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Abstract

Haze and clouds in Earth’s atmosphere obstruct
a seamless monitoring of our planet via optical
satellites. Prior work shows that models can learn
to adapt and perform remote sensing downstream
tasks even in the presence of such sensor noise. So
what are the auxiliary benefits of incorporating an
explicit cloud removal task, and what is its rela-
tion to other tasks in the remote sensing pipeline?
We address these questions and show that explicit
cloud removal makes models for land cover classi-
fication furthermore robust to haze and clouds. Fi-
nally, we explore the relation to a self-supervised
pre-text task (including abundant cloudy data) and
demonstrate how to further ease the need for costly
annotations on the land cover classification task.

1. Introduction

On average, over half of Earth is shrouded by
haze and clouds [9]—impeding the capabilities of
spaceborne sensors to continuously monitor our
planet. While established benchmarks in remote

sensing are carefully curated and cleared of any ar-

tifacts and noise [7, ], there exist

models that have specifically been investigated for
their resilience to cloud coverage, as may be en-
countered in practical use cases: Notably, [5, 14]
perform crop type classification and learn to ignore
cloudy time points irrelevant to the target task.
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Figure 1. F1 Score of top models in Table 2 on LCC task

as function of cloudy pixel %. In contrast to the models

not trained on cloud removal, the ones that are perform

robustly even in the presence of heavy cloud coverage.

Moreover, the model of [12] performs seman-
tic segmentation and, as a side effect, learns to re-
construct cloud covered information. Together, the
works of [5, 12, 14] raise the question of what the
benefits may be of including an explicit haze &
cloud removal (HCR) task [6, 11]. Herein, we in-
vestigate this question by analysing the benefits of
HCR with respect to a global land cover classifi-
cation (LCC) target task [ ]. We show
that explicit cloud removal makes models for land
cover classification more robust to haze and clouds.
Specifically, we consider a multi-task setup, where
a multi-task network with one specific branch for
cloud removal and another one for land cover clas-
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Architecture # Parameters
LC-Net 103,851,050
HCR&LC-Net 106,899,319
HCR-Net + C-Net 107,473,335

Table 1. Comparison of learnable parameters per model.

sification is created. Finally, we explore the relation
to a self-supervised pre-text task (including abun-
dant cloudy data) and show how to further reduce
the need for costly annotations in the land cover
classification context.

2. Data

This work uses Sentinel-1 (S1) radar data and
Sentinel-2 (S2) optical data from ESA’s Coperni-
cus mission. Combining S1 & S2 has shown bene-
ficial for e.g. semantic segmentation, change detec-
tion, LCC, and HCR tasks [3,4,11,15-17]. We take
S1 and cloud-free S2 data from the SEN12MS data
set [15] with the LCC labels of [16] for patch-wise
land cover classification. We take co-registered
cloudy S2 data from the associated SEN12MS-CR
data set [2]. The geo-spatial coverage of images
contained in SEN12MS-CR is a subset of the geo-
spatial coverage of images contained in the original
SEN12MS dataset, so we focus on that subset for
which all data modalities are available. The train
and test splits are the intersections of those defined
in [2, 15] and of sizes 109,549 and 12,666, respec-
tively. The cloud coverage is at 58 (£ 37) % and 66
(£ 37) % per split, as estimated by pixel-wise cloud
masks m computed via s2cloudless [21]. In sum,
each sample is a triplet (S1, S2cieqr, S2cioudy) OF
(256 px)? patches with masks m and associated
multi-class target labels ¢ as in [16].

3. Methods

As a backbone architecture for our model, U-
Net [13] is chosen for it’s dual purpose of ex-
tracting features related to the what and where of
task-related information, being equally valuable for
image reconstruction and classification. Further-
more, it is close to the architecture of [12]. For the

training of the global LCC task, we use the cross-
entropy loss. For the HCR task, a pixel-wise CARL
image reconstruction loss as in [1 1] is utilized.

We train all models for 10 epochs with batch
size 64 via ADAM with learning rate 10~2 as well
as weight decay 10~° and observed convergences
within this schedule. For each model, its best
checkpoint as assessed on a validation split (a fixed
10% random sub-set of the training split) is cho-
sen for subsequent testing. The Multi-task train-
ing of LCC and HCR is done via (a) naive 1:1 task
weighting and (b) the uncertainty weighting of [8].
These models are denoted as HCR&LC-Net,.; and
HCR&LC-Netycertain- Importantly, the baseline
LC-Net only trained for LCC (without an explicit
cloud removal task) is readily trained on the cloud-
covered S2 data in order to learn implicitly ignor-
ing task-irrelevant cloudy pixels. This is to follow
the approaches of [5, 12, 14] and to get competi-
tive baselines. Moreover, while this network misses
layers dedicated to image reconstruction, we con-
trolled for parametric comparability across models
by spending additional learnable parameters on the
LCC branch of the baseline. As another baseline,
we also consider a sequential ensemble of an HCR
net followed by a down-stream LCC net, and call
this baseline HCR-Net + C-Net. The parametric
complexities of all models are given in Table 1.

As a final experiment, to explore how the re-
liance on costly global land cover annotations for
the LCC target task can be reduced, we investigate
a self-supervised pretext task in the setting of fewer
supervised training data points. Our pretext task
is to predict the geo-spatial relationship between
the concatenated S1 and S2 input bands. While
there’s a 100% spatial overlap for the co-registered
S1 and S2 data of section 2 as used in the super-
vised setting, here we randomly pair 1 of 4 neigh-
boring S1 patches to a given S2 input with 50%
overlap among another. Specifically, the network is
tasked to classify the paired (51, S2.0udy) input’s
spatial relation as quantified via a cross entropy
loss. That is, the network classifies whether the
S1 patch is north, west, south or east of its paired
S2 patch. This serves to pre-train the weights of
the classification branch (depicted in red and green
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Figure 2. Architecture of HCR&LC-Net. The red sub-net contains shared layers for both tasks. The yellow and green
parts are for HCR and LCC tasks, respectively. The joint red and yellow parts correspond to the classical U-Net [13].
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Figure 3. Three exemplary cloud removal results.
Rows: Cloudy image, S1 image, HCR-Net prediction,
HCR&LC-Netyncertain prediction, ground truth. Our
multi-task network can successfully remove most clouds.

in Fig. 2) without any reliance on costly LCC la-
bels. Including pre-training, optimization is done

in 3 steps: 1) The classification part of our multi-
task network (without the cloud removal branch) is
pre-trained for 20 epochs under the pretext task. 2)
We freeze the classification weights learned in the
first step and supervisedly train our multi-task net-
work for the layers not included before (i.e. the
cloud removal layers) for 5 epochs. 3) Finally, we
unfreeze these weights and train all layers of the
multi-task network together for another 10 epochs
as described earlier to obtain the final model.

4. Results

The models of section 3 are evaluated in terms
of their goodness on the LCC task (Precision, Re-
call, F1 score) and on image reconstruction (PSNR,
SSIM [18]), as shown in Table 2 with (second) best
results highlighted in bold (/italic). On average, all
networks or ensembles involving HCR outperform
those without on the LCC task. Moreover, our pro-
posed multi-task network performs best on LCC
and is a close second on the HCR task, only behind
the model specialising on cloud removal. Exem-
plary HCR predictions are depicted in Fig. 3.



Table 2. Quantitative results for LCC and HCR tasks. (Second) best results highlighted in bold (/italic).

Land Cover Classification Cloud/Haze Removal
Precision Recall F1 PSNR SSIM
LC-Net 0.6759 0.6650 0.6704 \ \
HCR-Net \ \ \ 27.9342 0.8975
HCR&LC-Net; g1 0.7042 0.6572 0.6799 27.4370 0.8844
HCR&LC-Nety,,,certain 0.6697 0.7004 0.6847 27.8973 0.8941
HCR-Net + C-Net 0.6831 0.6823 0.6827 \ \
To further analyze LCC performances, Fig.l 080 - HCRELC Gt
evaluates each model’s F1 score as a function of 0.75 = HCRS&LC-Net,, ith selfsupervised learning

cloud coverage. Mean scores are evaluated in bins
of 10 % steps, standard deviations are estimated by
sub-sampling each bin into 10 sub-groups to com-
pute within-bin variances. Fig.1 shows that models
including an explicit cloud removal task (at no ad-
ditional parametric cost) are more robust to dense
and heavy coverage than nets learning implicitly to
ignore cloudy pixels irrelevant to the LCC task. In
summary, the results show that adding an explicit
HCR task into a LCC pipeline further improves the
final classification results, especially when dealing
with high cloud coverage.

Finally, we investigate the benefits of the pro-
posed self-supervised pretext task. Fig. 4 shows
performances as a function of annotated training
data set size (in steps of 25%). While the model
without self-supervision suffers severely from the
lack of labeled data, the self-supervised model re-
mains relatively robust. Mind the gaps widening
further with fewer data and note that with only 25%
data, we can already achieve around 95% of the
final F1 score when utilizing the proposed pretext
task. Finally, with an F1 score of 0.703 the self-
supervised model trained on all data performs best
on the LCC task, out of all benchmarked models.
These findings underline the effectiveness of the
proposed self-supervised pretext task for scenarios
where costly annotated geospatial data is rare.

5. Conclusion

This work demonstrates the benefits of an ex-
plicit image reconstruction task for cloud removal
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Figure 4. F1 score on LCC task for 25, 50, 75 and 100 %
of labeled LCC training data. With versus without self-
supervised pre-training. With self-supervision, the model
is more robust to lack of annotated data.

and its benefits on a common global LCC remote
sensing downstream task. While preceding work
demonstrated that neural networks can learn ignor-
ing data points noisy (i.e. cloud-covered) or un-
related to the target task [5, 12, 14], we show that
incorporating an explicit cloud removal task can
make the model even more robust at no additional
parametric costs. Changes to networks are kept
minimal, and more advanced architectures will be
addressed in the future. Rather, we focused on
parameter-neutral adjustments of tasks and investi-
gating their interactions. Finally, a self-supervised
pretext task was proposed to further improve our
results and extend global LCC to the common sce-
nario of few annotated data. We plan to extend our
analysis to related tasks and other data sets [1].
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