OW in C- 
band. In many cases, grey is not identified in C-band (e.g., T1c, T2c, T3c- 
d, and T5a). L-band identifies the class more reasonably for nilas, where 
C-band misclassified nilas as grey and gWhite (e.g., T3d, T4c and T5a). 
We also observed that FYI in T1a is classified as FYI at L-band and nilas 

at C-band. Recall tFYI and mFYI are merged as FYI in the classification. 
Also, we have observed that FYI is misclassified as Nilas at C-band, 
where L-band identifies FYI in T2a. In T1b, both frequencies perform 
similarly by identifying MYI, gWhite and nilas, which agree with the 
visual inspections. However, in T2b, T4b, T5b and T6a-b, MYI is mis
classified as gWhite in C-band, where L-band captures the dominant ice 
class in the segments. MYI dominates T3b via inspection; however, C- 

Fig. 12. C- and L-band backscatter coefficient (σHH
0 ) are shown on transects lines (e.g., T-1, T-2, …, T-6) as indicated in Figs. 2 and 3. Transects lines are sub-divided 

by green lines (e.g., a, b, c etc.) depending on the distribution of major ice classes on the transect lines. According to the dominant ice class, color-coded ice classes are 
shown for each transect sub-category, followed by second and third dominant ice classes. The ice classes from C- and L-band, shown as blue and red color, are 
acquired from ice classification outputs as shown in Figs. 6-9, where black color ice classes denote ice-class on transects lines from visual inspections. (For inter
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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band shows gWhite as the dominant ice-class followed by MYI. Perhaps, 
more MYI is identified as gWhite at C-band since there are similarities in 
σHH

0 and GLCM texture parameters among these two classes T3 in Fig. 12 
is the most complex area for any classification effort, with a mix of 
various ice classes in a discrete pattern. At C-band, nilas is confused with 
FYI (T3a), MYI is confused with gWhite (T3b), grey is confused with 
gWhite (T3c) and grey ice is not identified (T3d). At L-band, gWhite is 
mixed with MYI (T3b), OW is identified as MYI (T3c). However, FYI, 
nilas and grey are reasonably identified at L-band. 

Overall, L-band classification accuracy is about 23% higher than C- 
band. Using 100 from each class, the overall accuracy for C-band clas
sified image is 57% and 56.5% for NOW and VS, respectively (see Ta
bles 3 and 4). OW has the highest accuracy (, followed by nilas at C- 
band. Additionally, grey shows the lowest accuracy (32%) in NOW and 
gWhite shows the lowest accuracy (27%) in VS. For FYI, the accuracy is 
56%. Similar to VS, class-based accuracy for NOW shows that gWhite is 
underestimated by over 60%, with gWhite misclassified mainly as grey 
and MYI. At C-band, MYI is classified correctly at 55% and 58% in NOW 
and VS, respectively, due to misclassification as grey and gWhite. At L- 
band, the overall accuracy is about 80%. Class-based accuracy shows 
that MYI is significantly overestimated by 150% in both regions, mainly 
due to the similar signatures of grey, gWhite and OW. Over two-third of 

gWhite areas are classified as grey and MYI. Also, t 10–15% of grey are 
classified as gWhite and MYI. OW, nilas, and FYI class accuracy are over 
80%. 

When we used both C- and L-band imagery as input to the SVM 
classifier, the classification accuracy improved substantially. The overall 
accuracy is 91%. Class-based accuracy shows that gWhite is over
estimated only by about 10%, where grey and MYI contributed 3% and 
6%, accordingly. 87% of MYI pixels are accurately classified, with an 
additional 13% are misclassified from grey, gWhite. Similarly, 8% of OW 
in NOW region is classified as MYI and gWhite. Higher class accuracy is 
found for nilas, grey and FYI, where over 90% of reference pixels are 
accurately classified. 

5. Conclusion 

We used two coincident pairs of C- and L-band ScanSAR imagery in 
the North Water (NOW) polynya and Victoria Strait (VS) regions to 
study new ice types distribution during the freeze-up period. We 
investigated σHH

0 and GLCM texture parameters to explore sea ice type 
separability at C- and L-bands and applied a machine-learning algorithm 
to perform sea ice type classification. 

Results indicated that σHH
0 for nilas falls very close to the noise floor 

at both frequencies. As the ice thickens from grey to gWhite ice, C-band 
σHH

0 increases but then decreases as the ice thicken to thin and medium 
FYI. MYI show the highest σHH

0 at C-band. For L-band, σHH
0 decreases 

Table 3 
Accuracy assessment for image classification from C-band, L-band and both C- 
and L-band imagery over NOW. 

C-
ba

nd

Classified pixels
OW Nilas Grey gWhite FYI MYI Producer’s 

accuracy (%)

slexip
ecnerefeR (v

isu
al

 in
sp

ec
�o

n)

OW 87 0 8 3 2 0 87
Nilas 0 71 4 0 25 0 71
Grey 5 12 32 38 13 0 32
gWhite 3 2 21 41 6 27 41
FYI 3 21 11 9 56 0 56
MYI 0 0 13 32 0 55 55
User’s 
accuracy (%)

88.8 67 36 33.3 54.9 67.1

Overall
Accuracy (%) 57

L-
ba

nd

Classified pixels
OW Nilas Grey gWhite FYI MYI Producer’s 

accuracy (%)

slexip
ecnerefeR (v

isu
al

 in
sp

ec
�o

n)

OW 81 0 0 3 0 16 81
Nilas 0 83 4 13 0 0 83
Grey 0 0 85 8 0 7 85
gWhite 0 0 17 47 0 36 47
FYI 2 5 0 2 91 0 91
MYI 0 0 0 9 0 91 91
User’s 
accuracy (%)

97.6 94.3 80.2 57.3 100 60.7

Overall 
accuracy (%) 79.7

C
+

L b
an

d

Classified pixels
OW Nilas Grey gWhite FYI MYI Producer’s 

accuracy (%)

slexip
ecnerefeR (v

isu
al

 in
sp

ec
�o

n)

OW 92 0 0 2 0 6 92
Nilas 0 94 2 4 0 0 94
Grey 0 0 96 4 0 0 96
gWhite 0 1 2 93 0 4 93
FYI 0 0 3 1 96 0 96
MYI 1 0 0 4 0 95 95
User’s 
accuracy (%)

98.9 98.9 93.2 86.1 100 90.5

Overall 
accuracy (%) 94.3

Table 4 
Accuracy assessment for image classification from C-band, L-band and both C- 
and L-band imagery over VS. 

C-
ba

nd

Classified pixels
Nilas Grey gWhite MYI Producer’s 

accuracy (%)

Re
fe

re
nc

e 
pi

xe
ls

(v
isu

al
 in

sp
ec

�o
n)

Nilas 85 15 0 0 85
Grey 0 58 17 21 58
gWhite 0 53 27 20 27
MYI 0 14 22 56 56
User’s 
accuracy (%)

100 41.4 40.9 57.7

Overall
Accuracy (%) 56.5

L-
ba

nd

Classified pixels
Nilas Grey gWhite MYI Producer’s 

accuracy (%)

Re
fe

re
nc

e 
pi

xe
ls

(v
isu

al
 in

sp
ec

�o
n)

Nilas 92 7 1 0 92
Grey 0 79 6 15 79
gWhite 0 6 63 25 63
MYI 0 13 7 84 84
User’s 
accuracy (%)

92 76.1 74.1 76.1

Overall 
accuracy (%) 79.5

C 
+ 

L b
an

d

Classified pixels
Nilas Grey gWhite MYI Producer’s 

accuracy (%)

Re
fe

re
nc

e 
pi

xe
ls

(v
isu

al
 in

sp
ec

�o
n)

Nilas 98 2 0 0 98
Grey 0 86 3 11 91
gWhite 0 4 90 6 93
MYI 0 7 6 87 87
User’s 
accuracy (%)

98 86.8 90.9 83.7

Overall 
accuracy (%) 90.3
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from grey ice as sea ice grows into grey-white, thin FYI and medium FYI. 
MYI shows similar σHH

0 as grey-white ice. Overall, σHH
0 at L-band is lower 

than C-band for all ice types, mainly due to deeper penetration of L-band 
into ice volume and its lower sensitivity to small-scale surface rough
ness. Overall, for GLCM texture parameters, C-band shows smaller 
contrast, larger dissimilarity, higher entropy and less homogeneity than 
L-band. 

We find higher classification accuracy at L-band (about 80%) 
compared to C-band (about 57%). For the NOW image pair, we find that 
C-band performed better in identifying OW and MYI, whereas L-band 
showed improved accuracy in detecting thinner ice classes (e.g., new, 
grey, gWhite etc.). Signatures of σHH

0 and GLCM texture parameters for 
gWhite ice were similar to other ice thinner ice classes at C-band, 
resulted in lower ice class accuracy. In the case of L-band, MYI showed 
similarly σHH

0 and GLCM texture parameters like thinner ice classes; 
therefore, MYI was over-estimated. Similar results are found from the 
second image pair acquired over Victoria Strait. For C-band, MYI was 
under-estimated, grey ice was substantially over-estimated by 42% and 
gWhite ice was heavily underestimated by 73%. Considering the limi
tations of C- and L-band only σHH

0 and GLCM textures, we also used a 
dual-frequency approach for classification and accuracy improved sub
stantially. The overall accuracy for the dual-frequency approach was 
substantially higher (e.g., 90.3%) compared to single-frequency ap
proaches. Despite differences in geography, sea ice type distribution, 
ocean circulation, and atmospheric conditions between NOW and Vic
toria Strait, the dual-classifier approach produced higher classification 
accuracy compared to the single-frequency classification. This result 
highlights the advantages of the dual-frequency classification approach 
for sea ice monitoring during the freeze-up period. 

We recognize that developing a global method of sea ice classifica
tion is still a challenge for operational ice monitoring in the Arctic re
gion. In this study we dealt with very different ice conditions for our 
analysis. For example, MYI in both the regions contained MYI advected 
from the Arctic Ocean; however, MYI in the NOW was comprised of 
large floes and had a well-defined boundary edges, whereas MYI in VS 
contained both MYI that had grown in situ (i.e., FYI that survived the 
summer melt season and graduated to MYI within the CAA) and MYI 
that went through several freezes and thaw cycles and was more broken 
up while moving southward through the CAA. 

This contrast in MYI made its identification using only C-band a 
challenge, and thus, we needed to modify the algorithm to optimize 
classification performance. To identify the best rule-based classifier, 
further investigation on backscatter and GLCM parameter variability of 
ice classes from different Arctic regions using C- and L-band data is 
required. Despite changing the rule-based decisions in the classifier for 
VS, it is clear that improved sea ice classification accuracy can be ach
ieved using a dual-frequency approach. However, this also points out 
that high accuracy sea ice classification still requires some human 
intervention by adapting ice conditions into the classifier. 

This study provides enhanced baseline information on C- and L-band 
backscatter signatures during Arctic sea ice freeze-up season, which 
could also help monitor the Antarctic sea ice, where new ice is the 
dominant ice class. Findings from this study should prove useful forth
coming L-band SAR missions, including NASA-ISRO’s NISAR, JAXA’s 
PALSAR-3, ESA’s future high-priority ROSE-L and DLR’s proposed 
Tandem-L for cryosphere-climate studies. 
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