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Abstract: Rogue waves are a recognized but not fully comprehended hazard of major concern to the
maritime industry. There is not one agreed-upon unified model that explains the formation of such
waves and little is known about their frequency of occurrence. This study used in situ data from a
wave buoy located at the entrance of Tampa Bay, Florida, to assess conditions that could lead to the
development of these potentially destructive waves. Tampa Bay is a major commercial and trans-
portation hub on the east coast of the United States. Wave buoy data from 2015 to 2019 were ana-
lyzed in this study. While more than 7000 individual waves that significantly exceeded median val-
ues were recorded, only 32 exceeded 4 m, thereby imposing risks to local navigation. The largest
rogue wave that was recorded was 8.46 m high. Parameters in the time and frequency domains were
calculated, local wind and surface current data were correlated, satellite synthetic-aperture radar
(SAR) and vessel traffic data were analyzed, and the local bathymetry was considered. Based on our
results, the narrow directional wave spreading that was found on the selected rogue waves was
recognized as an important indicator of extreme waves. The parameters: surface elevation kurtosis,
Benjamin-Feir Index (BFI), wave steepness, broadness, and narrowness factors, wind speed and di-
rection, can be considered together, as a part of a local extreme-wave warning package. The selected
individual rogue waves could not be identified using SAR imagery. Regional disturbances from
ship wakes were analyzed but yielded no connections to the local formation of rogue waves.

Keywords: freak waves; Benjamin—Feir instability; wave peakedness; wave focusing; directional
spreading; wave buoy; SAR wave characterization; crossing seas; opposing currents

1. Introduction

The term “rogue wave” is a relative concept. Rogue waves, also known as freak
waves, are generally considered to be very large in relation to the associated wave envi-
ronment. They are unpredicted waves that can occur either in the open ocean or in coastal
waters. A rogue wave is commonly characterized as a wave whose maximum height
(Hmax) exceeds the value of twice the significant wave height (Hs). Hmax indicates the zero-
crossing maximum wave height and Hs is defined as the mean wave height (trough to
crest) of the highest third of the waves in the wave spectrum, which is usually calculated
from a 20- to 30-min measurement of surface elevation [1-4]. This is a practical statistical
definition that assumes that the ocean wave height distribution is Gaussian, i.e., a value
of less than two times the significant wave height corresponds to 95% of sea surface vari-
ability. This traditional concept does not convey the uniqueness and danger of rogue
waves as it does not include a height threshold or other related physical parameters.
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Rogue waves pose a significant danger to vessels and marine facilities. Many ship
accidents, from damage to disappearances, have been reported that were likely related to
rogue waves [5]; although most of these were not described as such, but rather it was
inferred from accounts. The recognition of the hazards that are associated with extreme
waves has increased in recent years, mainly due to incidents of waves striking passenger
ships and platforms (e.g., the Draupner in 1995, the Queen Elisabeth II in 1995, the Cale-
donia Star and Bremen in 2000, the Explorer, Voyager and Norwegian Dawn in 2005, the
Louis Majesty in 2010 and the MS Marco Polo in 2014), some of which resulted in fatalities
[6-8]. The Draupner wave in 1995 was the first rogue wave to be recorded by sensors at a
gas platform in the North Sea. As rogue waves are so costly, both in lives and economic
impact, the maritime industry must consider the effects of rogue waves when designing
large vessels [9-13].

Didenkulova (2020) compiled catalogue of 210 rogue waves that occurred worldwide
from 20112018, which caused damages or even deaths. Most events were based on wit-
ness reports in the media and since there is very little wave sensor measurement in the
ocean, these reports should be considered and provide an estimate of at least 20 to 30
rogue waves per year. The number of observations was much greater in coastal areas and
in English speaking locations, which shows the bias of information that comes from more
populated areas and from countries where information is easier to access. We can infer
from this that the real number of rogue waves worldwide is much larger [14].

While research is continuing to better understand why, when and how rogue waves
occur in the ocean, relatively few studies have utilized in situ wave data. The emphasis
has been on understanding the physics behind rogue waves and determining environ-
mental conditions in which waves could occur using mathematical models and water tank
analyses [15]. The understanding of wave dynamics has mostly come from numerical
models that were designed as simplifications of the equations that describe essential as-
pects of the event [16]. These approximations can be limiting when studying rogue waves
because these events behave as outliers from statistical approaches.

Previous studies have linked the formation of rogue waves to both linear mecha-
nisms (such as the overlapping of waves/focusing, dispersion enhancement, countercur-
rents and bathymetry) and nonlinear mechanisms (such as modulation instability and
nonlinear focusing) [6,13,17]. Nonlinearity modifies focusing interactions due to the phase
relations between spectral components, but it does not destroy them [18-20]. One hypoth-
esis for rogue wave formation that was suggested by nonlinear theory is modulational
instability, as measured using the Benjamin-Feir index [21,22]. However, the mechanisms
that generate rogue waves remain uncertain. The relevant environmental parameters and
characteristics of rogue waves include seasonality, directional spreading, surface eleva-
tion kurtosis, Benjamin—Feir index (BFI), wave steepness, wind data and ship wake infor-
mation. Rogue wave characteristics are challenging to generalize because their behavior
appears to depend on the bathymetry, currents, winds and wave directional spread at the
location, as well as several other location-specific factors [23].

A few studies have used observed wave buoy data to identify parameters that can
help to predict sea states that are more prone to rogue events. Baschek and Imai (2011)
analyzed data from 16 buoys located along the west coast of the US to estimate the likeli-
hood of rogue wave occurrence [1]. Cattrell et al. (2018) searched data from 80 buoys for
specific parameters that could predict rogue waves [23]. Orzech and Wang (2020) exam-
ined data from 34 buoys and attempted to connect certain environmental factors with the
development of rogue waves [22]. In the most recent study, Hafner et al. (2021) investi-
gated the data of all 158 CDIP buoys and found that crest-trough correlation may help to
generally forecast rogue wave formation [24]. Nevertheless, the detailed investigation of
local sea and atmospheric conditions that could boost the development of rogue waves in
one specific location has not been the focus of most analyses of rogue waves. Comparing
the wave buoy results to Sentinel-1 SAR satellite observations [25,26], as well as an ERA5
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reanalysis of wind data [27] and surface current information [28-30], has provided insight
into the attributes of rogue waves that occur locally.

The study site was the entrance to the port of Tampa, FL, USA, in the eastern Gulf of
Mexico (Figure 1). This port is the largest in the area and is the most diversified in Florida.
Ranking 22nd in the nation in terms of tonnage [31], the port annually generates an economic
impact of more than USD 15.1 billion and supports more than 80,000 jobs [32]. The Tampa Bay
region includes the main cities of Tampa, St. Petersburg and Clearwater, making it the 18th
largest metropolitan area in the United States with an estimated population of over 3,000,000
people. Every year, there are approximately 8000 large vessel transits in Tampa Bay in addi-
tion to thousands of smaller commercial, government agency and recreational vessels. The
entrance to Tampa Bay can be affected by heavy storms and hurricanes, as well as by vessel
wakes. Understanding how and when rogue waves are formed in one location would allow
vessels to be warned about when such events are prone to occur [33,34]. Enhanced prediction
can support better planning by the maritime industry and the safer execution of local opera-
tions and can be used to improve vessel design criteria [35].
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Figure 1. Vessel tracks to and from Tampa Bay, compiled from AIS data for the entire year of 2019.
The yellow circle marks the USF/CDIP Datawell Waverider buoy location at the entrance of the
Tampa Bay navigation channel. The white circle marks the closest Acoustic Doppler Current Profiler
(ADCP) to this location. The active Tampa Bay ports are marked with black circles. Source: Marine
Traffic 2019 Density Map, modified by author.

This study focused on analyzing the relevant environmental parameters and charac-
teristics of rogue waves, such as seasonality, directional spreading, surface elevation kur-
tosis, Benjamin—Feir Index (BFI), wave steepness, wind data and ship wake information,
using a previously unexamined set of wave data to enhance the knowledge of what con-
tributes to their development. The methods for detecting and characterizing the develop-
ment of rogue waves were reviewed and applied to Tampa Bay. We examined the main
theories based on the mechanisms mentioned above (crossing seas, opposing currents and
modulational instability), in addition to atmospheric forcing (high winds and meso-scale
wind gusts), to explain rogue wave formation in the offshore region of Tampa Bay.
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The primary objectives of this study were: (a) to quantify the occurrence probability
of rogue waves at the entrance of Tampa Bay; (b) to discuss the importance of modula-
tional instability and crossing seas conditions [20,36,37] in the development of local rogue
waves; (c) to investigate the effects of environmental factors, including weather, season-
ality, bathymetry and local currents, on rogue wave evolution; and (d) to identify possible
key effective spectral parameters (directional wave spreading, wave peakedness and the
Benjamin—Feir index (BFI)) for rogue wave prediction.

2. Materials and Methods

This study examined waves with abnormally large amplitudes (H) using a time series
(2015-2019) of in situ data from a Datawell Waverider MK-III wave buoy that is located
16.7 km west of the Egmont Key lighthouse, near to the main shipping channel at the
entrance of Tampa Bay and with roughly 13 m of water depth (Figure 1). The use of the
conventional definition for a rogue wave, i.e., a wave that exceeds the value of twice the
significant wave height (H > 2Hs), yielded thousands of instances during the study period.
Most of these events did not pose a perceptible threat to navigation due to insufficient
wave height. However, model studies have indicated that some vessels can capsize when
an individual wave height reaches 30% of the hull length [38]. Waves higher than 4 m
pose a threat to vessels that are <15 m (49.2 ft) in length [39].

The wave buoy provides raw heave data as well as processed wave data, which is infor-
mation that is indispensable for a rogue wave study. The buoy records waves with periods of
between 1.6 s and 30 s and heights up to 40 m. The buoy data is sampled at 1.28 Hz (every
0.78125 s) for a total of 1600 s each half hour (~27 min), producing 2048 data points that are
internally processed and transmitted during the remaining minutes of the half-hour cycle. The
buoy displacement resolution is 0.01 m and its error is < 3%. This buoy is maintained by both
the University of South Florida and the Coastal Data Information Program (CDIP) from the
Scripps Institution of Oceanography as part of a wave buoy array of approximately 80 buoys
that are maintained by CDIP around the world and is a component of the NOAA Tampa Bay
Physical Oceanographic Real-Time System (PORTS®).

2.1. Data

CDIP buoys are among the few in the world that make available raw surface eleva-
tion data, which are essential for the calculation of maximum wave heights and, conse-
quently, rogue waves. The surface elevation dataset is divided into half-hour sections,
which is the transmission time between wave measurements. Individual waves were
identified for this study via the zero-upcrossing method [40], which was used to calculate
the maximum wave height (maximum vertical displacement within the half-hour period)
and the significant wave height (Hs; the average of the highest third of the waves).

The Hs data were compared to the significant wave height data that were provided
by the CDIP’s buoy data spectral processing software. The spectrally computed significant
wave height was denoted Hmo and was calculated as being equal to four times the square
root of the first spectral moment (Mo) [41]. Hs was approximately 5% lower than Hmo [3],
as was also found using our calculations below.

Rogue waves are traditionally defined as occurring when the maximum wave height
(Hmax) exceeds the significant wave height (Hs) by at least a factor of two [3,6,42,43]. As
this definition usually yields a large number of results, some studies have used other def-
initions, such as Hmax/Hs = 2.2 [44], Hmax/Hs = 2.3 [45] or the ratio of maximum crest height
(Cmax) to significant wave height of Cmax/Hs > 1.25 [3,46]. The crest height is the highest
point on a wave trace between the time it crosses above and below the mean water level.
We also considered rogue holes and calculated the minimum trough height in relation to
Hs; however, we decided not to include these data in the study because they did not yield
significant (i.e., hazardous) results. The numbers of rogue waves that were found using
the different definitions above can be found in Table 1. To focus our study on the rogue
waves that could potentially cause damage to the maritime industry, we narrowed our
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threshold and only identified rogue waves that had Hmax > 4 m and followed the tradi-
tional definition of Hmax/Hs >2.0. In 20152019, the buoy, which had some sampling pauses
due to necessary maintenance, collected a total of 72,646 individual wave events. Out of
all of these waves, 7593 (more than 10%) were considered to be of abnormal height (height
> 2Hs). However, from these abnormal waves, only 0.77% had heights exceeding 3.66 m
(Figure 2). Other studies have mentioned the issue of the non-rareness of the occurrence
of rogue waves when using the traditional definition criterion and, as in this study, have
used additional constraints to capture their gravity, power and scarcity [1,22-24,47,48].
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Figure 2. A histogram showing the number of abnormal waves per height bin that were found by
the Tampa Bay Waverider buoy.

Table 1. The different definitions of rogue wave events and the number of waves that met those
criteria that were found in the dataset recorded by the CDIP Waverider buoy near Egmont Key in
2015-2019. Hmax is the measured maximum wave height (from maximum surface elevation), Hs is
the significant wave height and Cmax is the maximum crest height.

Type of Rogue Event Number of Waves
Hmax/Hs > 2 7593
Hmax/Hs > 2.2 1821
Hmax/Hs >3 99
Cmax/Hs > 1.25 2547
Hmax > 4.0 372
Hmax > 4.0 and Hmax/Hs > 2 32
Hmax > 4.0 and Hmax/Hs > 2.2 9
Hmax > 4.0 and Cmax/Hs >1.25 29
Hmax > 4.0 and Cmax/Hs > 1.25 and Hmax/Hs > 2 17

A post-process data quality control procedure (CDIP) marked the vertical displace-
ment data with the following flags: good, questionable, bad or missing. Only the 30-min
wave data that had “good” and “questionable” flags were considered. Although rogue
waves could be considered as errors by the filtering process, discussions with CDIP per-
sonnel verified that extreme wave values are not flagged as “bad” data, even though they
deviate quite strongly from the average surface elevation data.
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2.2. Parameters

Wave data analyses that were performed both in the time domain and the frequency
domain allowed for the identification of abnormally high waves and the calculation of
parameters, such as time periods and the kurtosis values of the individual waves. The
parameters in the frequency domain were calculated following the method of Orzech and
Wang [23] and are summarized in Table 2.

Table 2. A summary of the different wave parameters in the time and frequency domains that were

analyzed in this paper, along with their descriptions and equations. Where O is the standard devi-
ation, Mo, M1, M2 and Mz are the zeroth, first, second and forth spectral moments of the wave energy

spectrum, respectively. Kp is the peak wave number, @ is the amplitude (Hs/2) and the product
K, x A is the wave steepness [22].

Frequency Domain Parameters

Hmo 4,/M, (1)
2XTTXHm,
Wave Steepness 2X X = @)
Mz
Broadness Factor (¢) 1- TRITR) (3)
Narrowness Factor (v) M"A:ZMZ -1 4)
1
2 HF

Peakedness Factor (Qy) Wz Jp fIs(O? df ()

. Ms 6
Irregularity Factor (a) N (6)
Benjamin-Feir Index (BFI) V2 (K, x a) X V7 Qp) )

Time Domain Parameters

Hs The highest third of the waves
Hmax Highest wave in the measuring period (30 min)

Direction in degrees from which the highest energy waves

Wave Peak Direction
travel

Kurtosis o* of surface elevation (heave) data

The first estimation of the spectral bandwidth is the broadness factor (¢), as defined
by Cartwright and Longuet-Higgins in Equation (3) [49]. A wave spectrum is deemed to
be narrow-banded when this broadness factor approaches zero. The second estimation is
the narrowness factor (v), as defined by Equation (4), which was first introduced by Lon-
guet-Higgins in 1975 [50]. This parameter is used to define the width of a narrow spec-

trum. It is related to (¢), where € = 1/2 v in a narrow spectrum. The parameter alpha (&),
defined by Equation (5), is the irregularity parameter of the width of the spectrum and is

related to € by @ = V1 — €2 [51]. Equation (6) presents the definition of the Goda’s
peakedness parameter of the wave spectrum [52]. This parameter can also describe the
statistics of run lengths, but it is sensitive to the resolution of the spectral analysis. Lastly,
the Benjamin—Feir index (BFI), defined by Equation (7), describes the statistical properties
of the surface elevation due to nonlinear instabilities. The BFI represents the ratio of the
wave steepness to the spectral bandwidth, which is more pronounced when there is a
larger deviation from a Gaussian distribution [53].

In addition to the statistical parameters and frequency domain factors that were cal-
culated directly from the buoy data, we also used external data from different sources to
compare to our results. Observed surface current data were acquired from the NOAA
bottom-mounted Acoustic Doppler Current Profiler (ADCP), station ID t01010, which is
located below the Sunshine Skyway Bridge (Figure 1). Modeled surface current data were
calculated by the USF College of Marine Science Ocean Circulation Group, who devel-
oped and operate the WFCOM: a high-resolution numerical hydrodynamic model for the
West Florida Shelf. Satellite SAR data were obtained from Germany’s Aerospace Center
DLR (Deutsches Zentrum fiir Luft- und Raumfahrt). The DLR’s proprietary algorithm for
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characterizing sea state conditions by analyzing Sentinel-1 satellite SAR data (with spatial
resolutions of down to 5 m and a swath of up to 400 km) was also used to check for rogue
waves in the same time periods as those found by the buoy. Wind data, which were uti-
lized to check for wind effects during the identified rogue events, were derived from the
ECMWEF (European Centre for Medium-Range Weather Forecasts) ERA5 reanalysis. This
weather reanalysis is one of the most accurate in the world since it assimilates data from
a large variety and quantity of sources. The wind data have a high spatial resolution (31
km) and cover the period from 1979 to the present. Finally, we also used local vessel traffic
records from the Automatic Identification System (AIS) to check for the passage of large
ships around the time of the identified rogue wave events in order to determine whether
their wake could be related to local rogue wave formation.

3. Results and Discussion
3.1. Overall Buoy Data Analysis

The Waverider buoy that was selected for this study has been monitoring wave char-
acteristics since 2015. This study examined the 72,646 waves that were measured from
2015 until December 6, 2019 (there were some pauses due to equipment maintenance) and
detected several rogue waves. An example of a rogue wave event that was measured on
23 January 2016 at ~10:33 UTC is shown in Figure 3.

heave (m)
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-24

-3 4

0 250 500 750 1000 1250 1500 1750

-

LA Al VAL Do
LRk R

-2 4

heave (m)

o

840 860 880 900 920 940 960 980
time (sec)

Figure 3. The surface elevation (heave) data of a rogue wave event that was identified by the buoy
on 23 January 2016 at ~10:33 UTC. The raw heave data depict the individual wave height and the
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maximum wave height as being almost 8 m, which can clearly be seen as being at least two times
higher than the average wave height in that 30-min (1800 s) sample.

As the location of the buoy is mainly protected by land to the east, we expected that
the largest waves would come from the west (from 180° to 360°). Indeed, the highest
waves came from a narrow directional spread of 245° to 295° (Figure 4).

Data from 0
2015-06-05 to
2019-12-06

315 //"'/

N S | T\ / / Frequency
N l,." "..I e // of

occurence
135

2025 "

180 # Waves: 72646
Signficant Wave Height (m) # Rogues: 7593

BN |

0 0.91 183 2.74 3.65 457 5 48

Figure 4. A wave rose graph showing the frequency of occurrence and significant wave height (Hs)
values (in meters) of individual waves coming from each direction bin. The bar width is propor-
tional to the significant wave height. The wave direction shows a narrow spread from south to
northwest. Source: Scripps Coastal Data Information Program (CDIP;
http://cdip.ucsd.edu/themes/cdip?pb=1&u2=s:214:st:1&d2=p9 accessed on 15 April 2021).

In Figure 4, the narrow wave directional spreading for the higher Hs values can be
noticed. The peak direction of the 32 selected rogue waves plotted against the maximum
wave height (Hmax) indicated that the directional spread of the rogue dataset was much
narrower than that for all waves. These waves were clearly grouped between 200° to 300°
and the higher, therefore more dangerous, rogue waves all came from 270° (Figure 5). This
is an important result for the local characterization and prediction of rogue wave events.
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Figure 5. Peak wave direction versus maximum wave height for the 32 largest rogue waves that
were identified in this study. The five waves that were associated with Hurricane Michael are shown
in dark green.

The seasonality of rogue occurrences was another element that was considered. Most
(75%) of the 32 rogue waves occurred between October and February, comprising late fall
and winter months. During the winter, the difference between the amount of solar radia-
tion reaching the poles and the equator is at its maximum and the resulting larger tem-
perature difference intensifies atmospheric circulation patterns, leading to more storms
and stronger winds, which usually generate rougher seas conditions as well. These con-
ditions support sea instability and the generation of rogue waves.

These results agreed well to those of Cattrell (2020), who found an increased rogue
wave occurrence and rogue waves of higher severities in winter compared to summer
[54]. Cattrell explained this phenomenon using the linear relationship between the rogue
wave occurrence and height and the spectral bandwidth narrowness factor (v). This study,
on the other hand, instead found a closer relationship between the rogue wave occurrence
and height and the spectral bandwidth broadness factor (¢). During colder months, the
spectral bandwidth tends to be larger, which could cause the increase in rogue wave oc-
currence and height.

In contrast, Florida’s western continental shelf is highly prone to hurricanes during
the hotter months from May to November and these events, when nearby, can also in-
crease the instability of the ocean and support the development of rogue waves. Indeed,
4 rogue waves out of the 32 that we studies occurred on the same day (10 October 2018)
and were probably generated by Hurricane Michael, which moved across the eastern Gulf
from Yucatan in the direction of the Florida Panhandle to the west of Tampa Bay and
made landfall as a category 5 event on that same day. From 9 October to 10 October, the
hurricane’s increasing wind strength along its path, which passed to the west of the buoy,
generated waves that were high enough to result in the formation of five rogue waves
when in conjunction with a very unstable sea.

In conclusion, the seasonality of rogue waves at the entrance of Tampa Bay can be
directly correlated to strong weather systems occurring nearby, both in warmer months
and colder months. Since climate change is causing more extreme weather events, this
may also support the development of more rogue waves.
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3.2. Statistical Buoy Data Analysis

Based on previous studies, one of the first indicators of rogue wave events that we
examined was that of surface elevation kurtosis (0*). This statistical parameter measures
the deviation between the sampled surface elevation distribution and a Gaussian distri-
bution. Kurtosis is the standard deviation raised to the fourth power, which means that
only data that are outliers contribute to an increase in the kurtosis values. When the kur-
tosis value was equal to three, the dataset followed a Gaussian distribution. Due to the
nonlinear interactions, kurtosis values for waves are usually larger than three. The larger
the kurtosis values, the longer the distribution’s tail and the more extreme the values that
are present, i.e., the higher the kurtosis values, the higher the probability of rogue wave
occurrence [9,55].

When the kurtosis values were plotted against the significant wave height values
(Figure 6), the strong distribution around the kurtosis value of around three indicates that
most of the waves did follow the Gaussian distribution. Rogue waves (any wave with
Hmax/Hs> 2) deviated from the Gaussian distribution. Rogue waves are more likely to oc-
cur for small values of significant wave height since higher kurtosis values (> 6) are all
related to low Hs (< 1 m). The reason for this phenomenon is likely to be that it is more
difficult to develop a rogue wave when the significant wave height is already high. The
sea requires much more energy (i.e.,, more wind and other special conditions) to form
higher waves than lower amplitude waves. Wave energy is proportional to the squared
height, so waves need a quadratic growth of energy for the linear growth of wave height.
Therefore, when the significant wave height is low, it is easier to create freak waves where
Hmax exceeds Hs by at least a factor of two [56]. Note also that extremely high kurtosis
values (> 10) occur at very low Hs values (< 0.5 m). Considering two physically different
types of waves, low waves (also short wavelength) are mainly wind waves. These waves
are steep (mostly pyramid-shaped with a local surface slope of often > 20°) and have less
spreading, so the abnormal waves (Hmax> 2 Hs) can be created relatively often even by the
usual collision of two such wind waves. However, waves of Hmax> 4 m are mostly large
swell waves or at least consist of 50% swell. These are longer waves with slopes of ~1-5°.
Such waves require a stronger trigger to generate an abnormal wave.

4.0

3.5 4

Kurtosis (-)

Figure 6. The kurtosis values of the raw surface elevation (heave) data in each 30-min sample versus
the Hsin the same 30-min sample. All individual waves that were measured are shown in in blue
and all rogue waves are shown (Hmax/Hs> 2) in red.
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In Figure 7, the two highest maximum wave heights that were measured indeed cor-
responded to higher kurtosis values; however, there was no overall correlation between
the wave height and the kurtosis value. As shown in Figure 6, the kurtosis value was
higher for rogue waves compared to non-rogue waves, which makes this parameter pos-
sible for use as a rogue wave indicator at the study location. The kurtosis values for the 32
highest rogue waves were all > 3.4.

® Significant Wave Height (Hs)

L J

® Maximum Wave Height (Hmax)

Wave Height (m)

D
o

35 4 45 5 55 6
Kurtosis

Figure 7. The kurtosis values of the 32 rogue waves that were higher than 4 m versus wave height.
Hs is in blue and Hmax is in orange. All points were above the kurtosis value of 3.4.

An overall statistical analysis of the wave values that were measured in each 30-min
period produced the results in Table 3. The kurtosis values were very high due to the large
number of waves with low Hs, which generated comparatively higher waves more easily.
Most Hs and Hmax statistical results for this location were low, which means that it is rela-
tively safe to navigate.

Table 3. A simple statistical analysis of the 30-min averaged CDIP Egmont Key (FL, USA) buoy data
from June 2015 to December 2019.

Hs (m) Himax (m)
Mean 0.587 1.041
Variance 0.148 0.444
Std. deviation 0.384 0.666
Skewness 2.178 2.098
Kurtosis 8.097 7.63

The probability density function (PDF) and the empirical cumulative density func-
tion (ECDF) of the 30-min averaged wave data are illustrated in Figure 8. The long tails
revealed in the PDF distribution were the cause of the high kurtosis values. The probabil-
ity of an abnormal wave using the traditional definition, Hmax/Hs > 2, was also considered
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too high by the order of 10%. The probability of a maximum crest height (Cmax) divided
by Hs of more than 1.25 was also too high to be used as a rogue event definition. In 1952,
Longuet-Higgins showed that random wave heights (H) follow the Rayleigh probability
distribution [56]. The properties of the Rayleigh distribution indicate that:

Hims =4X0
where o is the standard deviation of the sea surface height variation.

Hs=\/7XHrms=\/§X4XO'

When the height of a rogue wave is > 2xHs, then 2X V2 x 40 >11.360 and the ampli-
tude of the rogue wave is > 5.680. In a normal distribution (assuming waves in the ocean
are normally distributed), we know that 20 captures 95% of the sea variability; so, 5.680
captures more than 99.99% of the sea height variability, which does not agree with our
results or the results from broader studies [1,23,24,48]. This further indicates that wave
parameters are not normally distributed and therefore, the rogue wave definition of
Hmax/Hs > 2 should be changed.

The ECDF represents the proportion or count of observations that fall below each
unique value in a dataset in which the maximum is always 1.0 or 100%. The x-axis corre-
sponds to the values of the plotted variable and the y-axis represents the proportion of
data points that are less than or equal to the corresponding x-axis value.
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2 2
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o 050
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Figure 8. The probability density function and empirical cumulative density function of Hs, Hmax,
Hmax/Hs (with the rogue wave threshold value of 2 marked by the green dashed line) and Cmax/Hs
(with the rogue wave threshold value of 1.25 marked by the green dashed line).

3.3. Frequency Domain Analysis

The wave spectrum data for each of the averaged 30-min samplings were analyzed
and the main spectral moments (Mo, M1, M2 and M) were derived to calculate the im-
portant parameters, including spectral significant wave height (Hmo), wave steepness,
narrowness factor (v), broadness factor (¢), peakedness factor (Qy), irregularity factor (cx)
and the Benjamin-Feir Index (BFI). These parameters are important for measuring the
nonlinearity and instability of the wave systems as possible indicators of rogue waves; the
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local occurrence of such waves was compared to each of these parameters, as shown in
Figure 9.
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Figure 9. The significant wave height (Hmo) versus BFI (a), significant wave steepness (b), broadness
factor ¢ (c), narrowness factor v (d), Goda’s spectral peakedness Qy (e) and irregularity factor a (f)
of the selected waves. All of the 30-min averaged wave data are shown in blue and the 32 highest
wave events are highlighted in red.

The Benjamin-Feir index BFI is basically the ratio between wave steepness and spec-
tral bandwidth, as shown in Equation (5). The larger the BFI, the more pronounced the
departure from the Rayleigh distribution [57,58]. This change in the distribution type is
attributed to nonlinear modulation instability, which leads to highly erratic sea conditions
(“rogue sea state”) that are characterized by a high concentration of unstable modes [59].
A high (= 1.0) BFI value is strongly associated with modulation instability, which can
prompt rogue wave formation. The BFI values for most of the 32 rogue waves that were
selected for our study (shown in red) fell between 0.5 and 1.0 (Figure 9a). A BFI value
larger than 0.5 already shows a departure from the Rayleigh distribution; however, all sea
state samples with Hmo > 2 seem to follow this condition. Thus, BFI alone is not a useful
parameter for identifying local rogue events, thereby indicating that these rogue events
do not seem to be generated by modulation instability.

Similarly, significant spectral wave steepness (Figure 9b) is defined as the ratio be-
tween Hmo and deep-water wavelength, which corresponds to the Tmoz2 wave period:
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. . 2XTXHpm,
Significant spectral wave steepness =2 X m X oxTE
mo2

where Tmoz is the zero-crossing period = 2 X X ’% [60].
2

Some authors have used this parameter to classify waves as wind waves (0.08-0.025),
young swell (0.025-0.01), mature swell (0.01-0.004) and old swell (< 0.004) [61].

Figure 9b indicates that the dispersion of the wave steepness data for the 32 selected
rogue waves was consistent with all waves that satisfied Hmo > 2. Although wave steep-
ness is directly related to BFI, Figure 9b confirms the conclusions drawn from Figure 9a.

The broadness factor (¢), also called the spectral width parameter [62], was calculated
using Equation (2) and the narrowness factor (v) was calculated using Equation (1). When
¢ (Figure 9c) and v (Figure 9d) approach zero, the energy is concentrated close to the peak
frequency and the spectral bandwidth is narrow. When ¢ and v approach one, the energy
is dispersed over a wider range of frequencies and the spectral bandwidth is broad. Ac-
cording to Cattrell [23], the probability of a rogue event increases with higher v values.
Our rogue wave data matched the expected v values for storm events, ranging from ap-
proximately 0.35 to 0.55. Our broadness factor (¢) data also showed that sea states with
Hmo > 2 had higher spectral widths, which was consistent with Cattrell’s findings [23].
Based on these results, we concluded that there is no need to consider these parameters
separately for possible rogue wave identification since the rogue wave data are very sim-
ilar to the normal sea state data. The critical parameter is simply the significant wave
height.

The Goda’s peakedness parameter (Qp) has been recognized as being an appropriate
parameter to describe spectral distribution since it does not depend on the cut-off fre-
quency, unlike v and ¢ [63]. Qp is considered to be a good indicator for spectral narrow-
ness, with high values for narrowband spectra and low values for broadband spectra.
Fully developed wind waves have Q = 2, whereas narrow-banded swells have values of
>2 [64]. Qpis also intrinsically related to BFI [22]. As the waves become higher, the spectral
peakedness parameter declines. Most of the selected rogue waves in our study had Qp
values of between 1.5 and 2.5 (Figure 9e).

The irregularity factor (a) is defined by the number of mean sea level zero-crossings
divided by number of local maxima and indicates the number of peaks per wave; a smaller
a indicates a more irregular sea state. This parameter, as with all of the others, seems to
be more dependent on the wave height than any other value. Figure 9f confims that as
waves become higher, they become more irregular (lower value of a).

All of these results agreed with those reported by Cattrell [23], indicating that the
occurrences of the selected rogue waves were mainly independent of these spectral pa-
rameters and therefore, were not likely to be generated by nonlinear modulation instabil-

ity.

3.4. Crossing Seas

Crossing sea states are characterized by two different wave systems, with different
spectral peaks and propagation directions, crossing paths. Depending on the spectrum of
each system and the angle at which they meet, this situation can increase nonlinear inter-
actions, modulational instability and, consequently, rogue wave occurrence [18]. Based on
numerical simulations, two wave systems with similar spectra that cross at about a 50°
angle could generate a rogue wave.

To test these conditions with our data, we generated a polar plot of the wave system
spectrum on the dates and times of the 32 rogue waves that were selected. We found 17
clear unimodal sea states and only 4 clear bimodal sea states. We found 11 sea states that
we considered to be “mixed”, which showed various or indistinguishable pockets of en-
ergy in different directions. Rogue waves developed both in unimodal seas and bimodal
seas that crossed at different angles. The Figure below depicts examples of rogue wave
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occurrence in a unimodal sea (Figure 10a), bimodal sea (Figure 10b) and a “mixed” sea
(Figure 10c). These results further indicated that the rogue waves that were found at the
entrance of Tampa Bay were not dependent on modulation instability.
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Figure 10. The polar spectrum of three of the 32 highest rogue waves between 2015 and 2019, show-
ing the energy density direction of the wave spectrum as measured by the buoy at the entrance of
Tampa Bay. Example of (a) unimodal sea, (b) bimodal sea and (c) “mixed” sea. Source: CDIP portal,
modified by author.

Crest heights and wave lengths in a crossing sea state depend on the different fre-
quencies of each system and the crossing angles, thus influencing the value of Hmax. The
result is almost the opposite of the effects of a nonlinear crossing sea, in which Hmax is
independent from spectral bandwidth and crossing angle. A previous study showed that
the nonlinear effects of crossing seas are related to the average wave steepness, kurtosis
values and the BFI [18].

3.5. Opposing Currents

Opposing currents occur when a surface current with a relatively high magnitude
that is traveling in the opposite direction to the waves destabilizes the wave system. The
presence of an opposing current creates a shift in the modulational instability band, which
can trigger rogue waves. The probability of rogue wave occurrence increases with the
strength of the opposing current [30]. This situation matters the most in locations with
very high-velocity surface currents, for example, in the Gulf Stream or the Agulhas and
Kuroshio currents, which may reach speeds of 1.5 m/s. Our studied location in the Gulf of
Mexico, on the West Florida Shelf, does not have currents of these magnitudes and hence,
the currents do not have the strength to influence local rogue wave formation.

To test this hypothesis, we collected surface current data from two different sources:
(1) a high resolution (100-300 m) operational local circulation model of the West Florida
Shelf (WFCOM) [65]; (2) a bottom-mounted ADCP located beneath the Sunshine Skyway
Bridge, which crosses Tampa Bay and under which the shipping channel passes. The
ADCP is mounted approximately 27 km to the east of the CDIP buoy, in a location that is
much more sheltered from open sea currents.

The WFCOM circulation model started working from the second half of 2018, so we
could not obtain data from this model for the time periods before that date. The data from
the local ADCP were missing for several time periods, including the entire year of 2017.
We were able to retrieve 11 points for surface current data from the WFCOM and 19 points
from the ADCP. Since the direction that is recorded for the current is that in which it is
heading and the direction that is recorded for waves is from which they are coming, the
data must show similar values in order to be considered opposite. For the rogue waves
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for which we had current data, both wave and current direction values were similar for
12 of the rogue waves and were different for 7 of the rogue waves. The highest values for
surface current velocities were ~0.75 m/s, which is about half of the velocity of the more
dangerous previously mentioned currents, even during hurricane events. More work
needs to be conducted in assessing local opposing currents since we did not have suffi-
cient or reliable surface current data to draw firm conclusions; however, based on the cur-
rent data that we could analyze, the surface current velocities are not high enough to be
considered as a trigger for rogue wave formation.

3.6. Wind Data

It is still uncertain whether nonlinear interactions between waves are suppressed or
amplified by high wind velocities. Laboratory experiments have produced highly variable
results: the modulation instability of waves could be suppressed [66,67]), unaffected [68]
and even enhanced [69,70]. Using experiments conducted in a large wind wave facility to
study the effect of wind on waves [71], Lee and Monty confirmed that more wind energy
increases the instant surface elevation values, thereby leading to exponentially higher sig-
nificant wave height values. Larger waves induce higher wind-produced pressure drag
forces, which results in waves reaching the breaking point faster. Although these experi-
ments demonstrated an increase in wave amplitude modulation, they did not clarify the
relationship between nonlinear interactions.

Orzech and Wang (2020) used the CFSR (NCEP Climate Forecast System Reanalysis)
data to correlate rogue wave formation with wind speed and direction [22]. The CFSR
wind data that were used had a resolution of approximately 50 km and did not contain
information on either near-surface turbulence or wind gusts, which potentially affect
wave growth. Their results suggested that very strong winds (= 23 m/s) coming from a
similar direction to the waves may prevent rogue wave development, while moderately
strong winds (= 10 m/s) coming from the opposite direction were found to be twice as
strongly linked to rogue wave formation. However, they concluded that wind infor-
mation provides very limited support for a causal connection between wind and rogue
wave generation.

We extracted wind data for the exact location of the buoy from the ECMWEF ERA5
reanalysis to compare to our wave data. The reanalysis comprises a number of meteoro-
logical and oceanographic data observations with past weather forecasts, which are glob-
ally complete without gaps. Observations include those from in situ sensors in weather
stations, airplanes, radiosondes, vessels and buoys and remote sensing observations from
satellites and ground-based radars. The reanalysis presents the most comprehensive pic-
ture of past weather conditions that is possible. ERA5 provides hourly estimates of several
climate variables from air, land, and ocean. It covers the Earth with a 30 km grid and
resolves the atmosphere using 137 levels from the surface up to a height of 80 km [72].

The cartesian components of the wind vectors from our chosen buoy location were
extracted and then transformed into wind speed and direction data. The results showed
a very weak positive correlation coefficient between wave height and wind speed (Figure
11a). The higher individual waves (Hmax) presented a slightly stronger positive correlation
of the highest waves to the highest winds. The rogue waves were related to wind speeds
of more than 8.6 m/s and instantaneous wind gusts of more than 11.3 m/s. Seven rogue
waves occurred during wind gusts of ~ 20 m/s or more and did not agree with Orzech and
Wang's results, which indicated that high winds could prevent rogue wave formation
[22]. The wind and wave directions showed a strong correlation (Figure 11b). Wind direc-
tions that were associated with rogue waves came from 150° to 350° and rogue wave di-
rections came from 200° to 300°. These results showed that the rogue waves that were
analyzed were mainly not formed by wind-wave interactions that increased modulation
instability.
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Figure 11. (a) Wind speed compared to rogue wave height, with Hs versus U1 (wind speed at 10 m)
data from ERA5 in blue and Hmax versus wind gust (at 10 m) data from ERA5 in orange (2015 to
2019); (b) wind direction data from ERA5 at 10 m compared to rogue wave peak direction during

the same period.

We also compared the ERA5 wind data to a nearby NOAA station called MTB (Mid-
dle of Tampa Bay, ID: MTBF1-8726412), which is located about 34 km east of the Wa-
verider buoy. Even though the MTB station is in a more protected area inside Tampa Bay,
the wind speeds and directions were very similar between the two. As expected, the ERA5
had slightly higher values for wind speed and gusts most of the time (72%) since that buoy

is in open sea (see Supplemental Table 51).
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3.7. Satellite Synthetic-Aperture Radar (SAR) Data

Relatively new methods for estimating individual wave height with satellite Syn-
thetic Aperture Radar (SAR) data [73] were developed in the MaxWave project. That pro-
ject took place from 2000 to 2003, with goals that included establishing a better under-
standing of the properties of rogue waves and building risk maps and warning criteria
[26]. These new methods enabled the observation of individual rogue waves using SAR
from satellites for the first time. However, this technique has important limitations. Ini-
tially, they use linear assumptions to invert the radar information into a sea surface image.
Furthermore, only wavelengths that are greater than about 100 m can be detected. From
SAR data, the MaxWave project showed that rogue waves mostly appeared in prolonged
storm systems or in crossing sea states [14]. This has also been confirmed by investigations
using the Lloyd’s database of ship accidents. Toffoli et al. (2005) combined information
about 200 ship accidents with wind and wave spectra data from WAM (wave model) and
data from satellites [5]. They found that these accidents did not always occur in very heavy
sea states and that crossing seas and rapidly changing wind conditions were more com-
mon.

Other research has continued to employ these techniques to derive sea state infor-
mation from SAR Satellites after the MaxWave Project ended, especially the German Aer-
ospace Center (DLR), which has published several papers [74-76] on the development of
algorithms to correctly obtain sea state parameters from SAR satellite images. DLR’s al-
gorithms can estimate integrated sea state parameters for different modes of the SAR sat-
ellite Sentinel-1 (S1). An empirical algorithm estimates Hs from SAR scenes using inte-
grated image spectral parameters, as well as estimated local wind information and texture
analysis based on gray level co-occurrence matrices (GLCM). This way, the parameters of
short waves can be estimated, which are not visible in 51 images and are only represented
by clutter. This algorithm was calibrated worldwide using 92 NDBC buoy data and more
than 2500 image acquisitions [74].

We utilized the C-band satellite-borne Synthetic Aperture Radar (SAR) data from
Sentinel-1 (S1) Interferometric Wide (IW) swath mode imagery. An S1 IW SAR image co-
vers approximately 200 km in the flight direction and a 250 km swath, with 10 m of pixel
spacing. The images that collocated with the rogue wave situations were found in the ESA
data archive and processed. The integrated sea state parameters were estimated as statis-
tics of 5 km x 5 km overlapping subscenes that moved by 1 km.

Besides the limitations of SAR images that were described previously, another main
issue is the lack of ground truth data for the comparison and calibration of wave parame-
ter algorithms. From the 32 highest rogue waves, we only found three event dates with S1
coverage: 20 January 2019, 10 October 2018, 30 January 2017. We also found an S1 image
from 10 February 2016, which could relate to a selected rogue event that was identified by
our buoy one day earlier on 9 February 2016. These four images were analyzed, and the
sea state parameters were derived. We then calculated the mean, variance, and standard
deviation for the 2-5 closest neighboring points of the results that were provided by the
algorithm for Hs, wind wave sea state, swell sea state and wave period. An example is
presented in Figure 12. No rogue waves could be identified as they did not stand out from
the background waves.
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Figure 12. The H;s data derived from SAR satellite Sentinel-1 (S1) with Interferometric Wide (IW)
swath mode for the date 10 October 2018, which was when several rogue waves were identified by
the studied CDIP buoy data. The buoy location is marked in gray. The elevation is measured by the
color bar in meters. No color is seen in the variance or standard deviation maps, which indicates
that the Hs values that were measured were very similar to neighboring values, thereby providing
no indication of rogue events in the image.

3.8. Vessel Wake Influence

The port of Tampa Bay is Florida’s largest port in terms of cargo tonnage, and it han-
dles more than 37 million tons of cargo per year. Its longstanding dominance is based on
being able to handle a large quantity of bulk and breakbulk cargo, including steel, phos-
phate, petroleum, and shipbuilding parts. The port of Tampa Bay experiences traffic com-
prising about 20 arrivals and 20 departures on average per day and most of the traffic
passes through the main navigation channel, in which the CDIP/USF buoy is located (Fig-
ure 1).

Due to the density of vessel traffic in the vicinity of the buoy, we used Automatic
Identification System (AIS) data to identify the vessels that were near to the buoy during
the extreme events. We noticed that on days of extreme weather, including 10 October
2018 during Hurricane Michael and 21 December 2018 when a series of tornados struck
west Florida, the vessel traffic in the channel decreased to nearly none. This was certainly
due to notices to mariners, extreme weather warnings and alarms and port closures.

Could vessel wakes be connected to rogue waves? Soomere (2006) published a study
on ship wakes as a model for rogue waves, in which he described that a significant part
of the energy from the wake waves of high-speed ships sailing in shallow water have
nonlinear components, which can create soliton waves [77]. These wakes usually consist
of non-dispersive, highly nonlinear, shallow water waves that often resemble ensembles
of Korteweg—De Vries (KdV) solitons [78]. The evolution and interaction of these wakes
completely diverge away from the behavior of linear waves. A succession of solitary
waves can be generated ahead of the ship, which are called “precursor solitons” [79]. The
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ship speed is the key factor in producing these soliton waves because at speeds of less
than the critical speed, linear waves are formed instead.

As mentioned previously, nonlinear interactions can be one of the causes of rogue
wave development. In this context, an analysis of the propagation and interactions of KdV
solitons should be tested as a possible component of extreme wave formation. A charac-
teristic of rogue waves is their pronounced steepness. The maximum slope at the front of
a two soliton interaction can be eight times greater than that of the incoming solitons [78].
Another theory suggests that very long waves, which behave in a similar manner to mini-
tsunamis, are generated when a ship that is moving at a subcritical depth Froude number
passes over a significant change in depth compared to the shallow water depth [80].

The main reason that we checked for local vessel traffic data was because of the pos-
sible relation between solitons and rogue wave formation. As a result, we did find that
some vessels passed the buoy at high speed before a few of the rogue events. However, it
was not clear whether wakes could influence local rogue wave creation, indicating that
more research should be conducted to explore the possibility of rogue waves being
formed by precursor solitons in shallow water.

4. Conclusions

This study focused on establishing a better understanding of the unpredictability of
rogue waves at the entrance of Tampa Bay. Rogue or freak waves are unexpected waves
of abnormal height that have impacted mariners for centuries and have caused property
damage and the loss of lives. Inspired by previous studies, which have found that the
predictors of rogue waves cannot be determined in bulk and have to be region-specific
due to different depths, bathymetry and local sea conditions, we analyzed data from one
wave buoy to search for possible local predicting parameters.

1. Our first conclusion is that the scientific definition of rogue waves (Hmax/Hs > 2 or
Cmax/Hs > 1.25) did not correspond to the sudden and brutal characteristics of real
rogue waves as described by mariners. In a set of 72,646 waves that were analyzed,
we found 7,593 waves with Hmax/Hs > 2, which was more than 10% of the total, and
2547 with Cmax/Hs > 1.25, which was about 3.5%. This indicates that the definition
must change to meet the seriousness and abrupt nature of reported rogue waves. We
recommend using a threshold of Hmax >4 m or 5 m in addition to Hmax/Hs > 2 to iden-
tify causes of concern for mariners. We selected 32 rogue waves that met these criteria
(Hmax/Hs> 2 and Hmax > 4 m) to analyze further in this study;

2. The investigated highest rogue waves showed some seasonality, with 75% of them
occurring between October and February, i.e., the winter months for Florida. A cor-
relation was also found between rogue wave formation and hurricanes passing
through the vicinity during warmer months. Therefore, the seasonality of local rogue
waves can be directly linked to strong weather systems occurring nearby, including
heavier storms and stronger winds that generate sea instability;

3. The buoy location on Florida’s west coast is predominantly sheltered from waves
coming from 0° to 180°. The directional spreading of the highest rogue waves was
narrow and primarily came from 200° to 300°, with the largest waves coming from
approximately 270°;

4.  Several distinct parameters that were derived from the buoy data in both the time
and frequency domains were analyzed. They revealed that no single sea state param-
eter was predictive for the occurrence of local rogue waves;

5. Certain sea state parameters could be used in conjunction as local rogue wave pre-
dictors, including: waves coming from 200° to 300°, surface elevation kurtosis values
of > 3.4, BFI values between 0.37 and 1.0, significant wave steepness of > 0.04, broad-
ness factor (¢) values between 0.7 and 0.8 and narrowness factor (v) values between
0.3 and 0.55. Although these values were common when Hs > 2, they could be useful
when considered together as a warning for potential rogue wave occurrence. This
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article did not consider the wave parameters of crest-trough correlation or Ursell
number, which has recently been found to be important for rogue wave formation
prediction by Hafner et al. [23]. These parameters will be checked in a future study
and may be added as part of a local rogue wave formation warning system;

6. During the largest rogue events that were identified, wind speeds exceeded 8.6 m/s
and instantaneous wind gusts exceeded 11.3 m/s. Therefore, we recommend using
the thresholds of wind speeds of over 8.5 m/s and wind gusts of over 11 m/s in con-
junction with the above-mentioned parameters as part of the empirical local rogue
wave predictor package;

7. Crossing seas and opposing currents showed no clear relationship with local rogue
waves. The lack of observed current data at the buoy location yielded uncertainty
and demonstrated the need for more research when more data become available. We
could not identify our higher rogue waves by analyzing the sea state using satellite
SAR images. Lastly, we could not reach any clear conclusions from the assessment of
the influence of wakes from local vessel traffic and recommend that more research
be conducted on this specific relationship.
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