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Abstract: Knowing the location and type of sea ice is essential for safe navigation and route op-
timization in ice-covered areas. In this study, we developed a deep neural network (DNN) for
pixel-based ice Stage of Development classification for the Baltic Sea using Landsat-8 optical satellite
imagery to provide up-to-date ice information for Near-Real-Time maritime applications. In order to
train the network, we labeled the ice regions shown in the Landsat-8 imagery with classes from the
German Federal Maritime and Hydrographic Agency (BSH) ice charts. These charts are routinely
produced and distributed by the BSH Sea Ice Department. The compiled data set for the Baltic Sea
region consists of 164 ice charts from 2014 to 2021 and contains ice types classified by the Stage
of Development. Landsat-8 level 1 (L1b) images that could be overlaid with the available BSH ice
charts based on the time of acquisition were downloaded from the United States Geological Survey
(USGS) global archive and indexed in a data cube for better handling. The input variables of the
DNN are the individual spectral bands: aerosol coastal, blue, green, red and near-infrared (NIR)
out of the Operational Land Imager (OLI) sensor. The bands were selected based on the reflectance
and emission properties of sea ice. The output values are 4 ice classes of Stage of Development
and Ice Free. The results obtained show significant improvements compared to the available BSH
ice charts when moving from polygons to pixels, preserving the original classes. The classification
model has an accuracy of 87.5% based on the test data set excluded from the training and validation
process. Using optical imagery can therefore add value to maritime safety and navigation in ice-
infested waters by high resolution and real-time availability. Furthermore, the obtained results can
be extended to other optical satellite imagery such as Sentinel-2. Our approach is promising for
automated Near-Real-Time (NRT) services, which can be deployed and integrated at a later stage at
the German Aerospace Center (DLR) ground station in Neustrelitz.

Keywords: Landsat-8; deep neural networks; sea ice classification

1. Introduction

In seasonally ice-covered locations, ice conditions vary widely both spatially and
temporally, leading to uncertainties and problems in maritime procedures [1]. In the
northern Baltic sea, winter navigation is a difficult but routine operation; incidents resulting
in vessel losses and oil spills have occurred and may continue to occur in the future [2].
Sea ice classification information contributes to safe navigation and route optimization
and reduces the risk for navigation in ice-covered waters. It is worthwhile to prepare
routes for ships traveling long distances in the ice that reduce fuel consumption and travel
time and reduce the risk of running into dangerous places or becoming stacked in the
ice [3]. A Near-Real-Time (NRT) ice classification would be extremely useful for this route
optimization due to the changing ice conditions.

For this classification, satellite systems are widely used today and have a firm place
especially in the maritime domain. Synthetic Aperture Radar (SAR) sensors are the most
used image source for maritime situational awareness; especially sea ice classification [4].
Optical systems can make a valuable contribution as cooperative sensors. The variety of
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available spectral channels is more advantageous for information extraction as opposed
to radar remote sensing [5]. In the context of sea ice classification, optical sensors provide
valuable information based on the reflectance and emission properties of the surface such as
spectral albedo which is very sensitive to sea ice thickness whose structure varies greatly [6].
Even though possible cloud cover and low sun elevation in northern latitudes limit the use
of optical data seasonally, the high resolution and timeliness can add valuable information
when available. This study relies on Landsat-8, as a way to provide additional information
for classification of sea ice in order to reduce the temporal gaps for providing updated ice
information for NRT applications.

Several methods of ice classification using optical satellite imagery have been de-
veloped to approach this problem. Richter et al. uses a simple classification using the
normalized difference snow index (NDSI) [7], which combines different regions of the
electromagnetic spectrum; this method only distinguishes ice from water but it is conve-
nient for creating ice masks which we used later in this study. Traditional algorithms such
as Support Vector Machines (SVM) or decision trees can also be used for hyperspectral
data classification [5]. These methods are very accurate but not appropriate for extracting
deeper characteristics [8]. Artificial Intelligence methods such as Deep Neural Networks
(DNNs) have shown impressive results in addressing remote sensing problems [9]. Han
et al. propose a classification based on remote sensing data fusion between SAR and optical
sources and apply a Convolutional Neural Network (CNN) for the optical data for a deep
feature extraction with a classification accuracy of 95.69% [8]. However, the convolutional
computation is a technical challenge for NRT applications due to its time consumption [10],
especially in large areas as the Baltic Sea. DNN are efficient [11] and can also be used for
pixel-based classification [12].

Alongside from an efficient classification, an NRT process is proposed to retrieve the
ice classification results. The German Aerospace Center (DLR) ground station in Neustrelitz,
where this work is being conducted, provides the whole infrastructure for receiving and
processing satellite images and delivering them as fast as feasible [13].

The main contributions of our proposed model are described below:

• In terms of computational power, we propose a DNN-based algorithm that is very
light compared to the commonly used CNN models and optimally suited for an NRT
maritime service. The model is high performing, accurate and convenient to apply on
large images. The required ice classification for the requested areas of the Baltic Sea
will be automatically derived directly after reception and processing of the Landsat-8
imagery at the DLR ground station Neustrelitz.

• We show how a data cube can be extremely useful to store satellite imagery and retrieve
data without the need for manual work. This is also useful to combine different images
for training data extraction. In addition, the data cube allows preliminary analysis to
identify useful training days with near-clear skies and sufficient ice coverage. It is also
possible to extend the data cube with additional products such as Sentinel-2.

• We demonstrate how machine learning can adapt to imperfect training data and still
produce good results. The use of BSH ice charts was limited because they did not
perfectly match all image regions. The incoherence is because they were not created
with Landsat-8 imagery and were obtained at different acquisition times.

• Despite these drawbacks, the model has learned to make a valid distinction between
ice and water and to make a classification that is consistent with the training data.
Visual inspection shows that ice classification and mapping are consistent, which can
be further improved by training more specific ice classes. An overall accuracy of 87.5
percent was achieved.

The rest of this paper is organized as follows: The second section describes the process
to create the training data assembled to train the network. The third section presents in
detail the methodology of the DNN. In the fourth section, the findings of the obtained
results of this methodology are discussed, including the presentation of selected results.
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2. Data
2.1. BSH Ice Charts

The quality of the training data is of highest importance in determining the quality
of the classification result obtained. Nowadays, sea ice information is provided through
various portals to support navigation in ice-covered waters. One of these providers is
the Ice Service department of the German Federal Maritime and Hydrographic Agency
(Bundesamt für Seeschifffahrt und Hydrographie, BSH) in Rostock, Germany. Data from
various satellites and coastal ice observers are used to create these manually produced
ice charts.

These BSH ice maps are the initial source of information to annotate ice locations on
Landsat-8 images to create the training data for a pixel-based sea ice classifier. They consist
of GIS vector maps (GML) which contain the Ice Stage of Development (ICESOD) codes. In
total, 164 BSH ice charts from 2014 to 2021 were available for the study area.

Table 1 summarizes the classes, their code values and the corresponding meaning with
respect to the ice thickness (value in brackets) used for this study. The ice types correspond
to the dominant ice type in terms of partial ice concentration.

Table 1. BSH Ice chart—Stage of Development classes.

ICESOD Description

1 Ice Free
85 Gray—White Ice (15 to <30 cm)
88 Thin First Year Ice Stage 1 (30 to <50 cm)
89 Thin First Year Ice Stage 2 (50 to <70 cm)
91 Medium First Year Ice (70 to 120 cm)

2.2. Landsat-8 Data

Landsat-8 is an Earth observation satellite, operated by a collaboration between NASA
and USGS [14]. One of the sensors on board of the satellite is the Operational Land Imager
(OLI), which uses 9 bands in the spectrum of visible light and Near Infrared. It is based
on the wide swath imaging mode; the single scene size is 185 × 180 km which allows
the specific monitoring of wide marine areas. We downloaded the Landsat-8 imagery
that overlapped the BSH ice charts with a valid time difference of one day at most and a
cloud coverage less than 60%. In total, 565 Landsat-8 scenes were obtained for the Baltic
Sea region.

2.3. Data Handling

Due to the large amount of imagery that met the training data criteria, the Landsat-8
images were stored in a data cube (Open Data Cube, ODC) [15]. As the name already
suggests, the data cube is an extension of a two-dimensional matrix where the data sets are
arranged as elements of a multidimensional cube. In the context of modeling, the use of a
data cube has several advantages. For example, data can be retrieved by various parameters
such as date or spatial region, which saves time by eliminating the need to manually select
and search for images. This is also very convenient for processing data from multiple
days. In addition, the data cube also allows for initial analysis to identify the images with
almost clear sky and sufficient ice cover. It is also possible to retrieve the data from several
Landsat-8 images for training the DNN. Figure 1 illustrates a visualization of the data cube
with multiple Landsat-8 images overlapping the BSH ice charts and an OpenStreetMap
base map. The Landsat-8 images (diagonal strip on the left side) are displayed using a
combination of bands (Green, Red, NIR) that shows a false color representation to facilitate
the differentiation of the ice from the water and the land.
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Figure 1. Landsat-8 false color image collection over the Baltic Sea at 16 February 2021; BSH Ice Chart
for 16 February 2021 (blue polygons) with their ICESOD codes.

The scenes included in the data cube correspond to the calibrated raw level 1 data. A
top of atmosphere reflectance (TOA) calculation was included to be computed on the fly
and it is described in the following equations [14]:

ρλ
′ = MP ∗QCAL + AP (1)

where
ρλ
′ TOA Planetary Spectral reflectance, without correction for solar angle. (Unitless)

MP Reflectance multiplicative scaling factor for the band
QCAL Level 1 pixel value in DN

AP Reflectance additive scaling factor for the band

ρλ =
ρ′λ

cos(θSZ)
=

ρ′λ
sin(θSE)

(2)

where
ρλ TOA Planetary Spectral reflectance
θSE Local sun elevation angle
θSZ Local solar zenith angle

The TOA calculation standardizes the input data since the albedo range is usually
between 0 and 1 which is unitless and represents the ratio of solar radiation that is re-
flected [6].

Additional atmospheric corrections would improve the image quality but also require
external datasets [16]. These corrections were omitted to reduce the computational cost
of the algorithm and because it is intended for use in NRT operations which do not allow
external data at the time of reception.
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3. Methods
3.1. Overview

The methodology from collecting the Landsat-8 images to creating the DNN is pre-
sented in the following flowchart, see Figure 2.
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Figure 2. Ice classification general flowchart.

3.2. Data Collection

The selection of the Landsat-8 spectral bands is based on the optical properties of
sea ice. The stage of development of sea ice has a complex structure that affects its light
reflection. The most common optical property to differentiate ice conditions is the albedo,
defined as the fraction of the incident irradiance that is reflected [5]. The albedo value
depends on the different stages of the sea ice, varying along the shortwave radiation portion
of the electromagnetic spectrum. Figure 3 shows the different stages of development (first
year ice, young gray ice, nilas, open water) and the influence of the type of surface on the
reflection of light in different wavelengths.
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The wavelength range presented in Table 2 can be divided in the first 5 bands of the
Landsat-8 image. See Table 2.

Table 2. Landsat-8 bands.

Bands Wavelength (nm)

Band 1—Coastal aerosol 430–450
Band 2—Blue 450–510

Band 3—Green 530–590
Band 4—Red 640–670

Band 5—Near Infrared (NIR) 850–880

Based on the characteristics of each channel, a combination of Landsat-8 spectral
bands: Aerosol Coastal (1), Blue (2), Green (3), Red (4) and NIR (5) were chosen to create
the training data sets. For the expected ice classification values, the codes were obtained
from the corresponding BSH ice chart. All training data were extracted using the native
resolution of 30 m provided by the sensor.

Training data were extracted by creating an ice mask from the Landsat-8 imagery. This
mask was obtained using the Normalized Difference Snow Index [7], defined as follows:

NDSI =
ρλ(green)− ρλ(SWIR1)
ρλ(green) + ρλ(SWIR1)

(3)

The following threshold was applied:

ρλ(blue) > 0.22 and NDSI > 0.6 (4)

To remove the land, an OpenStreetMap land mask has been applied. Figure 4 shows a
result example.
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Figure 4. (a) Landsat-8, 16 February 2021; (b) Ice mask (blue).

The ice mask was overlaid with the BSH ice charts to create the training data using the
ICESOD codes, Figure 5a. The polygons from the BSH charts were rasterized and a code
was assigned to every pixel. Additional ice free values were retrieved using the water mask
which is obtained by subtracting the ice mask from the inverted land mask, Figure 5b.
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Figure 5. (a) Ice mask overlaid with the BSH Ice Chart for 22 March 2019; (b) Water mask for
22 March 2019.

There was a selection process to identify images without cloud cover and sufficient ice
to extract the training data. The BSH ice charts were selected to be as close to the selected
day. The days and the coordinates used for the training are presented in Table 3.

Table 3. Coordinates of training days.

Training Day BSH Ice Chart Day Bounding Box (WGS84)

22 March 2019 21 March 2019 Longitude (23.5, 25.5), Latitude (64, 66)
23 April 2019 24 April 2019 Longitude (21, 26), Latitude (63, 66)
16 April 2019 15 April 2019 Longitude (23, 25.5), Latitude (64, 65.8)

16 February 2021 16 February 2021 Longitude (24, 25.5), Latitude (64.5, 66)

A total of 60.715.461 input values (pixels) were extracted. Every input consists of
5 variables representing each band. The number of input samples (pixels) for every class
can be seen in Table 4.

Table 4. Stage of Development classes.

Class (ICESOD) Number of Pixels Total %

1: Ice Free 32,698,818 53.86
85: Gray-White Ice 3,222,135 5.31

88: Thin First Year Ice Stage 1 4,506,661 7.42
89: Thin First Year Ice Stage 2 10,387,946 17.11

91: Medium First Year Ice 9,899,901 16.31
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The whole image data collection was split into 3 independent data sets. The first
one was for training purposes, the second one was for validation and the last one was for
testing. See Table 5.

Table 5. Training, validation and test data sets.

Data set Number of Pixels Total %

Training 60,715,461 80
Validation 6,071,546 10

Test 6,071,547 10

The training data was exported to numpy compressed array format (npz) files that can
be loaded into Tensorflow, a free and open-source software library for machine learning [18].
In this process, the spatial features are lost since the data are now in tabular form.

3.3. Deep Neural Network

A DNN based on an input layer, hidden layers and an output layer was trained using
the completed and ready-to-use training and validation data sets. In our model, there are 4
hidden layers, each one with a depth of 40 nodes. The selection of the number of hidden
layers and nodes is based on the experience of several tests with the aim of higher accuracy.
The input layer has 5 nodes corresponding to the TOA from the subset of the 5 selected
Landsat-8 spectral bands as described in the previous chapter. The output layer has 5 nodes
corresponding to the ICESOD classes (1, 85, 88, 89 and 91).

The DNN uses a supervised learning algorithm to search for weight values that op-
timizes the linear and nonlinear relationships between the layers to solve complex prob-
lems [19]. The main objective of this DNN is to determine the ICESOD code that corresponds
to the 5 top of atmosphere values (TOA) values presented in each pixel of the Landsat-8
image. Figure 6 shows the architecture of the DNN, programmed using Tensorflow.
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The DNN uses the Gradient Descent optimization technique to train the machine
learning model. This process minimizes the errors of the categorical cross-entropy loss
function, appropriate for multiclass classification tasks [20]. The model is optimized
through several iterations called epochs during the back propagation [21], a feed forward
method that adjusts the weights by comparing training values with the expected output of
the training samples [22]. For an efficient optimization, the Adaptive Moment Estimation
(Adam) algorithm was applied to compute individual adaptive learning rates [23].

Between each layer of the network, the activation functions are defined. These nonlin-
ear functions are needed in the neural network to separate the layers and manage complex
functions [16]. For the input layer and the 4 hidden layers, the Rectified Liner Unit (ReLU)
activation function is used. This function speeds up computation performance since the
negative values are cropped, which reduces the number of activated neurons in the network
and its derivative which is very simple [24]. For the final layer the SoftMax activation
function was applied. This function calculates the probability distribution between the
classes. Based on the SoftMax output, the final classification is done. Table 6 presents the
summary of hyperparameters used for this model.

Table 6. Hyperparameters.

Input

Loss function Categorical cross-entropy
Optimizer Adam

Activation function ReLU
Classification rule SoftMax

4. Results and Discussion
4.1. Training Results

The model was trained in a virtual machine with the characteristics presented in
Table 7. A batch size of 100,000 was selected to divide the training data set in chunks. An
early stopping callback was applied; this stops the iteration process after each epoch in case
the validation accuracy decreases two times in a row. Multiprocessing with 12 processors
was deployed. The training time was 4 min and it was finished after 21 epochs.

Table 7. Hardware used for the learning process.

Device Hardware

Architecture x86_64
GPU (X1) Nvidia Tesla T4 16 GB RAM

Processor (X12) Intel(R) Xeon(R) Gold 6154 CPU @ 3.00 GHz
Memory 32 GB RAM

The training of the model has shown a purposeful behavior that can be seen in terms
of the loss and accuracy. The decrease in the loss is presented in Figure 7. The increase in
the accuracy is presented in Figure 8.

After the training was finished, the results of the model were validated using the
dedicated test data set. This data set was not previously involved in the training process.
The final loss and accuracy are 0.3043 and 0.8748, respectively, showing an overall successful
training process.
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Figure 7. Loss vs. Epoch. After 21 epochs, the training loss (orange) has a value of 0.3040 and the
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Figure 8. Accuracy vs. Epoch. After 21 epochs, the training accuracy (orange) has a value of 0.8751
and the validation accuracy (blue) has a value of 0.8750.

It is important to note that the training data set is imbalanced. Table 4 shows the
sample size of different classes showing more data available for the classes of 1 (Ice Free),
89 (Thin First Year Ice Stage 2) and 91 (Medium First Year Ice) with little data for 85 (Gray-
White Ice), and 88 (Thin First Year Ice Stage 1). The reason for this huge imbalance is caused
by the nature of the ice represented in the ice charts used for the training. The accuracy of
the different classes can be seen in the confusion matrix. The confusion matrix is a cross
table that represents the accuracy between classes considered as ground truth (rows) and
their predictions (columns) [25]. Figure 9 shows the confusion matrix used for the test data
set. It can be seen that the accuracy is lower for the classes with less available training data,
while the other classes with more data, show higher accuracy, especially Ice Free with a
100% of accuracy followed by 91 with 86% and 89 with 76%. Apparently, these classes have
higher accuracy because their features are more presented in the data set. Balancing the
dataset, that means, making all the classes to have the same proportion of the dataset while
removing additional data, will produce a loss on the quality and quantity on the training,
thus affecting the results. In this scenario, additional extraction of training data on 85 and
88 is suggested.
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4.2. Graphics Results

For a visual validation, two types of outputs were generated, a Landsat-8 false color
image (green, red and NIR) and an ice classification chart. The images with false color
help to easily identify the ice from the water or land. On top of this layer, the BSH Ice
charts were added, which worked as the features for extracting the training data. On the
other hand, the ice classification charts are generated by the DNN using the selected five
Landsat-8 bands. Figures 10–17 show some examples.
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4.3. Discussion

The DNN classification show very good results with the Landsat-8 imagery regarding
the distinction between ice and no ice. The agreement with the BSH ice charts depends
on the accuracy of each class related to the availability of training data as shown in the
confusion matrix, see Figure 9. However, there is a clear improvement when moving from
polygons to pixels while maintaining the original BSH classes. The first evaluation of the
model results in an accuracy of 87.5%. This result is based on the test data set, which is not
part of the training or validation data set.

Figure 10 output shows a predominance of class 88 (Thin First Year Ice Stage 1) which
corresponds to some polygons of the training data. In addition, the algorithm detects class
85 (Gray-White ice) which does not appear in the training data for this region.

Figure 11 shows a good representation; there is a clear distinction between classes 88
(Thin First Year Ice Stage 1) and 89 (Thin First Year Ice Stage 2) and a smooth transition
between 88 and 85. Class 91 is shown in some boundaries. Ice Free is clearly marked and
some icebreaker vessel routes are also visible.

Figure 12 shows that the training polygons are shifted relative to the ice locations in the
false color image. This difference occurs because the Landsat-8 image and the BSH ice chart
differ by one day. Nevertheless, the algorithm distinguishes well between water and ice and
the two classes most represented in the false color image (88 and 89) are therefore classified.

Figure 13 shows a good representation of class 89 from the training polygons. However,
class 91, which is not presented in the ice chart, is shown in the classification. Figure 14
shows a dominance of class 91 which is very similar to the training data. Figure 15 shows
a classification of Ice Free in the center of the image as well as in the lower part where it
looks like there is ice. Since melting usually already starts in April, this is most likely water
on top of the ice; this issue needs to be investigated in future studies. Figure 16 shows
equivalence in classes 85 and 89. Figure 17 shows dominance of class 85, which is very
similar to the training data. There is a clear visual discrepancy between near coastal ice
(clear white) and the ice further out (darker and partly thinner), but from the classification
model, no difference is reported at this time. According to the confusion matrix, the classes
85 and 88 have an accuracy of 50% each. To improve this issue, we recommend including
more training data representing these two classes.

It should be noted that the use of the BSH ice charts were of limited use due to the time
difference between the acquisition time of the satellite image and the ice chart used for the
overlay. The boundaries of the polygons were not accurate enough in respect to the satellite
image, which means that the training data did not perfectly match all image areas. The
reason for the incoherence of the ice charts provided is that they were not created on the
basis of Landsat-8 images itself. Despite these limitations, we used these ice charts because
they were a source of training data in digital format for this region. In this study, it can
be seen that the model has learned to interpret the classes and make a reliable distinction
between ice and water as well as a classification that matches the training data.

When we started our study, we tried to use the whole content image data set of the
data cube, thinking that the more data available, the more reliable the results would be.
However, this is not necessary if the classification training is done with high quality images,
such as the cloud-free images we used. Adding the Ice Free class to the ice classes has
greatly improved the results.

Currently, the results do not include all classes that might be represented. By ex-
tending the training data, it will be possible to subdivide the results into additional, more
sophisticated classes in the future.

The major limitation in using optical imagery is cloud cover. An attempt was made
during the study to classify overcast imagery, nevertheless, the embedded cloud mask of the
Landsat-8 quality filter is not precise enough to allow a clear distinction. Since the results
were not satisfactory, it was decided to perform the study only with cloud-free images.
Creating a more realistic cloud mask is an issue for future analysis. In the meantime, the
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cloud mask provided by Landsat-8 can be used for a usability assessment for value, adding
ice classification in an upstream pre-processing step.

The suggested approach is intended to be used in NRT maritime operations. Therefore,
the proposed model was designed to provide better performance compared to CNN models,
since there was an avoidance of convolutional computation [26].

5. Conclusions

In this study, a neural network for classifying sea ice in the region of the Baltic Sea was
deployed. The training data set was generated based on the ice Stage of Development charts
provided by the BSH and Landsat-8 satellite imagery. An accuracy of 87.5% was achieved.

The results are promising and show an improvement in the discrimination of sea ice
and water compared to the original BSH ice charts. Visual analysis shows that classification
and mapping of ice is consistent and enables a significant improvement in the frame of
level of detail and discrimination. The use of optical satellite imagery is limited by cloud
cover and solar radiation especially in northern regions. However, this study opens the
possibility of classifying further satellite imageries in the context of ice services like Sentinel-
2 or Sentinel-3 imagery using the same BSH ice charts available for dedicated regions. The
results out of the model could also be used to compare the ice charts derived from radar
imagery for validation.

For the future, we plan to extend the approach to the images acquired by the new
Landsat-9 satellite, which was launched in September 2021, and continue the Landsat
mission using the same OLI sensor. The chosen approach can be considered sensor-
independent and can therefore be applied to other satellite data, such as Sentinel-2. Data
fusion with SAR imagery is also proposed. With regard to the planned extensions, the data
cube database offers excellent possibilities, as it can be expanded with these additional
products. It is planned for the future that the required ice classification for the requested
areas of the Baltic Sea region can be automatically derived directly by using Landsat-8 and
Landsat-9 satellite imageries, which are provided for the ice service in Near-Real-Time
directly after reception at the DLR ground station Neustrelitz.
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