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Fig. 1. Illustration of biomass products with fine (individual), middle, and coarse-grained (stand) level.
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Fig. 2. Summary of data collected: Geospatial distribution of the measurements plotted on top of the biome classification map. Circle diameters represent the
number of records at each geo-location (a); violin plots of the distributions of tree heights in meters (b), tree diameters in centimeters (c), and above-ground
biomass in kilograms (d) for various biomes. The number of records for each biome is shown as absolute number to the right.
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We propose a tree-level biomass estimation model approximating allometric equations by LiDAR data. Since tree crown
diameters estimation is challenging from spaceborne LiDAR measurements, we develop a model to correlate tree height
with biomass on the individual tree level employing a Gaussian process regressor. In order to validate the proposed
model, a set of 8,342 data points on tree height, trunk diameter, and biomass has been assembled. It covers seven
biomes globally present. We reference our model to four other models based on both, the Jucker data and our own
dataset. Although our approach deviates from standard biomass–height–diameter models, we demonstrate the Gaussian
process regression model as a viable alternative. In addition, we decompose the uncertainty of tree biomass estimates
into model- and fitting-based contributions. We verify the Gaussian process regressor has capacity to reduce the fitting
uncertainty down to below 5%. Exploiting airborne LiDAR measurements and a field inventory survey on the ground, a
stand-level (or plot-level) study confirms a low relative error of 1% for our model.

Motivation

A trade-off between time-consuming in-situ measurements and coarse-resolution biomass estimation is the estimation of
tree-level parameters (such as height, crown diameter, etc.) from high-resolution remote sensing data as input to
allometric equations. Although highly correlated with biomass, parameters such as wood density and diameter cannot
reliably get estimated by aerial imagery. Jucker et al. confirmed that height and crown diameter of trees are sufficient to
estimate the trunk diameter by a single equation [2]. Crown diameter and height can be derived from airborne laser
scanning (ALS) data. However, the crown diameter estimation is a source of significant model error. In this paper, we
proposed to estimate biomass from tree height, alone.

Results

Fig. 3. Plots of the fitted curves with corresponding prediction errors (left column), scatters of predicted and
observed are biomass shown in the middle column, and the distributions of errors is depicted by the contents of
the right column. The evaluation is based on the Jucker data [2]. Each row corresponds to one of the five models—
from top to down: LR (a)-(c), LR2 (d)-(f), LR3 (g)-(i), RF (j)-(l), GPR (m)-(o).

Fig. 4. Plots of model fits including corresponding prediction errors (left column), scatters of predicted and
observed biomass (middle column), and the distributions of errors (right column) based on curated data. Each
panel corresponds to one of the five models, i.e. LR: (a)-(c), LR2: (d)-(f), LR3: (g)-(i), RF: (j)-(l), GPR: (m)-(o).

Fig. 7. (a): Box plot of predicted biomass by LR3 model
on individual level grouped by plot; (b): the relative error
of the three models in each plot where the LR3 model is
assumed ground truth; (c): scatter plot of model
predicted biomass versus LR3 model reference. The data
are from [4].

[1] M. Schlund, S. Erasmi, and K. Scipal, “Comparison of aboveground biomass estimation from insar and lidar canopy height models in tropical forests,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 3, pp. 367–371, 2019.
[2] T. Jucker, J. Caspersen, J. Chave, C. Antin, N. Barbier, F. Bongers, M. Dalponte, K. Y. van Ewijk, D. I. Forrester, M. Haeni, et al., “Allometric equations for integrating remote sensing imagery into forest monitoring programmes,” Global change biology, vol. 23, no. 1, pp. 177–190, 2017.
[3] G. Camps-Valls, L. Martino, D. H. Svendsen, M. Campos-Taberner, J. Munoz-Mar ˜ ´ı, V. Laparra, D. Luengo, and F. J. Garc´ıa-Haro, “Physicsaware gaussian processes in remote sensing,” Applied Soft Computing, vol. 68, pp. 69–82, 2018.
[4] H. Weiser, J. Schafer, L. Winiwarter, et al., “Terrestrial, UAV-borne, and airborne laser scanning point clouds of central European forest plots, Germany, with extracted individual trees and manual forest inventory measurements,” 2021.

References

Fig. 5. Study of model uncertainties when working with tree height H, tree diameter D,
crown diameter CD, and the product H × CD as input parameter of the allometric equation.
The overall model uncertainties read: 18.25%, 14.13%, 29.81%, and 20.57% respectively.

Fig. 6. Biomass-dependent fitting uncertainties for the five candidate models
trained on the Jucker data. The overall fitting uncertainties of the five candidate
models reduce to 8.80%, 11.45%, 6.13%, 6.90%, and 4.50% respectively.

We compare the single-input Gaussian process regressor (biomass-height) model [3] with a random forest (RF) biomass-
height model, and three allometric equations, specifically: biomass–height–crown diameter (LR), biomass–height (LR2),
and biomass–height–diameter (LR3). The form of the three allometric equations read:
LR: In 𝐵 = 𝑎 In 𝐻 × 𝐶𝐷 + 𝑏 + 𝜖 (1) or LR: In 𝐵 = 𝑎 In 𝐷 + 𝑏 + 𝜖 (2)
LR2: In 𝐵 = 𝑎 In 𝐻 + 𝑏 + 𝜖 (3)
LR3: In 𝐵 = 𝑎 In 𝐻 + 𝑏In 𝐷 + 𝑐 + 𝜖 (4)

where 𝑎, 𝑏, 𝑐 are the coefficients and bias terms determined by the training data; 𝐶𝐷 refers to the crown diameter; and 𝜖
is model residuals. Since no crown diameter measurements in our collected data, we utilize an alternative biomass-
diameter model in Eq. (2).

To evaluate model accuracy, three indices get derived: R–squared (R2), root mean square error (RMSE), and model bias.
R–square refers to the coefficient of determination, and is defined according to

𝑅2 = 1 −
σ𝑖=1
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where 𝑦𝑖 and ො𝑦𝑖 are the 𝑖th ground truth and predicted values. ത𝑦 amounts for the average mean of ground truth.
According to these definitions, the R–squared score may receive impact by a single, strongly biased estimation. Thus,
calculating R2, we exclude outliers when the corresponding absolute error exceed the mean absolute error by at least
three times, cf. red circles in Figure 3.
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Bias relates to relative systematic error. It is defined as
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The negative or positive value of the bias indicates biomass under- or overestimation.

COMPARISON OF MODEL PERFORMANCE IN TERMS OF 
RELATIVE ERROR AND RELATIVE RMSE FOR CANDIDATE 
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SUMMARY OF R-SQUARE SCORES, RMSE AND BIAS OF A 
SERIES OF REGRESSION MODELS FOR BIOMASS 

ESTIMATION BENCHMARKED ON THE JUCKER DATA.
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FIVE REGRESSION MODELS ESTIMATING 
BIOMASS FROM THE DATASET CURATED.
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