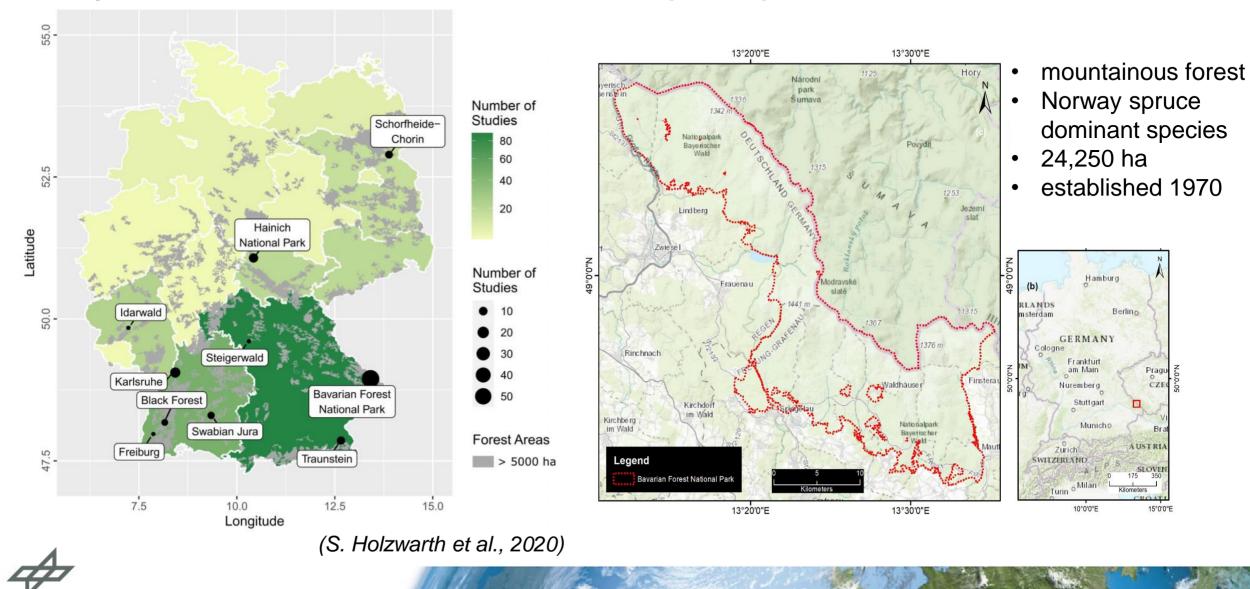
Analysing Multi-Temporal DESIS Data for Forest Health Monitoring Purposes – the Bavarian Forest National Park Case Study


Stefanie Holzwarth¹, Nivedita P. Kamaraj², Martin Bachmann¹, Frank Thonfeld¹, Simon König³, Marco Heurich³

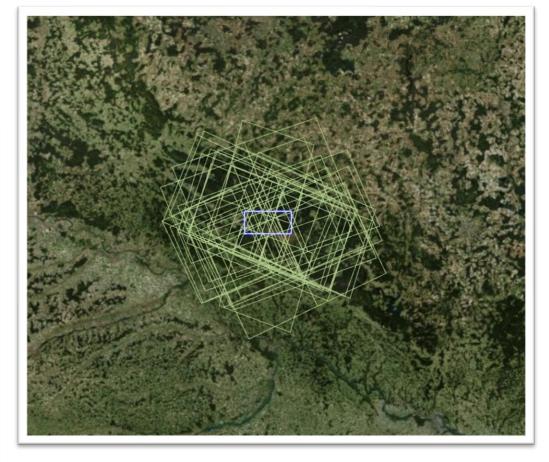
¹ DLR
² University of Münster
³ Bavarian Forest National Park

Knowledge for Tomorrow

Study Site: Bavarian Forest National Park (BFNP)

DLR Earth Sensing Imaging Spectrometer (DESIS) Mission

- Operated by DLR (scientific) and Teledyne Brown Engineering (commercial)
- Installed on the International Space Station (ISS)
- Target lifetime from 2018 2023
- Average revisit frequency of 3 5 days, BUT no mapping mission

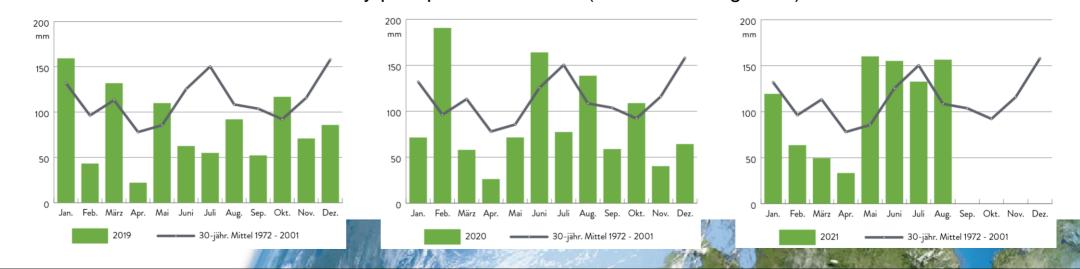

Parameter	Value
Spectral coverage	402 nm – 1000 nm
Spectral sampling	2.55 nm (w/o binning) ~ 10.2 nm (binning 4)
Ground sampling distance (GSD) at nadir	~ 30 m (depends on the flight altitude of the ISS)
Swath at nadir	~ 30 km (depends on the flight altitude of the ISS)

(K. Alonso et al., 2019)

DESIS Data of the **BFNP**

roduct	s Cov	erage	Area	s					
07		æ		~					
∎¢	۲	'n			:: Name	:: Acquisition Date	:: Cloud Coverage Per	:: Acquisition Time	:: Quality Rating
	۲	R	Ð	Q	DESIS-HSI-20190611T1	6/11/2019	From 50 to 75	15:32:56 GMT	Acceptable
	۲	R		Q	DESIS-HSI-20190611T	6/11/2019	From 75 to 100	15:33:01 GMT	Acceptable
	۲	R	Ð	Q	DESIS-HSI-20190612T	6/12/2019	From 0 to 25	11:29:42 GMT	Acceptable
	۲	R		Q	DESIS-HSI-20190612T	6/12/2019	Clear	11:29:47 GMT	Acceptable
	())	R		Q	DESIS-HSI-20190618T	6/18/2019	From 50 to 75	12:59:32 GMT	Acceptable
	())	R		Q	DESIS-HSI-20190618T	6/18/2019	From 25 to 50	12:59:37 GMT	Acceptable
		R		Q	DESIS-HSI-20190623T	6/23/2019	From 75 to 100	07:15:04 GMT	Acceptable
	()	R		Q	DESIS-HSI-20190623T	6/23/2019	From 75 to 100	07:15:09 GMT	Acceptable
	())	R	Ð	Q	DESIS-HSI-20190626T	6/26/2019	From 0 to 25	09:36:53 GMT	Acceptable
	۲	R		Q	DESIS-HSI-20190626T	6/26/2019	From 0 to 25	09:36:57 GMT	Acceptable
		B		Q	DESIS-HSI-20190627T	6/27/2019	Clear	05:33:36 GMT	Acceptable
	()	R		Q	DESIS-HSI-20190627T	6/27/2019	Clear	05:33:41 GMT	Acceptable
	۲	R		Q	DESIS-HSI-20190629T	6/29/2019	Clear	08:44:52 GMT	Acceptable
	۲	R		Q	DESIS-HSI-20190629T	6/29/2019	Clear	08:44:57 GMT	Acceptable
		R		Q	DESIS-HSI-20191027T	10/27/2019	From 25 to 50	08:53:24 GMT	Acceptable
	۲	R		Q	DESIS-HSI-20191027T	10/27/2019	From 0 to 25	08:53:29 GMT	Acceptable
	۲	R		Q	DESIS-HSI-20200422T	4/22/2020	Clear	10:35:05 GMT	Acceptable
	۲	R		Q	DESIS-HSI-20200422T	4/22/2020	Clear	10:35:10 GMT	Acceptable
		R		Q	DESIS-HSI-20200612T	6/12/2020	From 25 to 50	10:53:58 GMT	Acceptable
	()	R		Q	DESIS-HSI-20200612T	6/12/2020	From 0 to 25	10:54:02 GMT	Acceptable
	())	R		Q	DESIS-HSI-20200623T	6/23/2020	From 50 to 75	10:11:49 GMT	Acceptable
	4	100	F.	æ	DESIS-HSI-20200624T	6/24/2020	From 0 to 25	06:09:58 GMT	Accentable

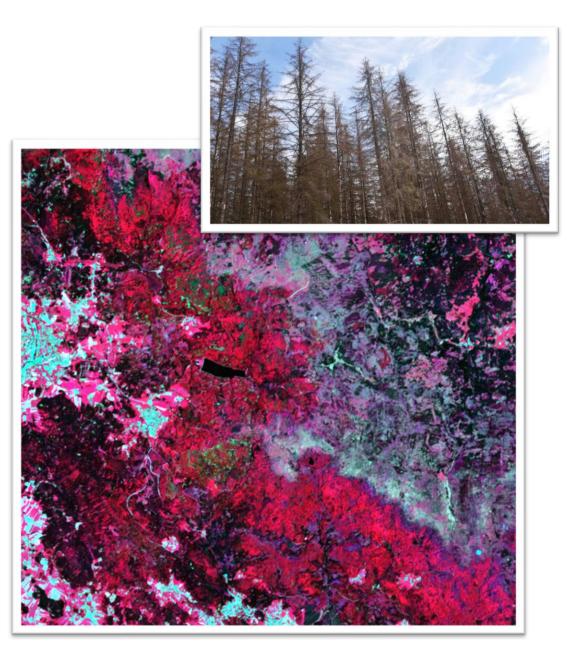
- 40 acquisitions from June 2019 October 2021
- 12 data takes with clear condition (incl. no haze and no contrails)
- 8 scenes with solar zenith angles < 50 degree
- 6 tiles without snow
- 2 dates with full coverage: 29.06.19 & 17.06.21


Observed Weather Extremes in the BFNP 2019-2021

2019:

- the third hottest year
- 350 millimeters less precipitation than average 2020:
- second lowest number of days with snow
- lowest number of days with sub-zero temperatures
 2021
- 20°C mark was exceeded in March for the first time

Effects on the National Park

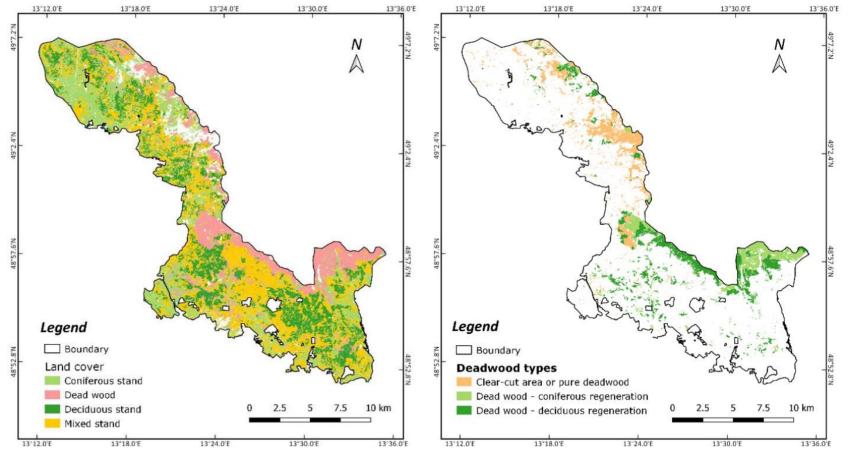

- \rightarrow increased emergence of bark beetle
- \rightarrow infestation of native spruce trees
- \rightarrow beech trees still cope with climate change

Monthly precipitation in BFNP (Jan 2019 – Aug 2021)

Research Questions

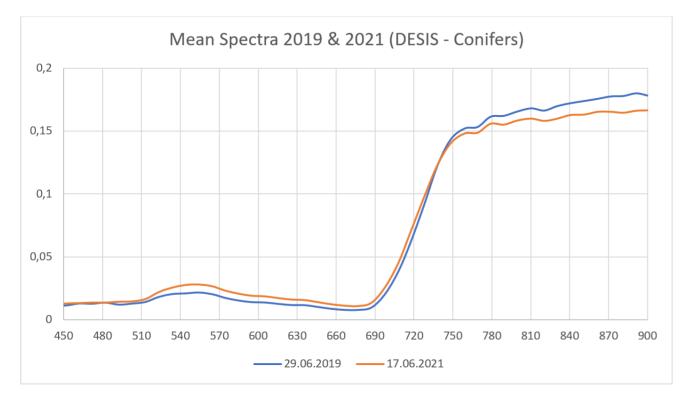
- How can DESIS data be used to observe changes in vegetation status over time?
- Which spectral index is most suitable to detect bark beetle infested trees in the National Park?
- Do the results add value compared to results obtained with Sentinel-2 data?
- Does the combination of DESIS and Sentinel-2 improve the accuracy of detected changes?

Supporting Data from the National Park


- Information on forest type
- Information on deadwood types
- Information on infestation year

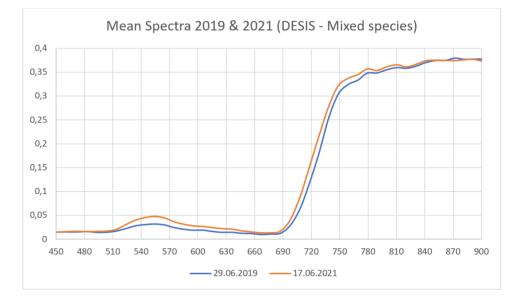
Concentrate analysis on coniferous areas

✓ Evergreen


- ✓ Less pronounced seasonal changes
- ✓ Link to bark beetle infestation

Validation data of the years 2020 and 2021




Spectral Changes 2019-2021

Mean Spectra 2019&2021 (S2 - Conifers)

Spectral Indices Selection

Structural

- Normalized Difference Vegetation Inf
- Green Normalized Difference Ved
- Specific Leaf Area Vegetation Index (Specific Leaf Area Vegetation)

Chlorophvll & RedEdge

- Used for further investigation: • Normalized Difference Red Edge Index (NDRE) - D & S2
- Photochemical Reflectance Index (PRI) D
- Modified Chlorophyll Absorption Ratio Index (MCARI) D
- Modified Red Edge Simple Ratio (MRESR) D
- Vogelmann Red Edge Index 1 D

Other Leaf Pigments

- Visible Atmospherically Resistant Indices Green (VIGreen) D & S2
- Carotenoid Reflectance Index 2 (CRI) D
- Anthocyanin Reflectance Index (ARI) D

Evaluation of DESIS derived indices

 \rightarrow potential for mapping barkbeetle infested areas

Results: Structural

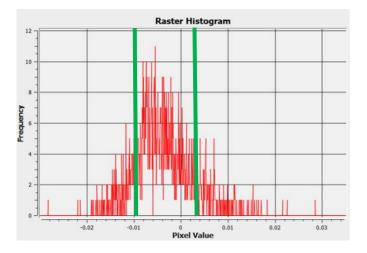
- Structural indices showed negligible differences
- Sensitive to background reflectance
- Difficult to interpret changes in conifers
- MCARI (DESIS) Combined Vegetation Index CVI (S2) [Hill et al. 2019] Potential for broadleaf canopy

Chlorophvll & RedEdae

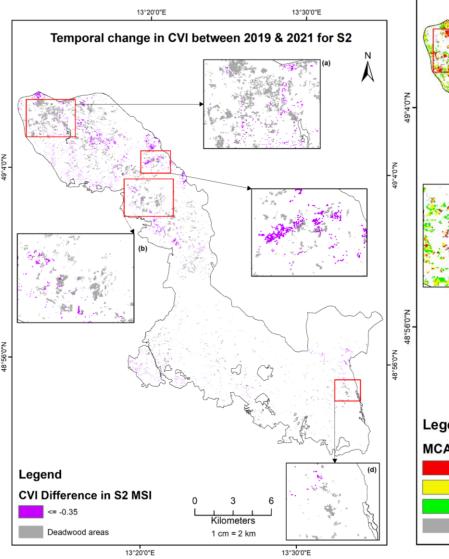
d indices that incorporates red edge range strongly

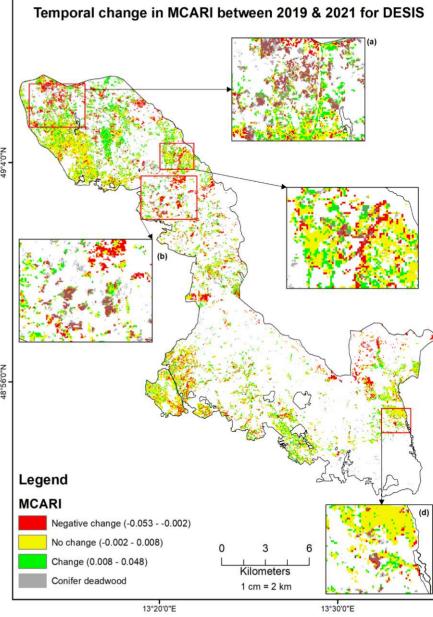
ffected infested/deadwood areas

s well


Results: Other Leaf Pigment

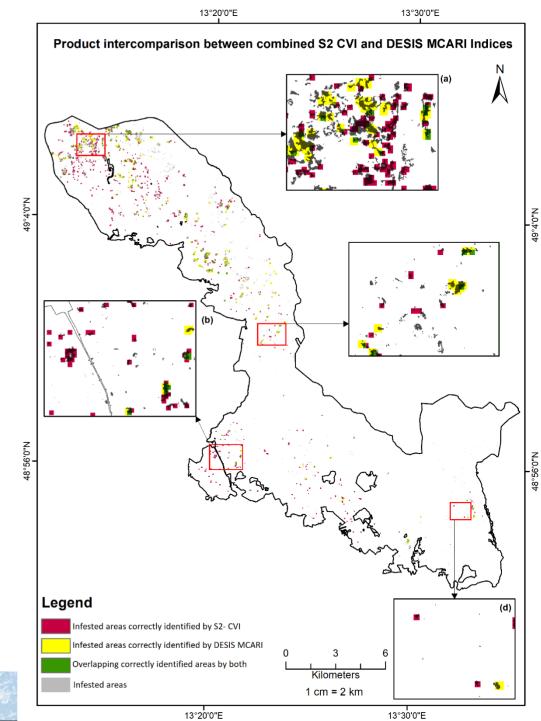
- Indices sparsely matched with the infested/dead regions
- Needle like leaves of conifers shows minimal variation



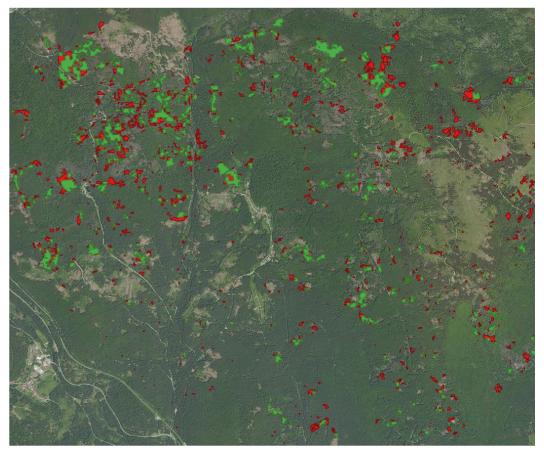

Temporal Changes

Differences in index values for infested regions

→ interactive threshold selection
→ aim: minimize false positives


13°20'0"E

Comparison / Combination of Results


- Matching pixel size to 30m and apply buffering to reduce geometrical mismatches
- Apply morphological operator "clump" to cluster connectivity

		Infested areas (number of polygons)			Number of correctly identified polygons		
All infested areas	3365			1269 / 38%			
Areas > 225 m ²	1439			685 / 48%			
Areas > 900 m ²	707			900 / 57%			
Areas > 2025 m ²	350		208 / 59%				
	Correctly identified (DESIS)		Correctly identified (S2)	Correctly identified (DESIS N S2)		Correctly identified (DESIS U S2	
All infested areas	49 9	%	50 %	45	%	54 %	
DLR					1 stelle	da de	

Conclusions

- DESIS data is suitable to detect changes in vegetation status over time also in *heterogeneous* natural forests
- Bark beetle infested areas can be detected with DESIS and Sentinel-2 (NO early warning!)
 - ✓ Biophysical indices (esp. RedEdge parameters) reflect vegetation stress
- Combined detection rate higher than individually

Barkbeetle infested area Correctly identified by DESIS and Sentinel-2

