
Hand and Object Pose

Estimation using Self-Supervised
Learning

Scientific work to obtain the degree
Master of Science (M.Sc.)

at the Human-centered Assistive Robotics
Technical University of Munich

Submitted by Weiqi Luo
on 26. 08. 2021

First supervisor: Univ.-Prof. Dr.-Ing. Dongheui Lee

Second supervisor: Dr. Hyemin Ahn, M.Sc. Shile Li

TECHNISCHE UNIVERSITÄT MÜNCHEN

Human-centered Assistive Robotics
UNIV.-PROF. DR.-ING. DONGHEUI LEE

March 10, 2020

M A S T E R ’ S T H E S I S
for

Weiqi Luo
Student ID 03697059, Degree EI

Hand and Object Pose Estimation using Self-Supervised Learning

Problem description:

In this project, the main goal is to design systems which can estimate the pose of hand and object.
The straightforward method would be training a deep neural network based on a supervised learning
framework. However, since obtaining an annotated dataset with an accurate pose is hugely time
consuming and difficult, this project would aim to propose a model based on the self- or weakly
supervised learning framework. To be specific, the student will develop a self- or weakly supervised
method to tackle the hand and object pose estimation problem with help of a differentiable renderer [2]
and OpenPose [1]. Without annotated hand and object pose information, the method should regress
hand and object pose, and then render an image that matches the input image.

Tasks:

• Literature review on object pose estimation and differentiable rendering.
• Literature review on hand pose estimation and OpenPose-based weakly-supervised learning.
• Self-supervised learning for hand and object pose estimation.
• Evaluation and ablation studies using existing relevant datasets.

Bibliography:

[1] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Openpose: realtime
multi-person 2d pose estimation using part affinity fields. IEEE transactions on pattern analysis
and machine intelligence, 43(1):172–186, 2019.

[2] Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. Soft rasterizer: Differentiable rendering for
unsupervised single-view mesh reconstruction. arXiv preprint arXiv:1901.05567, 2019.

Supervisor: Dr. Hyemin Ahn, M.Sc. Shile Li, Prof. Dongheui Lee
Start: 15.07.2020
Intermediate Report: 02.02.2021
Delivery: 26.08.2021

(D. Lee)
Univ.-Professor

Abstract

Hand and object pose estimation is an important topic in robotics and computer
vision. State-of-the-art methods typically train a deep neural network on annotated
dataset using supervised learning. However, precisely annotating high-dimensional
poses in two dimensional image plane is very difficult and time-consuming, especially
when there are severe occlusions while the human hand manipulating objects. Some
researchers try to eliminate this problem by relying on rendered synthetic dataset.
However, the models do not generalize well on the real images due to the domain
gap between rendered and real photos.

In this work, we address the issue of lacking annotated dataset for both object and
hand pose estimation. We design a self- or weakly supervised learning framework
respectively for estimating hand pose and object pose, which directly extract infor-
mation from input images and use it as an alternative of ground truth. In object pose
estimation framework, we utilize a differentiable renderer to render images with es-
timated poses and train the network by aligning rendered images with input images.
For hand pose estimation, we weakly supervise the training process by fitting the
MANO hand model to the 2D hand keypoints predicted with pretrained OpenPose
hand detector. Through quantitative and qualitative evaluation, we demonstrate
that with appropriate settings of objective functions, we can remove the need of
pose annotation without losing much accuracy.

2

CONTENTS 3

Contents

1 Introduction 5

2 Related Work 9

3 Methodology 13
3.1 Overview . 13
3.2 Background Theory . 13

3.2.1 Differentiable Renderer . 13
3.2.2 MANO Hand Model . 14
3.2.3 2D Hand Keypoints Estimation with OpenPose 15

3.3 Object Pose Estimation . 16
3.3.1 Network Architecture . 16
3.3.2 Training Loss . 17

3.4 Hand Pose Estimation . 19
3.4.1 Network Architecture . 20
3.4.2 Training Loss . 21

4 Evaluation 23
4.1 Implementation Details . 23
4.2 Experiments of Object Pose Estimation 23

4.2.1 Synthetic LineMOD dataset. 23
4.2.2 Evaluation Metrics . 24
4.2.3 Experimental Results . 24

4.3 Experiments of Hand Pose Estimation 26
4.3.1 FreiHAND dataset . 26
4.3.2 Evaluation Metric . 27
4.3.3 Experimental Results . 28

5 Conclusion 33

List of Figures 35

Bibliography 39

4 CONTENTS

5

Chapter 1

Introduction

In recent years, hand and object pose estimation has attracted more and more atten-
tion thanks to the rapid development of computer vision research. while hand and
object pose estimation are essential to interpreting and imitating human actions, it
is a key to many applications, such as imitation-based learning of robotic skills, ac-
tion recognition, human-computer interaction, virtual and augmented reality. Fig.
1.1 demonstrates the usage of hand pose estimation in virtual reality, which enables
people to directly manipulate objects in the virtual space without using controllers.

Figure 1.1: Virtual representation of hands in a VR environment powered by Quest
augmented reality headset, which is manufactured by Facebook. Hand pose estima-
tion allow people to directly plunge their hands into virtual worlds without the need
for a controller.

The objective of object estimation is to estimate the translation and rotation of
objects in 3-dimensional space, while the hand pose estimation requires to further
predict the posture of hands. Besides, since human hands are different in shape and
size and cannot be represented using a uniform model, hand pose estimation is often
associated with hand shape estimation. Fig. 1.2 depicts the task of hand and object
pose estimation.

6 CHAPTER 1. INTRODUCTION

Figure 1.2: Illustration of hand and pose estimation task [9]. The left images show
the sensor-captured image, where the 3-dimensional bounding box of the objects
are painted as blue boxes, and the skeleton of hands as colored lines. The right
images show the reconstruction of the hand and object in the camera coordinate
using MANO hand model and CAD model respectively.

Despite the significant progress of deep learning methods made in the computer vi-
sion field in recent years [11] [16][34], an accurate estimation of the object and hand
pose remains as a challenge. State-of-the-art methods typically rely on training deep
neural networks with a supervised learning, which requires a large amount of anno-
tated datasets. Efforts have been made to create datasets with the hand pose labels
and object pose labels [46] [8] [39]. Yet annotating geometric labels requires much
effort, it is limited due to the time and equipment, and the lacking high-quality
annotated dataset limited the performance of the deep neural network.

To overcome the limitation of labeled datasets, a popular method is to use synthetic
datasets to train neural networks, where pose labels are automatically generated
[10], and then apply them to real images. However, models trained with synthetic
datasets do not generalize well to real images. To fill the synthetic-real domain gap,
different domain adaption methods are proposed [6] [14]. Nevertheless, the domain
gap between synthetic and real data remains difficult to reduce, which greatly limits
the performance of methods following this route.

Another direction of solving this problem is to apply self-supervised learning. The
idea of self-supervised learning methods is to extract information from the input
itself as an alternative form of ground truth, then train the network using the ex-
tracted information by fitting and constraining the prediction to be consistent with
input data [35] [20].

7

In this work, we propose two novel self-supervised learning frameworks based on
differentiable renderer and OpenPose human keypoints detector to tackle the afore-
mentioned challenges in lacking annotated datasets. The object pose estimation
framework is inspired by the recent development of differentiable renderer [24], which
allows to reproject the 3D model on the image in a differentiable way, hence the
rendering loss can be back-propagated to supervise the pose estimation without the
need for a pose-annotated dataset. For the hand pose estimation, since the hand
shape and color are different from humans, relying on image alignment is not enough
for training the network. Alternatively, we apply a popular human body keypoints
detector, OpenPose[3], to firstly extract 21 2-dimensional hand keypoints from RGB
images, and then train the network by fitting the hand model to the detected key-
points.

Our contribution can be summarized as follows:

• We design the object pose estimation pipeline for the training network without
pose annotation, where the loss function is designed to align the input image
and the rendered image.

• We construct the hand pose estimator, which relies on 2D hand keypoints as
a weakly supervisory signal.

• We experimentally demonstrate the advantages of the proposed methods both
qualitatively and quantitatively through multiple experiments.

8 CHAPTER 1. INTRODUCTION

9

Chapter 2

Related Work

In this section, we will review representative works that have been done in related to
our topic from four different perspectives: (i) related works for object pose estima-
tion, (ii) for hand pose estimation, (iii) domain adaptation techniques developed
for synthetic datasets, and (iv) recent advances in self-supervised learning in the
field of pose estimation.

Object Pose Estimation.

The work on object pose estimation in the context of deep learning can be mainly
categorized into three branches.

One branch of works splits the pose estimation task into two stages. It first estab-
lishes 2D-3D correspondences between images and the 3D object model, then obtains
the object pose by solving the Perspective-n-Point (PnP) problem. Hu et al. [15]
propose a segmentation-driven 6D pose estimation framework, where each visible
part of the object in the image makes a prediction of 2D keypoint locations and
results in a robust set of 3D-to-2D correspondences. Zakharov et al. [42] establish
dense multi-class 2D-3D correspondences maps and refine the initial pose estimation
using a deep neural network. Park et al. [26] further improve the performance of
keypoints-based methods on the textureless objects by predicting 3D coordinates of
each object pixel without textured models, and uses auto-encoder architecture to
estimate the 3D coordinates and expected errors per pixel. Despite the good results
achieved by these methods, the pose refinement with RANSAC is time-consuming
for objects with rich textures.

To avoid heavy computation brought by the keypoints matching, another branch
explores the pose embedding and utilizes it for later retrieval. Sundermeyer et al.
[35] utilize Augmented Autoencoder to learn an implicit representation of object ori-
entations in a latent space, while Wohlhart et al. [38] train a convolutional neural
network by enforcing similarity constraints (CNN) to learn descriptors to capture

10 CHAPTER 2. RELATED WORK

both the object identity and 3D pose.

While the aforementioned methods rely on a two-stage process, which is not end-
to-end trainable, the third branch is to directly regress object pose in an end-to-end
manner. Poirson et al. [29] extend SSD object detector to include rough pose
estimation in a single shot, without intermediate stages of keypoints matching or
object detection, and Kehl et al. [20] further improve the method in accuracy and
speed. Since we require the pose estimation to be differentiable such that the self-
supervision signal can be back-propagated, we follow the third line of work.

Hand Pose Estimation.

The 3D hand pose estimation is treated as predicting the 3D positions of sparse
joints in most of the works. Iqbal et al. [17] propose to learn depth maps and
heatmap distributions of hand keypoints with CNN architecture. Li [22] estimate
the hand pose from point cloud by merging information from individual points us-
ing voting-based scheme. Mueller et al. [25] propose a 3D hand tracking method
combining a CNN with a kinematic 3D hand model. Yang et al. [40] leverages other
modalities except for pose annotation and color information during the training pro-
cess and boosts the performance of their hand pose estimation from RGB images.

Recently, predicting 3D full hand mesh has also attracted more and more attention.
MANO hand model [30] is one of the most popular hand parameterized models and
is used in many works for hand mesh reconstruction. Boukhayma et al. [2] pro-
pose to regress the parameters of the MANO model from heatmaps obtained from
OpenPose, while Zhang et al. [43] and Baek et al. [1] introduce improvements by
iteratively refine the model parameters.

Despite being widely researched, the first branch of work only focuses on the sparse
joints position and therefore its application scenarios are limited. To avoid the
abovementioned disadvantage, in our work, we aim to estimate both the hand pose
and shape. We base our method on the MANO hand model, which has been proven
to be an effective way to parametrize the hand pose and shape in 3-dimensional
space [2] [43].

Domain adaptation

To overcome the shortage of annotated datasets, some methods render photo-realistic
images with perfect labels for training the network and then apply the network on
the real sensor-captured images [10]. However, due to the domain gap between
the synthetic and the real world, networks that are solely trained with synthetic
datasets do not generalize well in the real world. To eliminate this problem, domain

11

randomization techniques are developed to fill the domain gap. Domain random-
ization adds randomly sampled domain attributes [41] [6] [14] , such as brightness,
contrast and background image, to the perfectly rendered images. By training with
the augmented dataset, networks become robust to these invariant attributes and
can better generalize to the real world. However, the domain randomization is lim-
ited to the type of attributes being randomized, the performance will drop if the
samples are out of distribution.

Nevertheless, training the model on the synthetic dataset is still an effective way to
alleviate the problem of lacking annotated datasets. In our work, we utilize both the
real dataset and synthetic dataset, which is generated by rendering photorealistic
images with object and hand models. At the same time, to further address the
problem of the complicated domain gap between the synthetic and the real world,
we focus our work on developing an unsupervised learning technique.

Recent Trends in Self-Supervised Learning

Over the last years, self-supervised learning has achieved promising results in various
applications such as depth estimation [7], 3D human pose estimation [4], 3D recon-
struction from single RGB images [18], object 6D pose estimation [36], etc. There are
also multiple attempts of self-supervised learning made on the pose estimation task.
Wang et al. [36] propose to train the network for object 6D pose estimation firstly
supervised with synthetic RGB data, then finetuned with self-supervised learning on
unannotated real RGB-D data using differentiable neural rendering. They demon-
strate a performance outperforming methods relying on synthetic data. Kulon et al.
[21] introduced a convolutions-based encoder-decoder structure for monocular 3D
hand pose estimation, which is trained with weakly supervisory signal in the form
of keypoints.

Encouraged by the progress, we propose to utilize self-supervision in our object and
hand pose estimation network to guide the training process of the network. The self
supervisory signal consisting of image and geometry alignment information is used
to guide the training process, and hence the need for pose annotations is removed.

12 CHAPTER 2. RELATED WORK

13

Chapter 3

Methodology

3.1 Overview

In this chapter, we will first explain the differentiable renderer [24], MANO hand
model [30], and 2D hand keypoints estimation of the OpenPose library [3] that we
integrated into our framework. Then we will introduce our work in the following
sections from the object pose side and hand pose side respectively.

3.2 Background Theory

3.2.1 Differentiable Renderer

To acquire the 2D supervision signal, we revert the 2D-to-3D process by reproject-
ing the transformed 3D model to a 2D image and back-propagate the difference
between rendered and sensor images. While the idea is intuitive, it is not trivial
to realize. The reason lies in that the rasterizer of a standard renderer contains
two non-differentiable operations. One occurs during drawing pixels, the standard
renderer renders a pixel as solid once it is covered by a projected fragment. Another
one happens when one pixel is covered by more than one projected fragment. The
renderer consider the fragment, which has the smallest depth compared with other
overlapping fragments, as visible and use its data to generate this pixel. This pro-
cess brings one-hot operations into the forward computation of the image rendering,
which is not differentiable and prevents the gradient from flowing backward and
hence cannot be fit into neural networks.

To address the problem, several works has been done [19] [5] [5] [23] [24]. In the early
stage, the focus of the research is to approximate the backward gradient with hand-
crafted functions, while still employing the standard non-differentiable renderer in
the forward rendering process [19][5]. Although the approximation of the backward

14 CHAPTER 3. METHODOLOGY

pass enables the flow of the gradient, the inconsistency between the forward and
backward pass harms the performance. Recent advances eliminate the problem by
reformulating the rendering process into differentiable functions and calculating the
gradient analytically [5][23][24], which have been successfully applied in many ap-
plications [36].

In our work, we employ the state-of-the-art differentiable renderer SoftRas [24]. As
Fig. 3.1 illustrated, it computes for each mesh triangle a probability map Dj based
on the signed distance between pixels and the triangle, and renders the mesh with
an aggregating function A(·) that softly fuses per-triangle color maps based on prob-
abilistic contributions Dj of all mesh triangles as well as the relative depths among
triangles. With such formulations, the pixel-level error can be back-propagated as
a supervisory signal to train our pose estimation network.

Figure 3.1: (a) Differentialble rasterizer and (b) standard rasterizer [24].

3.2.2 MANO Hand Model

Figure 3.2: Illustration of hand model reconstruction via MANO layer [30].

3.2. BACKGROUND THEORY 15

To fully reconstruct 3D hand mesh, we employ the MANO hand model [30], as de-
picted in Fig. 3.2. MANO is a differentiable hand model derived from 3D scans of
human hands. It is parameterized by 45 pose parameters and 10 shape parameters.
The pose parameters capture the rotation angles of 15 hand joints, four points for
each finger plus an additional one for the wrist. And the shape parameters control
the person-specific deformations of the hand. Fig. 3.4 shows an example of recon-
structing hand mesh using the MANO hand model.

Although hands have many degrees of freedom, a large number of combinations are
ineffective and can lead to unnatural postures. Therefore, Principal Component
Analysis (PCA) [28] is used to reduce the dimension of the hand pose space. Ac-
cording to [32], 3-6 components are enough to account for 80%-90% of the variance
in their data. In our work, we use 5 pcas to reconstruct the hand mesh.

(a) Real image (b) Rendered image with
MANO hand model

Figure 3.3: An example of reconstructing hand mesh using the MANO hand model.
The left image shows the sensor-captured color image, while the right image shows
the corresponding rendered image using MANO hand model.

3.2.3 2D Hand Keypoints Estimation with OpenPose

OpenPose [3] is a multiple-person detection library, which can detect human body,
hand, face, and foot keypoints on single images in real-time. In our work, we utilize
the hand detector of OpenPose to provide 2D weak supervision for training our hand
pose estimator.

OpenPose performs the hand keypoint detection using the architecture called Con-
volutional Pose Machines (CPMs) [37], which is specially designed for detecting
objects that are a composition of different parts such as the human body or human
hand, and further improve the performance via multiview bootstrapping [33]. The
hand detector takes RGB images as input and estimates the 2D pixel position of 21
hand joints alongside a probability score for each joint.

16 CHAPTER 3. METHODOLOGY

(a) (b) (c)

Figure 3.4: Examples of 2D hand keypoints detection using OpenPose. The blue
dot in the images represent the detected keypoints, while the lines in different color
represent different fingers obtained by connecting hand joints keypoints.

3.3 Object Pose Estimation

The object pose estimation problem is to estimate the 3-dimensional translation and
3-dimensional orientation of the object from given images. To eliminate the problem
of lacking annotated datasets for training, we apply differentiable renderers in our
project to render photorealistic RGB images and depth images with the estimated
object poses, which serves as self-supervision signal and hence removes the need for
the object pose annotations.

3.3.1 Network Architecture

The architecture of the object pose estimation network is illustrated in Fig. 3.5. It
takes RGB-D images as input and regresses the object pose using an object encoder.
The object encoder consist of a ResNet50 [11] pre-trained on ImageNet [31], followed
by a 3-layer fully connected network. The differentiable renderer then takes the es-
timated pose and the object 3D model to render photorealistic images. By utilizing
the alignment information between the input and rendered images, we obtain the
training loss, which enables self-supervised learning without pose annotation.

Figure 3.5: Framework of object pose estimation.

3.3. OBJECT POSE ESTIMATION 17

3.3.2 Training Loss

In this section, we will introduce the loss function used for training object pose
estimation networks. As a comparison, except for the loss function deducted for un-
supervised learning, we also formulate the training loss used for supervised learning
given the ground truth pose.

Training loss with labeled data

Translation loss. We use L2-norm between the ground truth translation t and
estimated translation t̂ in 3 dimensional euclidean space to measure their dissimi-
larity:

Ltrans = ||t− t̂||2 (3.1)

Quaternion loss. Since the Euler angles suffer from the gimbal lock problem, and
the rotation matrix requires additional orthogonality constraints, we choose to use
quaternion in our framework to represent the object rotation. While a quaternion
q and its opposite −q encode the same rotation, we need to take the sign ambiguity
into account when indicating the rotation similarities. A way to eliminate the sign
ambiguity is to take the shortest path that connects ground truth quaternion q to
estimated quaternion q̂ as the distance between them:

Lquat = min(||q − q̂||2, ||q + q̂||2) (3.2)

In order to improve the training stability, we need to enforce the regressed quaternion
stay on the unit sphere. Hence we further include a penalty term in our training
loss:

Lreg = ||q̂ − 1||2 (3.3)

Training loss with labeled data. The training loss when we have labeled dataset
is a weighted sum of the translation loss and quaternion loss as well as the regular-
ization term:

Llabeled = α1Ltrans + α2Lquat + α3Lreg , (3.4)

where α1, α2 and α3 denote the weight factor for Ltrans, Lquat and Lreg.

Training loss with unlabeled data

LAB loss. Images are originally rendered in the RGB space, where each channel of
the image represents the varying level of red, blue, and green brightness. However,
RGB format is not optimal for our purpose, since light is the main cause of the
domain gap between the rendered and real images, but in RGB format lightness
and color are tightly coupled. Therefore, inspired by the work of Self6D [36], we
first transfer the images into LAB space. In LAB format, lightness is determined
by first channel, while the rest of two channels represent red/green and blue/yellow

18 CHAPTER 3. METHODOLOGY

color respectively. After decoupling light from the color representation, we drop
the light channel and evaluate the image similarities only on the Red/Green and
Blue/Yellow channel.

Besides light, we also need to eliminate the interference of the background. Here
we only take the simple cases into consideration, where the background and object
pixels have significantly different depth values. In another word, any pixel with a
depth value smaller than a threshold we consider it as object pixel. Assume the
mask we obtained from sensor depth image as MS, we can compute Lab using the
L2 distance function:

Lab = ||ISab �MS, IRab||2 , (3.5)

where ISab and IRab denotes two color channels of sensor image and rendered image in
LAB space.

MS-SSIM (multi-scaled structural similarity). Inspired by the work of Wang
et al. [36], we further in clude MS-SSIM loss in our work. SSIM (structural similar-
ity) is a widely used metric for image evaluation [44], which compares two images
from the perspective of structural information instead of image color difference. It
extracts structural information from images from three aspects: image brightness,
contrast and structure similarity, which are estimated using mean, standard devia-
tion and covariance of the image:

Sssim(I1, I2) =
(2µ1µ2 + c1)(2σ12 + c2)

(µ2
1 + µ2

2 + c1)(σ2
1 + σ2

2 + c2)
, (3.6)

where µ1, µ2, σ1, σ2 denotes the mean and standard deviation of image I1 and I2,
σ12 denotes the covariance between two images, and c1, c2 are small constant values
to stable the computation. To further consider the resolution, we utilize MS-SSIM
(multi-scaled structural similarity) [44], which is the weighted sum of SSIM calcu-
lated on different scale of I2. Similar to Lab, we first filter out the image background
using the object mask.

Lms−ssim = 1− Sms−ssim(IS �MS, IR) . (3.7)

Chamfer distance. The depth map can provide geometric information for self-
supervised learning. To use this information, we can either directly compare the
rendered depth map and the sensor depth map in a 2-dimensional image plane, or
first reconstruct the point clouds with the help of the camera intrinsic matrix, and
then deduct the loss function in the 3D space. We follow the second routine in our
work. The reason is that the geometric information is hard to be fully utilized in the
2D plane, especially at the beginning of the training phase, when the translation er-
ror is large and the overlap of the valid part of two images is small. On the contrary,
aligning the 3D point cloud can provide much stronger supervision to reduce the
translation error, which effectively prevents the model from diverging in the early

3.4. HAND POSE ESTIMATION 19

stages of training. Since it is infeasible to acquire exact 3D-3D correspondences, we
refer to Chamfer distance for measuring the distance between two-point clouds. For
each point in each cloud, Chamfer distance finds the nearest point in the other point
set and computes their Euclidean distance. The distance between two point clouds
can be then approximated by averaging the distance of all point pairs.

Lchamfer =
1

|PS|
∑

pS∈PS

min
pR∈PR

||pS − pR||2 +
1

|PR|
∑

pR∈PR

min
pS∈PS

||pS − pR||2 , (3.8)

where PS and PR denote the point cloud recovered respectively from the sensor
depth image and rendered depth image.

However, in some cases, the estimation error of the object translation in the early
training phase is so large, that the object is even out of the camera’s view. In this
case, neither the rendered depth maps nor the RGB images can provide any effective
information. The solution we provide here is to calculate the center of the 3D model
point set M transformed according to the estimated rotation R̂ and translation t̂,
and approximate the point cloud distance using the average distance between the
estimated center point and the observed point cloud.

Lgeom =

{ ∑
pS∈PS

pS−xcenter

|PS | , if PR = ∅
Lchamfer, otherwise

, (3.9)

where xcenter = 1
|M|

∑
x∈M(R̂x + t̂) denotes the center point of estimated object

model.

Training loss with unlabeled data. Intuitively, the more information flows
into the network, the faster it learns. Therefore, we use the weighted sum over Llab,
Lms−ssim and Lchamfer as well as the regularization term as the final training loss
for self-supervised learning:

Lobject = α4Llab + α5Lms−ssim + α6Lgeom + α7Lreg , (3.10)

where α4, α5, α6 and α7 denote the weighted factor respectively for Llab, Lms−ssim,
Lgeom and Lreg.

3.4 Hand Pose Estimation

Except for the shortage of annotated datasets for training the deep network, which
is the same as we encountered in the object pose estimation problem, the hand pose
estimation task is much more challenging. The reason lies in two aspects.

On the one hand, unlike the object pose estimation problem, where precise object
models are known as prior, there is no uniform hand model available, since the shape

20 CHAPTER 3. METHODOLOGY

and size of hands are different from person to person. Hence, except for the hand
pose, we also need to estimate the shape of hands. In our project, we employ the
MANO hand model [30] to fully reconstruct the hand mesh, where 10 blend weights
are used to model the hand shape.

On the other hand, while the human hand is a multi-rigid body system instead of a
single rigid body, we need to specify 15 more rotations for each hand joint except for
3-dimensional global hand location and 3-dimensional global hand orientation. In
other words, we need to regress 51 parameters in total to fully determine the hand
pose, which is much complex compared with only 6 parameters in the object pose
estimation task. However, directly model the joint angles as free variables will lead
to impossible hand configurations. Hence, we use Principal Component Analysis
(PCA) to exclude physically infeasible hand poses.

Figure 3.6: Illustration of PCA pose space [30]. The first image shows the rendered
MANO hand model with mean pose. The first and second rows of the rest of the
columns shows the effect of respectively adding +2 and -2 standard deviations to
different principal components.

The high flexibility of hand joints also causes severe self-occlusion, which makes the
problem even more complex. Therefore, simply following the same routine as what
we did for the object pose estimation is not enough for estimating the hand pose.
To provide stronger supervision for hand pose estimation, we utilize a 2D hand
keypoints detector from OpenPose. During the training process, the pose and shape
parameters are estimated by fitting the MANO hand model to the 21 2D locations
of hand keypoints detected using OpenPose from each image.

3.4.1 Network Architecture

The architecture of the hand pose estimation network is illustrated in Fig. 3.7.
The backbone of the network is the same as our object pose estimator, which is a
ResNet50 [11] pre-trained on ImageNet [31], followed by a fully connected network.
The MANO layer then maps the estimated parameters into hand mesh as well as
21 keypoints in the camera coordinate. In parallel with our hand pose autoencoder,

3.4. HAND POSE ESTIMATION 21

Figure 3.7: Framework of object pose estimation.

OpenPose hand keypoints detector estimates 21 keypoints locations in pixel coordi-
nates from the input images. The network is then trained by aligning the detected
keypoints with the projection of estimated 3D keypoints.

3.4.2 Training Loss

In this section, we will introduce the loss function used for training the hand pose
estimation network. Similar to what we did for the object pose estimation, we also
formulate the training loss using pose annotation as a comparison.

Training loss with labeled data For training on dataset with MANO parameter
annotation, we use L2 norm between the ground truth MANO parameters and
estimated MANO parameter for supervised learning. In order to prevent physically
infeasible pose estimation, we additionally add regularization term for both shape
and pose parameters to penalize deviations from the mean pose.

Llabeled = α8||β − β̂||2 + α9||θ − θ̂||2 + α10Lreg (3.11)

Lreg = ‖|β||12 + ||θ||2 (3.12)

where θ and β represent ground truth pose and shape parameters, θ̂ and β̂ repre-
sent estimated pose and shape parameters, and a, b, c, d denote the weighted factor
between different terms.

Training loss with unlabeled data Our weakly supervisory signal is provided
by 2D landmarks extracted using OpenPose. We define the objective function to
align the MANO hand model with the 2D detected hand keypoints, which consists
of a join error term, a bone error term, and a regularization term, each of them is
multiplied by a weighting factor:

Lhand = α11Ljoint + α12Lbone + α13Lreg (3.13)

The regularization term Lreg is same as equation 3.12. The joints error term Ljoint

penalize the distance between projection of the 21 keypoints reconstructed with

22 CHAPTER 3. METHODOLOGY

MANO hand model and the landmarks detected using OpenPose:

Ljoint = ||ĵ2D − j2D||2 (3.14)

where j2D represent the 2D keypoints detected by OpenPose and ĵ2D the correspond-
ing estimations, which are the projection of keypoints of reconstructed hand mesh.

Except for the 2D distance between joints, we also employ cosine distance between
the bones:

Lbone = 1− cos(b̂2d, b2d) (3.15)

where b2d and b̂2d represent 2D projection of bones, which are obtained by connecting
the detected and estimated keypoints in a pre-defined sequence, as shown in Fig.
3.8

Figure 3.8: Illustration of hand keypoints and bones. Keypoints are represented
Bones are shown using colored line segments,

23

Chapter 4

Evaluation

4.1 Implementation Details

We implement our framework using the deep learning library Pytorch [27]. The
network is trained on a single GeForce RTX 2060 with the Adam optimizer. We set
the learning rate to 10−4 and attenuate it by factor 0.1 after 50th and 80th epoch.
For hand pose estimation we train the network with batch size 32, while for object
pose estimation we use batch size 24. We resize the input image to 112 by 112 and
normalize it with the mean and standard deviation computed from the ImageNet
training set. The output of the network is also normalized using Sigmoid function
based on the statistics computed from the subset of the training data. The weights
of different loss terms are selected empirically as reported in table 4.1:

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13

value 1 1 0.001 1 0.1 10 0.001 0.1 1 0.001 0.01 1 0.001
table 4.1 weights of loss terms.

4.2 Experiments of Object Pose Estimation

4.2.1 Synthetic LineMOD dataset.

For the object pose estimation task, we generate the synthetic LineMOD dataset us-
ing LineMOD dataset [13], which consists of 15 textured 3D object models, as shown
in Fig. 4.1. We sample camera rotation randomly and placement within a cylinder
of 0.1 m radius and 1 m height. To fill the gap between the synthetic world and the
real world, we adopt various data augmentation methods, such as adding random
Gaussian noise and Gaussian blending, randomly adjusting brightness, contrast, and
hue of the rendered images, and adding random backgrounds.

24 CHAPTER 4. EVALUATION

Figure 4.1: LineMOD object models [13].

Figure 4.2: Data samples from synthetic LineMOD dataset.

4.2.2 Evaluation Metrics

Mesh error. For object pose estimation, we adopt the average distance metric
(mm) designed for evaluating model-based 6D object pose estimation following [12].
Having ground truth rotation R and translation t, as well as estimated rotation
R̂ and estimated translation t̂, the accuracy of object pose estimation is measured
using the mean of the pairwise distance between the 3D model point transformed
according to the ground truth pose and estimated pose:

Mo =
1

m

∑
x∈M

||(Rx+ t)− (R̂x+ t̂)||2, (4.1)

where M denotes the set of 3D model points and m is the number of points.

For symmetrical objects, since the matching between points is ambiguous for some
views, the matching score is defined as the average of the closest point distance:

Mso =
1

m

∑
x1∈M

min
x2∈M

||(Rx1 + t)− (R̂x2 + t̂)||2, (4.2)

4.2.3 Experimental Results

To better illustrate the performance of the self-supervised training, we evaluate our
framework trained on the synthetic dataset with varying percentages of labeled and

4.2. EXPERIMENTS OF OBJECT POSE ESTIMATION 25

unlabeled data. More specifically, we render 10000 images with randomly sampled
poses and generate 4 different training datasets by providing annotations to a differ-
ent percentage of data samples. As illustrated in table 4.2, all the data samples in
dataset A are provided with a ground truth pose. From dataset B to dataset C, the
percentage of provided annotations decreases. In dataset D, all the data samples
are without annotations. For evaluation, we use 400 rendered data samples.

Dataset labeled samples (%) unlabeled samples (%)

A 100 0
B 80 20
C 30 70
D 0 100

Table 4.2 Dataset generation.

The percentage of corrected estimated test samples at different epochs is reported
in Fig 4.3. The estimation of object pose is considered as correct if the mesh error
Mo is smaller than kmd, where km is a chosen coefficient and d is the diameter ofM.
In our experiments, we select km as 10%. The x-axis of the figure shows the train-
ing timeline in epochs, and the y-axis reports the percentage of corrected estimated
samples in the test dataset. Unsurprisingly, the best performance is obtained when
the whole training set is labeled. The accuracy is reaching 100% after 100 epochs.
Although with unlabeled data the training process is much slower, the accuracy also
reaches 90% after 500 epochs. We can also observe that the performance of weakly
supervised learning, namely with 80% and 30% labeled data in the training dataset
is between self-supervised learning and supervised learning.

To illustrate the source of the error when lacking pose annotations, we plot some
evaluation results in Fig. 4.4. As we can see, the number of the failed cases increases
as the percentage of pose annotation decreases. Furthermore, we can observe that
failure mostly happens when there are other views similar to the ground truth view.
The reason lies in that our unsupervised learning method directly learns from the
alignment information between rendered and sensor images, hence the network some-
times converges to the local minima in such cases.

The experimental results show that we can utilize a large unlabeled dataset to replace
an expensive annotated dataset to train our framework in a self-supervised manner.
Although the accuracy suffers a loss compared with supervised learning, considering
that in practical cases the label is not precisely labeled, the gap will become smaller.

26 CHAPTER 4. EVALUATION

Figure 4.3: Quantitative results of object pose estimation.

4.3 Experiments of Hand Pose Estimation

4.3.1 FreiHAND dataset

FreiHAND[46] is a dataset collected for evaluating and training models for hand pose
and shape estimation from RGB images task. It contains 32560 training samples
and 3960 evaluation samples. Each training sample contains a color image and a
segmentation mask of 224 by 224 pixels, a camera intrinsic matrix, and 3D keypoint
annotations for 21 Hand Keypoints, and the evaluation samples provide RGB images
and camera intrinsic matrices. While the training samples were recorded with a
green screen background and allow for background removal, we further augment
the dataset by adding random background during the training process, to improve
the generalization ability of our model. Notice that since we are working with self-
supervised learning, we did not use any annotation provided by the dataset.

4.3. EXPERIMENTS OF HAND POSE ESTIMATION 27

Figure 4.4: Qualitative results of object pose estimation. The images in the red
rectangles are failed cases.

4.3.2 Evaluation Metric

We rely on two different evaluation metrics for hand pose and shape estimation to
fully capture the performance of our proposed self-supervised learning framework.
Notice that since estimating scale from RGB images is an ill-posed problem, dur-
ing test time, we align our estimation using the reference bone length and camera
intrinsics before measuring the pose error.

Pose error. Following [45], We evaluate hand pose estimation using the mean
end-point error (mm) over 21 joints, as well as the area under the curve (AUC)
of the percentage of correct keypoints (PCK) curve. The x-axis of the PCK curve
represents the threshold of the pose error that determines whether a keypoint is
corrected estimated, and the y-axis reports the percentage of correctly estimated
keypoints. The curve is plotted with 100 evenly spaced thresholds ranging from 0
cm to 5 cm.

mpose =
1

21

21∑
i=1

||ji − ĵi||2, (4.3)

where ji and ĵi denotes the 3D position ground truth of i-th joint and the corre-
sponding estimation.

Mesh error. While pose error only evaluates the quality of hand pose estimation,
to evaluate the hand shape estimation we also report the mean vertices error (mm)

28 CHAPTER 4. EVALUATION

Figure 4.5: Samples in Freihand dataset [46].

over 778 vertices, which are reconstructed using the MANO hand model. Similar to
the pose error, we also report the area under the curve (AUC) of the percentage of
correct mesh vertices (PCM) curve.

mmesh =
1

778

778∑
i=1

||vi − v̂i||2, (4.4)

where vi and v̂i denotes the 3D position ground truth of i-th vertice and its corre-
sponding estimation.

4.3.3 Experimental Results

We evaluate our hand pose estimation method on the Freihand dataset [46] and
compare it with several supervised-learning-based hand pose estimation methods
[46] [2] [10]. The three baselines proposed by Zimmermann et al. [46] are referred to
as MANO Mean, MANO Fit, and MANO CNN respectively, which rely on different
methods. MANO Fit estimates the MANO parameters by fitting the model to 3D
hand keypoints annotations, while MANO Mean follows the same routine but keeps

4.3. EXPERIMENTS OF HAND POSE ESTIMATION 29

the MANO shape parameters constant as the mean values. Different from MANO
Fit and MANO Mean, MANO CNN directly regresses MANO parameters using a
convolutional network. Besides the dissimilarity of MANO parameters and joint
positions, Hasson et al. [10] also penalize the L2 distance between the ground truth
and estimated vertice positions, while Boukhayma et al. [2] penalizes re-projected
hand vertices that lie outside of the hand region in a binary mask.

We report both the hand pose error and shape error based on the metrics in 4.3.2.
Table 4.3. reports the pose error and pose AUC, while Fig. 4.6 shows the percent
of correct keypoints at different values of threshold. We highlight the evaluation
results of our method in red color. From the results, we can see that our method
outperforms the method developed by Boukh et al.[2] and MANO Mean method
by Zimmermann et al. [46] and achieves very close performance compared with the
model proposed by Hasson et al. [10] and MANO Fit method by Zimmermann et
al. [46]. Although our performance is still worse than MANO CNN proposed by
Zimmermann et al. [46], we save a lot of efforts of labelling dataset.

Ours
MANO

Mean[46]
MANO
Fit [46]

MANO
CNN[46]

Boukh.
et al.[2]

Hasson
et al.[10]

Pose Error
(mm) 1.38 1.71 1.37 1.1 3.5 1.33

Pose AUC 0.727 0.662 0.73 0.783 0.351 0.737
table 4.3 Hand pose estimation performance measured by pose error.

Figure 4.6: Percent of correct keypints curve.

30 CHAPTER 4. EVALUATION

The evaluation results of the shape error and the percent of correct mesh vertices
curve are reported in table 4.4. and Fig. 4.7. Similar to the results measured using
pose error, our method performs worse than the MANO CNN and better than the
MANO Mean method proposed by Zimmermann et al., while is very close to the
performance of the other three methods.

Ours
MANO

Mean [46]
MANO
Fit [46]

MANO
CNN[46]

Boukh.
et al.[2]

Hasson
et al.[10]

Mesh Error
(mm) 1.37 1.64 1.37 1.09 1.32 1.33

Mesh AUC 0.728 0.674 0.729 0.783 0.738 0.736
table 4.4 Hand pose estimation performance measured by shape error.

Figure 4.7: Percent of correct mesh vertices curve.

The results have shown that our method has achieved very close performance com-
paring with other methods which require pose annotations. From the results, we
can conclude that our method can remove the need for hand pose labels and save
much manpower for annotating pictures while maintaining good performance.

In Fig. 4.8, we plotted some qualitative pose estimation results. The left columns
plot the success cases. It can be observed that our pose estimator is able to cope
with clustered background and self-occlusion as well as occlusion between hands and
objects. However, the pose estimator sometimes also fails. The right columns plot
some of the failed cases. We can observe that the network sometimes fails to recover
the hand scale or mess up with the hand posture when severe occlusion presents.

4.3. EXPERIMENTS OF HAND POSE ESTIMATION 31

(a) Success (b) Failure

Figure 4.8: Qualitative results of hand pose estimation. The hand posture is painted
in colored lines.

32 CHAPTER 4. EVALUATION

33

Chapter 5

Conclusion

Object and hand pose estimation is a widely researched topic, which has made sig-
nificant progress in recent years. However, the lack of annotated dataset remains
an unsolved issue in the hand and object pose estimation and severely harms the
performance of deep-learning-based methods.

In this work, we propose two end-to-end frameworks respectively for estimating hand
pose and object pose that is able to be trained in a self-supervised manner. In the
object pose estimation framework, we utilize the advanced differentiable renderer
for photo-realistic rendering, such that we are able to enforce visual and geometrical
constraints between the rendered image and the sensor-captured image for training
the model. In the hand pose estimation framework, we utilize a hand keypoints
detector from OpenPose, a human body 2D pose estimation library to provide 2D
locations of hand keypoints as weak supervisory signals. By fitting the reconstructed
hand mesh to the 2D keypoints, we are able to estimate the parameters for MANO
hand model. We demonstrate both quantitatively and qualitatively that with self-
supervisory signals directly extracted from input images, we are able to remove the
need for pose annotation without much accuracy loss.

Along this direction, an interesting future work would be to combine hand pose es-
timation and object pose estimation into a single end-to-end framework allowing for
self-supervised learning. Although the self-supervision can eliminate the problem of
lacking annotated datasets of pose estimation task, yet estimating the hand-object
pose jointly is a more challenging task on account of the significant occlusions of
both hand and object. Except for bringing in more challenges, the interaction be-
tween hands and objects also provides extra information for joint hand-object pose
estimation, since manipulation may limit the space for effective hand-shaped object
configuration due to physical contact conditions.

In Fig. 5.1, we illustrate one possible architecture for jointly estimating hand and
object pose. The structure is a simple stacking of the hand pose estimator and

34 CHAPTER 5. CONCLUSION

object pose estimator proposed in our work, as illustrated in Fig. 3.5 and Fig. 3.7
respectively. The simple concatenation of two sub-modules allows us to reuse our
model trained for the hand and object pose estimation in our work. Furthermore,
combining hand pose estimator and object pose estimator into one piece allows
the computation of interaction between hands and objects. By interpreting the
interaction between hands and objects as a loss term penalizing penetration and
contact between hands and objects, as marked in Fig. 5.1 in red color, we can
obtain an extra self-supervisory signal. By jointly training the network for hand
and object pose estimation, we can expect a better performance of both hand and
object pose estimation.

Figure 5.1: Framework of joint hand-object pose estimation.

LIST OF FIGURES 35

List of Figures

1.1 Virtual representation of hands in a VR environment powered by
Quest augmented reality headset. 5

1.2 Illustration of hand and pose estimation task. 6

3.1 Differentialble rasterizer and standard rasterizer. 14
3.2 Illustration of hand model reconstruction via MANO layer. 14
3.3 An example of reconstructing hand mesh using MANO hand model. 15
3.4 Examples of 2D hand keypoints detection using OpenPose. 16
3.5 Framework of object pose estimation. 16
3.6 Illustration of PCA pose space. 20
3.7 Framework of object pose estimation. 21
3.8 Illustration of hand keypoints and bones. 22

4.1 LineMOD object models. 24
4.2 Data samples from synthetic LineMOD dataset. 24
4.3 Quantitative results of object pose estimation. 26
4.4 Qualitative results of object pose estimation. 27
4.5 Samples in Freihand dataset. 28
4.6 Percent of correct keypints curve. 29
4.7 Percent of correct mesh vertices curve. 30
4.8 Qualitative results of hand pose estimation. 31

5.1 Framework of joint hand-object pose estimation. 34

36 LIST OF FIGURES

LIST OF FIGURES 37

Acronyms and Notations

HRC Human-Robot Collaboration

HRI Human-Robot Interaction

HRT Human-Robot Team

38 LIST OF FIGURES

BIBLIOGRAPHY 39

Bibliography

[1] Baek, S., Kim, K. I., and Kim, T.-K. Pushing the envelope for rgb-based
dense 3d hand pose estimation via neural rendering. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2019), 1067–1076.

[2] Boukhayma, A., Bem, R. d., and Torr, P. H. 3d hand shape and pose
from images in the wild. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2019), 10843–10852.

[3] Cao, Z., Simon, T., Wei, S.-E., and Sheikh, Y. Realtime multi-person
2d pose estimation using part affinity fields. 7291–7299.

[4] Chen, C.-H., Tyagi, A., Agrawal, A., Drover, D., Stojanov, S., and
Rehg, J. M. Unsupervised 3d pose estimation with geometric self-supervision.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (2019), 5714–5724.

[5] Chen, W., Ling, H., Gao, J., Smith, E., Lehtinen, J., Jacobson, A.,
and Fidler, S. Learning to predict 3d objects with an interpolation-based
differentiable renderer. Advances in Neural Information Processing Systems
(2019), 9609–9619.

[6] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H.,
Laviolette, F., Marchand, M., and Lempitsky, V. Domain-adversarial
training of neural networks. The journal of machine learning research 17, 1
(2016), 2096–2030.

[7] Godard, C., Mac Aodha, O., and Brostow, G. J. Unsupervised monoc-
ular depth estimation with left-right consistency. Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (2017), 270–279.

[8] Hampali, S., Oberweger, M., Rad, M., and Lepetit, V. Ho-3d: A
multi-user, multi-object dataset for joint 3d hand-object pose estimation. arXiv
preprint arXiv:1907.01481 (2019).

[9] Hampali, S., Rad, M., Oberweger, M., and Lepetit, V. Honnotate: A
method for 3d annotation of hand and object poses. 3196–3206.

40 BIBLIOGRAPHY

[10] Hasson, Y., Varol, G., Tzionas, D., Kalevatykh, I., Black, M. J.,
Laptev, I., and Schmid, C. Learning joint reconstruction of hands and
manipulated objects. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2019), 11807–11816.

[11] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image
recognition. 770–778.

[12] Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G.,
Konolige, K., and Navab, N. Model based training, detection and pose
estimation of texture-less 3d objects in heavily cluttered scenes. 548–562.

[13] Hodan, Tomas, F. M. E. B. W. K. A. G. D. K. B. D. e. a. Bop: Bench-
mark for 6d object pose estimation. In Proceedings of the European Conference
on Computer Vision (ECCV) (2018), 47–57.

[14] Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K.,
Efros, A., and Darrell, T. Cycada: Cycle-consistent adversarial domain
adaptation. 1989–1998.

[15] Hu, Y., Hugonot, J., Fua, P., and Salzmann, M. Segmentation-driven
6d object pose estimation. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2019), 3385–3394.

[16] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q.
Densely connected convolutional networks. 4700–4708.

[17] Iqbal, U., Molchanov, P., Gall, T. B. J., and Kautz, J. Hand pose
estimation via latent 2.5 d heatmap regression. 118–134.

[18] Kanazawa, A., Tulsiani, S., Efros, A. A., and Malik, J. Learning
category-specific mesh reconstruction from image collections. Proceedings of
the European Conference on Computer Vision (ECCV) (2018), 371–386.

[19] Kato, H., Ushiku, Y., and Harada, T. Neural 3d mesh renderer. Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2018), 3907–3916.

[20] Kehl, W., Manhardt, F., Tombari, F., Ilic, S., and Navab, N. Ssd-6d:
Making rgb-based 3d detection and 6d pose estimation great again. 1521–1529.

[21] Kulon, D., Guler, R. A., Kokkinos, I., Bronstein, M. M., and
Zafeiriou, S. Weakly-supervised mesh-convolutional hand reconstruction in
the wild. 4990–5000.

[22] Li, S., and Lee, D. Point-to-pose voting based hand pose estimation using
residual permutation equivariant layer. 11927–11936.

BIBLIOGRAPHY 41

[23] Liu, S., Chen, W., Li, T., and Li, H. Soft rasterizer: Differentiable
rendering for unsupervised single-view mesh reconstruction. arXiv preprint
arXiv:1901.05567 (2019).

[24] Liu, S., Li, T., Chen, W., and Li, H. Soft rasterizer: A differentiable
renderer for image-based 3d reasoning. Proceedings of the IEEE International
Conference on Computer Vision (2019), 7708–7717.

[25] Mueller, F., Bernard, F., Sotnychenko, O., Mehta, D., Sridhar,
S., Casas, D., and Theobalt, C. Ganerated hands for real-time 3d hand
tracking from monocular rgb. 49–59.

[26] Park, K., Patten, T., and Vincze, M. Pix2pose: Pixel-wise coordinate
regression of objects for 6d pose estimation. 7668–7677.

[27] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. Pytorch:
An imperative style, high-performance deep learning library. Advances in neural
information processing systems 32 (2019), 8026–8037.

[28] Pearson, K. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin philosophical magazine and journal
of science 2, 11 (1901), 559–572.

[29] Poirson, P., Ammirato, P., Fu, C.-Y., Liu, W., Kosecka, J., and
Berg, A. C. Fast single shot detection and pose estimation. 676–684.

[30] Romero, J., Tzionas, D., and Black, M. J. Embodied hands: Modeling
and capturing hands and bodies together. ACM Transactions on Graphics
(ToG) 36, 6 (2017), 245.

[31] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. Imagenet
large scale visual recognition challenge. International journal of computer vision
115, 3 (2015), 211–252.

[32] Schröder, M., Maycock, J., Ritter, H., and Botsch, M. Real-time
hand tracking using synergistic inverse kinematics. 5447–5454.

[33] Simon, T., Joo, H., Matthews, I., and Sheikh, Y. Hand keypoint
detection in single images using multiview bootstrapping. 1145–1153.

[34] Simonyan, K., and Zisserman, A. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

42 BIBLIOGRAPHY

[35] Sundermeyer, M., Marton, Z.-C., Durner, M., Brucker, M., and
Triebel, R. Implicit 3d orientation learning for 6d object detection from rgb
images. Proceedings of the European Conference on Computer Vision (ECCV)
(2018), 699–715.

[36] Wang, G., Manhardt, F., Shao, J., Ji, X., Navab, N., and Tombari,
F. Self6d: Self-supervised monocular 6d object pose estimation. arXiv preprint
arXiv:2004.06468 (2020).

[37] Wei, S.-E., Ramakrishna, V., Kanade, T., and Sheikh, Y. Convolu-
tional pose machines. 4724–4732.

[38] Wohlhart, P., and Lepetit, V. Learning descriptors for object recognition
and 3d pose estimation. 3109–3118.

[39] Xiang, Y., Schmidt, T., Narayanan, V., and Fox, D. Posecnn: A
convolutional neural network for 6d object pose estimation in cluttered scenes.
arXiv preprint arXiv:1711.00199 (2017).

[40] Yang, L., Li, S., Lee, D., and Yao, A. Aligning latent spaces for 3d hand
pose estimation. 2335–2343.

[41] Zakharov, S., Kehl, W., and Ilic, S. Deceptionnet: Network-driven
domain randomization. 532–541.

[42] Zakharov, S., Shugurov, I., and Ilic, S. Dpod: 6d pose object detector
and refiner. 1941–1950.

[43] Zhang, X., Li, Q., Mo, H., Zhang, W., and Zheng, W. End-to-end
hand mesh recovery from a monocular rgb image. Proceedings of the IEEE
International Conference on Computer Vision (2019), 2354–2364.

[44] Zhao, H., Gallo, O., Frosio, I., and Kautz, J. Loss functions for image
restoration with neural networks. IEEE Transactions on computational imaging
3, 1 (2016), 47–57.

[45] Zimmermann, C., and Brox, T. Learning to estimate 3d hand pose from
single rgb images. Proceedings of the IEEE international conference on com-
puter vision (2017), 4903–4911.

[46] Zimmermann, C., Ceylan, D., Yang, J., Russell, B., Argus, M., and
Brox, T. Freihand: A dataset for markerless capture of hand pose and shape
from single rgb images. Proceedings of the IEEE International Conference on
Computer Vision (2019), 813–822.

LICENSE 43

License

This work is licensed under the Creative Commons Attribution 3.0 Germany License.
To view a copy of this license, visit http://creativecommons.org or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105,
USA.

http://creativecommons.org/licenses/by/3.0/de/

	6d0ecc47b7906b6d9cca098f3334aaba345fc486b5b2f2ba0b8f20ae36f9d389.pdf
	b88ab56a7348d4b9dec673ea3a9f637cf37a45cdf72d316f410f639b8d991f46.pdf
	6d0ecc47b7906b6d9cca098f3334aaba345fc486b5b2f2ba0b8f20ae36f9d389.pdf
	Introduction
	Related Work
	Methodology
	Overview
	Background Theory
	Differentiable Renderer
	MANO Hand Model
	2D Hand Keypoints Estimation with OpenPose

	Object Pose Estimation
	Network Architecture
	Training Loss

	Hand Pose Estimation
	Network Architecture
	Training Loss

	Evaluation
	Implementation Details
	Experiments of Object Pose Estimation
	Synthetic LineMOD dataset.
	Evaluation Metrics
	Experimental Results

	Experiments of Hand Pose Estimation
	FreiHAND dataset
	Evaluation Metric
	Experimental Results

	Conclusion
	List of Figures
	Bibliography

