Methodical Development of a Lightweight Car Body for a High-Speed Train

World Congress of Railway Research 6-10 June 2022 Birmingham, United Kingdom

<u>Gregor Malzacher (DLR)</u> Dr. Eng. Masakazu Takagaki (RTRI) Christian Gomes Alves (DLR)

Knowledge for Tomorrow

Lightweight Design Activities

LR

Standards

Longitudinal Load Cases

Payload

Vertical Load Cases

Torsional Load Cases

Equipment

Equipment	Mass
Car-body tilting System	79kg x 2
Air conditioner	800kg
Ventilation Equipment	220kg
High voltage circuit braker	525kg
Main transfomer	2840kg
Bogie controller	110kg

Generic Car Body

JR

DLR

Basic Dimension	Length
Length of car body	24.5 m
Length for seats	21.5 m
Width of the car body	3.3 m
Distance between pivots	17.5 m
Length of the cut out in the skirt for bogies	3.9 m
Length of the entrance area (doors)	1.2 m & 1.8 m
Width of the floor between seats	0.57 m
Length for one seat row	1.05 m

Topology Optimization

Comparison

Bulkhead

Topology Optimization Without Window Cut-Outs

Floor

Mass comparison

Conclusion and Outlook

- Both JIS E 7106 and EN 12663-1 are based on the approach of static equivalent loads
- Longitudinal forces in Japan are significantly smaller than in Europe
- JIS E 7106 offers in some cases the opportunity for bilateral coordination of loads
- Topology optimization leads to similar and comparable results
- Can the specific results be generalized?
- Transforming the optimization results into a manufacturable design

