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Matthias Häberle a,b, Eike Jens Hoffmann a, Xiao Xiang Zhu a,b,* 

a Technical University of Munich (TUM), Data Science in Earth Observation (SiPEO), Arcisstraße 21, 80333 Munich, Germany 
b German Aerospace Center (DLR), EO Data Science, Münchener Straße 20, 82234 Weßling, Germany   

A R T I C L E  I N F O   

Keywords: 
Remote sensing 
Decision fusion 
Building function classification 
Deep learning 
Natural language processing 
Word embedding 

A B S T R A C T   

The fusion of two or more different data sources is a widely accepted technique in remote sensing while 
becoming increasingly important due to the availability of big Earth Observation satellite data. As a comple
mentary source of geo-information to satellite data, massive text messages from social media form a temporally 
quasi-seamless, spatially multi-perspective stream, but with unknown and diverse quality. Despite the uncon
trolled quality: can linguistic features extracted from geo-referenced tweets support remote sensing tasks? This 
work presents a straightforward decision fusion framework for very high-resolution remote sensing images and 
Twitter text messages. We apply our proposed fusion framework to a land-use classification task – the building 
function classification task – in which we classify building functions like commercial or residential based on 
linguistic features derived from tweets and remote sensing images. Using building tags from OpenStreetMap 
(OSM), we labeled tweets and very high-resolution (VHR) images from Google Maps. We collected English tweets 
from San Francisco, New York City, Los Angeles, and Washington D.C. and trained a stacked bi-directional LSTM 
neural network with these tweets. For the aerial images, we predicted building functions with state-of-the-art 
Convolutional Neural Network (CNN) architectures fine-tuned from ImageNet on the given task. After predict
ing each modality separately, we combined the prediction probabilities of both models building-wise at a de
cision level. We show that the proposed fusion framework can improve the classification results of the building 
type classification task. To the best of our knowledge, we are the first to use semantic contents of Twitter 
messages and fusing them with remote sensing images to classify building functions at a single building level.   

1. Introduction 

Today, migration into cities shapes fast-growing and dynamic urban 
structures. According to the United Nations (2018), in 2050, about 68% 
of the world population will live in cities. Therefore, information about 
urban structures, their properties, and their dynamics is important. This 
includes, for example, fine-grained land-use classification such as 
buildings functions. Henüce, building functions such as commercial or 
residential contain valuable knowledge about a settlement and its 
composition. 

The standard approach to acquiring urban structures such as build
ing functions is analyzing remote sensing data combined with deep 
learning methods or simply querying municipal land registers. However, 
classifying building functions with optical sensors could bring 

challenges like a coarse spatial resolution of the imagery, uniform 
rooftops, or invariable building shapes. Subtle changes on the ground 
might not be detected or, in the case of informal settlements, not even 
documented in official databases (Baud et al., 2010). 

A way to tackle the mentioned issues is combining deep learning 
methods, remote sensing images, and additional in-situ sensors and 
apply decision fusion (Ghamisi et al., 2019; Salcedo-Sanz et al., 2020). 
Such an in-situ sensor could be a very present and digitally global 
phenomenon: social media. It is pretty common these days to post in
formation on social media platforms like Facebook, TikTok, Instagram, 
or Twitter. Twitter, for example, is connecting hundred of millions of 
active users around the globe. Users report their activities, show pictures 
from a place they visited, or share ideas and observations of their 
environment in text form, so-called tweets. Furthermore, users can tag 
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locations like bars, restaurants, museums, businesses, landmarks, or 
streets to share exciting places with their followers (cf. paragraph 3.2). 
The tagged locations are scattered throughout the city and surrounding 
areas and thus, can be seen as an in-situ sensor. They can contain in
formation about the aforementioned urban characteristics and can be 
utilized to classify building functions. This approach is well known as 
citizen sensors (Goodchild, 2007). 

Deep learning has been established as an omnipresent tool in remote 
sensing (Zhu et al., 2017; Ma et al., 2019). A significant research com
munity focuses on land-use and building function classification tasks by 
exploiting deep learning methods and remote sensing images in various 
characteristics (Albert et al., 2017a; Srivastava et al., 2018; Kang et al., 
2018; Hoffmann et al., 2019). 

The latter studies showed that additional ground information could 
contribute to object-level building function classification tasks or urban 
mapping. Thus, additional data sources can be added to keep up with a 
modern city’s dynamics and rapid changes. Chen et al. (2020) for 
example, studied the relationship between the urban environment and 
the distribution of geo-referenced tweets collected in Chicago. There
fore, inhabitants could act like a detector of urban attributes in the city 
they live (Ertiö, 2015; Ertiö and Bhagwatwar, 2017; Jones et al., 2015). 

In contrast, research which combines remote sensing methods and 
natural language processing is rare. Lobry et al. (2019) merged natural 
language processing methods and remote sensing images. They devel
oped a visual answering system based on a recurrent neural network and 
a ResNet50 fine-tuned with Sentinel-2 images. The features from both 
modalities have been fused point-wise, and the resulting model was able 
to answer questions like “Is there rural area?”. 

As of today, most research on urban land-use classification utilizes 
each of the mentioned methods alone or, regarding the text part, often 
employ methods like term frequency-inverse document frequency (TF- 
IDF) at a block-level which can determine specific topics of texts. 
However, the actual meaning is not considered (e.g., Zhang et al., 2017). 
Therefore, we aim to close the gap using pre-trained word embeddings 
to preserve the meaning of the social media texts for the classification of 
buildings. 

Thus, we present in this work the decision fusion of VHR remote 
sensing images and linguistic features from Twitter text messages based 
on a pre-trained English word embedding to classify with deep learning- 
based methods building functions in Los Angeles, New York City, San 
Francisco, and Washington D.C. To the best of our knowledge, there is 
no such work combining previously mentioned methods classifying 
building functions at an individual building level. 

The first part of this work includes performing a land-use classifi
cation task–the building function classification task1–at an individual 
building level. The considered functions are commercial, residential, and 
other and have been obtained from OpenStreetMap. This task has the 
goal to estimate the type of a building next to a geo-referenced tweet 
based on its linguistic features derived from a pre-trained English word 
embedding trained by the fastText algorithm (Bojanowski et al., 2017). 
For text classification, we made use of a bi-directional long short-term 
memory network (LSTM). We trained the LSTM with two different 
data splits: the first split is on the city level, which means that the 
training and inferring is performed on one city. We call this split intra 
city random split. In addition to that, we included a second split–the inter 
city cross-validation split. This split comprises the training data of three 
cities for training and the test split of the fourth city for predicting. We 
utilized the latter split to analyze the impact i) of spatial variability 
(spatial over-fitting) and ii) dataset size on text classification. For the 
remote sensing part, we apply image classification models with VGG16 
(Simonyan and Zisserman, 2014), InceptionV3 (Szegedy et al., 2016), 
and ResNet50 (He et al., 2016) as architectures. All models are pre- 

trained on ImageNet (Russakovsky et al., 2015) and fine-tuned with U. 
S.-wide building aerial images obtained from Bing Maps (Hoffmann 
et al., 2019). For testing, we obtained Google Maps images at zoom level 
18, which corresponds to a spatial resolution of approx. 0.5m in our 
areas of interest. 

The second part comprises investigating the impact of the fusion of 
the text classification results with classification results from remote 
sensing images on building type classification. For this, we utilize de
cision level fusion by averaging the prediction probabilities of both 
classifiers for each building in the test set. 

The results show that the fusion of linguistic features and remote 
sensing imagery is rewarding on building function classification. 

1.1. Contributions 

In this study, we show how linguistic features from Twitter tweets 
can be used to predict urban land use on building level instance. Our 
proposed method is computationally efficient and improves the results 
of established remote sensing models significantly. In our evaluation we 
demonstrate the effectiveness using spatial leave-one-out validation in 
four U.S. cities. 

2. Related work 

Because of Twitter’s worldwide active user base, information 
extraction from Twitter text messages offers many applications in geo- 
spatial research. For example Hamstead et al. (2018) used geo- 
referenced Twitter and Flickr data to evaluate how public parks are 
used and visited in New York City. Chen et al. (2018) employed tweets 
and TF-IDF to annotate OpenStreetMap objects in Great Britain. 
Furthermore, Twitter text messages can provide insights into the de
mographic characteristics of a country by analyzing language patterns 
(Bokányi et al., 2016). Terroso-Saenz and Muñoz (2020) used tweets and 
Flickr images for a fine-grained land-use classification in New York and 
San Francisco. They applied Latent Dirichlet allocation (LDA) (Blei et al., 
2003) to extract relevant topics which relate to Foursquare venues. In 
this work, no remote sensing imagery was used. For the building func
tion classification, previous work (Huang et al., 2018b and Häberle 
et al., 2019b; Häberle et al., 2019a) showed applicability of Twitter data 
and natural language processing. 

Word embeddings established a widely accepted technique to 
represent text in machine learning tasks. Word embeddings provide a 
vector space representation of words such that vector similarity re
sembles semantic and syntactic features of a given text corpus (Bengio 
et al., 2003; Bojanowski et al., 2017; Collobert et al., 2011; Mikolov 
et al., 2013a; Pennington et al., 2014). Word embeddings showed good 
performance in text classification tasks such as an election classification 
task with tweets (Yang et al., 2018), sentiment analysis in transportation 
(Ali et al., 2019), or the training from scratch for domain-specific ap
plications in geo-science (Padarian and Fuentes, 2019). 

Classifying urban land-cover and land-use has been a well-studied 
task in the remote sensing community. Early works used decision trees 
based on handcrafted features (Hu and Wang, 2013), but with the rise of 
deep learning methods, they were quickly applied to this task as well 
(Marmanis et al., 2015). The strength of such deep architectures is the 
ability to discover latent features in large-scale datasets (Cheng et al., 
2017). For remote sensing, CNN-based architectures achieve high clas
sification scores in scene classification tasks (Cheng et al., 2017) even 
with randomized and frozen weights (Risojevic, 2016). Especially urban 
land-cover predictions gained a considerable benefit from deep models 
if the classification schema is at a very fine-grained level (Albert et al., 
2017b). Splitting urban land cover into detailed morphological classes 
yields the local climate zone classification schema, which can be pre
dicted using multi-temporal remote sensing data (Qiu et al., 2019; Qiu 
et al., 2020). Since urban land-use is more difficult than urban land- 
cover from an aerial view, several studies investigated the feasibility 

1 In this work, the terms building function and building type are used as 
synonyms. 
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of deep architectures for predicting the functions of regions. Multi- 
spectral remote sensing data was shown to be a valuable data source 
used in combination with a two-stream network and a skeleton-based 
decomposition network (Huang et al., 2018a). Due to the close rela
tion of both tasks, they can benefit from each other’s predictions: in 
built-up areas, there are fewer options for possible functions and vice 
versa. If an industrial function is obvious, there are just a few land cover 
options available. Learning these relationships can be either done in a 
joint top-down and bottom-up approach (Zhang et al., 2018) or using an 
iterative method by alternating training of land-cover and land-use 
networks while using the other one’s prediction as a prior of the 
trained one (Zhang et al., 2019). However, a major challenge in remote 
sensing image classification (in urban) areas is the diversity and simi
larity between classes. Therefore, (Cheng et al., 2018) proposed a 
method to enhance the scene classification accuracy for similar object 
shapes such as churches or palaces by applying a metric learning regu
larization term during the training of CNN architectures. Although deep 
architectures achieve good results in remote sensing image classification 
the issue of diversity within a class still persists. Endless color variations 
and shapes could be present within a class like residential or industrial 
(Cheng et al., 2020). 

Therefore, additional data from the ground, e.g., citizen sensors 
(Goodchild, 2007), could be used to improve the remote sensing clas
sification at an individual object level (Cheng et al., 2017). The fusion 
(Schmitt and Zhu, 2016) of two or more data sources can improve 
classification results in urban land-use. Zhang et al. (2017), for example, 
examined urban land-use in Haidian District, Beijing, China using Weibo 
and Gaofen-2 imagery. They divided the district into fields via Open
StreetMap road data. For the land-use classification, they used textural 
and spectral features from the imagery and the density and temporal 
patterns from geo-referenced Weibo posts. The classification was per
formed by a Random Forest classifier, and they achieved an accuracy of 
77.83%. In addition to temporal and remote sensing features, Fu et al. 
(2019) integrated linguistic features obtained from Twitter messages to 
determine land-use and land change. Including the Twitter-derived 
features produced a land-use classification accuracy of 81% vis-á-vis 
72% without the Twitter features. Hoffmann et al. (2019) explored 
fusion methods of nadir satellite/aerial images with street view images 
within the framework of a building function classification task. The re
sults show that decision-level fusion (model blending) achieves the best 
classification performance. Srivastava et al. (2019) showed the fusion of 
several data sources for urban land-use mapping. Google StreetView 
images for the ground perspective and Google Maps aerial images for the 
remote scene are used in that work. The proposed model can outperform 
models using only one data source. Also, the fusion of social media data 
and remote sensing images was proposed to generate flood maps (Wang 
et al., 2018) and damage estimation (Cervone et al., 2016). However, 
none of the studies previously mentioned explicitly exploit linguistic 
features derived from social media at a building level. 

3. Dataset 

For our fusion experiment, we have a text dataset and an image 
dataset. First, we describe the Twitter data collection for Washington D. 
C., Los Angeles, New York City, and San Francisco. Also, we discuss the 
Twitter geo-reference accuracy and introduce our labeling methodology 
and explain our developed train-test split approach. 

3.1. Twitter streaming 

We used the free Twitter Application Programming Interface (API), 
which allows us to collect 1% of the daily amount of tweets (Twitter, 
2021) in the area of interest, which is, in our case, the whole world in the 
period from January 2018 to December 2019. For this study, we only 
used tweets were the .coordinates.coordinates field of the tweet 
JSON is not null, i.e., coming with point coordinates. From this data, we 

derived sub-samples for Los Angeles, New York City, San Francisco, and 
Washington D.C. In this work, we are only using tweets written in 
English. 

3.2. Twitter geo-reference accuracy 

In June 2019, Twitter announced,2,34 to cease the precise geo- 
referencing functionality because only a small number of users actu
ally used this feature. On the one hand, this step increases the geo- 
privacy of Twitter users, but on the other hand, this action could have 
an impact on geo-spatial research using Twitter data (Ballatore and 
Sabbata, 2020). Even though 88% of the data is posted via a third-party 
app like Instagram or Foursquare (Hu and Wang, 2020; Kruspe et al., 
2021), precise point coordinates of places of interest, like museums or 
restaurants, are still provided. Hu and Wang (2020) point out that 

[…] about 72% to 88% of precisely geotagged tweets were from 
third-party apps, such as Instagram, whereas only about 8% to 25% 
were directly from Twitter. Although the three datasets cannot 
exhaust all possible datasets that can be retrieved through Twitter 
API, these results suggest that Twitter’s decision may not have an 
earth-shaking impact on research relying on geotagged tweets. (p. 
1220) 

Therefore, it can be argued that it is still possible to utilize geo- 
referenced Twitter data as a data source for geo-spatial research to a 
certain extent. For this study, however, we excluded tweets that were 
posted after the announcement. Additionally, it is possible to tag tweets 
with cities or neighborhoods and concentrate at a single coordinate. 
However, the exact location of the Twitter user who posted a tweet re
mains uncertain. Therefore, to avoid over-weighing tweets tagged with a 
city or a neighborhood, we limit the tweets per building to the average 
number of tweets per building of the explored city. With this measure, 
we treat every building equally to prevent biasing the classification to
wards a building that happens to be next to city or neighborhood-level 
tweets. At tops, such tweets are treated as noise. 

Furthermore, we stress that we are not claiming that a tweet was 
exactly posted within a building or that the Twitter user stood right next 
to the building. It has been proven on a block-level that topics of tweets 
can contribute to building function classification (cf. Section 1 and 2). 
Therefore, we hypothesize that the linguistic features of nearby tweets 
are meaningful enough to estimate the function of the building next to 
them. 

3.3. Labeling tweets 

Before we split the text data into a train and test set, we must label 
the data. Several options, e.g., an open cadaster database, are possible. 
However, we decided to use OpenStreetMap (OSM) for our approach. 
First, cadaster data is not (publicly) available for every city. Second, 
there is no standard labeling schema for cadastral data. Third, we want 
to facilitate replication of our experiment. Within this process, we tag 
each tweet based on the next building to the tweet’s geo-location. If the 
distance between the point location of the tweet and the building 
polygon is less than 50 meters and the building has a valid function tag, 
the tweets get labeled based on this functional tag. 

OSM provides labeling schemes for building functions,5 amenities, 
and shop types, and encourages its contributors to tag building polygons 
based on these schemes. We evaluated all of these tags for each building 

2 https://twitter.com/twittersupport/status/1141039841993355264.  
3 https://twitter.com/twittersupport/status/1142130343715078144.  
4 https://www.theverge.com/2019/6/19/18691174/twitter-location- 

tagging-geotagging-discontinued-removal.  
5 https://wiki.openstreetmap.org/w/index.php?title=Key:building&oldi 

d=1576985. 
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in the four study areas and labeled them with one of commercial, resi
dential, and other if the tags were unanimously and present. Otherwise, a 
building did not obtain a label. Using this method, we aim at overcoming 
the sparsity of semantic tags in OSM (Fan et al., 2014). 

Equipped with the generated labeling scheme, we can now assign 
tweets to close buildings. Our rule to assign a tweet to a building is 
performed by OpenStreetMap building polygons stored in the geo- 
spatial database created by PostgreSQL6 with the PostGIS7 extension 
(Owusu et al., 2021). The distance of a tweet to the buildings of a city is 
measured using a geo-spatial distance function provided by the database 
environment. For the present study, we only used tweets closer to its 
next building as 50 m since a taller building could have a plaza sur
rounding it and further cover tweets in residential areas with a more 
scattered urban configuration. This yields a 1 : n relationship between 
buildings and tweets so that one building can be assigned to several 
tweets, whereas a single tweet can be solely related to exactly one 
building. 

The following paragraph will explain the train-test-split process, 
which reduces the numbers mentioned above to a certain extent. To 
avoid too much noise in the data, we manually excluded buildings 
associated with many very similar tweets like weather forecasts or traffic 
information. To remove such tweets, we filtered the user ids associated 
the most with such tweets. 

3.4. Train-test-split 

After we labeled the tweets, we split the data into train and test sets 
for each city (intra city random split). Typically, one would separate the 
data by a certain ratio and select the data points by chance. However, 
since we generated a 1 : n relationship of buildings and tweets, it is likely 
that after a random train-test split, tweets assigned to the same building 
are at the same time in the train and test set. That means that tweets of a 
specific building can appear in the train and test set. To prevent such a 
data leakage (Kaufman et al., 2012), we developed a train-test split 
method that generates a list with all unique OSM building IDs assigned 
to a tweet and random-splits that list by a specified ratio (cf. Fig. 1). In 
our case, we set the split ratio to 75% to 25% and utilizing the random 
seed 1337. Additionally, we balanced the number of buildings per 
function. For this, we down-sampled the buildings to the minority class. 
The tweets remain unbalanced. 

The next step includes de-duplication of the tweet text and text pre- 
processing. Text pre-processing is necessary to reduce artifacts and 
generate a more clean structure and representation of the irregular tweet 
texts (Atefeh and Khreich, 2015; Han and Baldwin, 2011; Hong et al., 
2011). First, we strip all numbers and almost all punctuation from the 
text except apostrophes and dashes to preserve words like “wasn’t” or 
“part-time”. We also maintained the upper or lower casing of a specific 
word to cover semantic differences in words like “apple” and “Apple” 
(fruit, tech company). After that, we further delete URLs and emojis (Yao 
and Wang, 2020). The last step of the pre-processing tries to normalize 
spelling like “greaaaaat” into “greaat”8 to minimize out of vocabulary 
words. We would like to point out that we keep so-called stop-words9 

because they could contain for the geo-spatial NLP task investigated in 
this paper helpful phrases like “I am at …” (Samad et al., 2020). 

Now, the tweets are divided by the assigned OSM building ID either 
into the train or test set. As noted in paragraph 3.2, we limit the total 
amount of tweets per building to the mean number of tweets per 

building of the studied city. We limit Los Angeles to 37 tweets per 
building, in New York to 42, in San Francisco to 87, and in Washington 
40. The tweets for each building are randomly drawn. After these steps, 
we have 55,910 labeled tweets for Los Angeles, 111,353 for New York, 
36, 313 for San Francisco, and 40,077 for Washington. See Table 1 for a 
detailed overview. 

The inter city cross-validation split of a city consists of the training 
data of three other cities generated via the above method. For example, 
if the task is to predict building functions of New York City, we train the 
text classifier with the training data of Washington D.C., Los Angeles, and 
San Francisco. The model is then evaluated with the test data of New 
York City. 

3.5. Remote sensing images 

Based on the OSM building IDs obtained during tweet labeling we 
downloaded their corresponding aerial images patches focused on the 
building polygon centroid. Our patches were created from the Google 
Maps Satellite layer (Ghaffarian and Ghaffarian, 2014; Zhang et al., 
2016; Li et al., 2020) at zoom level 18 yielding a spatial resolution of 
approximately 0.48m in our study areas. 

Google Maps uses the WGS84 standard and provides tiles with a 
resolution of 256 × 256 pixels on up to 22 zoom levels.10 Therefore, the 
ground sample distance gsd on a given zoom level z and a latitude lat is 

gsd(z, lat) =
2πrEcos(lat)

2(z+8) (1)  

with rE as the equatorial radius of 6,378,137m.11 Our test area in New 
York is at latitude 40 and the one in Los Angeles at latitude 33. Hence, 
the ground sample distance of our image patches is from 0.46m to 

Fig. 1. Train-test-split and down-sampling process.  

6 https://www.postgresql.org/.  
7 https://postgis.net/.  
8 The double-a is not a mistake. The normalization keeps at least two letters 

of the same letter because some words have correct double characters (e.g., 
letter). 

9 Stop-words are words like and, at, or the, which carry no valuable infor
mation for some NLP tasks. 

10 https://developers.google.com/maps/documentation/javascript/coo 
rdinates.  
11 https://wiki.openstreetmap.org/wiki/Zoom_levels. 
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0.50m. 
Based on multiple map tiles stitched together, we cropped out a 

patch of 512 × 512 pixels centered on the building centroid. Hence, each 
aerial image covers an area of approximately 65,000 square meters. We 
will refer to this dataset as zoom level 18 large. 

To investigate the effect of the window size on the classification re
sults, we added a second dataset for which we cropped patches from 
zoom level 18 to 256× 256. These patches have the same center, i.e., the 
building centroid, but cover only a quarter of the aforementioned 
original patches and are referred to as zoom level 18 small. 

4. Fusion framework 

This section introduces our fusion framework and explains the in
dividual classification methodologies for the text and image datasets. 
Fig. 2 depicts the proposed fusion framework. It consists of a text clas
sification stream that describes the used methodologies transferring the 
text into a machine-readable representation and the classification ar
chitecture. The second stream shows the image classification part. Both 
streams flow together at the fusion block, where the prediction proba
bilities are averaged building-wise and outputted. A more detailed 
explanation is given in the upcoming sections. 

4.1. Text classification 

Furthermore, the training procedure is shown, and some hyper
parameters are noted. In the upcoming paragraphs we will use word and 
token as synonyms. Note that a word or token does not necessarily have 
to be a word but can also be a number or entity of a given text sequence. 

4.1.1. Word embeddings 
Before we can feed the text into a neural network, we have to transfer 

the text into a machine-readable format. Methods like TF-IDF (Spärck 

Jones, 1972) taking word frequencies in a document into account and 
producing a score for each word. However, the context of a word within 
a text is ignored, and semantic and syntactic features are lost. 

Word embedding methods (Bengio et al., 2003; Collobert et al., 
2011) such as word2vec (Mikolov et al., 2013a), GloVe (Pennington 
et al., 2014), or fastText (Bojanowski et al., 2017), for example, are able 
to preserve semantic and syntactic features of a word up to some degree. 
This is achieved by taking the word’s context within a sequence, i.e., 
neighboring words, into account (Firth, 1957; Schütze, 1992). This in
formation is embedded into a real-valued n-dimensional feature vector 
for each word–a word vector. The final embedding can be queried for 
word similarities or word analogies for a word with algebraic opera
tions. For example the operation paris-france + italy evaluates approxi
mately to the vector which represents the word rome (Mikolov et al., 
2013a; Mikolov et al., 2013b). 

In this work, we apply the word embedding algorithm fastText, 
which could be seen as a further development of word2vec. A significant 
difference is that fastText considers subword information represented by 
character n-grams additionally. In the end, a word vector of a word is 
computed by the sum of its character n-grams. For this reason, fastText 
can improve the representations of words of morphologically rich lan
guages, for example, German, Hebrew, or Arabic (Tsarfaty et al., 2010). 
Furthermore, out of vocabulary words and word compositions can be 
easier approximated by its n-gram structure (Bojanowski et al., 2017). 

A further reason why we are using fastText is that the research team 
provides pre-trained word embeddings in 157 languages (Grave et al., 
2018).12 Even for non-regular languages like Bavarian or Volapük are 
word embeddings available. For the training procedure, they used 
Wikipedia dumps because of high textual quality. To add more 

Table 1 
Class distribution and train-test split numbers by city. The columns tweets train and tweets test show the amount of tweets after the building down-sampling as well as 
after the reduction to the mean tweets per city.     

raw tweet count tweets train tweets test buildings train/test aerial images 

LA         
commercial 800,137 17,552 5,720 2,004/681 681  
residential 338,722 5,369 1,619 2,004/681 681  
other 204,206 18,935 6,715 2,004/681 681  
total tweets 1,343,065 41,856 14,054    
mean tweets per building  6.96 6.88     
mean tweets per coordinate  3.81 3.86     
individual buildings 67,855 6,012 2,043  2,043 

NYC         
commercial 262,343 30,694 10,159 2,509/814 814  
residential 94,571 24,808 7,970 2,509/814 814  
other 364,803 28,398 9,324 2,509/814 814  
total tweets 721,717 83,900 27,453    
mean tweets per building  11.15 11.24     
mean tweets per coordinate  4.35 4.55     
individual buildings 15,449 7,527 2,442  2,442 

SF         
commercial 107,337 10,614 3,582 678/217 217  
residential 24,880 6,584 1,842 678/217 217  
other 154,552 10,431 3,260 678/217 217  
total tweets 286,769 27,629 8,684    
mean tweets per building  13.58 13.34     
mean tweets per coordinate  3.45 3.47     
individual buildings 4,410 2,034 651  651 

WDC         
commercial 92,586 12,130 3,941 985/331 331  
residential 54,618 7,554 2,347 985/331 331  
other 40,746 10,748 3,357 985/331 331  
total tweets 187,950 30,432 9,645    
mean tweets per building  10.3 9.71     
mean tweets per coordinate  3.74 3.9     
individual buildings 4,619 2,955 993  993  

12 https://fasttext.cc/docs/en/crawl-vectors.html. 
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heterogeneous language, they additionally utilized CommonCrawl13 to 
train the word embedding using fastText, and words were left in upper 
and lower case to add some semantics and context to words (cf. Section 
3.4). For our work, we downloaded the pre-trained English word 
embedding with 2 million tokens. Each of the 2 million tokens in the 
English embedding has a 300-dimensional word vector assigned. In the 
end, we can now produce sequences of word vectors as input for a nüral 
network. 

4.1.2. Bi-directional LSTM 
The standard way a neural network reads a text input is from “left-to- 

right”. A bi-directional LSTM, however, reads the input not just from 
“left-to-right” but also backwards–from “right-to-left”. This behavior 
adds some further context to the sequence. The first bi-directional 
recurrent neural network was used by Schuster and Paliwal (1997) 
and subsequent studies added this technique to LSTM networks, for 
example for phoneme classification (Graves et al., 2005). 

To generate the sequential input for the neural network, every word 
of the pre-processed tweets was transferred from human-readable text 
into machine-readable sequences. To perform the transfer, for each city, 
a word dictionary Dcity was created by mapping every single token found 
in the tweets of a city to a positive integer. Next, all tokens in a tweet are 
replaced by the corresponding integer representing the word in the 
dictionary. Each dictionary was limited to the top 45,000 words for each 
city (cf. Fig. 2, ①). 

The final word vector sequences are produced before the actual 
LSTM layers by an embedding layer E. This layer was initialized with the 
downloaded fastText word embedding as weights and serves as look-up 
table for the integer index sequences (cf. Fig. 2, ①). The word index of 
Dcity is also the index of the tokens and corresponding word vectors in E. 

Not the whole embedding with all 2 M tokens14 is initialized in E but 
only the words w which are w ∈ Dcity. In addition to that, a token t ∈ Dcity, 
which is not present in the fastText embedding, is omitted. We limit the 
input sequence length to 30 tokens t ∈ Dcity for each tweet, and layer E is 
not trainable. Table 2 shows the total number of found words. It can be 
noticed, not all words within a city’s vocabulary can be found in the 
embedding. That could have three reasons. First, a word was not in the 
training vocabulary of the embedding. Second, the word cannot be 
found due to a spelling error or irregular spelling. Third, due to the 
limitation to the top city 45,000 words and maximum sequence length of 
30, the word was not considered for D, and therefore, it is not available. 

For the text classification (cf. Fig. 2, ②), we implemented a stacked 
bi-directional long short-term memory (bi-LSTM) model making use of 
TensorFlow (Abadi et al., 2015) and Keras (Chollet, 2015). The LSTM 
directly after the embedding layer has 256 units, and the top LSTM layer 
has 128 units. For the output, we added a softmax fully-connected layer, 
and as an optimizer, Adam (Kingma and Ba, 2017) was used, and cross- 
entropy calculated the loss. Each individual-city model and cross- 

Fig. 2. Fusion Framework. 1) Mapping the text to machine-readable representation. 2) Text classification with stacked bi-directional LSTMs. 3) Remote Sensing 
Image Classification with DenseNet121,InceptionV3, ResNet50, VGG16, and Xception. 4) Decision-level fusion by weight-averaging the prediction probabilities of 
text and image classification with Eq. (2). Where b ∈ B, and B denotes a non-empty set of building IDs. Background images ©TerraMetrics 2021, Google. 

Table 2 
Total count of unique words after the pre-processing and building down- 
sampling steps in the train-test-split and words found in the fastText word 
embedding after the limitation to the top 45,000.  

City Unique Words Words in Embedding 

Los Angeles 95,811 28,159 
New York 134,223 30,731 
San Francisco 61,582 29,645 
Washington 66,361 31,092  

13 https://commoncrawl.org/. 
14 A token could be a word, punctuation mark, or an emoji–any entity of a text 

sequence which bears meaning. 
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validation model was trained for 5 epochs with a batch size of 128, a 
learning rate of 1e-3, and 40% dropout was applied to each layer to 
prevent the network from overfitting to the relatively short sequences. In 
addition to that, the embedding layer was non-trainable. 

4.2. Image classification 

To predict the building function based on the aerial image, we used 
five fine-tuned, state-of-the-art architectures: VGG16 (Simonyan and 
Zisserman, 2014), InceptionV3 (Szegedy et al., 2016), ResNet50 (He 
et al., 2016), Xception (Chollet, 2017), and DenseNet121 (Huang et al., 
2017). All of them are based on ImageNet (Russakovsky et al., 2015) 
weights and fine-tuned on a dataset of aerial images covering buildings 
across the U.S. Hoffmann et al. (2019) using Adam Kingma and Ba, 2017 
and categorical cross-entropy (cf. Fig. 2, ③). Each architecture was 
adapted to the building image dataset in two steps with 16 epochs each. 
First, only a new, final dense layer for classification was trained, with the 
remaining network being frozen. In the subsequent step, all layers of the 
networks were unfrozen starting from the end and trained further on the 
dataset while decreasing the learning rate (Hoffmann et al., 2019). The 
exact protocols of training can be found in Table 3. 

Using a different dataset from another data provider (here, Microsoft 
Bing Maps) for training made sure that it has never seen our test images 
before and obtains real-world prediction scores. For each architecture 
and patch size, there is an individual model specialized in the task. 

4.3. Fusion method 

The fusion method denoted in (2) we are using is straightforward. In 
short, we are weight-averaging the predicted softmax probabilities of 
the test sets for each building and classifier (cf. Fig. 2, ④). This method is 
based at the decision level fusion or, in other words: Decision-In- 
Decision-Out (DEI-DEO) approach (Dasarathy, 1997; Salcedo-Sanz 
et al., 2020) and can also be referred to as model blending (e.g., Hoff
mann et al., 2019). A significant pro argument using this procedure is 
that if one classifier cannot perform well on a specific data point, the 
other classifier could compensate. In that case, the “Twitter sensor” can 
counteract this issue by providing a classification result. Furthermore, 
this approach is computationally reasonable. However, as a counter
point, there is a possibility that information, i.e., features, are lost during 
the decision process (Dasarathy, 1997). 

Besides the here applied fusion method, several techniques are 
available. For example, the data could be fused using a feature-based 
method. The features of both modalities are fused before a decision 
was made. That could be realized by fusing the features after applying 
intra-modality feature extraction or, on the other hand, in an inter- 
modality approach. Another variant of the decision level fusion is to 
integrate the features after a decision was made. In contrast to the de
cision method we apply, the blending takes place before softmax is 
applied–so to speak, the decision features are fused instead of the de
cision probabilities. For further details please consider (Dasarathy, 
1997; Schmitt and Zhu, 2016; Ghamisi et al., 2019; Salcedo-Sanz et al., 

2020). In addition, a recent study found that decision fusion at a feature 
level cannot improve the classification results of a land-use classification 
task if both modalities are fundamentally different (Hoffmann et al., 
2019). First, we gather all predictions from the text and image classifiers 
and fully separate the training and prediction phase from the fusion 
procedure. That course of action allows us to analyze the predictions 
detached from the fusion process. That can be useful, for example, if one 
would like to study the performance or impact of specific images or 
tweets on the classification at an individual data point level. 

Since the 1 : n relationship between buildings and tweets in the text 
set, we first average all predicted probabilities of a building ID produced 
by the text classification part if one building possesses more than one 
prediction. In this way, we generate a 1 : 1 relationship between text 
classification and image classification predictions before the actual 
fusion process, i.e., a mini-fusion before the fusion. Now we can fuse the 
building-wise averaged text probabilities and the probabilities predicted 
by the image classifiers building-wise. The fusion process per building 
b ∈ B, where B denotes a non-empty set of building IDs. Finally, the 
latter steps can be summarized and can be formally defined by: 

fb = argmax

[

λ

(
1
|Tb|

∑

t∈Tb

t

)

+ (1 − λ)ib

]

(2)  

The predictions of both models are represented as probability vectors of 
the size nclasses. Thus, the text model predictions are represented as a set 
of probability vectors T, and therefore, a prediction from a tweet for a 
building is noted as t ∈ T. Analog to the text predictions, predictions for 
a building from an image are determined as a set of probability vectors I 
where i ∈ I. λ ∈ (0, 1] defines the weight given to the predictions from 
the linguistic features. An optimal λ value yields the best fusion results. 

5. Results and discussion 

The following section shows the classification results of the text, 
image, and data fusion parts. First, we discuss the text classification 
results, followed by the aerial image classification, and finally, we pre
sent the fusion results of the two modalities. 

5.1. Text classification results 

As pointed out in paragraph 3.4, we used two datasets for the clas
sification task. The intra city random split comprises data for one city. We 
want to examine, in general, how the LSTM network performs in a single 
city. By performing an inter city cross-validation, we want to investigate 
two goals. First, we check the impact of spatial variability, i.e., spatial 
over-fitting, on text classification. In other words: how is the locally 
specific vocabulary of a city influencing the text classification? More
over, is there a measurable generalization such that the classification 
performance does not drop? Even if the model is trained with a dataset 
that is from an unseen and distant area. Second, we want to investigate 
the effect of the dataset size. In the last paragraph, we stated that the 
classification results for cities does not depend on dataset size. For the 
cross-validation, we trained four additional text models with the same 
configuration as noted in Section 4.1.2. However, we extended the 
training data of a city with the training data of two other cities. We 
validated the model by predicting the test set on the fourth (cf. Table 4, 
column inter city cross-validation). 

Interestingly, the models deliver different results for every city. Also, 
for cities with less data such as San Francisco and Washington D.C., the 
overall performance appear not dependent on the total amount of tweets 
(cf. Table 4, column intra city random split, bi-LSTM (text)). Despite we 
had less Twitter data and available buildings for Washington (cf. 
Table 1), the overall accuracy and Kappa score is higher as for New York. 
Additionally, the New York data coming with the highest number of 
individual buildings. Also, we cannot measure a positive impact on the 
classification results. If we compare the classification results of single 

Table 3 
Fine-tuning protocol on aerial imagery applied to selected architectures.  

Architecture Step Learning Rate # Trained Layers  

DenseNet121 1 1e− 4 1   
2 1e− 5 427  

InceptionV3 1 1e− 4 1   
2 1e− 5 311  

ResNet50 1 1e− 4 1   
2 1e− 5 175  

VGG16 1 1e− 4 1   
2 1e− 5 21  

Xception 1 1e− 4 1   
2 1e− 5 132   
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classes of San Francisco and New York, we learn that the results of San 
Francisco are almost the same (with a small bias towards N.Y.). The 
results of Washington outperform New York’s clearly and slightly lower 
than the Los Angeles results, although L.A. has more data and far more 
buildings. By comparing Los Angeles and New York, we can find the 
same performance pattern. L.A. has less data than N.Y. but performs 
much better. This finding is the first takeaway message: for individual 
building function classification, the claim that more data improves text 
classification performance seems not to hold. We further analyze the 
impact of the dataset size. Additionally, we investigate a possible impact 
of spatial variability by performing an inter city cross-validation. 

Table 4 depicts all the (class-wise) results in more detail. The Los 
Angeles text classification results of the intra city random split show an 
overall accuracy of 0.69 and a Kappa score of 0.54. Further, a F1 score of 
0.70 at the residential class can be observed. The commercial class shows 
a F1 score of 0.69 and the other class 0.68. For Los Angeles, the inter city 
cross-validation brought no additional performance. However, it is 
interesting that the classification results are almost as good as the intra 
city random split. This finding could indicate that the classification of 
tweet text can work outside of the pre-defined area. That spatial vari
ability has an impact but is not as explicit as might be expected. 

New York City shows for the text classification an overall accuracy of 
0.60 and a Kappa score of 0.40. The commercial and other class performs 
best with a F1 score of 0.64 whereas the residential class shows with 0.50 
the weakest result. A comparison of the intra city random split and inter 
city cross-validation reveals that the cross-validation could not boost the 
results. On the contrary: the performance of the residential class dropped 
clearly to 0.31 as well as the Kappa score to 0.32. Nonetheless, we want 
to point out that (except for the residential class) the results of the in
dividual classes are almost the same. Which supports the claim that 
spatial variability has a limited impact on classification. 

San Francisco shows at the intra city random split an overall accu
racy of 0.59 and a Kappa score of 0.38. The residential class has the 
lowest F1 score with 0.52 and the other class 0.59. However, the com
mercial class shows with 0.64 the best result. The numbers of the inter 
city cross-validation split do not draw a different picture: the perfor
mance is equal. The claim that more training data can positively influ
ence the classification performance for cities with small text training 
datasets does not hold for San Francisco. On the other hand, since the 
performance did not decrease, the effect of spatial variability also here a 
minor one. 

The results for Washington D.C. show an overall accuracy of 0.65 and 

a Kappa score of 0.47. The F1 for commercial is 0.69, for residential 0.56, 
and for other 0.67. Regarding the inter city cross-validation, we could 
observe a similar output even though it is not so clear as for San Fran
cisco. For the commercial class, the F1 slightly decreased from 0.69 to 
0.67 but residential from 0.56 to 0.45. The overall accuracy declined 
from 0.65 to 0.62 as well as the Kappa score from 0.47 to 0.42. As for the 
other cities, the classification performance did not become dramatically 
less. With one exception: the residential class. 

We can observe in all cities the drop of performance of the residential 
class. Of course, such results can be attributed to the smaller number of 
tweets available for the residential class (cf. Table 1). However, why do 
we have less data for this class in the first place? A possible answer to 
this question could be the accuracy of the Twitter data. According to the 
comments below the announcement of the deactivation of the precise 
geo-referencing of a tweet, users welcomed this step since more and 
more people having privacy concerns. As mentioned before, the amount 
of precise geo-referenced tweets are decreased over time. Most likely, 
the residential areas and private buildings are not as precisely covered as 
commercial or other buildings where users can tag points of interest in 
their tweets. The source of residential tweets could stem from a provided 
pre-defined area provided by the used app like a street or a certain 
neighborhood. Therefore, the superior performance of commercial and 
other buildings could arise from the possibility to tag a pre-defined point 
of interest line a landmark, shopping mall, museum, university, car 
repair shop, et cetera. 

5.2. Text classification examples 

Furthermore, we assume that some of the text models have diffi
culties covering the linguistic diversity of certain areas. In more detail, 
that, for example, tweets about work or carrier sent nearby a residential 
building are confused with an actual commercial tweet (cf. Fig. 3). 
However, since people can discuss work or career questions from home, 
the classifier could be biased towards one specific word, somehow 
prototypical for such a class. For example, the wrongly classified resi
dential buildings of Los Angeles and San Francisco might show exactly 
that (cf. Fig. 3 D, P). The tweets containing breakfast, toast, cook, or 
restaurant that are clearly foot-related and therefore might be associated 
with restaurant tweets. In addition to that, the falsely classified tweet of 
the Los Angeles other building, also shows Grill which is also a foot- 
related term (cf. Fig. 3 F). An interesting example is the wrongly clas
sified commercial building of Los Angeles (cf. Fig. 3 B). Here, the tweet is 

Table 4 
Classification and fusion results in more detail. All numbers reflect the F1 score of the classification results except Kappa (κ) and overall accuracy (OA). The λ value in 
brackets denotes the one determined for the inter city cross-validation.      

intra city random split  inter city cross-validation   

VGG16 18 small  bi-LSTM (text) fusion  bi-LSTM (text) fusion  

commercial 0.73  0.69 0.77  0.65 0.77  
residential 0.82  0.70 0.85  0.52 0.82 

Los Angeles other 0.64  0.68 0.72  0.61 0.72 
λ = 0.49(0.55) OA 0.73  0.69 0.78  0.60 0.77  

κ 0.60  0.54 0.67  0.39 0.65  
commercial 0.68  0.64 0.73  0.61 0.72  
residential 0.63  0.50 0.62  0.31 0.60 

New York City other 0.59  0.64 0.66  0.63 0.65 
λ = 0.45(0.45) OA 0.64  0.60 0.67  0.55 0.67  

κ 0.45  0.40 0.51  0.32 0.50  
commercial 0.59  0.64 0.68  0.63 0.66  
residential 0.63  0.52 0.61  0.52 0.62 

San Francisco other 0.53  0.59 0.61  0.59 0.62 
λ = 0.72(0.65) OA 0.58  0.59 0.64  0.59 0.63  

κ 0.37  0.38 0.45  0.38 0.45  
commercial 0.71  0.69 0.76  0.67 0.76  
residential 0.72  0.56 0.72  0.45 0.70 

Washington D.C. other 0.68  0.67 0.73  0.67 0.73 
λ = 0.46(0.50) OA 0.70  0.65 0.74  0.62 0.73  

κ 0.55  0.47 0.60  0.42 0.60  
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about the Los Angeles Housing Agency, which is a governmental insti
tution. Those government-related buildings are summarized in the other 
class. By scrutinizing the text, the classifier correctly identified the tweet 
content as government-related and, consequently, classified it to other. 

Nevertheless, what went wrong? By a close look, we found that the 
assigned building is incorrect. The tweet is labeled with the building 
function across the street because it is closer to this building. However, 
the behavior of the classifier, in this case, gives some evidence that the 

Fig. 3. Remote Sensing images and one selected example tweet of the corresponding OSM building. The abbreviations in the brackets denote the falsely classified 
class (com = commercial, res = residential, oth = other). Real names have been overwritten with xxx or yyy to preserve the privacy of the user. Background images 
©TerraMetrics 2021, Google. 
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classification of buildings with pure text data is possible. 
Nonetheless, one can also “work” in your garden or on your painting 

skills, but one is still at home and tweet about non-commercial topics. 
That opens further interesting research questions we would like to 
address in the future. On the other hand, the correctly classified com
mercial buildings of Washington, New York, San Francisco, and Los 
Angeles suggest that food-related words are associated with commercial 
places. Residential tweets include words like cat or Super Bowl, perhaps 
this is why the commercial tweet of New York are classified as residential 
even though commercial words are occurring. The words used in other- 
tweets seem more diverse like University or Elementary (Fig. 3 , Q, W). 

5.3. Aerial image classification results 

The results for all vision models are shown in the Appendix, Table 5. 
For the sake of brevity, we will focus on the best model, VGG16, on zoom 
level 18 small in this section. This model is at least as good as all other 
models but outperforms them in most cases. A larger spatial context 
including more neighborhoods does not improve the classification re
sults. Instead, focusing on the building instances themselves shows a 
higher classification performance. 

Moreover, although InceptionV3 and ResNet50 were published after 
VGG16, their results are below the VGG16 models. The similar behavior 
of Inception and ResNet models is most likely related to their high 
structural similarity McNeely-White et al., 2020. The better perfor
mance of VGG16 indicates that its features generalize better to other 
domains than the other two models. 

Table 4, column VGG16 18 small shows the results of the remote 
sensing image classification class-wise for each city. The VGG models 
outperform every text model with respect to overall accuracy and Kappa 
score except for San Francisco. 

For Los Angeles, the predictions indicate an overall accuracy of 0.73 
and a Kappa score of 0.60. The residential class shows the best F1 score of 
0.82 which could be explained by different building shapes by com
parison with commercial buildings. This results for the residential class is 
the best amongst all other city VGG models. Commercial exhibits the 
second-best F1 score with 0.73 and is followed by the other class with 
0.64. Here, the text model of the intra city random split can outperform 
the image classification. The overall accuracy is higher (0.73 vs. 0.69). 

The VGG predictions for New York show an overall accuracy of 0.64 
and a Kappa score of 0.45. The commercial class is the top class with a F1 
score of 0.68 followed by the residential class (0.63). Other shows a F1 of 

0.59. The text model, however, can outperform the score of the other 
class (0.59 vs. 0.64). Such findings could demonstrate the usefulness of 
geo-referenced on-site text data because they could deliver additional 
(latent) information about the area or building. 

In San Francisco, the model outperforms the VGG16 network (except 
the residential class). The VGG shows an overall accuracy of 0.58 (text 
0.59) and a Kappa score of 0.37 (text 0.38). Residential is the best per
forming class with a F1 of 0.63 followed by the commercial class with 
0.59. The other class showing the poorest classification results with 0.53. 
The difference between the image and text model here is even more 
pronounced than before. The text model can achieve higher F1 scores for 
commercial and the other class. Which further substantiate that geo- 
referenced text can contribute to building function classification. 

For Washington, the VGG predictions outperform the text model. The 
overall accuracy is 0.70 and Kappa 0.55 better than the text model. Only 
Los Angeles presents with 0.60, a higher Kappa value. The commercial 
class classification results show with a F1 score of 0.71 a good result. For 
the residential class, the VGG model can achieve a strong F1 of 0.72 
which is followed by the other class with 0.68. 

The most exciting finding of the image classification is that the 
performance of the residential class shows opposite results by compari
son with the text classification outcome. The second compelling dis
covery is (as it has already been indicated above in the paragraph 
reviewing the text classification results) that the highest amount of 
buildings do not necessarily result in better performance. New York has 
the most significant number of individual buildings, but the accuracy 
score is in third place behind Los Angeles and Washington D.C. The 
following paragraph discusses the remaining open question if data 
fusion can improve the results of individual classes. 

5.4. Fusion results 

Fig. 4 shows the overall results of the weighted fusion process. For 
Los Angeles (0.48 and 0.49), New York City (0.45), and Washington D.C 
(0.46). In contrast, the San Francisco fusion results demonstrate higher 
scores when using higher λ weights (0.71 and 0.72). This means the 
linguistic features require a higher weight to achieve optimal results. 
The numbers in Table 4 of the decision fusion of text and remote sensing 
image classification results draw a clear picture: for all cities, the applied 
method can outperform all of the image and text classification results. 

The overall accuracy of Los Angeles improved to 0.78 and the Kappa 
score to 0.67. All classed benefit from the data fusion. Even though the 

Table 5 
Additional Remote Sensing image classification results with respect to vision models in more detail. All numbers denote the F1 score except Kappa κ and overall 
accuracy. L = Large, S = Small.    

Inception  ResNet50  VGG16  DenseNet  Xception   

18L 18S  18L 18S  18L 18S  18L 18S  18L 18S 

LA commercial 0.68 0.70  0.65 0.69  0.71 0.73  0.69 0.70  0.68 0.71 
other 0.62 0.62  0.57 0.61  0.80 0.64  0.62 0.63  0.58 0.60 
residential 0.78 0.79  0.75 0.78  0.63 0.82  0.76 0.78  0.74 0.77 
Overall Accuracy 0.69 0.70  0.66 0.69  0.71 0.73  0.69 0.70  0.67 0.70 
κ 0.54 0.55  0.49 0.54  0.57 0.60  0.54 0.55  0.50 0.54 

NY commercial 0.62 0.63  0.60 0.62  0.65 0.68  0.62 0.66  0.63 0.64 
other 0.51 0.53  0.46 0.54  0.57 0.59  0.50 0.56  0.48 0.52 
residential 0.60 0.56  0.58 0.57  0.54 0.63  0.59 0.59  0.61 0.56 
Overall Accuracy 0.58 0.58  0.55 0.58  0.59 0.64  0.57 0.60  0.58 0.58 
κ 0.37 0.37  0.33 0.37  0.39 0.45  0.36 0.40  0.37 0.37 

SF commercial 0.57 0.54  0.53 0.52  0.54 0.59  0.52 0.54  0.55 0.53 
other 0.50 0.53  0.49 0.51  0.49 0.53  0.51 0.52  0.51 0.50 
residential 0.59 0.59  0.54 0.59  0.41 0.63  0.41 0.50  0.48 0.50 
Overall Accuracy 0.56 0.55  0.52 0.53  0.49 0.58  0.49 0.52  0.52 0.52 
κ 0.34 0.33  0.28 0.30  0.24 0.37  0.24 0.28  0.28 0.27 

WDC commercial 0.66 0.68  0.61 0.65  0.69 0.71  0.64 0.66  0.65 0.67 
other 0.62 0.63  0.55 0.59  0.63 0.68  0.60 0.60  0.62 0.62 
residential 0.64 0.67  0.60 0.65  0.65 0.72  0.61 0.63  0.67 0.63 
Overall Accuracy 0.64 0.66  0.59 0.63  0.66 0.70  0.62 0.63  0.65 0.64 
κ 0.46 0.49  0.38 0.44  0.49 0.55  0.43 0.45  0.47 0.46  
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other class is not the weakest, it can benefit most from the fusion process. 
It improved from 0.64 achieved by the vision model to 0.72 F1. How
ever, the fusion of the text predictions of the inter city cross-validation 
split cannot reach the fusion results of the intra city random split re
sults but can improve the results almost to the same level as of the intra 
city random split. All classes can improve by the data fusion process. The 
other model compensates the weaknesses of one model (cf. paragraph 
4.3). A good example is the performance of the other class: the VGG F1 is 
0.64 and the text’s 0.68. The mean fusion of the classification results of 
the individual buildings lifted the results to 0.72. 

Fusing the results of image and text results for New York City also 
revealed similar findings. The results are improved after the decision 
fusion with an overall accuracy of 0.67. As for Los Angeles, the weak 
other class improved most. Moreover, the intra city random split fusion 
outperforms the inter city cross-validation split fusion. As for Los 
Angeles, the fusion can increase the numbers of the cross-validation 
results almost to the same level as of the intra city random split. 

For San Francisco, however, we could also observe an improvement 
after combining the two modalities. In contrast to the findings of Los 
Angeles and New York, the fusion of the inter city cross-validation text 
models and the image results can outperform the random split for the 
other and residential class. However, the residential class’ fusion results 
are outperformed by the VGG results. That could further reflect evidence 
for an inter-area generalization of the inter city cross-validation text 
models. 

Washington’s fusion results, like all other results, demonstrate the 
same pattern: the fusion of the two modalities increases the classifica
tion results from 0.70 of the VGG to 0.74 overall accuracy of the intra 
city random split. The results of the inter city cross-validation fusion 
improved for the other class and the overall accuracy. Additionally, as 
mentioned above, the text models of the intra city random split and the 
inter city cross-validation performing almost on the same level. This 
substantiates the findings of San Francisco and backs the claim that the 
models could generalize beyond a region. 

The results suggest that the advantage of the weighted Decision-In- 
Decision-Out fusion method mentioned in Section 4.3, namely the 
mutual support of the classifiers, can be seen in our classification results. 
Furthermore, the discoveries of San Francisco and Washington D.C. 
point to the generalization capability of the text models across different 
areas to a certain amount. 

6. Conclusion 

In this work, we classified buildings labeled by OpenStreetMap 

building tags. The building tags have been summarized to commercial, 
residential, and other. For the text classification part, we used a bi- 
directional LSTM architecture and a pre-trained English fastText word 
embedding. To classify the images, we used DenseNet,InceptionV3, 
ResNet50, VGG16, and Xception as vision architectures pre-trained with 
ImageNet and fine-tuned on building patches from remote sensing data. 
The prediction probabilities of the test set have been fused building-wise 
at a decision level. We can show that the fusion of linguistic features 
extracted from social media text messages (as in-situ sensors) and 
remote sensing images can improve the building classification task re
sults. Additionally, the results indicate that the amount of data is not the 
holy grail for classification performance. This finding opens research 
opportunities that investigate which data contributes most to geo-spatial 
research tasks like building function classification. Finally, the impact of 
spatial variability remained small in our study. We could not observe a 
major decline in overall classification performance except for single 
classes. Especially the residential class showed clear performance drops 
after the inter city cross-validation. A possible explanation for this might 
be that commercial and other class comprise a more general vocabulary 
like business terms, whereas the residential class has more tweets with 
more regional phrases or words. 

However, building type classification at an individual building level 
remains a challenging task. Labeled OpenStreetMap buildings are 
sparse, and therefore, the number of different buildings and the tweets 
assigned to them might not be optimal. In addition to that, Twitter 
deactivated in June 2019 the precise geo-referencing of tweets. None
theless, we could show that even with sparse data, careful parameter 
tuning, and a straightforward decision level fusion, the classification 
performance is quite good. The results encourage further research 
regarding fusing remote sensing images and linguistic features extracted 
from geo-referenced texts like social media text messages. 

Utilizing Twitter data is just a snapshot of current geo-referenced text 
sources. In the future, a new text source with a precise geo-reference 
might be established, which could be used to explore urban character
istics like building functions. As a thought experiment, in a visionary 
Smart City, a new text feedback system could be installed by the 
municipal government to collect information about the communities of 
the city reported by their citizens (Jones et al., 2015). Therefore, the 
approach discussed in this paper is not limited to Twitter text messages 
and can also be applied to other geo-referenced text resources that might 
come up in the future. 

Fig. 4. Overall results of weighted mean fusion with λ as the weight for the linguistic features. Most of the cities show the best results using λ ∈ {0.45, 0.46,0.48,
0.49}. San Francisco is an outlier with an optimal λ of 0.71 and 0.72. 
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7. Future work 

A certainly interesting research step is the accuracy of geo- 
referenced tweets. Even though Twitter deactivated this feature, first 
studies Hu and Wang (2020) and Kruspe et al. (2021) took a closer look 
at the sources, i.e., from what platform a tweet was released into the 
internet. In addition to that, how the place object in the metadata of a 
tweet can be exploited. Since it contains further geo-spatial information 
to a certain granularity. First findings indicate that geo-spatial natural 
language processing with Twitter data is still possible but remains a 
valuable source for geo-spatial research. A further research point might 
be the assigned of tweets to buildings. We saw in paragraph 5.2 that a 
tweet was labeled with the wrong building. The labeling process could 
be further improved by studying the relationship between distance and 
classification accuracy. 

In the current study, we only used English tweets sampled from U.S. 
cities. Even though English seems to be the lingua franca on Twitter (Kim 
et al., 2014), future studies could encompass European cities and the 
exploration of the impact of a multilanguage dataset. Adequate ap
proaches like MUSE (Yang et al., 2019) or a multilanguage variant of 
BERT (Devlin et al., 2018) can be applied on building function classifi
cation. Furthermore, the challenge of a possible spatial overfitting 
phenomenon could be further investigated. For example, which impact 
has a certain (prototype) word on a building function prediction? Are 
there even such prototype words? Investigating this, we could add some 
explanation why a tweet is classified as a tweet from a commercial or 
residential building and add more meaning into the text and remote 
sensing imagery fusion. Finally, additional data fusion concepts like 
adequate fusion methods, for example, at the feature level and uncer
tainty measures, could be further investigated. 

Declaration of Competing Interest 

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests: 
Xiaoxiang Zhu reports financial support was provided by European 
Research Council. Xiaoxiang Zhu reports financial support was provided 
by the Helmholtz Association of German Research Centers eV. Xiaoxiang 
Zhu reports financial support was provided by German Federal Ministry 
of Education and Research. 

Acknowledgment 

The work is mainly supported by the European Research Council 
(ERC) under the European Union’s Horizon 2020 research and innova
tion programme (grant agreement No. [ERC-2016-StG-714087], 
Acronym: So2Sat). The work of X. Zhu is also supported by the Helm
holtz Association through the Framework of Helmholtz AI [Grant No.: 
ZT-I-PF-5-01] - Local Unit “Munich Unit @Aeronautics, Space and 
Transport (MASTr)” and Helmholtz Excellent Professorship “Data Sci
ence in Earth Observation - Big Data Fusion for Urban Research” (W2- 
W3-100) and by the German Federal Ministry of Education and Research 
(BMBF) in the framework of the international future A.I. lab “AI4EO – 
Artificial Intelligence for Earth Observation: Reasoning, Uncertainties, 
Ethics and Beyond” (Grant No.: 01DD20001). 

Appendix A. Detailed remote sensing image classification 
results 

Table 5 shows an overview of the classification results of the 
different deep learning models on both image datasets. Notably, the 
VGG16-18-Small fusion can outperform almost every other model. Even 
the VGG-18-large is clearly exceeded by the VGG16-18-small model. The 
Inception and ResNet models can not compete with both of the VGG 
models. Also, newer models, such as Xception (Chollet, 2017) or Den
seNet (Huang et al., 2017) cannot achieve the VGG’s performance. 
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M. Häberle et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0924-2716(22)00105-8/h0130
https://doi.org/10.3390/rs11242965
https://doi.org/10.1016/j.isprsjprs.2014.08.017
https://doi.org/10.1016/j.isprsjprs.2014.08.017
https://doi.org/10.1109/MGRS.2018.2890023
https://doi.org/10.1109/MGRS.2018.2890023
https://doi.org/10.1007/s10708-007-9111-y
http://www.aclweb.org/anthology/L18-1550
https://doi.org/10.1007/11550907_126
https://doi.org/10.1007/11550907_126
http://www.sciencedirect.com/science/article/pii/S0198971517303538
http://www.sciencedirect.com/science/article/pii/S0198971517303538
https://doi.org/10.1016/j.compenvurbsys.2018.01.007
https://doi.org/10.1016/j.compenvurbsys.2018.01.007
http://dl.acm.org/citation.cfm?id=2002472.2002520
https://doi.org/10.1080/22797254.2019.1586451
http://refhub.elsevier.com/S0924-2716(22)00105-8/h0185
http://refhub.elsevier.com/S0924-2716(22)00105-8/h0185
https://doi.org/10.3390/rs11111259
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2856
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2856
https://doi.org/10.1080/01431161.2012.714510
https://doi.org/10.1038/s41562-020-00949-x
https://doi.org/10.1080/02697459.2015.1052940
https://doi.org/10.1080/02697459.2015.1052940
https://doi.org/10.1016/j.isprsjprs.2018.02.006
https://doi.org/10.1016/j.rse.2019.111563
https://doi.org/10.1016/j.isprsjprs.2019.04.015
http://refhub.elsevier.com/S0924-2716(22)00105-8/h0270
http://refhub.elsevier.com/S0924-2716(22)00105-8/h0270
http://refhub.elsevier.com/S0924-2716(22)00105-8/h0270
http://refhub.elsevier.com/S0924-2716(22)00105-8/h0275
http://refhub.elsevier.com/S0924-2716(22)00105-8/h0275
https://doi.org/10.1016/j.compenvurbsys.2021.101681
https://doi.org/10.1016/j.compenvurbsys.2021.101681
https://doi.org/10.5194/soil-5-177-2019
http://refhub.elsevier.com/S0924-2716(22)00105-8/h0305
http://refhub.elsevier.com/S0924-2716(22)00105-8/h0305
http://refhub.elsevier.com/S0924-2716(22)00105-8/h0305
http://refhub.elsevier.com/S0924-2716(22)00105-8/h0310
http://refhub.elsevier.com/S0924-2716(22)00105-8/h0310
http://refhub.elsevier.com/S0924-2716(22)00105-8/h0310
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1016/j.inffus.2020.07.004
https://doi.org/10.1016/j.inffus.2020.07.004
https://doi.org/10.1109/MGRS.2016.2561021
https://doi.org/10.1109/MGRS.2016.2561021
https://doi.org/10.1109/78.650093
http://refhub.elsevier.com/S0924-2716(22)00105-8/h0355
http://refhub.elsevier.com/S0924-2716(22)00105-8/h0355
https://doi.org/10.1016/j.rse.2019.04.014
https://doi.org/10.1016/j.eswa.2019.112892
https://doi.org/10.1016/j.eswa.2019.112892


ISPRS Journal of Photogrammetry and Remote Sensing 188 (2022) 255–268

268

United Nations, 2018. World urbanization prospects 2018 (keyfacts). URL: https://esa. 
un.org/unpd/wup/Publications/Files/WUP2018-KeyFacts.pdf. 

Wang, H., Skau, E., Krim, H., Cervone, G., 2018. Fusing Heterogeneous Data: A Case for 
Remote Sensing and Social Media. IEEE Trans. Geosci. Remote Sens. 56, 6956–6968. 
https://doi.org/10.1109/TGRS.2018.2846199. 

Yang, X., Macdonald, C., Ounis, I., 2018. Using word embeddings in Twitter election 
classification. Inform. Retriev. J. 21, 183–207. URL: https://link.springer.com/ 
article/10.1007/s10791-017-9319-5.  

Yang, Y., Cer, D., Ahmad, A., Guo, M., Law, J., Constant, N., Abrego, G.H., Yuan, S., Tar, 
C., Sung, Y.H., Strope, B., Kurzweil, R., 2019. Multilingual universal sentence 
encoder for semantic retrieval. arXiv:1907.04307. 

Yao, F., Wang, Y., 2020. Tracking urban geo-topics based on dynamic topic model. 
Comput. Environ. Urban Syst. 79, 101419. https://doi.org/10.1016/j. 
compenvurbsys.2019.101419. 

Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., Atkinson, P.M., 2019. Joint 
Deep Learning for land cover and land use classification. Remote Sens. Environ. 221, 
173–187. 

Zhang, Q., Wang, Y., Liu, Q., Liu, X., Wang, W., 2016. CNN based suburban building 
detection using monocular high resolution Google Earth images. In: 2016 IEEE 
International Geoscience and Remote Sensing Symposium (IGARSS), pp. 661–664. 
doi:10.1109/IGARSS.2016.7729166. 

Zhang, X., Du, S., Wang, Q., 2018. Integrating bottom-up classification and top-down 
feedback for improving urban land-cover and functional-zone mapping. Remote 
Sens. Environ. 212, 231–248. 

Zhang, Y., Li, Q., Huang, H., Wu, W., Du, X., Wang, H., 2017. The Combined Use of 
Remote Sensing and Social Sensing Data in Fine-Grained Urban Land Use Mapping: 
A Case Study in Beijing, China. Remote Sens. 9, 865. https://doi.org/10.3390/ 
rs9090865. 

Zhu, X.X., Tuia, D., Mou, L., Xia, G.S., Zhang, L., Xu, F., Fraundorfer, F., 2017. Deep 
learning in remote sensing: A comprehensive review and list of resources. IEEE 
Geosci. Remote Sens. Mag. 5, 8–36. https://doi.org/10.1109/MGRS.2017.2762307. 
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