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Abstract: In tree-based adaptive mesh refinement (AMR) we store refinement
trees in the cells of an unstructured coarse mesh. This lets us combine the speed
and simpler management of structured refinement trees with the more flexible mesh
generation of the unstructured coarse mesh.

But this creates a conflict between performance and geometrical accuracy. If we
favor speed we reduce the cells in our coarse mesh and hence reduce the accuracy
of our geometrical representation. If we want more accurate results we generate a
finer coarse mesh and lose performance by managing more cells in our unstructured
coarse mesh.

To mitigate this conflict we present the prototype of an geometry description
which we implement in an already existing library. With this description we build
geometry adapted hexahedral refinement trees, which also support high-order curved
boundary cells. We also present examples on how to use this description.

Moreover, we test the speedup of this new algorithm compared with coarse meshes
with different geometrical errors.

1 Introduction

The geometry of a product is often the key to its function. One of the best examples are airfoils,
where the shape influences their characteristics and therefore their use cases [10].

Moreover, the geometry influences more than that like its rigidity, mass, or cost. But for simu-
lating different properties of our product we have to solve partial differential equations (PDEs),
which contain spatial derivatives. These can be resolved with the help of spatial discretization of
our domain. But by discretizing with polyhedra we lose geometrical accuracy.

The smaller our polyhedra, the smaller our geometrical errors get. However, too small
polyhedra result in increased computing times and therefore greater cost. To mitigate this conflict
we use adaptive mesh refinement (AMR), which refines or coarsens cells concerning an a priori
defined criterion. These refinements happen locally and are therefore able to reduce our overall
mesh size. [11, 14]



In this case we build on the previous works of Burstedde and Holke [7, 3, 8], who developed
the tree-based AMR library t8code. The library provides the user with parallel management of
adaptive meshes with different polygons and polyhedra (triangles, quadrilaterals, tetrahedrons,
hexahedrons, prisms, and pyramids) and high-level algorithms like adapt, partition, balance,
and ghost. A more detailed description of the library and its algorithms can be found in the
aforementioned publications.

Tree-based AMR uses already existing meshes and refines their cells, but keeps track of the
refinement with so-called refinement trees. These refinement trees are a solution for storing
information in a tree-like shape. This can help with the data management which arises in compu-
tational simulations. Furthermore, it has the benefit of cutting computing times by significant
amounts and still have a good discretization around important regions. [2, 5]

Thus, by using AMR we improve our spatial discretization, but in our case, we do not improve
the discretization of our geometry. That can result in computational errors in especially important
regions like the boundary layer in a computational fluid dynamics (CFD) simulation.

This problem is inherent to the way most meshes are saved. After the mesh generation, the
vertices and their relations are stored, but there is no way of getting to the data of the meshed
geometry because the geometry does not get saved along with the mesh.

Consequently, we want to introduce and implement a new geometry description, which is
built on an already existing geometry representation capability from t8code and tackle the
aforementioned problem. Until now this geometry base class has a limited significance for
practical use because the geometries have to be programmed manually.

This new geometry implementation can then process geometry-infused mesh files, which we
have to develop as well. In these geometry-infused mesh files, the geometry data is linked with
the mesh data in such a way, that we can extract the information about which feature of which cell
lies on which geometric feature. But this has to be done after the feasibility of the new geometry
implementation is verified.

Nonetheless, we want to use this base class to build our own automatic geometry description,
which can be used without the need of programming a geometry by hand. Instead, we can then
use the geometry-infused mesh files.

We do this with the help of the Open CASCADE Technology (OCCT) CAD kernel [15]. We
use the CAD Kernel to handle the geometries, which we link to our cells. In Fig. 1 we can see
such a mesh consisting of six cells which are positioned to represent a hollow cylinder. Each cell
has a linked geometry on the in- and outside.

Take note, that the geometrical description influences each refined cell and therefore improves
the accuracy of our geometry with each refinement step. This is the main contribution of this
paper. We map the one- or two-dimensional geometries from the cell faces or edges into the
three-dimensional space.

This is needed because geometries are often meshed with the help of boundary representations.
These boundary representations outline a volume with the help of its boundary (points, curves,
and surfaces); therefore, the mesh is created and mapped to the boundary components, not its
volume.

In addition, the geometry influences more than just the refinement of the AMR cells. The
geometry description can also be accessed by the solver just like in high-order meshes. This
way we can for example position our integration points with greater accuracy. These high-order
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Figure 1: The cmesh of a hollow cylinder (left) consists of 6 refinement trees. When refined
three times the resulting mesh has the same shape (middle). But with curved domain refinement
the shape approaches the shape of the cylinder (right).

curved domain meshes are addressed in [17, 12, 16, 13, 18, 22, 6]. These publications address
this only in the context of static high-order meshes, but not in combination with AMR.

The geometry base class uses a reference volume, which gets mapped to the real cell volume
with the help of a geometric description. The reference and real cell volumes can be hexahedrons,
tetrahedrons, prisms, and pyramids. In this paper, we will settle for hexahedrons because of their
simpler tensor product structure.

In section 2 we outline the fundamental concepts needed to understand this work. Then we
will introduce our new geometry description in section 3. After that in section 4 we will take a
look at the implementation and some examples. Lastly, we will look at the performance of this
description in section 5 and discuss the results in section 6.

2 Fundamental concepts

In this section, we explain the fundamental concepts which lead to our new proposed algo-
rithm.

For the generation of an adaptive mesh, we need an already existing unstructured mesh,
whose elements can then be recursively refined. In 3D, t8code can convert conforming meshes
consisting of tetrahedra, hexahedra, prisms, and pyramids. The input mesh can also contain
multiple of these shapes, as long as the connecting faces of two neighbors have the same shape
and no hanging nodes occur.

The following concepts are particularly important and inherent to the AMR library t8code
in which our description will be implemented. These are the concepts of forest-based adaptive
meshes with space-filling curves. Forest-based adaptive meshes are constructed from the afore-
mentioned conforming meshes. We will reference these meshes as coarse mesh or short cmesh.
To refine this cmesh every cmesh cell gets a recursive refinement rule, which states how the cell
should be refined. The refinement levels start at level O, which is the cmesh cell itself.



Furthermore, we can connect the descendant cells to the ancestor cell to get a tree-like structure
with the cmesh cell at its root and the most refined cells as its leaves. We call the tree, its
refinement function, and the cmesh cell a refinement tree. The collection of all cmesh trees is
known as a forest.

In t8code only the leaves of the trees are stored and we can put them into a one-dimensional
array, which is described as linear tree storage. This is possible because only the leaves are
needed in a numerical simulation. To store the leaves linearly a space filling curve (SFC) index is
needed. This index assigns a natural number to each cell so that the combination of a refinement
level and an index describes only one cell in the tree. [19, 20, 21]

It is possible to hand in additional information to a refinement tree. This additional information
is then stored as an attribute of this tree. We can use this for example for storing the geometrical
information about our cmesh cell.

We generate and store the geometrical information itself with the help of the 0CCT CAD kernel.
This way we do not have to worry about all the different possible geometry descriptions and we
get a unified way to evaluate the geometries. We will refer to these 0CCT geometries as curves
and surfaces. They should not be confused with the geometries of a hexahedral cell, which we
name edges and faces.

The evaluation of a 0CCT geometry is similar to the geometry description we have to implement.
To get a point along a one-dimensional geometry or curve we need one parameter . u has to be
in the range of valid parameters [tmin, Umax] and returns a set of three coordinates along the curve
c:

c: [Mminvumax] — ]R37

u—c(u).
In addition we need two parameters u,v to describe every point on a surface s:

A [uminaumax] X [Vminvvmax] — R3,

(5)=+()

3 Defining a geometrical description

The geometrical evaluation of our hexahedral cells relies on the aforementioned description. This
description has to be built on the already existing geometry evaluation base class. This class
provides us with all information we need. Among other things we get a set of coordinates from
inside a unit cube, which we have to map into our hexahedron f : [0, 1]3 — R3,

The currently used description, which maps the provided coordinates into the hexahedron, is a
trilinear interpolation between the eight vertices. This method suffices for hexahedra with plane
faces and straight edges. But to include hexahedra with non-linear geometries linked to them we
need to modify or even replace it.



This also means, that our new description will be more complex and therefore slow down
the computation. Nevertheless, we are willing to make this trade-off between performance and
accuracy.

Therefore, we show a modified version of the trilinear interpolation, which includes nonlinear
geometries. For illustrative purposes, we start with an explanation of a 2D quadrilateral and a
bilinear interpolation (Fig. 2).
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Figure 2: Linear interpolation based geometry description. The deviation from the linear
interpolation gets calculated for each edge. After that the vectors get multiplied with their
reference coordinate and added to the midpoint calculated by a bilinear interpolation.

LetV = (X,Y) € [0, 1] be a point in the reference square. Then we can compute its picture in
a quadrilateral with geometries linked to it.

Furthermore, let our quadrilateral have three geometries linked to it, we denote them with
Gy4,Gp and G¢. The four vertices of the quadrilateral are marked with Vg to V3. These vertices
also store their parameters on the geometries; we denote them with Uag,Uaz,Up1,Up3, U and
Ucs. Uyp stands for the parameter of vertex Vy on geometry Gy4.

To picture the surface of the geometrically deformed quadrilateral we firstly have to do a
bilinear interpolation between the vertex coordinates Vy to V3. We do this based on the reference
coordinates X and Y from our point V. This gives us the point P:

P=Wx[1-X]+VixX)x(1-Y)
+(Vax[1=X]+VsxX)xY.

In addition, we want to include the displacement generated by the geometries G4, Gp, G¢. For
this, we iterate over each not linear edge and calculate the displacement between the geometries
and the linear edges. To get the corresponding coordinates of the geometries (G4, G, G¢) we
need the stored parameters of the vertices.



The parameters of the vertices represent their position on the geometry. Thus we can insert
them into our geometry and the geometry returns the same coordinates as our vertex has. We
can also interpolate between them to get a point between the vertices, but still on the geometry.
We do these interpolations again based on the reference coordinates X and Y. In this case we
use X to interpolate between Uc, and Ucs and Y to interpolate between Uyg and Uy,, as well as
between Upg; and Upgs.

After we insert the interpolated parameters into the geometries we can calculate the displace-
ment vector between the geometry and a linear interpolation between the vertices connected to
the geometry. Note, that we have to invert the X and Y reference coordinates according to the
vertex positions.

A=Ga(Ugox[1=Y]4+Upp xY) =V x [1 = Y] + V5 x ¥,
EZGB(UBlX[l—Y}+UB3XY)—V1X[l—Y]—l—Vg,XY, (D)
C=Gc(Uer x[1=X]+Uez xX) = Vo x [1 = X]+ V3 x X.

With these vectors and the point P calculated by a bilinear interpolation we can calculate the
new point P’ with respect to the geometry. This is done by scaling each vector A, B, C from eq. (1)
by the orthogonal reference coordinates and adding the scaled vectors d, b, ¢ to our point P:

d=Ax(1-X),
Bzﬁx&
¢=CxY,

P =Pta+b+c.

When we extend this description into the three-dimensional hexahedron we have to distinguish
between surfaces and curves. Surfaces can be linked either to an edge or a face, curves can only
be linked to edges. But for us, it is irrelevant if an edge is linked to a curve or a surface, only the
amount of parameters changes.

Nevertheless, it is important if we have a linked edge or a linked face. A face has only one
orthogonal reference coordinate, an edge has two. Therefore we have to scale the displacement
vectors of a face only with one reference coordinate and a vector of an edge has to be scaled with
two coordinates.

An example of such a hexahedron with the curve G4 linked to it is shown in Fig. 3. To convert
the displacement vector A from eq. (1) to the scaled vector @ we have to multiply it with both of
its orthogonal reference coordinates Y and Z:

d=Ax(1-Y)xZ.
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Figure 3: Linear interpolation based geometry description. The deviation from the linear
interpolation gets calculated for each edge. After that the vectors get multiplied by their reference
coordinate and added to the midpoint calculated by a bilinear interpolation.

4 Implementation

In this section, we look at the already given infrastructure on which the algorithm is built. After
that, we take a look at the implementation itself and discuss a few examples of how to use it.

4.1 Implementation of the description

To implement the description we have to take a look at the given infrastructure. We already
mentioned that t8code needs a so-called cmesh to build on. This cmesh consists of cmesh cells,
which are converted to refinement trees. Every refinement tree stores its shape, the coordinates of
its vertices, a tree of its refined cells, a SFC and a refinement function.

Moreover, a tree can store additional information in form of attributes. These attributes can
be accessed at every time and we will use these attributes to store data like our curve or surface
geometries.

A pseudocode of the implemented algorithm is shown in Fig. 5. Here we can see, how the
algorithm converts the reference coordinates and the coordinates of the vertices into the output
coordinates.

First, we calculate the output coordinates with a trilinear interpolation. This gives us the
coordinates as if no geometry is present. After that, we have to calculate the deviation vector for
each geometry on our hexahedron. This step is split into two for-loops to distinguish between
edges and faces. But they function similarly.



To do this we iterate over each edge and check if it is linked to a geometry via a refinement
tree attribute. If an edge is linked to a geometry we save the geometry and the parameter of each
vertex on this geometry. This information is also stored as an attribute of the refinement tree.
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Figure 4: Shown are the indices of a hexahedron. Each set of components (vertices, edges and
faces) has its own set of indices.

After that, we can do a linear interpolation between the vertex parameters with the help of the
reference coordinates. But for this, we need to know which coordinate (x, y, or z) of the reference
coordinates we have to use for this interpolation.

This is why we give each edge of a hexahedron an index i, which represents in which direction
this edge points. The indices are shown in Fig. 4. The edges with i < 4 point in the x-direction,
edges with 4 <i < 8 point in the y-direction and edges with i > 8 point in the z-direction. If we
take a look at edge 9 we know, that we have to use the z-coordinate for the linear interpolation.

With the calculated parameters, we can evaluate our geometry and thus get the first point to
generate our displacement vector.

However, we also need the second point, which we get by a linear interpolation between the
vertices of our edge. But for this, we need to know, which vertices belong to our edge. This is
solved via data sets. These data sets store which vertices are connected to which edges and which
faces.

We now have both points and subtract them to get the displacement vector. According to our
description, we now have to scale this vector with both of the orthogonal reference coordinates.
Because of the indices of our edge we already know which of these are orthogonal. In the case of
edge 9 this would be the x- and y-coordinate.

But we also need to know if we have to invert these orthogonal coordinates (e.g. 1 —x). This
information is also encoded in our indices from Fig. 4.



We can convert the directions of our coordinate system into directional indices, so let x = 0,
y =1 and z = 2. We can also cycle trough these indices, sothat2+1=0and 0 -1 =2.
Then we can distinguish four different scenarios s for an edge, which points in direction d:

0. Both orthogonal coordinates have to be inverted

1. The coordinate with index d — 1 has to be inverted
2. The coordinate with index d + 1 has to be inverted
3. No coordinate has to be inverted

These four scenarios are encoded into the index i of the edge. To decode them we just have to
calculate
s =imod 4 (2)

and the result gives us which scenario we have.

Edge 9 for example satisfies i > 8 and therefore points in the z-direction (d = 2). Furthermore
we need to multiply the displacement vector of edge 9 with x and 1 —y. This is represented by
scenario 1. If we input the edge index into equation (2) we also get 1.

With these rules, we can determine the scaling factors of an edge just by its index. After scaling
the vector we only have to add the vector to our total displacement and move on with the next
geometry.

After cycling through each edge we have to do the same thing with each face. But here we
have to do bilinear interpolations between the parameters and vertex coordinates. However, the
scaling of the vector only needs one orthogonal coordinate.

Finally, we just have to add all our aggregated vectors to the outgoing coordinates.



input :Reference coordinates (ref_coords); vertex coordinates (vertices)
output : Output coordinates (out_coords)

1 out_coords = trilin_inter (ref_coords, vertices);
2 /* calculate and scale edge displacements */
3 foreach edge do

4 if is_linked (edge) then

5 geom = get_geom_attribute (edge);

6 parameters = get_parameter_attribute (edge);

7 displacement = evaluate (geom, 1in_inter (ref_coords, parameters));

8 displacement —= 1in_inter (ref_coords, get_vertices_of _edge (edge, vertices));

9 displacement *= get_orthogonal_coords (edge, ref_coords);

10 tot_displacement += displacement

11 end

12 end

13 /* calculate and scale face displacements x/

14 foreach face do

15 if is_linked (face) then

16 geom = get_geom_attribute (face);

17 parameters = get_parameter_attribute (face);

18 displacement = evaluate (geom, bilin_inter (ref_coords, parameters));

19 displacement —=bilin_inter (ref_coords, get_vertices_of face (face, vertices));
20 displacement *= get_orthogonal _coords (face, ref_coords);

21 tot_displacement += displacement

22 end

23 end

24 out_coords += tot_displacement;

Figure 5: Pseudocode of the modified trilinear interpolation algorithm. The displacements
generated by the linked geometries are added to the result of a trilinear interpolation.

4.2 Usage of the implementation

The process of creating a OCCT linked curved domain cmesh manually has some more steps than
the process of creating a regular cmesh. These additional steps are highlighted in the following
list:

1. Setting the vertex coordinates of the cmesh hexahedra

2. Connecting the faces of the hexahedra

3. Generating the geometries

4. Generating the vertex parameters

5. Generating a list about which faces are linked to a surface

6. Generating a list about which edges are linked to a curve
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7. Handing the generated information as attributes to the refinement trees
8. Committing the cmesh

Just like every other manually created cmesh, the coordinates of the vertices of the hexahedra
have to be specified. After that, we can sew the faces together, so that we have a numerical
connection between them. When creating a regular cmesh we would be ready to commit and use
the mesh. But when creating a curved domain cmesh we have to do some extra steps.

First, we need to generate the geometries which we want to link to our cmesh. All vertices of
an edge or a face have to lie on this geometry. We also need to know the parameters these vertices
have on the geometry. After this, we can handle the geometries and the parameters as attributes
to our cmesh cells.

Additionally, we need lists about which edge or face has a geometry linked to it. These lists
can also be saved as an attribute. The last step is to commit the cmesh, which means all the
previous steps get executed.

In the following, we will clarify the use of the algorithm with a few examples. These examples
should show the general use of one- and two-dimensional geometries to deform one or multiple
hexahedrons.

(a) A level 4 refinement tree with splines linked  (b) Two level 4 refinement trees share the same surface on face 5.
to edge 0 and 3. It is also possible to link surfaces ~ One tree is colored bluish, while the other is reddish.
to edges, but these cells do not look different.

Figure 6: These examples show the usage of the geometry description. It is possible to link
multiple refinement trees to one geometry or even link multiple geometries to one refinement tree.
The cells are color-coded by their id.

Example 1: B-spline The first example shows how we can link B-splines to the edges of a
hexahedron. For this, we generate a hexahedron and give it some arbitrary coordinates. In this
case, we use the coordinates of a unit cube.

Then we can generate two B-splines, which link to the edges EO and E9. In this case, the
parameters are 0 for vertex VO and V6 and 1 for vertex V1 and V7.
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The last thing we have to generate is a list that states which edge has which curve and that no
face carries any surface.

After handing this information as attributes to our refinement trees we can commit the mesh.
The result of refining this cmesh four times can be seen in Fig. 6a.

Example 2: B-spline surface This example shows how to link two hexahedra to the same
surface. Just like in the aforementioned example we start by generating the vertex coordinates of
the hexahedrons.

In this case, we reuse four vertices, so that our hexahedrons touch each other. After that, we
can sew the faces of the hexahedra together.

The geometry used in this example is a surface, which gets linked to face F5 of both hexahedra.
This is done by giving one hexahedron parameters between [0,0] and [0.5,1] and the other
hexahedron gets parameters between [0.5,0] and [1, 1].

Furthermore, we create a list that defines which face gets which geometry. Here both faces get
the same geometry.

After giving this information to the refinement trees we commit and refine the cmesh. The
result of refining the cmesh four times is visible in Fig. 6b.

oy

treeid

Figure 7: The cylinder example shows how multiple geometries can be linked to multiple
refinement trees and therefore improve the geometric accuracy with reach refinement. Shown
are the level 0-2 refinements of four refinement trees. Note that the cells of the curved domain
geometry description are shown as polygons because ParaView [1] only evaluates the corners of
the cells. In reality, the cells are curved to the geometry.

Example 3: Cylinder The last example shows how to link multiple refinement trees to the
same two geometries. In addition, we use this example to benchmark the new algorithm in
section 5.
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This example consists of multiple refinement trees, which resemble a hollow cylinder with an
outer diameter of 1, an inner diameter of 0.5, and a height of 1. The cells on the inner and outer
cylinder mantles are linked to the same cylinder geometries.

We generate the coordinates of our vertices with a coordinate transformation from cylindrical to
Cartesian coordinates. After that, we generate our two cylinder geometries and use the attributes
to link them to the cells. The result of refining this cmesh is shown in Fig. 7.

5 Performance

In this section, we analyze the performance of the implemented algorithm. To compare it to the
linear algorithm we use the example from section 4.2.

In this example, we have two cylinder geometries, which are linked to an amount of cmesh
cells. Moreover, we integrated a feature to specify the level of the cmesh. The level 0 cmesh
consists of 4 x 8° = 4 cells, while the level 1 cmesh consists of 4 x 8! = 32 cells, the level 2
cmesh of 4 x 8% = 256 cells and so on.

However, it is important to notice, that only the outward-facing cells have a geometry linked to
them. So in practice, the 4 cells of the level 0 cmesh have two geometries linked to them, the 32
cells of level 1 have only one geometry linked to them and at level 2 we have 128 cells with a
geometry linked to them and 128 more without any geometry. But these cells get processed by
the same algorithm.

In comparison to that, we can create the same cylinder with the same amount of cmesh cells,
but with the linear geometry description. With these two coarse meshes, we can compare the
geometry algorithms.

For this, we are going to advance a plane through the cylinders and all cells in certain proximity
get refined by 3 levels. The distance gets measured from the center of the cell. The cmeshes have
different levels c; to get a consistent amount of cells we will also refine the cmesh by [ levels so
that ¢ + [ = 6. The plane advances in 5 time steps. An example of this is shown in Fig. 8

These coarse mesh levels will lead to deviation from the original geometry when using the
linear geometry description. In the case of the level O coarse mesh, the maximum distance
between a vertex and the geometry will be 1.46 x 10~!. The maximum distance for level 3 is
2.41 x 1073 and for level 6 is 3.76 x 1073. However, these values are dependent on the cmesh
level as well as the geometry, so these values can not be transferred to other geometries.

After that, we will add the time spent on the algorithms partition, adapt, balance and ghost.
The partition algorithm uses the SFC to partition the cells for each process. Adapt refines the
cells using the refinement function of the tree. The balance function refines cells in multiple
iterations so that the level difference between neighboring cells is not larger than 1. The ghost
function searches for the neighboring cells across refinement trees. These functions are covered
in more detail in [7].

We will also measure how much time the geometry calculations need. This way we can show
the influence of the geometry calculations on the overall runtime.

Note that we test the AMR algorithms excusively. A real-world analysis with a PDE solver is
important and relevant, but beyond of the scope of this paper. However, it will be part of future
works.

13



level

(a) Linear geometry description

level

(b) New curved domain geometry description

Figure 8: A plane is moved through the cylinder cmeshes from section 4.2. One cmesh uses the
linear geometry description, while the other uses the new curved domain geometry description.
The cmeshes are of level ¢ = 1. Each refinement tree is refined once (I = 1). Cells near the plane
get refined twice and balanced afterwards. Note that the cells of the curved domain geometry
description are shown as polygons because ParaView only evaluates the corners of the cells. In
reality, the cells are curved to the geometry.

The tests were conducted on a Intel Xeon W-2175 Processor with 14 cores at 2.5 GHz and
with 128 GB of RAM. We used commit 180c678499e951432£7835594fc581ebbc9dc077 [9]
on a t8code fork. The command line inputs for the ¢ = 3 runs are:

mpirun -np 14 ./examples/timings/t8_time_forest_partition \
-0 -13 -r3 -C3 -—xmin -0.7 -—xmax -0.3 -b -T 1 -D 0.2 -0 -g

mpirun -np 14 ./examples/timings/t8_time_forest_partition \
-L -13 -r3 -C3 --xmin -0.7 --xmax -0.3 -b -T 1 -D 0.2 -0 -g

The results are shown in Fig. 9.

As expected the runtime of the geometry evaluation increases with the more complex descrip-
tion. In the case of cmesh level 0, it increases by a factor of nearly 6.6. But when the level of the
cmesh is increased the mean runtime of an evaluation of the curved domain description decreases,
because there are more cells with no geometry linked to them. In the case of cmesh level 3, only
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Runtime of different AMR and geometry evaluation algorithms
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Figure 9: Runtime of different AMR algorithms. Shown are the mean runtime per process and
timestep accumulated over each timestep (top). The runtime was measured with variations in
the cmesh level ¢ and geometry description. We also measured the total mean time spent on
evaluating the geometry descriptions (bottom) and the mean runtime per evaluation.

one fourth of the cmesh cells have a geometry linked to it, with level 6 this is further reduced to
1/32. This results in an increase in runtime in comparison to the linear interpolation by a factor of
2.9 for cmesh level 3 and a factor of 2.4.

However, the curved domain geometry description time still does not approach the linear
geometry description time. This is because we have to check for each cell if a geometry is present.
But this can be mitigated with further code optimization.

Besides that, the adapt algorithm is the only one, which uses the geometry description. Conse-
quently, only the adapt algorithms runtime is affected by the new geometry description. In the
case of the level 0 cmesh, the runtime nearly triples, but this approaches an increase of only 50%
with higher cmesh levels. Note that this is only the case because our adaptation is based on the
location of the cell. If the refinement function would use another, not geometry-linked refinement
criterion, the geometry would not be evaluated. But we chose this criterion to get and observe the
influence.

Furthermore, the remaining algorithms only in- or decrease their runtime with the amount of
cmesh cells. the balance algorithm speeds up with a greater amount of cmesh cells, while the
ghost algorithm slows down. But the overall runtime is dependent on much more factors, like the
level the cells are adaptively refined to or the geometry of the mesh itself. More on the runtime of
these algorithms can be read in [7, 3, 4].
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6 Conclusion

In the previous sections, we looked at how we can describe a geometry-deformed hexahedron and
implemented this into the AMR library t8code. We also looked at some examples of how to use
this implemented description. Lastly, we looked at the performance of the newly implemented
algorithm and compared it to the previously used linear geometry description.

In this section, we are going to evaluate the previous sections and take a look at the following
research.

As already mentioned there are multiple publications about curved domain, high order
meshes [17, 12, 16, 13, 18, 22, 6], but none of them combine this approach with tree-based
AMR.

Therefore, this paper moves one step ahead and applies it to a new region. But we have to
evaluate if this suffices for calling this method useful. To do that we have to look foremost at the
performance.

As we have seen in section 5, the runtime of the curved geometry description can peak as high
as 6.6 times the runtime of the linear geometry description. But this is only the case if every cell
has two geometries (the inner and outer cylinder) linked to it. In typical use cases, we use meshes
with way fewer geometry-linked cells, because only the boundary cells are geometry-linked.

Besides that, the runtime of the curved geometry evaluation can be improved with code
optimization. Then the runtime of a cell with no geometry evaluated with the curved description
is nearly the runtime of the same cell evaluated with the linear description. The only difference is,
that the curved description has to check if a geometry is present.

Furthermore, the percental increase in the runtime of the curved geometry description does not
translate exactly in the runtime increase of our high-level algorithms. It only affects the adapt
runtime, while the algorithms partition, balance, and ghost are not affected.

On the other hand, we do not only get a geometry-based refinement of the boundary cells, but
we also get a more accurate high-order mesh. We improve from a linear geometry approximation
to a geometry approximation with the same polynomial degree as the high-order mesh. Yet
we can not say, what this means for example for the boundary layer in a CFD simulation, but
theoretically, this results in a gain in accuracy.

Therefore, we still got some subsequent work to do. Firstly we want to test this algorithm with
a numerical application and look for accuracy improvements. Moreover, we need to adapt this
geometry description for the other, by t8code supported, element types (triangles, tetrahedrons,
prisms, and pyramids) and implement the coupling to a mesh generator, to obtain the relevant
additional geometry information.

In addition, the results of this paper could also be the first step towards the implementation of
improved inflation or prism layer control in t8code. With the information about which cells carry
a geometry and where the geometry lies, we get more possibilities in controlling the refinement
of inflation layers themselves.

In summary, we want to advance this approach to ease its use and to give it a broad spectrum
of applicability. We strive to deepen the interaction between geometries and their numerical
simulation, always in pursuit of greater accuracy.
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