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Simultaneous Motion Tracking and Joint Stiffness
Control of Bidirectional Antagonistic

Variable-Stiffness Actuators
Marie Harder1, Manuel Keppler1, Xuming Meng1, Christian Ott1,2,

Hannes Höppner3, and Alexander Dietrich1

Abstract—Since safe human-robot interaction is naturally
linked to compliance in these robots, this requirement presents
a challenge for the positioning accuracy. The class of variable-
stiffness robots features intrinsically soft contact behavior where
the physical stiffness can even be altered during operation.
Here we present a control scheme for bidirectional, antagonistic
variable-stiffness actuators that achieve high-precision link-side
trajectory tracking while simultaneously ensuring compliance
during physical contact. Furthermore, the approach enables to
regulate the pretension in the antagonism. The theoretical claims
are confirmed by formal analyses of passivity during physical
interaction and the proof of uniform asymptotic stability of the
desired link-side trajectories. Experiments on the forearm joint
of the DLR robot David verify the proposed approach.

Index Terms—Motion Control, Compliance and Impedance
Control, Compliant Joints and Mechanisms.

I. INTRODUCTION

MODERN robots are supposed to work closely with hu-
mans, which is steadily moving physical human-robot

interaction and safety more into focus. To protect humans
and robots in the event of collisions, inherent compliance can
be integrated within the structure of the systems. In series
elastic actuators (SEA) [1] a spring with constant elasticity is
placed between motor and link, whereas in variable-stiffness
actuators (VSA) the stiffness of the elastic element can be
deliberately adjusted [2]. Besides increased mechanical robust-
ness against unknown contact forces and impacts, a variety
of further advantages of intrinsic compliance within the drive
train exist, including aspects such as lower reflected inertias,
and energy-storing capabilities, among others. However, these
benefits come at the price of intrinsic oscillatory dynamics that
increase the control complexity and pose challenges in terms
of positioning accuracy and tracking performance.

Within the class of VSA one can distinguish between dif-
ferent design principles [4]. One subcategory includes systems
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Fig. 1. CAD drawing (top) and schematic representation (bottom) of the
bidirectional antagonistic variable stiffness (BAVS) actuation mechanism as
it is implemented in the forearm rotation of the DLR David. Adapted from
[3].

where a large motor controls the joint position while a smaller
one is responsible to adjust the stiffness. This concept is, for
example, implemented in the shoulder and elbow joints of the
DLR robot David [5], see Fig. 1, called Floating Spring Joints
[6]. In the controller design of such mechanisms, the adjuster
dynamics are often neglected [7]. In contrast to that, the effect
of both motors is coupled in antagonistic setups, as it is used
in the tendon-driven hands of DLR David. Depending on the
relative motion between the two motors, either the stiffness
or the equilibrium position is altered. An extension of the
antagonistic setup is the bidirectional antagonistic structure,
where both motors are connected bidirectionally to the link
[8]–[10]. The authors in [8] presented and analyzed a tendon-
driven prototype. This version was improved for the forearm
rotation and the two wrist joints of the DLR David to a
tendon-free mechanism. That is based on harmonic drive gears
including floating circular splines with mechanical cam discs
pretensioning springs (bidirectional antagonism with variable
stiffness (BAVS); [11], [3]). Advantageously, the sum of both
motor torques is available at the link side. Yet, due to the
coupling in antagonistic setups the motor dynamics of both
motors have to be taken into account, which increases the
complexity of the control of such mechanisms.

In terms of the control of antagonistic VSA only a few
approaches can be found in the literature. In [12] and [13]
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a control strategy based on static and dynamic feedback-
linearization is proposed and validated in simulations. In [14]
a simplified model with linearized variable stiffness is used
to design a tracking controller based on optimal control prin-
ciples, and the concept is evaluated in simulation. However,
in order to deploy the controller for the simplified model in
actual VSA robots, a mapping of the control action from the
linearized model to the real system is needed. Based on the
feedback equivalence principle a state feedback control law is
presented in [15] which ensures dynamic gravity cancellation
and set-point regulation. A tracking controller that simultane-
ously regulates the position and the stiffness is implemented
in [16] for a novel class of antagonistic variable stiffness
actuators based on equivalent nonlinear torsion springs. The
authors transform the state space model into an integral chain-
type pseudo-linear system with input saturation constraints.
For this system a sliding mode control is designed and vali-
dated in simulation [16]. In [17] and [18] the elastic structure
preserving (ESP) control approach of [7] was extended to a
bidirectional antagonism with variable stiffness. However, only
the regulation control problem was addressed.

In this work we present a link-side tracking controller
for BAVS mechanisms. Moreover, the approach enables to
simultaneously control a desired pretension of the elastic
elements. Two formal proofs are provided to substantiate the
theoretical properties of the proposed concept: uniform asymp-
totic stability of the desired link-side trajectory is shown, and
a proof of passivity is provided to attest proper interaction
behavior during physical contact with the controlled robot.
The control strategy is validated and the theoretical claims are
confirmed in experiments on the lower-arm BAVS joint of the
DLR David robot, see Fig. 1.

The article is organized as follows: After the controller
design in Section II, passivity and stability are formally
analyzed in Section III and Section IV, respectively. The
experimental validation is conducted in Section V, followed
by the conclusion in Section VI.

II. CONTROLLER DESIGN

A. Control Objectives

In this paper a robot with n degrees of freedom (DoF) and
only BAVS joints is considered. A simplified model of the
elastic robot is considered as proposed in [19], where it is
assumed that the kinetic energy of a rotor is mainly due to
its own angular velocity, which can be justified for high gear
ratios. That leads to the following system dynamics:

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ 1(φ
θ
1) + τ 2(φ

θ
2) + τ ext

(1)

B1θ̈1 + τ 1(φ
θ
1) = u1 (2)

B2θ̈2 + τ 2(φ
θ
2) = u2 (3)

Herein, q, q̇, q̈ ∈ Rn describe the link-side positions, veloc-
ities, and accelerations, respectively. Analogously, the quan-
tities θ1, θ̇1, θ̈1 ∈ Rn and θ2, θ̇2, θ̈2 ∈ Rn represent the cor-
responding variables of the two motors. The deflection φθ

i

for i = 1, 2 is defined as θi − q. Consequently, the link-
side dynamics are given by (1) and the motor-side dynamics
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Fig. 2. Visualization of the approximation of the nonlinear elastic torque
function (colored) of the BAVS integrated in the forearm rotation of the DLR
robot David by a linear function (black).

by (2)–(3). They are coupled through the elastic elements
with generalized elastic forces τ 1(φ

θ
1), τ 2(φ

θ
2) ∈ Rn. The

components of τ 1 and τ 2 are assumed to be strictly mono-
tonic increasing functions and at least two times continu-
ously differentiable. The symmetric and positive definite link
inertia matrix is denoted by M(q) ∈ Rn×n, with singular
values bounded above and below away from zero [20] such
that M−1(q) exists and is bounded as well. The Coriolis
and centrifugal matrix C(q, q̇) ∈ Rn×n is formulated such
that Ṁ(q, q̇) = C(q, q̇) +C(q, q̇)T holds [21]. Gravitational
forces are represented by g(q) ∈ Rn. The diagonal matrices
of the constant, symmetric, and positive definite motor inertias
reflected on the link-side are described by B1,B2 ∈ Rn×n.
The control inputs on the motor side are u1,u2 ∈ Rn.

In [7] a control method for compliantly actuated robots was
proposed that implements link-side motion tracking and injects
a desired link-side damping. The main features of the approach
are the preservation of the link-side inertial properties and
of the elastic structure of the original plant dynamics [7].
Inspired by that, this work aims at a controller that achieves
link-side tracking and damping injection, while simultaneously
regulating the pretension of the elastic element to a desired
value. To ease the stability proof in Section IV, the inherent
nonlinear elastic characteristics τ i(φ

θ
i ) are replaced by linear

ones, yet, in the sense of [7], changing the elastic structure as
little as possible.
Each line of τ i(φ

θ
i ) in (1)-(3) represents a nonlinear function

of the deflection φθ
i . This nonlinear function is approximated

by a linear one using a least squares fitting. This procedure
is visualized in Fig. 2 exemplary for the nonlinear elastic
elements how they are integrated in the forearm rotation of
the DLR robot David. The slope of the fitted function delivers
the constant stiffnesses K1 and K2, that form the diagonal
entries of K1,K2 ∈ Rn×n.

Inspired by [22], we aim for the following closed-loop
dynamics

M ¨̃q + (C +Dq) ˙̃q +Kqq̃ = K1φ1 +K2φ2 + τ ext (4)
B1η̈1 +K1φ1 = τ 0,1 −Dη,1η̇1 (5)
B2η̈2 +K2φ2 = τ 0,2 −Dη,2η̇2 (6)
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The link-side tracking error is defined by q̃ = q − qd(t) ∈ Rn

with the desired link-side trajectory qd(t) ∈ C4 and
∥qd∥, ∥q̇d∥, . . . , ∥q

(4)
d ∥ being bounded. In (4)-(6) the

desired closed-loop dynamics are introduced in new motor
coordinates η1,η2 ∈ Rn, which can be interpreted as virtual
motor coordinates, that reflect the desired link-side behavior to
the motor side. The virtual motor velocities and accelerations
are denoted by η̇1, η̇2 ∈ Rn and η̈1, η̈2 ∈ Rn, respectively.
The virtual deflection φi = ηi − q̃ ∈ Rn for i = 1, 2 is
introduced. The damping matrices Dq,Dη,1,Dη,2 ∈ Rn×n

are symmetric, positive definite and bounded. The constant,
diagonal, positive definite proportional gain matrix on the
tracking error is represented by Kq ∈ Rn×n. The vectors
τ 0,1, τ 0,2 ∈ Rn describe internal torques and are chosen such
that τ 0,1 + τ 0,2 = 0 holds.

B. Coordinate Transformation

Comparison of (1) and (4) yield

τ 1(φ
θ
1) + τ 2(φ

θ
2) = K1φ1 +K2φ2 + τ d (7)

with

τ d = g +M(q)q̈d +C(q, q̇)q̇d −Dq
˙̃q −Kqq̃. (8)

Motivated by [17], we impose a constraint that the pretension
is equal in the original and in the virtual coordinates:

τ 1(φ
θ
1)− τ 2(φ

θ
2) = K1φ1 −K2φ2. (9)

Here the difference of the elastic torques is referred to as pre-
tension of the mechanism. With (7) and (9) the transformation
from θi to ηi for i = 1, 2 is uniquely determined:(

φ1

φ2

)
=

(
K1 K2

K1 −K2

)−1 (
τ 1(φ

θ
1) + τ 2(φ

θ
2)− τ d

τ 1(φ
θ
1)− τ 2(φ

θ
2)

)
(10)

C. Control Law

Consequently, the time derivative of (10) yields

H

(
φ̇θ

1

φ̇θ
2

)
= K

(
φ̇1

φ̇2

)
+

(
τ̇ d

0

)
(11)

with

H =

(
κ1(φ

θ
1) κ2(φ

θ
2)

κ1(φ
θ
1) −κ2(φ

θ
2)

)
, (12)

K =

(
K1 K2

K1 −K2

)
. (13)

Where the terms κi(φ
θ
i ) for i = 1, 2 describe the derivative

of the generalized elastic forces τ i(φ
θ
i ) with respect to the

argument φθ
i . After differentiating (11) with respect to time,

the motor accelerations can be represented as(
θ̈1

θ̈2

)
= H−1K

(
φ̈1

φ̈2

)
+H−1

(
τ̈ d

0

)
+

(
q̈
q̈

)
−H−1Ḣ

(
H−1K

(
φ̇1

φ̇2

)
+H−1

(
τ̇ d

0

))
.

(14)

Transforming (2)–(3) into the new motor coordinates yields

BH−1K

(
η̈1

η̈2

)
+Bb+

(
τ 1(φ

θ
1)

τ 2(φ
θ
2)

)
=

(
u1

u2

)
(15)

with

B =

(
B1 0
0 B2

)
, (16)

b =

(
q̈
q̈

)
+H−1

((
τ̈ d

0

)
−K

(
¨̃q
¨̃q

)
− Ḣ

(
φ̇θ

1

φ̇θ
2

))
. (17)

By choosing the control law as

u = Bb+

(
τ 1(φ

θ
1)

τ 2(φ
θ
2)

)
−BH−1KB−1

((
K1φ1

K2φ2

)
− ū

)
(18)

with

ū =

(
τ 0,1 −Dη,1η̇1

τ 0,2 −Dη,2η̇2

)
(19)

one straightforwardly obtains (5)–(6).

D. Shift Equilibrium Point to Origin

The system state vector of (4)-(6) is defined as

z =
[
q̃T ηT

1 ηT
2

˙̃qT η̇T
1 η̇T

2

]T
. (20)

For τ ext = 0 the unique equilibrium point of the closed-loop
system is given by

zeq =
[
0T (K−1

1 τ 0,1)
T (K−1

2 τ 0,2)
T 0T 0T 0T

]T
(21)

For the following stability analysis the system equilibrium is
shifted to the origin. To achieve this, new coordinates η̃1 and
η̃2 are introduced as[

η̃1

η̃2

]
=

[
η1

η2

]
−

[
K−1

1 τ 0,1

K−1
2 τ 0,2

]
. (22)

Using these shifted coordinates we define a new system state
vector x as

x =
[
q̃T η̃T

1 η̃T
2

˙̃qT ˙̃ηT
1

˙̃ηT
2

]T
. (23)

For the following passivity and stability analysis, it is assumed
that the pretension is constant, thus τ̈ 0,i = τ̇ 0,i = 0. With this
assumption, the resulting system dynamics can be expressed
as

M ¨̃q + (C +Dq) ˙̃q +Kqq̃ = K1φ̃1 +K2φ̃2 + τ ext, (24)

B1
¨̃η1 +K1φ̃1 = −Dη,1

˙̃η1, (25)

B2
¨̃η2 +K2φ̃2 = −Dη,2

˙̃η2. (26)

Analogously to φi, φ̃i = η̃i − q̃ for i = 1, 2 is introduced.
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III. PASSIVITY ANALYSIS

In this section we analyze the passivity property of the
closed-loop system, that is Ṡ ≤ ˙̃qT τ ext. As a non-negative
storage function we choose

Sq̃ :=
1

2
˙̃qTM ˙̃q +

1

2
q̃TKqq̃ (27)

for the closed-loop link-side dynamics and the non-negative
function

Sη̃ :=
1

2
˙̃ηT
1 B1

˙̃η1 +
1

2
φ̃T

1 K1φ̃1

+
1

2
˙̃ηT
2 B2

˙̃η2 +
1

2
φ̃T

2 K2φ̃2

(28)

for the motor dynamics. For analysis, the storage functions
are derived once with respect to time and evaluated along the
solutions of (24)-(26) and we get

Ṡq̃ = ˙̃qT τ ext − ˙̃qTDq
˙̃q + ˙̃qTK1φ̃1 + ˙̃qTK2φ̃2, (29)

Ṡη̃ = − ˙̃ηT
1 Dη,1

˙̃η1− ˙̃ηT
2 Dη,2

˙̃η2− ˙̃qTK1φ̃1− ˙̃qTK2φ̃2. (30)

Proposition 1. The closed-loop system (24)-(26) represents a
passive map from the external force τ ext to the velocities of
the link-side tracking error ˙̃q.

Proof. Consider the total, non-negative storage function
Stot = Sq̃ + Sη̃ combining (27) and (28). Its time derivative
is given by the sum of (29) and (30)

˙̃qT τ ext− ˙̃qTDq
˙̃q− ˙̃ηT

1 Dη,1
˙̃η1− ˙̃ηT

2 Dη,2
˙̃η2 ≤ ˙̃qT τ ext, (31)

which completes the proof.

Remark 1. Note that in case of regulation control, the
simplification ˙̃q = q̇ holds. Consequently, with (31) one can
show passivity of the controlled robot for the input τ ext,
the output q̇, and the storage function Stot. Since q̇T τ ext

represents the natural power port for physical interaction, this
conclusion of passivity is of high relevance in practice.

IV. STABILITY ANALYSIS

In this section the stability properties of the time-variant
closed-loop dynamics (24)-(26) for τ ext = 0 are analyzed.

Proposition 2. The origin of the closed-loop system (24)-(26),
in absence of external forces τ ext, is uniformly asymptotically
stable.

The closed-loop dynamics (24)-(26) can be written as

ẋ = f(t,x) (32)

with state x ∈ R6n. f is a continuous function
f : I × Ω → R6n, with I = [t0,∞) for some t0 ∈ R
and Ω is a bounded set in R6n, containing the origin. We
know that the origin is an equilibrium point of (32). To show
uniform asymptotic stability of the non-autonomous system
(24)-(26) we use Lyapunov theory and Matrosov’s theorem.
The latter was first introduced in [23]. It states:

Theorem 1. [24] Let there exist two C1 functions
V : I × Ω → R, W : I × Ω → R, a C0 function V ∗ : Ω → R,

three functions a, b, c ∈ K and two constants S > 0 and T > 0
such that, for every (t,x) ∈ I × Ω

(i) a(∥x∥) ≤ V (t,x) ≤ b(∥x∥);
(ii) V̇ (t,x) ≤ V ∗(x) ≤ 0;E := {x ∈ Ω : V ∗(x) = 0};

(iii) |W (t,x)| < S;
(iv) max(d(x, E), |Ẇ (t,x)|) ≥ c(∥x∥)1;
(v) ∥f(t,x)∥ < T ;
choosing α > 0 such that B̄α ⊂ Ω, let us put for every t ∈ I

V −1
t,α = x ∈ Ω : V (t,x) ≤ a(α). (33)

Then
(i) for any t0 ∈ I and any x0 ∈ V −1

t0,α, any solution x(t)
of (32), passing through (t0,x0) ∈ I × Ω, tends to zero
uniformly in t0 and x0, when t → ∞.

(ii) the origin is uniformly asymptotically stable.

As time-variant, Lyapunov function candiate
V : [0,∞)× Ω → R we choose

V (t,x) = Sq̃(t,x) + Sη̃(t,x) =
1

2
xT

[
P 0
0 Q

]
︸ ︷︷ ︸

R

x
(34)

where

P =

Kq +K1 +K2 −K1 −K2

−K1 K1 0
−K2 0 K2

 , (35)

Q = diag(M ,B1,B2). (36)

By applying the Schur-complement-condition, one can show,
that V (t,x) is positive definite.
From (31) it results

V̇ (t,x) = − ˙̃qTDq
˙̃q − ˙̃ηT

1 Dη,1
˙̃η1 − ˙̃ηT

2 Dη,2
˙̃η2 (37)

which is negative semi-definite, since Dq , Dη,1 and Dη,2 are
positive definite (4)-(6).

Condition (i): Due to the fact that R (34) is symmetric and
positive definite, one can directly find class K functions a, b
that form lower and upper bounds for V as

a(∥x∥) = 1

2
λ(R)∥x∥2 and b(∥x∥) = 1

2
λ̄(R)∥x∥2, (38)

where λ(R) and λ̄(R) denote the minimum and maximum
eigenvalue of R, respectively.

Condition (ii): We choose V ∗(x) = V̇ (t,x). According to
(37) the problematic set E, where V ∗(x) = 0 is then given
by E = {x ∈ Ω : ˙̃q = ˙̃η1 = ˙̃η2 = 0}.

Condition (iii): We define the auxiliary function
W : [0,∞)× Ω → R as

W (t,x) := V̈ (t,x). (39)

Condition (iii) is fulfilled, if |W (t,x)| is bounded. We get

W (t,x) = −2( ˙̃qTDq
¨̃q + ˙̃ηT

1 Dη,1
¨̃η1 + ˙̃ηT

2 Dη,2
¨̃η2). (40)

Since V (t,x) is positive definite and V̇ (t,x) is negative semi-
definite, the system (24)-(26) is uniformly stable. Thus, for
the arbitrarily large but bounded set Ω the state vector x(t) is

1d(x, E) denotes the minimum distance of point x to set E
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bounded ∀t ∈ [t0,∞) for any starting condition x0 ∈ Ω. As
x is bounded and Dq , Dη,1 and Dη,2 are bounded as well,
one can see, that apart from ¨̃q, ¨̃η1 and ¨̃η2, all terms on the
RHS of (40) are bounded. To show the boundedness of these
terms, (24)-(26) are solved for the second time derivatives with
τ ext = 0. We know that M−1, B−1

1 and B−1
2 exist and are

bounded (1), moreover C ˙̃q is bounded for bounded ˙̃q. Since
in (24)-(26) Kq,K1 and K2 are bounded too, it follows that
¨̃q, ¨̃η1, ¨̃η2 and thus |W (t,x)| are bounded.

To show that condition (iv) of Matrosov’s theorem is
fulfilled, one can use the following lemma from [25]. For the
corresponding proof see [25].

Lemma 1. [25] Condition (iv) of Matrosov’s theorem is
satisfied if conditions below are satisfied.

(iv.a) Ẇ (t,x) is continuous in both arguments and depends on
time in the following way. Ẇ (t,x) = g(β(t),x) where
g is continuous in both of its arguments. β(t) is also
continuous and its image lies in a bounded set. (For
simplicity, we simply say that Ẇ (t,x) depends on time
continuously through a bounded function.)

(iv.b) There exists a class K function, k, such that
|Ẇ (t,x)| ≥ k(∥x∥)∀x ∈ E and t ≥ t0.

Condition (iv): To verify condition (iv.a), Ẇ (t,x) has to
depend continuously on x and continuously on time t through
a bounded function. The time derivative Ẇ (t,x) is given by
the following expression:

Ẇ (t,x) = −2(¨̃qTDq
¨̃q + ˙̃qTDqq̃

(3) + ¨̃ηT
1 Dη,1

¨̃η1

+˙̃ηT
1 Dη,1η̃

(3)
1 + ¨̃ηT

2 Dη,2
¨̃η2 + ˙̃ηT

2 Dη,2η̃
(3)
2 ).

(41)

Using (24)-(26) one can see that ¨̃q is continuous in q̃, ˙̃q, η̃1, η̃2

and in time through the bounded functions qd(t), q̇d(t), q̈d(t).
¨̃η1 is continuous in q̃, ˙̃q, η̃1, ˙̃η1 and ¨̃η2 is continuous in q̃,
˙̃q, η̃2, ˙̃η2. Both are continuous in time through the bounded
functions qd(t), q̇d(t), q̈d(t), q

(3)
d (t). To show that the third

derivatives of q̃,η̃1 and η̃2 are continously in x and depend
continuously on time through a bounded function, (24)-(26)
are differentiated with respect to time:

q̃(3) = M−1
(
K1

˙̃φ1 +K2
˙̃φ2 − Ṁ ¨̃q − Ċ ˙̃q

− (C −Dq)¨̃q −Kq
˙̃q
) (42)

η̃
(3)
1 = B−1

1 (−K1
˙̃φ1 −Dη,1

¨̃η1) (43)

η̃
(3)
2 = B−1

2 (−K2
˙̃φ2 −Dη,2

¨̃η2) (44)

M is two-times continuously differentiable and M and q
are bounded. Thus ∂M

∂q as well as ∂2M
∂q2 are bounded. From

this follows that Ṁ is bounded. Boundedness of ¨̃q was
already shown in the previous paragraph. Since qd(t) ∈ C4

and ∥qd∥, ∥q̇d∥, . . . , ∥q
(4)
d ∥ are bounded it follows that q̈ is

bounded. Thus M̈ is bounded, which is equivalent to the
statement that Ċ is bounded. It has to be shown that all terms
on the RHS of (42)-(44) are bounded, continuous in x and
depend continuously on time through bounded functions.

It follows that q̃(3) exists and depends continuously on x
and continuously on time t through the bounded functions
qd(t),q̇d(t), q̈d(t), q

(3)
d (t) and q

(4)
d (t). To show the same

properties for η̃
(3)
1 and η̃

(3)
2 one can proceed in an analog

fashion, see also [7] for details.
To check condition (iv.b), we evaluate Ẇ on the critical set E.
After substituting the higher derivatives in (41) and evaluation
on E we get:

Ẇ (t,x) = −2

 q̃
η̃1

η̃2

T

ATΛA

 q̃
η̃1

η̃2

 ,∀x ∈ E (45)

with

Λ =

Λ1 0 0
0 Λ2 0
0 0 Λ3

 (46)

and

A =

−Kq −K1 −K2 K1 K2

K1 −K1 0
K2 0 −K2

 (47)

where

Λ1 := M−TDqM
−1 = ΛT

1

Λ2 := B−T
1 Dη,1B

−1
1 = ΛT

2

Λ3 := B−T
2 Dη,2B

−1
2 = ΛT

3

(48)

Since M−1 is non-singular and Dq is symmetric and positive
definite, following Sylvester’s Law of Inertia [26] one can state
that Λ1 is positive definite. Analogously positive definiteness
of Λ2 and Λ3 can be shown.
The determinant of A results in

det(A) =

n∏
i=1

(−kq,i) ·
n∏

i=1

(−k1,i) ·
n∏

i=1

(−k2,i) (49)

where kq,i, k1,i, k2,i are the diagonal entries of Kq,K1,K2,
respectively. Due to the positive definiteness of Kq , K1 and
K2 the determinant of A is nonzero. Sylvester’s Law of
Inertia [26] states that ATΛA is positive definite.
We can write

|Ẇ (t,x)| = 2

 q̃
η̃1

η̃2

T

ATΛA︸ ︷︷ ︸
Σ

 q̃
η̃1

η̃2

 ,∀x ∈ E (50)

with Σ symmetric and positive definite. Hence

k(∥x∥) = 2λ(Σ)

∥∥∥∥∥∥
 q̃
η̃1

η̃2

∥∥∥∥∥∥
2

,∀x ∈ E (51)

with k ∈ K is a lower bound of |Ẇ (t,x)|.
Condition (v): From previous considerations we know that

¨̃q, ¨̃η1, ¨̃η2 and therefore ẋ are bounded. From (32) it follows
that ∥f(t,x)∥ is bounded.

We showed that conditions (i)-(v) of Matrosov’s Theorem
are satisfied. To analyse the region of attraction we can use
the upper bound of V from (38). For any starting condition
x0 it is possible to find an α > 0 such that V (t,x) ≤ a(α),
meaning that x0 lies within the region of attraction V −1

t,α . Since
we limited Ω to be an arbitrarily large but bounded set we can
not reason global stability. However, we showed that the origin
x = 0 is a uniformly asymptotically stable equilibrium point
of the closed-loop system (24)-(26).
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Fig. 3. Desired step-like trajectory and actual joint positions (top). Link-
side tracking error (bottom) for the regulation (blue) and tracking (orange)
controller.
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Fig. 4. Input torques of motor 1 and motor 2 for the tracking control and the
commanded desired step-like trajectory from Fig. 3.

V. EXPERIMENTAL VALIDATION

To validate the proposed controller, experiments on the
forearm-rotation joint of the anthropomorphic robot David
are conducted, see Fig. 1. Throughout all experiments motor
inertia shaping, as presented in [7], has been applied, to
reduce the parasitic effect of motor friction. Each entry of
the constant motor inertia matrix B is scaled down by a
factor of 0.3. Besides that, a motor friction observer was
applied to compensate for remaining frictional effects on the
motor side. The damping matrices were designed based on
modal decomposition as shown in [7]. For the 1-DoF case
this means Dq = 2ξq

√
KqM and Dη,i = 2ξη,i

√
KiBi for

i = 1, 2. The modal damping factors were chosen as ξq = 0.2
and ξη,i = 0.1. To demonstrate the benefits of the proposed
tracking controller, a comparison with the regulation controller
[18] has been performed. For the sake of comparability the
parameters Kq , ξq , ξη,i and the scaling factor for the motor
inertia shaping were always chosen equal for both the regu-
lation and the tracking controller. For the visualization within
this chapter all recorded data has been downsampled from
3 kHz to 600Hz.

A. Link-side tracking behavior

To evaluate the tracking performance a step-like function
as desired link-side trajectory has been applied, going from
−90◦ to +90◦ and back again (Fig. 3). The upper diagram
in Fig. 3 shows the desired trajectory together with the actual
joint positions achieved with [18] and the proposed controller.
For this experiment Kq = 30Nm/rad and τ0,1 = τ0,2 = 0Nm
have been chosen. The tracking error q̃ is shown in the bottom
diagram of Fig. 3. One can see that the tracking controller
is superior in terms of the control performance during the
transient. The maximum error is about 1.3◦ (RMSE 0.74◦)
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Fig. 6. Input torques of motor 1 and motor 2 for the tracking control and the
commanded desired chirp trajectory from Fig. 5.

for the tracking controller and about 5.8◦ (RMSE 2.75◦)
for the regulation controller. The steady-state error in both
controllers is comparable with a maximum of about 1◦. A
directional dependency of the tracking error can be observed
in the transient as well as in the steady state.

The two motors integrated in the considered BAVS joint
have a maximum feasible torque of ±4Nm each. In the
experiments the commanded torque is composed of the com-
puted control action from Section II and the action of the
motor friction observer/compensator. The total of both values
is visualized in Fig. 4 in case of the tracking controller. One
can see that the maximum torque of the motors is not exceeded
at any time.

In the second experiment a sine wave from −45◦ to +45◦

with variable frequency is commanded as desired link-side
trajectory. This trajectory and the actual joint positions are
depicted in Fig. 5 (top). In Fig. 5 (bottom) the tracking
errors are plotted. As expected, the performance in case of
the regulation controller decreases with increasing frequency.
This is due to the fact that [18] does not involve any feed-
forward terms to compensate for the dynamics necessary
to realize the desired link-side trajectory. Interestingly, the
maximum tracking errors with the proposed tracking controller
are only marginally affected by the increasing frequency in
the desired trajectory, confirming the practical applicability
also for highly dynamic motions. Fig. 6 demonstrates the
corresponding control torques for both motors.

B. Regulation of a desired pretension

In addition to motion tracking, the proposed controller can
simultaneously regulate the pretension in the elastic element.
This is demonstrated in the following experiment. The preten-
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element (top), and the corresponding pretension error as well as the link-
side tracking error (middle). Input torques of both motors (bottom).

sion was changed from τ0,1 = 0Nm to τ0,1 = 1Nm, accord-
ingly τ0,2 from 0Nm to −1Nm, while the link-side is com-
manded to track a sine wave with a frequency around 1.3Hz
from −30◦ to +30◦. In this experiment Kq = 50Nm/rad has
been selected.

One expects Kiφi → τ0,i for i = 1, 2 for q̃ → 0. From (9)
it follows that τ1(φ

θ
1)− τ2(φ

θ
2) → τ0,1 − τ0,2. According to

that, the choice τ0,d = τ0,1 − τ0,2 as desired pretension is
made and the difference τ1(φ

θ
1)− τ2(φ

θ
2) represents the actual

pretension in the system. Both values are shown in Fig. 7 (top).
The difference of both values, referred to as pretension error, is
depicted in the second chart in Fig. 7. The experiment shows
that it is possible to regulate a given pretension and track
a desired link-side trajectory simultaneously. The two bottom
diagrams in Fig. 7 illustrate the link-side tracking error and the
input torque, respectively. It can be seen that with increasing
preload, the tracking behavior deteriorates. One can observe
that the directional dependency of the tracking error increases
with rising pretension. This effect and the question how it
affects the use of the elastic mechanism will be investigated
further in future works.

C. Interaction behavior

The last experiment verifies the results of the passivity anal-
ysis in Section III. The tracking controller is commanded to
keep a constant desired joint position, while the user interacts
with the robot, see Fig. 8 (top). The controller gains in the
experiments have been chosen as follows: Kq = 5Nm/rad,
ξq = 0.3, τ0,1 = τ0,2 = 0Nm. The time period of physical
interaction is marked in gray. After releasing the link of
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Fig. 8. Desired and actual joint position (top), storage function S (middle)
and its time derivative Ṡ (bottom).

the robot, the actual joint position returns to the desired
one2. In the second chart of Fig. 8, the storage function S
from Section III is plotted. After the physical interaction,
that is, τext = 0Nm, the storage function decreases according
to the passivity considerations and the conclusions drawn in
Remark 1. For the sake of completeness, the bottom diagram
in Fig. 8 shows Ṡ which stays below zero during free motion.

VI. CONCLUSION

In this work, we presented a passivity-based controller
that achieves simultaneous motion tracking and joint stiff-
ness control for biologically inspired, bidirectional variable-
stiffness actuators. In harmony with the ESP design philos-
ophy, we aimed at modifying the intrinsic dynamics to a
minimal extent. Passivity and uniform asymptotic stability of
the resulting closed-loop dynamics have been formally shown,
with the former facilitating robust and compliant interaction
with the environment. The proposed controller is evaluated
on the forearm BAVS joint of DLR David. The experimental
results highlight the tracking performance and demonstrate
that independent joint stiffness and link position control can
be achieved. Finally, passivity of the closed loop is verified in
a human-robot interaction experiment.
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