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1 | INTRODUCTION
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Abstract

Device-free localisation (DFL) systems infer presence and location of moving users by
measuring to which extent they change the received signal power in wireless links.
Consequently, users not only induce perturbations to the power of the line of sight but
also to the power of reflected and scattered signals which are observed in the received
signal as multipath components (MPCs). Since the propagation paths of MPCs differ
inherently from the line-of-sight path, these propagation paths can be considered as
additional network links. This extended network determines the multipath-enhanced
device-free localisation (MDFL) system. Based on empirical models that relate pertur-
bations in the received power of MPCs to the user location, the localisation problem can
be solved by non-linear Bayesian filtering. In this work, we investigate the point mass
filter and the particle filter as possible solutions. We demonstrate the applicability of these
solutions using ultra-wideband measurements and develop and verify a numerical
simulation framework that flexibly enables a sound evaluation of MDFL. Based on both
measurements and simulations, we show a significant improvement of the localisation
performance of MDFL compared to DFL. The overall localisation performance is
thereby comparable for both filters. Eventually, we show that complexity and divergence
probability, rather than localisation performance, are the decisive factors for the choice of
the filter solution.
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based round trip time measurements [3]. While many use
cases require the precise localisation of a persons's device,

In today's wireless world, smartphones widely use Bluetooth
and WLAN as radio technologies for indoor communication
covering short to medium range and low to high data rate
communications. The scientific community has extensively
studied their suitability for indoor localisation and several
commercial products exist today to enable indoor localisation
[1]. According to Ref. [2], the global indoor location market
will grow from $7.0 billion in 2021 to $19.7 billion by 2026
with the dominant technologies being WLAN, Bluetooth, and
ultra-wideband (UWB). Location dependent measurements
range from received signal strength (RSS) to time of flight-

there exist several use cases that need to localise persons
without a device [4]. For instance, home security systems aim at
detecting the presence of intruders even if they do not carry
smartphones. Similarly, a smart climate control for a room
needs to detect the presence and number of persons in the
room to adjust temperature, humidity and ventilation auto-
matically without requiring any user interaction. Furthermore,
a surround sound system should track the location of listeners
in a room without requiring manual adjustments every time a
listener moves within the room. For addressing this increasing
demand in location-aware services, alternative passive

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distnibution and reproduction in any medium, provided the origmal work is

propedly cited.

© 2022 The Authors. IET Microwaves, Antennas & Propagation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Microw. Antennas Propag. 2022;16:327-337.

wileyonlinelibrary.com/journal /mia2 327

i s uonNquISIp pue asn-ay “[2202/90/£2] UO ~UIeWaD ZHOYwPH "q Ul HYe4 Wney "n-}n7 4 Wniusz yasig Ag “wodAspm-Aieigijauljuo-ysieasaijal//sdiy woly papeojumod ‘91 ‘2202 '€€/815/ 1L



3zs|

SCHMIDHAMMER =7 AL

localisation solutions are required that particularly enable the
localisation of users that are not equipped with active local-
isation devices. Since connectivity, that is, the number of
connected devices, is steadily increasing, radio frequency-based
passive localisation systems, such as device-free localisation
(DFL) [3], are becoming possible solutions.

Current DFL systems infer the presence and location of
these non-equipped users by measuring the RSS between
network nodes along the line-of-sight (LoS) path. Using
empirical propagation models, the DFL system directly relates
these RSS measurements to the user location [5-8]. Thereby, the
localisation accuracy of such DFL systems improves with the
number of network nodes [8]. An increasing number of network
nodes, however, results in increasing infrastructural efforts.
Motivated by Ref. [9], where we have shown that users also
induce variations in the power of multipath components
(MPCs), we have proposed in Ref. [10] a novel multipath-
enhanced device-free localisation (MDFL) approach, which
considers the propagation paths of MPCs as additional network
links. For the same amount of networks nodes, MDFL is shown
to improve the localisation performance compared to DFL and
helps to reduce infrastructural requirements. In Ref. [11], we
have presented corresponding non-linear Bayesian filter solu-
tions required to realise MDFL. These filter solutions have been
evaluated by simulations. In order to verify the numerical
simulation framework used in Ref. [11], we have conducted an
indoor measurement campaign as part of this work. In particular,
we measured the radio channel with commercial off-the-shelf
(COTS) UWB devices, which enable us to derive and verify
this numerical simulation framework based on measurements.
Thereby, the UWB devices are spatially distributed in an office
room and connected to form a network. Based on this setup, we
further demonstrate the applicability of the considered filter
solutions for an indoor scenario. We apply the filter solutions for
both DFL and MDFL and can thus compare the performance of
the two systems. Finally, we employ the numerical simulation
framework to evaluate the performance of each Bayesian filter
solution in detail.

Therewith, the main contributions of this work are as
follows:

® the introduction of Bayesian filter solutions for MDFL,

® the implementation of an indoor measurement campaign
with COTS UWB devices,

® the development of a numerical simulation framework for
MDFL and its verification by measurements,

® the numerical evaluation of Bayesian filter solutions,

® the demonstration and the evaluation of MDFL using
measurements.

The remainder of this paper is organised as follows. Pre-
liminaries on MDFL including network, propagation, and
measurement model are provided in Section 2. Bayesian
localisation approaches are introduced in Section 3 and applied
to measured data in Section 4. Based on simulations, the
Bayesian localisation approaches are evaluated numerically in
Section 5. Finally, Section 6 concludes the paper.

2 | MULTIPATH-ENHANCED DEVICE-
FREE LOCALISATION

In this section, we introduce the preliminaries for the novel
MDFL approach. Therefore, we present the required network
structure and the corresponding terminology. We further
specify the propagation model and elaborate the concept of
reflection sequences. Finally, we explain the parameter esti-
mation and present the measurement model used for MDFL.

2.1 | Network and propagation model

An MDFL system relies on a network of Ny transmitting and
Nk, receiving nodes, which can be either individually placed, as
in the network shown in Figure 1, or collocated, as in the
network shown in Figure 4. The locations of the network
nodes are thereby assumed to be known at rry, 2 € {1, ...,
Nry}, and IR, 7€ {1, ..., Nrx}. For Ny = Ngx = N collo-
cated nodes, that is, transceiving nodes, we can express the
node locations also as {rrR,, ..., IRy}, see Figure 4. In either
case, a network link / is determined by the 7th transmitting and
the jth receiving node. For each network link /, the received
signal is modelled as a superposition of scaled and delayed
replica of a known transmit signal [12]. Due to reflections off
the surrounding environment, these replica comprise the LoS
component and a finite number of MPCs. Mathematically, the
behaviour of the radio channel of link / can be described by the
time-variant channel impulse response (CIR) /y(t, 7), where ¢
and 7 indicate time and delay [13]. Assuming the CIR to be
constant for a short time interval, it can be expressed as

N-1

h(t,7) = ;al‘,,(t)b‘(r—'tlﬂ), (1)

where the variables a,(t) and 7;,, denote the time-variant,
complex amplitude and the static propagation delay of the nth
component, and (-) represents the Dirac distribution. The
CIR considers Nj components, where 7 = 0 refers to the LoS
component. Given the CIR of Equation (1), the received signal
can be expressed as the convolution of Ay(t, 7) with a known
transmitted signal 5)(f) of duration Ty, that is, as

() =s(z) *h(t,7) +my(z)

b5 apn (t)sl (t - Tl,n) + nl(t)) (2)

n=0

with 7(f) as additive white circular symmetric normal distrib-
uted noise of variance 0'2z Examples of the signal propagation
for individual links are highlighted in Figures 1 and 4, both
showing the LoS and MPCs due to first-order reflections from
the respective surrounding environment.

The idea of MDFL is to use variations in the power of
both the LoS component and the MPCs for DFL. In order to
extract location information from variations in the power of
MPCs, we need to model the corresponding propagation
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FIGURE 1 Multipath-enhanced device-free localisation network including one transmitting node at fry and several receiving nodes ryy,j € {1,...,7}. For
the network link between rr; and rgx, the multipath propagation 1s explicitly highlighted: physical propagation paths of line of sight (LoS) and multipath
components (MPCs) are drawn in red and blue, respectively. The propagation paths of the remaining network links are indicated in grey (LoS in dark grey and MPCs
in light grey). The ground truth of the user's trajectory and his initial moving direction are indicated in green

paths. In Ref. [10], we have therefore introduced reflection
sequences that describe the signal propagation for each MPC
from the transmitting to receiving node, chronologically.
Thereby, the surrounding environment is represented by a
finite number of reflecting surfaces, which determine the set S.
For example, a quadratic room consists of four surrounding
walls plus ceiling and floor. The corresponding set S would
thus comprise six reflecting surfaces, that is, S € {s,...,5}.
Using tuple notation, the propagation path corresponding to
MPC 7 of link / is thus expressed by the sequence &, = (s5)
with s € S. That is, if, for example, a signal is reflected twice
on its way from the transmitter to the receiver, for example,
first at surface s; and then at surface s4, we can express the
propagation path by the sequence &;,, = (51, 54). Note that the
length of the sequence, denoted by N'iz,u’ is determined by the
order of reflection. In the preceding example, the length, that
is, the number of elements of the sequence Ml;x = 2 corre-
sponds to the second order reflection described.

Following Ref. [14, 15], we can subsequently construct
virtual nodes, that is, virtual transmitters (VTIs) and virtual
receivers (VRs), by mirroring the physical nodes according to
the reflection sequences. Thus, the resulting locations of the

()

virtual nodes for sequence &, are denoted by ¥, and

(N, —#) . ) '
"VR,I: , where the index # € {0, ""Néz,.} is referring to

equidistant (virtual) node pairs. The distances between these
node pairs correspond to the length of the physical propaga-
tion path, and thus, to the delay of the MPC. For any node pair,
that is, irrespective of index #, the length of the propagation
path can be expressed as

where r@l)«!ﬂ and ’{91%1,, refer to the physical transmitting and

receiving nodes. Since the intersection points between the
paths of related node pairs correspond to the physical reflec-
tion points, we can finally reconstruct the physical propagation
paths geometrically similar to optical ray tracing [14].

In this work, we assume that all observable signal com-
ponents, that is, the LoS component and MPCs, of the received
signal modelled in Equation (2) are perfectly associated. That
means, the MPCs of link / are represented by the reflection
sequences &, € X7, where Xl* denotes the set of associated
sequences. Combining the associated sequences for the whole
network results in the union set X* = U X l* . Eventually, the
cardinality |X*| =) ";N; determines the amount of all signal
components used for MDFL.

Note that the association of MPCs with the corresponding
propagation paths is crucial, since MDFL relies on the location
information contained in these propagation paths. Mis-
associated MPCs could therefore even degrade the localisation
performance. However, since the focus of this work is on
evaluating Bayesian filter solutions for MDFL, we refrain from
considering the effects of data association algorithms and as-
sume perfect association as mentioned above.

2.2 | Parameter estimation

For localisation, the MDFL system exploits variations in the
received power of signal components, which thus needs to be
determined in the next step. For determining the received
power of signal components, we first compute the corre-
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the reflection sequences. Thus, the resulting locations of the

virtual nodes for sequence &, are denoted by rg%ﬂ and

(Ngy,,—4) . . .
IR, where the index # € {0,...,]\f§1ﬂ} is referring to
equidistant (virtual) node pairs. The distances between these
node pairs correspond to the length of the physical propaga-
tion path, and thus, to the delay of the MPC. For any node pair,
that is, irrespective of index #, the length of the propagation
path can be expressed as

(Nglﬂ _u)

d(&,) =dip =168, — 1w, s (3)

sume perfect association as mentioned above.

2.2 | Parameter estimation

For localisation, the MDFL system exploits variations in the
received power of signal components, which thus needs to be
determined in the next step. For determining the received
power of signal components, we first compute the corre-
sponding amplitude values from the received signal. Given the
delay 7, of the nth associated signal component of link [, we
can calculate the amplitude as
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(1) = LT“ ( lfj(z))*sl (t—7,)dt, (4)

which represents the projection of the residuum signal yl‘f: (t)
onto the transmit signal sy(t) [10, 14]. The residuum signal is
determined by successively adjusting the received signal for the
signal components up to the (7 — 1)-th, which can be
expressed as

O =20 ap@al-). G

Using the square of the absolute value of the amplitude
calculated in Equation (4), the measured power in the loga-
rithmic domain can be expressed as

71.2(2) = 20logyo| (1) (6)

To measure variations in the received power, we need to
know the absolute power level of each signal component.
These power levels are determined during a system initialisa-
tion period [10]. Assuming the environment to be devoid of
any mobile user, we compute the power values using Equa-
tions (4) and (6). By taking the mean over this period, we
obtain the reference power level 7 ,.

For a discrete time step k, we can thus express the change in
the power of a signal component by subtracting the reference
power 7;,, from the currently determined received power as

2 (k) = V1, (R) = 71 (7)

*
Thus, the measurement vector zp € R can be composed

by stacking the measured power changes for all links as
T
zk:[...,zl)n(/e),...] s ‘v’l,n:flﬂeX*, (8)

with z;,(k) defined in dB.

Measurement model

2.3 |

For applying MDFL, we requirte a model that relates the
measured changes in the power of the signal components to

the user state

xe = [« )7, )

including position ry, and velocity vg of the user, that is, A(xy).
Therefore, we model the measurement vector (8) as

zp = h(xy) + wy, (10)

assuming Gaussian measurement noise wp ~ AN (0, R) with a
. . *
covariance matrix R € R XI¥*! defined as

chﬁag(...,olzﬁ,...

), Vin:§&,eX*. (11)

Note that to avoid complexity, we assume that the elements
of the covariance matrix are independent of the user's location.
Thus, the elements largely depend on the received power of the
corresponding signal component.

Based on measurements, we have shown in Ref. [9] that
user-induced variations in the power of MPCs can be modelled
by superimposing the user impact on each pair of related vir-
tual nodes. Similarly to Ref. [10], we approximate this impact
on the individual node pairs using the empirical exponential
model [6]. Thus, depending on the user location g, we express
changes in the power of any signal component, that is, the LoS
component or MPC, corresponding to sequence &, in
Equation (10) as the sum

Ny
—89(r)/x
b (xp) =y e 0/, (12)
#=0

with the parameter ¢, as the maximum modelled power
change in dB and k; ,, as the decay rate. The excess path length
51(1;1)(1'12) of the #th node pair is calculated by

(‘V{I 7 —u)

8 (r) = e, = rell + llrvm,, = rell =iy (13)

A

with path length a'l,,, as defined in Equation (3).

3 | BAYESIAN LOCALISATION
APPROACHES

The localisation problem described in Section 2 can be
formulated using the state—space representation: First, by a
measurement model, which relates the measured power
changes of signal components to the user state, as given in
Equation (10) and second, by a transition model which de-
scribes the spatio-temporal evolution of the user state. In the
literature, a common choice for the transition model is the
white noise acceleration model [8, 16]. Therefore, the state
equation is obtained as

Xp = Axp_1 + ng, (14)

with the transition matrix A and zero-mean white Gaussian
process noise ng with the covariance matrix Q. The transition
and covariance matrices are expressed as
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73 72 . with normalisation ¢p = Z w;e[k 1 p(zk|x/) and the likeli-
&8 o9 & 9 hood distribution p(zk|x") The predicted weights are
3 2
3 N,
10 7, 0 T3 T : ~ m,
N o F o % Wt = ) Wy 1P (). (18)
=1
A= £ , Q= 62 ) !
00 1 0 7l g2 o
00 0 1 73 0 T, 0 where p(x’|x/) is the transition prior distribution applied to
discretised grid points, which equals a multidimensional
T2 convolution [17]. Therewith, the complexity of the PMF grows
0 7g 0 T quadratically with N..

(15)

where T is the time between two adjacent measurements
and 0'2 is the process noise intensity of physical dimension
[mz/ s ], which needs to be set according to application re-
quirements [16]. The measurement and transition models can be
expressed by the conditional probability density function (PDF)
Plze|x;) and the transition prior distribution p(Xg|Xt—1),
respectively.

The goal of sequential Bayesian estimation is to determine
the PDF of the user state x; by computing the posterior density
Pp(x| z14) applying the general Bayesian update recursion [17].
A possible Bayesian approach for solving the non-linear system
is the extended Kalman filter (EKF). The EKF linearises the
system equations and approximates the posterior density with a
Gaussian distribution. However, for the given localisation
problem the density can hardly be assumed to be Gaussian.
Thus, the EKF is likely to be unstable and to diverge (see
Section 5.2.2). Note that also other advanced non-linear
Bayesian filter solutions that rely on the assumption of a
Gaussian posterior density, such as the posterior linearisation
filter [18], would face similar problems as the EKF In the
following, we therefore present alternative filter solutions,
which approximate the posterior with a non-parametric PDF
and are thus more suitable for non-linear and non-Gaussian
processes. In particular, we present the point mass filter
(PMF) and the particle filter (PF), which use a deterministic and

a stochastic grid, respectively, to approximate the posterior.

3.1 | Point mass filter
The PMF approximates the posterior distribution with the
discrete density

P(xe|2z1:2)

Z'wklkﬁ xk—x) (16)

where &(-) denotes the Dirac delta function and x xepre—
sents the 7th grid point of the deterministic grid {x‘ }l ’1 [17].

[ o T TR PV UK PUN- [ N

3.2 | Particle filter

Also the PF approximates the posterior distribution with a
discrete density

P(xe|z12) i%‘s(?‘k -x). (19)

i=1

However, the PDF is approximated using a stochastic grid,
that is, a set of weighted particles {x}e }z\=1 Following the
generic PF, the particles are drawn from an importance density
[19]. Commonly this importance density is set equal to the
transition prior distribution [17], which simplifies the weight
update in the filter to

1. .
wh =k 1p(ail), (20)

with normalisation ¢, = Z}Nﬁrlwi_l p(zk|x§e) and the like-
lihood distribution p(zk |x;e) Counteracting t
degeneracy, the PF applies resampling [19].

he problem of

3.3 | Evaluation metric

For evaluating the localisation performance of the respective
filter results, we use the root mean square error (RMSE) as a
metric. In order to calculate the RMSE, we first determine a
point estimate of the user state from the posterior densities of
Equations (16) and (19) for PMF and PF, respectively, by
calculating the weighted sum

N

APMF E wklkx and xk
i=1

Zwkxk, (21)

which is the expected value of the posterior filter density.
Based on the respective point estimate of the user state
calculated in Equation (21), we can extract the location esti-

mate T, for the PMF or the PE Thus, we can finally compute
elia DAMQLE A€ elia Tanntlnn antlcnnba an
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The PMF approximates the posterior distribution with the
discrete density

N

p(xp|z12) ~ Zw2|k5(xk — xi), (16)

i=1

where §(-) denotes the Dirac delta function and x\j_ repre-
sents the 7th grid point of the deterministic grid {x’ };;1 [17].

The weights w}elk are calculated by

Ccalcilaullg Ulc Weiglitca Suill

N N
»PMF_E:L' i »PF_E:ii
xk = wk%x and xk = wkxk, (21)
i=1 =1
which is the expected value of the posterior filter density.
Based on the respective point estimate of the user state
calculated in Equation (21), we can extract the location esti-
mate T for the PMF or the PE Thus, we can finally compute

the RMSE of the location estimate as

RMSE;, = 1/ E[[|7 — re’], (22)

where 1}, is the true user location.
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4 | MEASUREMENT-BASED
VERIFICATION OF THE NUMERICAL
SIMULATION FRAMEWORK

In this section, we verify the applicability of a numerical
simulation framework based on UWB measurement data for an
indoor environment. We therefore first present the numerical
simulation framework for time-variant power fluctuations.
Then, we replicate the multipath propagation of the indoor
measurement environment and simulate user-induced varia-
tions in the received power for each signal component
following [9]. To assess the simulation framework, we finally
compare the localisation performance of MDFL using simu-
lated data to the localisation performance of MDFL using
measured data.

4.1 | Numerical simulation framework

In the following, we present a numerical simulation framework
for MDFL, which enables a fast and flexible simulation of
arbitrary propagation environments, network geometries, and
user trajectories. Thereby, user-induced variations in the power
of the signal components considered for MDFL are deter-
mined numerically. This numerical simulation framework can
be divided into three main steps:

1. The determination of the propagation environment, where
we differentiate between fully artificial and replicated en-
vironments. For fully artificial environments, the propa-
gation paths of MPCs are determined by the arbitrary
arrangement of reflecting surfaces and thus by the
resulting virtual nodes as introduced in Section 2.1. For
replicated environments, the propagation paths are ob-
tained in a similar way based on an existing floor plan
using reflective surfaces, or by reusing previously deter-
mined propagation paths, as, for example, the propagation
paths of Section 4.2.

2. The definition of a user trajectory, that is, a sequence of time-
variant user positions f. The distance between two succes-
sive user positions is determined by the velocity vz and the
time between two adjacent measurement points Tg. Thereby,
T s typically determined by the properties of the underlying
communications system and the network dimensions.

3. The computation of user-induced variations in the power of
signal components composing the measurement vector Zzg.
We therefore apply the diffraction-based propagation
model of Ref. [9] for each link and each considered signal
component, as defined in the first step, for each position of
the user trajectory, as defined in the second step. The var-
iations in the power of signal components fundamentally
depend on the dimensions of the user, the length of the
propagation paths, and the carrier frequency fc. The lengths
of the propagation paths depend on the network geometry.
The carzier frequency depends on the considered commu-
nications system. In this work, the user is modelled as an
elliptical cylinder with a major axis of 0.55 m, a minor axis

of 0.25 m, and a height of 1.8 m. For further details on the
propagation model, please refer to Ref. [9].

4.2 |

Measurement setup

In order to assess the numerical simulation framework of
Section 4.1, we deploy an UWB measurement system based on
Qorvo (DecaWave) DW1000 modules [20]. In particular, we
set up a network consisting of one transmitting node and of
Ngx = 7 receiving nodes, as shown to scale in Figure 1, with all
nodes at a height of 1 m above the ground. Note that the
Qorvo  (DecaWave) DW1000 modules support IEEE
802.15.4a-based impulse UWB radio signals, and thus, the
received signal corresponds to the CIR. In the following, we
therefore refer to the received signal modelled in Equation (2)
as CIR. Thus, the deployment of the UWB modules enables
the continuous measurement of the CIRs for each network
link. For measuring the CIR, the transmitting node individually
addresses each receiving node in a round-robin manner initi-
ating a two-way ranging procedure [20, 21]. The time between
two adjacent measurements for the full network results in
Tg = 0.37 s, cf. Table 1. Based on the measured CIRs we es-
timate the parameters for the signal components, that is, LoS
and MPCs, which were previously determined during system
initialisation [10]. For the experiment, we specifically consider
7 links in LoS and 13 links corresponding to MPCs, as indi-
cated in Figure 1. Note that DFL considers only the propa-
gation paths in LoS, while MDFL considers the propagation
paths of MPCs as additional network links. That means, the
underlying network structures of DFL and MDFL substantially
differ. As specified in Equation (8), the measurement vector is
composed of the measured power changes of all associated
signal components within the network. Accordingly, the mea-
surement vector for DFL comprises the power changes of the
seven links in LoS, that is, ZEFL € R7, and the measurement
vector for MDFL comprises additionally the measured power
changes of 13 MPCs, that is, zEIDFL € R®. In this experiment,
we aim at localising a single user who turned three rounds
clockwise in the measurement environment. We recorded the
ground truth using a Vicon high-precision optical motion

TABLE 1 Filter parameterss—UWB experiment setup (Figure 1)

Value
Parameter PF PMF Unit
Particles/grid points N, 1000 1113
Grid point spacing A, - 0.25 m
Measurement rate T, 0.37 s
Process noise intensity ﬂf, 05 m?/s*
Measurement noise 0, 0.75 dB
Mazx. power change (12) Din [~8.99,-0.95] dB
Decay rate (12) K1,z [0.006,0.131] m

Abbreviations: PF, particle filter; PMF, point mass filter and; UWB, ultra-wideband.
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capture system. For tracking, a reflector was attached to the
head of the user. Thereby, the Vicon optical motion capture
system allows to track the position of the reflector with a sub-
centimetre accuracy. The corresponding ground truth trajec-
tory together with the initial starting direction is illustrated in
Figure 1.

4.3 | Assessment of the numerical
simulation framework

The measured power variations of the UWB network pre-
sented in Section 4.2 now allow us to apply the PMF and the
PF for localisation. Note that the resulting localisation pex-
formance serves as basis for the measurement-based evalua-
tion of the numerical simulation framework introduced in
Section 4.1. All parameters used for the filtering approaches
are summarised in Table 1. Thereby, the PF is initialised by
uniformly distributing the particle states within the observation
area. Equivalently, the grid points of the PMF are arranged in
an equidistant grid. For both filters, the weights are initially set
equal.

Accounting for the stochastic nature of PFs, we have
evaluated 100 realisations of the PE Therefore, the presented
RMSE results of the PF are determined by averaging over
these realisations. Due to the deterministic grid, only one
realisation is required for the PME An overview of the
resulting mean RMSE values is provided in Table 2, including
both DFL and MDFL using measured data.

For evaluating the applicability of the numerical simulation
framework for MDFL, we additionally apply the PMF and the
PF to simulated data. We therefore replicate the multipath
propagation of the indoor environment of Section 4.2 and
calculate the user-induced variations of the received power of
all signal components for each position of the ground truth
trajectory, cf. Figure 1. Note that the carrier frequency required
for the simulation is set according to the UWB communica-
tions system, that is, fc = 3.9936 GHz [20], and the time be-
tween two adjacent measurements is Tg = 0.37 s, see Table 1.
Based on the simulated data, we eventually apply the PMF and
the PF for localisation. Similarly to the filters applied to the
measured data, we use the filter parameters from Table 1,
initialise the PF by uniformly distributing the particle states
within the observation area, and initially set the weights of the
PMF equal. Accounting for measurement noise required for
simulation, we have evaluated 500 realisations for each filter

TABLE 2 Mean RMSE in (m)—UWB experiment setup (Figure 1)

MDFL DFL
Data PF PMF PF PMF

Neaenred n K3 n79 164 144

solution. Therefore, all presented RMSE results using simu-
lated data are determined by averaging over these realisations.
The resulting mean RMSE values for both DFL and MDFL
using simulated data are also given in Table 2, in addition to the
results using measured data.

Finally, these localisation results obtained with measured
and simulated data allow to assess the applicability of the nu-
merical simulation framework. With a maximum difference of
0.05 m among all considered localisation approaches and
network structures, the mean RMSE values show a very strong
agreement. Moreover, Figures 2 and 3 show the cumulative
distribution functions (CDFs) of the RMSE for the PF and the
PME, respectively, for using both measured and simulated data.
Also for the CDEF we can observe a very strong agreement
between the localisation results obtained with measured and
simulated data. That strong agreement of the CDF curves is
thereby observed independently of applying the PF or the
PMF solution, as well as, of using DFL or MDFL. Therefore,
this comparison has shown that the numerical simulation
framework of Section 4.1 is able to sufficiently represent the
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FIGURE 2 Cumulative distribution function (CDEF) of the root mean
square error (RMSE) of the location estimate for device-free localisation
(DFL) and multipath-enhanced device-free localisation (MDFL) applying
particle filter solution to both simulated and measured data

0.8 /
06 f A
= v .
a ! o
@] ' 'l
04} /o
4 —— MDFL (measured data)
A === MDFL (simulated data)
02 f —— DFL (measured data)
) === DFL (simulated data)
1 1 | Il | J
00 1 2 3 4 5 6

RMSE in [m]

1o0xa ‘panyiwiad Jou A3

[2202/90/€2] UO ~"UlBWaD ZJOYWIdH " Ul Hyed Wney "N-PnT 4 WNIudZ ydsia Ag ‘wodAsjimAleiqiiauljuo ydieasanal//;sdny wouy papeojumod ‘9L ‘220z ‘€€/81S/L



WALALL UIC DSELiVaUuLVll 4lla, allld nuuuu'\ =CL uic \VCIgllL) VL uic
PMF equal. Accounting for measurement noise required for
simulation, we have evaluated 500 realisations for each filter

TABLE 2 Mean RMSE in (m)—UWB experiment setup (Figure 1)

MDEFL DFL
Data PF PMF PF PMF
Measured 0.83 0.79 1.64 144
Simulated 0.82 0.74 1.68 149

Abbreviations: DFL, device-free localisation; MDFL, multipath-enhanced device-free
localisation; PF, particle filter; PMF, point mass filter; RMSE, root mean square error;
TUWB, ultrz-wideband.

o6l f A
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04 fi
4 —— MDFL (measured data)
) === MDFL (simulated data)
0247 —— DFL (measured data)
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FIGURE 3 Cumulative distribution function (CDF) of the root mean
square error (RMSE) of the location estimate for device-free localisation
(DFL) and multipath-enhanced device-free localisation (MDFL) applying
point mass filter solution to both simulated and measured data
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FIGURE 4 Ezemplary multipath-enhanced device-free localisation
network of four network nodes at locations Frg_q, ¢ = {1, 2, 3, 4}.
Reflecting surfaces of the surrounding environment are given by hatched
lines. For the network link between frg_gy; and Frp_; the multipath
propagation is explicitly highlighted: physical propagation paths of the line
of sight (LoS) and multipath components (MPCs) are red and blue. For the
remaining network links, the propagation paths are indicated in grey (LoS in
dark grey and MPCs in light grey)

propagation environment, which allows to obtain very com-
parable and thus realistic localisation results. Accordingly, the
numerical simulation framework has been shown to be very
well suited to provide the basis for a sound numerical evalu-
ation of MDFL.

5 | PERFORMANCE EVALUATION

In this section, we discuss the localisation performance of DFL
and MDFL based on measurements from the UWB experi-
ment. For a sound analysis of the proposed non-linear
Bayesian approaches, we additionally apply the simulation
framework to evaluate the approaches numerically. Therefore,
we first specify the simulation setup, that is, the network
structure as well as the propagation environment, and define
relevant trajectories for the evaluation. Finally, we analyse the
numerical results.

51 | Measurement-based evaluation

An overview of the localisation performance for the UWB
experiment is given in Table 2; see Section 4.3. The results on
localisation performance show that both DFL and MDFL can
be basically realised with a sparse network of commercial
communications devices. With mean RMSE values of 0.83 m
for the PF and 0.79 m for the PMF, MDFL thereby clearly
outperforms DFL, for which mean RMSE values of 1.64 and
1.44 m are achieved for PF and PMF, respectively. Further-
more, the superiority in localisation performance of MDFL
over DFL is particularly evident in the CDF curves of
Figures 2 and 3 for PF and PMFE For the PF, the RMSE is in
80 % of the cases below approximately 1.2 m for MDFL and

2.2 m for DFL, cf. Figure 2. Similarly for the PMEF, the RMSE
is in 80 % of the cases below approximately 1.0 m for MDFL
and 2.0 m for DFL, cf. Figure 3. Thus, regardless of the
Bayesian filter solution, MDFL improves the localisation ac-
curacy by approximately 1 m compared to DFL. Therewith,
the localisation results obtained using measured data confirm
the theoretical findings of Ref. [10], that considering MPCs for
DFL improves the localisation performance.

Since the focus of this paper is on Bayesian localisation
approaches, we compare the localisation performance of PF
and PMF separately. For the considered trajectory both
filtering solutions achieve a very comparable localisation per-
formance, regardless of the underlying network, that is, for
both DFL and MDFL. Note, however, that the evaluation of
only one trajectory does not allow reliable conclusions about
the respective aptitudes of the Bayesian localisation ap-
proaches. An elaborate evaluation requires a more detailed
analysis that takes into account additional trajectories as well as
different propagation environments. Since the numerical
simulation framework presented in Section 4.1 can simulate
arbitrary trajectories and propagation environments, it offers
the opportunity to analyse the localisation algorithms in depth.

52 |

Simulation-based evaluation

In the following, we apply the numerical simulation framework
to identify and elaborate on the strengths and weaknesses of
the considered Bayesian localisation algorithms. We therefore
introduce an additional simulation environment representing a
typical office space. The corresponding simulation setup and
the numerical results are presented below:

52.1 | Simulation setup

The localisation approaches presented in Section 3 are evaluated
in more detail using the numerical simulation framework of
Section 4.1. In particular, we consider a fully meshed network of
N =4 collocated transmitting and receiving nodes. All nodes are
located at the same height and correspond to the height of the
body centre of the user. The multipath propagation environment
is characterised by six reflecting surfaces that may represent a
typical office space. The arrangement of the surfaces as well as
the arrangement of the network nodes are shown to scale in
Figure 4. Considering only first order reflections, the network
consists of 6 links in LoS and 20 visible links corresponding to
MPCs. Thus, according to Equation (8), the measurement vector
for DFL contains the power changes of six links in LoS, that is,
ZEH‘ € |R6, and the measurement vector for MDFL contains

additionally the power changes of 20 MPCs, that is
MDFL 26
z, eR

>

. Using the numerical simulation framework of
Section 4.1, we simulate user-induced variations in the power of
signal components for four different user trajectories. The tra-
jectories are shown in Figure 5 including starting point and
moving direction. Based on the simulated user-induced power
variations, we apply the PMF and the PF for localisation. All
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FIGURE 5 Simulation trajectories for different runs. The initial
moving direction of each trajectory is indicated by coloured arrows. The
undeslying multipath-enhanced device-free localisation network 1s indicated
in grey (see Figure 4)

TABLE 3 Fiter parameters—Simulation setup (Figure 4)

Value
Parameter PF PMF Unit
Particles/grid points N. 1000 3331
Grid point spacing A, - 01 m
Measurement rate T, 0.01 s
Process noise intensity ,,i 0.1 m?/s?
Measurement noise 0], 0.75 dB
Mazx. power change (12) Din (-8.91,-3.74] dB
Decay rate (12) Kl [0.016,0.072] m

Abbreviations: PF, particle filter; PMF, point mass filter.

parameters used for the filtering approaches are summarised in
Table 3 and are applied for each trajectory. As in Section 4.3, the
PF is initialised by uniformly distributing the particle states in the
observation area, the PMF by arranging the grid points in an
equidistant grid, and the weights of both filters are initially set
equal.

5.2.2 | Numerical results

For each trajectory we have evaluated 500 realisations ac-
counting for measurement noise. The presented RMSE results
are determined by averaging over these realisations. A sum-
mary of the individual filter performances is given in Table 4
providing the mean RMSE values for each trajectory. In
addition to the proposed PMF and PF, we also show the results
of an EKF solution (parameter settings similar to Table 3). In

TABLE 4 Mean RMSE in (m)—Simulation setup (Figure 4),
trajectories as in Figure 5

MDEFL DFL

Trajectory EKF PF PMF EKF PF PMF

I 1.01* 0.25 0.28 - 1.93 1.82
II 472° 0.84 0.62 - 243 229
III 2.33* 1.08 0.75 - 1.99 1.80
v 5.41° 0.47 0.41 - 1.08 157
Overall 3.94° 0.65 0.51 - 1.78 1.87

Abbreviations: DFL, device-free localisation; EKF, extended Kalman filter; MDFL,
multipath-enhanced device-free localisation; PF, particle filter; PMF, point mass filter
and; RMSE, root mean square error.

*Estimation strongly diverges.
3 T T T T T T
PF
— PMF
= 2t EKF
=
:_\f}
21
|
O | I}

0 05 1 15 2 25 3 35 4

traveled distance [m]

FIGURE 6 Root mean square error (RMSE) localisation performance
of multipath-enhanced device-free localisation for different non-linear
Bayesian filter solutions for Trajectory I. EKF, extended Kalman filter; PF,
particle filter; PMF, point mass filter

can be explained by the sparse network configuration (N = 4
network nodes), which results in a non-Gaussian and often
multimodal posterior density. In contrast, both PMF and PF
could achieve stable results that significantly outperform the
EKF for MDFL (see also Figure 6).

Figure 6 shows the RMSE results for Trajectory I using
MDFL. Both PMF and PF achieve a sub-metre localisation
petformance over the entire trajectory, which also applies at
the beginning of the trajectory. Due to the propagation paths
of the MPCs, which are in the proximity of the starting point
of Trajectory I (see Figure 5), the filters immediately obtain a
good location estimate. Compared to the PF, the RMSE of the
PMF slightly deviates at a travelled distance of 0.8 and 2.2 m.
This deviation can be explained by local multimodalities of the
posterior, which are resolved in this case by the PF due to
resampling. After a travelled distance of 3 m, the RMSE in-
creases for both PMF and PE Due to the network structure,
the trajectory lies after this point in a blank area that is not
touched by any propagation path and the user does not induce
any perturbations. Thus, the estimated posterior spreads over
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5.2.2 | Numerical results

For each trajectory we have evaluated 500 realisations ac-
counting for measurement noise. The presented RMSE results
are determined by averaging over these realisations. A sum-
mary of the individual filter performances is given in Table 4
providing the mean RMSE values for each trajectory. In
addition to the proposed PMF and PF, we also show the results
of an EKF solution (parameter settings similar to Table 3). In
Ref. [8], the EKF is used as benchmark system for DFL;
however, we could not obtain reasonable results for DFL and
only unstable and diverging results for MDFL, even though the
EKF was initialised ideally. The poor performance of the EKF

good location estimate. Compared to the PF, the RMSE of the
PMF slightly deviates at a travelled distance of 0.8 and 2.2 m.
This deviation can be explained by local multimodalities of the
posterior, which are resolved in this case by the PF due to
resampling. After a travelled distance of 3 m, the RMSE in-
creases for both PMF and PE Due to the network structure,
the trajectory lies after this point in a blank area that is not
touched by any propagation path and the user does not induce
any perturbations. Thus, the estimated posterior spreads over
that blank area, here, between x € (25 m, 4 m) and y €
(0 m, 2 m).

The starting points of Trajectores II and III are also
located in a blank area (see Figure 5). As shown in the results
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FIGURE 7 Root mean square error (RMSE) localisation performance of device-free localisation (DFL) and multipath-enhanced device-free localisation

(MDFL) both applying the particle filter solution for Trajectory II
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FIGURE 8 Root mean square error (RMSE) localisation performance
of device-free localisation (DFL) and multipath-enhanced device-free
localisation (MDFL) both applying the particle filter solution for Trajectory
I

of the PF in Figures 7 and 8, no user-induced perturbations
can be measured initially and thus the PDF spreads over the
entire observed area. An accurate position estimate is only
obtained when the user induces perturbations in the power of
any network link, which is the case for MDFL after 1 m and
for DFL after almost 3 m. In addition to the initial phase, also
the compatison of the further course of Trajectories II and III
give indication for the spatial localisation capabilities of DFL
and MDFL. While we obtain a sub-metre localisation perfor-
mance for MDFL almost entirely over both trajectories, the
RMSE results for DFL strongly deviate for Trajectory II. The
course of Trajectory II is mostly outside the DFL network and
thus the user does not impact the signal propagation in LoS.
For Trajectory III, also the DFL approach achieves localisation
performance of less than 1 m, but is still outperformed by
MDFL on average.

As shown in Figure 5, Trajectory IV is the longest scenario
leading through the whole observation area. On average, the
localisation performance is therefore only weakly distorted by
initialisation and local geometric effects. With a mean RMSE
of 0.41 m (PMF) and 0.47 m (PF), as given in Table 4, both
filters achieve a very similar localisation performance for
MDFL. For DFL, the performance of the PMF degrades to
1.57 m and of the PF to 1.08 m. Therewith, the PF out-
performs the PMF in this specific scenario. Due to the very

sparse DFL network, the posterior density is more likely to be
multimodal. Here, the PF could correctly resolve these multi-
modalities. If the PF would resolve for the wrong mode, the
filter would diverge. However, the deterministic grid of the
PMF completely avoids divergence.

6 | CONCLUSION

In this paper, we have presented the PMF and the PF as non-
linear Bayesian filter solutions for DFL and MDFL. Using a
network of commercial off-the-shelf UWB devices, we have
applied the filter solutions to an indoor scenario and success-
fully demonstrated the applicability of MDFL through
measured data. On the basis of these measurement results, we
have derived and verified a numerical simulation framework,
which allows a fast and flexible simulation of arbitrary prop-
agation environments, network geometries, and user trajec-
tories. Employing the numerical simulation framework, we
have evaluated the filter solutions in detail using a sparse
network comprising four collocated transmitting and receiving
nodes. Regardless of the filter solution, the results show that
MDFL outperforms DFL in localisation accuracy. For MDFL,
the localisation performance of the proposed filters is com-
parable. We have shown that the localisation performance of
both PMF and PF strongly depends on the underlying network
structure and the corresponding density of propagation paths
within the observation area. For the exemplary simulation
environment, we have shown that both PMF and PF achieve a
similar localisation performance below 1 m in most cases.
Decisive factors for the choice of the filter are complexity on
the one hand and probability of divergence on the other hand.
For spatially large observation areas, the PMF may be pro-
hibitive due to the quadratic growth in complexity. For very
sparse networks, the PF may resolve for the wrong modes and,
thus, diverges. However, for normal office rooms and a
moderate number of network nodes, both filter solutions shall
provide very accurate location estimates.
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