
IMPLEMENTING A SYSTEM ARCHITECTURE MODEL FOR AUTOMATED 
AIRCRAFT CABIN ASSEMBLY PROCESSES 

Markusheska, Nastasija1,2 • Srinivasan, Venkatachalam2 • Walther, Jan-Niclas2  • Gindorf, Alex2 • 
Biedermann, Jörn2 • Meller, Frank2 • Nagel, Björn2   

 

Abstract 

Aircraft manufacturers provide their customers with a number of options for aircraft customization, including a wide variety 
of pre-qualified optional equipment from which they can select different components according to their requirements. The 
numerous options cover a variety of engines, navigation systems, and interior cabin designs. This flexibility gives the 
possibility to the airlines to differentiate their brands. Moreover, a unique cabin interior design leaves an enduring 
impression on their customers and constitutes their expectations for the upcoming flight. On the other hand, many choices 
result in many different specifications, long delivery periods, complicated installation procedures such as stopping the 
running assembly of the cabin, disassembling already installed cabin components, and assembling new cabin models. 
Therefore, aircraft customization increases the cost and the lead time of the aircraft manufacturing processes and thus 
decreases the production rates. It is in the best interest of aircraft manufacturers and airlines to automate and optimize the 
customization processes to make them more time and cost-efficient. This paper presents a method for establishing 
reconfigurable and optimized scheduling for aircraft cabin assembly. The data necessary for calculating the optimal 
schedule is retrieved from cabin system architecture that is built with semantic web language. The focus is on building a 
system architecture ontology model for automated scheduling of assembly processes of an aircraft cabin, which opens up 
the possibility for cabin customization at every assembly step. Moreover, the cabin ontology can be used as a foundation 
for co-design where each expert of their branch can further upgrade the model. With the algorithm presented in this paper, 
the ontology can be upgraded with new data, which will automatically correlate with the existing data in the cabin ontology. 
The knowledge-based ontology model provides a view of the whole chain from design to realization and feedback links to 
all included parties. Moreover, it gives the possibility for agile changes in the assembly sequence in response to the 
updated demands of the clients.  
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1. INTRODUCTION 

The future factories need to operate in highly dynamic 
environments with constantly evolving requirements 
dictated by the market [1]. To meet these demands, the 
manufacturers are in constant search of improvements. The 
new requirements could manifest in varying production 
rates, customized orders, reorganization of available 
resources, etc. An essential step towards improvement is 
the digitalization of the system architecture model. It 
enables a fast reorganization of resources, reconfiguration 
of production or assembly tasks, agile response to last-
minute reconfiguration, late delivery of resources, or 
technological upgrades. Digitalization of the system 
architecture model is a significant milestone for achieving a 
digital twin, a virtual representation of the factories for 
optimizing the designing, building, and manufacturing 
processes, as the most promising research technology to 
handle multi-discipline, multi-level, and multi-site processes 
for aircraft production [2]. 
When a cabin is designed from scratch or changes in the 
processes are introduced, the feasibility of the 
manufacturing processes of the cabin parts and their 
installation in the fuselage is not always guaranteed. 
Instead, the analysis of the first manufacturing samples and 
their installation in the fuselage is done manually in a 
subsequent step. If problems appear, either the product 
needs to be altered or the installation processes. Due to the 

                                                           
1 To whom correspondence should be addressed: E-mail nastasija.markusheska@dlr.de;  VoIP: +49 40 248 9641 384 
2 Deutsches Zentrum für Luft- und Raumfahrt Forschung e. V. (DLR), Institute for System Architecture in Aeronautics, Hein-Saß-Weg 22, 21129 Hamburg, 

Germany 

lack of automation, altering the product or the installation 
step is usually very time-consuming [3]. Therefore, a digital 
model and method are needed that enable a complete 
overview from the design stage to manufacturing. 
Furthermore, the feedback data from the manufacturing 
stage is made available digitally to all the stakeholders, 
which increases the knowledge upstream and thus 
accelerates the development cycles. 
This paper presents a methodology for developing a cabin 
ontology as a digital knowledge-based format for storing 
and organizing technical information about the aircraft 
cabin. Furthermore, it is presented the application of the 
ontology in an algorithm for optimal and automatic 
scheduling and rescheduling of cabin assembly processes 
of an aircraft cabin. Section 2 gives an overview of the 
research made in the area of ontology design for assembly 
processes. Section 3 presents a method for implementing 
an aircraft cabin assembly ontology into an algorithm for 
optimal scheduling the assembly and disassembly and 
reconfiguration of the aircraft cabin. Section 4 presents 
more details about parsing the data from the ontology 
model for automatic scheduling the assembly processes. 
The concluding remarks of the presented research and 
future perspectives are highlighted in Section 5. 
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2. RELATED WORK ON ONTOLOGY DESIGN 

By definition, an ontology is a data set containing structured 
knowledge about a particular subject domain [4]. Moreover, 
it uses common, agreed-upon vocabulary with defined rules 
and constraints to explicitly represent processes and 
automatic reasoning to infer knowledge from the entered 
data and detect inconsistencies. Ontologies as a 
knowledge-based dataset have become an important 
segment of so-called “intelligent” processes, which offer 
more flexibility, efficiency, and cost-effectiveness due to the 
possibility for inter-dependency between experts, 
machines, and applications [5]. Based on the specified 
vocabulary, an algorithm is developed in this research 
paper that interprets the rules and constraints to 
automatically and optimally plan the designated processes. 

In literature are introduced several approaches for 
modelling an ontology. In [6], a skill description model is 
presented, which describes the programming of assembly 
systems by specifying the input and output variables. The 
model is based on five essential skills: change, compare, 
connect, move and store. The skills are further sub-
classified into attributes, ID, inputs, interfaces, name, and 
output. However, this method is not addressing the 
reconfiguration of the resources. 

The paper [7] presents an ontology where the data is 
divided into three different classes: product, processes, and 
resources. A list of resources executed in a process defines 
that process, and a list of required processes executed for 
manufacturing a product defines the products. The ontology 
is built to match the product requirements and resource 
skills. The method is based on three different classes: 
product, processes, and resources.  

In [8] is described a research framework for supporting 
modular architecture designs for aerospace engineering 
ontologies. Their framework is divided into three main parts. 
The first part is the ontology design based on the studies 
presented in [9] and [10], the second part is ontology 
validation, and the last one is structuring the ontology 
knowledge and implementing it in a product-design 
information platform. Their ontology modelling is based on 
the identification and representation of low-level 
relationships between instances and concepts instead of 
high-level relationships between the different concepts. 

In [11] is presented a new ontology-oriented programming 
module for Python. Moreover, it is given a comparison 
between previously available ontology programming 
interfaces. Among them is the SPARQL [12], a query 
language and the OWLAPI [13], which both are not as easy 
to apply as an object-oriented programming language. 
Therefore, they have developed the Python 
package Owlready, which has simpler syntax, but it is 
significantly compacter. Today there is an available newer 
version of the module, namely Owlready2 [14], which is also 
used for developing the methodology presented in this 
paper. The decision was made based on the analysis 
presented in the previous paper [11]. 

In [15] is presented a novel method for semantic modelling 
of architectural design space called Architecture Design 
Space Graph (ADSG). In the system architecture are 
implemented three types of architectural decisions, and 
those are function-component mapping, component 
characterization and component connection. The 
components which fulfil the functions are the ones included 
in the architecture. If there are more components that could 

fulfil the same function, then a design choice has to be 
made. In the next step of the design process, the 
components are characterized by their number of instances 
and attributes. In the final step, the components are 
interconnected with formal relationships, modelled using 
ports. Moreover, the presented method is demonstrated by 
finding architectural decisions for the Apollo mission [16] . 
The European Commission founded this innovation project.  

The following section presents trivial Cabin Assembly 
Ontology (CAO) for evaluating the outcome of using 
ontologies for optimal planning and reconfiguration of 
aircraft cabin assembly processes. This research is part of 
the leading research topic, Model-Based System 
Engineering (MBSE) at the Institute of System, 
Architectures in Aeronautics at the German Aerospace 
Center (DLR-SL). The aim is to create a digital twin of the 
complete processes for aircraft development from the 
conceptual stage to operation. 

3. CABIN ASSEMBLY ONTOLOGY MODEL 

A Digital Twin of an aircraft represents an exact digital 
representation of the physical system with its processes 
and services. It will save valuable time and resources for 
developing new concepts, and a priory can identify possible 
errors or drawbacks [17]. The digital thread enables the flow 
of information between all the sectors of the digital twin [18]. 
The beginning of the digitalization on any engineering 
project is to gather technical information about the 
components. Under technical information is considered all 
the data about their mechanical electrical properties and the 
interfaces the components need or provide. Instead of 
using the standard PDF (Portable Document Format) for 
storing and sharing data, ontology format is preferred as a 
machine-processable form [19]. First of all, it will eliminate 
the possibility of misinterpretation of the data in the PDFs. 
Second, the data will be available in a format that many 
computer tools use and can be shared and stored. 

3.1. Principles for creating system architecture 
for automated cabin assembly processes 

In the future, aircraft manufacturers are looking to 
implement more digital, agile and thus more effective 
production methods, allowing them to plan the complete 
processes from the conceptual stage to manufacturing and 
assembly and feed information back to the conceptual 
stage [20].  



 

Figure 1 - Workflow of Aircraft Cabin Assembly System 

In Figure 1, the schematic of such a structure is depicted, 
which is described further in this section. The Aircraft Cabin 
Assembly System (ACAS) is the leading segment of the 
overall process. It consists of several steps: Computer-
aided Design (CAD) models, Common Parametric Aircraft 
Configuration Schema (CPACS) for design validation [21], 
System architecture of aircraft cabin and Assembly Process 
Planning. 

Aircraft cabin design engineers develop the new cabin 
designs and store their work in CAD files. CPACS is a 
central data model which enables engineers an 
interdisciplinary collaboration between decentralized 
Multidisciplinary Design Optimization (MDO) of air transport 
systems [22]. Structured data sets written with the 
Extensible Markup Language (XML) [23] as open standard 
computer-processable language are used for developing 
aircraft cabin ontology. The modelling approach in CPACS 
from the XML data is called middle-out approach as a 
combination of top-down and bottom-up hierarchical 
structure [22]. Furthermore, a geometric library TiGL [24] is 
developed, that translates the parametric description of the 
aircraft into three-dimensional space (see Figure 2). 
Additionally, the parameters of the aircraft geometry could 
be modified or newly created [25]. 

 

Figure 2 – Cabin section of short distance passenger 
plane in TiGL viewer 

The next block in the structure (Figure 1 - Workflow) is the 
System Architecture of an aircraft cabin. It holds information 
about the properties of the aircraft cabin and the cabin parts 
needed for scheduling the assembly processes. For 
instance, the size of a sidewall panel, its storage location, 
and assembly location are some of the properties stored in 
the aircraft cabin's system architecture. Semantic modelling 
is used for creating an interpretive and interactive cabin 
system architecture. For example, the instances in the 
model are classified according to their properties that match 
to specific class's properties. Therefore, the inheritance in 
the model is flexible and compact. 

The Assembly Process Planning section collects and 
analyzes the information of the aircraft cabin system 
architecture to determine the optimal schedule for the 
assembly processes of the aircraft cabin. The global 
assembly sequence is stored in the model of the aircraft 
cabin architecture, and is modified to fit the requirements, 
avoid constraints and optimally use the available robot 
resources. Simulation is an essential part of this section 
because a simulation does feasibility analysis for the robot 
motion required for the assembly processes (Figure 3). The 
[26] presents a use-case for simulation of assembling an 
aircraft cabin and the collection of the meta-data for the 
feedback loop into the system architecture of cabin 
assembly.  

 

Figure 3 - Blender simulation of preassembling double 
window sidewall panels [26] 

ACAS is a digital approach for designing an aircraft cabin, 
validating the model and scheduling the assembly 



processes. The digital thread between the elements of the 
ACAS is an essential medium for exchanging, recording 
and storing data. Moreover, it provides substantial and 
time-effective access to data necessary for calculating the 
consequences of the changes from one component to any 
other component in the cabin. For example, changes in the 
dimensions of a cabin sidewall panel can be validated, and 
this change can be updated in the cabin architecture and 
automatically recalculated its assembly positions.  

The main goal of ACAS is to assist the aircraft 
manufacturers in optimizing the utilization of their assembly 
plants by monitoring every step and all the assets in the 
processes [27]. The presented approach in this paper 
focuses on proving the ontology model, which is a practical 
solution for creating a cabin system architecture. It can be 
implemented into an algorithm for optimization of the 
schedule for aircraft cabin assembly processes. 

The following block is the execution block which represents 
the physical execution of the modelled cabin assembly 
processes. For the validation of the proposed method, a 
scaled-down demo will be performed in the near future. 
There is a preassembly line with three robots at the DLR 
Institute of System Architectures in Aeronautics. Two 
robots, an Universal Robot Ur10e and a Bosch APAS are 
mounted on a linear axis, and one mobile robot Kuka KMR 
Iiwa is also available for transferring components from the 
preassembly line to the cabin mockup (Figure 4).  

 

Figure 4 - Preassembly station at DLR Hamburg for 
validating the methodology 

The feedback connection from the production plant to 
ACAS is another crucial element of the procedure. This 
block provides information from all sensors deployed in the 
assembly station, such as cameras, laser sensors and the 
robot location and orientation sensors. Furthermore, 
information about all assembled aircraft components, the 
assembly time and possible occurrences of error signals 
during run time is fed back. The data will be applied in future 
to assess the quality of the assembly processes and 
compare simulated assembly with actual execution of the 
assembly processes. Moreover, the feedback data is 
necessary for automatic assembly process reconfiguration. 
Sometimes, due to “last-minute” customization demands on 
the cabin design, rapid reconfiguration of the assembly 
processes has to be performed. Necessary changes to the 
processes might include a reallocation of resources, 
removal or replacement of cabin components or changes in 
production rate. Modifying the ontology with the feedback 
data from the Internet of Things (IoT) [28] devices can 
quickly overcomplicate the model. Therefore, introducing a 

SQL [29] database server into the method could be a 
practical solution for storing feedback data like sensor’s 
reading, camera output, and instances of every 
preassembled or installed part in the cabin with more 
detailed data. With the SQL server on the feedback link, the 
ontology would not be overpopulated with data, ensuring a 
transparent system architecture for cabin assembly 
processes. 

With this approach, the information and constraints for the 
assembly processes are easily obtainable from the aircraft 
cabin system architecture. Moreover, all cabin assembly 
processes are designed to be flexible and efficiently 
reconfigurable, as presented in Section 4. Additionally, this 
algorithm is designed to allow the customers to reconfigure 
the cabin according to their wishes even during later stages 
of the aircraft production (see Section 4.2.1).  

The following section focuses on the system architecture 
and assembly process planning blocks and how they 
interlink and contribute to the complete intelligent aircraft 
cabin assembly process planning. 

3.2. System architecture for cabin assembly 

To abstract and interpret the system architecture of cabin 
assembly stations, an ontology model is created with one 
of the standards of Semantic Web Technology, namely 
Web Ontology Language (OWL) [30]. The ontology is a 
knowledge-based model in a disclosed domain, where the 
classified instances are described with properties and 
axioms. Moreover, OWL offers the possibility for automatic 
reasoning of the acquired data based on the defined axioms 
and properties for generating a logical interface between 
the data in the model.  

3.2.1 Class definition 

When modelling ontology, there are no strict rules of what 
should be defined as a subclass of a class and what should 
be defined as an instance of a class. However, a good 
practice is to define classes that describe the concept of the 
domain [31]. Therefore, the central system classes defined 
in the proposed model are (see Figure 5 – ):  

• Resources 

• Assembly Stations and,  

• Robots.  
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ASSEMBLY STATIONS

Is used in

is used for 

assembling in

Needs robot

Subclass

Subclass m

Object1

Object n

properties

properties

properties

properties

Subclass

Object1

Object n

propertiesSubclass

Subclass l

Object1

Object o

properties

properties

properties

properties

properties

properties

properties

properties
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Figure 5 – Sample for domain declaration of aircraft cabin 
assembly sequence 

 

 



3.2.2 Defining instance properties  

Once they are defined, the model is refined in a taxonomic 
hierarchy (classes – subclasses - instances). In the next 
step, semantic-annotated properties are specified for 
defining different class axioms. The primary relations 
between the system classes are created with the following 
instance properties: 

• ”is used for assembling in” 

• “needs robot” 

• “is used in” 

• “in this station is assembled” 

For example, the following axiom defines that some robots 
are needed in the assembly station: 

• Assembly Station → needs robots → some 
Robots 
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Figure 6 – Segment of a cabin assembly sequence 

Moreover, the axioms represent the objective and the 
constraints of each cabin assembly process.  

In the Web Ontology Language (OWL) [30], here are two 
kinds of properties: instance properties and data properties. 
To illustrate, blue arcs, which represent an instance 
property “in this station is assembled,” are depicted in 
Figure 6. The defined axiom for the class “Furnishing 
Station” is:  

• Furnishing station → in this station is assembled 
→ some Seats and some Carpet 

This axiom describes the objective of the furnishing station 
from the cabin assembly processes. 

The orange arcs represent another instance property “next 
resource to be assembled is”. This property is used to 

describe constraints. For example, the carpet has to be 
mounted before installing the seats in the aircraft cabin in 
the furnishing station. This is demonstrated with the 
following axiom (Figure 6): 

• Carpet → “next resource to be assembled is” → 
some Seats 

3.2.3 Defining instances and data properties 

In an ontology model, the instances of a class could also be 
an instance of another class. The reasoner classifies the 
instances according to the defined properties and axioms 
[31]. The different models of aircraft cabin parts, such as 
“Classic sidewall panel”, are defined as instances of the 
class Sidewall Panels in the ontology presented here. 
Because they are used in an assembly station, the reasoner 
will classify the instance “Classic sidewall panel” also as an 
instance of the specified class Assembly station. In Figure 
7, the instances from the “Double Window Sidewall” class 
are depicted in purple. They all have the exact dimensions 
and assembly constraints but differ in decorative foils. This 
information is modelled with another type of property called 
data property. 

 

Figure 7 – Sample of class instance from aircraft cabin 
sidewall panel visualized in OntoGraf [32]  

They could be of a type integer, float, bool, string, date or 
time. In the ontology presented here, the defined data 
properties are the following:  

• Size  

• Initial Position with respect to global coordinate 
system 

• Delta position for the next component installation 

• Total time for installation in the aircraft cabin 

• Conditions for installation in the aircraft cabin 

• Number of available parts 

• Number of installed parts 

• Storage location  
These properties are necessary for calculating the time-
optimal schedule of the assembly processes and for agile 
rescheduling of them. The fundamental properties are also 
stored in the standard file format CPACS. 

3.2.4 Defining axioms 

Axioms are expressions used for autogenerating 
relationships between different classes and instances [33]. 
In the ontology presented in this paper, axioms are used to 
classify the data. For example, when the ontology is 
populated with a new set of sidewall panels, instead of 
checking every class if the sidewall panel should be an 
instance of the specific class, axioms make the selection 
automatically. For writing the axioms was chosen the 
Semantic Web Rule Language (SWRL), which is a 
combination of OWL sublanguages and Rule Makeup 



Language (RuleML) [34]. Examples of the axioms defined 
in the ontology model are the following: 

• Sidewall_panel(?s) ^ has_design(?s, 
Custom_design) -> Custom_design_class (?s) 

• Sidewall_panel(?s) ^ has_design(?s, Double 
windows) -> Double_Windows_Sidewall_class 
(?s) 

With the help of these axioms, the sidewall panels that have 
Custom design and have two windows will be automatically 
sorted as part of both classes: Custom design and Double 
Windows Sidewall. This approach reduces the possibility of 
human error and time for arranging the data.  

As already mentioned in this paper, there are no strict rules 
for designing an ontology, but it is designed regarding the 
demands of the application. Therefore, the presented 
ontology is designed to satisfy the needs for scheduling an 
automatic and agile aircraft cabin assembly. For example, 
for assembly sidewall panels, the model has information on 
when to start the process, the storage location, the 
installation location, how long it needs to be executed, and 
which robot will assemble the sidewall panel. 

4. CABIN ASSEMBLY PROCESS PLANING 

The proposed ontology model encompasses all necessary 
aspects for demonstrating the automatic scheduling of an 
aircraft cabin assembly processes. Over the years, the 
introduction of industrial robots into assembly processes 
often yielded improved results in terms of speed and quality 
[35]. Therefore, in this paper, the proposed method is 
validated with three uses cases where robots are deployed 
for the assembly tasks. 

The two main challenges that are presented in the method 
are time reduction of the assembly processes (Section 4.1) 
and enabling agile customization processes (Section 4.2). 
In other words, this method enables agile reconfiguration of 
the cabin assembly processes at a later stage according to 
the customer requirements for new cabin design. It 
automatically optimizes the assembly processes' execution 
schedule to improve the utilization of the available 
resources.  

4.1. Time-optimized scheduling of assembly 
processes 

The proposed method for developing an ontology aims to 
optimize cabin assembly and reassembly schedule. 
Changes in the schedule are necessary due to new cabin 
design changes and resources or tool availability. For 
example, if a robot is programmed to service just one task, 
such as assembling sidewall panels, and if the robot needs 
to be serviced, it will result in delays. On the other hand, if 
the robots are programmed flexibly to service different 
tasks, the assembly could be rescheduled with the available 
robots. Programmed flexibly, it might imply that the robots 
should be programmed with all the possible scenarios that 
could happen in the assembly line, which is impractical and 
unrealistic. First of all, it is implausible that the engineers 
could foresee all the future changes in the complete 
assembly procedure. Second, programming manually all 
the scenarios with all the positions where the robots need 
to pick and assemble different cabin parts would cost a lot 
of time and effort. Moreover, the aircraft cabin design is 
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often upgraded and alternated according to the customers' 
requirements. Therefore, the purpose of this algorithm is to 
decrease the time and effort required to adjust the 
assembly station according to the available resources, 
requirements and changes in the design. The availability of 
the robots in the assembly station has a substantial impact 
on the lead time. Therefore, this paper presents an 
application case in which only three types of aircraft 
components are installed in the outfitting station (Figure 6). 
The algorithm plans the assembly sequence of the cabin 
components using two and three robots. For comparison, 
are given the time flow charts of the optimized and not 
optimized schedule for assembling processes. 

The required cabin components (Figure 8) for the assembly 
processes in the application case are:  

a) 4 x sidewall panels 

• Conditions: finished system installation. 

• Total time for installation is 3-time units3.  
b) 3 x linings between sidewall panels. 

• Conditions: two sidewall panels have to 
be assembled so the robots will not 
collide. For example, the lining b1 can be 
assembled after sidewall panels a1 and 
a2 are assembled. 

• Total time for installation is 2-time units3. 
c) 4 x ceiling panels 

• Conditions: one lining between panel 
have to be assembled so the robots will 
not collide. For example, the ceiling panel 
c1 can be assembled only after the lining 
b1 is assembled.   

• Total time for installation is 3-time units3. 

 

Figure 8 – Cabin lining components for assembly with 
different number of robots 

The conditions in the ontology are stored as instance 
properties. From Figure 6, it can be observed that the cabin 
parts have to be assembled in a specific order: 

• Sidewall Panel → Lining between Sidewall Panel 
→ Ceiling Panel 

If only one robot is available for assembly, then all the 
components are going to be assembled sequentially. Figure 
9 illustrates the time flow chart for this case. The figure 
shows that the execution time will not be reduced when 
three robots are engaged in the processes if they do not 
execute the assembly processes in parallel when possible. 

 

   

    

   



However, the cabin assembly could be accelerated by 
reprogramming the robots to execute different processes 
flexibly. In cases where one robot has finished assembling 
one type of component, it could be reassigned to assemble 
another. Instead of manually reprogramming the robots, it 
could be done through the algorithm, which takes all the 
required information about the assembly processes from 
the cabin ontology. 
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Figure 9 - Time flow chart of the cabin assembly 
processes before optimally scheduling 

The primary constraint for parallel execution of the 
assembly processes is that two or more robots cannot 
assemble different components at the exact location. The 
location constraints are presented in Section 4.1 a), b) and 
c) for each cabin component expressed in time units.  

The Owlready2 Python Package [4] is applied to parse the 
information from the ontology and make it available to the 
algorithm for optimal planning of cabin assembly 
processes. The algorithm presented below (see Figure 10) 
is an abbreviated version of the complete algorithm in order 
to present the procedure of assembly planning.  
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Figure 10 – Algorithm I: Optimization for scheduling cabin 
assembly sequence 

The algorithm in Figure 10  starts with reading the aircraft 
cabin system architecture data. At first, it parses which 
cabin components need to be assembled and what is the 
initial sequence, later it parses the constraints for 
assembling the components. If the required cabin parts are 
available and the robot is available, the assembly of the first 
cabin part will start. Since only the condition for assembling 
sidewall panels is fulfilled, the algorithm will start with 
assembling the first sidewall panel a1 (see Figure 8). When 
two sidewall panels, a1 and a2, are already assembled in 
the cabin, the algorithm will allow assembling the first lining 
b1 between the two assembled sidewall panels. After the 
lining b1 between the sidewall panels a1 and a2 is 
assembled in the cabin, the first ceiling panel c1 could be 
assembled. When two robots are available, sidewall 
panels a1 and a2 are going to be assembled 
simultaneously (see Figure 11 and Figure 12) and if three 
robots are available, sidewall panels a1, a2 and a3 are 
assembled simultaneously (see Figure 13). In Figure 11, 
after time slot 11, Robot 2 has finished assembling the 
sidewall panel a4, and it needs to wait for two-time units. It 
is not allowed a simultaneous assembly of the third lining 
between the sidewall panels b3 and the third ceiling panel 
c3 due to location constraints. In the presented use case, it 
is relatively manageable for a person to make the schedule 
for the assembly of the cabin parts considering the given 
constraints. However, when the use-case is extended for 
assembling the complete aircraft cabin, the task of creating 
the schedule becomes significantly more complex and 
challenging. Therefore, this algorithm is needed as part of 
the digitalization of assembling an aircraft cabin. This 
algorithm will automatically read the necessary data from 
the cabin system architecture and create the schedule for 
time-optimally assembly. In this way, manually scheduling 
the complete assembly with the method trial-and-error will 
be avoided. 

Time flow chart

R
o

bo
t 

2
R

o
bo

t 
1

Le
ge

n
d

:

30Time steps 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 292

Legend

Robot 2

Robot 1

Sidewall            Lining            Ceiling 
Panel            Panel

a1

a2

a3

a4c1

c2 c3

c4

b3b2

b1

 
Figure 11 - Time flow chart of the cabin assembly 
processes after optimally scheduling with two robots 
(Scenario 1) 
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Figure 12 - Time flow chart of the cabin assembly 
processes after optimally scheduling with two robots 
(Scenario 2) 
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Figure 13 - Time flow chart of the cabin assembly 
processes after optimal scheduling with three robots 

4.2. Reconfiguration of assembly and 
disassembly aircraft cabin processes  

This section demonstrates the benefit of applying ontology 
modelling for dynamic and reconfigurable cabin assembly 
processes. Reconfiguring the cabin assembly processes 
can become necessary due to frequent customization 
demands, the introduction of new cabin products, 
disassembling some cabin parts or retrofitting. When the 
assembly processes are digitalized, the digital thread 
provides a constant flow of information between the actual 
assembly processes and their digital representation. This 
information is used in the algorithm for automatic 
reconfiguration of the cabin assembly. Reconfiguration of 
the processes could be requested at any time step, hence 
it could not be foreseen, and every time could be different. 
The first necessary information is to know which parts are 
assembled in the cabin and then analyze which parts need 
to be disassembled to assemble the new requested ones. 
A manual reconfiguration is a complex and time-consuming 
task. Alternatively, the reconfiguration algorithm can 
automatically recalculate the disassembly and reassembly 
of the aircraft cabin. 

4.2.1. Scheduling a disassembly processes for 
cabin reconfiguration 

To demonstrate the flexibility of the designed ontology and 
the developed method is used the same scenario as in 
Section4.1, where two industrial robots assemble the cabin 
components. This application case aims to demonstrate 
automatic reconfiguration of the assembly sequence when 
a reconfiguration of the cabin is demanded during run time. 
It is important to note that the disassembly sequence is 
stored in the system architecture of the aircraft cabin, but it 
is reversed from the assembly sequence from Section 4.1 
(see Figure 6), and it is following: 

• Ceiling Panel → Lining between Sidewall Panel → 
Sidewall Panel 

The following properties are specified for the use-case 
which demonstrates the disassembly process plan of cabin 
parts: 

a) 4 x ceiling panels 

• Conditions: received command for 
disassembling  

• Total time for disassembling is 3-time 
units3. 

b) 3 x linings between sidewall panels. 

• Conditions: two ceiling panels have to be 
disassembled so the robots will not 
collide. For example, the lining b1 can be 

disassembled after ceiling panel c1 and 
c2 are disassembled. 

• Total time for disassembling is 2-time 
units3. 

c) 4 x sidewall panels 

• Conditions: the lining between the 
sidewall panel has to be disassembled. 
For example: to disassemble sidewall 
panel a2, the linings b1 and b2 have to 
be previously disassembled.  

• Total time for disassembling is 3-time 
units3. 
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Figure 14 – Algorithm II: Optimization for scheduling cabin 
disassembly sequence 

The algorithm for disassembling is depicted in Figure 14, 
and it is designed to interrupt the assembly processes and 
automatically reschedule the processes for disassembling 
the needed cabin components. For planning the 
disassembly processes, the initial sequence is 
automatically reversed from the assembly sequence, but 
the conditions are changed, and the task of the robot is to 
remove the cabin parts of the fuselage. Instead of reviewing 
and changing all the conditions manually, the algorithm 
does that task automatically and arranges a new schedule 
for disassembling. 

An example of the disassembly with two robots is presented 
in Figure 15. A signal for disassembling the cabin 
components is received. The signal is received after the 
eighth time step is finished (red vertical line in Figure 15). 
Next, the execution sequence for assembling the three 
aircraft cabin components is reversed. The first 
disassembled component is the ceiling panel c1. Since two 
robots are deployed in this process, the robot assembling 
the sidewall panel a4 currently disassembles it. Even if a 
third robot was available, it would need to wait because the 
condition for disassembling the lining between the panels 
b1 is not fulfilled. The procedure finishes with 
disassembling all required cabin components. This state of 
the cabin is fed back to the aircraft cabin architecture, and 
it can be used for scheduling new assembly with other cabin 
components. 
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Figure 15 – Time flow chart of cabin disassembly 
processes with two robots 

The proposed method for designing an ontology model in 
combination with the developed algorithm demonstrates 
reversibility with minimal human effort for scheduling time-
optimal disassembly sequences. 

4.2.2. Reconfiguration of cabin assembly 
processes 

Reconfiguring the assembly processes to add new 
elements to the assembly sequence is an important 
attribute of the proposed methodology for agile 
rescheduling cabin assembly processes. When a new cabin 
component is added to the cabin design, the assembly 
sequence needs to be adjusted accordingly. This section 
has presented the algorithm's logic that automatically 
reconfigures the cabin assemble sequence. Necessary 
information for the new cabin components are the following:  

• Which cabin components has to be assembled? 

• Which cabin components must not be assembled? 

When this information is available, the algorithm will 
automatically arrange and adjust the assembly sequence in 
the cabin system architecture. In Figure 16 the initial 
process chain is depicted. The yellow arcs represent the 
property “next for assembling is”, and the orange ones 
represent the property “before is assembled” (see Figure 
16). Another element A2.1 is introduced, and it needs to be 
assembled after element A2 but before element A3. For that 
purpose, its properties for assembling are defined as: 

• A2.1 → “next for assembling is” → some A3 

• A2.1 → “before is assembled” → some A2 

The algorithm for reconfiguration the assembly processes 
inspects the properties of the classes that are part of the 
definition of the class A2.1. Moreover, the algorithm 
inspects, which of their properties need to be removed, for 
the new element to be placed in the correct segment of the 
assembly sequence. For this reason, the algorithm inspects 
if the classes A2 and A3 have common properties with the 
class A2.1. First, it is inspected if the class A3 is defined 
with the property “before is assembled”. From Figure 16, 
the following definition can be observed: 

• A3 → “before is assembled” → some A2 

This definition is deleted and it is replaced with: 

• A3 → “before is assembled” → some A2.1 

 

Figure 16 – Example of the initial cabin assembly 
sequence visualized in OntoGraf 

 

 

Figure 17 – Example for reconfiguration of the initial cabin 
assembly sequence visualized in OntoGraf 

The second inspection is checking if this class A2 is defined 
with the property “next for assembling is”. From Figure 16, 
the following definition is taken: 

 

• A2 → “next for assembling is” → some A3 

This definition is also deleted and replaced with: 

• A2 → “next for assembling is” → some A2.1 

As the result of the algorithm, the new class is appended in 
the correct position of the assembly sequence (Figure 17). 
This method offers simple reconfiguration of the ontology 
without analyzing and rearranging the complete cabin 
assembly architecture manually.  

In conclusion, this methodology demonstrates to be 
suitable for time-optimal assembly reconfiguration without 
the need for a more in-depth and long examination of the 
overall procedure. 

5. CONCLUSION 

This research study proposes a method for ontology-based 
modelling of aeronautical system architectures (Section 
3.2). The method demonstrated the two significant 
advantages of using ontologies for automatically optimizing 
the scheduling of cabin assembly. The first one is that 
semantic web language had proven to be an appropriate 
choice for creating an ontology for aircraft cabin assembly. 
Moreover, the ontology can be implemented in an optimal 
time scheduling algorithm that agile and automatically 
reschedule the cabin assembly processes and reduces 
unnecessary expert’s effort. Customized aircraft cabins 
cannot be foreseen and pre-scheduled, therefore the 
aircraft manufacturers need to interrupt the serial 
production processes and reschedule it. Manually 



rescheduling the assembly processes is a complex and 
time-consuming task. The second advantage is that 
ontologies connect various pieces of knowledge and 
perform logical reasoning for inferring new knowledge from 
the present data. This feature enables reconfiguration of the 
system architecture for an aircraft cabin assembly. At the 
beginning of this paper, an ontology model is introduced, 
which follows the general guidelines for designing 
ontologies. The model is designed to accurately abstract 
and model the system architecture for cabin assembly. 

Moreover, this study presents an algorithm for parsing 
ontology data and using it for computing time-optimal cabin 
assembly sequences. The given application cases prove 
the concept for ontology-based scheduling of cabin 
assembly and disassembly processes. The time flow charts 
in Section 4.1 illustrate the potential of schedule 
optimization, a result of optimizing the schedule of an 
assembly process with an execution time of 30-time units 

(Figure 9) to 16-time units (Figure 11 and Figure 12) or 

11-time units (Figure 13). This is a significant reduction of 

the time for assembling the cabin, due to the number of 
engaged robots and the algorithm for synchronizing the 
robots to assemble different cabin components in parallel. 
In practice, this method could be applied even at the 
conceptual stage to anticipate the challenges and lead 
times for assembling the novel designs.  

Furthermore, in Section 4.2, the importance of ontology 
reconfiguration has been illustrated. It is a crucial capability 
for the assembly station because it offers the possibility to 
reconfigure the assembly sequence according to updated 
product requirements. The assembly process changes are 
often unforeseen and require much involvement in data 
analysis, detecting the constraints for rescheduling, and 
organizing the available resources. Nevertheless, 
manufacturers need to react quickly to avoid negative 
consequences such as cost increases or postponed 
delivery. Therefore, the digitalization of assembly 
processes and the development of algorithms for automatic 
reconfiguration are valid and necessary procedures. The 
reconfiguration capability of the developed algorithm has 
been demonstrated in two example cases in this paper, one 
for disassembling cabin parts (Section 4.2.1) and another 
for adding further elements to the assembly sequence 
(Section 4.2.2).  

The methodology presented for optimized scheduling 
assembly processes and reconfiguration will be tested at 
the DLR facilities in Hamburg. Even though the research is 
in its early stages, it shows promising results. Also, it is 
important to mention the limitation of this research. First, the 
algorithm uses trivial execution time to assemble the cabin 
component instead of accurate data. Next, it is not 
considered the inverse kinematic for navigating the robots. 
Inverse kinematics, robot joint’s speed and acceleration 
could contribute to the time optimization of the assembly 
schedule and will be considered in the following stages of 
this research. Further possible future work will involve 
expanding the ontology model with additional data for 
developing path planning algorithms, grasping points and 
additional connection rules and elements between the 
cabin components. With this information, the optimized 
schedule assembly plan computed by the process planning 
algorithm will be more precise, explicit and detailed. 

Another challenge for future development is handling the 
feedback data from the IoT sensors. One option is to store 
the data directly in the ontology, and the other option is to 

set up a complimentary SQL database. The methodology 
presented in this paper is focused on developing the two 
blocks from the complete process for intelligent, agile cabin 

production (see Figure 1), from CAD design to physical 

realization, including feedback of information to the design 
stage. Therefore, implementing an interface between the 
CPACS product data model and the cabin ontology is 
essential for further knowledge modelling for cabin 
assembly processes.  

Ontology-based engineering is a promising approach for 
further developing knowledge-based engineering 
capabilities in the area of aeronautics. This paper presents 
a suitable, virtual, semantic modelling approach for time-
optimized automatic scheduling of cabin assembling 
processes. Hence, the method presented in this paper 
significantly contributes to the digital thread for efficient and 
transparent transferring the knowledge from smaller-scale 
components into larger-scale subsystems of the digital twin. 
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