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Abstract
The paper describes how the attitude of a sounding rocket, launch vehicle or satellite with respect to the Earth can be esti-
mated from camera images of the Earth horizon. Details about detecting the horizon in the camera image, fitting hyperbolae 
or ellipses to the detected horizon curve and deriving the Earth nadir vector and the corresponding error covariance from 
the fitted conic section are given. The presented method works at low heights, where the projected horizon mostly appears 
to be hyperbolic, as well as at large heights, where the projected horizon mostly appears to be elliptic and it is irrelevant 
if the Earth is fully or only partially in the field of view of the camera. The method can be universally used to estimate the 
direction vectors and attitude with respect to any spherical celestial body such as the Sun or Moon. Using the example of a 
sounding rocket mission with two cameras aboard, it is illustrated how the estimates of the Earth nadir and the Sun direction 
vectors are fused with the measurements of a strapdown inertial measurement unit and a GPS receiver to obtain an accurate 
and continuous estimate of the three-dimensional orientation of the sounding rocket with respect to the Earth.

Keywords  Earth horizon sensor · Horizon sensor · Earth sensor · Sun sensor · Image processing · Optical · Camera · Conic 
section · Hyperbola · Ellipse · Earth nadir vector · Orientation estimation · Attitude determination · Integrated navigation 
system · Hybrid navigation system · IMU · Sounding rocket · Launch vehicle · Satellite · ATEK · MORABA · Mobile 
rocket base

1  Introduction

The paper presents a method for estimating the orientation of 
sounding rockets, launch vehicles and satellites with respect 
to the Earth by detecting the horizon of the Earth in the 
images of an optical camera, estimating the Earth nadir vec-
tor, i.e. the vector pointing from the vehicle to the center of 
the Earth and fusing this vector with the measurements of 
an inertial measurement unit (IMU) in an integrated naviga-
tion system. The position of the vehicle with respect to the 
Earth is assumed to be known, for example, from a global 

navigation satellite system (GNSS) receiver. The fundamen-
tals of the image processing of the presented method have 
been first derived in [2] and [3].

The estimation of the Earth nadir vector works at very 
low heights, where the projected horizon of the Earth is a 
nearly linear curve in the image, at low heights, where the 
projected horizon appears as a hyperbola in the image, at 
medium heights, where the projected horizon appears as 
a hyperbola or a section of an ellipse in the image and at 
large heights, where the Earth is partly or fully visible in 
the image and the projected horizon appears as an ellipse, 
depending on the field of view (FOV) and the angle of view 
of the camera. The Earth nadir vector is directly estimated 
from pixels of the detected horizon in the image, without 
having to fit the detected horizon to a hyperbolic or an ellip-
tic conic section at first.

Although the method was primarily developed to detect 
the horizon of the Earth and estimate the Earth nadir vec-
tor, the underlying geometric principles are generally appli-
cable to projections of any spherical object onto an image 
plane – provided that the body is clearly different from the 
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background so that the horizon is visible in the image of 
the camera. The image processing can therefore be adapted 
to detect the Sun and estimate the direction vector to the 
Sun. Similarly, the method could be used at night or dur-
ing eclipse to detect the Moon and to estimate the direction 
vector to the Moon. If the celestial body is partially eclipsed 
however, the method has undefined behaviour.

By observing the Earth nadir vector, two of the three 
rotational degree of freedom (DOF) of the vehicle can be 
determined at the time when the image of the Earth’s hori-
zon is taken by the camera. The third rotational DOF about 
the Earth nadir vector itself is not observable. If the Sun 
direction vector is additionally estimated, all three rotational 
DOF become simultaneously or sequentially observable, as 
the Earth nadir and Sun direction vectors usually point in 
different directions. When the estimates of the direction vec-
tors are fused in an integrated navigation system with the 
solution of an inertial navigation system, an estimate of the 
three-dimensional orientation of the vehicle can be continu-
ously provided.

The method is interesting for spinning sounding rockets, 
for example. To compensate for the effect of thrust vector 
misalignments and aerodynamic asymmetries on the trajec-
tory during the propelled phase of the ascent, these unguided 
sounding rockets are usually spun up about the longitudi-
nal axis to angular rates of up to 5 Hz. The angular rate is 
reduced again after the engine action time by means of a 
yo-yo system and roll control thrusters. If the orientation of 
the sounding rocket is determined by a strapdown inertial 
navigation system, especially the orientation error about 
the longitudinal axis may rapidly grow during the spinning 
phase due to the scaling factor error of the roll axis gyro-
scope. To avoid this problem, special inertial navigation sys-
tems are commonly used with the IMU being mounted on a 
rotatable gimbal, which isolates the roll axis gyroscope from 
the high roll rate. The roll rate measurement is then com-
posed of the revolution speed of the gimbal, that is measured 
by an angle encoder, and the roll axis gyroscope measure-
ment. These highly specific and mechanically complex plat-
forms could be replaced by more robust and more readily 
available strapdown sensors if the accumulating orientation 
error were instead observed with the help of the Earth nadir 
and Sun direction vector measurements from a camera and 
image processing system.

The unguided spinning ATEK/MAPHEUS-8 sounding 
rocket, launched from Esrange, Sweden, in 2019, carried two 
cameras, three orthogonal fibre-optical gyros and accelerom-
eters, and a GPS receiver. The mission was carried out by 
Mobile Rocket Base (MORABA), a department of the Ger-
man Aerospace Center's (DLR) Space Operations institution. 
Amongst others, the DLR Institutes of Aerodynamics and 
Flow Technology, Materials Physics in Space and Aerospace 
Medicine, as well as the Microgravity User Support Center 

(MUSC) and the Technical University of Munich (TUM) 
were involved in the experiments.

Although the cameras and inertial sensors were not 
intended for navigation purposes, the collected image and 
sensor data set is ideal for demonstrating the functionality 
of the method step by step – starting from the raw distorted 
picture of one of the cameras, detecting potential horizon 
curves in the image, undistorting the found edges, estimating 
the Earth nadir vector and the corresponding error covari-
ance, selecting the most likely horizon from the list of can-
didates by means of the residuals, and finally fusing the esti-
mated Earth nadir and Sun direction measurements with the 
gyroscope, accelerometer and GPS receiver measurements.

It is favorable that there are optical cameras available in 
the market today which provide high-resolution images and 
have a highly responsive automatic exposure control. The 
latter is especially important for rapidly rotating vehicles to 
cope with the changing light conditions, which are challeng-
ing in terms of exposure due to the contrast between the dark 
space and the bright surface of the illuminated Earth. Fur-
thermore, today’s embedded hardware has sufficient comput-
ing power to process the images and execute the algorithms 
of the integrated navigation system in real-time. Particular 
attention was paid to the computational efficiency of the 
algorithm.

Earth horizon sensors have been widely used on low 
Earth orbit (LEO) to geostationary orbit (GEO) satellites to 
measure the roll and pitch angles. Most of the conventional 
sensors work in the infrared spectrum, detecting the infrared 
radiation that is emitted and reflected by the Earth’s surface. 
They use either scanners that sample the Earth surface with 
an infrared sensor and rotating optics or an array of static 
infrared sensors. A prominent example of a scanning hori-
zon sensor is Leonardo’s IRES device, which is designed 
for orbit heights between 15.300 km and 53.000 km. The 
accuracy of the roll and pitch angle is given with 0.05 deg 
random error and 0.02 deg bias error ( 3� ) [20].

CubeSpace offers the CubeSense sensor, which is a com-
plementary metaloxide-semiconductor (CMOS)-based sen-
sor with a very wide FOV and is available as Earth horizon 
and Sun sensor variant. The accuracy of the attitude is speci-
fied as 0.2 deg ( 3� ) if the Earth is fully visible by the sensor 
[10]. The effective FOV is said to be 130 deg horizontally 
and vertically. Insight into the early development of the algo-
rithm is provided in [1]. Meller et al. introduced a sensor 
system for low LEO satellites using multiple CMOS devices, 
each with a resolution of 512 × 512 pixels and a FOV of 
67 deg [21]. Nguyen et al. described a miniaturized horizon 
sensor that was developed for the MicroMAS CubeSat being 
deployed from the International Space Station (ISS) in 2015 
[26]. It consists in total of four small thermopile sensors. Its 
accuracy is stated to be better than 0.2 deg ( 1� ). Kikuya et al. 
recently presented a method for estimating the attitude with 
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respect to the Earth by first projecting the horizon visible on 
the image plane onto a unit sphere [19]. With regard to the 
underlying mathematical theory, the comprehensive work of 
Christian et al. in the area of optical navigation and attitude 
estimation from the projected horizon of a celestial body can 
be recommended, for example [6]- [8]. Although the main 
focus of their work is on estimating the relative position to 
a celestial body, they also show how the approaches can 
be adapted to estimate the relative orientation. Especially 
[9] is a recommendable tutorial on estimating the position 
and attitude of a vehicle relative to a spherical or ellipsoi-
dal celestial body from camera images. Modenini et al. has 
recently published a method that takes the ellipsoidal shape 
of the celestial body into account [22, 23]. Mortari et al. 
presented a method for determining the relative position of a 
spacecraft with respect to an illuminated tri-axial ellipsoidal 
celestial body [25] from optical images, but also noted that 
the method can be used to obtain an estimate of the attitude 
of the camera [28].

The paper is organized as follows: in section 2, the geo-
metric fundamentals are given. In section 3, the image 
processing algorithm and the estimation of the Earth nadir 
vector are detailed. In particular, the covariance of the esti-
mation error is derived, which is required for the statistically 
correct fusion of the Earth nadir vector with the inertial nav-
igation solution. In section 4, the sensitivity of the estimate 
of the Earth nadir vector with respect to the height above the 
Earth, the FOV of the camera and the image resolution is 
analyzed. In section 5, it is discussed how the image process-
ing is adapted to detect the Sun in the image of the camera 
and to estimate the direction vector to the Sun. Section 6 
deals with the aspects of the integrated navigation system 
that are specific to the data fusion of the Earth nadir and Sun 
direction vector measurements with the inertial navigation 
solution. Section 7 presents the results of the image process-
ing and data fusion of the sensor ATEK sounding rocket. 
The conclusions are finally drawn in section 8.

2 � Geometrical fundamentals

2.1 � Pinhole camera model

The method is based on the assumption that the camera is an 
ideal pinhole camera without lenses [32, 37]. Optical effects 
such as distortion and blurring caused by real lenses are 
compensated for by intrinsic camera calibration, thoroughly 
explained in Section 3.2. In this ideal model the image is 
projected onto the image plane at a distance f from the aper-
ture. Digital cameras usually provide the image already mir-
rored from left to right and from bottom to top. Therefore, 
an alternative representation with the image plane on the 
other side of the aperture of the camera is advantageous for 

the following derivation, as illustrated in Fig. 1. f is the focal 
length of the camera.

2.2 � Coordinate systems

The required coordinate systems are illustrated in Fig. 2 and 
explained in the following.

2.2.1 � Camera coordinate system (c) and image coordinate 
system (i)

The origin Oc of the camera coordinate system (c-frame) is 
located at the aperture of the pinhole camera at distance f 
to the image plane. The xc - and yc-axes are parallel to the 
image plane. The zc-axis points along the optical axis in the 

Fig. 1   Pinhole camera model

Fig. 2   Definition of coordinate systems: camera (c), image (i), prin-
cipal axes (p) and ECEF (e). � is the Earth nadir vector, and � is the 
normal vector of the image plane



	 B. Braun, J. Barf 

1 3

viewing direction of the camera, the xc-axis is directed to the 
right, and the yc-axis completes the orthogonal, right-handed 
coordinate system. The pixel locations of the images taken 
by the camera are specified in the two-dimensional image 
coordinate system (i-frame) whose origin Oi lies in the cross 
point of the optical axis and the image plane and whose xi - 
and yi-axes are parallel to the xc - and yc-axes. The images 
are w pixels wide and h pixels high.

2.2.2 � Principal axes coordinate system (p)

The principal axes coordinate system (p-frame) is a two-
dimensional frame lying in the image plane. The xp-axis 
coincides with the principal axis of the conic section pro-
jected onto the image plane. Why the projection is a conic 
section is thoroughly explained in Section 2.5. It is thus ori-
ented along the major axis of ellipses and along the trans-
verse axis of hyperbola or parabola, respectively. The yp-axis 
is orthogonal to the xp-axis and points in the direction of 
the minor axis of the conic section. The origin Op is located 
in the center of the conic section. Using this frame, conic 
sections can be represented by a simple quadratic equation 
without linear and bilinear terms.

2.2.3 � Earth‑centered earth‑fixed coordinate system (e)

The Earth-centered Earth-fixed (ECEF) coordinate system 
(e-frame) [27] serves as reference frame for the orientation 
of the camera with respect to the Earth. It is also the refer-
ence frame of the integrated navigation system which will 
be later used to fuse IMU measurements, GPS position and 
velocity measurements, Earth nadir vectors and Sun direc-
tion vectors.

2.3 � Earth nadir vector

The purpose of the presented method is to estimate the atti-
tude of the camera with respect to the Earth. For that, the 
normalized Earth nadir vector �c , pointing to the Earth’s 
center Oe and specified in the c-frame, is derived from the 
conic section detected in the image. The same vector is read-
ily available in the e-frame if the position of the camera 
with respect to Earth’s center �e is known, for example, from 
satellite navigation

By relating the vector in c-frame with the vector in e-frame 
with the transformation matrix �ec

(1)�e = −
�e

‖‖�e‖‖

(2)�e = �ec �c

two rotational DOF of the camera with respect to the Earth 
can be determined. Only the rotational DOF about the vector 
itself is unobservable.

2.4 � Earth cone

According to the pinhole camera model, all light rays 
creating the image in the image plane pass through the 
pinhole aperture of the camera. Then, if Earth is assumed 
to be spherical, all rays originating from Earth and its 
atmosphere form a solid cone with apex in the aperture, 
as illustrated in Fig. 3. The surface of this cone repre-
sents the boundary between Earth (more precisely the 
visible atmosphere) and space as seen by an observer at 
the location of the camera. The cross section of the cone 
with the geometrical definitions is shown in Fig. 4. r is 
the mean radius of the Earth, � is the semi-opening angle 
of the cone, H describes the height of the camera above 
the spherical Earth, and d is the effective thickness of the 
atmosphere. In the following, the mathematical equation 
of the cone surface is derived. It will be later intersected 
with the image plane to find the equation of the projected 
curve which is the horizon line in the image.

The scalar product of the vector of an arbitrary point on 
the cone surface �c with the Earth nadir vector �c is

Fig. 3   Earth cone with the Earth nadir vector � and the vector � to a 
point on the cone surface
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By squaring both sides, the equation of the double napped 
cone surface is obtained

� is given from the geometry in Fig. 4 by

2.5 � Conic section

The projection of the Earth’s horizon onto the image plane 
is the intersection of the Earth cone surface with the image 
plane zc = f  , and thus forms a general conic section. As 
generally known, conic sections can be circles, ellipses, 
hyperbolas and even straight lines or points. The conic sec-
tion equation is obtained by inserting �c =

[
pc,x pc,y f

]T into 
(4), giving

with the coefficients

2.6 � Classification of the conic section

In this application the projected conic section can only be a 
straight line if the image plane is a tangent to the cone while 
the optical axis points away from Earth. Since the Earth is not 

(3)�
T

c
�c = cos � ‖‖�c‖‖

(4)�
T

c

(
�c �

T

c

)
�c − cos2 � ‖‖�c‖‖2 = 0

(5)� = arcsin
r + d

r + H

(6)Ap2
x,c

+ Bpx,c py,c + C p2
y,c

+ Dpx,c + E py,c + F = 0

(7)

A = e2
x,c

− cos2 �

B = 2 ex,c ey,c

C = e2
y,c

− cos2 �

D = 2 ex,c ez,c f

E = 2 ey,c ez,c f

F = f 2
(
e2
z,c

− cos2 �
)

in the FOV of the camera in this scenario, it is impossible to 
observe a straight line and is therefore disregarded in the fol-
lowing. A point can only be observed if the aperture is in the 
image plane which is impossible and thus also disregarded.

Generally, the discriminant B2 − 4AC decides whether 
the conic section (6) is an ellipse, parabola or hyperbola. If 
(B2 − 4AC) < 0 , it is an ellipse, if 

(
B2 − 4AC

)
= 0 , it is a 

parabola, and if 
(
B2 − 4AC

)
> 0 , it is a hyperbola. Inserting 

the coefficients A, B and C into the discriminant and canceling 
positive factors that do not alter the sign of the discriminant 
yields the specific discriminant for this application

Making use of the unit length of the Earth nadir vector 
and the Pythagorean trigonometric identity results in the 
discriminant

Defining the elevation of the Earth nadir vector above the 
image plane

the discriminant becomes

Consequently, this means that the conic section is an ellipse 
if sin2 𝛼 < sin2 𝛽 , is a parabola if sin2 � = sin2 � and is a 
hyperbola if sin2 𝛼 > sin2 𝛽 . Considering that � and � take 
only values between 0 and �∕2 , it is also valid that the conic 
section is an ellipse if sin 𝛼 < sin 𝛽 or 𝛼 < 𝛽 , is a parabola if 
sin � = sin � or � = � , and is a hyperbola if sin 𝛼 > sin 𝛽 or 
𝛼 > 𝛽 . What does this geometrically mean? As illustrated in 
Fig. 5, if the distance f between focal point and image plane 
is neglected, one can say 𝛼 < 𝛽 if the image plane does not 
intersect the Earth, � = � if the image plane is just tangential 

(8)Δ = e2
x,c

+ e2
y,c

− cos2 �

(9)Δ = sin
2 � − e2

z,c

(10)� = arcsin ez,c

(11)Δ = sin
2 � − sin

2 �

Fig. 4   Cross section of the Earth cone

Fig. 5   Distinction between elliptic, parabolic and hyperbolic conic 
sections
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to the Earth cone, and 𝛼 > 𝛽 if the image plane intersects 
the Earth. The results are summarized in Table 1. Parabolic 
conic sections hardly occur in reality in this application and 
are therefore disregarded in the following. Circular conic 
section are just a special case of ellipses and occur only if zc 
exactly intersects Oe and are therefore disregarded as well. 

2.7 � Visibility of conic sections

So far the image plane is assumed to be infinite in size but 
naturally, the actual sensor area of real cameras occupies 
only a small area of the image plane. The sensor area, 
together with the focal length f, defines the FOV of the cam-
era. Obviously, the horizon of the Earth must be inside the 
FOV of the camera to project the horizon onto the actual 
image, either as ellipse or as hyperbola. Here arises the ques-
tion whether both types of conic sections are always observ-
able. The Earth may be fully seen in the image if 𝛾 > 2𝛼 
holds for the FOV angle of the camera � . An elliptic horizon 
conic section may be partially or fully projected onto the 
image plane if 𝛾 > 𝜋 − 4𝛼 . A hyperbolic horizon conic sec-
tion may be visible if 𝛾 > −𝜋 + 4𝛼 . Fig. 6 illustrates if solely 
elliptic, solely hyperbolic or both elliptic or hyperbolic 
horizon conic sections are theoretically observable if the 
camera is appropriately oriented depending on the height of 
the camera above Earth H and the FOV of the camera. The 
hatched area marks combinations of H and FOV at which 
the Earth is completely seen by the camera. Fig. 7 shows 
the visibility for heights below 800 km. From this analysis 
one can conclude, that even for low altitude missions like 
sounding rockets, none of both possible conic section types 
can be disregarded if a wide angle optical system is used. 
For this mission with an apogee of 238 km and a FOV of 
94.4  deg however, a focus on hyperbolae would have been 
sufficient. Further more, for missions below 800 km altitude 
using optical systems with FOV up to 120 deg it is impos-
sible to have the Earth fully inside the image. 

2.8 � Effect of the spherical Earth approximation

The Earth is in reality ellipsoidal, but is approximated by a 
sphere with radius r, leading to erroneous estimates of the 
direction of the Earth nadir vector. To assess the rough mag-
nitude of the orientation error that has to be expected when 
the ellipsoidal Earth is approximated by a spherical Earth, 

one can locally approximate the ellipsoid by a sphere that 
is tangent to the ellipsoid at the user’s location and whose 
radius r is the local radius of curvature of the ellipsoid nor-
mal to the viewing direction of the camera. The direction 
of the found Earth nadir vector will then be very close to 
the local normal direction of the ellipsoid, i.e. the direc-
tion of gravity. Advantageously, the estimation of the Earth 
nadir vector is insensitive to the scaling of the substitute 
sphere, as will be further elaborated in section 4, so that the 
local radius of curvature normal to the viewing direction of 
the camera does not need to be exactly known, but can be 
approximated.

Fig. 8 gives an expression of the orientation angle error 
about the East direction to be expected if the local normal 
vector is erroneously assumed as vector pointing to the 
center of the Earth. Its maximum is about 0.19 deg maxi-
mum at mid latitudes.

Table 1   Conic section type classification

� Type Image plane

< 0 > 𝛼 Ellipse Does not intersect Earth
= 0 = � Parabola Is tangential to Earth
> 0 < 𝛼 Hyperbola Intersects Earth

Fig. 6   Visibility of solely elliptic, solely hyperbolic and elliptic or 
hyperbolic horizon conic sections as a function of the height and 
FOV of the camera. The hatched area marks height and FOV combi-
nations at which the Earth is fully seen by the camera

Fig. 7   Visibility for heights of the camera below 800 km
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Following this reasoning, it would indeed be better not to 
assume the estimated Earth nadir vector toward the center of 
the Earth, but toward the local normal of the ellipsoid. Then 
the orientation error about the East direction, as shown in 
Fig. 8, error is reduced.

3 � Image processing

Since the algorithm is intended to run on an embedded sys-
tem onboard a spacecraft, particular emphasis was posed on 
the reduction of computational time although for this study 
the algorithm was applied post-flight on a desktop computer.

3.1 � Binarization and edge detection

The presented method makes use of the significant differ-
ence in brightness between the illuminated Earth and its 
atmosphere and the dark space. Edge detection algorithms 
like the Canny edge detection algorithm [5] are therefore 
ideal for the identification of the Earth horizon in the camera 
images. [11] or [34], for example, provide an overview of 
the many existing edge detection techniques in computer 
vision. [38] is another good introduction to edge detection. 
The edge detection algorithm shall be capable of identifying 
both hyperbolic and elliptic projections of the horizon close 
to and far from the Earth on a typical embedded computer in 
real-time. The applied algorithm bases upon the topological 
search algorithm [33] and was adapted in [3] for horizon 
detection.

First, a monochrome copy of the image is generated by 
comparing the mean value of the RGB colors of each image 
pixel with a given threshold value. The comparison yields 0 
(that is black) if the mean value is below the threshold and 
yields 1 (that is white) if the mean value is above the thresh-
old. Next, all edges, are identified by an adapted version 

of a topological search algorithm [33]. An edge is a set of 
white pixels, with at least one adjacent black pixel, that form 
a continues string. The rough process of this algorithm is 
searching for edges row-by-row and following them through 
the image. These detected edges are potential candidates for 
the horizon curve. In contrast to classical edge detections 
like Canny edge detection [5], the original algorithm allows 
the distinction between individual edges, makes it possible 
to ignore edges inside edges and provides the edges as con-
tinuous lines of ordered pixels. All three of these features 
are key factors for the success of this method. In addition, 
the process is easily accelerated by taking into account that 
the Earth will occupy a large area in the image and thus not 
every row in the image must be searched. In fact, for this 
application, the Earth is never fully inside the image and 
thus must always touch the image border which allows to 
reduce the search for edges to the border pixels. Not only 
does this optimization reduce computational time consid-
erably but also reduces clutter from sun flares and other 
objects that create edges. To support cases at high altitudes 
where the Earth is fully inside the image, additional search 
lines inside the image must be added. The proposed distance 
between the search lines is described in Section 5.

In Fig. 9 to 14, the image processing steps are exempli-
fied using an image that was taken on the ATEK sounding 
rocket at T+220 s at a height of about 230 km. Fig. 9 shows 
the original unprocessed image as provided by the camera. 
The image is strongly distorted due to the wide angle lens 
of the camera. Fig. 10 is the binarized monochrome image. 
The threshold was set in such a way that the space and the 
cloud-free areas of the Earth’s surface are categorized as 
black and the atmosphere and the illuminated cloud cover as 
white. Only the blue pixels have been analyzed by the edge 
detection algorithm. The boundaries of the small enclosed 
white areas originating from clouds were discarded since 
they do not touch the image border. The area on the right 
where the payload is visible was set to be ignored by the 
algorithm. As illustrated in Fig. 11, the detected edges are 

Fig. 8   Expected angle error about the East direction due to the 
assumption of a spherical Earth

Fig. 9   Original image of camera 1 on the ATEK sounding rocket at 
T+220 s
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formally divided into individual horizon edge candidates. In 
fact, the two long edges that both cross the lower and upper 
borders of the image are the most promising horizon candi-
dates. One is the actual horizon and the other is the boundary 
between areas with dense and scattered cloud cover. In the 
following steps, Earth nadir vectors will be estimated for 
each candidate. In order to reduce further clutter inside the 
horizon edge, the Random Sample Consensus (RANSAC) 
algorithm by [12] is applied to each edge (see Sec. 3.6) using 
the model described in Sec. 3.3. To increase accuracy, it 
should finally be mentioned that it may be advisable to use 
a subpixel accurate edge detection algorithm [32, 30].  

3.2 � Calibration and undistortion

The ideal pinhole camera model disregards distortions that 
are caused by the optics of the camera. Lenses with a large 
FOV in particular cause large distortions outside the center 
of the image which are noticeable as nonlinear bending of 
the incident light rays [16]. The previously found edges must 
therefore be undistorted before they can be used for curve 
fitting and estimation of the Earth nadir vector, since the 
derived algorithm is based on the linear relationship of the 
simple pinhole camera model. Instead of first undistorting 

the camera image and then searching for edges, it is advanta-
geous to carry out the undistortion after the edge detection 
because only the coordinates of the pixels of the detected 
edges and not all pixels of the image have to be transformed, 
which is a great reduction of computational time.

Fig. 12 illustrates a distorted nonlinear light ray and the 
corresponding undistorted linear light ray. The radial dis-
tance between the center of the image Oi and an image point 
of the undistorted ray Pu is given by the simple geometrical 
relation

where � is the angle between the incident light ray and the 
optical axis of the camera. According to the radially sym-
metric distortion model [18], the radial distance between the 
center of the image Oi and the image point of the distorted 
ray Pd can be adequately described by a ninth order polyno-
mial containing only odd terms

The five coefficients � =
[
k1 k2 k3 k4 k5

]T are estimated 
during the calibration of the specific camera and lens. For 
this purpose, a series of images of a geometrically precisely 
defined and easily recognizable pattern with known dimen-
sions (e.g. chessboard) is taken. In order for the five coeffi-
cients to be fully observable, the pose of the pattern relative 
to the camera must be changed successively. The coefficients 
are estimated by using the Levenberg-Marquardt algorithm, 
a method for solving non-linear least-squares problems.

Besides the distortion model coefficients � , the intrinsic 
camera parameters are estimated during the calibration and 
used to correct the pixel coordinates of the detected edges 
[37]. These are the exact center of the image 

[
cx cy

]T as well 

(12)OiPu = f tan �

(13)OiPd = k1� + k2�
3 + k3�

5 + k4�
7 + k5�

9

Fig. 10   Binary monochrome image with detected edge line (blue line)

Fig. 11   Separation of the edge line into individual edges fulfilling the 
criteria for horizon curves. The single edges are differently colored Fig. 12   Distorted and undistorted incident light ray
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as the horizontal and vertical focal lengths fx and fy . Each 
pixel of the detected edges �̃i is first transformed with

and then undistorted with

where the scaling factor s is

� is found by iteratively solving (13) for � . The detected and 
undistorted horizon candidates of the example image are 
shown in Fig. 13.

3.3 � Nadir vector estimation

Each of the m points of the detected horizon curve �i,j , 
j = 1…m , fulfills the conic section equation (6). The 
searched coefficients are combined in the vector �

The problem at hand can be solved by linear least-squares 
approximation. However, in order for the solution to be 
either an ellipse or a hyperbola, the estimated coeffi-
cients A − F must meet the quadratic inequality constraint 
B2 − 4AC < 0 for ellipses and B2 − 4AC > 0 for hyperbolae. 
Given the expected kind of conic section, [13, 31] and [36], 
for example, describe methods how the detected edges can 
be best fitted to ellipses or hyperbolae by linear least-squares 
approximation with quadratic inequality constraint. After 
having estimated the conic section coefficients A − F , the 
searched Earth nadir vector �c is calculated with

(14)�̂i =

[ f

fx
0

0
f

fy

](
�̃i −

[
cx
cy

])

(15)�i =

[
s 0

0 s

]
�̂i

(16)s =
OiPu

OiPd

=
f tan 𝜃√
p̂2
x,i
+ p̂2

y,i

(17)� =
[
A B C D E F

]T

Especially if only short sections of elliptic or hyperbolic 
horizon curves are seen in the image, the fitting may provide 
erroneous results. More sophisticated least-squares methods 
that are better adapted to the fitting problem at hand can be 
found in the literature, such as the hyper least-squares fit-
ting method [17], which is particularly well suited for fitting 
circles and ellipses to noisy curves.

The main disadvantage of the general conic section fitting 
methods is that the specific constraints (7) which relate the 
conic section coefficients A − F to the Earth nadir vector 
�c are not taken into account. Therefore, an adapted solu-
tion approach is to estimate the coefficients A − F by linear 
least-squares approximation, now with the three quadratic 
equality constraints

which are derived from (7). Unfortunately, there is no easy 
way to solve this estimation problem.

A third and more purposeful approach is to directly esti-
mate the Earth nadir vector �c . Each of the m points of the 
detected horizon curve �i,j , j = 1…m , fulfills the linear 
equation (3) with �c,j =

[
px,i,j py,i,j f

]T . �̂c is found by least-
squares approximation. Combining all 1…m points in the 
matrix

and the right hand sides in the vector

the estimate of the Earth nadir vector is

Fig. 14 shows the edge that was selected as most likely hori-
zon curve, and Fig. 15 finally illustrates the hyperbola that 
was fit to the edge. As sanity check it can be evaluated if 
the projected conic section lies inside the image, given the 
calculated Earth nadir vector �̂c and the known altitude H. If 

(18)�c =

⎡⎢⎢⎢⎣

√
A + cos2 �√
C + cos2 ��
F

f 2
+ cos2 �

⎤⎥⎥⎥⎦

(19)B2 − 4AC − 4(A + C) cos2 � − 4 cos4 � = 0

(20)D2 − 4AF − 4
(
A + F∕f 2

)
cos2 � f 2 − 4 cos4 � f 4 = 0

(21)E2 − 4CF − 4
(
A + F∕f 2

)
cos2 � f 2 − 4 cos4 � f 4 = 0

(22)� =

⎡⎢⎢⎣

�
T

c,1

⋮

�
T

c,m

⎤⎥⎥⎦

(23)� =

⎡⎢⎢⎣

cos � ���c,1��
⋮

cos � ���c,m��

⎤⎥⎥⎦

(24)�̂c = (�T
�)

−1
�

T
�

Fig. 13   The detected edges after correction and undistortion
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not, the edge must be disregarded. The approach of estimat-
ing the Earth nadir vector directly from the detected curve 
is also described in [7] and [9] as Christian-Robinson algo-
rithm, where it also proves to be the most powerful. 

3.4 � Residual

The residual is a measure for the quality of the curve fitting 
and consequently of the Earth nadir vector estimate. It is 
used to eventually decide which of the potential candidates is 
most likely the horizon conic section. It would be best to use 
the geometrical distance between each pixel of the detected 
edge and the estimated conic section, which, however, is 
costly to calculate. Therefore, both the pixels of the detected 
edge and the estimated conic section are first transformed to 
the p-frame, which is defined by the estimated conic section. 
At least in the case of flat hyperbolae, which mainly occur 
in sounding rocket and low Earth orbit satellite applica-
tions, the distance between the transformed curve and conic 
section in xp-direction is a good approximation of the geo-
metrical distance, which can be computed efficiently. Fig. 16 
illustrates a hyperbola and an ellipse that are transformed to 

the p-frame. The parameterized conic section equation (6) 
transformed to the p-frame is

with the coefficients

The linear and bilinear terms are zero. The transformed 
conic section is symmetrical to the yp-axis. The pixels of 
the detected edge �i are first transformed to the p-frame by

The residual is then calculated from the m points of the 
transformed detected edge and estimated conic section

The horizon edge candidate with the smallest residual is cho-
sen as the actual horizon edge. The absolute value in Eq. 28 
ensures that the positive branch is used in the residual.

3.5 � Error covariance

The covariance of the error of the Earth nadir vector esti-
mate ��c is later required for the data fusion in the integrated 
navigation filter. (3) is linearized about the Earth nadir vec-
tor �̃c and the vector �̃c =

[
�̃

T

i
f
]T

(25)A� p2
x,p

+ C� p2
y,p

+ F� = 0

(26)

A� = e2
x,c

+ e2
c,y

− cos2 �

C� = − cos2 �

F� = −
f 2
(
1 − cos2 �

)
cos2 �

e2
x,c

+ e2
c,y

− cos2 �

(27)�p =
1�

e2
x,c

+ e2
y,c

�
ex,c ey,c
−ey,c ex,c

�
�i +

�
f ez,c

√
e2
x,c
+e2

y,c

A�

0

�

(28)� =

m∑
j=1

(
|||px,p,j

||| −
√

−
C�

A�
p2
y,p,j

−
F�

A�

)2

Fig. 14   Edge that was selected as most likely horizon candidate

Fig. 15   Undistorted image of camera 1 on the ATEK sounding rocket 
at T+220 s with a hyperbola that has been fit to the detected horizon 
curve, and x- and y-coordinates of the estimated Earth nadir vector �̂c

Fig. 16   Hyperbola and ellipse in the p-frame with semi-major axis 
a =

√
−

F�

A�
 and semi-minor axis b =

√
−

F�

C�
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where �c = �̃c + 𝛿�c and �c = �̃c + 𝛿�c . With ��c =
[
��T

i
0
]T 

and ��i being the pixel error. The right-hand side of the 
equations can be written as the scalar product of two two-
dimensional vectors

By defining the ( m × 2m)-sized matrix

with the row vectors

the covariance of the Earth nadir vector error �c = E
[
��c ��

T

c

]
 

is derived from the pixel error covariance �i = E
[
��i ��

T

i

]
 by

It is assumed that the xi - and yi-coordinates of the pixel error 
��i are each correlated between the corresponding xi - and 
yi-coordinates of the adjacent pixels but are statistically 
independent of each other. In its simplest form, this correla-
tion may be described by a spatial 1st-order Gauss-Markov 
process. The pixel error covariance �i , which considers the 
correlation, then takes the form

with the correlation matrix

and R being the scalar variance of the pixel coordinate error 
and L being the characteristic distance of the Gauss-Markov 
process between the correlated pixels. For example, Fig. 17 
shows the detected horizon curve in the image of camera 1 
on the ATEK sounding rocket and the estimated hyperbola 
at T+220 s. The pixel error is composed of a component that 

(29)

�̃
T

c
𝛿�c + 𝛿�T

c
�̃c =

cos 𝛼
‖‖�̃c‖‖

�̃
T

c
𝛿�c

𝛿�T

c
�̃c =

(
cos 𝛼
‖‖�̃c‖‖

− �̃
T

c

)
𝛿�c

(30)�̃
T

c
𝛿�c =

(
cos 𝛼
‖‖�̃c‖‖

[
p̃x,c
p̃y,c

]T

−

[
ẽx,c
ẽy,c

]T)
𝛿�i

(31)� =

⎡
⎢⎢⎣

�
T

1
�1×2 �1×2

�1×2 ⋱ �1×2

�1×2 �1×2 �
T

m

⎤
⎥⎥⎦

(32)�
T

j
=

cos 𝛼
‖‖‖�̃c,j

‖‖‖

[
p̃x,c,j
p̃y,c,j

]T

−

[
ẽx,c
ẽy,c

]T

, j = 1…m

(33)�c = (�T
�)

−1
�

T
� �i �

T
� (�T

�)
−1

(34)�i = R ⋅

⎡
⎢⎢⎢⎢⎢⎣

�2 � �
2 ⋯ �

m−1

� �2 � ⋱ �
m−2

�
2

� �2 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ �

�
m−1

�
m−2 ⋯ � �2

⎤⎥⎥⎥⎥⎥⎦

(35)� =

[
1 −

1

L
0

0 1 −
1

L

]

is correlated over a distance of several hundred pixels and 
a sharply bounded, only little correlated noise component 
featuring characteristic patterns. This second component is 
quantization noise, which is due to the fact that the detected 
edge is discretized to integer pixels before the undistortion 
transformation. Taking into account the residuals of all 
detected horizons in the images of camera 1 and camera 2 
on the ATEK sounding rocket, typical values for the variance 
R and the characteristic length L were estimated

  
Fig. 18 illustrates the estimated hyperbolic horizon in 

the image of camera 1 at T+220 s with superposed cor-
related noise that was generated by a white noise shaping 
filter (red dots) and additionally superposed violet noise 
(black dots) which represents the quantization noise. 
Violet noise is spatially differentiated white noise and is 
thus negatively correlated. It is largely filtered out by the 
regression and therefore does not need to be considered 
when calculating the error covariance that will be used for 
the integrated navigation error filter. The simulated noise 
in Fig. 18 is visually similar to the actual noise in Fig. 17.

The xc -, yc - and zc-components of the covariance matrix 
�c are highly correlated due to the specific geometry of 
the problem, and the corresponding covariance ellipsoid 
is strongly elongated in the direction of one semi-axis. 
Mathematically spoken, the covariance matrix �c is not 
well conditioned. Therefore, before using it for data fusion 
in the integrated navigation system, the covariance matrix 
�c is overbounded by assuming a spherical covariance

(36)R = (1 px)2, L = 300 px

Fig. 17   Detected horizon curve in the image of camera 1 on the 
ATEK sounding rocket and estimated hyperbola at T+220  s (hori-
zontally zoomed). The characteristic pattern is due to the undistortion 
transformation of the integer pixels
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with �max being the maximum eigenvalue of �c.

3.6 � Elimination of optical disturbances

Especially when the Sun is in the camera’s FOV, the Sun 
itself or lens flares may hinder or even falsify the edge 
detection. Outliers are removed by using the RANSAC 
algorithm of [12]. For that, the Earth nadir vector and the 
corresponding conic section are repeatedly estimated with 
three randomly selected pixels of the detected edge using 
the method described in Sec. 3.3. Each time, the edge pixels 
within a distance of certain threshold to the conic section are 
counted. The probability of detection of the correct subset of 
pixels increases with the number of repetitions. At the end, 
the largest subset is the clutter free output.

4 � Sensitivity analysis

In this section, the sensitivity of the method with regard 
to the height of the camera above the Earth H, the FOV of 
the camera, the resolution of the image and the thickness 
of the atmosphere d is analyzed. The sensitivity analysis is 
done by evaluating the covariance equation (33) for differ-
ent scenarios in which one parameter varies and the other 
parameters are kept constant. The covariance of the Earth 
nadir vector error �c is transformed to a north-east-down 

(37)�c =

⎡⎢⎢⎣

�max 0

0 �max 0

0 0 �max

⎤⎥⎥⎦

coordinate system to obtain the roll, pitch, and yaw angle 
errors covariance.

First, the expected standard deviations of the roll and 
pitch angle errors are plotted in Fig. 19 as a function of the 
height H. For this sensitivity analysis, it is assumed that 
the vehicle is oriented horizontally and the camera is look-
ing forward in a horizontal direction. The FOV is 94.4 deg , 
the resolution is 1080 px, and the effective thickness of the 
atmosphere d is 0 km. The focus of the sensitivity analysis is 
on the height range between 50 km and 500 km . The height 
H has only a minor influence on the accuracy of the roll and 
pitch angles. The standard deviation of the pitch angle error 
is more or less constant in the height range considered, and 
that of the roll angle decreases only slightly with increasing 
height H.

Next, Fig. 20 illustrates the sensitivity of the roll and 
pitch angle with respect to the FOV of the camera. Here, 
the height is set to H = 200 km . The standard deviation of 
the roll angle error is maximum when the FOV of the camera 

Fig. 18   Example of a noisy horizon edge that was generated by a 
white noise shaping filter. The noise magnitude is 1 px ( 1� ), and the 
characteristic length is 300 px. The quantization noise was generated 
by differentiating white noise

Fig. 19   Expected roll/pitch angle error standard deviations (3� ) as 
a function of the height H. The FOV is 94.4  deg, the resolution is 
1080 px, and the effective thickness of the atmosphere d is 0 km

Fig. 20   Expected roll/pitch angle error standard deviations ( 3� ) 
as a function of the FOV. The height H is 200 km, the resolution is 
1080 px, and the effective thickness of the atmosphere d is 0 km
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is small and decreases as the FOV increases, but increases 
again when the FOV is large. A FOV of about 118 deg would 
be optimal. Interestingly, the pitch angle is not affected by 
the FOV of the camera.

In Fig. 21, the dependency on the image resolution is 
shown. The height is H = 200 km , and the FOV is 94.4 deg . 
As intuitively expected, the standard deviations of both the 
roll and pitch angle errors are maximum at low image reso-
lutions and steadily decrease with higher image resolutions.

Finally, the sensitivity with respect to the effective thick-
ness of the atmosphere d is analyzed in Fig. 22. It can be 
observed that neither the roll nor the pitch angle errors are 
influenced by d. So one gets the same result, regardless of 
whether one estimates the Earth nadir vector from the hori-
zon of a spherical Earth without atmosphere (which is only 
theoretically possible) or from the actually visible horizon 
with atmosphere, as long as both horizons can be converted 
into one another by scaling. This is beneficial because the 
transition between the atmosphere and space can be fairly 
blurred depending on the height, viewing angle and solar 
radiation, and the course of the detected horizon edge 
depends much on the selected binarization threshold. The 
effective thickness of the atmosphere d can therefore be set 
to zero.

5 � Sun sensor

The geometrical fundamentals of the presented method are, 
in general, valid for spherical (celestial) bodies. Thus, the 
algorithm can be used not only to estimate the Earth nadir 
vector, but also to estimate the direction vectors to the Sun 
and Moon. The projections of the Sun and Moon onto the 
image plane of the camera are ellipses. Because of the bright 
sunlight, the visible ellipse appears larger than the actual 

size of the Sun, but the shape and orientation of the ellipse 
remain unaffected. In the previous section, the sensitivity 
analysis showed that the method is insensitive to the scale 
and thus the size of the projection of the sphere on the image 
plane. It is advantageous if both the horizon of the Earth and 
the Sun are simultaneously or sequentially visible on the 
camera images. Since the directions of the Earth nadir vector 
and the vector to the Sun significantly differ from each other, 
all three rotational DOF of the camera with respect to the 
Earth can be determined from the two independent vector 
observations – either in one epoch or over a longer period of 
time if an integrated navigation filter is used. Fig. 23 shows 
again an example image of camera 1 on the ATEK sounding 
rocket at T+265 s. In addition to the Earth’s horizon, the 
camera image also shows the Sun. The sunlight is strongly 
reflected on the surface of the sounding rocket and causes 
glare on the image. First, the original image is binarized 
using a threshold value that is adapted to the brightness of 
the Sun. The result is illustrated in Fig. 24.

In Section 3 the optimization to only search for edge 
pixels would prevent the detection of the Earth at high 

Fig. 21   Expected roll/pitch angle error standard deviations ( 3� ) as a 
function of the vertical image resolution. The height H is 200 km, the 
FOV is 94.4 deg, and the effective thickness of the atmosphere d is 
0 km

Fig. 22   Expected roll/pitch angle error standard deviations ( 3� ) as 
a function of the effective atmosphere thickness d. The height H is 
200 km, the FOV is 94.4 deg, and the resolution is 1080 px

Fig. 23   Original image of camera 1 on the ATEK sounding rocket at 
T+265 s
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altitudes, where its projected ellipse is fully inside the 
image. In this case it would also prevent the detection of 
the Sun, since its projection also does not intersect the 
image borders. Therefore, in addition to the border pixels 
also the pixels in an horizontal search line raster, as visual-
ized in Fig. 24 as yellow lines, are searched. The distance 
between the lines is 2l = 2b2∕a = 2f tan � where l is the 
semi-latus-rectum, b is the semi-minor axis and a is the 
semi-major axis of the potentially projected ellipse (c.f. 
Fig. 16). In contrast to the minor axis, the latus-rectum 
is not an exact measure of the size of the ellipse but it is 
a sufficiently high lower bound which can be determined 
without knowledge of the nadir vector.

Since only curves are sought that intersect one of the 
stripe borders at least once, only the boundaries of the 
two large white spots are detected as valid edges. The 
small white spot on the left of the elongated reflection 
spot does not intersect one of the search lines and is there-
fore discarded by the topological search algorithm. In fact, 
the elongated spot of the reflection on the surface of the 
sounding rocket would almost have been discarded if the 
search line had been shifted slightly upwards. The edge 
of the actual projection of the Sun, however, fulfills the 
search criteria very well. The pixels that are colored blue 
in Figure 24 and the yellow lines are the only pixels that 
have been analyzed by the topological search algorithm, 
all other pixels have not even been examined. In Fig. 25, 
all found edges are visualized in different colors. They are 
potential candidates for the Sun ellipse.

Both curves are undistorted and used to estimate the 
Sun direction vector �c . The solution is again the candi-
date with the smallest residual between the detected edge 
and the estimated ellipse. Fig. 26 shows the undistorted 
edge which was selected as most likely candidate. Finally, 
Fig. 27 shows the estimated ellipse which is plotted over 
the original undistorted camera image.

Another example is shown in Fig. 28. Contrary to intui-
tion, the coordinates of the Sun direction vector are not in 
the center of the detected Sun ellipse. This is because the 
image plane is highly inclined with respect to the Sun cone. 
In fact, the coordinates of the Sun direction vector are nei-
ther in the center nor in one of the foci of the ellipse.

Specifically for the ATEK sounding rocket,

Fig. 24   Binary monochrome image with detected edge line (blue 
line). The height of the stripes that are bounded by the yellow lines 
define the smallest expected size of the Sun ellipses to be sought

Fig. 25   Separation of the edge line into individual edges fulfilling the 
criteria for Sun curves. The single edges are differently colored

Fig. 26   Selected undistorted Sun curve

Fig. 27   Undistorted image of camera 1 on the ATEK sounding rocket 
at T+265 s with the ellipse that was fit to the selected undistorted Sun 
curve, and x- and y-coordinates of the estimated Sun direction vector 
�̂c
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is assumed for the calculation of the covariance matrix (33).

6 � Integrated navigation system

6.1 � System design

The design of the integrated navigation system is illustrated 
in Fig. 29. It is the well-known design of an integrated 
navigation system (see for example [35] or [15]) which is 
aided with the position and velocity measurements of a 
GPS receiver and the Earth nadir and Sun direction vector 
measurements of the camera(s). The navigation error filter 
is an error state space Kalman filter. More precisely, it is 
implemented as a Schmidt-Kalman filter, which allows to 
distinguish between estimated error states and error states 
that are only considered statistically [14].

(38)R = (3 px)2, L = 300px

The acceleration and gyroscope measurements �̃b and �̃ib 
of the IMU are first in-flight calibrated with the estimated 
sensor biases �f  and �� and then integrated with time within 
the inertial navigation system (for example by means of the 
4th-order Runge-Kutta integration scheme) to obtain the 
inertial navigation solution, that is the position �̂e , the veloc-
ity �̂e and the orientation quaternion q̆ẽb , beginning from the 
initial values �e,0 , �e,0 and q̆eb,0.

The position and velocity measurements �̃e and �̃e with 
the covariance matrices �e,pos and �e,vel and the Earth nadir 
vector �̃c,hor and the Sun direction vector �̃c,sun with the covar-
iance matrices �c,hor and �c,sun are input into the navigation 
error filter to estimate the navigation and sensor error states. 
The estimated position error ��e , velocity error ��e and ori-
entation error � eẽ are fed back to the inertial navigation sys-
tem to correct the navigation state estimates. The navigation 
error filter also outputs the estimated covariance matrix � 
of all navigation and sensor state errors. In this paper, only 
accelerometer and gyroscope biases are accounted for as 
main IMU error representatives; other errors are omitted for 
clarity. If required, other IMU errors, such as scaling factor 
errors, bias instabilities and misalignments, can be addition-
ally considered or estimated and used for in-flight calibration 
of the raw sensor values. In addition to the IMU errors, the 
misalignment of the camera is estimated or considered and 
the time-correlated measurement noise of the Earth nadir 
and Sun direction vector measurements is considered.

6.2 � Earth nadir and Sun direction vector innovation

The nonlinear observation equations of the Earth nadir and 
Sun direction vector measurements which relate the vectors 
to the navigation states of the integrated navigation system 
are

where �bc̃,k is the transformation matrix between the body-
fixed frame (b-frame) and the c-frame, representing the 
mounting orientation of the camera with respect to the body-
fixed frame of the vehicle. �

(
q̆ẽb,k

)
 is the transformation 

matrix between the e-frame and the b-frame and is derived 
from the orientation quaternion q̆eb at time tk . �e,k is the posi-
tion of the Sun with respect to the center of the Earth at time 
tk , specified in e-frame. An algorithm for the computation 
of the Sun’s position in the J2000 Earth-centered inertial 
frame and its transformation to the e-frame is, for example, 
given in [24]. The innovations that go into the Kalman filter 
are then

(39)

�̂c,hor,k = −�T

bc̃,k
�
(
q̆ẽb,k

)T �̂e,k

‖‖�̂e,k‖‖
�̂c,sun,k = �

T

bc̃,k
�
(
q̆ẽb,k

)T �e,k − �̂e,k

‖‖�e,k − �̂e,k
‖‖

Fig. 28   Undistorted image of camera 2 on the ATEK sounding rocket 
at T+171 s with the ellipse that was fit to the selected undistorted Sun 
curve, and x- and y-coordinates of the estimated Sun direction vector 
�̂c

Fig. 29   Design of the integrated navigation system with GPS position 
and velocity, Earth nadir vector and Sun direction vector aiding
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6.3 � Earth nadir and Sun direction vector error 
model

In addition to the spatial correlation of the pixel errors of the 
Earth horizon curve, it is assumed that the errors of the esti-
mated Earth nadir vector ��c,hor and the Sun direction vector 
��c,sun are correlated with time. This temporal correlation is 
described in each case by a 1st-order Gauss-Markov process 
which is characterized by the correlation length Tc [29]. The 
discrete-time propagation equation of a general 1st Gauss-
Markov process between two subsequent times tk−1 and tk with 
tk = tk−1 + �t is given with

with the matrices

Therein, �k is the state of the 1st-order Gauss-Markov pro-
cess, �k is Gaussian white input noise whose covariance 
matrix is �k = E

[
�k �

T

k

]
 . The corresponding covariance 

propagation equation is

with �c,k = E
[
�k �

T

k

]
 . �c changes only slowly with time and 

can therefore be considered quasi-stationary in the time 
frame of the Gauss-Markov process characterized by the 
correlation length Tc . The covariance matrix of the white 
Gaussian input noise � can then be found at each time tk by 
solving the discrete Lyapunov equation

for �,

using the covariance matrix �c,hor = E
[
�hor �

T

hor

]
 , as given 

with (33), in case of the Earth nadir vector error and the 
covariance matrix �c,sun = E

[
� sun �

T

sun

]
 in case of the Sun 

direction vector error. For the ATEK application, the cor-
relation length Tc was set to 20 s.

Furthermore, the Earth nadir and Sun direction vector 
measurements are affected by the misalignment of the camera 
� c̃c . It is modeled as a constant.

Defining the navigation state vector at time tk as

(40)
�hor,k = �̃c,hor,k − �̂c,hor,k

�sun,k = �̃c,sun,k − �̂c,sun,k

(41)�k = � �k−1 + � �k−1

(42)� =

⎡⎢⎢⎢⎣

1 −
�t

Tc
0 0

0 1 −
�t

Tc
0

0 0 1 −
�t

Tc

⎤⎥⎥⎥⎦
, � =

⎡⎢⎢⎢⎣

�t

Tc
0 0

0
�t

Tc
0

0 0
�t

Tc

⎤⎥⎥⎥⎦

(43)�c,k = � �c,k−1 �
T + � �k−1 �

T

(44)� �c �
T − �c + � � � T = 0

(45)� = � −1
(
�c −� �c �

T
)
� −T

the Earth nadir and Sun direction vector error equations are

with the matrices

where the operator (�×) forms the skew-symmetric matrix 
from the input vector � . The dependency on the position 
error ��e is small and is neglected.

The innovation covariance matrices are consequently

The time-correlated errors of the Earth nadir and Sun direc-
tion vector measurements are only statistically considered 
by the Schmidt-Kalman filter. The entries of the Kalman 
gain � that correspond to the Gauss-Markov processes are 
therefore set to zero in the filter update step. For tuning 
purposes, additional white noise covariances �hor,tuning and 
�sun,tuning may be added to (49) to increase the measurement 
uncertainty if necessary. If the misalignment of the camera is 
estimated, the transformation matrix �bc̃ has to be corrected 
with the current estimate � c̃c before use by

7 � Flight experiment

7.1 � ATEK/MAPHEUS‑8 mission

The presented method was applied to estimate the orien-
tation of a sounding rocket from real flight data collected 

(46)�
T

k
=
[
𝛿�T

e,k
𝛿�T

e,k
� T

eẽ,k
�

T

f ,k
�

T

𝜔,k
� T
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�T

hor,k
�T

sun,k

]T

(47)
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[
�3 �3 �𝜓eẽ,hor,k
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�3 �3

]
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�k
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on the ATEK/MAPHEUS-8 mission in 2019. ATEK was a 
sounding rocket campaign by DLR designed to test innova-
tive materials and production methods for reusable rocket 
parts and to measure structural and thermal loads that act 
on the rocket during the various phases of flight. With the 
knowledge gained, the design of the sounding rocket parts 
shall be improved in terms of reusability in the future.

Lift-off was on June 13, 2019 at 4:21 am (CEST) from 
Esrange, Sweden. The two-stage launch vehicle VSB-30 
accelerated the payload to a velocity of about 1.77 km/s at 
the beginning of the coasting phase and brought the pay-
load to an apogee height of about 238 km, as illustrated in 
Fig. 30. In order to reduce the dispersion of the trajectory 
due to thrust vector deviations during the ascent, the rocket 
was spun up about its roll axis with its fins and spin-up 
thrusters shortly after lift-off and despun again by means of 
a yo-yo system after the burnout of the 2nd stage. During the 
coasting phase, which began at T+60 s at a height of about 
60 km, the rate control system (RCS) controlled the angular 
rate by means of nitrogen propelled cold gas thrusters. The 
roll, azimuth and elevation angles of the payload during the 
coasting phase are shown in Fig. 31. The payload landed 
successfully on the parachute about 920 s later, about 67 km 
north of the launch site. Important flight events are listed in 
Table 2.

The rocket in lift-off configuration is shown in Fig. 32, 
and the payload in reentry configuration after nose cone 
separation at T+56 s and motor separation at T+60 s is illus-
trated in Fig. 33. The payload was equipped with two GoPro 
HERO3 cameras, which were integrated into the service 
module and arranged on opposite sides of the payload, look-
ing downwards at an angle of 20 deg. Furthermore, three 
orthogonal Honeywell Q-Flex accelerometers and three 
orthogonal Northrop Grumman LITEF μFORS gyroscopes 
were aboard. Position and velocity measurements were pro-
vided by a DLR Phoenix GPS receiver. All measurements 

Fig. 30   Height and velocity during the coasting phase

Fig. 31   Roll, azimuth and elevation angles during the coasting phase. 
The gray areas mark the periods where the pitch or yaw thrusters are 
active

Table 2   Flight events

Time Event

T+0 s Lift-off
T+15 s 2

nd stage ignition
T+56 s Nose cone separation
T+57 s Yo-yo despin
T+60 s Motor separation
T+61 s RCS activation
T+430 s Begin of atmospheric reentry
T+579 s Chute deployment (at 4.6 km height)
T+923 s Payload touchdown

Fig. 32   ATEK sounding rocket in launch configuration and definition 
of the body-fixed frame (b-frame)
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were recorded on board during the flight and were available 
for post-processing.  

7.2 � IMU measurements

Fig. 34 and Fig. 35 show the measured accelerations and 
angular rates during the coasting phase between T+60 s 
and T+430 s. The gray areas mark the periods in which 
the RCS was active and the pitch and/or yaw thrusters were 
firing. The measured accelerations are in the range of some 
milli-g and most of the time constant since no outer forces 
like thrust or aerodynamic forces acted on the rocket during 
the coasting phase. Only in the short periods with the RCS 
activated, small additional specific forces were measured 
on the corresponding axes. Even the roll axis accelerometer 
experienced some specific force because of the imperfect 
alignment of the thrusters and the accelerometer axes. The 
more or less constant offsets are due to the measurement 
biases of the accelerometers and can later be well estimated 
by the integrated navigation system. At the beginning and 
at the end of the coasting phase, the influence of small aero-
dynamic forces in the upper, low-density atmosphere can 
be observed.

The stabilizing roll rate is removed by the yo-yo despin 
at T+57 s. Subsequently, the angular rate of the payload 
slowly increases especially about the pitch and yaw axes due 
to moments generated by the payload experiments. As soon 
as the angular rate exceeds 0.9deg/s about an axis, the RCS 
counteracts the rate about this axis. As can be seen from the 
figure, the resolution of the angular rate measurements is 
with 0.03 deg/s quite low. Furthermore, the sample rate is 
only 20 Hz. It should be stressed that the accelerometers and 
the gyroscopes were not originally intended for navigation 
purposes, but only for monitoring micro-g conditions and 
for rate control during the coasting phase. For these tasks, it 
was not necessary to pay special attention to time synchro-
nization, sensor axis alignment and measurement resolution. 
This fact has to be taken into account later when tuning the 
navigation error filter.

7.3 � Earth nadir and Sun direction vector estimation

The GoPro HERO3 cameras took pictures with a resolution 
of 1920 × 1080 pixels. The automatic exposure control of 
the cameras reacts very quickly, which was advantageous 
for this application, as there was a high contrast between the 
bright albedo of the Earth and the sunlight on the one hand 
and the dark space on the other. Like the IMU, the cameras 
were not originally intended for optical navigation, but for 
observing the general flight behavior and, in particular, the 
structural behavior of the 1st and 2nd stage fins during the 
ascent. Unfortunately, the cameras do not offer a way to syn-
chronize the camera time with the system time. In addition, 
the cameras are not designed to be fixed to the structure, 
so that the mounting orientation error alone is assumed to 
be in the range of 1 deg ( 1� ) about each axis. However, it 
turned out that the quality of the images was sufficient to 
demonstrate at least the main functionality of the presented 

Fig. 33   ATEK payload after nose cone and 2nd stage separation

Fig. 34   Accelerometer measurements in the b-frame during the coast-
ing phase. The gray areas mark the periods where the pitch or yaw 
thrusters are active

Fig. 35   Gyroscope measurements in the b-frame during the coasting 
phase. The gray areas mark the periods where the pitch or yaw thrust-
ers are active
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method in a post-processing study. The FOV of the cameras 
was 94.4 deg.

Fig. 15, Fig. 27 and Fig. 28 already showed examples of 
hyperbolae and ellipses that were fit to the detected Earth 
horizon and Sun curves in the images of the two cameras 
on the ATEK sounding rocket. A video, which is provided 
as electronic supplementary material (supplementary file 
1), shows the undistorted images of the two cameras with 
the fitted hyperbolae and ellipses with residuals smaller than 
0.025 and 0.5 ⋅ 10−5 , respectively, between T+100 s and 
T+320 s. In addition, the corresponding x- and y-coordinates 
of the Earth nadir and Sun direction vectors are plotted.

The xb -, yb - and zb-coordinates of the estimated Earth 
nadir and Sun direction vectors of cameras 1 and 2, trans-
formed to the b-frame and normed to unit length, are plotted 
in Fig. 36. It can be observed that the Earth horizon and the 
Sun were visible at the same time over a longer period of 
time, either together in the same image of one or the other 
camera or each in one of the images of the two cameras. 
At T+185 s, there was a smooth uninterrupted transition of 
the Earth nadir vector from camera 2 to camera 1. Fig. 37 
shows the corresponding isotropic standard deviations ( 3� ), 
as estimated with (33) and overbounded with (37), repre-
sented as angle errors. The angle errors are estimated to be 
below 0.9 deg ( 3� ). Due to the challenging light conditions, 
the horizon is difficult to detect until T+171 s in the image 
of camera 1, which is also noticeable in the large fluctuation 
of the standard deviation. These measurements are discarded 
and not used in the navigation error filter.

7.4 � Initial values

Since the gyroscopes were not intended for navigation but 
for rate control, for which only small rates had to be cap-
tured during the coasting phase, their measurement ranges 
were limited to ± 1000 deg/s for the sake of a higher resolu-
tion (as already mentioned, the data was nevertheless only 
recorded in low resolution). However, the roll rate during 
the ascent was larger, which made it impossible to estimate 
the orientation by integrating the gyroscope measurements 
over time, starting from a known initial orientation at lift-off. 
Therefore, the Tri-Axial Attitude Determination (TRIAD) 
method [4] is used to estimate the initial orientation of the 
payload at the beginning of the coasting phase at T+60 s. 
The TRIAD method requires two non-parallel vector obser-
vations once in the b-frame and once in the navigation ref-
erence frame, here the e-frame, to estimate the initial ori-
entation quaternion q̆eb,0 . It is a favorable circumstance that 
the Earth horizon and the Sun are simultaneously visible by 
camera 2 from T+160 s onwards. With that, the initial orien-
tation is estimated at T+171 s with the TRIAD method and 
is then back-propagated to T+60 s by integrating the gyro-
scope measurements by means of the 4th-order Runge-Kutta 

Fig. 36   Estimated Earth nadir vectors �b,hor with residuals smaller 
than 0.025 and estimated Sun direction vectors �b,sun with residuals 
smaller than 0.5 ⋅ 10−5

Fig. 37   Overbounded, isotropic standard deviation boundaries ( 3� ) 
of the Earth nadir and Sun direction vector errors, depicted as angle 
errors
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integration scheme. It is assumed that the accuracy of the 
initial orientation at T+60 s is 2 deg ( 1� ) about all three 
axes, considering the inaccuracy of the TRIAD method on 
the one hand and the accumulated orientation error of the 
back-propagation on the other hand. The initial position and 
velocity at T+60 s are provided by the GPS receiver.

7.5 � Navigation error filter

The navigation solution (i.e. position, velocity, and orien-
tation) is computed with the integrated navigation system 
design presented in Sect. 6. Table 3 lists the sensor errors 
that are included into the navigation error filter. For each 
error component, the number of involved states and the 
(initial) magnitude ( 1� ) are given, and it is specified if 
the error component is estimated (E) or solely statistically 
considered (C) by the navigation error filter. The acceler-
ometer and gyroscope errors are composed of the velocity/
angular random walk (that is white noise), constant turn-on 
biases and sensor axes misalignments. The misalignments 
and the gyroscope turn-on bias are small compared to the 
other errors and are thus unobservable. They are therefore 
only statistically considered. Only the accelerometer turn-on 
bias is well observable and is estimated. Other IMU errors 
like the bias instability are neglected. The large numbers 
in brackets that are added to the velocity/angular random 
walk values of the accelerometers and gyroscopes are notice-
able. They represent the large amount of additional process 
noise that is necessary to take the large uncertainties of the 
IMU measurements and numerical integration errors into 
account and to tune the navigation error filter properly. The 
Earth nadir and Sun direction vector errors are composed 
of time-correlated noise with a characteristic correlation 
length of 20 s and white noise, which is required for tuning 

the navigation error filter. These noise-like errors are only 
statistically considered. Finally, the misalignments of the 
cameras 1 and 2 are modeled as constants and are estimated 
by the navigation error filter.

7.6 � Orientation solution

The focus is here on the accuracy of the estimated orienta-
tion solution. The accuracy of the position and velocity is 
primarily driven by the accuracy of the GPS measurements. 
Fig. 38 exemplarily shows the three-dimensional orientation 
of the payload at T+175 s. The complete sequence between 
T+60 s and T+430 s can be viewed in the video, which is 
provided as electronic supplementary material (supplemen-
tary file 2). The red arrows represent the body-frame axes 
of the unaided inertial orientation solution, the blue arrows 
represent the body-frame axes of the aided integrated ori-
entation solution. The gray ellipses with dotted edges at the 
tips of the blue arrows represent the 3� uncertainty ellipses 
of the tip location as predicted by the navigation error filter. 
Additionally, the estimated Earth nadir vectors (cyan: cam-
era 1, green: camera 2) and estimated Sun direction vectors 
(magenta: camera 1, red: camera 2) are displayed. Only the 
vectors that are actually used in the integrated navigation 
solution are shown. Furthermore, the thrust vectors of the 
RCS thrusters are illustrated, when firing.

The analysis of the absolute accuracy is difficult in the 
absence of a highly accurate reference such as a roll-isolated 
inertial platform would provide. However, one can at least 
compare the unaided inertial orientation solution with the 
aided integrated orientation solution, and one can check 
the statistical consistency of the measurement innovations 
with regard to the corresponding predicted covariances. 
Furthermore, it is possible to compare the results with the 

Table 3   Navigation filter tuning Sensor Error States E/C Mag. ( 1�) Unit

Accelerometer White noise 0 C 0.05 (+2.5) mg∕
√
Hz

Bias 3 E 2 mg
Scale factor 3 C 300 ppm
Misalignment 3 C 2 mrad

Gyroscope White noise 0 C 0.05 (+2.5) deg∕
√
h

Bias 3 C 6 deg /h
Scale factor 3 C 2000 ppm
Misalignment 3 C 2 mrad

Hor 1 & Hor 2 White noise 0 C 0.005 -
Time-correlated noise
Correlation length: 20 s

3 C Dynamically estimated -

Sun 1 & Sun 2 White noise 0 C 0.005 -
Time-correlated noise
Correlation length: 20 s

3 C Dynamically estimated -

Cam 1 & Cam 2 Misalignment 3 E 1 deg
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standalone TRIAD orientation estimates, which can always 
be computed when an Earth nadir and Sun direction vector 
measurement are available at the same time.

In Fig. 39, the difference between the unaided iner-
tial and aided integrated orientation solutions about the 
xe -, ye - and ze-axes is plotted. The 3� standard deviation 
boundaries of the orientation error � eẽ , as predicted by the 
navigation error filter, are shown in Fig. 40. As soon as the 
first Earth nadir and Sun direction vector measurements 
of camera 2 are processed at T+171 s, the standard devia-
tions of the orientation errors immediately decrease about 
all three axes. Only after T+300 s, they begin to grow 

again since aiding measurements are no longer available. 
At T+300 s, the orientation uncertainty has declined from 
initially 6 deg ( 3� ) to now 1.1 deg ( 3� ). Subsequently, it 
increases again to 1.8 deg ( 3�).

The innovations of the Earth nadir and Sun direction 
vectors together with the corresponding 3� standard devia-
tion boundaries are illustrated in Fig. 41. The innovations 
lie well in their 3� boundaries. In Fig. 42, the absolute 
angle differences between the measured and predicted 
Earth nadir and Sun direction vectors are displayed. (a) 
shows the angle between the measured vectors and the 
vectors that are predicted with the unaided inertial ori-
entation solution, and (b) shows the angle between the 
measured vectors and the vectors that are predicted with 
the aided integrated orientation solution. In (a), the maxi-
mum angle error is 4.2 deg. These angle errors are owing 
to the numerical integration error of the inertial navigation 
algorithm and the orientation errors of the Earth nadir and 
Sun direction vectors. The tendency to grow with time, 
which can be observed for all four angle differences, is 
most likely due to the numerical integration error, which 
is typically increasing with time. In (b), the absolute angle 
differences are below 0.6 deg all the time. The steps of the 
angle differences between the Earth nadir and Sun direc-
tion vectors of camera 2 at T+170 s and of camera 1 at 
T+268 s are remarkable. In both cases, the two vector 
measurements are extracted from the same camera image, 
and the step occur at the moment the second of the two 
vectors becomes available for the first time. Since both 
vectors are affected by the same camera misalignment 
and inertial orientation errors, the differences are, at least 
qualitatively, a measure for the error between the Earth 
nadir and Sun direction vectors themselves. Though both 
errors cannot be separated, the errors of the individual 
direction vector measurements may be delimited upwards 
to 0.6 deg.

Fig. 38   Exemplary illustration of the three-dimensional orientation of 
the payload at T+175 s. A video of the complete sequence is avail-
able as supplementary material

Fig. 39   Difference between the unaided inertial and aided integrated 
orientation solutions about the xe -, ye - and ze-axes

Fig. 40   Standard deviation boundaries (3� ) of the orientation error 
about the xe -, ye - and ze-axes, as predicted by the navigation error fil-
ter
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Fig. 43 shows the estimated camera misalignments and 
the corresponding 3� standard deviation boundaries, as pre-
dicted by the navigation error filter. All camera misalign-
ments are initialized with zero in the beginning. The esti-
mated errors and the predicted standard deviations seem to 
be consistent. The step of the misalignment of camera 1 
at T+268 s goes hand in hand with the addressed step in 
Fig. 42.

Finally, it is worth to have a look at the TRIAD orienta-
tion solutions in Fig. 44. At each instant of time, at which 
an Earth nadir vector and a Sun direction vector are simul-
taneously visible by one of the cameras alone or by both 
cameras, a TRIAD orientation solution can be calculated. 
This TRIAD orientation solution is once compared to the 
unaided inertial orientation solution (a) and once to the 
aided integrated orientation solution (b). Fortunately, the 

horizon of the Earth and the Sun can be seen at the same 
time over a long period of time, and their projections on the 
images almost seamlessly pass from camera 2 to camera 1. 
There are three periods: first, the horizon of the Earth and 
the Sun are visible in the image of camera 2 from T+171 s 
until T+185 s, then the horizon of the Earth is visible in 
the image of camera 1 and the Sun is visible in the image 
of camera 2 until T+240 s, and finally, between T+260 s 
and T+280 s, the horizon of the Earth and the Sun can be 
seen in the image of camera 1. In (a), the orientation error 
continuously increases with time and is maximum at the end 
of the third period. The maximum orientation difference is 
3.4 deg. As with the absolute angle differences, the growing 
difference is most likely due to the gyroscope measurement 
errors, which are integrated with time. In (b), the difference 
between the TRIAD and the aided solution about the xe -, 
ye - and ze-axes is below 0.6 deg, independently from time, 
which is another indicator for a good statistical consistency 
of the integrated orientation solution.      

Fig. 41   Earth nadir and Sun direction vector innovations �hor and �sun , 
and predicted standard deviation boundaries (3�)

Fig. 42   Absolute angle differences between the measured and pre-
dicted Earth nadir and Sun direction vectors
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8 � Conclusion

Using sample data from a sounding rocket mission, the prin-
ciple of estimating the Earth nadir and Sun direction vectors 
from camera images and their fusion with measurements 
from accelerometers, gyroscopes and a GPS receiver was 
illustrated. Even if the inertial sensors and cameras were not 
originally intended for navigation, the functionality of the 
method could be demonstrated and a consistent orientation 
solution estimated with the help of the integrated navigation 
system. For this specific application, the accuracy of the esti-
mated azimuth and elevation angles of the Earth nadir and 
Sun direction vectors is assumed to be better than 0.6 deg. 
The accuracy of the orientation solution of the integrated 
navigation system is assumed to be better than 2 deg ( 3� ) 
after processing all Earth nadir and Sun direction vector 

aiding measurements. A more in-depth study of the achiev-
able accuracy of the direction vector estimation depending 
on the height, angle of view and image resolution is still 
pending. On one of the next sounding rocket missions, which 
is expected to take place in 2021/2022, a roll-isolated iner-
tial platform will be on board in addition to the camera and 
a strapdown IMU. Then, a highly accurate reference will 
be available and the accuracy of the estimated orientation 
method can be evaluated quantitatively.

Since it has been shown in principle that the method 
can compensate for the disadvantages of a strapdown IMU 
on a spinning sounding rocket, the development of the 
method into a robust, real-time method is being pursued. 
The expensive and hardly available inertial platform could 
then be replaced by cheaper components, accompanied by 
a greater algorithmic effort. The achievable accuracy is suf-
ficient for many sounding rocket missions that do not depend 
on highly accurate orientation estimations. The next step 
will be to replace the action camera with a camera that can 
withstand the harsh conditions and that has, among other 

Fig. 43   Estimated misalignments � c̃c of cameras 1 and 2 and stand-
ard deviation boundaries ( 3� ), as predicted by the navigation error 
filter

Fig. 44   Difference between the TRIAD and the unaided inertial and 
the aided integrated orientation solutions, respectively
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things, a real-time interface, a time synchronization capa-
bility, and can be mounted firmly and repeatably with low 
misalignment.
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