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Abstract: Traffic signals may generate bottlenecks due to an unfair timing balance. Facing this
problem, adaptive traffic signal controllers have been proposed to compute the phase durations
according to conditions monitored from on-road sensors. However, high hardware requirements,
as well as complex setups, make the majority of these approaches infeasible for most cities. This
paper proposes an adaptive traffic signal fuzzy-logic controller which uses the flow rate, retrieved
from simple traffic counters, as a unique input requirement. The controller dynamically computes
the cycle duration according to the arrival flow rates, executing a fuzzy inference system guided
by the reasoning: the higher the traffic flow, the longer the cycle length. The computed cycle is
split into different phases proportionally to the arrival flow rates according to Webster’s method for
signalization. Consequently, the controller only requires determining minimum/maximum flow rates
and cycle lengths to establish if-then mappings, allowing the reduction of technical requirements
and computational overhead. The controller was tested through a microsimulation model of a real
isolated intersection, which was calibrated with data collected from a six-month traffic study. Results
revealed that the proposed controller with fewer input requirements and lower computational costs
has a competitive performance compared to the best and most used approaches, being a feasible
solution for many cities.

Keywords: adaptive traffic signal; fuzzy logic; Webster method; microsimulation

1. Introduction

Traffic congestion is one of the major problems of modern cities, causing time loss,
pollution, and excessive fuel consumption [1,2]. This problem is encouraged by the steady
population growth of vehicles and the lack of efficiency in traffic management [3]. Traffic
signals are intended to regulate traffic at road intersections, and their efficiency depends
on the ability to balance the alternation of vehicle flows without worsening waiting times,
queues, and density [4,5]. However, due to inadequate signal timings, sometimes, traffic
signals cause intersections to become traffic bottlenecks on the road network.

Most traffic signals operate in either pre-timed or traffic-actuated modes [6,7]. While
pre-timed control is based on fixed signal timings, traffic-actuated control uses preset
reductions and extensions to regulate the phases according to vehicle detection [8]. Un-
fortunately, due to the high uncertainty of the traffic arrivals, it is difficult to establish
long-term optimum values for phases or extensions [9]. Moreover, due to their pre-set
behavior, these schemes are unable to react to atypical events that disturb traffic [10]. As a
consequence, such controllers are susceptible to cause long queues and excessive stops due
to overestimated or underestimated timings.
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Since traffic is frequently fluctuating, proposals for adaptive traffic controllers have
chosen to address the signal timing issue as an adaptation problem instead of an optimiza-
tion problem [11]. Adaptive controllers solve the deficiencies of pre-timed and actuated
controllers by continuously sensing different attributes of the traffic stream and adjust-
ing the signal phases accordingly [12]. For this purpose, these approaches incorporate
self-adjusting mechanisms to modify their internal logic configuration.

Artificial intelligence methods have gained popularity to design adaptive controllers
capable of addressing unpredictable traffic conditions. Numerous approaches have been
proposed based on reinforcement learning (RL) [13-15], neural networks (NN) [16-18],
deep reinforcement learning (DRL) [19-22], and fuzzy logic (FL) [12,23-34]. Due to their
accuracy, computational requirements, as well as the supported amounts of states and
actions, NN, DRL, and FL methods have demonstrated the best performances [35-37].
In practice, however, the main drawback of NN and DRL approaches is their complex
designs and setup, whose understanding is difficult for operators. Conversely, fuzzy logic
approaches are more intelligible, since they imitate human perception by using mappings
between systems’ inputs and outputs through verbal propositions and qualifying the scalar
magnitudes with vague terms such as low, great, high, few, etc. [38]. In addition, such
particular characteristics of fuzzy logic facilitate the inclusion of experts” knowledge in the
controller design [35].

Typical FL-based controllers consider queue lengths, waiting time, traffic density,
or flow rates as inputs and the green time for each phase as output. Nevertheless, in real
traffic scenarios, flow rates can be easily measured with commercial vehicle counters, while
the estimation of queue length, waiting time, or traffic density requires additional and
sophisticated requirements [26,39-41], which are not suitable for many cities. Furthermore,
it is well known that arbitrary extensions of green phase duration may cause longer cycles,
increasing the delay in the system.

In this paper, an adaptive traffic signal FL controller for isolated intersections is
proposed. The controller operates by using the arrival flow rate as the unique input to
compute the proper cycle length. The computed cycle is proportionally split into the
corresponding phases based on the effective green time estimation derived from Webster’s
method for signalization [42]. From this approach, the controller is capable of adjusting
the signalization long enough to clear the queues formed during red intervals, improving
the operational performance of the intersection by reducing waiting times, queue lengths,
and densities. The proposed controller is based on a type-1 fuzzy logic, which only
demands operators to know the minimum and maximum expected values for arrival flows
and cycle lengths to establish if-then mappings. In addition, the algorithmic proposal is
based on sequential instructions, such as basic arithmetic and if-then statements. Therefore,
the execution time is constant, since it directly depends on the number of fuzzy sets and
incoming traffic streams, whose size remains immutable during the execution. This last
means the proposal could be implemented over simple microcontrollers becoming an
affordable solution for many cities.

The controller performance was evaluated using a microsimulation model of a real-
world intersection. The simulation scenario was calibrated on data collected from a six-
month traffic survey. Using the simulated intersection as a test bench, the proposed
controller (Proposed Adaptive FL) was compared against five approaches: (a) the exist-
ing pre-timed controller (Pre-Timed), (b) a time-gap-based actuated controller (Time-Gap),
(c) a time-delay-based actuated controller (Time-Delay) [43,44], (d) a fuzzy system for green
extension (FL Green-Extension), and (e) an adaptive FL-based method with modified Web-
ster’s formula (FL Phase-Adjustment) [34]. Simulation results show that the performance of
the proposed controller is competitive with the most sophisticated and effective approaches,
even without needing complex or expensive requirements for deployment and setup.

The remainder of the document is organized as follows. Section 2 summarizes the
state-of-the-art on traffic signal controllers. Section 3 presents some background definitions.
In Section 4, the proposed adaptive FL controller is described. In Section 5, the proposed
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controller is evaluated, and the findings are discussed. Finally, the main conclusions are
stated in Section 6.

2. Related Work

Traffic signal controllers can be categorized as pre-timed, actuated, or adaptive,
depending on how the allocation of the signal times is performed. The following sec-
tions provide a brief overview of the three types of controllers, highlighting the most
relevant approaches.

2.1. Pre-Timed Signaling

Pre-timed control is the most basic type of control that can be implemented in a traffic
signal controller. In pre-timed control, the cycle length, the duration of the phases, as well
as the duration of each interval within each phase, are fixed values. The main drawback
of pre-timed control is that the operation is not reactive to the traffic demand, meaning
that the signals need to be optimized for a regular operation. Signal optimization has been
widely studied [45-50]; however, due to the dynamic nature of traffic, it is difficult to set
long-term values that satisfy any traffic condition.

2.2. Traffic-Actuated Controllers

In contrast to pre-timed control, traffic-actuated control can extend or terminate
signal phases in response to vehicle actuation, which is detected by on-road sensors [51].
An actuated control is typically used for isolated intersections where the traffic signal control
operates independently of any other traffic signal [52]. Generally, three parameters are
required for this type of control: (1) the minimum green time, (2) the vehicle extension time
(a.k.a., passage time), and (3) the maximum green time. Regardless of the traffic demand,
green time is configured for at least a specified minimum duration. Then, by detecting
whether a queue has been cleared or the gap between vehicles has increased, the green time
is terminated. Additional extensions to the green interval can be applied until reaching the
maximum green time.

While early actuated controllers were based on prefixed settings, most recent ap-
proaches have been focused on integrating an adaptive behavior by including methods to
dynamically adjust the controller’s parameters.

Zheng et al. [53,54] have proposed methods to determine optimal timing parameters
by estimating future traffic demands. Hence, through a periodic optimization of such
parameters, the controller’s timing settings are dynamically updated. To achieve this, they
formulated prediction algorithms to estimate the future arrival flow rate for each signal
phase based on the available signal-timing data obtained from previous cycles.

Oertel and Wagner proposed a delay-time actuated traffic controller [43] which was
designed to adjust the green times according to the vehicles” delay times. In this sense, they
stated that a delay occurs when the vehicle’s current speed is below a maximum achievable
speed. Assuming that delays are captured, the controller extends the green intervals in such
a way that a vehicle’s platoon can cross the intersection, dissolving the queue. Otherwise,
the green interval is interrupted. Therefore, the green intervals are bounded by the delay
values. Their objective was to minimize delay times for users of motorized vehicles by
allocating green times in a preferably efficient way. To measure the delay, this proposal
suggested the use of video processing techniques, probe vehicle data as well as vehicle
infrastructure integration.

By leveraging vehicle-to-infrastructure (V2X) communication [55,56], Erdmann et al. [44]
proposed to improve the delay-time actuated traffic signal by integrating the Green Light
Optimized Speed Advisory (GLOSA) application [57]. In addition to minimizing delay
times, this approach gave speed recommendations to drivers based on the oncoming switch-
ing times. In this way, the controller outperforms the classic traffic actuated controllers by
improving the vehicle’s motion and signal switching.
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Shiri and Maleki [58] proposed dynamically determining the maximum green times
through a fuzzy control. They considered three inputs: (1) the maximum length of queues
behind the red intervals, (2) the maximum queue length behind the green intervals, and
(3) the arrival flow rate approaching green intervals. By considering these inputs, the sys-
tem established the maximum green times to prevent long vehicle delays behind the red
intervals, clear the queues, and serve the arrivals at the end of the green interval. The sig-
nal timing was adjusted by considering a time interval between the minimum and the
maximum green time. Thus, each green interval was started with a specified minimum
time, one second prior to the end, whilst the phase is extended according to the maximum
extension determined by the fuzzy system. This proposal outperforms the traditional traffic
actuated control method by automatically adjusting maximum green times for different
timing plans of the day, avoiding the requirement of providing maximum green times for
different times of the day.

2.3. Adaptive Controllers

Adaptive traffic signal controllers are characterized by continuously sensing the traffic
conditions and adjusting the signal timing accordingly. Most of these controllers implement
self-adjusting mechanisms with the ability to address unpredictable traffic conditions by
modifying their parameters and internal logic.

Artificial intelligence has been widely applied to develop adaptive controllers. In the
literature, a considerable variety of solutions mainly based on reinforcement learning
(RL) [13-15,59,60], neural networks (NN) [16-18], deep reinforcement learning (DRL) [19-22],
and fuzzy logic (FL) can be found. However, as has been surveyed by Araghi et al. [35],
RL has the worst performance in terms of accuracy, speed, and capacity to manage a huge
amount of data compared to the other approaches.

The main drawback of RL-based controllers is that they require the extraction of
features from input data to create models to later identify useful information for the output.
This procedure can lead to an overload of states, producing a performance decay as the
amount of input data increases.

Unlike traditional RL techniques, DRL has the capacity to learn features and tasks
directly from input data, allowing them to increase their performance as data increases.
Most DRL-based controllers are based on decision-making models integrated by scalar
representations for states (queue length, light timing, phases, vehicles’ speed/position),
actions (selected phase, phase splitting), and rewards (waiting time, queue length, phase
transition) [37]. Due to these representations, a DRL approach requires that input data be
expressed in a matrix or tensor formats [20,21]. Nevertheless, the effective computation
of those formats requires nonlinear processing units, such as high-performance GPUs,
and even the implementation of parallel computing techniques [19]. In addition, as was
surveyed by Greguri¢ et al. [36], since DRL controllers need to learn from multiple levels of
representation and abstraction, they require a significant amount of traffic data extracted
and fused from multiple heterogeneous sources, which must be arranged into large sets of
image-like representations. Many of the traffic agencies would have difficulties meeting
the latter condition in the short and mid-term.

In practice, since FL systems are based on simple mappings between the inputs and the
output, the result is more understandable and transparent for operators in comparison to
NN, RL, and DRL approaches. Furthermore, FL systems are based on if-then rules with the
capability to include experts” knowledge and experience in their design, without requiring
the tuning of extra attributes for training, feedback, or reward functions. This advantage
also facilitates the development of solutions with lesser computing requirements, allowing
implementations over straightforward processing units, for instance, microcontrollers.

An FL-based controller relies on the definition of fuzzy sets and an inference system.
Fuzzy sets are collections whose elements have degrees of membership that are used to
mathematically describe the vagueness or uncertainty about a scalar magnitude. Such a
description is done by using linguistics concepts such as very low, low, average, high, very
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high, which are named fuzzy values. Hence, the inference system consists of methods to
translate scalar values to fuzzy values, and vice versa, which are supported by a base of
rules (conditional statements) in the form: if x is A then y is B, where A and B are linguistic
values determined by fuzzy sets.

Based on FL, the design of a basic traffic signal controller is conducted by the reasoning;:
the higher the traffic demand, the longer the green time [23,27,30,61]. For this purpose, arrival
flow rates, queue lengths, and green interval lengths are commonly converted to fuzzy
values to be used as the system’s inputs and output, respectively.

Collota et al. [29] developed a sophisticated system architecture based on a Wireless
Sensor Network (WSN) and multiple FL controllers. With the aim to find a low complex
computational solution, they proposed the use of commercial off-the-shelf hardware to
implement magnetometer sensors for the detection of queued vehicles, exchanging data
through the IEEE 802.15.4 protocol. The system incorporated a phase-sorting module to
compute the phase’s execution order based on the queue lengths retrieved from an arrange-
ment of magnetometers. Finally, a set of independent FL controllers (one controller for
each phase) computed the appropriate green time duration. Using simulations, the authors
showed that their proposal outperformed other FL solutions.

Some authors also have proposed two-stage fuzzy systems to determine changing
the phases’ order, with the aim of deciding whether to extend or terminate a current
phase [32]. Ge [12] proposed a method based on an urgency degree computed in the
first stage. The urgency was inferred from the number of vehicles queued during the red
intervals and the duration of such intervals since the last green interval. Hence, the red
interval with the greatest urgency is selected as the next phase. Then, in the second stage,
the green interval delay was computed according to the number of vehicles on the current
phase and the next phase. Jiang et al. [33] proposed a fuzzy system for the phases” order
selection and green interval delay computation, which was optimized through a traffic flow
prediction based on a wavelet NN.

Chiou and Huang [26] argued that in most of the FL-based controllers, the methods
for formulating the rule base and the fuzzy sets are subjectively preset and therefore not
optimally solved. Hence, they proposed a stepwise genetic fuzzy logic controller that
considers traffic flows and queue lengths as state variables and the green extension as a
control variable.

Ali et al. [34] proposed an adaptive method based on FL and the modified Webster
formula [62,63]. Using a fuzzy system, the method dynamically adjusted the green interval
during its execution. When the green reaches the interval of the remaining 15 s, proper
extensions or reductions were computed. This process was repeated at each remaining
second until the green interval finishes or the extension overpasses 130% of an estimated
maximum green time. At the end of each cycle, the next cycle length, as well as the effective
green times, are computed through the modified Webster’s formula. The method was
tested using a microsimulation model in SUMO [64] with outstanding results.

Most FL controllers are based on the also called type-1 fuzzy sets, where an expert
should determine the degree of achieving the characteristics of the object. Many researchers
argue these models are susceptible to producing inaccurate results by incorrect handling of
the environmental uncertainties and disturbances. In response, some solutions, based on
the called type-2 fuzzy sets, have been proposed [24,28,31]. In type-2 FL, an expert cannot
determine exactly the degree of achieving the characteristics, requiring incorporating uncer-
tainty to represent a fuzzy set. Nevertheless, since type-2 fuzzy sets are three-dimensional,
they are computationally complex. To tackle this problem and improve the performance of
signal controllers, Bi et al. [28] and Khooban et al. [31] proposed two type-2 FL approaches.
Bi et al. proposed a system which is optimized by differential evolution. Khooban et al.
proposed a general type-2 FL system whose parameters are optimized by a heuristic algo-
rithm called modified backtracking search algorithm. Although the theoretical improvements
of type-2 FL systems are encouraging, the number of parameters required for tuning is
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bigger than that of type-1 FL, which can lead to an increase in the time and computational
complexity during the optimization process.

2.4. Summary

In this section, different traffic signal controllers have been reviewed, focusing on the
actuated and adaptive schemes including the use of fuzzy logic. Most of the proposed ap-
proaches are based on requirements that are unfeasible for real traffic scenarios. On the one
hand, for some approaches, the algorithms demand high requirements and computational
power for start-up, processing, and maintenance. On the other hand, data retrieval for
input sources, training, and reward functions demands a high cost in terms of hardware
and technical resources (e.g., sensors and data storage). Additionally, some assumptions
such as the generic strategy based on the computation of green phase extensions may
produce a larger cycle length that results in an increase in waiting time.

3. Background
3.1. Traffic Signal Timing

A traffic signal cycle is a set of phases, which are the specific combinations of move-
ments that receive the right-of-way simultaneously. Commonly, each phase is divided into
three intervals: green, yellow, and red clearance (if applicable). Figure 1 shows a traffic
signal cycle comprised of two phases each with green and yellow intervals.

<«— Cycle lenght ——»

VSN

Stream "A" f—

/A
Yellow —>
Yellow } /

Red Green
Stream "B" —f Stop interval

Phase "A" Phase "B"

l«——Phase "A" Length——»!le«——Phase "B" Length——»

Figure 1. Phase-cycle traffic signal diagram.

According to Webster’s method for signalization [42], if it is assumed that the effective
green times of the phases were proportional to their respective flow ratio values; thus,
the optimal cycle length Cj is given by:

15L+5
Co = v (1)
T=Yyi
1

where L represents the total lost time, 11 denotes the number of phases, and y; is the critical
flow ratio in phase i. Let g; be the flow ratio and s be the saturation flow; for a given lane,
y; is computed by:
gi
yi= . 2

s
Therefore, the effective green time per phase, denoted by g;, is computed by:
Y;
gi = —Co—L. 3)
LYi

1

3.2. Fuzzy Logic

Fuzzy logic is a form of many-valued logic that is able to handle the concept of partial
truth, where the truth value may range between completely true and completely false [65].
Fuzzy logic is based on fuzzy sets, which are classes of objects with continuum grades of
membership, ranging between zero and one [66].
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A fuzzy set A is defined as a membership function f,4 (x) that maps the elements of a
universe of discourse X with the elements of the interval [0,1]: f4 : X — [0, 1], representing
the grade of membership of x in A. The closer the value of f4(x) to 1, the higher the grade
of membership of x in A.

Input scalar values are mapped to the fuzzy interval [0,1] through a fuzzification
process. Many types of curves can be used for fuzzification, of which the triangularly
shaped membership functions are the most common.

Let x be an element of a set A; then, its triangular membership function is computed by:

x—L R—x

falx) = max[min(ﬁ,ﬁ), I, ()

where L, C and R are real scalar values that delimit A (see Figure 2).

1

7 ¢ =R

Figure 2. Triangular function.

The reversible process in which a fuzzy value is converted to a scalar is called defuzzi-
fication. The most common method for defuzzification is the centroid of area, which is
the most prevalent and physically appealing [67,68]. Let x be the sample element and its
discrete membership function f4, (x); then, the defuzzified value is computed by:

i Xafa;(x)
wA==L )

¥ fa (%)
i=1

where 7 represents the number of sets to which the element belongs, and % 4, is the element
with maximum membership function in a set A;. This method, also referred to as weighted
average (WA), is the most frequently used in fuzzy applications due to its efficiency [69].

4. Proposed Adaptive Traffic Signal Controller Based on Fuzzy Logic

The proposed traffic signal controller is composed of two modules: a fuzzy inference
system (FIS) and an adaptive mechanism. The inference system is intended to compute
the proper length of the signals’ cycle according to the traffic flow rate. The adaptive
mechanism is designed to split the computed cycle length into the required phases, based
on Webster’s method, as well as dynamically change the phases’ duration.

4.1. Fuzzy Inference Description

A Mamdani-type FIS [70] was designed to compute the cycle duration based on the
following reasoning:

The higher the traffic flow, the longer the cycle length.

Within an intersection, however, there is an inherent contention among the incoming
traffic streams. For this reason, the proposed FIS computes the cycle length by relating all
the possible combinations of flow rates among the involved streams.

For a x-way intersection with n incoming traffic streams (n < ), there is a set
of input variables S = {s1,s,...,5x}. Each's; € S has a scalar value in vehicles per
hour (veh/h), which is related to the upstream traffic flow rate retrieved by on-road
sensors. These inputs are fuzzified by using c triangular membership functions or fuzzy
sets fo, (%), fo,(X),- .., fo.(x), which are defined in the universe of discourse established
by the interval [q,i,(S;), Gmax(si)], which describes that the range the traffic flow may
fluctuate between the minimum (i, (s;)) and maximum (gqx (s;)) expected rates. Here,
these minimum and maximum expected flow rates may be established from an in situ traffic
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count survey. For practicality’s sake, each fuzzy set fQ ),j€{L,2,...,c},is identified by
a linguistic term that qualifies the traffic flow with ad]ectlves such as very low, low, medium,
high, very high, and so on.

For the cycle length cl, there are defined m triangular membership functions fr, (x),
fr,(x), ..., fr,,(x) in the universe of discourse established by the interval [t,,,,, tax], Wwhose
values are expressed in seconds. Analogously to the membership functions for flow rate,
the membership functions fr,, h € {1,2,...,m} are related to linguistic terms as very low,
low, average, extended, very extended, and so on.

Based on the fuzzy sets defined for the inputs and the output, the knowledge base of
the FIS is defined by a set of if-then rules rq, 7y, ..., 7%, ..., 1;, each one of the form:

Tkt S1 iszj N So iSfQj/ N... A8y iSfQj// :>fTh.

As an example, a first rule r; would be interpreted as:
if s1 1s very low and sy is very low, . ..and sy, is very low, then the cycle length is very low.

These rules are established by considering all the expected traffic conditions at the
intersection. Among the i incoming streams, not all the combinations of flow rates are
possible, therefore, the total number of rules is less than c".

The inference module is specified through Algorithm 1, which uses the Mamdani
fuzzy implication [71] to compute the inference rules (see lines 7 to 9). Since the fuzzy
sets associated with cl are defined by triangular membership functions, the algorithm
defuzzificates the system’s output by the weighted average method (see line 10).

Algorithm 1 Fuzzy inference module

1: procedure FUZZYINFERENCE(S = {s1,52,...,51})
* Fuzzification with triangular functions

2: for each input value s; € S do

3 for each fuzzy set fo, (x (x),je{1,2,...,c},do

4 vij = max(mm(c_LLf, II;’ (Sj’) 0)

5. end for

6: end for
* z inference rules (z < n°)

7. 1] = min(vl,j, vzlj/,...,vn,]-)

8: 1 = min(vyj, vy, ..., Op)

9 1, = mm(vl],vzj seeesOnj )
* defuzzzﬁcatzon with the WA method
L L e Xy,
10: ol == —
Z Tk
11: return Cl
12: end procedure

4.2. Adaptive Mechanism Description

Reconfiguring a traffic signal at every cycle would be infeasible and inefficient. A short-
time traffic monitoring would lead the system to be susceptible to magnifying specific
conditions of the dynamics among vehicles, such as sudden delays, underestimating
or overestimating the current traffic condition. Conversely, extremely long-time traffic
monitoring periods could hide some fluctuations, reducing the reaction capacity of the
system. To solve this problem, the proposed controller uses a mechanism that performs the
traffic signal reconfiguration every 7 cycles, where 3 < 7 < 10. As a result, the FIS computes
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the cycle length cl by using the flow rates monitored during the time period bounded by T,
allowing the inference to take into account the effects of the previous configuration.

For the adaptive mechanism, the traffic signal configuration is defined as a tuple
TL = (P,D), where P = {p1,p2,...,pn} is a set of phases’ descriptors and the set
D = {dy,dy,...,dy} contains the duration assigned to each phase. Each p; € P speci-
fies the combinations of movements allowed/disallowed during a time d; (i.e., green, red,
yellow). The combinations of movements and sequence of phases are assumed to be fixed,
since both the performance and the safety of a traffic signal can be compromised by the
ordinary expectations of local users.

To achieve a fair traffic signal configuration for the incoming vehicle streams, the com-
puted cl is proportionally split into the p, phases according to the flow rates. Such a
distribution is derived from the effective green time given by Equation (3). In this sense,
the arrival flow rate of each stream s;, retrieved from the on-road sensors, is assumed as
the critical flow ratio, and the phase duration d; is computed by:

5i
n

d; = cl + v, (6)

k=1

where s, € S and y is a predefined value for the duration of yellow interval.

The mechanism also includes a security rule implemented to avoid the appearance of
too short cycles. This rule consists of the establishment of an average preset cycle in the
case of atypical values measurements, which are retrieved by the on-road sensors. The aim
of this rule is to restrict phases with duration tending to zero. As a result, a minimum phase
duration is defined based on a safe pedestrian crossing time when there is no presence of
vehicular flow at one of the incoming streams.

The adaptive mechanism is shown in Algorithm 2.

Algorithm 2 Adaptive mechanism module.

Input: TL = (P,D)
Output: Phases configuration
1: while true do

2:  for all traffic streams s; € S do

3: s; = SENSORS.RETRIEVEFLOWRATE(1)

4:  end for

5. if TRAFFICLIGHT.CYCLEREMAININGTIME() = 0 then

6: num_cycles+ =1

7. end if

8: if num_cycles == T then

9: num_cycles = 0
10: cl = FUZZYINFERENCE(S)

* cycle length distribution
11: for each phase p; € P do
12: di= t—cl+y
&
* complementary security rule

13: if d; < min_phase_duration then
14: d; = min_phase_duration
15: end if
16: end for
17: TRAFFICLIGHT.SETNEWPROGRAM(P, D)
18:  end if

19: end while
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5. Evaluation and Discussion
5.1. Implementation of the Proposed Controller

The setup of the proposed controller is explained with a case study, which is performed

by taking into account the characteristics of an isolated intersection located in the city of
Morelia, Mexico. The analyzed intersection is depicted in Figure 3 and is described below.

n |00 : :
| T3 | |
X 1 1 1
\ : 1 1
adlenl) o
| | 1
””” =t
1 |
A B RN NI
"n road X | ! !
3 sensor | | I I
—» movement ! ! r s
1 loolo

Figure 3. System model.

The case study consists of a four-leg intersection, where the intersecting roads are

denoted as 1,13, 13, 74 and r5. These roads have three main characteristics:

1.

r1 is a two-lane dual road with west—east and east-west traffic. In addition, r; has two
turning movements: a permitted right turn allowing the incorporation of vehicles to
rp and r3, and a protected left turn for the incorporation of vehicles to r4 and rs.

1o and r3 are two-lane single roads with north—south traffic.

r4 and 5 are two-lane single roads with south-north traffic. Moreover, 5 has a
protected left turn to allow the incorporation of vehicles to r1, 7, and r3.

All the allowed movements are grouped in three incoming traffic streams A, B, and C:

1.

2.

Stream A is composed by the through movements of r;, r3, r4 and r5, along with the
permitted right turn of ro.

Stream B is composed of the two movements of r1, a protected left turn and a permitted
right turn.

Stream C is composed of both movements of r5, the protected left turn and the through
movement.

Based on the streams A, B, and C, three phases are allocated within a traffic signal

cycle. Figure 4 depicts the phases’ setting.

_ SIS g
U ML T

Phase A Phase B Phase C
(stream A) (stream B) (stream C)

Figure 4. Traffic signal phases.

For sensing the traffic flow, we assumed the deployment of on-road traffic coun-

ters such as piezoelectric, which were located upstream 150 m before the corresponding
intersection approach.

By considering the traffic streams A, B, and C as the system’s inputs and the cycle

length as the output, four linguistic variables are defined:
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1.  Flow A (FA) is the variable whose universe of discourse is the traffic flow rate of

stream A.

Flow B (FB) is the input related to the flow rate of stream B.

Flow C (FCQ) is related to the flow rate of stream C.

4. Cycle length (Cl) is the variable whose universe of discourse is the duration of the set
of phases in the traffic signal.

w N

Linguistic variables are fuzzified and labeled with different linguistic terms as follows:

1.  Flows A and B are fuzzified through five fuzzy sets: very low (VL ), low (L), medium
(M), high (H), and wvery high (V H).

2. Since Flow C has the less traffic flow rates, only three membership functions are
defined: low (L), medium (M), and high (H).

3. The cycle length is fuzzified with five functions: very short (VS), short (S), average (A),
extended (E), and very extended (VE).

Fuzzy sets, related to the four linguistic variables, are bounded as shown in Figure 5.
The maximum and minimum values for flow rates were obtained from a six-month traf-
fic survey performed in the study site. Consequently, the boundaries for the flow rate,
in vehicles per hour per lane (Veh/h/lane), are set as: 4, (FA) = 0, qmax(FA) = 700,
Gmin(FB) = 0, max(FB) = 1100, g,y (FC) = 0 and g,ax(FC) = 500. The values for the cy-
cle length were defined by considering the recommendations included in the HCM [72] and
the values obtained from the Webster method for averaged traffic conditions. The bound-
aries for the cycle length are set as t,,;, (CI) = 30 and ty,ax (CI) = 90.

1 VL L M H VH 1 VL L M H VH
0.5 0.5
apy a, a) as ay as de bo bl b2 b3 b4 b5 bG
qmin(F A) Veh/h/lane Gmax (F A) qmin(F B) Veh/h/lane Gmax (F B)
(a) (b)
1 L M H A S A E VE
0.5 0.5
0 + ‘ Y ‘ \ 0+ / : ‘ J
b() bl b2 b3 b4 Cl() Cl] Clz Cl3 Cl4
qmm(FC) Veh/h/lane G max (FC) t,m-n(Cl) Seconds tnax (Cl)

(0) (d)

Figure 5. Fuzzy sets for the four linguistic variables: (a) flow rate in stream A, (b) flow rate in stream
B, (c) flow rate in stream C, and (d) cycle length CI.

Based on the eighteen fuzzy sets depicted in Figure 5, the Mamdani FIS is defined by
seventy-five if-then rules that have been stated to include all the possible traffic conditions.
Some of these rules are shown in Table 1. By defuzzificating the linguistic terms obtained
from the FIS, the magnitude of the inferred cycle length is established in seconds.
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Table 1. Example of the if-then rules used for the fuzzy inference system.

Input Output
Rule Flow A Flow B Flow C Cycle Length

1 Very Low Very Low Low Very Short
2 Low Very Low Low Very Short
3 Medium Very Low Low Short
4 High Very Low Low Average
5 Very High Very Low Low Average
6 Very Low Low Low Very Short
7 Low Low Low Very Short
8 Medium Low Low Short
9 High Low Low Average
75 Medium Medium Medium Average

The performance of the proposed adaptive FL controller was evaluated using the
case study as a test bench. A microsimulation model was developed with the SUMO
software [64].

5.2. Simulation Model

Algorithms 1 and 2 were codified in python and embedded in the simulation environ-
ment through the Traffic Control Interface (TraCI) API provided by SUMO [73,74].

In SUMO, the microscopic simulation is based on the behavior of the driver—vehicle
units. Because of this, vehicles are modeled by considering the length, maximum speed as
well as acceleration/deceleration profiles.

The calibration of the SUMO model was carried out by setting the parameters required
by the lane change model LC2013 [75] and the Krauf$ car-following model [76]. These
parameters were obtained through in situ measurements, which were retrieved from
radar trackers and road tube counters that were deployed to count and classify the traffic
volumes in the study site. In addition, the GEH statistic was used to ensure that the
calibrated microsimulation model was representative of the observed traffic conditions [77].
A summary of the collected traffic data is shown on weekly average daily traffic metrics
and average hourly flow rates in Tables 2 and 3, respectively. In Table 2, the average travel
speed was estimated from the corresponding observations as the 85th percentile of the
entire sample. Table 4 displays the average directional movement distribution through an
OD-Matrix.

Table 2. Weekly average daily traffic metrics.

Roads
1 2 3 T4 5
Traffic volume (veh/day) 4765 5393 8652 9450 4664
Avg. travel speed (km/h) 32.20 28.30 42.30 57.90 26.40

Mean flow rate (veh/h) 451 329 554 770 226
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Table 3. Summary of the traffic survey, focusing on the average hourly flow rates per road.
Roads
Hour 7 72 73 T4 5 Avg.
7:00-8:00 417 221 543 686 201 422
8:00-9:00 386 252 502 759 212 414
9:00-10:00 347 157 450 644 190 358
10:00-11:00 344 209 445 602 175 355
11:00-12:00 341 207 475 547 172 348
12:00-13:00 323 220 517 561 197 364
Flow rate (Veh/h) 13:00-14:00 312 234 597 613 226 396
14:00-15:00 324 238 608 537 233 388
15:00-16:00 356 234 543 597 555 457
16:00-17:00 321 223 513 605 202 373
17:00-18:00 347 219 494 641 194 379
18:00-19:00 359 221 550 615 198 389
19:00-20:00 417 232 557 546 222 395
20:00-21:00 255 226 528 409 208 325
Table 4. Average directional movement distribution.
Destination
21 03 r3 T4 75
g1 — 3.64% 6.16% 16.81% 73.38%
&) 18.23% 81.77% — — —
Origin ra - _ 100% _ _
T4 — — — 100% —
rs 74.62% 11.19% 13.43% — 0.74%

For the traffic demand, three vehicle types were defined in the microsimulation model:
car, van, and bus. The type car represents private vehicles characterized by a length of
4.5 m, an acceleration of 2.6 m/s?, a deceleration of 4.6 m/s?, and a maximum speed of
80 km/h. Meanwhile, van and bus types were incorporated into the simulation, since they
are the vehicles that provide public transport in the zone. The type van is characterized by
a length of 5 m, an acceleration of 1.5 m/ s2, a deceleration of 3.6 m/s?, and a maximum
speed of 60 km/h. The type bus is characterized by a length of 7 m, an acceleration of
1.5 m/s?, a deceleration of 3.6 m/s?, and a maximum speed of 42 km/h. In addition,
for all vehicles, a standard deviation of 10% up and down from the maximum speed was
considered to reproduce real-world fluctuations as well as a sigma value of 0.5 mimicking
drivers’ stochasticity.

5.3. Comparison against Other Approaches

The calibrated microsimulation model was used as a test bench to compare the pro-
posed adaptive FL controller against five approaches: (1) the existing Pre-Timed controller
(see Figure 6), (2) a Time-Gap controller [78,79], (3) the Time-Delay controller proposed
by Oertel and Wagner [43,44], (4) an FL Green-Extension controller based on the works of
Nasser et al. [23] and Shiri and Maleki [58], and (5) the adaptive FL-based method with
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modified Webster’s formula proposed by Ali et al. [34], which is hereinafter referred to as
the FL Phase-Adjustment controller.

Phase 1

Phase 2

Phase 3

Green

Red

56s

3]

48 s

Red

Yellow

Yellow
Green

Red

59s

27s ‘3 s]

18s

Red

Green

Yellowl

89s | 155 \35

Figure 6. Configuration of the current pre-timed control at the case study.

From the in situ retrieved traffic volumes, eleven levels of arrival flow rate were
simulated to mimic the observed variations from free-flow to congested traffic conditions.
For each level of arrival flow rate, a ten-hour simulation period was carried out comprising
at least 300 traffic signal cycles. The simulation outputs (e.g., performance metrics) were
fine-grained configured using 5-min intervals, excluding the first and the last simulated
hours to ensure steady-state conditions. Finally, all the collected registers were averaged to
reduce the stochastic fluctuation.

Traffic density and waiting time were selected as performance metrics. Figure 7a—c
depict the performance of the six signal controllers tested with respect to the traffic density
as a function of the averaged system’s arrival flow rate. Similarly, Figure 8a—c show the
waiting time as a function of the averaged system’s arrival flow rate.
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Figure 7. Traffic density as a function of the averaged system’s arrival flow rate: (a) stream A,
(b) stream B, and (c) stream C.
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Figure 8. Waiting time as a function of the averaged system’s arrival flow rate: (a) stream A,
(b) stream B, and (c) stream C.

Plots of Figures 7 and 8 depict the efficiency boundaries, which were established from
the performance achieved by the studied traffic signal controllers.

By considering the three incoming streams in the worst-case scenario, which is an
arrival flow of 447 veh/h/In for stream A, 573 veh/h/In for stream B, and 249 veh/h/In
for stream C, the highest efficiency level is reached by the Time-Gap approach. So, Time-
Gap achieves a density of 12.7 veh/km/In and waiting time of 431.69 s for stream A,
27.3 veh/km/In density and waiting time of 147.02 s for stream B, and 10.2 veh/km/In
density and waiting time of 593.91 s for stream C.

Here, is important to note that the proposed adaptive FL controller shows a perfor-
mance close enough to the highest, achieving 15.6 veh/km/In density and waiting time of
715.73 s for stream A, 27.7 veh/km/In density and waiting time of 168.48 s for stream B,
and 11.1 veh/km/In density and waiting time of 791.54 s for stream C.

Another interesting result is that the fuzzy green-extension system, as well as the FL
Phase-Adjustment controller, achieved a sound performance level only for some scenarios.
On the one hand, by considering the resultant conditions with respect to stream B, it is
noticed that the fuzzy green-extension system also matches the performance of Time-Gap
and Time-Delay. On the other hand, by considering the waiting time for stream A, the FL
Phase-Adjustment controller has a similar performance to Time-Gap and Time-Delay, and it
even overcomes both the proposed mechanism and the fuzzy green-extension system.
Nevertheless, behind such relative achievements exists an unbalanced phases distribution,
which is highlighted when the waiting times for stream C are analyzed. Note that for
stream C, at a flow rate from 215 veh/h/In, the FL Phase-Adjustment controller achieves
waiting times above 882.88 s, which are higher than the achieved by the proposed controller



Appl. Sci. 2022,12, 6024

16 of 20

in the worst case, which is 791.54 s with a flow rate of 249 veh/h/In. Phase imbalance is
aggravated by the green-extension approach, producing waiting times above the triple of
the obtained with the Proposed Adaptive FL. This poor performance is explained by the
fact that strategies based on phase extension lead to long signal cycles and consequently
longer waiting times. Such an effect is worsened when traffic signal reconfiguration is
executed every cycle, since overestimation/underestimation is promoted by sporadic traffic
conditions such as the well-known phantom jams [80]. Furthermore, in the case of the FL
Phase-Adjustment controller, performance results were more affected by the use of a fixed
value for saturation flow, which is an essential adaptive parameter.

Unlike the latter approaches, the proposed adaptive FL controller reaches an out-
standing performance while preserving a fair balance among phases. This equilibrium
is reached since the proposed controller adaptively computes the cycle length, which is
proportionally split into different phases, instead of estimating phase extensions. Since
cycle length is computed through a fuzzy inference, it does not depend on fixed/pre-
established values such as saturation flow that may lessen adaptability to the controller.
Moreover, the proposed adaptive FL controller avoids underestimations/overestimations
by creating a virtual buffer of at least three signal cycles to contain sporadic effects such as
phantom jams.

5.4. Prospective Strengths of Proposal

As discussed above, the proposed adaptive FL controller is competitive when com-
pared to Time-Gap and Time-Delay approaches, which are still two of the best and most
used approaches today; they are successfully implemented in different cities and included
in global projects and initiatives such as VITAL and MAVEN [81-83]. This achievement
is remarkable, since the proposed design only considers data retrieved from simple ve-
hicle counters, such as widely used piezoelectric, avoiding the use of more sophisticated
sensors such as those required by Time-Gap or Time-Delay controllers, which assume
data-harvesting from video processing and even from vehicle probes through a V2X com-
munication.

Regarding technical requirements for setup and maintenance, since the proposed
controller is defined through a type-1 fuzzy logic, it only requires operators to know the
minimum and maximum expected values for arrival flows and cycle lengths to establish
if-then mappings. This advantage severely contrasts against the technical requirements
involved with the definition of scalar states, actions, and rewards, besides the specifications
for data collection, aggregation, formatting, and storage, as required for approaches based
on NN or DRL. In addition, since fuzzy sets for input mappings consider a single input
domain, the proposed adaptive FL controller effortlessly can include larger values than
those usually retrieved from traffic surveys, overcoming the major drawback attributed to
FL-based controllers [37].

In terms of computational efficiency, since the proposed adaptive controller is based
on sequential and conditional instructions, such as basic arithmetic and if-then statements,
the execution time is directly proportional to the number of fuzzy sets and incoming traffic
streams (converging roads), which are constant values. For example, by considering an
intersection with three incoming traffic streams and five linguistic terms for fuzzification,
such as the case study depicted in Section 5.1, in the most demanding conditions (i.e., with-
out rule trimming), the controller executes 90 arithmetic operations and 30 comparisons
to fuzzify the input values, 125 comparisons for the FIS, and 625 arithmetic operations
for defuzzification. This means the controller executes up to 870 O(1) operations every T
traffic-light cycles. Exploring even a more complex scenario, for instance, a six-way inter-
section and five fuzzy sets without rule trimming, the controller executes up to 78,365 O(1)
operations. These low complexity bounds significantly contrast against the computational
costs involved in most machine-learning-based controllers (e.g., NN, DRL, etc.) whose
complexity bounds are above O(n?), in addition to the storage requirements [37]. In sum-
mary, due to its design principles, the proposed adaptive FL controller can be implemented
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over simple microcontrollers (e.g., a US$2 SAM D21 chip), which makes the proposal an
affordable option for many cities, especially in developing countries.

6. Conclusions

This paper has described and tested a proposed model of an adaptive traffic signal
controller based on fuzzy logic. The aim of the proposed model is to achieve a traffic signal
with a balanced distribution of the signalization, without requiring expensive or complex
requirements. The model was designed to compute the whole cycle duration instead of
specific phase lengths or extensions as occurs with most traditional approaches. That is,
the cycle duration is adjusted according to traffic demand determined by the arrival flow
rate, which is retrieved from simple vehicle counters. Through a type-1 fuzzy inference
system, the cycle length is computed following the reasoning: the higher the traffic flow,
the longer the cycle length. Subsequently, the computed cycle is proportionally split into
different phases based on the effective green time estimation derived from Webster’s
method for signalization.

The proposed adaptive FL controller was evaluated through a microsimulation model
of a real intersection, using SUMO as a platform. Using the microsimulation model as a
test bench, the proposed controller was compared against five different controllers found
in the literature. Simulation results showed that the proposed adaptive FL controller
closely matches the performance of the most sophisticated approaches and even overcomes
other approaches based on fuzzy logic, despite having fewer requirements. In this regard,
the proposed controller only requires knowing the minimum and maximum values for
flow and cycle lengths for setup. Moreover, the algorithmic design has a low-constant
computational overhead, since it depends on the number of fuzzy sets and incoming
traffic streams, whose values remain immutable during the execution. This also allows
implementations over the cheapest/simple microcontrollers. In summary, due to the lower
requirements in hardware and setups, the proposed model becomes an affordable solution
for traffic signal timing for most cities, especially those in developing countries.

The current approach has been focused exclusively on regulating traffic operation in
isolated intersections. It is hypothesized that the controller could also be scalable for multi-
intersection scenarios in a self-organizing scheme, as this is assumed to be independent
and decentralized. Therefore, further work will be oriented to extend the capacities of the
controller to achieve adaptive traffic signal corridors.
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