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Introduction & Motivation Four Popular Remote Sensing Datasets Experiments: Limited Labels & Transfer Learning

= SELF-SUPERVISED LEARNING (SSL) has . BigEarthNet:  multi-label landcover classification, = Label-limited Regime: the fewer labels available, the

raised wide interest in the remote sensing community ~600k Sentinel-2 patches. bigger the advantage of self-supervised pre-training
with the advantage of learning generic representations N _a # non-irrigated arable land, (pre-train and evaluate on BigEarthNet).

from large-scale unlabeled data. fruit trees and berry
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= Despite success in natural images, most of the poten-
ial of SSL in earth observation remains unlocked. m SEN12MS: landcover classification, ~180k Sentinel-

» Towards pushing SSL forwards in earth observation 1/2 patches. (We use scene labels here.)
data science, we provide an empirical study of 4 B, '
modern SSL methods on 4 popular remote sensing
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= Self-supervised pre-training: the model learns  n So2Sat-LCz42: local climate zone classification,
generic data representations. ~400k Sentinel-1/2 patches. » Transfer Learning: self-supervised pre-training trans-
= Supervised downstream tasks: the pre-trained S E Bl compact high-rise fers well (pre-train on BigEarthNet, transfer to Eu-
model gets transferred to downstream applications. e roSAT).
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X Experiments: Data Augmentation

o Experiments: Representation Visualization

» Data augmentations: ResizedCrop, Colorditter,
GrayScale, GaussianBlur, HorizontalFlip, Channel-
Drop.

» Compared to natural images, cropping bears more im-
portance in earth observation, while the other augmen-

» Pretrain ResNet-18 on BigEarthNet with MoCo-v2 and
transfer to EuroSAL.

» T-SNE visualization of EuroSAT feature vectors (with-
» Momentum contrast (MoCo-v2) out labels).

Four Modern Self-supervised Algorithms

tations much less.
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X prototypes g e RIRICCON = Pretrain ResNet-18 on each dataset’s training split with
T I each SSL method.
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= Evaluate with linear probing (freeze the pre-trained en- :
. Pro g . P Conclusion
coder and train only a linear classifier).
= Random initialization and supervised training for com-
projector predictor parison.

= Simple Siamese network (SimSiam)

m Self-supervised learning proves to bear huge poten-

_ grad tial in earth observation data science, reaching compa-
r, /1 H[ Fo @Zg rable or better performance than supervised learning
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— from scratch.
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T 3 oo = The importance of data augmentation in spaceborne
H[ 7 }_.@ - S 40 images is different from natural images, calling for care-
%’28 ful design with domain specific knowledges.
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