
IMPLEMENTING A SYSTEM ARCHITECTURE MODEL FOR AUTOMATED
AIRCRAFT CABIN ASSEMBLY PROCESSES

Markusheska, Nastasija1,2 • Srinivasan, Venkatachalam2 • Walther, Jan-Niclas2 • Gindorf, Alex2 •
Biedermann, Jörn2 • Meller, Frank2 • Nagel, Björn2

Abstract

Aircraft manufacturers provide their customers with a number of options for aircraft customization, including a wide variety
of pre-qualified optional equipment from which they can select different components according to their requirements. The
numerous options cover a variety of engines, navigation systems, and interior cabin designs. This flexibility gives the
possibility to the airlines to differentiate their brands. Moreover, a unique cabin interior design leaves an enduring
impression on their customers and constitutes their expectations for the upcoming flight. On the other hand, many choices
result in many different specifications, long delivery periods, complicated installation procedures such as stopping the
running assembly of the cabin, disassembling already installed cabin components, and assembling new cabin models.
Therefore, aircraft customization increases the cost and the lead time of the aircraft manufacturing processes and thus
decreases the production rates. It is in the best interest of aircraft manufacturers and airlines to automate and optimize the
customization processes to make them more time and cost-efficient. This paper presents a method for establishing
reconfigurable and optimized scheduling for aircraft cabin assembly. The data necessary for calculating the optimal
schedule is retrieved from cabin system architecture that is built with semantic web language. The focus is on building a
system architecture ontology model for automated scheduling of assembly processes of an aircraft cabin, which opens up
the possibility for cabin customization at every assembly step. Moreover, the cabin ontology can be used as a foundation
for co-design where each expert of their branch can further upgrade the model. With the algorithm presented in this paper,
the ontology can be upgraded with new data, which will automatically correlate with the existing data in the cabin ontology.
The knowledge-based ontology model provides a view of the whole chain from design to realization and feedback links to
all included parties. Moreover, it gives the possibility for agile changes in the assembly sequence in response to the
updated demands of the clients.

Keywords: Aircraft cabin assembly • Robotics and Automation • Scheduling • Optimization • Semantic Web
Language

1. INTRODUCTION

The future factories need to operate in highly dynamic
environments with constantly evolving requirements
dictated by the market [1]. To meet these demands, the
manufacturers are in constant search of improvements. The
new requirements could manifest in varying production
rates, customized orders, reorganization of available
resources, etc. An essential step towards improvement is
the digitalization of the system architecture model. It
enables a fast reorganization of resources, reconfiguration
of production or assembly tasks, agile response to last-
minute reconfiguration, late delivery of resources, or
technological upgrades. Digitalization of the system
architecture model is a significant milestone for achieving a
digital twin, a virtual representation of the factories for
optimizing the designing, building, and manufacturing
processes, as the most promising research technology to
handle multi-discipline, multi-level, and multi-site processes
for aircraft production [2].
When a cabin is designed from scratch or changes in the
processes are introduced, the feasibility of the
manufacturing processes of the cabin parts and their
installation in the fuselage is not always guaranteed.
Instead, the analysis of the first manufacturing samples and
their installation in the fuselage is done manually in a
subsequent step. If problems appear, either the product
needs to be altered or the installation processes. Due to the

1 To whom correspondence should be addressed: E-mail nastasija.markusheska@dlr.de; VoIP: +49 40 248 9641 384
2 Deutsches Zentrum für Luft- und Raumfahrt Forschung e. V. (DLR), Institute for System Architecture in Aeronautics, Hein-Saß-Weg 22, 21129 Hamburg,

Germany

lack of automation, altering the product or the installation
step is usually very time-consuming [3]. Therefore, a digital
model and method are needed that enable a complete
overview from the design stage to manufacturing.
Furthermore, the feedback data from the manufacturing
stage is made available digitally to all the stakeholders,
which increases the knowledge upstream and thus
accelerates the development cycles.
This paper presents a methodology for developing a cabin
ontology as a digital knowledge-based format for storing
and organizing technical information about the aircraft
cabin. Furthermore, it is presented the application of the
ontology in an algorithm for optimal and automatic
scheduling and rescheduling of cabin assembly processes
of an aircraft cabin. Section 2 gives an overview of the
research made in the area of ontology design for assembly
processes. Section 3 presents a method for implementing
an aircraft cabin assembly ontology into an algorithm for
optimal scheduling the assembly and disassembly and
reconfiguration of the aircraft cabin. Section 4 presents
more details about parsing the data from the ontology
model for automatic scheduling the assembly processes.
The concluding remarks of the presented research and
future perspectives are highlighted in Section 5.

mailto:nastasija.markusheska@dlr.de
https://orcid.org/0000-0001-5738-658X
https://orcid.org/0000-0001-8076-9853

2. RELATED WORK ON ONTOLOGY DESIGN

By definition, an ontology is a data set containing structured
knowledge about a particular subject domain [4]. Moreover,
it uses common, agreed-upon vocabulary with defined rules
and constraints to explicitly represent processes and
automatic reasoning to infer knowledge from the entered
data and detect inconsistencies. Ontologies as a
knowledge-based dataset have become an important
segment of so-called “intelligent” processes, which offer
more flexibility, efficiency, and cost-effectiveness due to the
possibility for inter-dependency between experts,
machines, and applications [5]. Based on the specified
vocabulary, an algorithm is developed in this research
paper that interprets the rules and constraints to
automatically and optimally plan the designated processes.

In literature are introduced several approaches for
modelling an ontology. In [6], a skill description model is
presented, which describes the programming of assembly
systems by specifying the input and output variables. The
model is based on five essential skills: change, compare,
connect, move and store. The skills are further sub-
classified into attributes, ID, inputs, interfaces, name, and
output. However, this method is not addressing the
reconfiguration of the resources.

The paper [7] presents an ontology where the data is
divided into three different classes: product, processes, and
resources. A list of resources executed in a process defines
that process, and a list of required processes executed for
manufacturing a product defines the products. The ontology
is built to match the product requirements and resource
skills. The method is based on three different classes:
product, processes, and resources.

In [8] is described a research framework for supporting
modular architecture designs for aerospace engineering
ontologies. Their framework is divided into three main parts.
The first part is the ontology design based on the studies
presented in [9] and [10], the second part is ontology
validation, and the last one is structuring the ontology
knowledge and implementing it in a product-design
information platform. Their ontology modelling is based on
the identification and representation of low-level
relationships between instances and concepts instead of
high-level relationships between the different concepts.

In [11] is presented a new ontology-oriented programming
module for Python. Moreover, it is given a comparison
between previously available ontology programming
interfaces. Among them is the SPARQL [12], a query
language and the OWLAPI [13], which both are not as easy
to apply as an object-oriented programming language.
Therefore, they have developed the Python
package Owlready, which has simpler syntax, but it is
significantly compacter. Today there is an available newer
version of the module, namely Owlready2 [14], which is also
used for developing the methodology presented in this
paper. The decision was made based on the analysis
presented in the previous paper [11].

In [15] is presented a novel method for semantic modelling
of architectural design space called Architecture Design
Space Graph (ADSG). In the system architecture are
implemented three types of architectural decisions, and
those are function-component mapping, component
characterization and component connection. The
components which fulfil the functions are the ones included
in the architecture. If there are more components that could

fulfil the same function, then a design choice has to be
made. In the next step of the design process, the
components are characterized by their number of instances
and attributes. In the final step, the components are
interconnected with formal relationships, modelled using
ports. Moreover, the presented method is demonstrated by
finding architectural decisions for the Apollo mission [16] .
The European Commission founded this innovation project.

The following section presents trivial Cabin Assembly
Ontology (CAO) for evaluating the outcome of using
ontologies for optimal planning and reconfiguration of
aircraft cabin assembly processes. This research is part of
the leading research topic, Model-Based System
Engineering (MBSE) at the Institute of System,
Architectures in Aeronautics at the German Aerospace
Center (DLR-SL). The aim is to create a digital twin of the
complete processes for aircraft development from the
conceptual stage to operation.

3. CABIN ASSEMBLY ONTOLOGY MODEL

A Digital Twin of an aircraft represents an exact digital
representation of the physical system with its processes
and services. It will save valuable time and resources for
developing new concepts, and a priory can identify possible
errors or drawbacks [17]. The digital thread enables the flow
of information between all the sectors of the digital twin [18].
The beginning of the digitalization on any engineering
project is to gather technical information about the
components. Under technical information is considered all
the data about their mechanical electrical properties and the
interfaces the components need or provide. Instead of
using the standard PDF (Portable Document Format) for
storing and sharing data, ontology format is preferred as a
machine-processable form [19]. First of all, it will eliminate
the possibility of misinterpretation of the data in the PDFs.
Second, the data will be available in a format that many
computer tools use and can be shared and stored.

3.1. Principles for creating system architecture
for automated cabin assembly processes

In the future, aircraft manufacturers are looking to
implement more digital, agile and thus more effective
production methods, allowing them to plan the complete
processes from the conceptual stage to manufacturing and
assembly and feed information back to the conceptual
stage [20].

Figure 1 - Workflow of Aircraft Cabin Assembly System

In Figure 1, the schematic of such a structure is depicted,
which is described further in this section. The Aircraft Cabin
Assembly System (ACAS) is the leading segment of the
overall process. It consists of several steps: Computer-
aided Design (CAD) models, Common Parametric Aircraft
Configuration Schema (CPACS) for design validation [21],
System architecture of aircraft cabin and Assembly Process
Planning.

Aircraft cabin design engineers develop the new cabin
designs and store their work in CAD files. CPACS is a
central data model which enables engineers an
interdisciplinary collaboration between decentralized
Multidisciplinary Design Optimization (MDO) of air transport
systems [22]. Structured data sets written with the
Extensible Markup Language (XML) [23] as open standard
computer-processable language are used for developing
aircraft cabin ontology. The modelling approach in CPACS
from the XML data is called middle-out approach as a
combination of top-down and bottom-up hierarchical
structure [22]. Furthermore, a geometric library TiGL [24] is
developed, that translates the parametric description of the
aircraft into three-dimensional space (see Figure 2).
Additionally, the parameters of the aircraft geometry could
be modified or newly created [25].

Figure 2 – Cabin section of short distance passenger
plane in TiGL viewer

The next block in the structure (Figure 1 - Workflow) is the
System Architecture of an aircraft cabin. It holds information
about the properties of the aircraft cabin and the cabin parts
needed for scheduling the assembly processes. For
instance, the size of a sidewall panel, its storage location,
and assembly location are some of the properties stored in
the aircraft cabin's system architecture. Semantic modelling
is used for creating an interpretive and interactive cabin
system architecture. For example, the instances in the
model are classified according to their properties that match
to specific class's properties. Therefore, the inheritance in
the model is flexible and compact.

The Assembly Process Planning section collects and
analyzes the information of the aircraft cabin system
architecture to determine the optimal schedule for the
assembly processes of the aircraft cabin. The global
assembly sequence is stored in the model of the aircraft
cabin architecture, and is modified to fit the requirements,
avoid constraints and optimally use the available robot
resources. Simulation is an essential part of this section
because a simulation does feasibility analysis for the robot
motion required for the assembly processes (Figure 3). The
[26] presents a use-case for simulation of assembling an
aircraft cabin and the collection of the meta-data for the
feedback loop into the system architecture of cabin
assembly.

Figure 3 - Blender simulation of preassembling double
window sidewall panels [26]

ACAS is a digital approach for designing an aircraft cabin,
validating the model and scheduling the assembly

processes. The digital thread between the elements of the
ACAS is an essential medium for exchanging, recording
and storing data. Moreover, it provides substantial and
time-effective access to data necessary for calculating the
consequences of the changes from one component to any
other component in the cabin. For example, changes in the
dimensions of a cabin sidewall panel can be validated, and
this change can be updated in the cabin architecture and
automatically recalculated its assembly positions.

The main goal of ACAS is to assist the aircraft
manufacturers in optimizing the utilization of their assembly
plants by monitoring every step and all the assets in the
processes [27]. The presented approach in this paper
focuses on proving the ontology model, which is a practical
solution for creating a cabin system architecture. It can be
implemented into an algorithm for optimization of the
schedule for aircraft cabin assembly processes.

The following block is the execution block which represents
the physical execution of the modelled cabin assembly
processes. For the validation of the proposed method, a
scaled-down demo will be performed in the near future.
There is a preassembly line with three robots at the DLR
Institute of System Architectures in Aeronautics. Two
robots, an Universal Robot Ur10e and a Bosch APAS are
mounted on a linear axis, and one mobile robot Kuka KMR
Iiwa is also available for transferring components from the
preassembly line to the cabin mockup (Figure 4).

Figure 4 - Preassembly station at DLR Hamburg for
validating the methodology

The feedback connection from the production plant to
ACAS is another crucial element of the procedure. This
block provides information from all sensors deployed in the
assembly station, such as cameras, laser sensors and the
robot location and orientation sensors. Furthermore,
information about all assembled aircraft components, the
assembly time and possible occurrences of error signals
during run time is fed back. The data will be applied in future
to assess the quality of the assembly processes and
compare simulated assembly with actual execution of the
assembly processes. Moreover, the feedback data is
necessary for automatic assembly process reconfiguration.
Sometimes, due to “last-minute” customization demands on
the cabin design, rapid reconfiguration of the assembly
processes has to be performed. Necessary changes to the
processes might include a reallocation of resources,
removal or replacement of cabin components or changes in
production rate. Modifying the ontology with the feedback
data from the Internet of Things (IoT) [28] devices can
quickly overcomplicate the model. Therefore, introducing a

SQL [29] database server into the method could be a
practical solution for storing feedback data like sensor’s
reading, camera output, and instances of every
preassembled or installed part in the cabin with more
detailed data. With the SQL server on the feedback link, the
ontology would not be overpopulated with data, ensuring a
transparent system architecture for cabin assembly
processes.

With this approach, the information and constraints for the
assembly processes are easily obtainable from the aircraft
cabin system architecture. Moreover, all cabin assembly
processes are designed to be flexible and efficiently
reconfigurable, as presented in Section 4. Additionally, this
algorithm is designed to allow the customers to reconfigure
the cabin according to their wishes even during later stages
of the aircraft production (see Section 4.2.1).

The following section focuses on the system architecture
and assembly process planning blocks and how they
interlink and contribute to the complete intelligent aircraft
cabin assembly process planning.

3.2. System architecture for cabin assembly

To abstract and interpret the system architecture of cabin
assembly stations, an ontology model is created with one
of the standards of Semantic Web Technology, namely
Web Ontology Language (OWL) [30]. The ontology is a
knowledge-based model in a disclosed domain, where the
classified instances are described with properties and
axioms. Moreover, OWL offers the possibility for automatic
reasoning of the acquired data based on the defined axioms
and properties for generating a logical interface between
the data in the model.

3.2.1 Class definition

When modelling ontology, there are no strict rules of what
should be defined as a subclass of a class and what should
be defined as an instance of a class. However, a good
practice is to define classes that describe the concept of the
domain [31]. Therefore, the central system classes defined
in the proposed model are (see Figure 5 –):

• Resources

• Assembly Stations and,

• Robots.

Subclass k

RESOURCES

ROBOTS

ASSEMBLY STATIONS

Is used in

is used for

assembling in

Needs robot

Subclass

Subclass m

Object1

Object n

properties

properties

properties

properties

Subclass

Object1

Object n

propertiesSubclass

Subclass l

Object1

Object o

properties

properties

properties

properties

properties

properties

properties

properties

in this station

is assembled

properties

properties

Figure 5 – Sample for domain declaration of aircraft cabin
assembly sequence

3.2.2 Defining instance properties

Once they are defined, the model is refined in a taxonomic
hierarchy (classes – subclasses - instances). In the next
step, semantic-annotated properties are specified for
defining different class axioms. The primary relations
between the system classes are created with the following
instance properties:

• ”is used for assembling in”

• “needs robot”

• “is used in”

• “in this station is assembled”

For example, the following axiom defines that some robots
are needed in the assembly station:

• Assembly Station → needs robots → some
Robots

Outfitting Station RESOURCES

ASSEMBLY STATIONS Seats

Carpet

Furnishing Station

in this station is

assembled

Cover Lights

System Instalation Station

Dado Panels

PSU

Hatrack

subclasses

Ceiling Panel

Sidewall Panel

Brackets

Side Blanket

Air Pipeline

Electric Frame

subclassesin this station is

assembled

in this station is

assembled

next resource to

 be assembled is

next resource to

 be assembled is

next resource to

 be assembled is

next resource to

 be assembled is

next resource to

 be assembled is

next resource to

 be assembled is

next resource to

 be assembled is

next resource to

 be assembled is

next resource to

 be assembled is

next resource to

 be assembled is

next resource to

 be assembled is

next resource to

 be assembled is

Figure 6 – Segment of a cabin assembly sequence

Moreover, the axioms represent the objective and the
constraints of each cabin assembly process.

In the Web Ontology Language (OWL) [30], here are two
kinds of properties: instance properties and data properties.
To illustrate, blue arcs, which represent an instance
property “in this station is assembled,” are depicted in
Figure 6. The defined axiom for the class “Furnishing
Station” is:

• Furnishing station → in this station is assembled
→ some Seats and some Carpet

This axiom describes the objective of the furnishing station
from the cabin assembly processes.

The orange arcs represent another instance property “next
resource to be assembled is”. This property is used to

describe constraints. For example, the carpet has to be
mounted before installing the seats in the aircraft cabin in
the furnishing station. This is demonstrated with the
following axiom (Figure 6):

• Carpet → “next resource to be assembled is” →
some Seats

3.2.3 Defining instances and data properties

In an ontology model, the instances of a class could also be
an instance of another class. The reasoner classifies the
instances according to the defined properties and axioms
[31]. The different models of aircraft cabin parts, such as
“Classic sidewall panel”, are defined as instances of the
class Sidewall Panels in the ontology presented here.
Because they are used in an assembly station, the reasoner
will classify the instance “Classic sidewall panel” also as an
instance of the specified class Assembly station. In Figure
7, the instances from the “Double Window Sidewall” class
are depicted in purple. They all have the exact dimensions
and assembly constraints but differ in decorative foils. This
information is modelled with another type of property called
data property.

Figure 7 – Sample of class instance from aircraft cabin
sidewall panel visualized in OntoGraf [32]

They could be of a type integer, float, bool, string, date or
time. In the ontology presented here, the defined data
properties are the following:

• Size

• Initial Position with respect to global coordinate
system

• Delta position for the next component installation

• Total time for installation in the aircraft cabin

• Conditions for installation in the aircraft cabin

• Number of available parts

• Number of installed parts

• Storage location
These properties are necessary for calculating the time-
optimal schedule of the assembly processes and for agile
rescheduling of them. The fundamental properties are also
stored in the standard file format CPACS.

3.2.4 Defining axioms

Axioms are expressions used for autogenerating
relationships between different classes and instances [33].
In the ontology presented in this paper, axioms are used to
classify the data. For example, when the ontology is
populated with a new set of sidewall panels, instead of
checking every class if the sidewall panel should be an
instance of the specific class, axioms make the selection
automatically. For writing the axioms was chosen the
Semantic Web Rule Language (SWRL), which is a
combination of OWL sublanguages and Rule Makeup

Language (RuleML) [34]. Examples of the axioms defined
in the ontology model are the following:

• Sidewall_panel(?s) ^ has_design(?s,
Custom_design) -> Custom_design_class (?s)

• Sidewall_panel(?s) ^ has_design(?s, Double
windows) -> Double_Windows_Sidewall_class
(?s)

With the help of these axioms, the sidewall panels that have
Custom design and have two windows will be automatically
sorted as part of both classes: Custom design and Double
Windows Sidewall. This approach reduces the possibility of
human error and time for arranging the data.

As already mentioned in this paper, there are no strict rules
for designing an ontology, but it is designed regarding the
demands of the application. Therefore, the presented
ontology is designed to satisfy the needs for scheduling an
automatic and agile aircraft cabin assembly. For example,
for assembly sidewall panels, the model has information on
when to start the process, the storage location, the
installation location, how long it needs to be executed, and
which robot will assemble the sidewall panel.

4. CABIN ASSEMBLY PROCESS PLANING

The proposed ontology model encompasses all necessary
aspects for demonstrating the automatic scheduling of an
aircraft cabin assembly processes. Over the years, the
introduction of industrial robots into assembly processes
often yielded improved results in terms of speed and quality
[35]. Therefore, in this paper, the proposed method is
validated with three uses cases where robots are deployed
for the assembly tasks.

The two main challenges that are presented in the method
are time reduction of the assembly processes (Section 4.1)
and enabling agile customization processes (Section 4.2).
In other words, this method enables agile reconfiguration of
the cabin assembly processes at a later stage according to
the customer requirements for new cabin design. It
automatically optimizes the assembly processes' execution
schedule to improve the utilization of the available
resources.

4.1. Time-optimized scheduling of assembly
processes

The proposed method for developing an ontology aims to
optimize cabin assembly and reassembly schedule.
Changes in the schedule are necessary due to new cabin
design changes and resources or tool availability. For
example, if a robot is programmed to service just one task,
such as assembling sidewall panels, and if the robot needs
to be serviced, it will result in delays. On the other hand, if
the robots are programmed flexibly to service different
tasks, the assembly could be rescheduled with the available
robots. Programmed flexibly, it might imply that the robots
should be programmed with all the possible scenarios that
could happen in the assembly line, which is impractical and
unrealistic. First of all, it is implausible that the engineers
could foresee all the future changes in the complete
assembly procedure. Second, programming manually all
the scenarios with all the positions where the robots need
to pick and assemble different cabin parts would cost a lot
of time and effort. Moreover, the aircraft cabin design is

3 The given information is trivial (it is not recorded from the physical
system)

often upgraded and alternated according to the customers'
requirements. Therefore, the purpose of this algorithm is to
decrease the time and effort required to adjust the
assembly station according to the available resources,
requirements and changes in the design. The availability of
the robots in the assembly station has a substantial impact
on the lead time. Therefore, this paper presents an
application case in which only three types of aircraft
components are installed in the outfitting station (Figure 6).
The algorithm plans the assembly sequence of the cabin
components using two and three robots. For comparison,
are given the time flow charts of the optimized and not
optimized schedule for assembling processes.

The required cabin components (Figure 8) for the assembly
processes in the application case are:

a) 4 x sidewall panels

• Conditions: finished system installation.

• Total time for installation is 3-time units3.
b) 3 x linings between sidewall panels.

• Conditions: two sidewall panels have to
be assembled so the robots will not
collide. For example, the lining b1 can be
assembled after sidewall panels a1 and
a2 are assembled.

• Total time for installation is 2-time units3.
c) 4 x ceiling panels

• Conditions: one lining between panel
have to be assembled so the robots will
not collide. For example, the ceiling panel
c1 can be assembled only after the lining
b1 is assembled.

• Total time for installation is 3-time units3.

Figure 8 – Cabin lining components for assembly with
different number of robots

The conditions in the ontology are stored as instance
properties. From Figure 6, it can be observed that the cabin
parts have to be assembled in a specific order:

• Sidewall Panel → Lining between Sidewall Panel
→ Ceiling Panel

If only one robot is available for assembly, then all the
components are going to be assembled sequentially. Figure
9 illustrates the time flow chart for this case. The figure
shows that the execution time will not be reduced when
three robots are engaged in the processes if they do not
execute the assembly processes in parallel when possible.

However, the cabin assembly could be accelerated by
reprogramming the robots to execute different processes
flexibly. In cases where one robot has finished assembling
one type of component, it could be reassigned to assemble
another. Instead of manually reprogramming the robots, it
could be done through the algorithm, which takes all the
required information about the assembly processes from
the cabin ontology.

Time flow chart

The robots are not programmed to do flexible task exection

R
ob

ot
 1

R
o

b
o

t
2

R
ob

ot
 1

Le
ge

nd
:

30Time steps 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 292

30Time steps 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 292

c1 c2 c3 c4Robot a1 a2 a3 a4

The robots are not flexiable in the task execution

b3b2b1

Robot 2

Robot 1 a1 a2 a3 a4

b3b2b1Robot 2

Legend
Sidewall Lining Ceiling
Panel Panel

Robot 3 c1 c2 c3 c4

Figure 9 - Time flow chart of the cabin assembly
processes before optimally scheduling

The primary constraint for parallel execution of the
assembly processes is that two or more robots cannot
assemble different components at the exact location. The
location constraints are presented in Section 4.1 a), b) and
c) for each cabin component expressed in time units.

The Owlready2 Python Package [4] is applied to parse the
information from the ontology and make it available to the
algorithm for optimal planning of cabin assembly
processes. The algorithm presented below (see Figure 10)
is an abbreviated version of the complete algorithm in order
to present the procedure of assembly planning.

Read constrains
for assembly

If Robot is
available:

Start

Cabin System
Architecture

Process a:
Sidewall

Panel

Process b:
Lining

between
Sidewall
Panles

Process c:
Ceiling Panel

Process a:
OK

Process b:
Num(b) + 2
<= Num(a)

Process c:
Num(c) <C

Read Cabin
components for

assembly

Process a:
OK

Process b:
Num(b) + 2 <=

Num(a)

Process c:
Num(c)

<Num(b)

Num(a)= + 1 Num(b)= + 1 Num(c)= + 1

Are all Sidewall
Pannels

assembled?

Are all Linings
Pannels

assembled?

Are all Ceiling
Pannels

assembled?

Next step

Is Robot is
working on
assembly?

Assembly
Sequence

NO

NO NO NO

YES
YES

YES YES YES

Figure 10 – Algorithm I: Optimization for scheduling cabin
assembly sequence

The algorithm in Figure 10 starts with reading the aircraft
cabin system architecture data. At first, it parses which
cabin components need to be assembled and what is the
initial sequence, later it parses the constraints for
assembling the components. If the required cabin parts are
available and the robot is available, the assembly of the first
cabin part will start. Since only the condition for assembling
sidewall panels is fulfilled, the algorithm will start with
assembling the first sidewall panel a1 (see Figure 8). When
two sidewall panels, a1 and a2, are already assembled in
the cabin, the algorithm will allow assembling the first lining
b1 between the two assembled sidewall panels. After the
lining b1 between the sidewall panels a1 and a2 is
assembled in the cabin, the first ceiling panel c1 could be
assembled. When two robots are available, sidewall
panels a1 and a2 are going to be assembled
simultaneously (see Figure 11 and Figure 12) and if three
robots are available, sidewall panels a1, a2 and a3 are
assembled simultaneously (see Figure 13). In Figure 11,
after time slot 11, Robot 2 has finished assembling the
sidewall panel a4, and it needs to wait for two-time units. It
is not allowed a simultaneous assembly of the third lining
between the sidewall panels b3 and the third ceiling panel
c3 due to location constraints. In the presented use case, it
is relatively manageable for a person to make the schedule
for the assembly of the cabin parts considering the given
constraints. However, when the use-case is extended for
assembling the complete aircraft cabin, the task of creating
the schedule becomes significantly more complex and
challenging. Therefore, this algorithm is needed as part of
the digitalization of assembling an aircraft cabin. This
algorithm will automatically read the necessary data from
the cabin system architecture and create the schedule for
time-optimally assembly. In this way, manually scheduling
the complete assembly with the method trial-and-error will
be avoided.

Time flow chart

R
o

bo
t

2
R

o
bo

t
1

Le
ge

n
d

:

30Time steps 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 292

Legend

Robot 2

Robot 1

Sidewall Lining Ceiling
Panel Panel

a1

a2

a3

a4c1

c2 c3

c4

b3b2

b1

Figure 11 - Time flow chart of the cabin assembly
processes after optimally scheduling with two robots
(Scenario 1)

Time flow chart

R
ob

ot
 2

R
ob

ot
 1

Le
ge

n
d:

30Time steps 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 292

Legend

Robot 2

Robot 1

Sidewall Lining Ceiling
Panel Panel

a1

a2

a3

a4 c1

c2

c3

c4b3

b2

b1

Figure 12 - Time flow chart of the cabin assembly
processes after optimally scheduling with two robots
(Scenario 2)

Time flow chart
R

ob
ot

 2
R

ob
ot

 1
Le

ge
nd

:

30Time steps 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 292

Robot 2

Robot 1 a1

a2

a3

a4

c1

c2

c3

c4

b3

b2

b1Robot 2

Legend
Sidewall Lining Ceiling
Panel Panel

Robot 3

Figure 13 - Time flow chart of the cabin assembly
processes after optimal scheduling with three robots

4.2. Reconfiguration of assembly and
disassembly aircraft cabin processes

This section demonstrates the benefit of applying ontology
modelling for dynamic and reconfigurable cabin assembly
processes. Reconfiguring the cabin assembly processes
can become necessary due to frequent customization
demands, the introduction of new cabin products,
disassembling some cabin parts or retrofitting. When the
assembly processes are digitalized, the digital thread
provides a constant flow of information between the actual
assembly processes and their digital representation. This
information is used in the algorithm for automatic
reconfiguration of the cabin assembly. Reconfiguration of
the processes could be requested at any time step, hence
it could not be foreseen, and every time could be different.
The first necessary information is to know which parts are
assembled in the cabin and then analyze which parts need
to be disassembled to assemble the new requested ones.
A manual reconfiguration is a complex and time-consuming
task. Alternatively, the reconfiguration algorithm can
automatically recalculate the disassembly and reassembly
of the aircraft cabin.

4.2.1. Scheduling a disassembly processes for
cabin reconfiguration

To demonstrate the flexibility of the designed ontology and
the developed method is used the same scenario as in
Section4.1, where two industrial robots assemble the cabin
components. This application case aims to demonstrate
automatic reconfiguration of the assembly sequence when
a reconfiguration of the cabin is demanded during run time.
It is important to note that the disassembly sequence is
stored in the system architecture of the aircraft cabin, but it
is reversed from the assembly sequence from Section 4.1
(see Figure 6), and it is following:

• Ceiling Panel → Lining between Sidewall Panel →
Sidewall Panel

The following properties are specified for the use-case
which demonstrates the disassembly process plan of cabin
parts:

a) 4 x ceiling panels

• Conditions: received command for
disassembling

• Total time for disassembling is 3-time
units3.

b) 3 x linings between sidewall panels.

• Conditions: two ceiling panels have to be
disassembled so the robots will not
collide. For example, the lining b1 can be

disassembled after ceiling panel c1 and
c2 are disassembled.

• Total time for disassembling is 2-time
units3.

c) 4 x sidewall panels

• Conditions: the lining between the
sidewall panel has to be disassembled.
For example: to disassemble sidewall
panel a2, the linings b1 and b2 have to
be previously disassembled.

• Total time for disassembling is 3-time
units3.

Read constrains
for assembly

If Robot is available:
DISSASEMBLE

Start

Cabin System
Architecture

Process a:
Sidewall

Panel

Process b:
Lining

between
Sidewall
Panles

Process c:
Ceiling
Panel

Process c:
OK

Process b:
Num(b) + 2
<= Num(a)

Process a:
Num(c) <C

Read Cabin
components for

assembly and
invert

Process c:
OK

Process b:
Num(c) >=

Num(b)

Process a:
Num(b) + 2 >=

Num(a)

Num(c)= - 1 Num(b)= - 1 Num(a)= - 1

Are all Sidewall
Pannels

dissassembled?

Are all Linings
Pannels

dissassembled?

Are all Ceiling
Pannels

dissassembled?

Next step

Is Robot is
working on
assembly?

Dissassembly
Sequence

NO

NO NO NO

YES
YES

YES
YES YES

Stop for
dissasembly

Reverse the
process

DISSASSEMBLE

Reduce the
counter for

the
processes

Figure 14 – Algorithm II: Optimization for scheduling cabin
disassembly sequence

The algorithm for disassembling is depicted in Figure 14,
and it is designed to interrupt the assembly processes and
automatically reschedule the processes for disassembling
the needed cabin components. For planning the
disassembly processes, the initial sequence is
automatically reversed from the assembly sequence, but
the conditions are changed, and the task of the robot is to
remove the cabin parts of the fuselage. Instead of reviewing
and changing all the conditions manually, the algorithm
does that task automatically and arranges a new schedule
for disassembling.

An example of the disassembly with two robots is presented
in Figure 15. A signal for disassembling the cabin
components is received. The signal is received after the
eighth time step is finished (red vertical line in Figure 15).
Next, the execution sequence for assembling the three
aircraft cabin components is reversed. The first
disassembled component is the ceiling panel c1. Since two
robots are deployed in this process, the robot assembling
the sidewall panel a4 currently disassembles it. Even if a
third robot was available, it would need to wait because the
condition for disassembling the lining between the panels
b1 is not fulfilled. The procedure finishes with
disassembling all required cabin components. This state of
the cabin is fed back to the aircraft cabin architecture, and
it can be used for scheduling new assembly with other cabin
components.

Time flow chart
R

ob
ot

 2
R

ob
ot

 1
Le

ge
nd

:

30Time steps 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 292

Legend

Robot 2

Robot 1

Sidewall Lining Ceiling Stop
Panel Panel signal

a1

a2

a3 a4

c1b1

a4 a3 a1

a2b1c1

Figure 15 – Time flow chart of cabin disassembly
processes with two robots

The proposed method for designing an ontology model in
combination with the developed algorithm demonstrates
reversibility with minimal human effort for scheduling time-
optimal disassembly sequences.

4.2.2. Reconfiguration of cabin assembly
processes

Reconfiguring the assembly processes to add new
elements to the assembly sequence is an important
attribute of the proposed methodology for agile
rescheduling cabin assembly processes. When a new cabin
component is added to the cabin design, the assembly
sequence needs to be adjusted accordingly. This section
has presented the algorithm's logic that automatically
reconfigures the cabin assemble sequence. Necessary
information for the new cabin components are the following:

• Which cabin components has to be assembled?

• Which cabin components must not be assembled?

When this information is available, the algorithm will
automatically arrange and adjust the assembly sequence in
the cabin system architecture. In Figure 16 the initial
process chain is depicted. The yellow arcs represent the
property “next for assembling is”, and the orange ones
represent the property “before is assembled” (see Figure
16). Another element A2.1 is introduced, and it needs to be
assembled after element A2 but before element A3. For that
purpose, its properties for assembling are defined as:

• A2.1 → “next for assembling is” → some A3

• A2.1 → “before is assembled” → some A2

The algorithm for reconfiguration the assembly processes
inspects the properties of the classes that are part of the
definition of the class A2.1. Moreover, the algorithm
inspects, which of their properties need to be removed, for
the new element to be placed in the correct segment of the
assembly sequence. For this reason, the algorithm inspects
if the classes A2 and A3 have common properties with the
class A2.1. First, it is inspected if the class A3 is defined
with the property “before is assembled”. From Figure 16,
the following definition can be observed:

• A3 → “before is assembled” → some A2

This definition is deleted and it is replaced with:

• A3 → “before is assembled” → some A2.1

Figure 16 – Example of the initial cabin assembly
sequence visualized in OntoGraf

Figure 17 – Example for reconfiguration of the initial cabin
assembly sequence visualized in OntoGraf

The second inspection is checking if this class A2 is defined
with the property “next for assembling is”. From Figure 16,
the following definition is taken:

• A2 → “next for assembling is” → some A3

This definition is also deleted and replaced with:

• A2 → “next for assembling is” → some A2.1

As the result of the algorithm, the new class is appended in
the correct position of the assembly sequence (Figure 17).
This method offers simple reconfiguration of the ontology
without analyzing and rearranging the complete cabin
assembly architecture manually.

In conclusion, this methodology demonstrates to be
suitable for time-optimal assembly reconfiguration without
the need for a more in-depth and long examination of the
overall procedure.

5. CONCLUSION

This research study proposes a method for ontology-based
modelling of aeronautical system architectures (Section
3.2). The method demonstrated the two significant
advantages of using ontologies for automatically optimizing
the scheduling of cabin assembly. The first one is that
semantic web language had proven to be an appropriate
choice for creating an ontology for aircraft cabin assembly.
Moreover, the ontology can be implemented in an optimal
time scheduling algorithm that agile and automatically
reschedule the cabin assembly processes and reduces
unnecessary expert’s effort. Customized aircraft cabins
cannot be foreseen and pre-scheduled, therefore the
aircraft manufacturers need to interrupt the serial
production processes and reschedule it. Manually

rescheduling the assembly processes is a complex and
time-consuming task. The second advantage is that
ontologies connect various pieces of knowledge and
perform logical reasoning for inferring new knowledge from
the present data. This feature enables reconfiguration of the
system architecture for an aircraft cabin assembly. At the
beginning of this paper, an ontology model is introduced,
which follows the general guidelines for designing
ontologies. The model is designed to accurately abstract
and model the system architecture for cabin assembly.

Moreover, this study presents an algorithm for parsing
ontology data and using it for computing time-optimal cabin
assembly sequences. The given application cases prove
the concept for ontology-based scheduling of cabin
assembly and disassembly processes. The time flow charts
in Section 4.1 illustrate the potential of schedule
optimization, a result of optimizing the schedule of an
assembly process with an execution time of 30-time units

(Figure 9) to 16-time units (Figure 11 and Figure 12) or

11-time units (Figure 13). This is a significant reduction of

the time for assembling the cabin, due to the number of
engaged robots and the algorithm for synchronizing the
robots to assemble different cabin components in parallel.
In practice, this method could be applied even at the
conceptual stage to anticipate the challenges and lead
times for assembling the novel designs.

Furthermore, in Section 4.2, the importance of ontology
reconfiguration has been illustrated. It is a crucial capability
for the assembly station because it offers the possibility to
reconfigure the assembly sequence according to updated
product requirements. The assembly process changes are
often unforeseen and require much involvement in data
analysis, detecting the constraints for rescheduling, and
organizing the available resources. Nevertheless,
manufacturers need to react quickly to avoid negative
consequences such as cost increases or postponed
delivery. Therefore, the digitalization of assembly
processes and the development of algorithms for automatic
reconfiguration are valid and necessary procedures. The
reconfiguration capability of the developed algorithm has
been demonstrated in two example cases in this paper, one
for disassembling cabin parts (Section 4.2.1) and another
for adding further elements to the assembly sequence
(Section 4.2.2).

The methodology presented for optimized scheduling
assembly processes and reconfiguration will be tested at
the DLR facilities in Hamburg. Even though the research is
in its early stages, it shows promising results. Also, it is
important to mention the limitation of this research. First, the
algorithm uses trivial execution time to assemble the cabin
component instead of accurate data. Next, it is not
considered the inverse kinematic for navigating the robots.
Inverse kinematics, robot joint’s speed and acceleration
could contribute to the time optimization of the assembly
schedule and will be considered in the following stages of
this research. Further possible future work will involve
expanding the ontology model with additional data for
developing path planning algorithms, grasping points and
additional connection rules and elements between the
cabin components. With this information, the optimized
schedule assembly plan computed by the process planning
algorithm will be more precise, explicit and detailed.

Another challenge for future development is handling the
feedback data from the IoT sensors. One option is to store
the data directly in the ontology, and the other option is to

set up a complimentary SQL database. The methodology
presented in this paper is focused on developing the two
blocks from the complete process for intelligent, agile cabin

production (see Figure 1), from CAD design to physical

realization, including feedback of information to the design
stage. Therefore, implementing an interface between the
CPACS product data model and the cabin ontology is
essential for further knowledge modelling for cabin
assembly processes.

Ontology-based engineering is a promising approach for
further developing knowledge-based engineering
capabilities in the area of aeronautics. This paper presents
a suitable, virtual, semantic modelling approach for time-
optimized automatic scheduling of cabin assembling
processes. Hence, the method presented in this paper
significantly contributes to the digital thread for efficient and
transparent transferring the knowledge from smaller-scale
components into larger-scale subsystems of the digital twin.

References

[1] S. Vaidya, P. Ambad and S. Bhosle, "Industry 4.0 –
A Glimpse," Procedia Manufacturing, vol. 20, pp.
233-238, Jan. 2018.

[2] R. Henke, "An der Schwelle zu einem neuen
Luftfahrt-Zeitalter," DLR magasin, Deutsches
Zentrum fur Luft- und Raumfahrt e.V., no. 157, p. 4,
April 2018.

[3] N. Halfmann, D. Krause and S. Umlauft, "Assembly
Concepts for Aircraft Cabin Installation," in ASME
2010 10th Biennial Conference on Engineering
Systems Design and Analysis, Istanbul, Jan. 2010.

[4] M. C. Keet, An Introduction to Ontology Engineering,
University of Cape Town: Maria Keet, Minneapolis;
Open Textbook Library, 7. November 2018.

[5] J. Page Risueno and B. Nagel, "Development of a
Knowledge-Based Engineering Framework for
Modeling Aircraft Production," in AIAA Aviation
Forum, Dallas, Texas, USA, 17-21 June 2019.

[6] J. Backhaus and G. Reinhart, "Digital description of
products, processes and resources for task-oriented
programming of assembly systems," Journal of
Intelligent Manufacturing, vol. 28, pp. 1787-1800,
March 2015.

[7] J. Pfrommer, D. Štogl, K. Aleksandrov, S. Navarro,
B. Hein and J. Beyerer, "Plug & produce by
modelling skills and service-oriented orchestration of
reconfigurable manufacturing systems," at -
Automatisierungstechnik, vol. 63, pp. 790-800,
October 2015.

[8] I. Sanya and E. Shehab, "A framework for
developing engineering design ontologies within the
aerospace industry," International Journal of
Production Research, vol. 53, pp. 2383-2409, April
2015.

[9] M. Gruninger, O. Bodenreider, F. Olken, L. Obrst
and P. Yim, "Ontology Summit 2007–Ontology,
taxonomy, folksonomy: Understanding the
distinctions," Applied Ontology, vol. 3, pp. 191-200,
Jan. 2008.

[10] G. Brusa, M. Caliusco and O. Chiotti, "Towards
ontological engineering: A process for building a
domain ontology from scratch in public

administration," Expert Systems, vol. 25, pp. 484-
503, Nov. 2008.

[11] J.-B. Lamy, "Owlready: Ontology-oriented
programming in Python with automatic classification
and high level constructs for biomedical ontologies,"
Artificial Intelligence in Medicine, vol. 80, August
2017.

[12] E. Prud'hommeaux and A. Seaborne, "SPARQL
Query Language for RDF," 01 2008. [Online].
Available: http://www.w3.org/TR/rdf-sparql-query/.

[13] M. Horridge and S. Bechhofer, "The OWL API: A
Java API for OWL ontologies," Semantic Web, pp.
11-21, 10.3233/sw-2011-0025 January 2011.

[14] J.-B. LAMY, "Owlready2 Documentation," 23 Januar
2022. [Online]. Available:
https://owlready2.readthedocs.io/en/latest/.

[15] J. Bussemaker, P. D. Ciampa and B. Nagel, "System
Architecture Design Space Exploration: An Approach
to Modeling and Optimization," in AIAA Aviation
2020 Forum, 15-19 June, 2020.

[16] W. Simmons, "A framework for decision support in
system architectures," PhD thesis, Massachusetts,
Institute of Technology, Nov. 2008.

[17] R. Hein and F. Heinecke, "Digitaler Zwilling - ein
dynamisches Abbild und nicht nur eine digitale
Kopie," DLR Deutsches Zentrum fur Luft- und
Raumfahrt e.V., Braunschweig, 2018.

[18] L. Boggero and B. Nagel, "Towards the digitalization
of the aircraft life cycle. Research activities at the
DLR.," FERCHAU Aviation Partner Network Meeting
2020, Hamburg, Germany, 15 Jan 2020.

[19] K. Opasjumruskit, D. Peters and S. Schindler,
"DSAT: Ontology-based Information Extraction on
Technical Data Sheets.," International Semantic
Web Conference 2020, Nov. 2020.

[20] P. D. Ciampa and B. Nagel, "AGILE Paradigm: The
next generation collaborative MDO for the
development of aeronautical systems," Progress in
Aerospace Sciences, vol. 119, p. 100643, Nov.
2020.

[21] "Common Parametric Aircraft Configuration
Schema," DLR Institute for System Architectures in
Aeronautics , [Online]. Available:
https://www.cpacs.de. [Accessed August 2018].

[22] M. Alder, E. Moerland, J. Jepsen and B. Nagel,
"Recent Advances in Establishing a Common
Language for Aircraft Design with CPACS,"
Aerospace Europe Conference, Bordeaux, France,
25.-28. Feb 2020.

[23] C. Johnson, "The lexicon of XML," InTech, no. 50,
May 2003.

[24] M. Siggel, J. Kleinert, T. Stollenwerk and R. Maierl,
"TiGL: An Open Source Computational Geometry
Library for Parametric Aircraft Design," Mathematics
in Computer Science, vol. 13, Sep. 2019.

[25] J. C. Fuchte, "Enhancement of Aircraft Cabin Design
Guidelines with Special Consideration of Aircraft
Turnaround and Short Range Operations," PhD
thesis, DLR Deutsches Zentrum fur Luft- und
Raumfahrt e.V. and Technische Universität
Hamburg-Harburg, Hamburg, April 2014.

[26] V. Srinivasan, N. Markusheska, J.-N. Walther, A.

Gindorf, C. Hesse, J. Biedermann, F. Meller and B.
Nagel, "Autonomous control of an industrial robot
based on formalized process description for cabin
assembly," in Deutsche Gesellschaft für Luft- und
Raumfahrt - Lilienthal-Oberth e.V, 01-03 Sep. 2020.

[27] H. Meyer, J. Zimdahl, A. Kamtsiuris, R. Meissner, F.
Raddatz, S. Haufe and M. Bäßler, "Development of
a digital twin for aviation research," in Deutsche
Gesellschaft für Luft- und Raumfahrt - Lilienthal-
Oberth e.V, 1-3 Sep. 2020.

[28] A.-Q. Antar, E. Magesh and T. Srinivasulu, "The
Internet of Things (IoT): An Overview," Journal of
Engineering Research and Applications, no. 5, pp.
71-82, Dec. 2015.

[29] B. Nevarez, High Performance SQL Server, Jan.
2016.

[30] L. Jean-Baptiste, Ontologies with Python, Apress,
Berkeley, CA, Jan. 2021.

[31] N. F. Noy and D. L. McGuinness, "Ontology
Development 101: A Guide to Creating Your First
Ontology," Knowledge Systems Laboratory, vol. 32,
Jan. 2001.

[32] S. Falconer, "Stanford University; Stanford Center
for Biomedical Informatics Research," April 2010.
[Online]. Available:
https://protegewiki.stanford.edu/wiki/OntoGraf.

[33] S. Staab and A. Maedche, "Axioms are Objects, too
— Ontology Engineering beyond the Modeling of
Concepts and Relations," Institute AIFB, Karlsruhe
University, Germany, March 2000.

[34] I. Horrocks, P. F. Patel-Schneider, H. Boley, S.
Tabet, B. Grosof and M. Dean, "SWRL: A Semantic
Web Rule Language Combining OWL and RuleML,"
National Research Council of Canada, Network
Inference, and Stanford University,
http://www.w3.org/Submission/SWRL/, W3C
Member Submission 21 May 2004.

[35] T. Bock and T. Linner, Robotic Industrialization:
Automation and Robotic Technologies for
Customized Component, Module, and Building
Prefabrication, Cambridge: Cambridge University
Press, Januar 2015, pp. 1-238.

