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Abstract

The design of turbomachinery creates a strong demand for the simultaneous optimization
of multiple blade rows with regard to different disciplines including aerodynamics, aeroe-
lasticity, and solid mechanics. Established gradient-free methods, typically surrogate-
based methods, have been successfully applied to the optimization of single blade rows
and pairs of adjacent rows, typically featuring in the order of 50 design variables per blade
row. Gradient-free methods become inhibitively expensive through the increased number
of design variables from simultaneous optimizations of many rows. Gradients obtained
from adjoint simulations can help in transitioning to larger design spaces as they pro-
vide derivatives with respect to each design variable at a computational cost that only
depends on the number of objectives. For the transition from gradient-free to gradient-
based optimizations, a variety of challenges had to be solved, which will be outlined in
this paper.

Practical gradient-based optimization

Throughout the last few years, the adjoint method for computing cost-efficient gradients
of computer simulations has become widely adopted, first in academia and increasingly
in industry. The advantage of gradient-based over gradient-free optimization methods is
obvious for high dimensional optimization problems on sufficiently smooth objectives and
constraints.

However, the practical application for the design of turbomachinery with simulation-based
objectives is still a challenging task. The challenges fall into the following categories

� Creating an adjoint to the simulation and post-processing

� Choice of parameterization

� Differentiation of the process around the simulation
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� Implementing a failure tolerating multi-objective optimization strategy

Generating an efficient adjoint to an existing simulation code is a large topic in itself.
What is important to emphasize here, is that industrial CFD typically employs a large
variety of modeling extensions. The adjoint to such a primal CFD solver has to differ-
entiate those modeling extensions or otherwise, gradients become inexact. Even though
simplifications of the adjoint have been closely examined by Dwight et al. [1], acceptance
of adjoint methods can be diminished by restrictions to the range of supported models.
We, therefore, followed an approach to first differentiate the complete code by algorith-
mic differentiation through operator overloading and thereafter apply optimizations, like
e.g. fixpoint iteration schemes to the result, to lower CPU-time and memory consump-
tion [2, 3]. This approach has also been described in the context of OpenFOAM [4] and
SU2 [5]. This way, all features of the code are differentiated and the resulting adjoint
code can always be verified against a black-box reverse mode or black-box tangent mode
version.

While many choices for parameterization of turbomachinery blades are described in the
literature, industrial users of optimizations often demand that the final result of the op-
timization be represented in the specific CAD parameterization that has been used for
manual design. Those problem-specific parameterizations contain engineering know-how
and encode restrictions which cannot be easily enforced with domain agnostic parameter-
izations. Since optima in another parameterization can’t be easily converted to the CAD
parameterization without loss of optimality, optimizations are best carried out in the
established CAD-based parameterization. This means, that derivatives with respect to
such parameterization must be computed. Since in general, the respective CAD tools are
third-party software, intrusive methods for computing derivatives, such as the complex-
step method or algorithmic differentiation cannot be applied to them. Though it has been
demonstrated that CAD kernels can be algorithmically differentiated when the source is
available [6].

Everything before the actual simulation, including all modifications to the CAD model
and grid generation, can be differentiated by finite-differences if intrusive differentiation
is not possible. When differentiating such tools by finite-differences, care must be taken
to find step-widths small enough to be in the range of linear behavior of the response,
but at the same time large enough to be represented exact enough through the (iterative)
numerical algorithms inside the toolchain. Determining a good step-width for finite-
differences of numerical procedures has been a research topic for quite some time [7, 8],
still it remains challenging and a possible source of error for gradient-based optimizations.
The best solution would be if producers of the geometry and meshing tools would provide
gradients of their tools.

Having validated partial derivatives at hand, the next question is how to efficiently use
these inside an optimization. What distinguishes our focused class of optimizations is
that the objectives are expensive to evaluate. Additionally, there are typically multiple
objectives and constraints that stem from different disciplines, fluid dynamics and com-
putational mechanics for instance, for which a set of Pareto-optimal solution is sought.
These characteristics already occur in the gradient-free case and surrogate models play
an important part in their solution. To carry over the benefits of surrogate models, sur-
rogate models were extended to not only reproduce data points but also gradients. A
popular approach to this is a gradient extension of Gaussian Process Regression [9], often
referred to as Gradient Enhanced Kriging (GEK). GEK has gained popularity in the field
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of simulation-based optimization for a variety of beneficial properties. Primarily, GEK
can be performed for datasets with missing points or gradients, which makes the opti-
mization process resilient to failing steps of the evaluation process. Additionally, GEK
is capable of handling numerical noise in the objective function or gradients. And last
but not least, multiple objective functions with and without adjoint gradients can be
treated in the same framework to find sets of pareto optimal points. The feasibility of
GEK to be used in design optimizations of turbomachinery using an optimization akin
to industrial design optimization has been demonstrated before [3]. Here we will shortly
recapitulate the main features of this optimization and discuss the implications for the
industrial adaptation of adjoint methods.

Detailed descriptions of GEK can be found in textbooks, e.g. Forrester, Sóbester, Keane [10].
The key points will be briefly repeated here to introduce the notation. The Kriging im-
plementation used here is described in [11]. GEK constructs a model ŷ for an unknown
function y : RN 7→ RM based on P observations of the function and Q observations of
the gradient of the function Y = [y(1), . . . , y(P ), ∂y(1)

∂x(1) , . . . ,
∂y(P )

∂x(N) ]. Note, that not all partial
derivatives have to be provided, indeed complete gradients can be missing without causing
problems.

The prediction is based on the assumption that the function can be represented by its
mean plus corrections which are linear combinations of the available observations

ŷ(x) = µ+ cT (x)Ψ−1(Y − Fµ). (1)

The weighting of the observations is represented by the correlation matrix Ψ and assumes
that the correlation of two observations is only a function of their distance

Corr(Y (xi), Y (xj)) := e−r(xi,xj). (2)

As a correlation structure we chose here the squared exponential, which is equivalent to
the Gaussian Correlation function

r(x(i), x(j)) :=
N∑
k=1

θk|x(i)k − x
(j)
k |

2. (3)

This encodes the prior belief, that the function to interpolate is infinitely often differen-
tiable, which seems quite restrictive, but has turned out to be successful in practice. To
include gradient observations in the prediction the correlation of derivatives with points
are included, which are the derivatives of the correlation function

Ψ =

(
Corr(xi, xj)

∂Corr(xi,xl)
∂xn

l
∂Corr(xl,xi)

∂xn
l

∂2Corr(xj ,xl)

∂xm
l ∂xn

l

)
(4)

The correlation function has parameters θk that determine how fast the correlation decays
with distance in each dimension. This enables anisotropy of the space of design param-
eters. Determining these correlation lengths is called training of the model. Training is
done by maximizing the likelihood of the model under the already observed data using a
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concentrated logarithmic variant of the likelihood function

`(θ) = −1

2
ln(det(Ψ))− D

2
ln(σ̂2). (5)

In each training iteration, one needs the determinant of the correlation matrix which is
obtained by computing the Cholesky-Factorization. It is within this step which is most
expensive in GEK and where the model size and ill-conditioning become problematic.

Challenges with GEK

In comparison to the gradient-free variant, referred to as ordinary Kriging, GEK is chal-
lenging for the following reasons: The computational effort for ordinary Kriging grows on
the number of samples N . For GEK it is proportional to a product of samples and degrees
of freedom (M + 1)N . On the one hand, the addition of M pieces of information for the
cost of one additional simulation is the central idea of adding adjoint gradients to the
observed training data. On the other hand, this leads to a fast growing correlation ma-
trix, and therefore approximately cubically increases the time to train the kriging model.
Consequently, without modifications, GEK does not completely overcome the curse of
dimensionality.

Ill-conditioning of Kriging is an often-discussed topic in the literature [12, 13, 14, 15, 16],
which becomes problematic during the factorization of the correlation matrix. There
are six principal sources of ill-conditioning for ordinary kriging [17] which also apply
to GEK: Too narrowly spaced samples (1) cause columns of the correlation matrix to
become linear combinations of each other, or the correlation lengths are selected too large
(2) during the training. A mismatch between the selected correlation model and the
real smoothness of the observed function (3) causes ill-conditioning which rises with the
number of inconsistent observations. Numerical noise in the responses (4) accumulates as
inconsistencies in the training data which increasingly impedes the model condition. And
last but not least there is the problem of scaling, for the parameters (5) and the model
responses (6).

Scaling (5, 6) can be solved by non-dimensionalization parameters using a given range
and responses by a suitable upper bound. Problems from a mismatch in the correlation
structure (3) can be countered through a choice of a correlation function which assume
less smoothness of the observations, for example the Matern or thin-plate spline class of
correlation kernels. However, this comes at the cost of more computational cost during
the training, since these functions and their derivatives are more expensive to evaluate
than the squared exponential. A measure to account for noise in the response (4) is the
Tikhonov regularization, sometimes called nugget in the context of Kriging (c.f. [18]). It
changes the interpolating model into a regression model that only approximates the train-
ing data. Adequately constraining the correlation lengths during the training can usually
be achieved by tuning the optimization process for the training procedure. Problem (1)
requires a careful choice of the sampling positions in order not to produce too highly
correlated samples or to eliminate to highly correlated points from the training dataset
or regularization.
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Solution Approaches

Different solutions to the problem of building GEK surrogates in larger design spaces are
described in the literature.

In our previous studies [19, 3] we used a restarting technique for consecutive model train-
ings and Tikhonov regularization that treats function samples different from gradient
observations:

Ψ̃ = Ψ + (εi,j) (6)

εi,j =


εf if i = j, i ≤ P

εg if i = j, i > P

0 if i 6= j

(7)

De Baar et al. [14] account for different levels of numerical noise in the function values
and gradients as observations in the likelihood optimization of GEK. Dalbey [20] presents
an overview of methods to overcome ill-conditioning and proposes a pivoted Cholesky
factorization in which the samples which provide the least new information are removed
from the correlation matrix along with their gradients. One can compute and constrain
the condition number during the training of the hyperparameters and therefore avoid too
high correlation lengths as e.g. described by Ollar et al. [15]. Bouhlel and Martins [16]
propose a partial least square on the linearization around sampling points to only add ar-
tificial samples corresponding to a small number of principal components of the derivative
information. Han et al. [21] use a weighted combination of sub-models containing only a
selection of the samples and gradients. Özkaya et al. [22] employ a convex-combination
of gradient-free and gradient-enhanced Kriging models to improve generalization of GEK
models under numerical noise in the gradients.

All the above methods help reducing GEKs ill-conditioning by improving the model for
given observations. The idea of providing adjoint gradients is to ameliorate the curse of
dimensionality by providing more information per simulation and thus spend less time
on simulations. Instead of discarding redundant function values and gradients for which
computing time was already spent, it would be more beneficial to only produce information
where it is necessary. For optimizations, the infill is usually governed by variations of
the ”Efficient global optimization” strategy by Jones et al. [23] which aim at balancing
Exploitation and Exploration of the meta-model. However, the exploitation part of these
methods tends to produce tightly clustered samples. If we add gradient information
at every sampling point, these highly correlated gradients tend to produce a highly ill-
conditioned correlation matrix. Therefore, future research should focus on gradient aware
infill strategies to ensure that gradients are only calculated if is to be expected that the
surrogate model benefits from the information.
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