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Explainable machine learning 
for precise fatigue crack tip 
detection
David Melching1*, Tobias Strohmann1, Guillermo Requena1,2 & Eric Breitbarth1

Data-driven models based on deep learning have led to tremendous breakthroughs in classical 
computer vision tasks and have recently made their way into natural sciences. However, the absence 
of domain knowledge in their inherent design significantly hinders the understanding and acceptance 
of these models. Nevertheless, explainability is crucial to justify the use of deep learning tools in 
safety-relevant applications such as aircraft component design, service and inspection. In this work, 
we train convolutional neural networks for crack tip detection in fatigue crack growth experiments 
using full-field displacement data obtained by digital image correlation. For this, we introduce the 
novel architecture ParallelNets—a network which combines segmentation and regression of the crack 
tip coordinates—and compare it with a classical U-Net-based architecture. Aiming for explainability, 
we use the Grad-CAM interpretability method to visualize the neural attention of several models. 
Attention heatmaps show that ParallelNets is able to focus on physically relevant areas like the crack 
tip field, which explains its superior performance in terms of accuracy, robustness, and stability.

Abbreviations
a 	� Crack length
�a 	� Crack length increment
Akl 	� Feature activation maps
βkl 	� Gradient weights
CNN	� Convolutional neural network
DIC	� Digital image correlation
Dice 	� Dice loss
DSC	� Dice coefficient
εVM 	� Von Mises equivalent strain
FCNN	� Fully connected neural network
fcp	� Fatigue crack propagation
GAP	� Global average pooling
Grad-CAM	� Gradient-weighted class activation mapping
H 	� Attention heatmap
n,m 	� Width and height of input displacements
MSE 	� Mean squared error loss
MT	� Middle tension
LeakyReLU	� Rectified linear unit with slope 0.01
Lossω 	� Total loss with weight factor ω
ω 	� Weight factor in combined loss
p 	� Dropout probability
ϕ 	� Global average-pooled network output
� 	� Network output before Sigmoid activation
R 	� Load ratio
ReLU	� Rectified linear unit
SIF	� Stress intensity factor
Sw,t 	� MT-specimen with width w and thickness t  in millimeters
testw,t 	� Test dataset from specimen Sw,t
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testsmall 	� Test sample of the dataset test160,2.0
test large 	� Test sample of the dataset test950,1.6
train160,4.7,right 	� Training dataset
u, ux , uy 	� Displacements
val160,4.7,left 	� Validation dataset
val 	� Test sample of validation dataset
y, ŷ  	� Normalized crack tip position output and respective ground truth
z, ẑ  	� Segmentation output and respective ground truth

Quantifying fatigue crack growth is of significant importance for evaluating the service life and damage tolerance 
of critical engineering structures and components that are subjected to non-constant service loads1. Fatigue crack 
propagation (fcp) data are usually derived from standard experiments under pure Mode I loadings. Therefore, 
a straight crack path is usually assumed, which can be monitored by experimental techniques such as the direct 
current potential drop method2,3. Effects like crack kinking, branching, deflection or asymmetrically growing 
cracks cannot be captured without further assumptions, hindering the application of classical methods for 
multiaxial loading conditions. Alternative methods able to capture the evolution of cracks under complex load-
ing conditions are therefore needed.

In recent years, digital image correlation (DIC) has become instrumental for the generation of full field 
surface displacements and strains during fcp experiments4. Coupled to suitable material models, the DIC data 
can help to determine fracture mechanics parameters like stress intensity factors (SIFs)5, J-integral6 as well as 
local damage mechanisms around the crack tip and within the plastic zone7,8. All this requires a clear knowledge 
of the crack path and, especially, the crack tip position. Gradient-based algorithms like the Sobel edge-finding 
routine can be applied to identify the crack path9. Moreover, the characteristic strain field ahead of the crack tip 
can help to find the actual crack tip coordinates by fitting a truncated Williams series to the experimental data10. 
However, the precise and reliable detection of crack tips from DIC displacement data is still a challenging task 
due to inherent noise and artefacts in the DIC data11.

Convolutional neural networks (CNNs) led to enormous breakthroughs in computer vision tasks like image 
classification12, object detection13, or semantic segmentation14. Recently, deep learning algorithms are also find-
ing their way into materials science15, mechanics16,17, physics18 and even fatigue crack detection: Rezaie et al.19 
segmented crack paths directly from DIC grayscale images whereas Strohmann et al.20 used the physical displace-
ment field calculated by DIC as input data to segment fatigue crack paths and crack tips. Both architectures were 
based on the U-Net encoder-decoder model21. Pierson et al.22 developed a CNN-based method to predict 3D 
crack surfaces based on microstructural and micromechanical features. Moreover, CNNs are able to segment 
crack features from synchrotron-tomography scans23,24 and can also detect fatigue cracks in steel box grinders 
of bridges25. For a detailed review on fatigue modeling and prediction using neural networks we refer to the 
recent review article by Chen et al.26.

CNNs are extremely flexible and consist of millions of tunable parameters enabling them to learn complex 
patterns and features. On the other hand, their depth and complexity make it very hard to explain the function 
representation of these models. Nevertheless, explainability and interpretability27 of such black-box-models are 
crucial to ensure their robustness and reliability as well as to detect training data biases28. Furthermore, it helps 
stakeholders gain trust in data-driven models and thus contributes to a certified and secure application of these 
models in the production environment.

There are several methods to approach interpretability of deep neural networks29,30. Gradient-weighted Class 
Activation Mapping (Grad-CAM)31 is one of many state-of-the-art interpretability techniques which produce 
visual explanations of the decisions made by CNN-based models, see, e.g., Alber et al.32 for a variety of other 
approaches. It helps users to gain trust and experts to discern stronger models from weaker ones even in case of 
seemingly indistinguishable predictions. The method generalizes Class Activation Mappings33 and was recently 
extended to semantic segmentation34, resulting, e.g., in the successful interpretation of CNN-based brain tumor 
segmentation models35,36.

In the present work, we investigate the interpretability of machine-learned fatigue crack tip detection mod-
els. For this, we introduce a novel network architecture called ParallelNets. The architecture is an extension of 
the classical segmentation network U-Net by Ronneberger et al.21 and its modification by Strohmann et al.20 
for fatigue crack segmentation in DIC data. To this purpose, we train a parallel network for the regression and 
segmentation of crack tip coordinates in two-dimensional displacement field data obtained by DIC during a fcp 
experiment. Exemplarily, we use the Grad-CAM method to obtain neural attention heatmaps for input samples 
from several fcp experiments. Finally, we discuss the overall attention and the individual layer-wise attention of 
three trained models and find relations to their performance and robustness on unseen data.

Methodology
Material and data generation.  The experimental data used in this work was generated during fcp experi-
ments with MT-specimens of the aluminum alloy AA2024-T3. The alloy is commonly employed for aircraft 
fuselage structures37. Displacement fields were measured on the surface of the specimens during the experiments 
by means of a commercial 3D DIC system. Further details on the experimental conditions and the resulting DIC 
data can be found in Strohmann et al.20 and Breitbarth et al.38.

We use DIC displacement data from three different fcp experiments denoted by Sw,t where w is the width and 
t  the thickness of the specimen S in millimeters:

•	 S160,4.7 (Strohmann et al.20).
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•	 S160,2.0 (Strohmann et al.20).
•	 S950,1.6 (Breitbarth et al.38).

For the first two experiments ( S160,4.7 , S160,2.0 ) the image acquisition rate was controlled by the crack length. 
The crack length was determined by the direct current potential drop method using Johnson’s equation39 A series 
of 5 images was acquired every 0.2 mm of crack extension starting at maximal force followed by four successive 
load steps (75%, 50%, 25%, and 10%). We refer to Strohmann et al.20 for further details on the experimental setup 
and data generation for these two experiments.

The specimen size in the third experiment ( S950,1.6 ) differs considerably from the first two (950 mm in com-
parison to 160 mm width). The large specimen was used to investigate very high SIFs (up to ∼ 130 MPa√m) at 
load ratios R = 0.1, 0.3, and 0.5. In the present work, we use the experimental data from the load ratio R = 0.3.

Ground truth.  Ground truth data for the crack tip position was obtained by manual segmentation of high-
resolution optical images20. Here, we use the ground truth data from experiment S160,4.7 for training and valida-
tion (i.e. model selection).

Since the segmentation of one crack tip located in one pixel within an array of 256 × 256 pixels (size of the 
interpolated displacement field acquired by DIC) suffers from severe class imbalance40 ( ∼ 1:50 k), we artificially 
increased the number of crack tip pixels by labeling a surrounding 3 × 3 pixel grid as class “crack tip” resulting 
in an imbalance of ∼ 1:7300. This imbalance is handled by using the Dice loss function (see “Loss”). Such a 3 × 3 
grid is also necessary for data augmentation purposes, especially random rotation, since single pixels might 
otherwise get lost during rotation and interpolation.

Network architecture.  There are at least two different approaches to design a neural network for the pre-
diction of crack tips in displacement field data:

1)	 We can view this task as a regression problem and combine a convolutional neural feature extractor with 
a fully connected regressor that outputs the crack tip position41. Such architectures were already used for 
image orientation estimation42, pose estimation43 or, more recently, respiratory pathology detection44. This 
approach can be advantageous since it overcomes the class imbalance problem. However, we found that such 
models are not precise enough for our use case and they are useless for images without crack tips or with 
multiple cracks.

2)	 We can use a semantic segmentation network like in Strohmann et al.20 to segment pixels of class “crack tip”. 
This approach has advantages when it comes to precision. However, the high class imbalance in our data 
makes the training of the network difficult.

ParallelNets.  We introduce an architecture named ParallelNets that combines the two approaches described 
above and train them in a parallel network45,46. The architecture is shown in Fig. 1: a classical U-Net21 encoder-
decoder model is fused with a Fully Connected Neural Network (FCNN) based at the bottleneck of the U-Net. 
Consequently, the network has two output blocks, i.e. a crack tip segmentation from the U-Net decoder and a 
crack tip position from the FCNN regressor. On the one hand, we expect that this learning redundancy can lead to 
improved robustness because the network encoder needs to provide good latent representations for both tasks, 
namely segmentation and regression. On the other hand, for the same reason ParallelNets might be harder to 

Figure 1.   Schematic ParallelNets architecture. The classical U-Net architecture21 with four encoder blocks 
(Down) and four decoder blocks (Up) connected by a base block (Base) is shown in blue. Encoder and decoder 
blocks of the same level are connected by skip connections (gray dashed lines). The additional modules of our 
ParallelNets architecture are shown in orange and basically consist of a fully connected neural network (FCNN) 
which is trained to output the crack tip position in terms of normalized x and y coordinates.
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train than a simple U-Net and the corresponding segmentation and regression losses need to be properly bal-
anced.

The U-Net consists of four encoder blocks Down1, …, Down4 and corresponding decoder blocks Up1, …, 
Up4. They are joined by a Base which consists of two consecutive CNN blocks between which we use dropout47. 
Encoder and decoder blocks of matching resolution are connected via skip connections to allow an efficient flow 
of information through the network. These connections increase segmentation quality48. Following Strohmann 
et al.20, we use LeakyReLU instead of the original ReLU as activation function for our U-Net architecture.

The FCNN consists of an adaptive average pooling layer followed by two fully connected layers with ReLU 
activation functions and finishing with a 2-neuron linear output layer. It predicts the (normalized) crack tip 
position y =

(
y1, y2

)
∈ [−1, 1]2 relative to the center of the input data.

Loss.  During training, we calculate the mean squared error between the prediction and the ground truth crack 
tip position ŷ =

(
ŷ1, ŷ2

)
∈ [−1, 1]2 , i.e.

Since the segmentation problem is highly imbalanced, we use Dice loss49 for the segmentation output:

where z =
(
zij
)
 with zij ∈ [0, 1] denotes the segmentation output (after sigmoid activation) and ẑ =

(
ẑij
)
 stands 

for the ground truth. Here, ε > 0 is a small constant introduced to treat the edge case z = ẑ ≡ 0 . We chose 
ε = 10−6 . These two losses are then combined into a (weighted) total loss

where ω ≥ 0 is a weight factor which tunes the training influence of the FCNN. If ω = 0 , the parallel FCNN 
branch is inactive and the ParallelNets is reduced to the classical U-Net.

Data augmentation and normalization.  First, each input displacement fields ux and uy are interpolated 
on a regular 256 × 256 grid. We perform a data normalization in combination with the following consecutive 
data augmentation steps of the DIC dataset:

1.	 Random crop of the input with a crop size between 120 and 180 pixels where the left edge is chosen randomly 
between 10 to 30 pixels.

2.	 Random rotation by an angle between − 10 and 10 degrees and subsequently crop the largest possible square 
from the rotated input.

3.	 Random flip up/down with a probability of 50%.

Since random crop and random rotation reduce the input size, we need to up-sample the input and ground 
truth by means of a linear and nearest neighbor interpolation to a multiple of 16. We choose 224 × 224. A further 
up-sampling to the original size of 256 × 256 would only result in more interpolated data points. Moreover, a 
reduced input size yields less GPU memory, and thus speeds up training.

No data augmentation is used during validation and the input data stays at their original size.

Datasets and data splitting.  The data generated during the fcp experiments introduced in “Material and 
data generation” was split into the following four datasets (the term sample indicates hereafter individual DIC 
images acquired at a single load condition):

1.	 Training dataset train160,4.7,right : The data acquired from the right side of the specimen S160,4.7 consisting of 
835 labeled samples.

2.	 Validation dataset val160,4.7,left : The data acquired from the left side of the specimen S160,4.7 , also consisting 
of 835 labeled samples.

3.	 Test dataset test160,2.0 : Data acquired from the left and right sides of the specimen S160,2.0 with 2 × 1410 = 2820 
samples.

4.	 Test dataset test950,1.6 : Data acquired from the left and right sides of the specimen S950,1.6 with 2 × 204 = 408 
samples.

The data of the left side of the specimens are preprocessed to guarantee a data distribution similar to the right 
side. Both displacement fields ux and uy are mirrored along the y-axis and the x-displacements are multiplied 
by − 1.

Architecture optimization and training.  After manual architecture optimization of the number of ini-
tial feature channels and the number of hidden layers and neurons of the FCNN, we selected 64 initial feature 
channels for the U-Net and 2 hidden layers for the FCNN consisting of 1024 and 256 neurons, respectively.

(1)MSE
(
y, ŷ

)
=

√

(y1 − ŷ1)
2
+ (y2 − ŷ2)

2

(2)Dice
(
z, ẑ

)
= 1−

2
∑

ijzij ẑij + ε
∑

ij(zij + ẑij)+ ε

(3)Lossω(z, y, ẑ, ŷ) = Dice
(
z, ẑ

)
+ ωMSE

(
y, ŷ

)
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To train ParallelNets properly, we found by trial-and-error that a loss weight of ω = 100 works well, since 
it balances both loss terms making the whole model learn both the segmentation and regression of crack tips. 
Lower values of ω pronounce the segmentation task and higher values the regression task.

In terms of hyperparameter optimization, we identified the Adam optimizer50 with a learning rate of 5× 10−4 
and a batch size of 16 by trial-and-error. Moreover, we tried different dropout probabilities p ∈ [0, 12 ] for the 
bottleneck of U-Net and ParallelNets but found no substantial difference.

We trained several randomly initialized U-Nets and ParallelNets for 500 epochs on the dataset train160,4.7,right . 
After each epoch, the networks were evaluated on val160,4.7,left and finally the network with the smallest valida-
tion Dice loss was selected.

Grad‑CAM method.  We use the so-called Grad-CAM31 method to interpret the results. This method allows 
quantification and visualization of the spatial attention of deep neural networks used for segmentation tasks. 
Classically, the algorithm is used to produce layer-wise attention heatmaps35,36. Figure 2 shows the workflow of 
the network and the Grad-CAM method.

To obtain the attention heatmap H(u) for input displacements u = (ux , uy) , we first collect the internal features 
from selected layers during the forward pass. The network output �(u) (before Sigmoid activation) is then global 
average-pooled (GAP) over the size of the image to get the scalar output score

where N denotes the number of pixels of the output. The score is backpropagated through the network to cal-
culate the gradients ∂ϕ

∂Akl  with respect to the feature activation maps Akl of the k-th filter and l-th layer. These 
gradients are then global average-pooled over their width and height dimensions (indexed by i, j ) to obtain the 
gradient-weights

where Nl denotes the number of pixels of the features of the respective layer. These weights βkl capture the 
importance of the feature Akl for the segmentation score ϕ . Finally, we compute the attention map by applying 
the ReLU activation function to the gradient-weighted sum of features:

(4)ϕ(u) =
1

N

∑

i,j

�ij(u).

(5)βkl(u) =
1

Nl

∑

i,j

∂ϕ

∂Akl
ij

(u),

(6)H(u) = ReLU




�

k,l

βkl(u)A
kl(u)





Figure 2.   Grad-CAM method for visualization of deep neural network’s attention. Internal features of the 
neural network collected during a forward pass of input data are combined by weighting with average pooled 
gradients computed during a backward pass.
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Here, the function ReLU(x) = max(x, 0) is applied to highlight areas which have a positive influence on the 
output score ϕ.

Results and discussion
If we fix a network architecture and train several randomly initialized models, the results in terms of final loss and 
accuracy are stable. However, the network attention substantially differs for each trained model. This behavior 
is expected31. In fact, these differences in terms of attention can be used to successfully discern stronger models 
from weaker ones even if both make almost identical predictions.

In our study, we observed three main behaviors:

	 i.	 instable crack path attention.
	 ii.	 stable crack path attention.
	 iii.	 stable crack tip field attention.

To illustrate these differences, we select three representative trained models to discuss various performance 
and explainability results. Two of the three models were trained with the U-Net architecture and are denoted as 
U-Net-1 (dropout probability p = 0.25 ) and U-Net-2 ( p = 0.5 ). The third one was trained with the ParallelNets 
architecture with p = 0.2 (see “ParallelNets”) and is referred to as ParallelNets-1. The latter possesses two outputs, 
namely the encoder-decoder segmentation and the FCNN regression of the crack tip position (Fig. 1). For sim-
plicity, we only use the segmentation output because it turned out to be more precise than the regression output. 
However, it might be advantageous to use the regression output as an additional backup prediction in cases 
where the crack tip segmentation fails or to select the most likely crack tip region (cf. Section 2.8 of Strohmann 
et al.20). The evolution of the attention obtained by the Grad-CAM method for the three networks can be seen 
in the supplementary videos together with the crack tip segmentation as the fatigue crack grows. We randomly 
selected three representative input samples at maximal load from the different datasets for further analysis:

•	 val547 (short val)—stage number 547 of the validation dataset, which corresponds to the left side of specimen 
S160,4.7.

•	 test160,2.0,left,1000 (short testsmall)—stage number 1000 of the left side of the small specimen S160,2.0.
•	 test950,1.6,left,290 (short test large)—stage number 290 of the left side of the larger specimen S950,1.6.

Figure 3 shows the displacements and von Mises equivalent strain acquired by DIC for the three samples. 
The results are interpolated on a 256 × 256 pixels grid. While the samples are qualitatively similar, it has to be 
considered that the size of the MT-specimen for test large is six times larger than the others. The deformation field 
around the crack tip is best visible in the von Mises equivalent strain field in Fig. 3.

There are several issues in the DIC data that must be considered: first, inherent noise often hinders a correct 
distinction between relevant features and artefacts, particularly at low strains. For instance, the large strains (red) 
in the vicinity of the crack path (marked as ①) are artefacts arising from a locally flawed black and white pattern. 
In addition, the strain next to the crack path has no physical meaning because neighboring DIC facets are not 
connected, which leads to the calculation of unrealistically large strains. This red area often shows random gaps 
along the crack path (see the regions marked as ②). In reality, however, the crack faces are traction-free.

Attention results.  Figure 4 shows the (overall) network attention heatmaps of the models U-Net-1, U-Net-
2, and ParallelNets-1 for the three input samples shown in Fig. 3. The segmented crack tip pixels are shown 
in gray. In contrast to layer-wise attention heatmaps35, these network attention heatmaps are computed with 
internal features from all encoder–decoder blocks of the neural networks, i.e. the output feature activations of 
Down1, Down2, Down3, Down4, Base, Up1, Up2, Up3, and Up4 (see Fig. 1). While all three models predict a 
position of the crack tip, their network attention heatmaps are distinctively different. This phenomenon was 
already observed in other works28,31.

We find that U-Net-1 displays inconsistent attention heatmaps. On the one hand, for val and testsmall the 
model seems to pay attention to different parts of the crack path. On the other hand, there are no areas of high 
attention for test large . This result indicates the confusion of U-Net-1 in the evaluation of test large which may be 
related to the larger specimen dimensions.

Moreover, we see that U-Net-2 consistently focuses on the crack path. The output segmentation is always 
located right in front of the area of high attention. Nevertheless, there are attention gaps along the crack path, e.g. 
the region right behind the segmented tip in testsmall ①. Such gaps might result from DIC artefacts and correlate 
well with stability issues which are discussed in “Stability and robustness”.

Finally, we observe that ParallelNets-1 focusses its attention on the area ahead and around the crack tip. This 
attention is consistent for all three samples and suggests that the neural network is able to identify the physical 
crack tip near-field51 in front of the crack. Such attention behavior was only found in models trained with the 
ParallelNets architecture and is desirable for the following reason: our training data is biased in the sense that 
each sample contains exactly one crack tip. We observed that models which focus their attention on the crack 
path erroneously segment a crack tip in cases where the crack path is visible but the tip is actually located outside 
the image. Supplementary Figure S1 shows an example of a false crack tip segmentation of U-Net-2 in case the 
model’s field of view is restricted to x ≤ 40 and −20 ≤ y ≤ 20 . Here, ParallelNets-1 correctly predicts no crack tip.
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Performance results.  We choose the following metrics for evaluation of model performance on the train-
ing, validation and test datasets:

•	 Dice coefficient defined as DSC := (1− Dice) (see Eq. (2))
•	 Reliability of crack detection, calculated as the number of input samples with at least one pixel segmented 

as crack tip over the total number of input samples (every sample contains one crack tip).
	   This metric is particularly interesting because it can be computed without any ground truth and determines 

whether the network has overfitted the training data. Moreover, it can indicate if a model undersegments, 
which is a common problem in imbalanced segmentation tasks.

•	 Deviation from the ground truth crack tip position in millimeters. The prediction position is calculated 
as the mean position of all pixels segmented as “crack tip”. More elaborate postprocessing steps which first 
select the most likely crack tip region20 are not considered here. If no pixel is segmented by the model the 
corresponding sample is skipped. Consequently, less reliable models may achieve smaller mean deviations 
over a whole dataset as the difficult samples are excluded. This effect should be considered when assessing 
model performance.

The results are shown in Table 1. We are only able to calculate the Dice coefficient and deviation for the train-
ing and validation datasets since the test datasets are unlabeled. ParallelNets-1 outperforms the other networks 
on all datasets except the validation dataset. Especially, it is the most reliable network on unseen data ( test160,2.0 
and test950,1.6 ) and reaches a perfect reliability on the training dataset. An overall test reliability of 96.8% is 
reached on the unseen data. Furthermore, in terms of accuracy, it shows an overall mean deviation of the crack 
tip position from the ground truth of 0.54 mm (training and validation data combined) with a standard deviation 
(std) of 0.38 mm. The model generalizes correctly also to larger specimen sizes ( test950,1.6) , although, in contrast 
to Strohmann et al.20, no additional synthetic training data in form of finite element simulations was needed.

The second-best network is U-Net-2 with a deviation of the crack tip position (mean/std) of 0.61/0.74 mm and 
an overall test reliability of 93.9% on unseen data. U-Net-1 shows the best performance only for the Dice coef-
ficient and deviation on the validation dataset. We remark again that the networks were selected during training 
using the validation Dice loss as the only selection criterion. This explains why the network U-Net-1 was chosen 
although it is far less reliable (70% overall test reliability on unseen data) and least accurate on the training dataset 
(0.88 mm mean deviation). This shows the need for improved model selection criteria during or after training.

Figure 3.   Three input data samples acquired by digital image correlation during different fcp experiments. The 
first and second columns show the x and y displacement fields and the third column the von Mises equivalent 
strain fields.
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Stability and robustness.  We now compare the crack detection stability of the different models. The 
detected crack tip positions should result in a growing crack length, i.e. the crack length a increases between 
subsequent samples, i.e. �a = anew − aold should be positive. We estimate the crack length

Figure 4.   Grad-CAM attention heatmaps for the three trained networks (columns) and three different input 
samples (rows). The segmented crack tips are shown in gray.

Table 1.   Performance comparison of the three trained models on training, validation, and test datasets with 
respect to the Dice coefficient (higher is better), reliability (higher is better), and mean deviation from crack tip 
ground truth in millimeters (lower is better).

Training
( 160.4.7,right)

Valida�on
( 160, 4.7,left)

Test 
( 160,2.0)

Test
( 950,1.6)

Dice Reliability Devia�on
mean / std 

[mm]

Dice Reliability Devia�on 
mean / std

[mm]

Reliability Reliability

U-Net-1 0.246 87.9 % 0.88 / 1.51 0.355 92.3 % 0.54 / 0.53 68.5 % 80.4 %

U-Net-2 0.465 98.1 % 0.42 / 0.22 0.310 99.9 % 0.79 / 0.99 93.6 % 95.8 %

ParallelNets-1 0.517 100 % 0.39 / 0.26 0.333 98.9 % 0.69 / 0.43 96.4 % 99.2 %
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where ( xtip, ytip ) and ( xo, yo ) denote the coordinates of the crack tip and the crack origin, respectively. We expect 
�a to be centered around 0.2 mm for the training, validation and test160,2.0 datasets, which was the crack growth 
increment between subsequent images. The length of the crack during the fcp experiment of the test set test950,1.6 
was not used to control image acquisition. Therefore, this experiment is excluded from the stability study.

Figure 5 shows a boxplot of �a for the three models and three different datasets. The results show that the 
mean �a for all distributions reflects the crack growth expectation of ∼ 0.2 mm. However, ParallelNets-1 has 
the narrowest distribution proving its superior stability (see also standard deviation in Table 1). In contrast, the 
models U-Net-1 and U-Net-2 produce outliers which range from − 9 to 10 and − 60 to 60 mm, respectively. This 
behavior can be explained by the models’ attention heatmaps. Focusing on the crack path, the networks U-Net-1 
and U-Net-2 can be confused more easily by artefacts along the crack path, which make the predictions jump 
back and forth between subsequent steps forming pairs of outliers (e.g. − 60 and 60 mm).

Layer‑wise network attention.  So far, we have only considered overall network attention. More spe-
cifically, we collected the internal activations of all major network blocks and combined them into a single 
attention heatmap. This approach enhances explainability while hampering faithfulness31 of the visualization. In 
order to get a deeper insight into the networks’ actual attention mechanisms and functioning, we need to look 
at layer-wise attention heatmaps35. These layer-wise visualizations are calculated with the Grad-CAM method 
by restricting the features Ak,l to one internal block of the network. For a better overview, we only present the 
three most relevant blocks for each model, i.e. the blocks for which the attention is quantitatively the highest in 
comparison to other blocks.

Figure 6 shows the attention of U-Net-1 for the blocks Down4, Base, and Up1 (see Fig. 1). We see that the 
attention is inconsistent between the three samples. Especially the visualization of the larger MT-specimen’s 
sample ( test large ) is very different from the other two samples ( val , testsmall ). Furthermore, for val and testsmall 
the attention is focused on the crack path at significant distance to the predicted crack tip segmentation.

In Fig. 7, we see the layer-wise attention of U-Net-2 for the three blocks with the highest attentions, i.e. Down2, 
Up1, and Up2. In contrast to U-Net-1, this model shows a consistent layer-wise attention. The model is explain-
able in the sense that it simply focusses on the crack path to predict the crack tip. However, this can be critical 
in the presence of artefacts in the DIC data around the crack faces (see Fig. 3).

Figure 8 illustrates the attention of ParallelNets-1 for the blocks—Down4, Up1, and Up2. The layer-wise atten-
tion shows a more versatile behavior than for the U-Net models. The block Down4 focuses on the field ahead of 
the crack tip, while Up1 pays attention to the upper part of the crack path and to a broader field in front of the 
crack tip. Apparently, Up2 learned to identify the close area around the crack tip at its opening side. This feature 
resembles the crack tip opening displacement (CTOD) measurement technique52.

a ≈

√

(xtip − xo)
2
+ (ytip − yo)

2,

Figure 5.   Stability of crack detection models between subsequent steps at maximal force. The target baseline for 
�a is 0.2 mm depicted as a red dashed line. Quartiles (25–75%) are shown as colored boxes. The vertical black-
line intervals indicate the 1–99% quantiles. Diamonds show outliers. For the models U-Net-1 and U-Net-2 these 
outliers actually range from − 9 to 10 and − 60 to 60 mm, respectively, and partially lie outside the plotted range.
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These findings support and explain the results shown in Fig. 4 and discussed in “Attention results”: it is 
evident that the network ParallelNets-1 has learned higher order semantics. In contrast to U-Net-2, it displays 
more diverse attention on the individual layers. We conclude that this diversity leads to an increased stability and 
robustness of the model due to the fact that its final segmentation decision bases on several different patterns 
rather than merely on the detection of the crack path.

Conclusions
We introduced the novel parallel segmentation-regression architecture ParallelNets and trained it to precisely 
detect crack tips in DIC displacement fields obtained during fatigue crack propagation experiments. We observed 
superior performance of this network over similarly trained classical U-Nets and searched for explanations 
insight the deep internal features of these models. To this purpose, we implemented two variants of the interpret-
ability method Grad-CAM: The first one focusing on the overall network attention and the second one targeting 
specific blocks of the network for their interpretability.

Considering the results in “Results and discussion”, the following conclusions can be drawn:

1.	 Network architecture: For our specific application, where the problem of finding a crack tip position can 
be tackled either by regression or segmentation models, we find that a combination of these two strategies 
into a single deep end-to-end model has great benefits. In a nutshell, the parallel regression in ParallelNets 
enhances the learning of complex features thus leading to improved segmentation results.

2.	 Visualization: Grad-CAM can be used to produce meaningful and useful visualizations of neural network 
attention for CNN-based segmentation networks trained to segment crack tips in DIC displacements data. 
The algorithm can be applied to generate overall network attention heatmaps as well as layer-wise attention 
heatmaps.

3.	 Interpretability and explainability: These attention visualizations help human experts to identify the most 
promising models and can contribute to the demystification of machine-learned black-box models.

4.	 Robustness and model selection: Models focusing on physically relevant parts like the deformation field 
ahead and around a crack tip (ParallelNets-1) are more robust with respect to unseen data. The Grad-CAM 
method opens the possibility to identify these superior models by their attention heatmaps. This can be done 

Figure 6.   Network attention of U-Net-1’s layers Down4, Base, and Up1 for the three DIC input samples above.
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during postprocessing in a machine learning pipeline or possibly even during training. Hence, we are able 
to produce a single network attention heatmap suitable for fast model selection and easy monitoring.

These advances pave the way towards better model selection and deeper understanding of CNN models 
for crack detection in safety-relevant applications and ultimately contribute to an autonomous inspection of 
engineering structures and components.

Figure 7.   U-Net-2’s network attention of the layers Down2, Up1, and Up2 for the three DIC input samples 
above.
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Data availability
All datasets and code are publically available at https://​doi.​org/​10.​5281/​zenodo.​57402​16.
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