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Abstract: Convolutional Neural Networks (CNNs) are employed to identify wake vortices
via their two-dimensional position and circulation strength in Light Detection and Ranging
(lidar) measurement scans. A campaign at Vienna International Airport delivered data
that so far has only been processed with a traditional lidar processing algorithm, namely
the Radial Velocity (RV) method. Its not fully automated nature led to only a fraction
of scans from the overall data set to be evaluated. Here we present ways to use CNNs
for this task. A scoring algorithm engineered for verifying CNN detections has been
implemented. In particular green detections (those marked as correct CNN detections by
the scoring algorithm) can confidently be used for further analysis about the wake vortex
encounter hazard. With this approach we end up with a significantly more processed and
characterized lidar data compared to that so far delivered by the RV method.

1. Introduction

Landing aircraft are perennially prone to
wake vortex encounters (WVEs) [1]. These
air whirls generated by the preceding aircraft
are a direct consequence of lift generation.
In high-lift configuration, the most promi-
nent wake vortices merge from trailing and
wing tip vortices [2] on either side of the
aircraft, generating a counter-rotating wake
vortex pair. The intrusion path through the
wake vortex pair dictates the impact on the
aircraft, whereas the severity is determined
by the strength of the vortices (typically de-
scribed by their circulation value), the weight
of the involved aircraft, and the aircraft’s
wingspan with respect to the separation of
the vortices [3]. The danger of WVEs during
landing becomes apparent when considering
that the majority of aircraft share the same
glide path towards the runway. In union with
ground proximity as well as low flight speed,
a pilot has limited reaction capabilities in this
scenario [4, 5]. Alertness of WVEs led to
the ICAO introducing first landing aircraft
separations in the 70s, which nowadays are
often considered exceedingly conservative,

limiting airport capacity [6]. Although the
COVID-19 pandemic led to a temporary de-
cline in flight demand, Eurocontrol expects
that by 2025 pre-pandemic flight demand will
return [7]. Thus, by utilizing Eurocontrol pre-
dictions from 2018 we can expect roughly 1.5
million unaccommodated flights by 2045 [8]
(includes a 5 year delay). Airports therefore
require means to increase their capacity. One
efficient approach to do so is by reducing the
currently used aircraft separation standards.

A re-categorization program by Eurocon-
trol and the FAA, termed RECAT, therefore
plans three phases for adapting current air-
craft separation standards [9]: the first phase
lays out six new aircraft categories taking
into account the strength of generated wake
vortices as well as the vulnerability of the
follower aircraft. Phase two introduces pair-
wise static separations between individual
aircraft types. Lastly, phase three foresees
dynamic aircraft separations, which adjust
according to prevailing weather conditions.
Both phases one and two are already or soon
operational at first airports. The last phase re-
lies on real-time knowledge of wake vortices’
position and strength on the glide path.
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In order to reduce the lifetimes and
strengths of wake vortices in ground proxim-
ity so-called plate lines have been developed
and tested at Vienna International Airport
(for more insight see [10]). The requirement
for fast-time and automatic Light Detection
and Ranging (lidar) measurement processing
became evident in first analyses of the Vienna
International Airport campaign. We required
means to accelerate and automatize the wake
vortex characterization of our enormous data
set.

Thus, the determination of wake vortices
is necessary for both the fast-time evaluation
at airports, in order to efficiently separate air-
craft during the approach and landing phase,
as well as the evaluation of large measure-
ment campaign data such as the one from
Vienna International Airport.

In the current effort we analyze the usabil-
ity of Artificial Neural Networks (ANNs) for
characterizing the position and strength of
wake vortices, ultimately to reveal methods
for improving the characterization process,
obtaining higher accuracies and evaluating
the performance of the ANN quantifications.
Section 2 first details the principles of wake
vortex physics in ground proximity and then
surveys in additional depth previous inves-
tigations relevant for arriving at the current
effort. Section 3 gives an overview of the
Vienna campaign and outlines the data sets
used herein. Section 4 describes the ANN
architecture as well as other relevant settings
used for characterizing the wake vortices.
In Section 5 we present the findings from
our studies by analyzing the performance of
a Convolutional Neural Network (CNN) in
comparison to current lidar processing algo-
rithms, by showcasing the advantages of our
method, applying the trained CNNs to data
not previously processed with a traditional
method, and by suggesting future work.

2. Previous studies on wake vortex
detection near the ground

Detecting wake vortices close to the ground
implies the necessity to know what they be-
have like and what occurs to them in that
scenario. In ground proximity wake vortices

- starting from 1.5 initial vortex separations -
are subject to ground effects, causing them to
follow hyperbolic diverging trajectories [11].
Once one wingspan above the ground, the
wake vortices (in this context also termed
primary vortices) induce vorticity of oppo-
site sign at the ground, forming a boundary
layer [12]. An adverse pressure gradient
grows and ultimately causes secondary vorti-
cies (SV) to detach from the ground. The SV
interact with the primary vorticies and cause
them to rebound and simultaneously to decay
in an accelerated manner [13]. Presence of a
crosswind alters the decay of the wake vor-
tices. The crosswind generates an additional
boundary layer, which causes an asymmetric
wake vortex decay and transport character-
istics as shown in Fig. 1 (Ref. [5, 14, 15]).
Under weak crosswinds, the upwind vortex
may stall over the runway. Under strong cross-
winds, the downwind vortex may move to-
wards a closely-spaced parallel runway. Both
of these are unfavorable situations.

Fig. 1. Vortices in ground proximity with cross-
wind. Large and small circular arrows represent
primary and secondary vortices, respectively
(taken from [15], p.1253).

The touchdown of aircraft drastically in-
troduces additional effects, reducing the gen-
erated lift and therefore also the shape of
the wake vortices with so-called end effects.
Pressure variations along the vortex cause
axial flow within the core, outside the cores
slower effects destabilize the vortex. Obsta-
cles, such as the plate lines may similarly
disturb the primary vortices [15]. Plate lines
are a series of upright plates (with the dimen-
sions 4.5 m height and 9 m length, as well
as the separation of 20 m) which have been
investigated at the Vienna campaign [10].
Figure 2 (Ref. [16]) illustrates how in the
vicinity of the obstacles SV emerge and wrap
around the primary vortex. Analogous phys-
ical mechanisms to those of the end effects
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can be identified. Over 1000 wake vortex
evolutions measured at Vienna International
Airport indicate that plate lines cause the
lifetimes of the vortices in a safety corridor
along the final approach to reduce by 50% for
the most critical ICAO separation (Medium
behind Heavy) [10].

Fig. 2. Secondary vortices emerge and wrap
around the primary vortex, propagate along the
primary vortex, and lead to its accelerated decay
(taken from [16], p.121).

Several wake vortex detection efforts to ef-
ficiently separate aircraft during the approach
and landing phase have been published in the
past, ranging from in-flight wake vortex de-
termination [17] to prediction models such as
the Probabilistic Two-Phase Wake Vortex De-
cay Model (P2P) [18]. Another method is to
identify wake vortices within lidar measure-
ments (or scans) which are recorded from
a ground base. This technique was also
employed at Vienna International Airport.
Such set-up typically employs range-height
indicator scans which measure the aerosol
movement tangential to the lidar laser beam,
perpendicular to the glide path of the landing
aircraft (see Fig. 3). To evaluate the threat of
the wake to a follower aircraft, the primary
wake vortices, marked as CW (clockwise)
and CCW (counterclockwise) vortices, have
to quantitatively be identified via their cir-
culation strength Γ and position (𝑦, 𝑧) for
each vortex. Wake Vortex Advisory Sys-
tems (WVASs), which obtain the position
and strength of wake vortices, exist. They are
based on fast-time prediction models such as
the P2P. It is suggested that lidar instruments
are employed to monitor these predictions,
forming a safety net [19]. Lidar processing
algorithms are widely studied, however for
modern micro pulsed coherent lidar instru-
ments (micro-PCDL) no automatic fast-time
evaluation algorithm is available - a demand-

ing task particularly in highly turbulent sce-
narios. For micro-PCDLs, a popular pro-
cessing algorithm exists - the Radial Velocity
(RV) method [20,21]. Assuming a Carrier-to-
Noise Ratio (CNR) of−10 dB the RV method
achieves root mean square errors (RMSEs)
of up to 1.8 m, 0.21°, and 10.3 m2/s for the
range 𝑅, elevation angle 𝜑, and circulation Γ,
respectively. The seemingly high accuracy
stems from theoretical analysis. Performance
estimates for real measurement data, in par-
ticular for turbulent scenarios is still pending
and expected to deviate from the aforemen-
tioned capabilities. Further downsides of
the RV method include its requirement for
manual input in the evaluation process and
a relatively high CNR. Alternative ground-
based algorithms [22–24] lack one or more
of the following features: sufficient and/or
quantifiable characterization accuracy, uni-
versal applicability for different lidar types,
a complete automation (especially in turbu-
lent atmosphere), the ability to process lidar
measurements in fast-time, and the possibil-
ity to identify the origin of a result using
context information.
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Fig. 3. Lidar measurement geometry with the
aircraft flying out of the page.

Wake vortex detection and rough position
estimations from lidar measurements have
successfully been achieved with machine
learning (ML) methods in the past [25–28].
In particular ANNs stood out as a promising
method - other ML types obtained inferior per-
formance. Employing ML for the quantitative
characterization of the position and strength
therefore posed an attractive path. A first
study using ANNs for the aforementioned
task indicated the feasibility of image pro-
cessing architectures such as CNNs [29]. The
trained CNN models [29] are based on archi-
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tectures that have been developed for building
an understanding on how hyperparameters
of an ANN architecture influence the charac-
terization capabilities. The training time on
low level hardware (Intel® Core™ i7-5600U
central processing unit at 2.60 GHz) was also
a limiting factor. For the processing of a
single lidar scan six individual scalar ANNs
have been trained, two positional parameters
to position each vortex and one strength pa-
rameter per vortex. Results indicate fast-time
processing capabilities, with each lidar scan
being processed within a tenth of a second.
The custom CNNs investigated deliver po-
sitional and strength accuracies in the same
order of magnitude as the traditional process-
ing methods, nonetheless improvements are
desired in future investigations. It is the effort
of this work to investigate the characteriza-
tion capabilities of the ANN models trained
in [29], also for large campaign data sets.
This shall give an insight into how ANNs
may be adapted to increase their suitability
for processing large measurement campaigns
and being employed in WVASs.

3. Instrumentation and data sets

Vienna International Airport hosted a large
scale measurement campaign in 2019 revolv-
ing around runway 16 and three Leosphere
Windcube 200S (1.543-µm) micro-PCDLs al-
ternatingly located at five different positions
marked from L1 to L5 in Fig. 4. Two plate
lines installed underneath the glide path to-
wards runway 16 are marked with red dashes.
About 9000 landings were measured with
up to three vortex pair evolutions per over-
flight, each lidar position featuring slightly
different elevation angle spectra, with the
angle step being fixed at 0.2°. The range
spectrum is universally 80 m to 530 m. LOS
velocities (or radial velocities 𝑉𝑟 ) are deter-
mined by inspecting the Doppler frequency
shift between an emitted and backscattered
beam [30]. Lidar scans are not instanta-
neous captures, however the time difference
between measurement initialization and final-
ization is considered negligible. We utilize
lidar scans from this campaign to evaluate the
use of ANNs for characterizing wake vortices

in lidar scans.
Given that only measurement data from

Vienna International Airport is employed,
conclusions are restricted. Still, the use of
a selection of lidar positions, scan geome-
tries, vortex generators (aircraft types), and
prevailing weather conditions throughout sev-
eral seasons of the year, gives insight into
the usability of ANNs for lidar measurement
processing beyond the employed data. On
top of this, the Vienna campaign features two
kinds of scans, those with the novel plate lines
erected and those with the plates flat on the
ground in order to investigate the effective-
ness of plate lines at mitigating wake vortices
of landing aircraft. It was found that velocity
fields generated differ significantly between
the two plate line states. As a consequence we
treat these scan categories separately. Note
that it can occur that some scans have one
plate line only partially erected, these scans
are ignored.

This paper makes use of three different data
sets (for each plate line state) emerging from
the Vienna International campaign: train-
ing, validation and overall. The training and
validation data set have equivalent settings
and scan-case matching. Most importantly,
scans part of these data sets have previously
been processed with the RV method and can
therefore be employed for evaluating the per-
formance of the CNNs. However, they differ
in their size. While the training data set is
larger and has been used for learning features
and ultimately developing the CNN mod-
els, the validation data set is employed for
cross-checking the learned on independent
lidar data. The overall data set emerges from
all available lidar measurements at Vienna
International Airport - scans must not have
been processed with the RV method. Fur-
ther details follow below, however since lidar
measurements can include variations and per-
turbations from signal noise, atmospheric
effects such as turbulence, SV, or erroneous
data points in the velocity fields, we first de-
scribe lidar scan pre-processing applied to
all lidar scans in this work prior to being fed
to the CNNs.

It is seen as beneficial to mitigate confu-
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Fig. 4. Campaign set-up (red dashes = plates) (taken from [10], p.5).

sion which a crosswind can introduce to the
characterization process of the ANNs. For
each overflight (and the associated lidar), we
identify a so-called background scan - the
last lidar scan before the overflight occurred -
which although being recorded a short time
prior we consider to feature similar cross-
wind characteristics as the scan of concern.
It is assumed that the wind does not alter
significantly throughout the overflight. Anal-
ogous to the RV method, for each LOS of the
background scan the mean LOS velocity is
computed and subtracted from the associated
LOS of wake vortex scan.

Boundary layers at the ground or interac-
tions with plate lines may significantly impact
vortex identification. To avoid the detrimen-
tal influence of hard target (plate) hits and
high velocity gradients close to the ground,
we disregard data points below an altitude
of 7 m above the runway centerline and set
their values artificially to zero. This altitude

ensures that laser beams do not encounter a
plate, while also clipping off substantial parts
of the SV that have detached from the bound-
ary layer. Vortex cores descending down to
a minimum altitude of half of their initial
vortex separation are not neglected with this
approach.

In addition to easing the characterization
capabilities of ANNs with our pre-processing,
we also add generalizability by not differen-
tiating at what lidar position the scan was
recorded. We establish a universal measure-
ment grid, spanning from the minimum to
maximum elevation angle of any lidar posi-
tion L1- L5, which is planted with the smaller
size scans to match the LOS elevation angles.
LOS not investigated for a lidar position are
fed with a LOS velocity of zero. This ap-
proach not only increases generalizability of
the models, but also gives access to a signifi-
cantly larger training data set, which counter-
acts velocity field variations introduced with
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the different lidar positions that all investigate
slightly different phenomena along the glide
path.

Lastly, since ANNs can deal better with
input data that has a low variance, lidar scans
are normalized such that all measurement
points of the complete training data set have
a LOS velocity mean of zero and a standard
deviation of unity.

3.1. Training and validation data sets

The two data sets used for developing the
ANNs and evaluating their performance in
comparison to traditional lidar processing al-
gorithms are the training and validation data
sets. The former is directly integrated into the
learning algorithm (gradient descent) of the
ANNs, while the latter is used to judge the per-
formance and thereafter make adaptations to
the ANN architecture. Lidar measurements
part of these data sets are chosen based on the
available targets. In other words, whichever
lidar scans have been processed with the RV
method are also part of the ANN training
and validation data sets. From all lidar scans
available from Vienna International Airport
those chosen to be evaluated with the RV
method are low crosswind scenarios (as this
represents the worst-case WVE conditions).

For evaluating the performance of the
ANNs, the overflight cases and the lidar scans
must be matched with one another. Models
trained herein always assume two wake vor-
tices (one pair) to be present in a lidar scan.
This assumption does not hold for all cases:
more than two vortices can be present in a
scan when wake vortices of a previous over-
flight hover over the runway for long periods
of time. Less than two vortices are present
in a scan if they have been convected outside
the measurement window of the lidar. The
RV method only processed measurements
from Vienna International Airport with at
least one wake vortex detected and therefore
‘empty’ scans are already not part of the train-
ing nor validation data set. In the training
and validation data set lidar scans exceeding
the primary pair are shown to the ANN twice.
In other words, a scan with three vortices
will be treated separately for the pair and

the additional vortex. Scans where the RV
method only detected one vortex are treated
with an imaginary wake vortex which has all
its parameters (position and strength) set to
zero. Knowledge of which vortices belong
to which overflight can be derived from the
RV method and manual analysis. Fixing un-
available targets to a pre-defined value is a
common approach for missing data in ANNs,
yielding the ability to learn that this value is
designated for missing data

Just under 500 vortex pair evolutions were
evaluated using the RV method and used for
training and validation of the ANNs, with
over 70% associated to the Medium ICAO
weight class. Approximate initial vortex cir-
culation strengths for each aircraft class are
650 - 750 m2/s for Super, 300 - 550 m2/s
for Heavy, and 200 - 350 m2/s for Medium
aircraft. Roughly 41% of overflight measure-
ments were pursued with plate lines erected.

The characterizations used as training and
validation data sets are subject to uncer-
tainties inherent to the RV method [20, 21].
Furthermore, typically large discrepancies
between the RV method and ANNs occur
when the latter detect a turbulent eddy rather
than a wake vortex. Analysis of the esti-
mations by the ANNs revealed that large
deviations to the RV method targets typically
originate from factors unrelated to the con-
crete ANN method. For instance, incorrect
data labels/targets cannot be corrected by the
ANN. Cases which result from such an error
are disregarded in the analysis found herein
through post-processing. Effectively this has
the consequence that the validation data set
is restricted to lidar scans with exactly two
wake vortices. Less vortices cause either
large errors with artificial labels, or more
vortices cannot be explicitly assigned to the
foregoing or forthcoming overflight.

To avoid previous knowledge of vortex
constellations, vortex evolutions have been
randomly allocated in full either in the train-
ing of validation data set.

3.2. Overall data set

With the goal of evaluating large measure-
ment campaigns we also consider the entire
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data recorded at Vienna International Airport
in an overall data set. This includes lidar
scans with any amount of vortices present,
even none. For this data set RV method detec-
tions often do not exist and as a consequence
the matching of the overflight case and scan
cannot be performed as for the training and
validation data set. Here lidar scans are cat-
egorized between overflights and associated
to the overflight that occurred prior to each
scan. This data set is supposed to show how
our ANNs can perform on large data sets
with limited information about the overflight
and scan matching. It represents a realistic
scenario which application of this method
will face.

4. ANN architecture

In this effort we use the ANN architecture
developed in [29] shown in Fig. 5. The
design of this CNN aims for reasonable ANN
training times on our hardware and using
the image processing capabilities of CNNs.
Complex velocity fields captured by the lidar
instruments are broken down to a small num-
ber of parameters. In fact, the output shape
of the CNN architecture is unity, signaling
that the herein trained ANNs represent scalar
architectures. It is assumed that each lidar
scan contains two vortices, which are both
individually characterized by their strength
(circulation) and position (range and eleva-
tion angle). Thus, six separate CNNs (one
for each parameter and vortex) are employed.
The CNN is made up of four ConvPool blocks
- a convolutional layer followed by a max
pooling layer. The fourth ConvPool block
features an additional max pooling layer in
order to limit the number of parameters result-
ing from the flatten layer transformation. The
activation function employed in the neuron
operation is the rectified linear unit (ReLu).
With ReLu it is possible to establish a non-
linear relationship between the lidar scans
and vortex parameters.

Training of the CNN introduced was ac-
complished with the gradient descent algo-
rithm, which is typical for supervised tasks.
The Adaptive Moment Estimation (ADAM)
optimizer was used in the gradient descent

operation to enable accelerated and more ef-
ficient minima results in the weight space. In
the case of our work, the targets or labels for
the input data sets (training and validation
data sets from Section 3.1) originate from the
RV method. We employed the mean square
error (MSE) between the CNN output and RV
method target as a loss function. Following
computation of the loss, the gradient to each
weight is established, and subsequently the
weights are updated in the opposite direction
to their gradient. The algorithm speed can be
adapted by using the learning rate 𝜂 and an
optimizer function, aimed at enabling more
straightforward discovery of minima in the
weight space. In the current effort we trained
the CNNs for a maximum of 100 epochs (it-
erations of going through the training data
set). If no improvement was registered in the
validation data set for 30 epochs training was
terminated earlier, avoiding overfitting of the
models to the training data.

For this work’s purpose, lidar scans can be
seen as LOS velocity matrices. Hence, the
channel size of an associated image is one -
similar to a black and white image. The filters
of the convolution layers are responsible for
generating activation maps - matrices which
indicate where and at what magnitude the
filter’s pattern is detected in the input matrix.
In this work the filter size was 3 × 3, the
padding was such that the scan size does not
alter with the convolutional procedure, and
the stride was set to unity. The number of
filters started with 32 in the first convolution
layer and doubled with each ConvPool block.
The number of neurons in the dense layers
was 64. The pooling layers made use of a
filter size 2 × 2 and stride of two, reducing
the scan size by half with each pooling layer.

For dense layers, the number of trainable
parameters 𝑃𝑑 depends on the number of
neurons in the layer 𝑂𝑆, and the number of
input data points per scan 𝐼𝑆 for each layer
(defined by index l). It is described with Eq.
(1). For convolution layers, the number of
trainable parameters 𝑃𝑐 depends on the num-
ber of filters in the layer 𝑂𝐶, the number of
input channels 𝐼𝐶, as well as the filter height
and width 𝐹ℎ × 𝐹𝑤 . It is described with Eq.
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Layer 1: Convolutional Layer
Activation: ReLu

Input Shape: (91, 151, 1)
Output Shape: (91, 151, 32)

Layer 2: Max Pooling Layer
Output Shape: (45, 75, 32)

Layer 3: Convolutional Layer
Activation: ReLu

Output Shape: (45, 75, 64)

Layer 4: Max Pooling Layer
Output Shape: (22, 37, 64)

Layer 5: Convolutional Layer
Activation: ReLu

Output Shape: (22, 37, 128)

Layer 6: Max Pooling Layer
Output Shape: (11, 18, 128)

Layer 7: Convolutional Layer
Activation: ReLu

Output Shape: (11, 18, 256)

Layer 8: Max Pooling Layer
Output Shape: (5, 9, 256)

Layer 9: Max Pooling Layer
Output Shape: (2, 4, 256)

Layer 10: Flatten Layer
Output Shape: 2048

Layer 11: Dense Layer
Activation: ReLu | Output Shape: 64

Layer 12: Dense Layer
Activation: None | Output Shape: 1

Fig. 5. Convolutional Neural Network architecture.

(2). For lidar scans of size 91 × 151 the total
number of trainable parameters is 519041.

𝑃𝑙
𝑑 = 𝑂𝑆𝑙

(
𝐼𝑆𝑙 + 1

)
(1)

𝑃𝑙
𝑐 = 𝑂𝐶𝑙

[
(𝐼𝐶𝑙 × 𝐹ℎ × 𝐹𝑤) + 1

]
(2)

5. Results

With this section we aim to gradually increase
the level of performance analysis, starting
from qualitative discussions, to statistical
hazard analysis, comparisons of quantitative
metrics with the RV method, and the exam-
ination of ANN performance for large lidar
measurement data sets. Both the validation
data set and a scoring algorithm are used to
judge the characterization capabilities of the
ANNs. Whereas the validation data set offers
a comparison to the traditional RV method,
the scoring algorithm can be compared to the
trends found with the validation data set in or-
der to then evaluate the appropriateness of the
scoring algorithm. This allows independently

processing lidar scans with ANNs (with no
RV method detections for verification).

5.1. Qualitative analysis

A typical overflight with corresponding de-
tections from the CNNs as well as detections
from the RV method are presented in Fig.
6. We can see individual time frames of a
Heavy generator aircraft with plate lines flat
on the ground. The time frames illustrate that
young vortices are coherent featuring high
circulation strengths. Young vortices can
easily be distinguished from the background
turbulence present in lidar scans even after
the pre-processing which removed a constant
crosswind. Although minimum radar sepa-
ration behind a Heavy generator aircraft is
60 s and here the CNNs characterize the wake
vortices with the highest precision, we also
see satisfactory estimates in the time frames
after that. Still, we can see the CNN accu-
racy deteriorates with time, in particular for
the CW vortex. If we inspect Fig. 6(f), the
progressed state of vortex erosion makes it
challenging to identify where the CW vortex
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is positioned in reality. Nonetheless, when
the localization error grows, we observe the
circulation still being estimated in the correct
order of magnitude. Thus, when considering
both parameters in union, WVEs are unlikely
to be missed.

5.2. Hazard detection analysis

We extend our analysis by inspecting how
well WVE risks are recognized. Ultimately
the goal is to understand the hazard a vortex
poses above the runway. For this we indi-
vidually inspect the vortex strength and the
position. Whether knowledge of the position
or strength of a wake vortex is more critical
depends on the application of such algorithm.

5.2.1. Localization

If it is of interest whether a vortex is hovering
over the runway and posing a ‘potential haz-
ard’ or not, a ±50 m lateral safety corridor
can be defined outside which vortices are not
at risk to lead to WVEs [10,31], independent
of the vortex strength. Table 1 shows whether
the localization regions of the RV method
and CNNs - either within or outside the cor-
ridor - match. The False-Positives rate is
defined as 𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁), whereas
the False-Negatives rate is given by 𝐹𝑁𝑅 =

𝐹𝑁/(𝐹𝑁 + 𝑇𝑃). False-Negatives (FN) are
defined as detections where a vortex was in-
correctly detected outside the safety corridor.
In general, False-Negatives are more common
than False-Positives (FP). Note that correct
vortex allocations are analogously defined us-
ing True-Negatives (TN) and True-Positives
(TP). Lastly we investigate the positive pre-
dictive rate (𝑃𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)), the
probability of predicting a potential hazard
when there actually is one - it is considered to
be one of the most vital metrics. Achieving
up to 89% is a very satisfactory result in that
regard.

5.2.2. Circulation

Analogous to our localization analysis we
can use statistical metrics in the circulation
strength characterization to understand the
abilities of the CNNs further. In Table 2 a

wake vortex is considered a ‘potential haz-
ard’ in case it has a circulation strength of
above 100 m2/s (as defined by Fig. 7(b)),
regardless of its position above the runway.
The positive predictive rate shows even better
performance with this definition. We can
expect the CNNs to be about 93% accurate.

Table 1. Statistics regarding localizations in a
runway corridor (CW and CCW vortices). Posi-
tive/negative are vortices within/outside the cor-
ridor. The RV method is used for comparison.

Metric Plates down Plates up

Match (%) 86.0 66.1

FPR (%) 13.4 26.7

FNR (%) 14.5 38.5

PPR (%) 88.6 78.6

Table 2. Statistics regarding the circulation
characterization (CW and CCW vortices). Posi-
tive/negative are vortices above/below 100 m2/s.
The RV method is used for comparison.

Metric Plates down Plates up

FPR (%) 17.6 19.9

FNR (%) 7.4 9.6

PPR (%) 93.3 93.1

5.3. Comparison to the RV method

Although WVE hazard judgment is the es-
sential mechanism which needs to function,
defining further validation metrics to analyze
the CNN performance in comparison to the
RV method appears helpful in understanding
the dynamics of the vortices, as well as the
CNN accuracy. These additional metrics are:
the RMSE responsible for comparing the cir-
culation strength as well as the individual
vortex center positions of the RV method
and ANNs, and Δ𝐷 which represents the
Euclidean distance between the vortex center
defined by the RV method and the ANNs.
We also define the relative vortex circulation
error and the normalized vortex circulation
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Time frames with predictions and targets of a B777 overflight without plates.
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error. Both make use of the absolute differ-
ence between the circulation strengths esti-
mated by the RV method and the CNN i.e.
ΔΓ = | Γ𝑅𝑉 − Γ𝐶𝑁𝑁 |. The relative circu-
lation error is divided by the RV method’s
circulation to obtain ΔΓ/Γ𝑅𝑉 . Similarly, the
normalized circulation error ΔΓ∗ = ΔΓ/Γ0
is given by dividing the circulation error
ΔΓ by the initial vortex circulation Γ0 de-
rived from the aircraft’s maximum landing
weight, air density and true airspeed as de-
tailed in [10]. In rare cases Γ0 is unavailable
from this method, as an alternative mean
values of that aircraft type are used - standard
deviations of at most 4% promise to give
representative Γ0 values.

Table 3 shows that the CW wake vortex
leads to higher errors than the CCW wake vor-
tex for nearly all parameters, indicating that
the CNN performance is generally worse for
the CW vortices. Several causes can be iden-
tified which could lead to this observation,
all of which are linked to the usual vortex po-
sition in the measurement window. First, the
training and validation data sets we are using
for the current effort contain approximately
20% more CCW vortices than CW vortices.
The difference stems from the CW vortices
being transported out of the lidar measure-
ment window far more frequently than the
CCW vortex (given that only lower altitudes
of the atmosphere are covered at lower ranges
from the lidar). Second, the focal length of
the lidar could play a role in facilitating wake
vortex characterization. In the case of the
Vienna campaign, the focal length of the lidar

instruments was set to roughly 500 m, which
we can realize to be in close vicinity to the
usual CCW vortex position, rather than the
usual CW vortex position. The lidar focal
length decides where we can find the highest
CNR measurement. While it was expected
that grid coarseness could also impact the
characterization capabilities, this could not
be confirmed. Generally the CCW vortex is
placed at higher range than the CW vortex
and therefore has a worse resolution. Ap-
parently grid coarseness has little effect on
the characterization quality or the effect is
counteracted by the two previous points.

Plate lines evidently also affect the charac-
terization of wake vortices (see Table 3). We
affiliate the weakened accuracy capabilities
when plate lines are erected with their ability
to seriously dismantle the coherency of the
vortices. The coherency loss may correspond
to a larger variation in vortices in the lidar
scans and thus complicate generalization of
features further. Particularly the localization
of the vortices is affected, while the circula-
tion accuracy worsens only marginally.

Table 3 also includes the RV method error
estimates for low turbulence scenarios based
on two-dimensional simulated data. These
stem from theoretical analysis, rather than
observations or even analysis of our data. We
can observe that the RV method is substan-
tially more accurate in all characterizations.
While the circulation can be estimated with
the same order of magnitude by the CNN,
both range and elevation angle have an error
with an order of magnitude higher for the

Table 3. Errors with 8925/6520 train & 700 - 1100 validate scans (plates down/up).

Metric Γ RMSE (m2/s) 𝜑𝑉 RMSE (°) 𝑅𝑉 RMSE (m) Median Δ𝐷 (m)

CW CCW CW CCW CW CCW CW CCW

CNN

(Down) 44.03 35.61 2.46 1.53 35.82 35.22 11.49 12.39

(Up) 45.93 43.18 2.04 1.21 56.73 66.33 39.50 31.60

RV [20]

(Either) 10.30 0.21 1.80 -
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CNN than the RV method. The difference
in the accuracy between the RV method and
the CNNs is expected. Evidently we cannot
expect the CNNs to surpass the accuracy of
the RV method which was used for training
of the CNNs. The CNNs are especially vul-
nerable when the RV method has incorrectly
or inaccurately identified a wake vortex in
a lidar scan. In such case, the learned fea-
tures of the CNNs might have to choose a
compromise parameter value to satisfy both
the learned features as well as the targets
of the RV method. This overall leads to an
increase in the herein presented errors, with
their origin only partly evolving from the
CNN operation itself. It should be kept in
mind that lidar instruments themselves carry
intrinsic measurement limitations. Given
these limitations one of the future ambitions
is to generate artificial lidar measurements
using high fidelity aircraft landing simula-
tions. Alternatively, the scoring algorithm
introduced in Section 5.4 could be integrated
as a loss function for the ANNs. Both of these
methods would eliminate the dependency of
the RV method and its targets, also allowing
to determine the accuracy of the RV method.

The localization error Δ𝐷 can be investi-
gated further, by looking at how Δ𝐷 varies
with vortex age and vortex strength. In
Fig. 7 we have grouped overflights with
the corresponding aircraft type. Note that
the A320neo (A20N) is considered part of
the A320 family, it features the same max-
imum landing weight and wingspan. The
dark grey area is limited by the 25th and 75th

percentiles (thus containing 50% of all data
points), whereas the light grey area encloses
the 5th and 95th percentiles (90% of all data
points). The vortex-age-bins have dimen-
sional widths of 30 s and circulation-bins
have dimensional widths of 50 m2/s (with the
exception of one circulation-bin which spans
500 m2/s to 600 m2/s). In Fig. 7(a) we ob-
serve localization precision decreasing with
aging vortices. Older vortices are typically
weaker and thus Fig. 7(b) correspondingly
indicates high Δ𝐷 at these vortex strengths.
Note however that far less data points exist at
older vortex age making the percentiles less

reliable. We can see a circulation strength
threshold of 100 m2/s underneath which vor-
tices are tougher to recognize. Arguably,
the circulation strength regions of concern
(above 100 m2/s) are covered with higher
precisions. We can also see very young inco-
herent vortices still rolling up, giving higher
Δ𝐷 values.

Comparison to the vortex age and RV
method circulation strengths is also of in-
terest for the characterization of the circu-
lation strengths of the CNNs (see Fig. 8).
The relative circulation error (left) confirms
the error increase with older vortex age and
lower circulation strengths. Figure 8(c) also
confirms the circulation strength threshold
of 100 m2/s. Using the normalized vortex
circulation error plots (right) we can see how
smaller aircraft such as the A320, generat-
ing smaller and weaker vortices, are more
challenging to characterize in comparison to
larger Heavy aircraft such as the B777. This
occurs despite the validation data set contain-
ing far more A320 lidar scans and inspecting
the same vortex age or circulation strength.

Processing times of the CNNs are sig-
nificantly outperforming those of the RV
method. While characterizing the position
and strength of wake vortices in a single lidar
scan requires manual operations and takes
several seconds to obtain the results, the
herein trained CNN processing time amounts
to 0.16 s on our low level hardware.

5.4. Analysis of large measurement
campaign data sets using the scor-
ing algorithm

In order to judge the ANN vortex characteri-
zation capabilities more objectively, indepen-
dent from uncertainties of the RV method, a
scoring method was developed, which calcu-
lates a confidence score for each individual
vortex characterization of the ANN. The re-
sults of the scoring are given in terms of
traffic light colors: green indicates high con-
fidence in the characterization result, yellow
indicates a limit case, red indicates that the
characterization should be discarded, and
grey indicates that the characterization is
outside of the measurement area.
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(a) Temporal evolution. (b) Circulation strength influence.

Fig. 7. CNN Δ𝐷 correlation to vortex parameters for plate down lidar scans.

(a) Relative vortex circulation error vs. vortex age. (b) Normalized vortex circulation error vs. vortex age.

(c) Relative vortex circulation error vs. RV circulation. (d) Normalized vortex circulation error vs. RV circulation.

Fig. 8. Circulation error dependent on vortex age and RV reference circulation without plates.

To calculate the scoring result, the meas-
ured flow field of each lidar scan is compared
to a potential flow model derived from the

wake vortex characterizations made by the
ANN. The vortices are represented by the
Burnham-Hallock vortex model [32], which
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includes parameters for vertical and horizon-
tal position, circulation, and core radius. The
background wind is assumed to be in hori-
zontal direction only and independent from
the altitude. While the position and circula-
tion parameters are taken directly from the
ANN characterization, the horizontal wind
component and the core radius are obtained
by fitting the potential flow model to the
measured wind field. Fig. 9 shows the radial
velocity as seen by the lidar for the measured
field and for the reconstructed model. The
scoring result is then calculated based on the
scan’s median CNR value, the calculated core
radius, and the normalized RMSE (cf. Fig.
10). The normalized RMSE is calculated by
multiplying the RMSE between the measured
and the modeled radial velocity with 𝑏0/Γ(𝑡),
where 𝑏0 is the initial vortex spacing and Γ(𝑡)
is the circulation as indicated by the ANN.

Fig. 9. Comparison between lidar measurement
(top) and model of the scoring algorithm (bot-
tom).

We have previously established that evalu-
ating comprehensive wake vortex lidar data
sets is one driver of this effort. In such
a case no RV method targets are available,
thus we employ the above introduced scoring
algorithm to evaluate the CNN characteriza-
tions. In this section we also aim to confirm
the functionality of the scoring algorithm,
by comparing data trends to those found in
Section 5.3. Here we consider all overflight
cases encountered during the months of the
measurement campaign - the overall data set.
Thus, also scans with any number of vortices
are analyzed. While the CNN always char-

acterizes two vortices for each scan, even
for ‘empty scans’, the scoring can be used to
select only sensible results of the CNN.

Fig. 10. Logic of the scoring algorithm.

Figure 11 summarizes the scoring results
of evaluating all the data from the Vienna
International Airport campaign (about two
million individual vortex detections) using
the CNN and the scoring algorithm with
respect to the circulation, vortex age and po-
sition. Figure 11(a) shows the histogram of
the circulation indicated by the CNN based
on the scoring result. All scoring results
show distinct circulation distributions, indi-
cating that the scoring differentiates between
different phenomena. Green scoring results
appear for any circulation value between 0
m2/s and 800 m2/s. Weak vortices appear
to be more common in the overall data set
than strong vortices. The drastic reduction of
green detections at low circulation strength
matches the identified threshold of 100 m2/s
from before. Note that vortex detections
disregarded by the scoring (grey and red)
do not show this characteristic. Previous
model validation only evaluated scans with
two vortices, low circulation errors are there-
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fore associated with the red scoring. Here
an additional factor comes into play. When
less than two vortices are found within a scan,
the CNNs aim to place the missing vortices
of the pair at the origin outside of the scan,
this is represented by the grey plot. It should
be noted that grey scoring does not rate the
CNN characterization quality, rather it labels
detections as irrelevant. The green detections
deplete towards higher circulation strengths,
however this can be tracked back to less data
points at these magnitudes. Yellow scoring
of a detection urges to manually check the re-
sult. We can observe that the yellow scoring
plot represent a combination of the green and
red scoring plots - as expected. Additionally,
yellow scoring results do not exist for high
circulation values: strong vortices are easier
to distinguish for the scoring algorithm.

Detection scoring results in comparison to
their vortex age (Fig. 11(b)) unveils similar
conclusions as previously seen for the RV
method verified data set (the validation data
set). Most green scoring detections occur
at young vortex age, with worse detections
during vortex roll-up. The drastic reduction
of green detections at old vortex age is due
to the lower data availability within these
regions. It is interesting that the peak of
yellow scoring is not an intermediate of the
green and red scoring plots. From the green
scoring plot’s unique peak it becomes clear
that coherency of the vortices is crucial for
their characterization.

Figure 11(c) not only visualizes where
green, red, yellow and grey scoring detec-
tions occur, but also how many. Since the
overall data set includes also lidar scans with
no vortex at all, but the CNNs always pro-
duce detections for a vortex pair, the majority
of detections are red. The green detections
are compact within the typical measurement
window of the campaign (as defined by the
universal measurement grid). The absolute
number of green detections is far greater than
the number of detections evaluated using the
RV method, resulting in a substantial benefit
already. Yellow detections are typically also
within the defined universal measurement
grid, whereas grey and red can be placed also

outside the window. In fact, we would expect
all grey detections outside the measurement
window - a computational error has caused
an outlier in the plot.

From this exemplary large campaign data
set (the overall data set) analysis we can see
that trends match those found for the valida-
tion data set as shown by Fig. 7 and Fig. 8
(which we can compare to the RV method).
To substantiate the above an exemplary over-
flight vortex trajectory is given in Fig. 12.
The figure represents RV method detections
with crosses and CNN characterizations with
colored dots. The color map follows that
of the scoring. The position and circulation
values are obtained by the CNNs, the core
radius, crosswind, and mean CNR values
are obtained by the scoring algorithm. We
can observe that the circulation and position
characterizations are fairly accurate in the
majority of detections, as indicated by the
green scoring and the good match with the
characterizations of the RV method. Note
that the scoring result is independent from
the RV method. We can see how young in-
coherent vortices are harder to identify by
the CNNs as indicated by big differences to
the RV method. The scoring catches these
wrong characterizations and labels them as
red. At around 100 s, an outlier circulation
of 100 m2/s is recognized by both the RV
method and CNN, which is labeled yellow
by the scoring (indicating to double-check
this result). Considering the temporal evo-
lution of the vortex before and after this
outlier, this detection could be excluded from
further analysis. On the other hand, both
the RV method and the CNN indicate that
a vortex is present. Complex atmospheric
turbulence in this scan may cause this dis-
crepancy between the simulated wind and the
real measurement. Towards older vortex age,
beyond where RV method detections exist,
the scoring begins to class CNN detections as
yellow or red. This is expected, the vortices
lose coherency. Nonetheless, the trends in
circulation and position are in-line with that
where the RV method was still able to detect
the vortices. As a consequence, it can be said
that the CNNs are able to track vortices for
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(a) Vortex strength. (b) Vortex age.

(c) Vortex position.

Fig. 11. Scoring result for all cases with respect to different parameters.

longer periods of time and they can distin-
guish vortices from background turbulence
in a superior manner.

Throughout this work we have seen the cir-
culation strength being characterized more
precisely than the vortex position. Since the

CNNs for position and circulation are trained
independently, it is of interest whether there
is a correlation between lowΔ𝐷 and lowΔΓ∗.
Figure 13 investigates this correlation (thus
only investigating RV method processed val-
idation data). No correlation between the
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Fig. 12. B777 port vortex trajectory from lidar position L3 with plates erected. Dots
represent CNN detections, crosses denote RV method detections. Triangles represent
detections outside the shown plot window for clarity.

localization error and normalized circulation
strength error can be identified, suggesting
that the position and strength of a vortex are
determined using differing features. Learned
filters of the CNNs are most likely also dis-
similar.

Fig. 13. Correlation between the localization and
circulation strength error. Colors follow those of
the scoring algorithm.

The color map of Fig. 13 also confirms
much lower errors for the green scoring detec-
tions. As expected, yellow scoring detections
are slightly further spread and red scoring
detections correlate to the most significant
errors. This result confirms the functionality
of the scoring method. We can therefore em-

ploy the scoring method also for lidar scans
which have not been processed by the RV
method. In other words, the combination of
the ANN and the scoring algorithm can act as
a substitute for the cumbersome RV method.

With these results, we can make several
conclusions about future implementations in
this algorithm which may benefit the char-
acterization of the landing aircraft wake vor-
tices. First, we suggest to interconnect the
CNNs for the three different parameters per
vortex. It has previously been attempted to
implement vector ANNs rather than scalar
ANNs (one ANN with a vector output char-
acterizing all parameters at once rather than
six individual ANNs with no knowledge of
one another) [29]. Although it was found
that the scalar ANNs option perform slightly
better, it might be wasted potential to not
attempt another way of linking the ANNs.
For instance, it has so far not been attempted
to solely train the localization parameters at
once i.e. elevation angle and range. Second,
the realization that localization and circula-
tion strength parameters are characterized
based on distinguishing parameters can turn
out to be a benefit. We could first use CNNs
to characterize the circulation strength of the
wake vortex and thereafter use these results
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also as an input for the localization CNNs.
Third, we believe it to be of benefit to first
employ a classification ANN as done in [25],
getting away from the restriction to always
have to characterize two wake vortices in a li-
dar scan. Furthermore, usage of the temporal
component in one vortex evolution could be
advantageous, as illustrated in Fig. 12. By
inputting the previous position and strength
of the wake vortex into the algorithm for the
next lidar scan, a fairly accurate first guess
or limitation for the parameter space could
be implemented. Lastly, the training, vali-
dation and overall data set should share the
same method of how overflight cases and
lidar scans are matched. Different matching
can cause confusion especially in scenarios
where more or less than two vortices are
present in a lidar scan. Still, the current ANN
architecture provides a good overview of the
possibility to use CNNs for characterizing
wake vortices in lidar scans. With the cur-
rent effort we deepened our analysis of the
CNN capabilities, showed how these could
be applied to large data sets and suggested
possible future work.

6. Conclusion

This work has employed Convolutional Neu-
ral Networks (CNNs) to quantitatively char-
acterize the position and circulation of wake
vortices in Light Detection and Ranging (li-
dar) scans from a large data set measured
at Vienna International Airport. Previously
only a fraction of the measurements have
been processed with the Radial Velocity (RV)
method, with the current effort we managed
to characterize also the large remainder of
lidar scans. The Burnham-Hallock vortex
model has been employed in a scoring algo-
rithm, which we show to correlate well with
trends observed from the CNN versus RV
method comparison. The scoring algorithm
offers a validity check of the CNN character-
izations. We can therefore use the CNNs in
combination with the scoring algorithm to
identify and characterize wake vortices in li-
dar measurements with no other background
knowledge. Previous efforts have exclusively
focused on identifying vortices with approx-

imate positions. Although the RV method
still obtains higher accuracies, it lacks full
automation and the ability to process lidar
scans in fast-time. These deficiencies were
overcome with our CNNs.

In order to tackle the remaining downsides
of the CNNs, we suggest to make use of
temporal factors of the data set, as well as
the different features learned in the position
and circulation CNNs (detected from the lack
of correlation), and we aim to implement
an algorithm which first checks a lidar scan
for the number of vortices, allowing their
independent analysis.
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